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Abstract

Reinforcement Learning in Large or Unknown MDPs

by

Ambuj Tewari

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Peter L. Bartlett, Chair

Reinforcement learning is a central problem in artificial intelligence. Unlike super-

vised learning, in reinforcement learning the learning agent does not receive any input from

a supervisor about what to do in different situations. The agent has to learn from its own

experience taking into account any uncertainty in the outcomes of its actions.

Markov Decision Processes (MDPs) have been the dominant formalism used to

mathematically state and investigate the problem of reinforcement learning. Classical algo-

rithms like value iteration and policy iteration can compute optimal policies for MDPs in

time polynomial in the description of the MDP. This is fine for small problems but makes

it impractical to apply these algorithms to real world MDPs where the number of states is

enormous, even infinite. Another drawback is that these algorithms assume that the MDP

parameters are precisely known. To quantify learning in an unknown MDP, the notion of

regret has been defined and studied in the literature.
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This dissertation consists of two parts. In the first part, we study two methods

that have been proposed to handle large MDPs. PEGASUS is a policy search method that

uses simulators and approximate linear programming is a general methodology that tries

to obtain a good policy by solving linear programs of reasonable size. We give performance

bounds for policies produced by these methods. In the second part, we study the problem

of learning an unknown MDP. We begin by considering bounded parameter MDPs. These

arise when we have confidence intervals associated with each MDP parameter. Finally,

we give a new algorithm that achieves logarithmic regret in an irreducible but otherwise

unknown MDP. This is a provably optimal rate up to a constant.

Professor Peter L. Bartlett
Dissertation Committee Chair
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To the memory of my grandmother,

Shrimati Vimla Tewari
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Chapter 1

Introduction

Reinforcement learning is learning how to behave without having a teacher or

supervisor tell which actions to take in given situations. The learning agent interacts with

the environment collecting rewards as it tries out different actions in different situations.

This experience should help it decide which actions are better long term consequences in

terms of maximizing the rewards obtained.

Reinforcement learning problems are often modeled by Markov Decision Processes

(MDPs). We give a precise definition in the next chapter but for now it is sufficient to know

that there are four components to an MDP:

1. A state space S: This could be finite or infinite. Even if finite, the number of elements

in the state space is huge for any practical problem.

2. An action space A: This is the set of actions available to the agent. It can also depend

on the state the agent is in. Then A becomes a function of state. Again, A could be

finite or infinite.



2

3. A reward function R: This is the numerical reward that the agent receives in the

course of its interaction with the environment. We assume that the agent receives

a reward R(i, a) when it takes action a in state i. Sometimes, the reward is also a

function of the state that is reached after taking the action. But we will follow the

above convention.

4. The transition function P : This describes how the state of the agent changes when

it takes various actions. Since there is uncertainty in outcomes of actions, the precise

outcome of taking action a in state i is not determined. Instead, there is a certain

probability that the agent will end up in state j as a result of this action. We denote

this probability by Pi,a(j).

A crucial concept in the theory of MDPs is that of a policy. A policy provides the

agent with a way to map situations onto actions. To assess the quality of a policy, various

performance criteria have been considered in the literature. The next chapter describes two

of the most popular ones: the discounted sum of rewards and the average reward criteria.

When the parameters R and P are given explicitly, there are standard algorithms to compute

optimal policies. The running time of these algorithms typically scales polynomially in the

sizes |S| and |A| of the state and action spaces. For MDPs with large state spaces, these

algorithms are impractical. Another issue is that we often do not have direct access to

these parameters. Instead, we might be faced with an unknown MDP and the only way

to obtain information about the parameters is through interaction with the environment.

This brings the famous ‘exploration versus exploitation’ issue to the fore. On the one hand,

the agent has to take seemingly inferior actions to explore previously unvisited parts of the
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state space. On the other hand, it is necessary to exploit past experience by executing those

actions that have performed well so far.

This thesis is divided into two parts. The first part, consisting of Chapters 3

and 4, deals with the problem of large state spaces. Chapters 5 and 6 form the second part

and deal with the problem of acting in an unknown MDP. We give a brief summary of the

contributions of these chapters below.

Chapter 3 considers PEGASUS, a policy search method due to Ng and Jordan [[23]].

In policy search, we fix a class of policies and try to find the best policy in that class. The

hope is that by giving up the goal of producing the truly optimal policy, we have made the

problem tractable. PEGASUS involves the use of a simulator for the underlying MDP. Such

simulators are often available for many tasks and PEGASUS has been successfully applied

to autonomous helicopter flight. We provide bounds on sample complexity, i.e. the number

of sample trajectories that need to be generated during the simulation in order to achieve a

given level of performance. This chapter also illustrates that the issue of sample complexity

is not straightforward since bounds cannot be obtained by just assuming that the policy

class and the MDP dynamics are simple according to the usual notions of complexity like

Pollard’s pseudodimension or the fat-shattering dimension.

Chapter 4 considers the approximate linear programming approach pioneered by

Van Roy and his colleagues. The idea behind this approach is to approximate the value

function (a measure of performance for a given policy) by a linear combination of a set of

basis functions. This approximation is then plugged into the standard linear program for

discounted MDPs. The hope is that the computation will then scale with the number of ba-
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sis functions and not with the size of the state space. Obviously, making the approximation

means the policy thus obtained will be sub-optimal. We obtain a bound that quantifies the

difference in the performance of the policy derived from approximate linear programming

with constraint sampling and that of an optimal policy. This chapter also considers approx-

imation in the dual linear program which has begun to be explored in the recent literature.

We provide some preliminary results about the solution of the approximate dual. We hope

that in future this will allow us to obtain more understanding of the power of the dual

approximation approach.

Chapter 5 considers bounded parameter MDPs (BMDPs). Among other situa-

tions, they arise when we are exploring an unknown MDP. Due to limited experience, we

do not have precise estimates of the parameters R and P . Instead, each parameter has a

confidence interval associated with it. A BMDP is simply a set of MDPs whose parameters

lie in given intervals. There are at least two ways to define the value function of a given

policy in a BMDP. The optimistic value function of a policy is its value in the best MDP

for that policy. The pessimistic value function is its value in the worst MDP for that policy.

We give algorithms to compute the optimal value function in the optimistic as well the

pessimistic sense.

The recent online reinforcement learning algorithm of Auer and Ortner [[5]] needs to

compute an optimal policy (in the optimistic sense) for a BMDP obtained from the current

confidence intervals. The optimal policy is then executed for some time, the confidence

intervals are then updated and the process repeats. Thus, our algorithm for BMDPs can

be used as a subroutine of their algorithm. In the robust control literature, Nilim and El
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Ghaoui [[24]] considered pessimistic value functions and gave algorithms to compute optimal

value functions and policies for the finite horizon and discounted criteria. Our work can

thus also be seen as extending their work to the case of the average reward criterion.

Chapter 6 considers the problem of minimizing regret in an unknown MDP. The

definition of regret can be found in Section 6.2 of that chapter. It measures the difference

between the accumulated reward of the agent and that of an optimal policy. Intuitively, low

regret algorithms can be thought of as making a successful exploration-exploitation trade-

off. It is remarkable that Burnetas and Katehakis [[11]] have given an algorithm following

which the agent can ensure that its regret will only increase logarithmically with time.

Their algorithm used KL-divergence in its main step and as a result needed to know the

support of the distributions Pi,a. We simplify their algorithm by using L1 distance instead

of KL-divergence. Our use of the L1 distance not only makes the algorithm and its analysis

simpler but also gets rid of the requirement to know the support of the distributions Pi,a.

Recently, Auer and Ortner [[5]] have also given a logarithmic regret algorithm that works

without this knowledge. We provide a comparison of the constant appearing in our bound

with the one appearing in theirs.
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Chapter 2

Markov Decision Processes

A Markov decision process is a model for sequential decision making under uncer-

tainty. Mathematically, a Markov decision process (MDP) is a 4-tuple M = 〈S,A, P,R〉

where S is the state space, A is the action space, P is the transition function and R is the

reward function. For every i ∈ S, a ∈ A, Pi,a is probability distribution over S and Pi,a(j)

represents the probability of moving to state j after taking action a in state i. Also, a

reward of R(i, a) is received when action a is taken in state i. A good reference for the

theory of MDPs is the Puterman’s book [[26]].

The fundamental issue in making sequential decisions is that the current decision

can have long-term consequences. The reward R(i, a) is a short term measure of the value

of taking action a in state i. In order to discuss long-term values, we need to introduce

the notion of a policy. Intuitively, a policy is a rule for making a decision based on what

has happened in the past. A history is a sequence σt = (i0, k0, . . . , it−1, kt−1, it) such that

il ∈ S, 0 ≤ l ≤ t and kl ∈ A, 0 ≤ l < t. A history dependent policy π is a sequence
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{πt} of probability distributions on A given σt. We denote the set of all policies by Π. A

randomized stationary policy only depends on the current state and can thus be thought

of as a map µ : S × A &→ [0, 1] such that
∑

a µ(i, a) = 1 for all i ∈ S. When in states i,

the policy µ takes action i with probability µ(i, a). We denote the set of all randomized

stationary policies by ΠR. A deterministic stationary policy is simply a mapping µ : S &→ A.

We denote the set of all deterministic stationary policies by ΠD.

Given an MDP M , a start state i0 and a policy π, we can define a natural stochastic

process s0, a0, s1, a1, . . . where s0 = i0, at is drawn from the distribution πt given σt and st+1

is drawn from Pst,at . Denote the expectations and probabilities with respect this process

by Eπ,M
i0

and Pπ,M
i0

respectively. If the start state s0 is not fixed but is instead chosen from

a distribution α over states, we denote the corresponding expectations and probabilities by

Eπ,M
α and Pπ,M

α respectively.

2.1 Discounted Reward Criterion

Given an MDP M , a discount factor γ ∈ [0, 1) and policy π define the γ-discounted

value of a policy π starting from state i to be

Vγ,π,M(i) := Eπ,M
i

[ ∞∑

t=0

γtR(st, at)

]
.

If rewards are in some bounded interval, say [0, Rmax], then the above limit exists for each

policy π ∈ Π. Define the optimal value function by

V ∗
γ,M (i) := sup

π∈Π
Vγ,π,M (i) .
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It is a fact from MDP theory that there is a policy µ∗ ∈ ΠD such that

V ∗
γ,M = Vγ,µ∗,M .

We call such a policy optimal for the γ-discounted reward criterion. When the MDP M

and discount factor γ are fixed, we will denote Vγ,µ,M and V ∗
γ,M simply by Vµ and V ∗

respectively.

Given a policy µ ∈ ΠD, define the matrix Pµ and the vector Rµ by

Pµ(i, j) := Pi,µ(i)(j) , Rµ(i) := R(i, µ(i)) .

Define the occupation measure of µ with initial distribution α as

ψµ,α(i) := Eµ,M
α

[ ∞∑

t=0

γt1 [st = i]

]
.

Note that we also have

ψµ,α = α%(I − γPµ)−1 .

The occupation measure can be extended to state-action pairs as follows.

ψµ,α(i, a) := ψµ(i)µ(i, a) .

It will usually be clear from context as to which occupation measure is meant.

Define the following operators that act on V : S → R producing a V ′ : S → R.

(Tγ,µ,MV ) (i) := R(i, a) + γ
∑

j

Pi,µ(i)(j)V (j) ,

(Tγ,MV ) (i) := max
a∈A



R(i, a) + γ
∑

j

Pi,a(j)V (j)



 .

MDP theory tells us that the fixed point of these operators are Vγ,µ,M and V ∗
γ,M respectively.

Again, we omit the subscripts M and γ if those quantities are fixed in a given context.
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The greedy policy with respect to a function V : S → R is defined by

(Greedy(V ))(i) := arg max
a

(
R(i, a) + γP%

i,aV
)

.

If V ∗ is the optimal value function then Greedy(V ) is an optimal policy.

2.2 Average Reward Criterion

Define the average reward value function of a policy π as follows.

Uµ,M (i) := lim inf
T→∞

Eµ,M
i

[∑T−1
t=0 R(st, at)

]

T
.

This limit exists for all µ ∈ ΠD. Moreover, for irreducible MDPs considered in Chapter 6

the limit is independent of the start state i and is denoted there by λµ. For µ ∈ ΠD, the

‘lim inf’ in the above definition can be replaced by a ‘lim’ and there exists hµ,M : S &→ R

such that the following important relation holds (see, for example, Section 8.2.2 in [[26]])

between Vγ,µ,M and Uµ,M ,

∀i, Uµ,M (i) = (1− γ)Vγ,µ,M (i) + (1− γ)hµ,M (i) + O
(
|1− γ|2

)
. (2.1)

Also note that for an event A and a natural number m, we use the following

notation in the rest of the thesis.

1 [A] := 1 if A is true, 0 otherwise ,

[m] := {1, . . . ,m} .
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Chapter 3

Sample Complexity of Policy

Search

In this chapter, we consider an example of a policy search method. These methods

try to find a good policy for an MDP by choosing one from a given class. In the method

we investigate, the policy is chosen based on its empirical performance in simulations. We

are interested in conditions on the complexity of the policy class that ensure the success of

such simulation based policy search methods. We show that under bounds on the amount

of computation involved in computing policies, transition dynamics and rewards, uniform

convergence of empirical estimates to true value functions occurs. Previously, such results

were derived by assuming boundedness of pseudodimension and Lipschitz continuity. These

assumptions and ours are both stronger than the usual combinatorial complexity measures.

We show, via minimax inequalities, that this is essential: boundedness of pseudodimension

or fat-shattering dimension alone is not sufficient.



11

3.1 Policy Search Using Simulators

Except for toy problems with a few states, computing an optimal policy for an

MDP is usually out of the question. Some relaxations need to be done if our aim is to

develop tractable methods for achieving near optimal performance. One possibility is to

avoid considering all possible policies by restricting oneself to a smaller class Π of policies.

Given a simulator for the environment, we try to pick the best policy from Π. The hope is

that if the policy class is appropriately chosen, the best policy in Π would not be too much

worse than the true optimal policy.

Use of simulators introduces an important issue: how is one to be sure that perfor-

mance of policies in the class Π on a few simulations is indicative of their true performance?

This is reminiscent of the situation in statistical learning. There the aim is to learn a con-

cept and one restricts attention to a hypotheses class which may or may not contain the

“true” concept. The sample complexity question then is: how many labeled examples are

needed in order to be confident that error rates on the training set are close to the true

error rates of the hypotheses in our class? The answer turns out to depend on “complexity”

of the hypothesis class as measured by combinatorial quantities associated with the class

such as the VC dimension, the pseudodimension and the fat-shattering dimension.

Some progress [[21, 23]] has already been made to obtain uniform bounds on the

difference between value functions and their empirical estimates, where the value function

of a policy is the expected long term reward starting from a certain state and following the

policy thereafter. We continue this line of work by further investigating what properties of

the policy class determine the rate of uniform convergence of value function estimates. The
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key difference between the usual statistical learning setting and ours is that we not only

have to consider the complexity of the class Π but also of the classes derived from Π by

composing the functions in Π with themselves and with the state evolution process implied

by the simulator.

Ng and Jordan [[23]] used a finite pseudodimension condition along with Lipschitz

continuity to derive uniform bounds. The Lipschitz condition was used to control the cov-

ering numbers of the iterated function classes. We provide a uniform convergence result

(Theorem 1) under the assumption that policies are parameterized by a finite number of

parameters and that the computations involved in computing the policy, the single-step

simulation function and the reward function all require a bounded number of arithmetic

operations on real numbers. The number of samples required grows linearly with the di-

mension of the parameter space but is independent of the dimension of the state space. Ng

and Jordan’s and our assumptions are both stronger than just assuming finiteness of some

combinatorial dimension. We show that this is unavoidable by constructing two examples

where the fat-shattering dimension and the pseudodimension respectively are bounded, yet

no simulation based method succeeds in estimating the true values of policies well. This

happens because iteratively composing a function class with itself can quickly destroy finite-

ness of combinatorial dimensions. Additional assumptions are therefore needed to ensure

that these iterates continue to have bounded combinatorial dimensions.

Although we restrict ourselves to MDPs for ease of exposition, the analysis pre-

sented in this chapter also carries over easily to the case of partially observable MDPs

(POMDPs), provided the simulator also simulates the conditional distribution of observa-



13

tions given state using a bounded amount of computation.

The plan of the rest of the chapter is as follows. We set up notation and ter-

minology in Section 3.2. In the same section, we describe the model of computation over

reals that we use. Section 3.3 proves Theorem 1, which gives a sample complexity bound

for achieving a desired level of performance within the policy class. In Section 3.4, we give

two examples of policy classes whose combinatorial dimensions are bounded. Nevertheless,

we can prove strong minimax lower bounds implying that no method of choosing a policy

based on empirical estimates can do well for these examples.

3.2 Bounded Computation Assumption

Suppose we have an MDP M = 〈S,A, P,R〉. In this chapter, we will assume that

S and A are Euclidean spaces of dimensionality dS and dA respectively. Further, we do not

restrict the reward function to be a deterministic function of the state. Instead, R maps

states to distributions over a bounded interval [0, Rmax]. Moreover, we also assume that

there is some initial distribution D over states such that the initial state s0 is drawn from

D.

Let π be a randomized policy. For a discount factor γ ∈ [0, 1) consider the value

of the policy,

Vγ,π,M(D) = Eπ,P
D

[ ∞∑

t=0

γtρt

]

,

where ρt is a random reward drawn from the distribution R(st, at) where at in turn is

drawn from π(st). Since M , γ and D will mostly be fixed throughout this chapter, we will

denote the value function of π simply by Vπ. Given a horizon length H > 0, also define the
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truncated value function,

V H
γ,π,M (D) = Eπ,M

D

[
H∑

t=0

γtρt

]
.

We need a model of real computation to state the results in this chapter. We use

a degree bounded version of the Blum-Shub-Smale [[9]] model of computation over reals.

At each time step, we can perform one of the four arithmetic operations +,−,×, / or can

branch based on a comparison (say <). While Blum et al. allow an arbitrary fixed rational

map to be computed in one time step, we further require that the degree of any of the

polynomials appearing at computation nodes be at most 1.

Definition 1. Let k, l,m, τ be positive integers, f a function from Rk to probability dis-

tributions over Rl and Ξ a probability distribution over Rm. The function f is (Ξ, τ)-

computable if there exists a degree bounded finite dimensional machine M over R with

input space Rk+m and output space Rl such that the following hold.

1. For every x ∈ Rk and ξ ∈ Rm, the machine halts with halting time TM(x, ξ) ≤ τ .

2. For every x ∈ Rk, if ξ ∈ Rm is distributed according to Ξ the input-output map

ΦM(x, ξ) is distributed as f(x).

Informally, the definition states that given access to an oracle which generates

samples from Ξ, we can generate samples from f(x) by doing a bounded amount of com-

putation. For precise definitions of the input-output map and halting time, we refer the

reader to Chapter 2 of [[9]].

In Section 3.3, we assume that the policy class Π is parameterized by a finite

dimensional parameter θ ∈ Rd. In this setting π(s; θ), Ps,a and R(s, a) are distributions
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over RdA , RdS and [0, R] respectively. The following assumption states that all these maps

are computable within τ time steps in our model of computation.

Assumption 1. There exists a probability distribution Ξ over Rm and a positive integer

τ such that the functions

• s &→ π(s; θ),

• (s, a) &→ Ps,a, and

• s &→ R(s, a)

are (Ξ, τ)-computable. Let Mπ, MP and Mr respectively be the machines that compute

them.

This assumption will be satisfied if we have three “programs” that make a call

to a random number generator for distribution Ξ, do a fixed number of floating-point

operations and simulate the policies in our class, the state-transition dynamics and the

rewards respectively. The following two examples illustrate this for the state-transition

dynamics.

Example 1. Linear Dynamical System with Additive Noise

Suppose A and B are dS × dS and dS × dA matrices and the system dynamics is given by

st+1 = Ast + Bat + ξt , (3.1)

where ξt are i.i.d. from some distribution Ξ. Since computing (3.1) takes 2(d2
S +dSdA +dS)

operations, Ps,a is (Ξ, τ)-computable for τ = O(dS(dS + dA)). In this case, the realizable

dynamics, i.e. the mapping from state to next state for a given policy class, is not uniformly
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Lipschitz if policies allow unbounded actions. So previously known bounds [[23]] are not

applicable even in this simple setting.

