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Abstract

On the Consistency of Multiclass Classification Methods

by

Ambuj Tewari

Master of Arts in Statistics

University of California, Berkeley

Professor Peter L. Bartlett, Chair

Binary classification is a well studied special case of the classification problem. Statistical

properties of binary classifiers, such as consistency, have been investigated in a variety of

settings. Binary classification methods can be generalized in many ways to handle multiple

classes. It turns out that one can lose consistency in generalizing a binary classification

method to deal with multiple classes. We study a rich family of multiclass methods and

provide a necessary and sufficient condition for their consistency. We illustrate our approach

by applying it to some multiclass methods proposed in the literature.

Professor Peter L. Bartlett
Thesis Committee Chair
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Chapter 1

Introduction

We consider the problem of classification in a probabilistic setting: n i.i.d. pairs

are generated by a probability distribution on X × Y. We think of yi in a pair (xi, yi)

as being the label or class of the example xi. The |Y| = 2 case is referred to as binary

classification. A number of methods for binary classification involve finding a real valued

function f which minimizes an empirical average of the form

1
n

∑
i

Ψyi(f(xi)) . (1.1)

In addition, some sort of regularization may be used to avoid overfitting. Typically, the sign

of f(x) is used to classify an unseen example x. We interpret Ψy(f(x)) as being the loss

associated with predicting the label of x using f(x) when the true label is y. An important

special case of these methods is that of large margin methods which use {+1,−1} as the set

of labels and φ(yf(x)) as the loss. Here φ is some function chosen by taking into account

both computational and statistical issues. Bayes consistency of these methods has been

analyzed in the literature [4, 6, 13, 9, 1]. In this thesis, we investigate the consistency of
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multiclass (|Y| ≥ 2) methods which try to generalize (1.1) by replacing f with a vector

function f . This category includes the methods of [2, 5, 10] and [11]. Zhang [11, 12] has

already initiated the study of these methods.

Under suitable conditions, minimizing (1.1) over a sequence of function classes

also approximately minimizes the “Ψ-risk” RΨ(f) = EXY [ Ψy(f(x)) ]. However, our aim in

classification is to find a function f whose probability of misclassification R(f) (often called

the “risk” of f) is close to the minimum possible (the so called Bayes risk R∗). Thus, it is

natural to investigate the conditions which guarantee that if the Ψ-risk of f gets close to the

optimal then the risk of f also approaches the Bayes risk. If this happens, we say that the

classification method based on Ψ is Bayes consistent. Bartlett et al. [1] defined the notion of

“classification calibration” to obtain such conditions for binary classification. The authors

also gave a simple characterization of classification calibration for convex loss functions.

In Chapter 1.1 below, we provide a different point of view for looking at classification

calibration for binary classification in order to motivate our geometric approach to multiclass

classification.

The rest of the thesis is organized as follows. Chapter 2 defines classification

calibration in the setting of multiclass classification and provides a justification, in the form

of Theorem 2, for studying it: classification calibration is equivalent to Bayes consistency.

The main result in Chapter 3 is Theorem 8 which characterizes classification calibration in

terms of geometric properties of some sets associated with the loss function Ψ. In Chapter 4,

we provide certain sufficient conditions for classification calibration. These are provided with

the hope that, in practice, some of these conditions will hold and checking the full condition



3

of Theorem 8 can be avoided. Chapter 5 applies the results obtained in earlier chapters to

examine the consistency of a few multiclass methods. Interestingly, many seemingly natural

generalizations of binary methods do not lead to consistent multiclass methods. Chapter 6

provides the conclusion.

1.1 Consistency of Binary Classification Methods

If we have a convex loss function φ : R �→ [0,∞) which is differentiable at 0 and

φ′(0) < 0, then it is known [1] that any minimizer f∗ of

EXY [ φ(yf(x)) ] = EX [EY|x[ φ(yf(x)) ] ] (1.2)

yields a Bayes consistent classifier, i.e. P (Y = +1|X = x) > 1/2 ⇒ f∗(x) > 0 and

P (Y = −1|X = x) < 1/2 ⇒ f∗(x) < 0. In order to motivate the approach of the next

chapter let us work with a few examples. Let us fix an x and denote the two conditional

probabilities by p+ and p−. We also omit the argument in f(x). We can then write the

inner conditional expectation in (1.2) as

p+ φ(f) + p− φ(−f) .

We wish to find an f which minimizes the expression above. If we define the set R ∈ R
2 as

R = {(φ(f), φ(−f)) : f ∈ R} , (1.3)

then the above minimization can be written as

min
z∈R

〈p, z〉 (1.4)

where p = (p+, p−).
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Figure 1.1: The set R for two convex loss functions.

The set R is shown in Figure 1.1 (a) for the squared hinge loss function φ(t) =

((1− t)+)2. Geometrically, the solution to (1.4) is obtained by taking a line whose equation

is 〈p, z〉 = c and then sliding it (by varying c) until it just touches R. It is intuitively clear

from the figure that if p+ > p− then the line is inclined more towards the vertical axis and

the point of contact is above the angle bisector of the axes. Similarly, if p+ < p− then

the line is inclined more towards the horizontal axis and the point is below the bisector.

This means that sign(φ(−f) − φ(f)) is a consistent classification rule which, because φ is

a decreasing function, is equivalent to sign(f − (−f)) = sign(f). In fact, the condition

φ′(0) < 0 is not necessary for the existence of a consistent classification rule based on f .