Example 2. Discrete States and Actions

Suppose S = {1, 2, . . . , |S|} and A = {1, 2, . . . , |A|}. For some fixed s, a, Ps,a is described

by n numbers (p1, . . . , pnS),
∑

i pi = 1. Let Pk =
∑k

i=1 pi. For ξ ∈ (0, 1], set f(ξ) = min{k :

Pk ≥ ξ}. Thus, if ξ has uniform distribution on (0, 1], then f(ξ) = k with probability

pk. Since the Pk’s are non-decreasing, f(ξ) can be computed in log |S| steps using binary

search. But this was for a fixed s, a pair. Finding which Ps,a to use, further takes log(|S||A|)

steps using binary search. So if Ξ denotes the uniform distribution on (0, 1] then Ps,a is

(Ξ, τ)-computable for τ = O(log |S| + log |A|).

For a small ε, let H be the ε horizon time, i.e. ignoring rewards beyond time H

does not affect the value of any policy by more than ε. To obtain sample rewards, given

initial state s0 and policy πθ = π(·; θ), we first compute the trajectory s0, . . . , sH sampled

from the Markov chain induced by πθ. This requires H “calls” each to Mπ and MP . A

further H + 1 calls to Mr are then required to generate the rewards ρ0 through ρH . These

calls require a total of 3H + 1 samples from Ξ. The empirical estimates are computed

as follows. Suppose, for 1 ≤ i ≤ n, (s(i)
0 , ,ξi) are i.i.d. samples generated from the joint

distribution D × Ξ3H+1. Define the empirical estimate of the value of the policy π by

V̂ H
πθ

=
1
n

n∑

i=1

H∑

t=0

γtρt(s
(i)
0 , θ, ,ξi) .

Define an ε-approximate maximizer of V̂ to be a policy π′ such that

V̂ H
π′ ≥ sup

π∈Π
V̂ H
π − ε .
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Finally, we mention the definitions of three standard combinatorial dimensions.

Let X be some space and consider classes G and F of {−1,+1} and real valued functions

on X , respectively. Fix a finite set X = {x1, . . . , xn} ⊆ X . We say that G shatters X if

for all bit vectors ,b ∈ {0, 1}n there exists g ∈ G such that for all i, bi = 0 ⇒ g(xi) = −1,

bi = 1 ⇒ g(xi) = +1. We say that F shatters X if there exists ,r ∈ Rn such that, for

all bit vectors ,b ∈ {0, 1}n, there exists f ∈ F such that for all i, bi = 0 ⇒ f(xi) < ri,

bi = 1 ⇒ f(xi) ≥ ri. We say that F ε-shatters X if these exists ,r ∈ Rn such that, for all

bit vectors ,b ∈ {0, 1}n, there exists f ∈ F such that for all i, bi = 0 ⇒ f(xi) ≤ ri − ε,

bi = 1⇒ f(xi) ≥ ri + ε. We then have the following definitions,

VCdim(G) = max{|X| : G shatters X} ,

Pdim(F) = max{|X| : F shatters X} ,

fatF (ε) = max{|X| : F ε-shatters X} .

3.3 Sample Complexity Bound

We now state the main result of this chapter. It gives the number of trajectories

that need to be generated to guarantee that an approximate maximizer of V̂ is also an

approximate maximizer of V , the true value function.

Theorem 1. Fix an MDP M , a discount factor γ ∈ [0, 1), a policy class Π = {s &→ π(s; θ) :

θ ∈ Rd}, and an ε > 0. Suppose Assumption 1 holds. Then

n > O

(
R2

maxH

(1− γ)2ε2 · d · τ · log Rmax

ε(1− γ)

)
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ensures that

E
[
sup
π∈Π

Vπ − Vπn

]
≤ 3ε+ ε′ ,

where πn is an ε′-approximate maximizer of V̂ and H = log1/γ(2Rmax/(ε(1−γ))) is the ε/2

horizon time.

Proof. The proof consists of three steps: (1) Assumption 1 is used to get bounds on pseu-

dodimension; (2) The pseudodimension bound is used to prove uniform convergence of

empirical estimates to true value functions; (3) Uniform convergence and the definition of

ε′-approximate maximizer gives the bound on expected regret.

Step 1. Given initial state s0, parameter θ and random numbers ξ1 through

ξ3H+1, we first compute the trajectory as follows. Recall that ΦM refers to the input-output

map of a machine M.

st = ΦMP (st−1,ΦMπ(θ, s, ξ2t−1), ξ2t), 1 ≤ t ≤ H . (3.2)

The rewards are then computed by

ρt = ΦMr(st,ΦMπ(θ, s, ξ2t−1), ξ2H+t+1), 0 ≤ t ≤ H . (3.3)

The H-step discounted reward sum is computed as

H∑

t=0

γtρt = ρ0 + γ(ρ1 + γ(ρ2 + . . . (ρH−1 + γρH) . . .)) . (3.4)

Define the function class R = {(s0, ,ξ) &→
∑H

t=0 γ
tρt(s0, θ, ,ξ) : θ ∈ Rd}, where we have

explicitly shown the dependence of ρt on s0, θ and ,ξ. Let us count the number of arithmetic

operations needed to compute a function in this class. Using Assumption 1, we see that

steps (3.2) and (3.3) require no more than 2τH and τ(H + 1) operations respectively.
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Step (3.4) requires H multiplications and H additions. This gives a total of 2τH + τ(H +

1) + 2H ≤ 6τH operations. Goldberg and Jerrum [[17]] showed that the VC dimension of

a function class can be bounded in terms of an upper bound on the number of arithmetic

operations it takes to compute the functions in the class. Since the pseudodimension of R

can be written as

Pdim(R) = VCdim{(s0, ,ξ, c) &→ sign(f(s0, ,ξ)− c) : f ∈ R, c ∈ R} ,

we get the following bound by Theorem 8.4 in [[2]],

Pdim(R) ≤ 4d(6τH + 3) . (3.5)

Step 2. Recall that V H
π denotes the truncated value function for π. For the choice

of H stated in the theorem, we have for all π, |V H
π − Vπ| ≤ ε/2. Therefore,

P(∃π ∈ Π : |V̂ H
π − Vπ| > ε) ≤ P(∃π ∈ Π : |V̂ H

π − V H
π | > ε/2) . (3.6)

Functions in R are positive and bounded above by R′ = Rmax/(1−γ). There are well-known

bounds for deviations of empirical estimates from true expectations for bounded function

classes in terms of the pseudodimension of the class (see, for example, Theorems 3 and 5

in [[20]]; also see Pollard’s book [[25]]). Using a weak form of these results, we get

P(∃π ∈ Π : |V̂ H
π − V H

π | > ε) ≤ 8
(

32eR′

ε

)2Pdim(R)

e−ε
2n/64R′2

.

In order to ensure that P(∃π ∈ Π : |V̂ H
π − V H

π | > ε/2) < δ, we need

8
(

64eR′

ε

)2Pdim(R)

e−ε
2n/256R′2

< δ ,

Using the bound (3.5) on Pdim(R), we get that

P
(

sup
π∈Π

∣∣∣V̂ H
π − Vπ

∣∣∣ > ε

)
< δ , (3.7)
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provided

n >
256R2

(1− γ)2ε2

(
log
(

8
δ

)
+ 8d(6τH + 3) log

(
64eR

(1− γ)ε

))
.

Step 3. We now show that (3.7) implies

E
[
sup
π∈Π

Vπ − Vπn

]
≤ Rmaxδ

(1− γ)
+ (2ε+ ε′) .

The theorem them immediately follows by setting δ = (1− γ)ε/R.

Suppose that for all π ∈ Π, |V̂ H
π − Vπ| ≤ ε. This implies that for all π ∈ Π,

Vπ ≤ V̂ H
π + ε. Since πn is an ε′-approximate maximizer of V̂ , we have for all π ∈ Π,

V̂ H
π ≤ V̂ H

πn
+ε′. Thus, for all π ∈ Π, Vπ ≤ V̂ H

πn
+ε+ε′. Taking the supremum over π ∈ Π and

using the fact that V̂ H(πn) ≤ V (πn) + ε, we get supπ∈Π Vπ ≤ Vπn + 2ε+ ε′. Thus, if (3.7)

holds then we have

P
(

sup
π∈Π

Vπ − Vπn > 2ε+ ε′
)

< δ .

Denoting the event {supπ∈Π Vπ − Vπn > 2ε+ ε′} by E, we have

E
[
sup
π∈Π

Vπ − Vπn

]
= E1 [E]

[
sup
π∈Π

Vπ − Vπn

]
+ E1 [¬E]

[
sup
π∈Π

Vπ − Vπn

]

≤ Rmaxδ/(1 − γ) + (2ε+ ε′) .

where we used the fact that the random variable whose expectation we are bounding is

upper bounded by Rmax/(1 − γ).

3.4 Two Policy Classes Having Bounded Combinatorial Di-

mensions

We will describe two policy classes for which we can prove that there are strong

limitations on the performance of any method (of choosing a policy out of a policy class) that
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has access only to empirically observed rewards. Somewhat surprisingly, one can show this

for policy classes which are “simple” in the sense that standard combinatorial dimensions of

these classes are bounded. This shows that sufficient conditions for the success of simulation

based policy search (such as the assumptions in [[23]] and in our Theorem 1) have to be

necessarily stronger than boundedness of standard combinatorial dimensions.

The first example is a policy class F1 for which fatF1(ε) < ∞ for all ε > 0. The

second example is a class F2 for which Pdim(F2) = 1. Since finiteness of pseudodimension

is a stronger condition, the second example makes our point more forcefully than the first

one. However, the first example is considerably less contrived than the second one.

Policy Class 1

Let MD = 〈S,A, P,R〉 be an MDP with initial state distribution D and

S = [−1,+1] ,

A = [−2,+2] ,

Ps,a(s′) =






1 if s′ = max(−1,min(s + a, 1)))

0 otherwise

,

R = deterministic reward that maps s to s

Let γ be some fixed discount factor in [0, 1).

For a function f : [−1,+1] &→ [−1,+1], let πf denote the (deterministic) policy

which takes action f(s)− s in state s. Given a class F of functions, we define an associated

policy class ΠF = {πf : f ∈ F}.
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We now describe a specific function class F1. Fix ε1 > 0. Let T be an arbitrary

finite subset of (0, 1). Let δ(x) = (1− |x|)+ be the “triangular spike” function. Let

fT (x) =






−1 −1 ≤ x < 0

0 x = 0

max
y∈T

(
ε1
|T |δ

(
x−y
ε1/|T |

)
− ε1

|T |

)
0 < x ≤ 1

.

There is a spike at each point in T and the tips of the spikes just touch the X-axis (see

Figure 3.1). Let

fn
T := fT ◦ fT ◦ . . . ◦ fT︸ ︷︷ ︸

n times

.

Since −1 and 0 are fixed points of FT (x), it is straightforward to verify that

f2
T (x) =






−1 −1 ≤ x < 0

0 x = 0

1 [x ∈ T ]− 1 0 < x ≤ 1

. (3.8)

Also, fn
T = f2

T for all n > 2. Define F1 = {fT : T ⊂ (ε1, 1), |T | < ∞}. By construction,

functions in F1 have bounded total variation and so, fatF1(ε) is O(1/ε) (see, for example,

Chapter 11 in [[2]]). Moreover, fT (x) satisfies the Lipschitz condition everywhere (with

constant L = 1) except at 0. This is striking in the sense that the loss of the Lipschitz

property at a single point allows us to prove the following lower bound.

Proposition 2. Let gn range over functions from Sn to F1. Let D range over probability

distributions on S. Then,

inf
gn

sup
D

E(s1,...,sn)∼Dn

[

sup
π∈ΠF1

VMD,π − VMD,πgn(s1,...,sn)

]

≥ γ2

1− γ − 2ε1 .
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)

x

Figure 3.1: Plot of the function fT with T = {0.2, 0.3, 0.6, 0.8}. Note that, for x > 0, fT (x)
is 0 iff x ∈ T . Also, fT (x) satisfies the Lipschitz condition (with constant 1) everywhere
except at 0.

This says that for any method that maps random initial states s1, . . . , sn to a

policy in ΠF1 , there is an initial state distribution such that the expected regret of the

selected policy is at least γ2/(1−γ)−2ε1. This is in sharp contrast to Theorem 1 where we

could reduce, by using sufficiently many samples, the expected regret down to any positive

number given the ability to maximize the empirical estimates V̂ .

Let us see how maximization of empirical estimates behaves in this case. Since

fatF1(ε) < ∞ for all ε > 0, the law of large numbers holds uniformly (see Theorem 2.5

in [[1]]) over the class F1. The transitions, policies and rewards here are all deterministic.

The reward function is just the identity. This means that the 1-step reward function family

is just F1. So the estimates of 1-step rewards are still uniformly concentrated around their

expected values. Since the contribution of rewards from time step 2 onwards can be no

more than γ2 + γ3 + . . . = γ2/(1− γ), we can claim that, for any initial distribution D,

E
[

sup
π∈ΠF1

VMD,π − VMD,πn

]

≤ γ2

1− γ + en ,
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where en → 0. Thus the bound in Proposition 2 above is essentially tight.

Before we prove Proposition 2, we need the following lemma whose proof is given

in Appendix A, Section A.1.

Lemma 3. Fix an interval (a, b) and let T be the set of all its finite subsets. Let gn range

over functions from (a, b)n to T . Let D range over probability distributions on (a, b). Then,

inf
gn

sup
D

(
sup
T∈T

EX∼D1 [X ∈ T ]− E(X1,...,Xn)∼DnE(X∼D)1 [X ∈ gn(X1, . . . ,Xn)]
)
≥ 1 .

Proof of Proposition 2. We will prove the inequality when D ranges over distributions on

(0, 1) which, obviously, implies the proposition.

Since, for all f ∈ F1 and n > 2, fn = f2, we have

sup
π∈ΠF1

VMD,π − E(s1,...,sn)∼DnVMD(πgn(s1,...,sn))

= sup
f∈F1

Es∼D

[
s + γf(s) +

γ2

1− γ f2(s)
]

− E(s1,...,sn)∼Dn

[
Es∼D[s + γgn(s1, . . . , sn)(s) +

γ2

1− γ gn(s1, . . . , sn)2(s)]
]

= sup
f∈F1

Es∼D

[
γf(s) +

γ2

1− γ
f2(s)

]

− E(s1,...,sn)∼Dn

[
Es∼D[γgn(s1, . . . , sn)(s) +

γ2

1− γ gn(s1, . . . , sn)2(s)]
]

.

For all f1, f2, |Ef1 − Ef2| ≤ E|f1 − f2| ≤ ε1. Therefore, we can get rid of the first terms in

both sub-expressions above without changing the value by more than 2γε1. Thus, continuing
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to bound the expression above, we get

≥ sup
f∈F1

Es∼D

[
γ2

1− γ f2(s)
]
− E(s1,...,sn)∼Dn

[
Es∼D[

γ2

1− γ gn(s1, . . . , sn)2(s)]
]

− 2γε1

=
γ2

1− γ

(
sup
f∈F1

Es∼D
[
f2(s) + 1

]
− E(s1,...,sn)∼DnEs∼D[gn(s1, . . . , sn)2(s) + 1]

)

− 2γε1 .

From (3.8), we know that f2
T (x) + 1 restricted to x ∈ (0, 1) is the same as 1 [x ∈ T ].

Therefore, restricting D to probability measures on (0, 1) and applying Lemma 3, we get

inf
gn

sup
D

(
sup
π∈ΠF1

VMD,π − E(s1,...,sn)∼DnVMD,πgn(s1,...,sn)

)
≥ γ2

1− γ
− 2γε1 .

Noting that γ < 1 finishes the proof.

Policy Class 2

We use the MDP of the previous section with a different policy class which we now

describe. For a real number x, y ∈ (0, 1) with binary expansions (choose the terminating

representation for rationals) 0.b1b2b3 . . . and 0.c1c2c3 . . ., define

mix(x, y) = 0.b1c1b2c2 . . . stretch(x) = 0.b10b20b3 . . .

even(x) = 0.b2b4b6 . . . odd(x) = 0.b1b3b5 . . .

Some obvious identities are mix(x, y) = stretch(x) + stretch(y)/2, odd(mix(x, y)) = x and

even(mix(x, y)) = y. Now fix ε2 > 0. Since, finite subsets of (0, 1) and irrationals in (0, ε2)

have the same cardinality, there exists a bijection h which maps every finite subset T of
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(0, 1) to some irrational h(T ) ∈ (0, ε2). For a finite subset T of (0, 1), define

fT (x) =






0 x = −1

1
[
odd(−x) ∈ h−1(even(−x)

]
−1 < x < 0

0 x = 0

−mix(x, h(T )) 0 < x < 1

1 x = 1

.

It is easy to check that with this definition, f2
T (x) = 1 [x ∈ T ] for x ∈ (0, 1). Finally, let

F2 = {fT : T ⊂ (0, 1), |T | <∞}. To calculate the pseudodimension of this class, note that

using the identity mix(x, y) = stretch(x) + stretch(y)/2, every function fT in the class can

be written as fT = f0 + f̃T where f0 is a fixed function (does not depend on T ) and f̃T is

given by

f̃T (x) =






0 −1 ≤ x ≤ 0

− stretch(h(T ))/2 0 < x < 1

0 x = 1

.

Let H = {f̃T : T ⊂ (0, 1), |T | < ∞}. Since Pdim(H + f0) = Pdim(H) for any class H and

a fixed function f0, we have Pdim(F2) = Pdim(H). As each function f̃T (x) is constant on

(0, 1) and zero elsewhere, we cannot shatter even two points using H. Thus, Pdim(H) = 1.

Proposition 4. Let gn range over functions from Sn to F2. Let D range over probability

distributions on S. Then,

inf
gn

sup
D

E(s1,...,sn)∼Dn

[

sup
π∈ΠF2

VMD ,π − VMD ,πgn(s1,...,sn)

]

≥ γ2

1− γ − ε2 .
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Sketch. Let us only check that the properties of F1 that allowed us to proceed with the proof

of Proposition 2 are also satisfied by F2. First, for all f ∈ F2 and n > 2, fn = f2. Second,

for all f1, f2 ∈ F2 and x ∈ [−1,+1], |f1(x)− f2(x)| ≤ ε2/2. This is because fT1 and fT2 can

differ only for x ∈ (0, 1). For such an x, |fT1(x)−fT2(x)| = |mix(x, h(T1)−mix(x, h(T2))| =

| stretch(h(T1)) − stretch(h(T2))|/2 ≤ ε2/2. D = some distribution on [−1,+1], D = some

distribution on [−1,+1], Third, the restriction of f2
T to (0, 1) is 1 [x ∈ T ].
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Chapter 4

Approximate Linear Programming

In this chapter, we consider the approximate linear programming approach to

solving large MDPs that has been pioneered by Van Roy and his colleagues. We first

consider the exact linear program that can be used to solve for the optimal value function

of an explicitly given MDP. We then make a linear approximation for the value function

resulting in the approximate linear program. We give a new proof of one of Van Roy’s

bounds by directly appealing to LP duality. Then we derive a bound on the performance

of the greedy policy obtained from the solution of the approximate linear program with

constraint sampling. The bound that previously appeared in the literature could only be

applied to the solution of the approximate linear program without constraint sampling. We

also look at the idea of approximating the exact dual linear program and prove bounds on

the amount by which the optimum shifts as a result of making the approximation.
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4.1 The Exact LP and its Dual

Given an MDP M = 〈S,A, P,R〉 and a discount factor γ ∈ [0, 1), there are several

ways to compute an optimal policy µ∗ for the γ-discounted sum of rewards criterion. One

way is to solve the following linear program.

PrimalLP

minimize α%V

subject to V (i) ≥ R(i, a) + γP%
i,aV ∀(i, a) ∈ S ×A

Here α is probability distribution over states such that α(i) > 0 for all i ∈ S.

For any such α, the optimal value function V ∗ = Vµ∗ is the unique optimal solution of

PrimalLP. The variables of the above linear program are V (i), i ∈ S. It therefore has |S|

variables and |S||A| constraints.

Introducing the dual variable φ(i, a) for the constraint corresponding to the state-

action pair (i, a), we get the following linear program which is the dual of PrimalLP.

DualLP

maximize R%φ

subject to
∑

a

φ(i, a) = α(i) + γ
∑

j,a

Pj,a(i)φ(j, a) ∀i ∈ S

φ(i, a) ≥ 0 ∀(i, a) ∈ S ×A

The following theorem relates the feasible solutions of the dual linear program

to state-action visitation frequencies of stationary randomized policies. It also relates the
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optimal solutions to the visitation frequencies of optimal policies. This can be found in

standard textbooks, for example, in Section 6.9 of [[26]].

Theorem 5. Consider the linear program DualLP.

1. For any µ ∈ ΠR, ψµ,α(i, a) is a feasible solution.

2. Suppose φ(i, a) is a feasible solution. Define the policy µ ∈ ΠR by

µ(i, a) =
φ(i, a)∑
a φ(i, a)

.

Then, φ(i, a) = ψµ,α(i, a).

3. If µ ∈ ΠR is an optimal policy then ψµ,α(i, a) is an optimal solution.

4. Suppose φ∗(i, a) is an optimal solution. Define the policy µ ∈ ΠR by

µ(i, a) =
φ∗(i, a)∑
a φ

∗(i, a)
.

Then, µ is an optimal policy.

4.2 Basis Functions and the Approximate LP

For large MDPs, solving the linear program PrimalLP or its dual DualLP is im-

practical. To address this issue, Van Roy [[12]] and his colleagues have pioneered the approxi-

mate linear programming approach where we choose a set of K basis functions {h1, . . . , hK}.

Each basis function hi : S &→ R is a function on the state space. We try to approximate the

true value function V ∗ by a linear combination of the basis functions,

V ∗ ≈
K∑

l=1

wlhl = Hw ,
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where w = (w1, . . . , wK)% and H = (h1, . . . , hK) is a |S|×K matrix. Plugging V =
∑

l wlhl

into PrimalLP, we get the following linear program.

ApproxPrimal

minimize α%Hw

subject to (Hw)(i) ≥ R(i, a) + γP%
i,aHw ∀(i, a) ∈ S ×A

The variables in the above LP are w1, . . . , wK . Thus, we have reduced the number

of variables from |S| to K. Unfortunately, the number of constraints is still |S||A|. Con-

straint sampling has been suggested in the literature [[13]] to handle this issue. However,

let us first focus on the quality of the value function Hw∗ obtained from a solution w∗

of ApproxPrimal. The issue of feasibility arises here even before we can talk about the

solution w∗. An assumption that guarantees feasibility of ApproxPrimal is that our basis

includes a constant function. We make this assumption for the rest of the chapter.

Assumption 2. There exists hl ∈ {h1, . . . , hK} such that hl(i) = 1 for all i ∈ S.

For later reference we also state the dual of ApproxPrimal.

DualApproxPrimal

minimize R%φ

subject to

∑

i,a

φ(i, a)hl(i) =
∑

i

α(i)hl(i) + γ
∑

j,a,i

Pj,a(i)φ(j, a)hl(i) ∀l ∈ [K]

φ(i, a) ≥ 0 ∀(i, a) ∈ S ×A
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Define the weighted 1-norm,

‖V ‖1,α :=
∑

i∈S

α(i)|V (i)| .

De Farias and Van Roy proved the following simple bound.

Theorem 6. If w∗ is a solution to ApproxPrimal, then

‖V ∗ −Hw∗‖1,α ≤
2

1− γ
min
w
‖V ∗ −Hw‖∞ .

The above result gives a guarantee on the quality of the solution obtained from the

approximate LP ApproxPrimal provided that the span of the basis functions can approx-

imate the optimal value function well in an infinity-norm sense. The latter assumption is a

very strong one and de Farias and Van Roy went on to derive further results which relied

on weaker assumptions. Nevertheless, Theorem 6 remains a key result offering support for

the approximate linear programming approach. It is derived in [[12]] using the properties of

the dynamic programming operator. Below we provide a general result for linear programs

from which Theorem 6 may be deduced as a simple corollary. Our derivation also clearly

indicates that the only property of the dynamic programming operator T that we use is

that V ≥ TV implies V ≥ V ∗. Consider a general linear program,

minimize c%x (4.1)

subject to Ax ≥ b
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and its dual,

maximize b%y (4.2)

subject to A%y = c

y ≥ 0

Here the dimensions of c, x,A, b and y are n×1, n×1, m×n, m×1 and m×1 respectively.

Suppose, we now try to approximate x as a linear combination Hw of the columns of a

n×K matrix H leading to the linear program,

minimize c%Hw (4.3)

subject to AHw ≥ b

and its dual,

maximize b%y (4.4)

subject to H%A%y = H%c

y ≥ 0

An interesting thing to notice here is that making the approximation x ≈ Hw in the

primal (4.1) amounts to approximating the feasible region of the dual (4.2). The K equality

constraints in (4.4) are linear combinations of the n equality constraints in (4.2). Suppose

all four linear programs above are feasible and bounded. Denote the solutions to them

by x∗,y∗, w∗ and ỹ respectively. From our discussion above, it is clear that the value

c%x∗ = b%y∗ of the original linear program is less than the value c%Hw∗ = b%ỹ obtained

after approximation. This is because approximating the feasible region of a maximization
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problem by a superset can only result in a larger value for the optimum. The result below

gives a bound on the amount by which the optimum shifts.

Theorem 7. Suppose the linear programs (4.1)–(4.4) are feasible and bounded. Denote their

solution by x∗,y∗, w∗ and ỹ respectively. Define the dual violation vector ∆̃ := A%ỹ − c.

Then, we have

c%Hw∗ − c%x∗ ≤ ‖∆̃‖p min
w
‖x∗ −Hw‖q ,

for any p, q ≥ 1 satisfying 1
p + 1

q = 1.

Proof. By strong duality, non-negativity of ỹ and feasibility of x∗ in (4.1), we have

c%Hw∗ = ỹ%b ≤ ỹ%Ax∗ .

Thus,

c%Hw∗ − c%x∗ ≤ (A%ỹ − c)%x∗ = ∆̃%x∗ . (4.5)

By feasibility of ỹ in (4.4), we have H%(A%ỹ − c) = 0 and hence, for any w,

w%H%(A%ỹ − c) = 0 .

Combining this with (4.5), we get

c%Hw∗ − c%x∗ ≤ ∆̃%(x∗ −Hw) ≤ ‖∆̃‖p‖x∗ −Hw‖q .

Minimizing over w finishes the proof.

Using the above result we can now derive Theorem 6.

Proof of Theorem 6. We apply Theorem 7 to PrimalLP, DualLP, ApproxPrimal and

DualApproxPrimal. Denote their solutions by V ∗,φ∗,w∗ and φ̃. Assumption 2 guaran-

tees that they are all feasible and bounded and that ‖φ̃‖1 = 1/(1− γ). The dual violations
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are, by definition,

∆̃(i) :=
∑

a

φ̃(i, a)− γ
∑

j,a

Pj,a(i)φ̃(j, a) − α(i) .

We can bound the 1-norm of ∆̃ as follows.

∑

i

|∆̃(i)| =
∑

i

∣∣∣∣∣∣

∑

a

φ̃(i, a)− γ
∑

j,a

Pj,a(i)φ̃(j, a) − α(i)

∣∣∣∣∣∣

≤ ‖φ̃‖1 + γ‖φ̃‖1 + ‖α‖1

=
1

1− γ +
γ

1− γ + 1

=
2

1− γ

Now we can use Theorem 7 with p = 1 and q =∞ to get

α%Hw∗ − α%V ∗ ≤ 2
1− γ

min
w
‖V ∗ −Hw‖∞ .

We finish the proof by noting that the constraints in ApproxPrimal ensure Hw∗ ≥

T (Hw∗) which implies that Hw∗ ≥ V ∗. Therefore, α%Hw∗−α%V ∗ = ‖V ∗−Hw∗‖1,α.

4.3 Performance Bound for Greedy Policies

The previous section only gave a bound on the norm of the difference V ∗ −Hw∗.

We are ultimately interested in the performance of the greedy policy

µ(w∗) := Greedy(Hw∗)

derived from w∗. De Farias and Van Roy [[12]] provided such a result that we quote below.
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Theorem 8. Let V be such that V ≥ TV . Let µ = Greedy(V ). Then, for any probability

distribution ν over states,

‖V ∗ − Vµ‖1,ν ≤
1

1− γ
‖V ∗ − V ‖1,ψµ,ν .

Since we know that the solution w∗ to the approximate linear program Approx-

Primal satisfies Hw∗ ≥ T (Hw∗), the above theorem can be applied to it. However, as we

noted above, the approximate linear program has |S||A| constraints. Therefore, we cannot

hope to find w∗ efficiently for large MDPs. To tackle this problem, de Farias and Van Roy

suggested that we sample the constraints by putting a probability distribution over S ×A.

Let ŵ denote that solution of the linear program with just the sampled constraints. When

the sampling distribution is

ψ∗(i, a) :=
ψµ∗,α(i)

K
, (4.6)

they showed that ‖V ∗−Hŵ‖1,α is not much larger than ‖V ∗−Hw∗‖1,α with high probability

provided we sample enough constraints. It turns out that the number of sampled constraints

only needs to be larger than some polynomial function of K, |A| and other parameters of

the MDP but it does not depend on the state space size |S|. However, no bound is currently

known to bound the performance of the greedy policy obtained from Hŵ. Theorem 8 is

inapplicable since it is no longer true that Hŵ ≥ T (Hŵ). However, we do know that

ψµ∗,α ({i ∈ S : (Hŵ)(i) < (T (Hŵ))(i)})

is small with high probability (see Theorem 2.1 in [[12]]). This motivates our next result.

Suppose µ = Greedy(V ). The following theorem bounds the norm of the difference
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V ∗ − Vµ in terms of the norm of V ∗ − V and the set of violated constraints

CV := {i ∈ S : V (i) < (TV )(i)} .

Note that if CV = ∅, we recover the bound of Theorem 8.

Theorem 9. Let µ = Greedy(V ), µk = Greedy(T kV ) and N = ‖TV − V ‖∞. For X ⊆ S,

define

σ(X) :=
∞∑

k=1

γkPµkPµk−1 . . . Pµ11X ,

where 1X is a vector defined by 1X(i) = 1 [i ∈ X]. Then, we have

‖V ∗ − Vµ‖1,ν ≤
1

1− γ ‖V
∗ − V ‖1,ψµ,ν + N

(
ψ%

µ,νσ(CV )
1− γ + ν(CV ) + ν%σ(CV )

)

.

Proof. We first prove by induction that, for all k ≥ 1,

T k+1V ≤ T kJ + NγkPµkPµk−1 . . . Pµ11CV . (4.7)

For the base case, we need to prove

T 2V ≤ TV + NγPµ11CV . (4.8)



38

Towards this end, write

(T (TV ))(i) = (Tµ1(TJ))(i)

[∵ µ1 = Greedy(TV )]

= R(i, µ1(i)) + γ
∑

j

Pi,µ1(i)(j)(TJ)(j)

= R(i, µ1(i)) + γ
∑

j∈C̄V

Pi,µ1(i)(j)(TV )(j) + γ
∑

j∈CV

Pi,µ1(i)(j)(TV )(j)

≤ R(i, µ1(i)) + γ
∑

j∈C̄V

Pi,µ1(i)(j)V (j) + γ
∑

j∈CV

Pi,µ1(i)(j)(TV )(j)

[∵ TV ≤ V outside CV ]

= R(i, µ1(i)) + γ
∑

j

Pi,µ1(i)(j)V (j) + γ
∑

j∈CV

Pi,µ1(i)(j)((TV )(j) − J(j))

≤ R(i, µ1(i)) + γ
∑

j

Pi,µ1(i)(j)V (j) + Nγ
∑

j

Pi,µ1(j)(j)1CV (j)

[definitions of N and 1CV ]

= R(i, µ1(i)) + γ
∑

j

Pi,µ1(i)(j)V (j) −Nγ(Pµ11CV )(i)

[definition of Pµ1 ]

≤ (TV )(i) + Nγ(Pµ11CV )(i) .

[definition of T ]
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We have thus shown (4.8). Now assume that (4.7) holds for k. Then we have,

(T k+2J)(i) = (Tµk+1(T
k+1J))(i)

[∵ µk+1 = Greedy(T k+1V )]

= R(i, µk+1(i)) + γ
∑

j

Pi,µk+1(i)(j)(T
k+1V )(j)

≤ R(i, µk+1(i)) + γ
∑

j

Pi,µk+1(i)(j)((T
kV )(j) + Nγk(PµkPµk−1 . . . Pµ11CV ))(j)

[Induction hypothesis]

= R(i, µk+1(i)) + γ
∑

j

Pi,µk+1(i)(j)(T
kV )(j) + Nγk+1(Pµk+1Pµk . . . Pµ11CV )(i)

[definition of Pµk+1 ]

≤ (T k+1V )(i) + Nγk+1(Pµk+1Pµk . . . Pµ11CV )(i)

[definition of T ]

Thus, we have shown that (4.7) holds for k + 1 too. Since T kV → V ∗ for any V , apply-

ing (4.7) for different values of k, adding them and taking limit as k →∞, we get

V ∗ ≤ TV + Nσ(CV ) . (4.9)
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Now, we have

‖V ∗ − Vµ‖1,ν = ν%(V ∗ − Vµ)

[∵ Vµ ≤ V ∗]

≤ ν%(TV + Nσ(CV )− Vµ)

[by (4.9)]

= ν%(TV − Vµ) + Nν%σ(CV )

≤ ν%(V − Vµ) + Nν(CV ) + Nν%σ(CV )

[definitions of N and CV ]

=
1

1− γψ
%
µ,ν(V − TV ) + Nν(CV ) + Nν%σ(CV )

[ see proof of Theorem 3.1 in [[12]] ]

≤ 1
1− γψ

%
µ,ν(V − V ∗ + Nσ(CV )) + Nν(CV ) + Nν%σ(CV )

[by (4.9)]

≤ 1
1− γ

ψ%
µ,ν(V − V ∗) + N

(
ψ%

µ,νσ(CV )
1− γ

+ ν(CV ) + ν%σ(CV )

)
.

The theorem follows by noting that ψ%
µ,ν(V − V ∗) ≤ ‖V ∗ − V ‖1,ψµ,ν .

As opposed to de Farias and Van Roy’s result, the above bound holds for any V .

However, a number of issues need to be worked out before it can be successfully applied to

V = Hŵ. First of all, we only know that ‖V ∗ −Hŵ‖1,α is small with high probability in

case we can sample from ψ∗(i, a) (recall the definition given in (4.6)) which requires access

to the occupation measure of an optimal policy. But an optimal policy is unavailable in

the first place! We can assume oracle access to samples from the trajectory of an optimal
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policy. Such an assumption might be reasonable when we do not know an optimal policy

but have blackbox access to an implementation of an optimal or near-optimal policy. For

example, in the autonomous vehicle navigation setting, we do have expert human drivers

available to us.

Even with this assumption, the above bound is useful only if

α ≈ ψµ(ŵ),ν .

Note the recursive nature of the above relation. The vector ŵ itself is obtained as a solution

to a random linear program whose objective function involves α. An approach worth inves-

tigating is to view the above as a fixed point equation and try to find a solution by repeated

iterations of the mapping whose fixed point is required. This is not very straightforward

as the mapping is random (note that obtaining ŵ involves randomly sampling constraints)

and so the iterates might not converge.

Another issue is that of controlling the additional terms appearing in the bound.

They all measure the “size” of the set CHŵ in various ways. We do know that ψµ∗,α(CHŵ)

is small with high probability. This suggests that we choose ν ≈ ψµ∗,α.

4.4 Approximating the Dual

So far in this chapter, we have approximated the variables in the primal linear

program PrimalLP. Recently, the idea of approximating the variables in the dual linear

program DualLP has been receiving some attention [[14,28]]. We follow the strategy of the

previous section by first stating a result for general linear programs and then deriving a

result for MDPs as a simple corollary. Consider the linear programs (4.1) and (4.2). Instead
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of x, suppose we try to approximate y as a linear combination Gu of the columns of a m×K

matrix G leading to the linear program,

maximize (Gu)%b (4.10)

subject to A%Gu = c

Gu ≥ 0

and its dual,

minimize c%x (4.11)

subject to G%(b−Ax + λ) = 0

λ ≥ 0

Note that making the approximation y ≈ Gu in the dual (4.2) amounts to approximating the

feasible region of the primal (4.1). Assuming feasibility and boundedness of the concerned

linear programs, denote the solutions to (4.1), (4.2), (4.10), (4.11) by x∗, y∗, u∗ and x̃, λ̃

respectively. It is clear that the value c%x∗ = b%y∗ of the original linear program is more

than the value c%x̃ = b%Gu∗ obtained after approximation. This is because we have relaxed

the constraints by approximating the feasible region of a minimization problem. This can

only result in a smaller value for the optimum. The result below gives two bounds on the

amount by which the optimum shifts.

Theorem 10. Suppose the linear programs (4.1), (4.2), (4.10) and (4.11) are feasible and

bounded. Denote their solutions by x∗, y∗, u∗ and x̃, λ̃ respectively. Then, we have

(y∗)%b− (Gu∗)%b ≤ ‖b−Ax̃ + λ̃‖p min
u
‖y∗ −Gu‖q , (4.12)
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and

(y∗)%b− (Gu∗)%b ≤ ‖b−Ax̃‖p min
Gu≥0

‖y∗ −Gu‖q , (4.13)

for any p, q ≥ 1 satisfying 1
p + 1

q = 1.

Proof. By strong duality and feasibility of y∗ in (4.2), we have

(Gu∗)%b = cT x̃ = (y∗)%Ax̃ .

Thus,

(y∗)%b− (Gu∗)%b = (y∗)%(b−Ax̃) . (4.14)

By feasibility of x̃, λ̃ in (4.11), we have G%(b−Ax̃ + λ̃) = 0 and hence for all u,

(Gu)%(b−Ax̃ + λ̃) = 0 .

Combining this with (4.14), we get

(y∗)%b− (Gu∗)%b = (y∗)%(b−Ax̃)− (Gu)T (b−Ax̃ + λ̃) .

Since y∗, λ̃ ≥ 0, we have (y∗)%λ̃ ≥ 0 and thus adding it to the right hand side we get

(y∗)%b− (Gu∗)%b ≤ (y∗ −Gu)T (b−Ax̃ + λ̃) ≤ ‖y∗ −Gu‖q‖b−Ax̃ + λ̃‖p .

Minimizing over u gives (4.12). Alternatively, if we know that Gu ≥ 0 then we can add the

non-negative quantity (Gu)%λ̃ to the right hand side to get

(y∗)%b− (Gu∗)%b ≤ (y∗ −Gu)T (b−Ax̃) ≤ ‖y∗ −Gu‖q‖b−Ax̃‖p .

Minimizing over u such that Gu ≥ 0 gives (4.13).
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We now show how to use the above result to say something about the linear

program when we plug the approximation φ ≈ Gu in DualLP.

ApproxDual

maximize (Gu)%R

subject to
∑

a

(Gu)(i, a) = α(i) + γ
∑

j,a

Pj,a(i)(Gu)(j, a) ∀i ∈ S

(Gu)(i, a) ≥ 0 ∀(i, a) ∈ S ×A

Here, G is a |S||A|×K matrix and u is a K×1 vector. The idea is to approximate

the occupation measure ψµ∗,α = φ∗ of an optimal policy by a linear combination of the

columns of G. The dual of the above linear program is the following.

DualApproxDual

minimize αT V

subject to
∑

i,a

Gl(i, a)
(
R(i, a) + γP%

i,aV − V (i) + λ(i, a)
)

= 0 ∀l ∈ [K]

λ(i, a) ≥ 0 ∀(i, a) ∈ S ×A

In order to ensure that the above linear programs are feasible and bounded, we

make the following assumption.

Assumption 3. One of the columns Gl of G is the occupation measure ψµ,α of some policy

µ ∈ ΠR.

We now use Theorem 10 to relate the value of ApproxDual to that of DualLP.
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Theorem 11. Let V ∗,φ∗,u∗ and Ṽ , λ̃ be solutions to the linear programs PrimalLP,

DualLP, ApproxDual and DualApproxDual respectively. Define

∆̃1(i, a) := R(i, a) + γP%
i,aṼ − Ṽ (i) + λ̃(i, a) ,

∆̃2(i, a) := R(i, a) + γP%
i,aṼ − Ṽ (i) .

Then, we have

(φ∗)%R− (Gu∗)%R ≤ ‖∆̃1‖∞ min
u
‖φ∗ −Gu‖1 ,

and

(φ∗)%R− (Gu∗)%R ≤ ‖∆̃2‖∞ min
Gu≥0

‖φ∗ −Gu‖1 .

Proof. Assumption (3) guarantees that the four linear programs under consideration are

feasible and bounded. So, the result follows immediately from Theorem 10.

No performance guarantees are currently available in the literature for methods

that approximate the dual variables rather than the primal variables. The above result is a

small step in this direction but it falls short of being satisfactory due to a number of reasons

as described below.

• The bound is a posteriori. Unlike the previous section, we cannot find an easy way

to derive an a priori bound on either ‖∆̃‖∞ or ‖∆̃‖∞. So, the bounds can only be

applied after having solved the linear programs.

• The result only bounds the amount by which the optimum shifts. Unfortunately, this

does not immediately imply a bound on ‖φ∗ −Gu∗‖ for any choice of the norm ‖ · ‖.