For example, if we had the function φ(t) = ((1 + t)+)2, we would still get the same set R

but will need to change the classification rule to sign(−f) in order to preserve consistency.

Why do we need differentiability of φ at 0? Figure 1.1 (b) shows the set R for a

convex loss function which is not differentiable at 0. In this case, both lines L1 and L2 touch

R at P but L1 has p+ > p− while L2 has p+ < p−. Thus we cannot create a consistent
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classifier based on this loss function. The crux of the problem seems to lie in the fact that

there are two distinct supporting lines to the set R at P and that these two lines are inclined

towards different axes.

It seems from the figures that as long as R is symmetric about the angle bisector

of the axes, all supporting lines at a given point are inclined towards the same axis except

when the point happens to lie on the angle bisector. To check for consistency, we need to

examine the set of supporting lines only at that point. In case the set R is generated as in

(1.3), this boils down to checking the differentiability of φ at 0. In the following chapters,

we will deal with cases when the set R is generated in a more general way and the situation

possibly involves more than two dimensions. The intuition developed for the binary case

will be proven correct by Propositions 9 and 10 in Chapter 4.
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Chapter 2

Classification Calibration and its

Relation to Consistency

Suppose we have K ≥ 2 classes. For y ∈ {1, . . . ,K}, let Ψy be a continuous

function from R
K to R+ = [0,∞). Let F be a class of vector functions f : X �→ R

K . Let

{Fn} be a sequence of function classes such that each Fn ⊆ F . Suppose f̂n is a classifier

learned from data. For example, we might obtain f̂n by minimizing the empirical Ψ-risk R̂Ψ

over the class Fn,

f̂n = arg min
f∈Fn

R̂Ψ(f) = arg min
f∈Fn

1
n

n∑
i=1

Ψyi(f(xi)) . (2.1)

There might be some constraints on the set of vector functions in the class F . For example,

a common constraint is to have the components of f sum to zero. More generally, let us

assume there is some set C ∈ R
K such that

F = {f : ∀x, f(x) ∈ C }. (2.2)
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Let Ψ(f(x)) denote the vector (Ψ1(f(x)), . . . ,ΨK(f(x)))T . We predict the label of a new

example x to be pred(Ψ(f(x))) for some function pred : R
K �→ {1, . . . ,K}. The Ψ-risk of a

function f is

RΨ(f) = EXY [ Ψy(f(x)) ] ,

and we denote the least possible Ψ-risk by

R∗
Ψ = inf

f∈F
RΨ(f) .

In a classification task, we are more interested in the risk of a function f ,

R(f) = EXY [ 1[pred(Ψ(f(x))) �= Y ] ] ,

which is the probability that f leads to an incorrect prediction on a labeled example drawn

from the underlying probability distribution. The least possible risk is

R∗ = EX [ 1 − max
y
py(x) ] ,

where py(x) = P (Y = y | X = x). If f̂n is the empirical Ψ-risk minimizer then, under

suitable conditions, one would expect RΨ(f̂n) to converge to R∗
Ψ (in probability). It would

be nice if that made R(f̂n) converge to R∗ (in probability). Theorem 2 below states that

classification calibration, a notion that we will soon define, is both necessary and sufficient

for this to happen.

In order to understand the behavior of approximate Ψ-risk minimizers, let us write

RΨ(f) as

EXY [ Ψy(f(x)) ] = EX [ EY|x[ Ψy(f(x)) ] ] .

The above minimization problem is equivalent to minimizing the inner conditional expecta-

tion for each x ∈ X . Let us fix an arbitrary x for now, so we can write f instead of f(x), py
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instead of py(x), etc. The minimum might not be achieved and so we consider the infimum1

inff∈C
∑

y pyΨy(f) of the conditional expectation above. Define the subsets R and S of R
K
+

as

R = {(Ψ1(f), . . . ,ΨK(f)) : f ∈ C} ,

S = conv(R) = conv{(Ψ1(f), . . . ,ΨK(f)) : f ∈ C} . (2.3)

We then have

inf
f∈C

∑
y

pyΨy(f) = inf
f∈C

〈p,Ψ(f)〉

= inf
z∈R

〈p, z〉

= inf
z∈S

〈p, z〉 ,

(2.4)

where p = (p1, . . . , pK). The last equality holds because for a fixed p, the function z �→

〈p, z〉 is a linear function and hence we do not change the infimum by taking the convex

hull2 of R.

Let us define a symmetric set to be one with the following property: if a point z

is in the set then so is any point obtained by interchanging any two coordinates of z. We

assume that R is symmetric. This assumption holds whenever the loss function treats all

classes equivalently. Note that our assumption about R implies that S too is symmetric.

We now define classification calibration of S. The definition intends to capture

the property that, for any p, minimizing 〈p, z〉 over S leads one to z’s which enable us to

figure out the index of (one of the) maximum coordinate(s) of p.

1Since py and Ψy(f) are both non-negative, the objective function is bounded below by 0 and hence the
existence of an infimum is guaranteed.

2If z is a convex combination of z(1) and z(2), then 〈p, z〉 ≥ min{〈p, z(1)〉, 〈p, z(2)〉}.
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Definition 1. A set S ⊆ R
K
+ is classification calibrated if there exists a predictor

function pred : R
K �→ {1, . . . ,K} such that

∀p ∈ ∆K , inf
z∈S : ppred(z)<maxy py

〈p, z〉 > inf
z∈S

〈p, z〉 , (2.5)

where ∆K is the probability simplex in R
K .