This is because we do not have φ∗ ≥ Gu∗.
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• The span of columns of G is required to approximate the occupation measure φ∗ of

the optimal policy well in L1-norm. This is a very stringent requirement.
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Chapter 5

Bounded Parameter Markov

Decision Processes

Bounded parameter Markov Decision Processes (BMDPs) were defined by Givan

et al. [[16]] to address the issue of uncertainty in the parameters of an MDP. Unlike the case

of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward.

We consider two notions of optimality based on optimistic and pessimistic criteria. These

have been analyzed for the discounted rewards criterion in [[24]]. In this chapter, we will

consider the average reward criterion. We will establish a fundamental relationship between

the discounted and the average reward problems, prove the existence of Blackwell optimal

policies and, for both notions of optimality, derive algorithms that converge to the optimal

value function.
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5.1 Uncertainty in MDP Parameters

In an MDP, the uncertainty involved in the outcome of making a decision in a cer-

tain state is represented using various probabilities. However, these probabilities themselves

may not be known precisely. This can happen for a variety of reasons. The probabilities

might have been obtained via an estimation process. In such a case, it is natural that con-

fidence intervals will be associated with them. State aggregation, where groups of similar

states of a large MDP are merged to form a smaller MDP, can also lead to a situation where

probabilities are no longer known precisely but are only known to lie in an interval.

In this chapter, we are concerned with such higher level uncertainty, namely un-

certainty about the parameters of an MDP. Bounded parameter MDPs (BMDPs) have been

introduced in the literature [[16]] to address this problem. They use intervals (or equivalently,

lower and upper bounds) to represent the set in which the parameters of an MDP can lie.

We obtain an entire family, say M, of MDPs by taking all possible choices of parameters

consistent with these intervals. For an exact MDP M and a deterministic stationary policy

µ (which is a mapping specifying the actions to take in various states), the γ-discounted

value from state i, Vγ,µ,M (i) and the long term average value Uµ,M (i) are two standard ways

of measuring the quality of µ with respect to M . When we have a family M of MDPs, we

are immediately faced with the problem of finding a way to measure the quality of a policy.

An optimal policy will then be the one that maximizes the particular performance measure

chosen.

We might choose to put a distribution over M and define the value of a policy

as its average value under this distribution. In this chapter, however, we will avoid taking
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this approach. Instead, we will consider the worst and the best MDP for each policy and

accordingly define two performance measures,

Uopt
µ (i) := sup

M∈M
Uµ,M (i)

Upes
µ (i) := inf

M∈M
Uµ,M (i)

where the superscripts denote that these are optimistic and pessimistic criteria respectively.

Analogous quantities for the discounted case were defined in [[16]] and algorithms were given

to compute them. However, as the discounted and average reward criteria are quite different,

these results do not immediately yield algorithms for the average reward case. In this

chapter, we give such algorithms.

The optimistic criterion is motivated by the optimism in the face of uncertainty

principle. Several learning algorithms for MDPs [[5, 10, 15, 27]] proceed in the following

manner. Faced with an unknown MDP, they start collecting data which yields confidence

intervals for the parameters of the MDP. Then they choose a policy which is optimal in

the sense of the optimistic criterion. This policy is followed for the next phase of data

collection and the process repeats. In fact, the algorithm of Auer and Ortner [[5]] requires,

as a blackbox, an algorithm to compute the optimal (with respect to the optimistic criterion)

value function for a BMDP.

The pessimistic criterion is related to research on robust control of MDPs [[24]]. If

nature is adversarial, then once we pick a policy µ it will pick the worst possible MDP M

from M. In such a scenario, it is reasonable to choose a policy which is best in the worst

case. The results of this chapter can also be seen as extending this line of research to the

case of the average reward criterion.
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The rest of the chapter is organized as follows. In Section 5.2 we define two kinds of

optimal value functions based on the optimistic and pessimistic criteria mentioned above.

The main result in Section 5.3 is a relation between the optimal value functions for the

average reward and discounted criteria. This result depends on a finite subset property

(Theorem 14) satisfied by BMDPs. Section 5.4 proves the existence of Blackwell optimal

policies. In the exact MDP case, a Blackwell optimal policy is a policy that is optimal

for an entire range of discount factors in the neighborhood of 1. Existence of Blackwell

optimal policies is an important result in the theory of MDPs. We extend this result

to BMDPs. Then, in Section 5.5, we build up on the previous sections and exploit the

relationship between the discounted and average returns together with the existence of a

Blackwell optimal policy to derive algorithms that converge to optimal value functions for

both optimistic as well as pessimistic criteria. In Section 5.6, we consider an extension

of BMDPs by allowing semi-algebraic constraints on MDP parameters. That section also

proves the existence of Blackwell optimal policies for semi-algebraically constrained MDPs.

5.2 Optimistic and Pessimistic Value Functions

Recall that an MDP is a tuple 〈S,A, P,R〉. In this chapter, both the state space

S and the action space A will be finite.

Let µ : S &→ A be a deterministic stationary policy. Recall that, for γ ∈ [0, 1), we

denote the γ-discounted value function of µ by Vγ,µ,M and the optimal value function by

V ∗
γ,M . Also recall that there is a stationary deterministic policy µ∗ such that

Vγ,µ∗,M = V ∗
γ,M .
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Also recall the definition of the average reward value function.

Uµ,M (i) := lim inf
T→∞

Eµ,M
i

[∑T−1
t=0 R(st, at)

]

T
.

A bounded parameter MDP (BMDP) is a collection of MDPs specified by bounds

on the parameters of the MDPs. For simplicity, we will assume that the reward function

is fixed, so that the only parameters that vary are the transition probabilities. Suppose,

for each state-action pair i, a, we are given lower and upper bounds, l(i, j, a) and u(i, j, a)

respectively, on the transition probability Pi,a(j). We assume that the bounds are legitimate,

that is

∀i, a, j, 0 ≤ l(i, j, a) ≤ u(i, j, a) ,

∀i, a,
∑

j

l(i, j, a) ≤ 1 ∧
∑

j

u(i, j, a) ≥ 1 .

This means that the set defined by

Ci,a := {q ∈ R|S|
+ : q%1 = 1 ∧ ∀j, l(i, j, a) ≤ qj ≤ u(i, j, a)}

is non-empty for each state-action pair i, a. Fix S,A and R and define the collection of

MDPs

M := { 〈S,A, P,R〉 : ∀i, a, Pi,a ∈ Ci,a } .

We could also choose lower and upper bounds for R(i, a) and also let the rewards vary. But

for simplicity, we keep a fixed reward function for all MDPs.

Given a BMDP M and a stationary deterministic policy µ, there are two natural

choices for the value function: an optimistic and a pessimistic one,

V opt
γ,µ (i) := sup

M∈M
Vγ,µ,M (i) V pes

γ,µ (i) := inf
M∈M

Vγ,µ,M (i) . (5.1)
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We also define the undiscounted value functions,

Uopt
µ (i) := sup

M∈M
Uµ,M (i) Upes

µ (i) := inf
M∈M

Uµ,M (i) . (5.2)

Optimal value functions are defined by maximizing over policies.

Vopt
γ (i) := max

µ
V opt
γ,µ (i) Vpes

γ (i) := max
µ

V pes
γ,µ (i) (5.3)

Uopt(i) := max
µ

Uopt
µ (i) Upes(i) := max

µ
Upes

µ (i) (5.4)

5.3 Relation between Discounted and Average Reward Cri-

teria

In this chapter, we are interested in computing Uopt and Upes. Algorithms to

compute Vopt
γ and Vpes

γ have already been proposed in the literature [[24]]. Let us review

some of the results pertaining to the discounted case. We note that the results in this

section, with the exception of Theorem 15, either appear or can easily be deduced from

results appearing in [[16]]. However, we provide self-contained proofs of these in Appendix B.

Before we state the results, we need to introduce a few important operators. Note that,

since Ci,a is a closed, convex set, the maximum (or minimum) of q%V (a linear function of

q) appearing in the definitions below is achieved.

(
T opt
γ,µ V

)
(i) := R(i, a) + γ max

q∈Ci,µ(i)

q%V

(
T opt
γ V

)
(i) := max

a∈A

[
R(i, a) + γ max

q∈Ci,a

q%V

]

(
T pes
γ,µ V

)
(i) := R(i, a) + γ min

q∈Ci,µ(i)

q%V

(
T pes
γ V

)
(i) := max

a∈A

[
R(i, a) + γ min

q∈Ci,a

q%V

]
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Recall that an operator T is a contraction mapping with respect to a norm ‖ · ‖ if there is

a γ ∈ [0, 1) such that

∀V1, V2, ‖TV1 − TV2‖ ≤ γ‖V1 − V2‖ .

A contraction mapping has a unique solution to the fixed point equation TV = V and the

sequence {T kV0} converges to that solution for any choice of V0. It is straightforward to

verify that the four operators defined above are contraction mappings (with factor γ) with

respect to the norm

‖V ‖∞ := max
i

|V (i)| .

We saw in Chapter 2 that the fixed points of Tγ,µ,M and Tγ,M are Vγ,µ,M and V ∗
γ,M respec-

tively. The following theorem tells us what the fixed points of the above four operators

are.

Theorem 12. The fixed points of T opt
γ,µ , T opt

γ , T pes
γ,µ and T pes

γ are V opt
γ,µ ,Vopt

γ , V pes
γ,µ and Vpes

γ

respectively.

Existence of optimal policies for BMDPs is established by the following theorem.

Theorem 13. For any γ ∈ [0, 1), there exist optimal policies µ1 and µ2 such that, for all

i ∈ S,

V opt
γ,µ1

(i) = Vopt
γ (i) ,

V pes
γ,µ2

(i) = Vpes
γ (i) .

A very important fact is that out of the uncountably infinite set M, only a finite

set is of real interest.
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Theorem 14. There exist finite subsets Mopt,Mpes ⊂M with the following property. For

all γ ∈ [0, 1) and for every policy µ there exist M1 ∈Mopt, M2 ∈Mpes such that

V opt
γ,µ = Vγ,µ,M1 ,

V pes
γ,µ = Vγ,µ,M2 .

Theorem 15. The optimal undiscounted value functions are limits of the optimal discounted

value functions. That is, for all i ∈ S, we have

lim
γ→1

(1− γ)Vopt
γ (i) = Uopt(i) , (5.5)

lim
γ→1

(1− γ)Vpes
γ (i) = Upes(i) . (5.6)

Proof. Fix i ∈ S. We first prove (5.5). We have

lim inf
γ→1

(1− γ)Vopt
γ (i) = lim inf

γ→1
max

µ
sup

M∈M
(1− γ)Vγ,µ,M (i)

= max
µ

lim inf
γ→1

sup
M∈M

(1− γ)Vγ,µ,M (i)

≥ max
µ

sup
M∈M

lim
γ→1

(1− γ)Vγ,µ,M (i)

= max
µ

sup
M∈M

Uµ,M (i)

= Uopt(i)

This first equality follows by definition. The second equality holds because there are a finite

number of policies. The inequality is elementary. The third equality follows from (2.1).

Theorem 14 gives us

Vopt
γ (i) = max

µ
max

M∈Mopt

Vγ,µ,M (i) .
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Using this, we have

lim sup
γ→1

(1− γ)Vopt
γ (i) = lim sup

γ→1
max

µ
max

M∈Mopt

(1− γ)Vγ,µ,M (i)

= max
µ

max
M∈Mopt

lim
γ→1

(1− γ)Vγ,µ,M (i)

= max
µ

max
M∈Mopt

Uµ,M (i)

≤ Uopt(i) .

The second equality holds because lim sup and max over a finite set commute. Note that

finiteness is crucial here since lim sup and sup do not commute. The third equality follows

from (2.1). We have thus established (5.5).

To prove (5.6), one repeats the steps above with appropriate changes.

5.4 Existence of Blackwell Optimal Policies

For an MDP, Blackwell [[8]] showed that there exist policies that are optimal for the

discounted criteria for all discount factors γ in some interval (γ0, 1). Such policies are called

Blackwell optimal and their existence is a classical result in the theory of MDPs. These

policies have the nice property that they are optimal for the average reward criterion too.

Given the importance of Blackwell optimal policies in the theory of MDPs, it is natural to

speculate whether they exist for BMDPs. The following theorem answers the question in

the affirmative.

Theorem 16. There exist γopt ∈ (0, 1), a policy µopt and an MDP Mopt ∈Mopt such that

∀γ ∈ (γopt, 1), Vγ,µopt,Mopt = Vopt
γ .
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Similarly, there exist γpes ∈ (0, 1), a policy µpes and an MDP Mpes ∈Mpes such that

∀γ ∈ (γpes, 1), Vγ,µpes,Mpes = Vpes
γ .

Proof. Given an MDP M = 〈S,A, P,R〉 and a policy µ, recall that the associated matrix

Pµ and the vector Rµ are defined as

Pµ(i, j) := Pi,µ(i)(j) ,

Rµ(i) := R(i, µ(i)) .

The value function Vγ,µ,M has a closed form expression.

Vγ,µ,M = (I − γPµ)−1 Rµ

Therefore, for all i, the map γ &→ Vγ,µ,M (i) is a rational function of γ. Two rational functions

are either identical or intersect each other at a finite number of points. Further, the number

of policies and the number of MDPs in Mopt is finite. Therefore, for each i, there exists

γi ∈ [0, 1) such that no two functions in the set

{γ &→ Vγ,µ,M (i) : µ : S &→ A, M ∈Mopt}

intersect each other in the interval (γi, 1). Let γopt = maxi γi. By Theorem 13, there is an

optimal policy, say µopt, such that

V opt
γopt,µopt

= Vopt
γopt

.

By Theorem 14, there is an MDP, say Mopt, in Mopt such that

Vγopt,µopt,Mopt = V opt
γopt,µopt

= Vopt
γopt

. (5.7)
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We now claim that

Vγ,µopt,Mopt = Vopt
γopt

for all γ ∈ (γopt, 1). If not, there is an γ′ ∈ (γopt, 1), a policy µ′ and an MDP M ′ ∈Mopt

such that

Vγ′,µopt,Mopt(i) < Vγ′,µ′,M ′(i)

for some i. But this yields a contradiction, since (5.7) holds and by definition of γopt, the

functions

γ &→ Vγ,µopt,Mopt(i)

and

γ &→ Vγ,µ′,M ′(i)

cannot intersect in (γopt, 1).

The proof of the existence of γpes, µpes and Mpes is based on similar arguments.

5.5 Algorithms to Compute the Optimal Value Functions

5.5.1 Optimistic Value Function

The idea behind our algorithm (Algorithm 1) is to start with some initial vector

and perform a sequence of updates while increasing the discount factor at a certain rate. The

following theorem guarantees that the sequence of value functions thus generated converges

to the optimal value function. Note that if we held the discount factor constant at some

value, say γ, the sequence would converge to (1− γ)Vopt
γ .
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Algorithm 1 Algorithm to Compute Uopt

U (0) ← 0

for k = 0, 1, . . . do

γk ← k+1
k+2

for all i ∈ S do

U (k+1)(i)← maxa∈A
[
(1− γk)R(i, a) + γk maxq∈Ci,a q%U (k)

]

end for

end for

Theorem 17. Let {U (k)} be the sequence of functions generated by Algorithm 1. Then we

have, for all i ∈ S,

lim
k→∞

U (k)(i) = Uopt(i) .

We need a few intermediate results before proving this theorem. Let γopt, µopt

and Mopt be as given by Theorem 16. To avoid too many subscripts, let µ and M denote

µopt and Mopt respectively for the remainder of this subsection. From (2.1), we have that

for k large enough, say k ≥ k1, we have,

∣∣(1− γk)Vγk ,µ,M (i)− (1− γk+1)Vγk+1,µ,M(i)
∣∣ ≤ K(γk+1 − γk) , (5.8)

where K can be taken to be ‖hµ,M‖∞ + 1. Since γk ↑ 1, we have γk > γopt for all k > k2

for some k2. Let k0 = max{k1, k2}. Define

δk0 := ‖V (k0) − (1− γk0)Vγk0
,µ,M‖∞ . (5.9)

Since rewards are in [0, Rmax], we have δk0 ≤ Rmax. For k ≥ k0, define δk+1 recursively as

δk+1 := K(γk+1 − γk) + γkδk . (5.10)
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The following lemma shows that this sequence bounds the norm of the difference between

V (k) and Vγk,µ,M .

Lemma 18. Let {U (k)} be the sequence of functions generated by Algorithm 1. Further, let

µ,M denote µopt,Mopt mentioned in Theorem 16. Then, for k ≥ k0, we have

‖U (k) − (1− γk)Vγk ,µ,M‖∞ ≤ δk .

Proof. Base case of k = k0 is true by definition of δk0 . Now assume we have proved the

claim till k ≥ k0. So we know that,

max
i

∣∣∣U (k)(i)− (1− γk)Vγk,µ,M (i)
∣∣∣ ≤ δk . (5.11)

We wish to show

max
i

∣∣∣U (k+1)(i)− (1− γk+1)Vγk+1,µ,M (i)
∣∣∣ ≤ δk+1 . (5.12)

Recall that Vopt
γ is the fixed point of T opt

α by Theorem 12. We therefore have, for all i,

(1− γk)Vγk ,µ,M (i) = (1− γk)
(
T opt
γk

Vγk,µ,M
)
(i)

[ γk > γopt and Vγ,µ,M = Vopt
γ for γ > γopt ]

= max
a∈A

[ (1− γk)R(i, a) + γk max
q∈Ci,a

∑

j

q(j)(1 − γk)Vγk ,µ,M(j) ]

[ defn. of T opt
γk

]

≤ max
a∈A

[ (1− γk)R(i, a) + γk max
q∈Ci,a

∑

j

q(j)U (k)(j) ] + γkδk

[ (5.11) and
∑

j

q(j)δk = δk]

= U (k+1)(i) + γkδk .

[ defn. of U (k+1)(i) ]
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Similarly, for all i,

U (k+1)(i) = max
a∈A

[ (1− γk)R(i, a) + γk max
q∈Ci,a

∑

j

q(j)U (k)(j) ]

[ defn. of U (k+1)(i)]

≤ max
a∈A

[ (1− γk)R(i, a) + γk max
q∈Ci,a

∑

j

q(j)(1 − γk)Vγk ,µ,M (j) ] + γkδk

[ (5.11) and
∑

j

q(j)δk = δk]

= (1− γk)
(
T opt
γk

Vγk ,µ,M
)
(i) + γkδk

[ defn. of T opt
γk

]

= (1− γk)Vγk ,µ,M (i) + γkδk .

[ γk > γopt and Vγ,µ,M = Vopt
γ for γ > γopt ]

Thus, for all i,
∣∣∣U (k+1)(i)− (1− γk)Vγk ,µ,M(i)

∣∣∣ ≤ γkδk .

Combining this with (5.8) (as k ≥ k0 ≥ k1), we get

∣∣∣U (k+1)(i)− (1− γk+1)Vγk+1,µ,M (i)
∣∣∣ ≤ γkδk + K(γk+1 − γk) .

Thus we have shown (5.12).

The sequence {δk} can be shown to converge to zero using elementary arguments.

Lemma 19. The sequence {δk} defined for k ≥ k0 by equations (5.9) and (5.10) converges

to 0.
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Proof. Plugging γk = k+1
k+2 into the definition of δk+1 we get,

δk+1 = K

(
k + 2
k + 3

− k + 1
k + 2

)
+

k + 1
k + 2

δk

=
K

(k + 3)(k + 2)
+

k + 1
k + 2

δk .

Applying the recursion again for δk, we get

δk+1 =
K

(k + 3)(k + 2)
+

k + 1
k + 2

(
K

(k + 2)(k + 1)
+

k

k + 1
δk−1

)

=
K

k + 2

(
1

k + 3
+

1
k + 2

)
+

k

k + 2
δk−1 .

Continuing in this fashion, we get for any j ≥ 0,

δk+1 =
K

k + 2

(
1

k + 3
+

1
k + 2

+ . . . +
1

k − j + 3

)
+

k − j + 1
k + 2

δk−j .

Setting j = k − k0 above, we get

δk+1 =
K

k + 2
(Hk+3 −Hk0+2) +

k0 + 1
k + 2

δk0 ,

where Hn = 1 + 1
2 + . . . + 1

n . This clearly tends to 0 as k → ∞ since Hn = O(log n) and

δk0 ≤ Rmax.

We can now prove Theorem 17.

Proof. (of Theorem 17) Fix i ∈ S. We have,

|U (k)(i)−Uopt(i)| ≤ |U (k)(i)− Vγk,µ,M (i)|
︸ ︷︷ ︸

≤δk

+ |Vγk ,µ,M (i)−Vopt
γk

(i)|
︸ ︷︷ ︸

εk

+ |Vopt
γk

(i)−Uopt(i)|
︸ ︷︷ ︸

ζk

.

We use Lemma 18 to bound the first summand on the right hand side by δk. By Lemma 19,

δk → 0. Also, εk = 0 for sufficiently large k because γk ↑ 1 and Vγ,µ,M (i) = Vopt
γ (i) for γ

sufficiently close to 1 (by Theorem 16). Finally, ζk → 0 by Theorem 15.
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5.5.2 Pessimistic Value Function

Algorithm 2 Algorithm to Compute Upes

V (0) ← 0

for k = 0, 1, . . . do

γk ← k+1
k+2

for all i ∈ S do

U (k+1)(i)← maxa∈A
[
(1− γk)R(i, a) + γk minq∈Ci,a q%U (k)

]

end for

end for

Algorithm 2 is the same as Algorithm 1 except that the max over Ci,a appearing

inside the innermost loop gets replaced by a min. The following analogue of Theorem 17

holds.

Theorem 20. Let {U (k)} be the sequence of functions generated by Algorithm 2. Then we

have, for all i ∈ S,

lim
k→∞

U (k)(i) = Upes(i) .

To prove this theorem, we repeat the argument given in the previous subsection

with appropriate changes. Let γpes, µpes and Mpes be as given by Theorem 16. For the

remainder of this subsection, let µ and M denote µpes and Mpes respectively. Let k1, k2 be

large enough so that, for all k ≥ k1,

∣∣Vγk,µ,M (i)− Vγk+1,µ,M(i)
∣∣ ≤ K(γk+1 − γk) ,

for some constant K (which depends on µ,M), and γk > γpes for k > k2. Set k0 =

max{k1, k2} and define the sequence {δk}k≥k0 as before (equations (5.9) and (5.10)).
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The proof of the following lemma can be obtained from that of Lemma 18 by fairly

straightforward changes and is therefore omitted.

Lemma 21. Let {U (k)} be the sequence of functions generated by Algorithm 2. Further, let

µ,M denote µpes,Mpes mentioned in Theorem 16. Then, for k ≥ k0, we have

‖U (k) − (1− γk)Vγk ,µ,M‖∞ ≤ δk .

Theorem 20 is now proved in exactly the same fashion as Theorem 17 and we

therefore omit the proof.

5.6 Semi-algebraic Constraints

In this section, we consider a generalization of BMDPs. A BMDP consists of all

MDPs satisfying certain constraints on their parameters. The constraints had the form

l(i, j, a) ≤ Pi,a(j) ≤ u(i, j, a) .

These are simple inequality constraints with two hyperparameters l(i, j, a) and u(i, j, a).

The set of possible values of Pi,a(j) is an interval, a very simple semi-algebraic set. A semi-

algebraic set is one that can be expressed as a finite boolean combination of polynomial

equalities and inequalities. For a formal definition, we refer the reader to the book by

Benedetti and Risler [[6]]. Some examples of semi-algebraic sets are as follows.

{(x, y) : 2 ≤ x2 + y2 ≤ 5} ⊆ R2

{(x, y, z) : x2 > 6yz} ⊆ R3

{(x, y) : xy > 0 ∧ (x2 + y3 < 1 ∨ x5 + y > 3)} ⊆ R2
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Note that any semi-algebraic set has a finite description and thus can be given explicitly.

For each i ∈ S, a ∈ A, let C(i, a) be a given closed semi-algebraic set. Define,

Ci,a = {q ∈ R|S|
+ : q%1 = 1 ∧ q ∈ C(i, a)}

Assume that all the sets Ci,a are non-empty. Note that Ci,a is a compact semi-algebraic

set. A semi-algebraically constrained MDP (SAMDP) M is a collection of MDPs with the

above constraints,

M = {〈S,A, P,R〉 : ∀i, a, Pi,a ∈ Ci,a} .

Note that any BMDP is an SAMDP. We can extend the definitions (5.1) through (5.4) to

SAMDPs. We do not know of algorithms to compute these value functions for SAMDPs.

However, Blackwell optimal policies can be shown to exist even in the case of SAMDPs

thanks to the Tarski-Seidenberg theorem. This theorem can be stated in several different

ways. We choose a form most useful for us in the present context. For more details, see

Section 2.3 in [[6]].

Theorem (Tarski-Seidenberg). Suppose n > 1 and Q ∈ Rn is a semi-algebraic set.

Then the following two sets in Rn−1 are also semi-algebraic,

{(x2, . . . , xn) : ∃x1 s.t. (x1, x2, . . . , xn) ∈ Q} ,

{(x2, . . . , xn) : ∀x1, (x1, x2, . . . , xn) ∈ Q} .

We can now state the main result of this section.

Theorem 22. Consider an SAMDP M and extend the definitions (5.1) through (5.4) to

M. Then, there exist γopt ∈ (0, 1) and a policy µopt such that

∀γ ∈ (γopt, 1), V opt
γ,µopt

= Vopt
γ .
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Similarly, there exist γpes ∈ (0, 1) and a policy µpes such that

∀γ ∈ (γpes, 1), V pes
γ,µpes

= Vpes
γ .

Proof. Let µ1, µ2 be two deterministic stationary policies. Let i ∈ S. We show that there

exists γ′ = γ′(i, µ1, µ2) < 1 such that the proposition

V opt
γ,µ1

(i) ≥ V opt
γ,µ2

(i)

has the same truth value for all γ ∈ (γ′, 1). Since

V opt
γ,µj

(i) = sup
M∈M

(1− γ)(I − γPµj )
−1Rµj

for j ∈ {1, 2}, we see that γ &→ V opt
γ,µj (i) can be written as

V opt
γ,µj

= sup
p∈Q

gj(γ,p)
hj(γ,p)

where Q is a semi-algebraic set, gj, hj are polynomials and p is a long vector denoting all

the transition probabilities. Now, V opt
γ,µ1(i) ≥ V opt

γ,µ2(i) precisely when γ is in the set

{γ : ∃p ∈ Q s.t. ∀q ∈ Q, g1(γ,p)h2(γ,q) ≥ g2(γ,q)h1(γ,p)}

= {γ : ∃p∀q, p ∈ Q ∧ (q ∈ Q⇒ g1(γ,p)h2(γ,q) ≥ g2(γ,q)h1(γ,p)}

Let us call the above set T . Since Q is semi-algebraic and g1h2 ≥ g2h1 is a polynomial

inequality, we can use the Tarski-Seidenberg theorem to claim that that T ⊆ R is semi-

algebraic. A semi-algebraic set in R is either empty or is a finite union of intervals. In either

case, there exists γ′ < 1 such that the proposition γ ∈ T has the same truth value for all

γ ∈ (γ′, 1).
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To finish the proof, set γopt = maxi,µ1,µ2 γ
′(i, µ1, µ2). Let µopt be an optimal policy

for discount factor γopt. By the choice of γopt, it remains optimal for all discount factors in

(γopt, 1).

The proof for the existence of γpes and µpes uses similar arguments.

Before we close this chapter, a couple of remarks are in order. We chose to represent

the uncertainty in the parameters of an MDP by intervals. One can ask whether similar

results can be derived for other representations. If the intervals for Pi,a(j) are equal for all

j then our representation corresponds to an L∞ ball around a probability vector. It will be

interesting to investigate cases where we consider balls defined by other metrics. We can

also consider sets defined by inequalities involving non-metrics like relative entropy (for an

example of an algorithm using sets defined by relative entropy, see [[11]]).

Our last remark is regarding the convergence rate of the algorithms given in Sec-

tion 5.5. Examining the proofs, one can verify that the number of iterations required to get

to within ε accuracy is O(1
ε ). This is a pseudo-polynomial convergence rate. It might be

possible to obtain algorithms where the number of iterations required to achieve ε-accuracy

is poly(log 1
ε ).
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Chapter 6

Logarithmic Regret Bound for

Irreducible MDPs

In this chapter, we present an algorithm called Optimistic Linear Programming

(OLP) for learning to optimize average reward in an irreducible but otherwise unknown

MDP. OLP uses its experience so far to estimate the MDP. It chooses actions by optimisti-

cally maximizing estimated future rewards over a set of next-state transition probabilities

that are close to the estimates, a computation that corresponds to solving linear programs.

We show that the total expected reward obtained by OLP up to time T is within C(P ) log T

of the reward obtained by the optimal policy, where C(P ) is an explicit, MDP-dependent

constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis

with four key differences: OLP is simpler, it does not require knowledge of the supports of

transition probabilities, the proof of the regret bound is simpler, but our regret bound is a

constant factor larger than the regret of their algorithm. OLP is also similar in flavor to
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an algorithm recently proposed by Auer and Ortner [[5]]. But OLP is simpler and its regret

bound has a better dependence on the size of the MDP.

6.1 The Exploration-Exploitation Trade-off and Regret

Given complete knowledge of the parameters of an MDP, there are standard algo-

rithms to compute optimal policies. A frequent criticism of these algorithms is that they

assume an explicit description of the MDP which is seldom available. The parameters con-

stituting the description are themselves estimated by simulation or experiment and are thus

not known with complete reliability. Taking this into account brings us to the well known

exploration vs. exploitation trade-off. On one hand, we would like to explore the system

as well as we can to obtain reliable knowledge about the system parameters. On the other

hand, if we keep exploring and never exploit the knowledge accumulated, we will not behave

optimally.

Given a policy π, how do we measure its ability to handle this trade-off? Suppose

the agent gets a numerical reward at each time step and we measure performance by the

accumulated reward over time. Then, a meaningful quantity to evaluate the policy π is

its regret over time. To understand what regret means, consider an omniscient agent who

knows all parameters of the MDP accurately and behaves optimally. Let VT be the expected

reward obtained by this agent up to time T . Let V π
T denote the corresponding quantity

for π. Then the regret Rπ
T = VT − V π

T measures how much π is hurt due to its incomplete

knowledge of the MDP up to time T . If we can show that the regret Rπ
T grows slowly with

time T , for all MDPs in a sufficiently big class, then we can safely conclude that π is making
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a judicious trade-off between exploration and exploitation. It is rather remarkable that for

this notion of regret, logarithmic bounds have been proved in the literature [[5, 11]]. This

means that there are policies π with Rπ
T = O(log T ). Thus the per-step regret Rπ

T /T goes

to zero very quickly.

Call a policy uniformly good if for all MDPs and all ε > 0, Rπ
T = o(T ε) as T →∞.

Burnetas and Katehakis [[11]] proved that for any uniformly good policy π, Rπ
T ≥ CB(P ) log T

where they identified the constant CB(P ). This constant depends on the transition function

P of the MDP. They also gave an algorithm (we call it BKA) that achieves this rate and

is therefore optimal in a very strong sense. However, besides assuming that the MDP is

irreducible (see Assumption 4 below) they assumed that the support sets of the transition

distributions Pi,a are known for all state-action pairs. We not only get rid of this assumption

but our optimistic linear programming (OLP) algorithm is also computationally simpler.

At each step, OLP considers certain parameters in the vicinity of the estimates. Like BKA,

OLP makes optimistic choices among these. But now, making these choices only involves

solving linear programs (LPs) to maximize linear functions over L1 balls. BKA instead

required solving non-linear (though convex) programs due to the use of KL-divergence.

Another benefit of using the L1 distance is that it greatly simplifies a significant part of

the proof. The price we pay for these advantages is that the regret of OLP is C(P ) log T

asymptotically, for a constant C(P ) ≥ CB(P ).

A number of algorithms in the literature have been inspired by the optimism in the

face of uncertainty principle [[3,4,10,22,27]]. One such algorithm is that of Auer and Ortner

(we refer to it as AOA) and it achieves logarithmic regret for irreducible MDPs. AOA does
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not solve an optimization problem at every time step but only when a confidence interval

is halved. But then the optimization problem they solve is more complicated because they

find a policy to use in the next few time steps by optimizing over a set of MDPs. The regret

of AOA is CA(P ) log T where

CA(P ) = c
|S|5|A|Tw(P )κ(P )2

∆∗(P )2
,

for some universal constant c. Here |S|, |A| denote the state and action space size, Tw(P )

is the worst case hitting time over deterministic policies (see Eqn. (6.7)) and ∆∗(P ) is the

difference between the long term average return of the best policy and that of the next

best policy. The constant κ(P ) is also defined in terms of hitting times. Under Auer and

Ortner’s assumption of bounded rewards, we can show that the constant for OLP satisfies

C(P ) ≤ 2|S||A|T (P )2

Φ∗(P )
.

Here T (P ) is the hitting time of an optimal policy is therefore necessarily smaller than

Tw(P ). We get rid of the dependence on κ(P ) while replacing Tw(P ) with T (P )2. Most

importantly, we significantly improve the dependence on the state space size. The constant

Φ∗(P ) can roughly be thought of as the minimum (over states) difference between the

quality of the best and the second best action (see Eqn. (6.5)). The constants ∆∗(P ) and

Φ∗(P ) are similar though not directly comparable. Nevertheless, note that C(P ) depends

inversely on Φ∗(P ) not Φ∗(P )2.
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6.2 The Irreducibility Assumption

Consider an MDP 〈S,A, P,R〉 where S is the set of states, A = ∪i∈SA(i) is the set

of actions. Note that in this chapter, we allow for the possibility of having different actions

available at different states: A(i) being the actions available in state i. For simplicity of

analysis, we assume that the rewards are known to us beforehand. We do not assume that

we know the support sets of the distributions Pi,a.

The definitions given in Chapter 2 can easily be extended to the case of state-

dependent action spaces in the following way. The history σt up to time t is a sequence

(i0, k0, . . . , it−1, kt−1, it) such that ks ∈ A(is) for all s < t. A policy π is a sequence {πt}

of probability distributions on A given σt such that πt(A(st)|σt) = 1 where st denotes the

random variable representing the state at time t. The set of all policies is denoted by Π.

A deterministic stationary policy is simply a function µ : S → A such that µ(i) ∈ A(i).

Denote the set of deterministic stationary policies by ΠD. If D is a subset of A, let Π(D)

denote the set of policies that take actions in D. Given history σt, define the counts,

Nt(i) :=
t−1∑

t′=0

1 [it = i] ,

Nt(i, a) :=
t−1∑

t′=0

1 [(it, kt) = (i, a)] ,

Nt(i, a, j) :=
t−1∑

t′=0

1 [(ii, kt, it+1) = (i, a, j)] .

If M = 〈S,A, P,R〉 and S,A and R are clear from context, we will denote the expectation

operator Eπ,M
i [·] by Eπ,P

i [·].

We make the following irreducibility assumption regarding the MDP.
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Assumption 4. For all µ ∈ ΠD, the transition matrix Pµ =
(
Pi,µ(i)(j)

)
i,j∈S

is irreducible

(i.e. it is possible to reach any state from any other state).

Fix an MDP M and consider the rewards accumulated by the policy π before time

T ,

V π
T (i0, P ) := Eπ,P

i0

[
T−1∑

t=0

R(st, at)

]

,

where at is the random variable representing the action taken by π at time t. Let VT (i0, P )

be the maximum possible sum of expected rewards before time T ,

VT (i0, P ) := sup
π∈Π

V π
T (i0, P ) .

The regret of a policy π at time T is a measure of how well the expected rewards of π

compare with the above quantity,

Rπ
T (i0, P ) := VT (i0, P )− V π

T (i0, P ) .

Define the long term average reward of a policy π as

λπ(P ) := lim inf
T→∞

V π
T (i0, P )

T
.

Under Assumption 4, the above limit exists and is independent of the starting state i0.

Given a restricted set D ⊆ A of actions, the gain or the best long term average performance

is

λ(P,D) := sup
π∈Π(D)

λπ(P ) .

As a shorthand, define λ∗(P ) := λ(P,A).
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6.3 Optimality Equations and Critical Pairs

A restricted problem (P,D) is obtained from the original MDP by choosing sub-

sets D(i) ⊆ A(i) and setting D = ∪i∈SD(i). The transition and reward functions of the

restricted problems are simply the restrictions of P and r to D. Assumption 4 implies that

there is a bias vector h(P,D) = {h(i;P,D)}i∈S such that the gain λ(P,D) and bias h(P,D)

are the unique solutions to the average reward optimality equations:

∀i ∈ S, λ(P,D) + h(i;P,D) = max
a∈D(i)

[R(i, a) + P%
i,ah(P,D)] . (6.1)

We will use h∗(P ) to denote h(P,A). Also, denote the infinity norm ‖h∗(P )‖∞ by H∗(P ).

Note that if h∗(P ) is a solution to the optimality equations and e is the vector of ones, then

h∗(P )+ce is also a solution for any scalar c. We can therefore assume ∃i∗ ∈ S, h∗(i∗;P ) = 0

without any loss of generality.

It will be convenient to have a way to denote the quantity inside the ‘max’ that

appears in the optimality equations. Accordingly, define

L(i, a, p, h) := R(i, a) + p%h ,

L∗(i;P,D) := max
a∈D(i)

L(i, a, Pi,a, h(P,D)) .

To measure the degree of suboptimality of actions available at a state, define

φ∗(i, a;P ) = L∗(i;P,A) − L(i, a, Pi,a, h
∗(P )) .

Note that the optimal actions are precisely those for which the above quantity is zero.

O(i;P,D) := {a ∈ D(i) : φ∗(i, a;P ) = 0} ,

O(P,D) := Πi∈SO(i;P,D) .
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Any policy in O(P,D) is an optimal policy, i.e.,

∀µ ∈ O(P,D), λµ(P ) = λ(P,D) .

From now on, ∆+ will denote the probability simplex of dimension determined

by context. For a suboptimal action a /∈ O(i;P,A), the following set contains probability

distributions q such that if Pi,a is changed to q, the quality of action a comes within ε of an

optimal action. Thus, q makes a look almost optimal:

MakeOpt(i, a;P, ε) := {q ∈ ∆+ : L(i, a, q, h∗(P )) ≥ L∗(i;P,A)− ε} .

Those suboptimal state-action pairs for which MakeOpt is never empty, no matter how

small ε is, play a crucial role in determining the regret. We call these critical state-action

pairs,

Crit(P ) := {(i, a) : a /∈ O(i;P,A) ∧ (∀ε > 0, MakeOpt(i, a;P, ε) 9= ∅)} .

Define the function,

Ji,a(p;P, ε) := inf{‖p − q‖21 : q ∈ MakeOpt(i, a;P, ε)} . (6.2)

To make sense of this definition, consider p = Pi,a. The above infimum is then the least

distance (in the L1 sense) one has to move away from Pi,a to make the suboptimal action

a look ε-optimal. Taking the limit of this as ε decreases gives us a quantity that also plays

a crucial role in determining the regret,

K(i, a;P ) := lim
ε→0

Ji,a(Pi,a;P, ε) . (6.3)

Intuitively, if K(i, a;P ) is small, it is easy to confuse a suboptimal action with an optimal

one and so it should be difficult to achieve small regret. The constant that multiplies log T
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in the regret bound of our algorithm OLP (see Algorithm 3 and Theorem 25 below) is the

following:

C(P ) :=
∑

(i,a)∈Crit(P )

2φ∗(i, a;P )
K(i, a;P )

. (6.4)

This definition might look a bit hard to interpret, so we give an upper bound on C(P ) just

in terms of the infinity norm H∗(P ) of the bias and Φ∗(P ). This latter quantity is defined

below to be the minimum degree of suboptimality of a critical action.

Proposition 23. Suppose A(i) = A for all i ∈ S. Define

Φ∗(P ) := min
(i,a)∈Crit(P )

φ∗(i, a;P ) . (6.5)

Then, for any P ,

C(P ) ≤ 2|S||A|H∗(P )2

Φ∗(P )
.

Proof. Fix (i, a) ∈ Crit(P ). Drop dependence of φ∗, K, MakeOpt, H∗ on i, a, P for read-

ability. Also, let J(ε) = Ji,a(Pi,a;P, ε). Since |Crit(P )| ≤ |S||A|, it suffices to show that

φ∗/K ≤ (H∗)2/φ∗. Let ε < φ∗ be arbitrary. By definition of MakeOpt(ε) and φ∗, we have,

for all q ∈ MakeOpt(ε), q%h∗ − P%
i,ah

∗ ≥ φ∗ − ε. This implies ‖Pi,a − q‖1 ≥ (φ∗ − ε)/H∗

since H∗ = ‖h∗‖∞. Thus, by definition of J(ε), we have

J(ε) ≥ (φ∗ − ε)2
(H∗)2

⇒ lim
ε→0

J(ε) ≥ (φ∗)2

(H∗)2
.

By definition, the left hand side is K. Thus, φ∗/K ≤ (H∗)2/φ∗.

6.4 Hitting Times

It turns out that we can bound the infinity norm of the bias in terms of the hitting

time of an optimal policy. For any policy µ define its hitting time to be the worst case



76

expected time to reach one state from another:

Tµ(P ) := max
i+=j

Eµ,P
j [min{t > 0 : st = i}] .