The following theorem tells us that classification calibration is indeed the right

property to study, as it is both necessary and sufficient for convergence of Ψ-risk to the

optimal Ψ-risk to imply convergence of risk to the Bayes risk.

Theorem 2. Let Ψ be a (vector-valued) loss function and C be a subset of R
K . Let F

and S be as defined in (2.2) and (2.3) respectively. Then S is classification calibrated iff

the following holds. Whenever {Fn} is a sequence of function classes (where Fn ⊆ F and

∪Fn = F) such that f̂n ∈ Fn and P is the data generating probability distribution,

RΨ(f̂n) P→ R∗
Ψ

implies

R(f̂n) P→ R∗ .

Before we prove the theorem, we need the following lemma.

Lemma 3. The function p �→ infz∈S〈p, z〉 is continuous on ∆K .

Proof. Let {p(n)} be a sequence converging to p. If B is a bounded subset of R
K , then

〈p(n), z〉 → 〈p, z〉 uniformly over z ∈ B and therefore

inf
z∈B

〈p(n), z〉 → inf
z∈B

〈p, z〉 .
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Let Br be a ball of radius r in R
K . Then we have

inf
z∈S

〈p(n), z〉 ≤ inf
S∩Br

〈p(n), z〉 → inf
S∩Br

〈p, z〉

Therefore

lim sup
n

inf
z∈S

〈p(n), z〉 ≤ inf
z∈S∩Br

〈p, z〉 .

Letting r → ∞, we get

lim sup
n

inf
z∈S

〈p(n), z〉 ≤ inf
z∈S

〈p, z〉 . (2.6)

Without loss of generality, assume that for some j, 1 ≤ j ≤ K we have p1, . . . , pj > 0 and

pj+1, . . . , pK = 0. For all sufficiently large integers n and a sufficiently large ball BM ⊆ R
j

we have

inf
z∈S

〈p, z〉 = inf
z∈S(j)

j∑
y=1

pyzy = inf
z∈S(j)∩BM

j∑
y=1

pyzy ,

inf
z∈S

〈p(n), z〉 ≥ inf
z∈S(j)

j∑
y=1

p(n)
y zy = inf

z∈S(j)∩BM

j∑
y=1

p(n)
y zy .

and thus

lim inf
n

inf
z∈S

〈p(n), z〉 ≥ inf
z∈S

〈p, z〉 . (2.7)

Combining (2.6) and (2.7), we get

inf
z∈S

〈p(n), z〉 → inf
z∈S

〈p, z〉 .

Proof (of Theorem 2). (‘only if’) Suppose we could prove that ∀ε > 0,∃δ > 0 such that

∀p ∈ ∆K ,

max
y
py − ppred(z) ≥ ε⇒ 〈p, z〉 − inf

z∈S
〈p, z〉 ≥ δ . (2.8)
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Using this it immediately follows that ∀ε,H(ε) > 0 where

H(ε) = inf
p∈∆K ,z∈S

{〈p, z〉 − inf
z∈S

〈p, z〉 : max
y
py − ppred(z) ≥ ε} .

A result of Zhang [12, Corollary 26] then guarantees there exists a concave function ξ on

[0,∞) such that ξ(0) = 0 and ξ(δ) → 0 as δ → 0+ and

R(f) −R∗ ≤ ξ(RΨ(f) −R∗
Ψ) .

This inequality combined with RΨ(f̂n) P→ R∗
Ψ easily gives R(f̂n) P→ R∗. We now prove the

implication in (2.8) by contradiction. Suppose S is classification calibrated but there exists

ε > 0 and a sequence (z(n),p(n)) such that

p
(n)

pred(z(n))
≤ max

y
p(n)

y − ε (2.9)

and (
〈p(n), z(n)〉 − inf

z∈S
〈p(n), z〉

)
→ 0 .

Since p(n) come from a compact set, we can choose a convergent subsequence (which we

still denote as {p(n)}) with limit p. Using Lemma 3, we get

〈p(n), z(n)〉 → inf
z∈S

〈p, z〉 .

As before, we assume that precisely the first j coordinates of p are non-zero. Then the first

j coordinates of z(n) are bounded for sufficiently large n. Hence

lim sup
n

〈p, z(n)〉 = lim sup
n

j∑
y=1

p(n)
y z(n)

y ≤ lim
n→∞〈p(n), z(n)〉 = inf

z∈S
〈p, z〉 .

Now (2.15) and (2.9) contradict each other since p(n) → p.
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(‘if’) If S is not classification calibrated then by Theorem 8 and Propositions 9

and 10, we have a point in the boundary of some S(i) where there are at least two normals

and which does not have a unique minimum coordinate. Such a point should be there in the

projection of R even without taking the convex hull. Therefore, we must have a sequence

z(n) in R such that

δn = 〈p, z(n)〉 − inf
z∈S

〈p, z〉 → 0 (2.10)

and for all n,

ppred(z(n)) < max
y

py . (2.11)

Without loss of generality assume that δn is a monotonically decreasing sequence. Further,

assume that δn > 0 for all n. This last assumption might be violated but the following

proof then goes through for δn replaced by max(δn, 1/n). Let gn be the function that maps

every x to one of the pre-images of z(n) under Ψ. Define Fn as

Fn = {gn} ∪ (F ∩ {f : ∀x, 〈p,Ψ(f(x)〉 − inf
z∈S

〈p, z〉 > 4δn}

∩ {f : ∀x,∀j, |Ψj(f(x)| < Mn})

where Mn ↑ ∞ is a sequence which we will fix later. Fix a probability distribution P with

arbitrary marginal distribution over x and let the conditional distribution of labels be p for

all x. Our choice of Fn guarantees that the Ψ-risk of gn is less than that of other elements

of Fn by at least 3δn. Suppose, we make sure that

Pn
(∣∣∣R̂Ψ(gn) −RΨ(gn)