The following constant is the minimum hitting time among optimal policies:

T (P ) := min
µ∈O(P,D)

Tµ(P ) . (6.6)

The following constant is defined just for comparison with results in [[5]]. It is the worst case

hitting time over all policies:

Tw(P ) := max
µ∈ΠD

Tµ(P ) . (6.7)

We can now bound C(P ) just in terms of the hitting time T (P ) and φ∗(P ).

Proposition 24. Suppose A(i) = A for all i ∈ S. Then for any P ,

C(P ) ≤ 2|S||A|R2
maxT (P )2

Φ∗(P )
.

Proof. Fix µ ∈ O(P,A). Drop the dependence of h∗,H∗,λ∗, Tµ on P . It suffices to prove

that H∗ ≤ Tµ for the result then follows from Proposition 2 and definition of T (P ). Since

rewards and hence the gain λ∗ are in [0, Rmax], and λ∗, h∗ satisfy, for all i ∈ S,

λ∗ + h∗(i) = R(i, µ(i)) + P%
i,µ(i)h

∗ ,

we have, for all i ∈ S,

P%
i,µ(i)h

∗ ≥ h∗(i)−Rmax . (6.8)

Start the policy µ in state j and define the random variables Yt := h(st). Clearly Y0 = h(j).

Fix a state i 9= j. Define the stopping time

τ := min{t > 0 : st = i} .
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Because of (6.8), we have

Eµ,P
j [Yt+1 |Yt] ≥ Yt −Rmax .

Adding Rmax(t+1) to both sides we see that Yt +Rmaxt is a submartingale and hence using

the optional stopping theorem (see, for example, page 489 in [[19]]), we have

Eµ,P
j [Yτ + Rmaxτ ] ≥ Y0 .

By definition of Tµ, we have

Eµ,P
j [τ ] ≤ Tµ .

Thus, noting that Yτ = h∗(i) and Y0 = h∗(j), we have

h∗(i) + RmaxTµ ≥ h∗(j) .

But this is true for all i 9= j. Also, there is some i∗ ∈ S such that h∗(i∗) = 0. Therefore,

H∗ = ‖h∗‖∞ ≤ RmaxTµ.

6.5 The Optimistic LP Algorithm and its Regret Bound

Algorithm 3 is the Optimistic Linear Programming algorithm. It is inspired by the

algorithm of Burnetas and Katehakis [[11]] but uses L1 distance instead of KL-divergence.

At each time step t, the algorithm computes the empirical estimates for transition probabil-

ities. It then forms a restricted problem ignoring relatively undersampled actions. An

action a ∈ A(i) is considered “undersampled” if Nt(i, a) < log2 Nt(i). The solutions

h(P̂ t,Dt),λ(P̂ t,Dt) might be misleading due to estimation errors. To avoid being misled by

empirical samples we compute optimistic “indices” Ut(st, a) for all legal actions a ∈ A(st)
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Algorithm 3 Optimistic Linear Programming
1: for t = 0, 1, 2, . . . do

2: st ← current state

3: 2 Compute solution for “empirical MDP” excluding “undersampled” actions

4: ∀i, j ∈ S, a ∈ A(i), p̂t
i,j(a)← 1+Nt(i,a,j)

|A(i)|+Nt(i,a)

5: ∀i ∈ S,Dt(i)← {a ∈ A(i) : Nt(i, a) ≥ log2 Nt(i)}

6: Solve the equations (6.1) with P = P̂ t,D = Dt

7:

8: 2 Compute indices of all actions for the current state

9: ∀a ∈ A(st), Ut(st, a)← supq∈∆+{R(st, a)+q%h(P̂ t,Dt) : ‖p̂t
st

(a)−q‖1 ≤
√

2 log t
Nt(st,a)}

10:

11: 2 Optimal actions (for the current problem) that are about to become “undersam-

pled”

12: Γ1
t ← {a ∈ O(st; P̂ t,Dt) : Nt(st, a) < log2(Nt(st) + 1)}

13: 2 The index maximizing actions

14: Γ2
t ← arg maxa∈A(st) Ut(st, a)

15:

16: if Γ1
t = O(st; P̂ t,Dt) then

17: at ← any action in Γ1
t

18: else

19: at ← any action in Γ2
t

20: end if

21: end for
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where st is the current state. The index for action a is computed by looking at an L1-ball

around the empirical estimate p̂t
st

(a) and choosing a probability distribution q that maxi-

mizes L(i, a, q, h(P̂ t,Dt)). Note that if the estimates were perfect, we would take an action

maximizing L(i, a, p̂t
st

(a), h(P̂ t,Dt)). Instead, we take an action that maximizes the index.

There is one case where we are forced not to take an index-maximizing action. It is when all

the optimal actions of the current problem are about to become undersampled at the next

time step. In that case, we are forced to take one of these actions (steps 16–20). Note that

both steps 6 and 9 can be done by solving LPs. The LP for solving optimality equations can

be found in several textbooks (see, for example, page 391 in [[26]]). The LP in step 9 is even

simpler: the L1 ball has only 2|S| vertices and so we can maximize over them efficiently.

Like the original Burnetas-Katehakis algorithm, the modified one also satisfies a

logarithmic regret bound as stated in the following theorem. Unlike the original algorithm,

OLP does not need to know the support sets of the transition distributions.

Theorem 25. Let π0 denote the policy implemented by Algorithm 3. Then we have, for all

i0 ∈ S and for all P satisfying Assumption 4,

lim sup
T→∞

Rπ0
T (i0, P )
log T

≤ C(P ) ,

where C(P ) is the MDP-dependent constant defined in (6.4).

Proof. From Proposition 1 in [[11]], it follows that

Rπ0
T (i0, P ) =

∑

i∈S

∑

a/∈O(i;P,A)

Eπ0,P
i0

[NT (i, a)]φ∗(i, a;P ) + O(1) . (6.9)

Define the event

At := {‖h(P̂ t,Dt)− h∗(P )‖∞ ≤ ε ∧O(P̂ t,Dt) ⊆ O(P )} . (6.10)
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Define,

N1
T (i, a; ε) :=

T−1∑

t=0

1 [(st, at) = (i, a) ∧At ∧ Ut(i, a) ≥ L∗(i;P,A)− 2ε] ,

N2
T (i, a; ε) :=

T−1∑

t=0

1 [(st, at) = (i, a) ∧At ∧ Ut(i, a) < L∗(i;P,A)− 2ε] ,

N3
T (ε) :=

T−1∑

t=0

1
[
Āt
]

,

where Āt denotes the complement of At. For all ε > 0,

NT (i, a) ≤ N1
T (i, a; ε) + N2

T (i, a; ε) + N3
T (ε) . (6.11)

The result then follows by combining (6.9) and (6.11) with the following three propositions

and then letting ε→ 0 sufficiently slowly.

Proposition 26. For all P and i0 ∈ S, we have

lim
ε→0

lim sup
T→∞

∑

i∈S

∑

a/∈O(i;P,A)

Eπ0,P
i0

[N1
T (i, a; ε)]

log T
φ∗(i, a;P ) ≤ C(P ) .

Proposition 27. For all P , i0, i ∈ S, a /∈ O(i;P,A) and ε sufficiently small, we have

Eπ0,P
i0

[N2
T (i, a; ε)] = o(log T ) .

Proposition 28. For all P satisfying Assumption 4, i0 ∈ S and ε > 0, we have

Eπ0,P
i0

[N3
T (ε)] = o(log T ) .

6.6 Proofs of Auxiliary Propositions

In this section, we prove Propositions 26, 27 and 28. The proof of Proposition 27

is considerably simpler (because of the use of L1 distance rather than KL-divergence) than

the analogous Proposition 4 in [[11]].



81

Proof of Proposition 26. There are two cases depending on whether (i, a) ∈ Crit(P ) or not.

If (i, a) /∈ Crit(P ), there is an ε0 > 0 such that MakeOpt(i, a;P, ε0) = ∅. On the event At

(recall the definition given in (6.10)), we have |q%h(P̂ t,Dt)− q%h∗(P )| ≤ ε for any q ∈ ∆+.

Therefore,

Ut(i, a) ≤ sup
q∈∆+

{R(i, a) + q%h(P̂ t,Dt)}

≤ sup
q∈∆+

{R(i, a) + q%h∗(P )} + ε

< L∗(i;P,A) − ε0 + ε [∵ MakeOpt(i, a;P, ε0) = ∅]

< L∗(i;P,A) − 2ε provided that 3ε < ε0

Therefore for ε < ε0/3, N1
T (i, a; ε) = 0.

Now suppose (i, a) ∈ Crit(P ). The event Ut(i, a) ≥ L∗(i;P,A) − 2ε is equivalent

to

∃q ∈ ∆+ s.t.
(
‖p̂t

i(a)− q‖21 ≤
2 log t

Nt(i, a)

)
∧
(
R(i, a) + q%h(P̂ t,Dt) ≥ L∗(i;P,A)− 2ε

)
.

On the event At, we have |q%h(P̂ t,Dt)− q%h∗(P )| ≤ ε and thus the above implies

∃q ∈ ∆+ s.t.
(
‖p̂t

i(a)− q‖21 ≤
2 log t

Nt(i, a)

)
∧
(
R(i, a) + q%h∗(P ) ≥ L∗(i;P,A) − 3ε

)
.

Recalling the definition (6.2) of Ji,a(p;P, ε), we see that this implies

Ji,a(p̂t
i(a);P, 3ε) ≤ 2 log t

Nt(i, a)
.
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We therefore have,

N1
T (i, a; ε) ≤

T−1∑

t=0

1
[
(st, at) = (i, a) ∧ Ji,a(p̂t

i(a);P, 3ε) ≤ 2 log t

Nt(i, a)

]

≤
T−1∑

t=0

1
[
(st, at) = (i, a) ∧ Ji,a(Pi,a;P, 3ε) ≤ 2 log t

Nt(i, a)
+ δ

]
(6.12)

+
T−1∑

t=0

1
[
(st, at) = (i, a) ∧ Ji,a(Pi,a;P, 3ε) > Ji,a(p̂t

i(a);P, 3ε) + δ
]

where δ > 0 is arbitrary. Each time the pair (i, a) occurs Nt(i, a) increases by 1, so the first

count is no more than

2 log T

Ji,a(Pi,a;P, 3ε) − δ . (6.13)

To control the expectation of the second sum, note that continuity of Ji,a in its first argument

implies that there is a function f such that f(δ) > 0 for δ > 0, f(δ) → 0 as δ → 0 and

Ji,a(Pi,a;P, 3ε) > Ji,a(p̂t
i(a);P, 3ε)+δ implies that ‖Pi,a−p̂t

i(a)‖1 > f(δ). By a Chernoff-type

bound [[29]], we have, for some constant C1,

Pπ0,P
i0

[‖Pi,a − p̂t
i(a)‖1 > f(δ) |Nt(i, a) = m] ≤ C1 exp(−mf(δ)2) .

and so the expectation of the second sum is no more than

Eπ0,P
i0

[
T−1∑

t=0

C1 exp(−Nt(i, a)f(δ)2)] ≤
∞∑

m=1

C1 exp(−mf(δ)2) =
C1

1− exp(−f(δ)2)
. (6.14)

Combining the bounds (6.13) and (6.14) and plugging them into (6.12), we get

Eπ0,P
i0

[N1
T (i, a; ε)] ≤ 2 log T

Ji,a(Pi,a;P, 3ε) − δ +
C1

1− exp(−f(δ)2)
.

Letting δ → 0 sufficiently slowly, we get that for all ε > 0,

Eπ0,P
i0

[N1
T (i, a; ε)] ≤ 2 log T

Ji,a(Pi,a;P, 3ε)
+ o(log T ) .
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Therefore,

lim
ε→0

lim sup
T→∞

Eπ0,P
i0

[N1
T (i, a; ε)]

log T
≤ lim

ε→0

2
Ji,a(Pi,a;P, 3ε)

=
2

K(i, a;P )
,

where the last equality follows from the definition (6.3) of K(i, a;P ). The result now follows

by summing over (i, a) pairs in Crit(P ).

Proof of Proposition 27. Define the event

A′
t(i, a; ε) := {(st, at) = (i, a) ∧At ∧ Ut(i, a) < L∗(i;P,A) − 2ε} ,

so that we can write

N2
T (i, a; ε) =

T−1∑

t=0

1
[
A′

t(i, a; ε)
]

. (6.15)

Note that on A′
t(i, a; ε), we have Γ1

t ⊆ O(i; P̂ t,Dt) ⊆ O(i;P,A). So, a /∈ O(i;P,A). But

a was taken at time t, so it must have been in Γ2
t which means it maximized the index.

Therefore, for all optimal actions a∗ ∈ O(i;P,A), we have, on the event A′
t(i, a; ε),

Ut(i, a∗) ≤ Ut(i, a) < L∗(i;P,A)− 2ε .

Since L∗(i;P,A) = R(i, a∗) + P%
i,a∗h∗(P ), this implies

∀q ∈ ∆+, ‖q − p̂t
i(a

∗)‖1 ≤

√
2 log t

Nt(i, a∗)
⇒ q%h(P̂ t,Dt) < P%

i,a∗h∗(P )− 2ε .

Moreover, on the event At, |q%h(P̂ t,Dt) − q%h∗(P )| ≤ ε. We therefore have, for any
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a∗ ∈ O(i;P,A),

A′
t(i, a; ε) ⊆

{

∀q ∈ ∆+, ‖q − p̂t
i(a)‖1 ≤

√
2 log t

Nt(i, a)
⇒ q%h∗(P ) < P%

i,ah
∗(P )− ε

}

⊆
{

∀q ∈ ∆+, ‖q − p̂t
i(a)‖1 ≤

√
2 log t

Nt(i, a)
⇒ ‖q − Pi,a‖1 >

ε

‖h∗(P )‖∞

}

⊆
{

‖p̂t
i(a)− Pi,a‖1 >

ε

h∗(P )
+

√
2 log t

Nt(i, a)

}

⊆
t⋃

m=1

{
Nt(i, a) = m ∧ ‖p̂t

i(a)− Pi,a‖1 >
ε

‖h∗(P )‖∞
+

√
2 log t

Nt(i, a)

}

Using a Chernoff-type bound, we have, for some constant C1,

Pπ0,P
i0

[‖p̂t
i(a)− Pi,a‖1 > δ |Nt(i, a) = m] ≤ C1 exp(−mδ2/2) .

Using a union bound, we therefore have,

Pπ0,P
i0

[A′
t(i, a; ε)] ≤

t∑

m=1

C1 exp



−m

2

(
ε

‖h∗(P )‖∞
+
√

2 log t

m

)2




≤ C1

t

∞∑

m=1

exp
(
− mε2

2‖h∗(P )‖2∞
− ε
√

2m log t

‖h∗(P )‖∞

)
= o

(
1
t

)
.

Combining this with (6.15) proves the result.

Before we prove Proposition 28, we need a few lemmas. Let m denote the number

of deterministic stationary policies. For large enough t, we divide the first time interval

up to time t into m + 1 subintervals. Interval number ν is denoted by It
ν . The event Bt

defined below says that after the first interval, all states have been visited often enough

and the transition probability estimates are sufficiently accurate. Lemmas 30–33 work out

different consequences of the event Bt. Once these lemmas are in place, we can prove the

proposition.
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The precise definitions of the intervals are as follows. Fix β < 1/(m + 1). For

sufficiently large t, define the subintervals

It
ν := {t′ : bt

ν ≤ t′ < bt
ν+1} ,

where bt
0 = 0 and bt

ν = t − (m + 1 − ν);k/(m + 1)<. Note that, by our choice of β, the

length of each subinterval It
ν is at least βt and thus bt

ν > νβt. The number of times the

state action pair (i, a) and the state j is visited during the interval It
ν is denoted by ∆ν(i, a)

and ∆ν(j) respectively.

Define the events,

Bt(ζ) :=
{
∀j ∈ S,∀ν ∈ [m],∀t′ ≥ bt

1,∀a ∈ Dt′(j), (6.16)

∆ν(j) > ρβt ∧ ‖p̂t′
j (a)− Pj,a‖∞ ≤ ζ

}
,

Ct
ν(δ) :=

{
∀t′ ∈ It

ν , h(P,Dt′) = h(P,Dt′+1) ⇒ (6.17)

∀j, a, t′ ∈ It
ν , Ut′(j, a) > L(j, a;Pj,a, h(P ;Dt′))− δ

}
,

Gt :=
{(
∀ν ≥ 1, λ(P,Dbt

ν+1
) > λ(P,Dbt

ν
)
)

(6.18)

∨
(
∃ν s.t. λ(P,Dbt

ν+1
) = λ(P,Dbt

ν
) = λ∗(P )

)}
.

We quote the following result from the Burnetas and Katehakis paper [[11]].

Proposition 29. For all P satisfying Assumption 4 there exist A > 0 and ρ0 > 0 such that

for all i0 ∈ S, t ≥ |S|, ρ > 0 and any policy π,

Pπ,P
i0

[Nt(i) ≤ ρt] ≤ A exp((ρ− ρ0)t) .

As a consequence, for all ρ < ρ0, i0 ∈ S and any policy π,

Pπ,P
i0

[Nt(i) ≤ ρt] = o(1/t)
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as k →∞.

The following two lemmas ensure that certain events happen under the event Bt.

Their proofs can be found in Appendix A, Section A.2.

Lemma 30. For all δ, ε > 0, ∃ζ1, ζ2, ζ3 > 0, t0 such that the following hold true. For all

ζ < ζ1, Bt(ζ) ⊆

{∀t′ ≥ bt
1,∀µ ∈ Π(Dt′), |λµ(P̂ t′)− λµ(P )| ≤ ε, ‖hµ(P̂ t′)− hµ(P )‖∞ ≤ ε}

For all ζ < ζ2, Bt(ζ) ⊆

{∀t′ ≥ bt
1,O(P̂ t′ ,Dt′) ⊆ O(P,Dt′) ∧ ‖h(P̂ t′ ,Dt′)− h(P,Dt′)‖∞ ≤ ε}

For all ζ < ζ3, t > t0, Bt(ζ) ⊆

{∀t′ ≥ bt
1, j ∈ S, a ∈ Dt′(j), Ut′(j, a) ≤ L(j, a;Pj,a, h(P,Dt′ )) + δ} (6.19)

Lemma 31. On the event Bt(ζ), the following hold true. Let

τ = ρβt/(2 log(ρβt))− 1 .

For t′ > bt
1, j ∈ S, a ∈ A(j), if (st′ , at′) = (j, a) with a ∈ Γ1

t′ , then for all ζ,

τ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ a ∈ Γ1

t′+l

]
≤ 1 (6.20)

For all t′ ≥ bt
1 and sufficiently small ζ,

λ(P,Dt′+1) ≥ λ(P,Dt′) . (6.21)

Lemma 32. For all δ > 0, ∃ζ ′ such that for all ζ < ζ ′ , ν ∈ [m],

Pπ0,P
i0

[Bt(ζ)Ct
ν(δ)] = o(1/t) .
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Proof. By Lemma 30, we know that for sufficiently small ζ, on the event Bt(ζ), we have,

for t′ ≥ bt
1, ‖h(P̂ t′ ,Dt′) − h(P,Dt′‖∞ ≤ δ/2. Therefore, on the event Bt(ζ)Ct

ν(δ), we have,

for some j, a, t′ ∈ It
ν ,

∀q ∈ ∆+, ‖q − p̂t′
j (a)‖1 ≤

√
2 log t′

Nt′(j, a)
⇒ q%h(P,Dt′) ≤ P%

j,ah(P,Dt′)− δ/2

On the event Bt(ζ)Ct
ν(δ), we also have h(P,Dt′) = h(P,Dbt

ν
) for all t′ ∈ It

ν . Moreover,

t′ ≥ bt
ν which allows us to write the above event as

∀q ∈ ∆+, ‖q − p̂t′
j (a)‖1 ≤

√
2 log bt

ν

Nt′(j, a)
⇒ q%h(P,Dbt

ν
) ≤ P%

j,ah(P,Dbt
ν
)− δ/2

Since h(P,Dbt
ν
) = hµ(P ) for some µ ∈ ΠD and the sets ΠD, S,A(j) are finite, it suffices to

bound the probability of the following event for fixed µ, j, a ∈ A(j): ∃t′ ∈ It
ν such that

∀q ∈ ∆+, ‖q − p̂t′
j (a)‖1 ≤

√
2 log bt

ν

Nt′(j, a)
⇒ q%hµ(P ) ≤ P%

j,ahµ(P )− δ/2 .