∣∣∣ > δn

)
→ 0 , (2.12)

Pn

(
sup

f∈Fn−{gn}

∣∣∣R̂Ψ(f) −RΨ(f)
∣∣∣ > δn

)
→ 0 . (2.13)
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Then, with probability tending to 1, f̂n = gn. By (2.10), RΨ(gn) → R∗
Ψ which implies that

RΨ(f̂n) → R∗
Ψ in probability. Similarly, (2.11) implies that R(f̂n) � R∗ in probability.

We only need to show that we can have (2.12) and (2.13) hold. For (2.12), we

apply Chebyshev inequality and use a union bound over the K labels to get

Pn
(∣∣∣R̂Ψ(gn) −RΨ(gn)

∣∣∣ > δn

)
≤ K3‖z(n)‖∞

4nδ2n

The right hand side can be made to go to zero by repeating terms in the sequence {z(n)}

to slow down the rate of growth of ‖z(n)‖∞ and the rate of decrease of δn. For (2.12), we

use standard covering number bounds (e.g. see[7, Section II.6]).

Pn

(
sup

f∈Fn−{gn}

∣∣∣R̂Ψ(f) −RΨ(f)
∣∣∣ > δn

)
≤ 8 exp

(
64M2

n log(2n+ 1)
δ2n

− nδ2n
128M2

n

)

Thus Mn/δn needs to grow slowly enough such that

nδ4n
M4

n log(2n + 1)
→ ∞ .

The definition of classification calibration as stated above is not concrete enough

to be of any use in checking the consistency of a multiclass method corresponding to a

given loss function. We now study the property of classification calibration with the aim of

arriving at a characterization expressed in terms of concretely verifiable properties of the

loss function. Before we do that, let us observe that it is easy to reformulate the definition

in terms of sequences. The exact statement of the reformulation is provided by the following

lemma whose proof, being entirely straightforward, is omitted.
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Lemma 4. S ⊆ R
K
+ is classification calibrated iff ∀p ∈ ∆K and all sequences {z(n)} in S

such that

〈p, z(n)〉 → inf
z∈S

〈p, z〉 , (2.14)

we have

ppred(z(n)) = max
y

py (2.15)

ultimately.

This makes it easier to see that if S is classification calibrated then we can find a

predictor function such that any sequence achieving the infimum in (2.4) ultimately predicts

the right label (the one having maximum probability). The following lemma shows that

symmetry of our set S allows us to reduce the search space of predictor functions (namely

to those functions which map z to the index of a minimum coordinate).

Lemma 5. If there exists a predictor function pred satisfying condition (2.5) in the defini-

tion of classification calibration (Definition 1), then any predictor function pred′ satisfying

∀z ∈ S, zpred′(z) = min
y

zy (2.16)

also satisfies (2.5).

Proof. Consider some p ∈ ∆K and a sequence {z(n)} such that (2.14) holds. We have

ppred(z(n)) = maxy py ultimately. In order to derive a contradiction, assume that ppred′(z(n)) <

maxy py infinitely often. Since there are finitely many labels, this implies that there is a
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subsequence {z(nk)} and labels M and m such that the following hold,

pred(z(nk)) = M ∈ {y′ : y′ = max
y

py} ,

pred′(z(nk)) = m ∈ {y′ : y′ < max
y
py} ,

〈p, z(nk)〉 → inf
z∈S

〈p, z〉 .

Because of (2.16), we also have z(nk)
M ≥ z

(nk)
m . Let p̃ and z̃ denote the vectors obtained from

p and z respectively by interchanging the M and m coordinates. Since S is symmetric,

z ∈ S ⇔ z̃ ∈ S. There are two cases depending on whether the inequality in

lim inf
k

(
z
(nk)
M − z(nk)

m

)
≥ 0

is strict or not.

If it is strict, denote the value of the lim inf by ε > 0. Then z
(nk)
M − z

(nk)
m > ε/2

ultimately and hence we have

〈p, z(nk)〉 − 〈p, z̃(nk)〉 = (pM − pm)(z(nk)
M − z(nk)

m ) > (pM − pm)ε/2

for k large enough. This implies lim inf〈p, z̃(nk)〉 < infz∈S〈p, z〉, which is a contradiction.

Otherwise, choose a subsequence3 {z(nk)} such that lim(z(nk)
M − z

(nk)
m ) = 0. Multi-

plying this with (pM − pm), we have

lim
k→∞

(
〈p̃, z̃(nk)〉 − 〈p̃, z(nk)〉

)
= 0 .

We also have

lim〈p̃, z̃(nk)〉 = lim〈p, z(nk)〉 = inf
z∈S

〈p, z〉 = inf
z∈S

〈p̃, z̃〉 = inf
z∈S

〈p̃, z〉 ,
3We do not introduce additional subscripts for simplicity.
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where the last equality follows because of symmetry. This means

〈p̃, z(nk)〉 → inf
z∈S

〈p̃, z〉

and therefore

p̃pred(z(nk)) = pM

ultimately. This is a contradiction since p̃pred(z(nk)) = p̃M = pm.

Having identified the class of potentially useful predictor functions, we will hence-

forth assume that pred is defined as in (2.16).
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Chapter 3

A Characterization of

Classification Calibration

We give a characterization of classification calibration in terms of normals to the

convex set S and its projections onto lower dimensions. For a point z ∈ ∂S, we say p is a

normal to S at z if1 〈z′ − z,p〉 ≥ 0 for all z′ ∈ S. Define the set of positive normals at z as

N (z) = {p : p is a normal to S at z} ∩ ∆K .

Definition 6. A convex set S ⊆ R
K
+ is admissible if ∀z ∈ ∂S,∀p ∈ N (z), we have

argmin(z) ⊆ argmax(p) (3.1)

where argmin(z) = {y′ : zy′ = miny zy} and argmax(p) = {y′ : py′ = maxy py}.

Lemma 7. If S ⊆ R
K
+ is admissible then for all p ∈ ∆K and all bounded sequences {z(n)}

such that 〈p, z(n)〉 → infz∈S 〈p, z〉, we have ppred(z(n)) = maxy py ultimately.

1Our sign convention is opposite to the usual one (see, for example, [8]) because we are dealing with
minimum (instead of maximum) problems.
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Proof. Let Z(p) = {z ∈ ∂S : p ∈ N (z)}. Taking the limit of a convergent subsequence of

the given bounded sequence gives us a point in ∂S which achieves the infimum of the inner

product with p. Thus, Z(p) is not empty. It is easy to see that Z(p) is closed. We claim that

for all ε > 0, dist(z(n), Z(p)) < ε ultimately. For if we assume the contrary, boundedness

implies that we can find a convergent subsequence {z(nk)} such that ∀k, dist(z(nk), Z(p)) ≥

ε. Let z∗ = limk→∞ z(nk). Then 〈p, z∗〉 = infz∈S〈p, z〉 and so z∗ ∈ Z(p). On the other

hand, dist(z∗, Z(p)) ≥ ε which gives us a contradiction and our claim is proved. Further,

there exists ε′ > 0 such that dist(z(n), Z(p)) < ε′ implies argmin(z(n)) ⊆ argmin(Z(p))2.

Finally, by admissibility of S, argmin(Z(p)) ⊆ argmax(p) and so argmin(z(n)) ⊆ argmax(p)

ultimately.

The next theorem provides a characterization of classification calibration in terms

of normals to S.

Theorem 8. Let S ⊆ R
K
+ be a symmetric convex set. Define the projections

S(i) = {(z1, . . . , zi)T : z ∈ S}

for i ∈ {2, . . . ,K}. Then S is classification calibrated iff each S(i) is admissible.

Proof. We prove the easier ‘only if’ direction first. Suppose some S(i) is not admissible.

Then there exist z ∈ ∂S(i) and p ∈ N (z) and a label y′ such that y′ ∈ argmin(z) and y′ /∈

argmax(p). Choose a sequence {z(n)} converging to z. Modify the sequence by replacing, in

each z(n), the coordinates specified by argmin(z) by their average. The resulting sequence

is still in S(i) (by symmetry and convexity) and has argmin(z(n)) = argmin(z) ultimately.
2For a set Z, argmin(Z) denotes ∪z∈Z argmin(z).
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Therefore, if we set pred(z(n)) = y′, we have ppred(z(n)) < maxy py ultimately. To get a

sequence in S look at the points whose projections are the z(n)’s and pad p with K − i

zeros.

To prove the other direction, assume each S(i) is admissible. Consider a sequence

{z(n)} with 〈p, z(n)〉 → infz∈S 〈p, z〉 = L. Without loss of generality, assume that for

some j, 1 ≤ j ≤ K we have p1, . . . , pj > 0 and pj+1, . . . , pK = 0. We claim that there

exists an M < ∞ such that ∀y ≤ j, z
(n)
y ≤ M ultimately. Since pjz

(n)
j ≤ L+ 1 ultimately,

M = max1≤y≤j{(L+ 1)/py} works. Consider a set of labels T ⊆ {j + 1, . . . ,K}. Consider

the subsequence consisting of those z(n) for which zy ≤M for y ∈ {1, . . . , j}∪T and zy > M

for y ∈ {j + 1, . . . ,K} − T . The original sequence can be decomposed into finitely many

such subsequences corresponding to the 2(K−j) choices of the set T . Fix T and convert the

corresponding subsequence into a sequence in S(j+|T |) by dropping the coordinates belonging

to the set {j + 1, . . . ,K}. Call this sequence z̃(n) and let p̃ be (p1, . . . , pj , 0, . . . , 0)T . We

have a bounded sequence with

〈p̃, z̃(n)〉 → inf
z̃∈S(j+|T |)

〈p̃, z̃〉 .

Thus, by Lemma 7, we have p̃pred(z̃(n)) = maxy p̃y = maxy py ultimately. Since we dropped

only those coordinates which were greater than M , pred(z̃(n)) picks the same coordinate as

pred(z(n)) where z(n) is the element from which z̃(n) was obtained. Thus we have ppred(z(n)) =

maxy py ultimately and the theorem is proved.
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Chapter 4

Sufficient Conditions for

Classification Calibration

In this chapter, we prove some propositions that reduce the work involved in

checking classification calibration of sets. We will see that the assumptions made in the

propositions are often satisfied. Our first proposition states that in the presence of symme-

try, points having a unique minimum coordinate can never destroy admissibility.