Since q%hµ(P ) ≤ P%
j,ahµ(P )−δ/2 implies ‖q−Pj,a‖1 ≥ δ/(2‖hµ(P )‖∞), it suffices to consider

the event: ∃t′ ∈ It
ν such that

‖p̂t′
j (a)− Pj,a‖1 ≥

√
2 log bt

ν

Nt′(j, a)
+

δ

2‖hµ(P )‖∞
.

Conditioning on the possible values 1, . . . , bt
ν+1 of Nt′(j, a) and using a bound [[29]] for the

L1 deviation of p̂t′
j (a) from Pj,a, we can bound probability of the above event by

bt
ν+1∑

m=1

C1 exp



−m

2

(√
2 log bt

ν

m
+

δ

2‖hµ(P )‖∞

)2




≤ C1

bt
ν

∞∑

m=1

exp

(
−
δ
√

2m log bt
ν

2‖hµ(P )‖∞
− δ2

8‖hµ(P )‖2∞

)

= o

(
1
bt
ν

)

for some constant C1. Noting that bt
ν ≥ νβt for all ν ∈ [m] finishes the proof.
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Lemma 33. For all sufficiently small ζ,

Pπ0,P
i0

[Bt(ζ)Gt] = o(1/t)

Proof. We assume that there exist two policies µ, µ′ ∈ ΠD such that λµ(P ) 9= λµ′(P )

because otherwise the lemma holds trivially. This ensures that the constant δgap defined

below is strictly positive. Define the event,

F t
ν :=

{
λ(P ;Dbt

ν+1
) = λ(P ;Dbt

ν
) < λ∗(P )

}
. (6.22)

Under Bt(ζ) we have,

Bt(ζ)Gt ⊆ Bt(ζ)
m⋃

ν=1

F t
ν (6.23)

because of (6.21). Having obtained the solution of a restricted problem (P,D), we define

the set of improving actions as

Impr(j;P,D) := {a ∈ A(j) : λ(P,D) + h(j;P,D) < L(j, a;Pj,a, h(j;P,D))} .

When D is a specific policy µ, the set Impr(j;P, µ) is simply

{a ∈ A(j) : λµ(P ) + hµ(j;P ) < L(j, a;Pj,a, hµ(j;P ))} .

Define the constant,

δgap := min
µ,j,a

{L(j, a;Pj,a, hµ(j;P )) − λµ(P )− hµ(j;P )} , (6.24)

where µ ranges over ΠD, j ranges over states such that Impr(j;P, µ) 9= ∅ and a ranges over

Impr(j;P, µ). We now claim that it suffices to show that if ζ is sufficiently small, then for

large t and all ν ∈ [m],

Bt(ζ)Ct
ν(δgap/2)F t

ν = ∅ . (6.25)
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Indeed if this holds then we have,

Pπ0,P
i0

[Bt(ζ)Gt] ≤
m∑

ν=1

Pπ0,P
i0

[Bt(ζ)F t
ν ] [by (6.23)]

≤
m∑

ν=1

Pπ0,P
i0

[Bt(ζ)Ct
ν(δgap/2)] [by (6.25)]

= o(1/t) [by Lemma 32]

To prove (6.25), it suffices to show that

Bt(ζ)Ct
ν(δgap/2)F t

ν ⊆ {∃j s.t. ∆ν(j) ≥ ρβt ∧ ∆ν(j) = O(log2 t)} . (6.26)

This is because the last event cannot happen for large t.

The rest of the proof is devoted to proving (6.26). Under F t
ν , there is a state j

such that an improving action exists for j, i.e. Impr(j;P,Dbt
ν
) 9= ∅. Fix such a j and for

any a ∈ A(j), split the occurrences of (j, a) into two groups,

∆(1)
ν (j, a) :=

∑

t′∈It
ν

1
[
(st′ , at′) = (j, a) ∧ a ∈ Γ1

t′
]

∆(2)
ν (j, a) :=

∑

t′∈It
ν

1
[
(st′ , at′) = (j, a) ∧ a ∈ Γ2

t′
]

and write

∆ν(j) =
∑

a∈A(j)

∆(1)(j, a) +
∑

a∈Impr(j;P,Dbt
ν
)

∆(2)(j, a) +
∑

a/∈Impr(j;P,Dbt
ν
)

∆(2)(j, a) .

We bound each term on the right hand side separately.

First term. It is easy to bound ∆(1)(j, a) using (6.20). The event being counted

occurs at most once in a time period of length τ + 1 and so

∆(1)
ν (j, a) ≤ (bt

ν+1 − bt
ν)/(τ + 1) = O(log t) . (6.27)
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Second term. To bound the rest of the terms, we first need to show that under

Bt(ζ)F t
ν , for all t′ ∈ It

ν ,

λ(P ;Dt′) = λ(P ;Dt′+1) (6.28)

h(P ;Dt′) = h(P ;Dt′+1) (6.29)

Impr(j;P,Dt′ ) = Impr(j;P,Dt′+1) (6.30)

The definition of F t
ν and (6.21) immediately imply (6.28). Consider a time t′ with st = i.

Then, from the definition of the policy π0, we have

∀i′ 9= i, Dt′(i′) = Dt′+1(i′) . (6.31)

Thus, λ(P,Dt′), h(P,Dt′) satisfy the optimality equations of (P,Dt′+1) for all states i′ 9= i.

Furthermore, we established before that, under Bt(ζ),

Dt′+1(i) ∩O(i;P,Dt) 9= ∅ .

Therefore, if λ(P,Dt′) and h(P,Dt′) did not satisfy the optimality equation of (P,Dt′+1) for

state i, we would have

λ(P,Dt′) + h(i;P,Dt′ ) < max
a∈Dt′+1(i)

L(i, a;P, h(P,Dt′ )) .

Together with (6.31) this implies that there exists µ ∈ Dt′+1 such that

λ(P ;Dt′+1) ≥ λµ(P ;Dt′+1) > λ(P ;Dt′) ,

which contradicts (6.28). It therefore follows that λ(P,Dt′) and h(P,Dt′) do satisfy the

optimality equations of (P,Dt′+1). Hence h(P,Dt′) = h(P,Dt′+1) and (6.29) holds. Equa-

tion (6.30) is an immediate consequence of (6.28) and (6.29).
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For a ∈ Impr(j;P,Dbt
ν
), (6.30) implies that a ∈ Impr(j;P,Dbt

ν+1
) and hence a /∈

Dbt
ν+1

by definition of improving actions. Therefore, for such an a, ∆(2)(j, a) can bounded

as follows.

∆(2)
ν (j, a) ≤ ∆ν(j, a) ≤ Nbt

ν+1
(j, a)

< log2 bt
ν+1 [∵ a /∈ Dbt

ν+1
]

≤ log2 t . (6.32)

Third term. Next we prove that for sufficiently small ζ and large enough t, on

the events Bt(ζ)Ct
ν(δgap/2)F t

ν and (st, at) = (j, a), we have

Dt′(j) ∩ Γ2
t′ = ∅ (6.33)

for all t′ ∈ It
ν . To see this, note that on the event Bt(ζ)F t

ν , we have for all t′ ∈ It
ν , a ∈ Dt′(j)

and large t,

Ut′(j, a) ≤ L(j, a;Pj,a, h(P ;Dt′ )) + δgap/2 [by (6.19)]

≤ λ(P ;Dt′) + h(j, P ;Dt′ ) + δgap/2 [by optimality eqns.]

= λ(P ;Dbt
ν
) + h(j, P ;Dbt

ν
) + δgap/2 [by (6.28), (6.29)] (6.34)

Moreover, for any a′ ∈ Impr(j;P,Dbt
ν
), on the event Bt(ζ)Ct

ν(δgap/2)F t
ν , we have, for any

t′ ∈ It
ν ,

Ut′(j, a′) > L(j, a′;Pj,a′ , h(P ;Dt′)− δgap/2 [∵ Ct
ν , (6.29) are true]

= L(j, a′;Pj,a′ , h(P ;Dbt
ν
)− δgap/2 [by (6.29)]

≥ λ(P ;Dbt
ν
) + h(j, P ;Dbt

ν
) + δgap − δgap/2 [defn. of δgap] (6.35)
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Combining (6.34) and (6.35), we see that no action in Dt′(j) can maximize the index and

hence be in Γ2
t . Thus, (6.33) is proved.

We can finally bound ∆(2)
ν (j, a) for a /∈ Impr(j;P,Dbt

ν
).

∆(2)
ν (j, a) ≤

∑

t′∈It
ν

1 [(st′ , at′) = (j, a) ∧ a /∈ Dt′(j)] [by (6.33)]

≤
∑

t′∈It
ν

1
[
(st′ , at′) = (j, a) ∧ Nt′(j, a) < log2 t′

]

≤
∑

t′∈It
ν

1
[
(st′ , at′) = (j, a) ∧ Nt′(j, a) < log2 bt

ν+1

]
[∵ t′ ≤ bt

ν+1]

≤ log2 bt
ν+1 < log2 t . (6.36)

Combining (6.27),(6.32) and (6.36), we see that, under the event

Bt(ζ)Ct
ν(δgap/2)F t

ν ,

we have ∆ν(j) = O(log2 t). Moreover, under Bt(ζ), ∆ν(j) ≥ ρβt. Thus (6.26) is proved.

We can now finally prove Proposition 28.

Proof. Fix ε > 0. It suffices to establish the following two claims.

∀ε > 0, ∃ζ1 s.t. Bt(ζ1)Gt ⊆ At , (6.37)

and

Pπ0,P
i0

[Bt(ζ1)Gt] = o(1/t) . (6.38)

We first prove (6.37). Recall that m is the total number of deterministic stationary policies.

Since monotonic increase of λ(P,Dbt
ν
) is not possible for more than m intervals It

ν , it must

be the case that at the end of the last interval, we have Dt ∩O(P ) 9= ∅ and thus,

Gt ⊆ {O(P,Dt) ⊆ O(P ), λ(P,Dt) = λ∗(P ), h(P,Dt) = h∗(P )} . (6.39)
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Moreover, by Lemma (30), part 2, we have, for sufficiently small ζ,

Bt(ζ) ⊆ {O(P̂ t,Dt) ⊆ O(P,Dt), ‖h(P̂ t,Dt)− h(P,Dt)‖ < ε} (6.40)

Combining (6.39) and (6.40) and recalling the definition of the event At given in (6.10)

proves (6.37).

To prove (6.38), write

Pπ0,P
i0

[Bt(ζ1)Gt] ≤ Pπ0,P
i0

[Bt(ζ1)Gt] + Pπ0,P
i0

[Bt(ζ1)]

Lemma 33 shows that the first term is o(1/t). We now show that the second term is also

o(1/t).

Using the definition of Bt(ζ1) and the union bound we have,

Pπ0,P
i0

[Bt(ζ1)] ≤
∑

j∈S

m∑

ν=0

Pπ0,P
i0

[∆ν(j) ≤ ρβt]

+
∑

j∈S

Pπ0,P
i0

[∀ν ∈ [m],∆ν(j) > ρβt ∧ ∃t′ ≥ bt
1, a ∈ Dt′(j) s.t.

‖p̂t′
j (a)− Pj,a‖∞ > ζ1] .

Since the length of the interval It
ν is at least βt, it follows from Proposition 29 that

Pπ0,P
i0

[∆ν(j) ≤ ρβt] is o(1/t). To bound the second term, note that on the event {∀ν ∈

[m], ∆ν(j) > ρβt}, we have Nt′(j) ≥ ρβt ≥ ρβt′ for all t′ ≥ bt
1. Therefore, the possible

values of Nt′(j) are ρβt, . . . , t. Given that Nt′(j) = q, the possible values of Nt′(j, a) for

a ∈ Dt′(j) are log2 q, . . . , q. Using a union bound, we can now bound the second term as
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follows (where A = maxi |A(i)|).

∑

j∈S

t∑

t′=bt
1

∑

a∈Dt(j)

t′∑

q=ρβt′

q∑

r=log2 q

Pπ0,P
i0

[‖p̂t′
j (a)− Pj,a‖∞ > ζ1 |Nt′(j, a) = r]

≤
∑

j∈S

t∑

t′=bt
1

∑

a∈Dt(j)

t′∑

q=ρβt′

q∑

r=log2 q

C exp(−rζ2
1 )

≤ C|S|A
t∑

t′=bt
1

t′∑

q=ρβt′

q∑

r=log2 q

exp(−rζ2
1)

≤ C|S|A
t∑

t′=bt
1

t′∑

q=ρβt′

∞∑

r=log2 q

exp(−rζ2
1)

=
C|S|A

1− exp(−ζ2
1 )

t∑

t′=bt
1

t′∑

q=ρβt′

exp(− log2 q · ζ2
1 )

≤ C|S|A
1− exp(−ζ2

1 )
· t2 · exp(− log2(ρβbt

1) · ζ2
1 )

Now bt
1 ≥ βt and thus the last expression above, ignoring leading constants, is less than

t2 · exp(−(log ρβ2 + log t)2ζ2
1)

= exp(−ζ2
1 log2 ρβ2) · t2−2ζ21 log(ρβ2)−ζ21 log t

which is o(1/t) as t→∞.
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Chapter 7

Conclusion

The last four chapters have considered various aspects of reinforcement learning

in large or unknown MDPs. We close this dissertation by pointing out the major lessons

learned and describing some problems for future research.

Chapter 3 considered the sample complexity of policy search using simulators. In

that chapter, we showed, using Propositions 2 and 4, that it is not possible to prove conver-

gence bounds by just assuming that the pseudodimension or the fat-shattering dimension

of the policy class is finite. Some extra assumption is needed to ensure that the interac-

tion of the policy class with the system transition dynamics does not lead to a blow-up in

statistical complexity. Ng and Jordan [[23]] had earlier used a Lipschitz assumption for this

purpose. We essentially replaced their assumption by another one concerning the amount of

computation involved in computing policies, the system dynamics and the reward mapping.

However, neither of these assumptions implies the other. So, a necessary and sufficient

condition for simulation based policy search to work remains to be found.
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Chapter 4 considered the approximate linear programming approach for solving

large MDPs. Theorem 9, the main result in that chapter, gives a performance bound for the

greedy policy derived from a function V : S &→ R. However, our goal is to get a performance

bound for the greedy policy derived from Hŵ, where ŵ is the solution to the approximate

linear program with constraint sampling. An important direction for future research is to

find conditions on the MDP and the basis functions under which the remainder terms in

that bound are small. In that chapter, we also looked at the approach of approximating the

dual linear program. Theorem 11 provides a preliminary bound for this approach. While

being a first step towards understanding the power of the dual approximation approach,

the bound is unsatisfactory for a number of reasons as mentioned towards the end of that

chapter. More work is therefore needed to derive better performance bounds.

In Chapter 5, we considered bounded parameter MDPs (BMDPs) that arise when

MDP parameters are only known to lie in some intervals. We presented algorithms for

computing the optimal value functions for average reward BMDPs. We also related the

discounted and average reward criteria and proved the existence of Blackwell optimal policies

thus extending two fundamental results from the theory of MDPs to the BMDP setting.

A fundamental question left open by our work is that of perfect duality in the case of the

pessimistic optimality criterion for average reward BMDPs. From Nilim and El Ghaoui’s

work [[24]], we know that perfect duality holds for the pessimistic optimality criterion for

discounted BMDPs. That is, for any γ ∈ [0, 1), any BMDP M and any state i ∈ S, we have

max
µ

inf
M∈M

Vγ,µ,M (i) = inf
M∈M

max
µ

Vγ,µ,M (i) ,

where the max is taken over deterministic stationary policies. We do not know whether a
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similar relation holds true for average reward MDPs. That is, we do not know whether

max
µ

inf
M∈M

Uµ,M (i) = inf
M∈M

max
µ

Uµ,M (i) .

In Chapter 6, we gave an algorithm that achieves logarithmic regret in any irre-

ducible MDP. Auer and Ortner’s algorithm [[5]] also achieves logarithmic regret but with a

different constant. Neither algorithm requires the knowledge of the supports of the tran-

sition functions Pi,a. The original algorithm of Burnetas and Katehakis [[11]] required this

knowledge. An important advantage of Auer and Ortner’s analysis is that their bounds

hold uniformly over time. Our bounds, like those of Burnetas and Katehakis, only hold for

sufficiently large times and the initial period when the bound does not hold can be quite

large, even exponential in the size of the state space. We do not know whether this is a

limitation of our analysis or of the algorithm.

It is also interesting to compare our algorithm with Auer and Ortner’s. At any time

step t, let Mt denote the BMDP obtained by taking high confidence intervals around the

empirical estimates of MDP parameters. Auer and Ortner do not update Mt at every time

step, but when they compute a new policy, it is the optimal policy for Mt in the optimistic

sense. In contrast to this, in our algorithm Mt gets updated at every time step. But then,

we choose our current action by effectively executing just one iteration of the algorithm to

compute the optimistically optimal policy for Mt. So, these two algorithms seem to be at

two extreme ends of a spectrum of algorithms. Viewing these two algorithms in this way

might lead to a better understanding of logarithmic regret algorithms for MDPs.
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[[ 1 ]] Noga Alon, Shai Ben-David, Nicolò Cesa-Bianchi, and David Haussler. Scale-

sensitive dimensions, uniform convergence, and learnability. Journal of the ACM,

44(4):615–631, 1997.

[[ 2 ]] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foun-

dations. Cambridge University Press, 1999.

[[ 3 ]] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal

of Machine Learning Research, 3:397–422, 2002.
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Actualités Mathématiques, Paris, 1990.



99

[[ 7 ]] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena

Scientific, Belmont, MA, 1995.

[[ 8 ]] David Blackwell. Discrete dynamic programming. The Annals of Mathematical

Statistics, 33(2):719–726, 1962.

[[ 9 ]] Lenore Blum, Felipe Cucker, Michael Shub, and Stephen Smale. Complexity and

Real Computation. Springer-Verlag, 1998.

[[ 10 ]] Ronen I. Brafman and Moshe Tennenholtz. R-MAX – a general polynomial time

algorithm for near-optimal reinforcement learning. Journal of Machine Learning

Research, 3:213–231, 2002.

[[ 11 ]] A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for Markov decision

processes. Mathematics of Operations Research, 22(1):222–255, 1997.

[[ 12 ]] Daniela P. de Farias and Benjamin Van Roy. The linear programming approach to

approximate dynamic programming. Operations Research, 51(6):850–865, 2003.

[[ 13 ]] Daniela P. de Farias and Benjamin Van Roy. On constraint sampling in the lin-

ear programming approach to approximate dynamic programming. Mathematics of

Operations Research, 29(3):462–478, 2004.

[[ 14 ]] Dmitri A. Dolgov and Edmund H. Durfee. Symmetric approximate linear program-

ming for factored MDPs with application to constrained problems. Annals of Math-

ematics and Artificial Intelligence, 47(3–4):273–293, 2006.

[[ 15 ]] Eyal Even-Dar and Yishay Mansour. Convergence of optimistic and incremental



100

Q-learning. In Advances in Neural Information Processing Systems 14, pages 1499–

1506. MIT Press, 2001.

[[ 16 ]] Robert Givan, Sonia Leach, and Thomas Dean. Bounded-parameter Markov decision

processes. Artificial Intelligence, 122(1-2):71–109, 2000.

[[ 17 ]] Paul W. Golberg and Mark R. Jerrum. Bounding the Vapnik-Chervonenkis dimen-

sion of concept classes parameterized by real numbers. Machine Learning, 18(2-

3):131–148, 1995.

[[ 18 ]] Gene H. Golub and Charles F. van Loan. Matrix Computations. John Hopkins

University Press, 1996.

[[ 19 ]] Geoffrey R. Grimmett and David R. Stirzaker. Probability and Random Processes.

Oxford University Press, third edition, 2001.

[[ 20 ]] David Haussler. Decision theoretic generalizations of the PAC model for neural net

and other learning applications. Information and Computation, 100(1):78–150, 1992.

[[ 21 ]] Rahul Jain and Pravin P. Varaiya. Simulation-based uniform value function esti-

mates of Markov decision processes. SIAM Journal on Control and Optimization,

45(5):1633–1656, 2006.

[[ 22 ]] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6(1):4–22, 1985.

[[ 23 ]] Andrew Y. Ng and Michael I. Jordan. PEGASUS: A policy search method for



101

MDPs and POMDPs. In Proceedings of the 16th Annual Conference on Uncertainty

in Artificial Intelligence, pages 405–415. Morgan Kauffman Publishers, 2000.

[[ 24 ]] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes

with uncertain transition matrices. Operations Research, 53(5):780–798, 2005.

[[ 25 ]] David Pollard. Empirical Processes: Theory and Applications, volume 2 of NSF-

CBMS Regional Conference Series in Probability and Statistics. Institute of Mathe-

matical Statistics, 1990.