Proposition 9. Let S ⊆ R
K
+ be a symmetric convex set, z a point in the boundary of S

and p ∈ N (z). Then argmin(z) ⊆ argmax(p) whenever | argmin(z)| = 1.

Proof. Consider z̃ obtained from z by interchanging the y, y′ coordinates. It also is a point

in ∂S by symmetry and thus convexity implies zm = (z + z̃)/2 ∈ S ∪ ∂S. Since p ∈ N (z),

〈z′ − z,p〉 ≥ 0 for all z′ ∈ S. Taking limits, this inequality also holds for z′ ∈ S ∪ ∂S.

Substituting zm for z′, we get 〈(z̃− z)/2,p〉 ≥ 0 which simplifies to (zy′ − zy)(py − py′) ≥ 0.

Thus zy < zy′ implies py ≥ py′ . Therefore, if | argmin(z)| = 1 and zy = miny′ zy′ then
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py ≥ py′ for all y′, and so argmin(z) ⊆ argmax(p).

If the set S possesses a unique normal at every point on its boundary then the

next proposition guarantees admissibility.

Proposition 10. Let S ⊆ R
K
+ be a symmetric convex set, z a point in the boundary of S

and N (z) = {p} is a singleton. Then argmin(z) ⊆ argmax(p). Thus, S is admissible if

|N (z)| = 1 for all z ∈ ∂S.

Proof. We will assume that there exists a y, y ∈ argmin(z), y /∈ argmax(p) and deduce that

there are at least 2 elements in |N (z)| to get a contradiction. Let y′ ∈ argmax(p). From

the proof of Proposition 9 we have (zy′ − zy)(py − py′) ≥ 0 which implies zy′ ≤ zy since

py − py′ < 0. But we already know that zy ≤ zy′ and so zy = zy′ . Symmetry of S now

implies that p̃ ∈ N (z) where p̃ is obtained from p by interchanging the y, y′ coordinates.

Since py �= py′ , p̃ �= p which means |N (z)| ≥ 2.

Theorem 8 provides a characterization of classification calibration in terms of ad-

missibility of the projections S(k). As we will see in the examples later, proving that a

certain set is not classification calibrated simply involves finding a projection S(k) and a

“bad” point in S(k) violating the condition of admissibility. On the other hand, the char-

acterization is not so easy to use when we wish to assert, rather than deny, classification

calibration. The following lemma shows that under certain assumptions we can ignore

the projections S(k) and only check the admissibility of S. That we cannot always ignore

projections will become clear when we consider examples in the next chapter.

Recall that R is the set of points (Ψ1(f), . . . ,ΨK(f)) as f ranges over C. Define
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the projections R(k) in the same way as S(k). Since the operations of taking projections

and convex hulls commute, it is easy to see that conv(R(k)) = S(k).

Theorem 11. If R(k) is closed and S is symmetric and admissible then S(k) is also ad-

missible. Furthermore, if each R(k) is closed and S is also convex then S is classification

calibrated.

Proof. We only need to prove that R(k) closed and S admissible implies S(k) is admissible

since the rest follows from Theorem 8. Suppose R(k) is closed and S(k) is not admissible.

Therefore, there exists positive normal p to S(k) at a point z in the boundary of S(k) with

argmin(z) �⊆ argmax(p) . (4.1)

We claim that it is a limit point of R(k). If not, there is a ball centered at z containing no

point of R(k). This would mean that the infimum of 〈p, z〉 over R(k) is strictly less than the

infimum over S(k) but this is impossible as conv(R(k)) = S(k). Now, since R(k) is closed,

z ∈ R(k). Let z̃ be the point in R such that z = proj(z̃) where proj is projection operator

mapping (z1, . . . , zK) to (z1, . . . , zk). Since R ⊆ S, this gives us z̃ ∈ S. Moreover, p̃ is a

normal to S at z̃ where p̃ is p padded with K − k zeros. This is because

〈p̃, z′ − z̃〉 = 〈p,proj(z′) − z〉 ≥ 0 ,

for all z′ ∈ S. We now claim that argmin(z̃) �⊆ argmax(p̃), which will give us a contra-

diction as S was assumed to be admissible. Since p̃ is p padded with zeros, argmax(p̃) =

argmax(p). Also, argmin(z̃) ⊆ argmin(z) for otherwise applying a suitable permutation to

the coordinates of z̃ will give a point ẑ with 〈p,proj(ẑ)〉 < 〈p, z〉. The claim now follows

from (4.1).
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We will now provide a sufficient condition for R(k) to be closed. To state it, we

need the following definition.

Definition 12. Let C ⊆ R
K be a set and Ψ : C �→ R

K
+ be a loss function. Further,

let Ψ(k) = (Ψ1, . . . ,Ψk) be Ψ restricted to the first k coordinates. The mapping Ψ(k) is

boundedly invertible iff for all M > 0, there is an M ′ > 0 such that ‖z‖ ≤M , z ∈ R(k)

implies there is g ∈ C with ‖g‖ ≤M ′ and Ψ(k)(g) = z.

Ψ(k) boundedly invertible roughly means that it has an inverse carrying bounded

points in its range to bounded points in the domain.

Lemma 13. Suppose that C is closed and Ψ is continuous. If Ψ(k) is boundedly invertible

then R(k) is closed.

Proof. Suppose z(n) ∈ R(k) and z(n) → z. Then these is an M > 0 such that ‖z(n)‖ ≤M for

all n. Bounded invertibility implies there is a sequence {g(n)} such that, for all n, g(n) ∈ C,

‖g(n)‖ < M ′ and (Ψ1(g(n)), . . . ,Ψk(g(n))) = z(n). Being bounded, {g(n)} has a convergent

subsequence {g(nk)}. Since C is closed, the limit g∗ ∈ C. Now,

(Ψ1(g∗), . . . ,Ψk(g∗)) = lim
n→∞(Ψ1(g(nk)), . . . ,Ψk(g(nk))) (Ψ is continuous)

= lim
n→∞ z(nk)

= z

and so z ∈ R(k).
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Chapter 5

Examples

We apply the results of the previous chapter to examine the consistency of several

multiclass methods. In all these examples, the functions Ψy(f) are obtained from a single

real valued function ψ : R
K
+ �→ R as follows

Ψy(f) = ψ(fy, f1, . . . , fy−1, fy+1, . . . , fK)

Moreover, the function ψ is symmetric in its last K − 1 arguments, i.e. interchanging any

two of the last K − 1 arguments does not change the value of the function. This ensures

that the set S is symmetric. We assume that we predict the label of x to be arg miny Ψy(f).

5.1 Crammer and Singer

The method of Crammer and Singer [3] corresponds to

Ψy(f) = max
y′ �=y

φ(fy − fy′), C = R
K
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(a) (b)

Figure 5.1: (a) Crammer and Singer (b) Weston and Watkins

with φ(t) = (1− t)+. For K = 3, the boundary of S is shown in Figure 5.1(a). At the point

z = (1, 1, 1), all of these are normals: (0, 1, 1), (1, 0, 1), (1, 1, 0). Thus, there is no y′ such

that py′ = maxy py for all p ∈ N (z). The method is therefore inconsistent.

Even if we choose an everywhere differentiable convex φ with φ′(0) < 0, the three

normals mentioned above are still there in N (z) for z = (φ(0), φ(0), φ(0)). Therefore the

method still remains inconsistent.

5.2 Weston and Watkins

The method of Weston and Watkins [10] corresponds to

Ψy(f) =
∑
y′ �=y

φ(fy − fy′), C = R
K (5.1)

with φ(t) = (1 − t)+. For K = 3, the boundary of S is shown in Figure 5.1(b). The

central hexagon has vertices (in clockwise order) (1, 1, 4), (0, 3, 3), (1, 4, 1), (3, 3, 0), (4, 1, 1)

and (3, 0, 3). At z = (1, 1, 4), we have the following normals: (1, 1, 0), (1, 1, 1), (2, 3, 1),
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(3, 2, 1) and there is no coordinate which is maximum in all positive normals. The method

is therefore inconsistent.

Now assume that φ is a positive convex classification calibrated loss function (i.e.

φ′(0) exists and is negative). Note that if φ does not satisfy this assumption then we do

not get a consistent method even in the binary classification case. Further assume that φ

achieves its minimum. The following proposition then guarantees that Ψ(k) is boundedly

invertible for k > 1 and we can ignore projections. In particular, if we choose φ differentiable

so that S possesses a unique normal everywhere on its boundary then, by Proposition 9, S

is admissible and hence classification calibrated. Such is the case if, for example, we choose

φ(t) = ((1 − t)+)2.

Proposition 14. Suppose φ : R �→ [0,∞) is a convex function with φ′(0) < 0. Further,

suppose that there is a t such that φ(t) = inft′∈R φ(t′). Then Ψ(k) (for Ψ given by (5.1)) is

boundedly invertible.

Proof. Since φ is a positive convex function with φ′(0) < 0 which achieves its minimum

on the real line, only two behaviors are possible for φ. Either φ(t) → ∞ as t → ∞ or

there exists t0 > 0 such that φ(t) is constant for t ≥ t0. In the first case, boundedness

of (Ψ1(f), . . . ,Ψk(f)), k > 1 implies boundedness of all pairwise differences fy − fy′ . Let

m∗ = miny fy and set gy = fy −m∗. The value of Ψy remains the same as it depends only

on differences while all components of g are now bounded.

In the second case, when we only know that φ(t) → ∞ as t→ −∞ and that φ(t) is

constant for t ≥ t0, boundedness of (Ψ1(f), . . . ,Ψk(f)) (k > 1), only implies that differences

of the form fy − fy′ are bounded from below for y ∈ {1, . . . , k}, y′ ∈ {1, . . . ,K}. This
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(a) (b)

Figure 5.2: (a) Lee, Lin and Wahba (b) Loss of consistency in multiclass setting

implies that fy − fy′ is bounded for y, y′ ≤ k. Let m∗ = miny≤k fy. Set hy = fy −m∗ (this

doesn’t change the value of Ψ as it depends only on differences). Now hy ≥ 0 for y ≤ k with

(at least) one of them exactly zero. Since pairwise differences among these are bounded,

the hy’s themselves are bounded for y ≤ k. This implies hk+1, . . . , hK are bounded from

above. Now set gy = hy, y ≤ k and gy′ = max{−t0, hy′} for y′ > k. To see that we don’t

change anything by this update, note that when hy′ < −t0, both hy − hy′ and hy + t0 are

greater than t0 (above which φ is constant in the case we’re considering) for y ≤ k. Thus,

we have managed to make all gy’s bounded without changing the value of Ψy for all y.