[[ 26 ]] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, 1994.

[[ 27 ]] Alexander L. Strehl and Michael Littman. A theoretical analysis of model-based

interval estimation. In Proceedings of the Twenty-Second International Conference

on Machine Learning, pages 857–864. ACM Press, 2005.

[[ 28 ]] Tao Wang, Michael Bowling, and Dale Schuurmans. Dual representations for dy-

namic programming and reinforcement learning. In Proceedings of the IEEE In-

ternational Symposium on Approximate Dynamic Programming and Reinforcement

Learning, pages 44–51. IEEE Press, 2007.

[[ 29 ]] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J.

Weinberger. Inequalities for the L1 deviation of the empirical distribution. Technical

Report HPL-2003-97, Information Theory Research Group, HP Laboratories, Palo

Alto, 2003.



102

Appendix A

Proofs of Auxiliary Lemmas

A.1 Lemma from Chapter 3

Lemma 3. Fix an interval (a, b) and let T be the set of all its finite subsets. Let gn range

over functions from (a, b)n to T . Let D range over probability distributions on (a, b). Then,

inf
gn

sup
D

(
sup
T∈T

EX∼D1 [X ∈ T ]− E(X1,...,Xn)∼DnE(X∼D)1 [X ∈ gn(X1, . . . ,Xn)]
)
≥ 1 .

Proof. Fix n, gn. Our proof uses the probabilistic method. We have,

sup
D

(
sup
T∈T

EX∼D1 [X ∈ T ]− E(X1,...,Xn)∼DnE(X∼D)1 [X ∈ gn(X1, . . . ,Xn)]
)

≥ sup
Dm

(
sup
T∈T

EX∼Dm1 [X ∈ T ]− E(X1,...,Xn)∼Dn
m

E(X∼Dm)1 [X ∈ gn(X1, . . . ,Xn)]
)

= 1− inf
Dm

(
E

(X,X1,...,Xn)∼D
(n+1)
m

1 [X ∈ gn(X1, . . . ,Xn)]
)

,

where Dm ranges over discrete distribution supported on m points. The last equality holds

because for such distributions, the first term inside the sup over Dm is 1. We now use

the probabilistic method to upper bound the infimum over Dm by an expectation over Dm
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when Dm is a random probability distribution supported on Y1, . . . , Ym where

Y1, . . . , Ym ∼ i.i.d. Uniform(a, b) .

Further, let I0, I1, . . . , In be independent of the Y ’s with

I0, I1, . . . , In ∼ i.i.d. Discrete Uniform{1, . . . ,m} .

Finally, set X = YI0 and Xj = YIj , 1 ≤ j ≤ n. Thus, we have

inf
Dm

(
E

(X,X1,...,Xn)∼D(n+1)
m

1 [X ∈ gn(X1, . . . ,Xn)]
)

≤ P(X ∈ gn(X1, . . . ,Xn))

≤ P(X ∈ gn(X1, . . . ,Xn)|¬E) + P(E) ,

where E is the event “there exist duplicates amongst the Ij ’s”. Conditioned on ¬E, the

Xj ’s are i.i.d. Uniform(a, b) and hence the first term above is 0. To bound the second term

note that

P(E) = 1− m(m− 1) . . . (m− n + 1)
mn

≤ 1− (m− n)n

mn

≤ 1−
(
1− n

m

)n

Thus, we have

sup
D

(
sup
T∈T

EX∼D1 [X ∈ T ]− E(X1,...,Xn)∼DnE(X∼D)1 [X ∈ gn(X1, . . . ,Xn)]
)

≥
(
1− n

m

)n

Since this is true for all m > n and the right hand side tends to 1 as m→∞ (with n fixed),

the lemma is proved.
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A.2 Lemmas from Chapter 6

Lemma 30. For all δ, ε > 0, ∃ζ1, ζ2, ζ3 > 0, t0 such that the following hold true. For all

ζ < ζ1, Bt(ζ) ⊆

{∀t′ ≥ bt
1,∀µ ∈ Π(Dt′), |λµ(P̂ t′)− λµ(P )| ≤ ε, ‖hµ(P̂ t′)− hµ(P )‖∞ ≤ ε}

For all ζ < ζ2, Bt(ζ) ⊆

{∀t′ ≥ bt
1,O(P̂ t′ ,Dt′) ⊆ O(P,Dt′) ∧ ‖h(P̂ t′ ,Dt′)− h(P,Dt′)‖∞ ≤ ε}

For all ζ < ζ3, t > t0, Bt(ζ) ⊆

{∀t′ ≥ bt
1, j ∈ S, a ∈ Dt′(j), Ut′(j, a) ≤ L(j, a;Pj,a, h(P,Dt′ )) + δ}

Proof. (First part) Fix t′ ≥ bt
1. Given a policy µ ∈ Π(Dt′), let

Hµ(P ) = (λµ(P ), hµ(2;P ), . . . , hµ(|S|;P ))% .

Since, hµ(P ) is unique only up to an additive constant, we assume that hµ(1;P ) = 0. With

this convention, the average reward equations become

Aµ(P )Hµ(P ) = Rµ

where Aµ(P ) is an invertible matrix. For an n × n matrix A, let ‖A‖∞ be the row sum

norm,

‖A‖∞ := max
i

n∑

j=1

|aij | .

Theorem 2.7.2 in [[18]] says that if

Ax = b (A + ∆)y = b
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with ‖∆‖∞ · ‖A−1‖∞ ≤ 1, then

‖y − x‖∞ ≤
2‖∆‖∞ · ‖A−1‖∞

1− ‖∆‖∞ · ‖A−1‖∞
‖x‖∞ . (A.1)

Let P̂ = P̂ t′ and

Hµ(P̂ ) = (λµ(P̂ ), hµ(2; P̂ ), . . . , hµ(|S|; P̂ ))% .

The average reward equations for the problem (P̂ ,Dt′) can be written as

Aµ(P̂ )Hµ(P̂ ) = Rµ

where Aµ(P̂ ) is an invertible matrix with the estimated probabilities in its entries. Under

the event Bt(ζ), we have

‖Aµ(P̂ )−Aµ(P )‖∞ ≤ |S|ζ .

Now using (A.1) with y = Hµ(P̂ ), x = Hµ(P ), A = Aµ(P ) and ∆ = Aµ(P̂ ) − Aµ(P ), we

get

‖Hµ(P̂ )−Hµ(P )‖∞ ≤ ε

provided that

ζ ≤ ζ1(ε;µ) :=
ε

|S| · ‖Aµ(P )−1‖∞ · (2‖Hµ(P )‖∞ + ε)
.

We finish the proof of the first part by setting ζ1 = minµ∈ΠD ζ1(ε;µ).

(Second part) Define the constant,

δdiff := min{|λµ(P )− λµ′(P )| : µ, µ′ ∈ ΠD, µ 9= µ′} .

Assume that δdiff > 0, otherwise the result is trivial. Given ε > 0, choose ζ2 small enough

such that the previous part of the lemma holds both for ε and for δdiff/2. Then, for all

ζ < ζ2, under Bt(ζ), any µ0 that is optimal for (P̂ t′ ,Dt) is δdiff/2-optimal for (P,Dt′).
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By the definition of δdiff, any δdiff/2-optimal policy is actually optimal. Therefore, under

Bt(ζ), O(P̂ t′ ,Dt′) ⊆ O(P,Dt′). Moreover, for such a µ0 we have h(P̂ t′ ,Dt′) = hµ0(P̂ t′) and

h(P,Dt′) = hµ0(P ) and so we also have ‖h(P̂ t′ ,Dt′)− h(P,Dt′)‖∞ ≤ ε by our choice of ζ2.

(Third part) Fix t′ ≥ bt
1, j ∈ S, a ∈ Dt′(j). It suffices to prove that, under Bt(ζ),

for any q ∈ ∆+, such that ‖p̂t′
j (a)− q‖ ≤

√
2 log t′/Nt′(j, a) we have

L(j, a, q, h(P̂ t′ ,Dt′)) ≤ L(j, a, Pj,a, h(P,Dt′)) + δ . (A.2)

Fix such a q. Using the previous part, if ζ is sufficiently small then, under Bt(ζ), we have

‖h(P̂ t′ ,Dt′)− h(P,Dt′)‖ ≤ δ/3 and hence,

L(j, a, q, h(P̂ t′ ,Dt′)) ≤ L(j, a, q, h(P,Dt′ )) + δ/3 . (A.3)

Under Bt(ζ), Nt′(j) ≥ ρβt and since a ∈ Dt′(j), Nt′(j, a) ≥ log2(ρβt). As t′ ≤ t, we

have
√

2 log t′/Nt′(j, a) ≤
√

2 log t/ log2(ρβt) which goes to 0 as t → ∞. As L(j, a, p, h) is

continuous in p, there exists t0 such that for all t > t0, we have

L(j, a, q, h(P,Dt′ )) ≤ L(j, a, p̂t′
j (a), h(P,Dt′ )) + δ/3 . (A.4)

Under Bt(ζ), ‖p̂t′
j (a)− Pj,a‖∞ ≤ ζ and thus for small enough ζ we have,

L(j, a, p̂t′
j (a), h(P,Dt′ )) ≤ L(j, a, Pj,a, h(P,Dt′)) + δ/3 . (A.5)

Here, we again used the continuity of L(j, a, p, h) in p. Combining (A.3),(A.4) and (A.5)

gives (A.2).

Lemma 31. On the event Bt(ζ), the following hold true. Let

τ = ρβt/(2 log(ρβt))− 1 .
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For t′ > bt
1, j ∈ S, a ∈ A(j), if (st′ , at′) = (j, a) with a ∈ Γ1

t′ , then for all ζ,

τ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ a ∈ Γ1

t′+l

]
≤ 1

For all t′ ≥ bt
1 and sufficiently small ζ,

λ(P,Dt′+1) ≥ λ(P,Dt′) .

Proof. (First part) Fix t′ > bt
1 such that (st′ , at′) = (j, a) with a ∈ Γ1

t′ . Let n = Nt′(j)

and σ = n/(2 log n)− 1. With this choice of σ, we have

log2(n + σ + 1) < log2 n + 1 (A.6)

for sufficiently large n. Note that, for any l, if (st′+l, at′+l) = (j, a) then

Γ1
t′+l ⊆ O(j; P̂ t′+l,Dt′+l) ⊆ Dt′+l(j)

and therefore Nt′+l(j, a) ≥ log2 Nt′+l(j). Moreover, by the definition of Γ1
t′+l, Nt′+l(j, a) <

log2(Nt′+l(j) + 1). Hence,

σ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ a ∈ Γ1

t′+l

]

≤
σ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ log2 Nt′+l(j) ≤ Nt′+l(j, a) < log2(Nt′+l(j) + 1)

]

≤
σ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ log2 n ≤ Nt′+l(j, a) < log2(Nt′+l(j) + 1)

]

≤
σ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ log2 n ≤ Nt′+l(j, a) < log2(n + σ + 1)

]

≤
σ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ log2 n ≤ Nt′+l(j, a) < log2 n + 1

]

≤
σ∑

l=0

1
[
(st′+l, at′+l) = (j, a) ∧ Nt′+l(j, a) = ;log2 n<

]

≤ 1
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The second inequality follows because Nt′+l(j) ≥ Nt′(j) = n. The third inequality follows

because, for l ≤ σ, Nt′+l(j) ≤ Nt′+σ(j) ≤ Nt′(j) + σ = n + σ. The fourth inequality follows

from (A.6). Now, for all ζ, on the event Bt(ζ) we have n = Nt′(j) ≥ Nbt
1
(j) ≥ ρβt. Thus,

σ ≥ τ .

(Second part) It suffices to show that for all t′ ≥ bt
1,

Dt′+1 ∩O(P̂ t′ ,Dt′) 9= ∅ , (A.7)

because, by the previous part, for sufficiently small ζ, on the event Bt(ζ) we have

O(P̂ t′ ,Dt′) ⊆ O(P,Dt′) .

Hence, (A.7) implies Dt′+1 ∩O(P,Dt′) 9= ∅. This, in turn, implies that

λ(P,Dt′+1) ≥ λ(P,Dt′) .

Suppose st′ = j. Note that, for all j′ 9= j, Dt′+1(j′) = Dt′(j′) and therefore

Dt′+1(j′) ∩ O(j′; P̂ t′ ,Dt′) 9= ∅ holds trivially. To finish the proof we thus need to prove

Dt′+1(j) ∩O(j; P̂ t′ ,Dt′) 9= ∅. For that, consider two cases. First, if Γ1
t = O(j; P̂ t,Dt) then

consider the action a = at ∈ Γ1
t that π0 takes at time t. For this action,

Nt′+1(j, a) = Nt′(j, a) + 1 [∵ at′ = a]

≥ log2(Nt′(j)) + 1 [∵ a ∈ Dt′ ]

> log2(Nt′(j) + 1) . [∵ log2 n + 1 > log2(n + 1)]

= log2(Nt′+1(j)) [∵ st′ = j] .

This means that a ∈ Dt′+1(j).
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The second case is when Γ1
t ⊂ O(j; P̂ t,Dt). Consider any a ∈ O(j; P̂ t,Dt) − Γ1

t .

For this action,

Nt′+1(j, a) ≥ Nt′(j, a)

≥ log2(Nt′(j) + 1) [∵ a /∈ Γ1
t ]

= log2(Nt′+1(j)) [∵ st′ = j] .

Again, this means that a ∈ Dt′+1(j).
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Appendix B

Some Results for BMDPs

In this appendix, we provide self-contained proofs of the three theorems mentioned

without proof in Section 5.3 of Chapter 5. Throughout this appendix, vector inequalities

of the form V1 ≤ V2 are to be interpreted to mean V1(i) ≤ V2(i) for all i.

Proofs of Theorems 12 and 13

Lemma 34. If V1 ≤ V2 then, for all M ∈M,

Tγ,µ,MV1 ≤ T opt
γ,µ V2 ,

T pes
γ,µ V1 ≤ Tγ,µ,MV2 .

Proof. We prove the first inequality. Fix an MDP M ∈M. Let Pi,a(j) denote transition
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probabilities of M . We then have,

(Tγ,µ,MV1) (i) = (1− γ)R(i, µ(i)) + γ
∑

j

Pi,µ(i)(j)V1(j)

≤ (1− γ)R(i) + γ
∑

j

Pi,µ(i)(j)V2(j) [ ∵ V1 ≤ V2 ]

≤ (1− γ)R(i, µ(i)) + γ max
q∈Ci,µ(i)

q%V2 [ ∵ M ∈M ]

=
(
T opt
γ,µ V2

)
(i) .

The proof of the second inequality is similar.

Lemma 35. If V1 ≤ V2 then, for any policy µ,

T opt
γ,µ V1 ≤ T opt

γ V2 ,

T pes
γ,µ V1 ≤ T pes

γ V2 .

Proof. Again, we prove only the first inequality. Fix a policy µ. We then have,

(
T opt
γ,µ V1

)
(i) = (1− γ)R(i, µ(i)) + γ max

q∈Ci,µ(i)

q%V1

≤ (1− γ)R(i) + γ max
q∈Ci,µ(i)

q%V2

≤ max
a∈A

[
(1− γ)R(i, a)) + γ max

q∈Ci,a

q%V2

]

=
(
T opt
γ V2

)
(i)

Proof. (of Theorems 12 and 13) Let Ṽ be the fixed point of T opt
γ,µ . This means that for all

i ∈ S,

Ṽ (i) = (1− γ)R(i, µ(i)) + γ max
q∈Ci,µ(i)

q%Ṽ .
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We wish to show that Ṽ = V opt
γ,µ . Let qi be the probability vector that achieves the maximum

above. Construct an MDP M1 ∈M as follows. Set the transition probability vector Pi,µ(i)

to be qi. For a 9= µ(i), choose Pi,a to be any element of Ci,a. It is clear that Ṽ satisfies, for

all i ∈ S,

Ṽ (i) = (1− γ)R(i, µ(i)) + γ
∑

j

Pi,µ(i)(j)Ṽ (j) ,

and therefore Ṽ = Vγ,µ,M1 ≤ V opt
γ,µ . It remains to show that Ṽ ≥ V opt

γ,µ . For that, fix an

arbitrary MDP M ∈M. Let V0 be any initial vector. Using Lemma 34 and straightforward

induction, we get

∀k ≥ 0, (Tγ,µ,M )kV0 ≤ (T opt
γ,µ )kV0 .

Taking limits as k →∞, we get Vγ,µ,M ≤ Ṽ . Since M ∈M was arbitrary, for any i ∈ S,

V opt
γ,µ (i) = sup

M∈M
Vγ,µ,M (i) ≤ Ṽ (i) .

Therefore, Ṽ = V opt
γ,µ .

Now let Ṽ be the fixed point of T opt
γ . This means that for all i ∈ S,

Ṽ (i) = max
a∈A

[
(1− γ)R(i, a) + γ max

q∈Ci,a

q%Ṽ

]
.

We wish to show that Ṽ = Vopt
γ . Let µ1(i) be any action that achieves the maximum above.

Since Ṽ satisfies, for all i ∈ S,

Ṽ (i) = (1− γ)R(i, µ1(i)) + γ max
q∈Ci,µ1(i)

q%Ṽ ,

we have Ṽ = V opt
γ,µ1 ≤ Vopt

γ . It remains to show that Ṽ ≥ Vopt
γ . For that, fix an arbitrary

policy µ. Let V0 be any initial vector. Using Lemma 35 and straightforward induction, we

get

∀k ≥ 0, (T opt
γ,µ )kV0 ≤ (T opt

γ )kV0 .
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Taking limits as k →∞, we get V opt
γ,µ ≤ Ṽ . Since µ was arbitrary, for any i ∈ S,

Vopt
γ (i) = max

µ
V opt
γ,µ (i) ≤ Ṽ (i) .

Therefore, Ṽ = Vopt
γ . Moreover, this also proves the first part of Theorem 13 since

V opt
γ,µ1

= Ṽ = Vopt
γ .

The claim that the fixed points of T pes
γ,µ and T pes

γ are V pes
γ,µ and Vpes

γ respectively,

is proved by making a few obvious changes to the argument above. Further, as it turned

out above, the argument additionally yields the proof of the second part of Theorem 13.

Proof of Theorem 14

We prove the existence of Mopt only. The existence of Mpes is proved in the

same way. Note that in the proof presented in the previous subsection, given a policy µ,

we explicitly constructed an MDP M1 such that V opt
γ,µ = Vγ,µ,M1. Further, the transition

probability vector Pi,µ(i) of M1 was a vector that achieved the maximum in

max
Ci,µ(i)

q%V opt
γ,µ .

Recall that the set Ci,µ(i) has the form

{q : q%1 = 1, ∀j ∈ S, lj ≤ qj ≤ uj} , (B.1)

where lj = l(i, j, µ(i)), uj = u(i, j, µ(i)). Therefore, all that we require is the following

lemma.
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Lemma 36. Given a set C of the form (B.1), there exists a finite set Q = Q(C) of cardinality

no more than |S|! with the following property. For any vector V , there exists q̃ ∈ Q such

that

q̃%V = max
q∈C

q%V .

We can then set

Mopt = { 〈S,A, P,R〉 : ∀i, a, Pi,a ∈ Q(Ci,a) } .

The cardinality of Mopt is at most (|S||A|)|S|!

Proof. (of Lemma 36) A simple greedy algorithm (Algorithm 4) can be used to find a

maximizing q̃. The set C is specified using upper and lower bounds, denoted by ui and li

respectively. The algorithm uses the following idea recursively. Suppose i∗ is the index of a

largest component of V . It is clear that we should set q̃(i∗) as large as possible. The value

of q̃(i∗) has to be less than ui. Moreover, it has to be less than 1−
∑

i+=i∗ li. Otherwise, the

remaining lower bound constraints cannot be met. So, we set q̃(i∗) to be the minimum of

these two quantities.

Note that the output depends only on the sorted order of the components of V .

Hence, there are only |S|! choices for q̃.
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Algorithm 4 A greedy algorithm to maximize q%V over C.
Inputs The vector V and the set C. The latter is specified by bounds {li}i∈S and {ui}i∈S

that satisfy ∀i, 0 ≤ li ≤ ui and
∑

i li ≤ 1 ≤
∑

i ui.

Output A maximizing vector q̃ ∈ C.

2 order(V ) gives the indices of the largest to smallest elements of V

indices ← order(V )

massLeft ← 1

indicesLeft ← S

for all i ∈ indices do

elem ← V (i)

lowerBoundSum ←
∑

j∈indicesLeft,j +=i lj

q̃(i)← min(ui,massLeft− lowerBoundSum)

massLeft ← massLeft− q̃(i)

indicesLeft ← indicesLeft− {i}

end for

return q̃
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