5.3 Lee et al.

The method of Lee et al. [5] corresponds to

Ψy(f) =
∑
y′ �=y

φ(−fy′), C = {f :
∑

y

fy = 0} (5.2)
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with φ(t) = (1 − t)+. Figure 5.2(a) shows the boundary of S for K = 3. In the general K

dimensional case, S is a polyhedron with K vertices where each vertex has a 0 in one of the

positions and K’s in the rest. It is obvious then when we minimize 〈p, z〉 over S, we will

pick the vertex which has a 0 in the same position where p has its maximum coordinate.

But we can also apply our result here. The set of normals is not a singleton only at the

vertices. Thus, by Proposition 10, we only need to check the vertices. Since there is a unique

minimum coordinate at the vertices, Proposition 9 implies that the method is consistent.

The question which naturally arises is: for which convex loss functions φ does

(5.2) lead to a consistent multiclass classification method? Convex loss functions which are

classification calibrated for the two class case, i.e. differentiable at 0 with φ′(0) < 0, can

lead to inconsistent classifiers of this kind in the multiclass setting. An example is provided

by the loss function φ(t) = max{1 − 2t, 2 − t, 0}. Figure 5.2(b) shows the boundary of S

for K = 3. The vertices are (0, 3, 3), (9, 0, 0) and their permutations. At (9, 0, 0), the set of

normals includes (0, 1, 0), (1, 2, 2) and (0, 0, 1) and therefore condition (3.1) is violated.

A nice thing about this example is that if we assume φ is a positive classification

calibrated binary loss function then Ψ(k) is boundedly invertible for k > 1. As in the previous

example, this implies that differentiability of φ is then sufficient to guarantee consistency.

In fact, as [12] shows, a convex function φ differentiable on (−∞, 0] with φ′(0) < 0 will yield

a consistent method.

Proposition 15. Suppose φ : R �→ [0,∞) is a convex loss function with φ′(0) < 0. Then

Ψ(k) (for Ψ given by (5.2)) is boundedly invertible.



29

Proof. We have

R(k) =

⎧⎨
⎩
⎛
⎝∑

y′ �=1

φ(−fy′), . . . ,
∑
y′ �=k

φ(−fy′)

⎞
⎠ :

∑
y

fy = 0

⎫⎬
⎭ .

We claim that φ(t) → ∞ as t→ −∞. To see this, note that φ′(0) < 0 so the linear function

tangent to φ at 0 tends to ∞ as t → ∞. Since φ is always above the tangent, the same

it true for φ. This tells us that each fy is bounded from above. Since −fy =
∑

y′ �=y fy′ ,

−fy is also bounded from above. This means that each fy is bounded and Ψ(k) is bounded

invertible (just take g = f in Definition 12).

5.4 Another Example with Sum-to-zero Constraint

This is an interesting example because even though we use a differentiable loss

function, we still do not have consistency. Let

Ψy(f) = φ(fy), C = {f :
∑

y

fy = 0}

with φ(t) = exp(−βt) for some β > 0. One can easily check that

R = {(z1, z2, z3)T ∈ R
3
+ : z1z2z3 = 1},

S = {(z1, z2, z3)T ∈ R
3
+ : z1z2z3 ≥ 1}

and so the projection S(2) is the positive quadrant,

S(2) = {(z1, z2)T : z1, z2 > 0} .

This set is inadmissible and therefore the method is inconsistent.
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Example Hinge Squared Hinge Exponential Condition on φ
(1 − t)+ ((1 − t)+)2 exp(−t)

1 × × × Never consistent

2 × � �1 φ differentiable & achieves its minimum

3 � � � φ differentiable

4 × × × Never consistent

Table 5.1: Dependence of consistency on the underlying loss function φ.

One can further show that changing φ is not of much help. Suppose, φ is a positive

convex, classification calibrated binary loss function and K ≥ 3. Then,

S(2) = {(φ(f1), φ(f2)) :
∑

y

fy = 0} .

Since K ≥ 3, (f1, f2) is free to assume any value in R
2 and hence S(2) = T × T where

T = {φ(t) : t ∈ R} is the range of φ. Let m = inf{φ(t) : t ∈ R}. The set T is of the form

(m,∞) or [m,∞) depending on whether or not φ achieves its minimum. Clearly, S(2) is a

translation of the positive quadrant and is not admissible, (m,m) being a point violating

the admissibility condition.

5.5 Summary of Examples

Table 5.1 summarizes how consistency of the four examples treated above depends

on the choice of the underlying binary loss function φ. The last column gives a condition

on φ which is sufficient to ensure consistency in case of a convex, positive, classification

calibrated φ. Note that, for all the examples we considered, mere classification calibration

and positivity of φ do not suffice to guarantee consistency of the derived multiclass method.

1This entry does not follow from the results presented in this thesis but is included here for completeness.
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Chapter 6

Conclusion

We considered multiclass generalizations of classification methods based on convex

risk minimization and gave a necessary and sufficient condition for their Bayes consistency.

Some examples showed that quite often straightforward generalizations of consistent binary

classification methods lead to inconsistent multiclass classifiers. This is especially the case

if the original binary method was based on a non-differentiable loss function. Example 4

shows that even differentiable loss functions do not guarantee multiclass consistency. We

also showed that in certain cases, one can avoid checking the full set of conditions mentioned

in the theorem characterizing classification calibration. The question of consistency then

reduces to checking properties of a single convex set. This was illustrated by considering

variants of some multiclass methods proposed in the literature and proving their consistency.
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