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ABSTRACT

Multitask learning (MTL) has achieved remarkable success in numerous domains, such as

healthcare, computer vision, and natural language processing, by leveraging the relatedness

across tasks. However, current theories of multitask learning fall short in explaining the

success of some phenomena commonly observed in practice. For instance, many empirical

studies have shown that having a diverse set of tasks improves both training and testing per-

formance. This thesis aims at providing new theoretical insights into the significance of task

diversity in two major learning settings: Supervised Learning and Reinforcement Learning.

For supervised MTL, we focus on studying a popular learning paradigm known as multitask

representation learning and provide a theoretical foundation that establishes diversity as a

crucial condition for achieving good generalization performance. In the setting where tasks

can be adaptively chosen, we propose an online learning algorithm that effectively achieves

diversity with low regret. I then expand the discussion to Reinforcement Learning (RL),

which involves making sequential decisions to optimize long-term rewards. Previous explo-

ration designs in RL were either computationally intractable or lacked formal guarantees.

We show that, in addition to the generalization benefits demonstrated in supervised learning,

multitask reinforcement learning with a diverse set of tasks enables sample-efficient myopic

exploration. This is surprising because myopic exploration is provably sample inefficient in

the worst case even for a single task.

xi



CHAPTER 1

Introduction

In the era of big data, there is an enormous demand for learning from multiple datasets/tasks

with the hope to improve the overall performance by leveraging the similarities across differ-

ent tasks. The widely used modern deep learning models are usually “data-hungry”. Though

the community has made great achievement in creating large-scale datasets for training large

language models or computer vision models, datasets of that scale may not be available in

other domains like healthcare and medical image, where collecting data is expensive. In

these cases, Multitask Learning (MTL) can be an extremely useful tool as it exploits useful

information from other related learning tasks to help alleviate this data sparsity problem.

In this thesis, we review the commonly used algorithms for MTL and study the underlying

theory that guides the practical algorithm designs. We study MTL on two major setups –

Supervised Learning and Reinforcement Learning.

This thesis aims at providing theoretical understanding of the MTL. More specifically, we

ask what property on the training task set guarantees a good generalization performance.

For supervised learning, we bound the generalization error on the average of tasks or the

downstream target tasks. We show that a diverse task set guarantees the worst-case gener-

alization error and we provide hard instances on achieving diversity. For RL, we show that

diversity again plays an important role in online exploration, a crucial part of RL literature.

We provide a sample complexity bound for task set with diversity condition. Before we

present our main results, we briefly review important concepts in MTL.

1.1 Practices and Theories for Supervised MTL

Chapter 2 and Chapter 3 in this thesis focuses on the Supervised Learning setting, where each

task indexed by t is modeled as Dt, a distribution over a shared input space X and output

space Y (Zhang and Yang, 2017). Our goal is to achieve a low excess error on the average over

all the tasks, or generalization error on a downstream target task. The understanding of the
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benefits of MTL under this setup heavily relies on the crucial assumptions on task similarity.

We review the commonly made assumptions in the supervised learning setting. We also note

that many recent works on MTRL also inherit similar assumptions from supervised MTL.

1.1.1 Similarity Assumptions

Teshima et al. (2020) gives a brief summary of different similarity assumptions, upon which

we compare more methods. The assumptions can be broadly categorized into five classes:

1) parametric assumptions; 2) invariant conditionals and marginals; 3) small discrepancy;

4) transferable parameters; and 5) restricted function class. In the following discussion, we

denote the feature and response variables by X and Y .

(1) Parametric assumptions. This line of work directly assumes a parametric data gen-

erating distribution , e.g. Gaussian mixture model (Sugiyama and Storkey, 2007; Lawrence

and Platt, 2004; Bonilla et al., 2008; Schwaighofer et al., 2005). Under the Gaussian mixture

assumptions, the relatedness between tasks is characterized by a Gaussian Process prior over

the mean function. Other parametric models assume a parametric distribution shift. Exam-

ple includes location-scale transform (of PX|Y ) of class conditionals with a linear form (Zhang

et al., 2013; Gong et al., 2016b), linearly dependent class conditionals (Zhang et al., 2019).

The benefits of a parametric assumption is the clearness in the task relatedness despite of

its worse generalization.

(2) Invariant conditionals and marginals. To ease the difficulties of transfer, some

methods assume covariate shifts, where conditional distribution PY |X remains the same

(Sugiyama et al., 2007; Gretton et al., 2009; Kpotufe and Martinet, 2018). Other assump-

tions on marginals include target shifts with PX|Y staying the same (Zhang et al., 2019),

conditional shifts with PY remaining the same, while PX|Y changing (Zhang et al., 2013;

Nguyen et al., 2016). Furthermore, Pan et al. (2010) extends the covariate shift setting by

allowing a transformation on the covariates, i.e. there exists a mapping T such that PY |T (X)

matches.

(3) Small discrepancy. Another line of work relies on certain distributional. For example,

Wang et al. (2019a); Shui et al. (2019); Kuroki et al. (2019); Cortes et al. (2019) assumes an

upper bound on the discrepancy between some performance measures of different tasks using

the same prediction; Courty et al. (2016); Redko et al. (2017) use an integral probability

metric. Ben-David et al. (2010) directly measures the discrepancy for the data generating

probabilities between tasks, also called H-divergence. Small-discrepancy assumptions allow

2



great flexibility on the prediction function class, while can only handle tasks that are close

under some metric.

(4) Transferable parameters. Some methods assume the parameters are transferable,

i.e. the optimal parameters for different tasks are close (Kumagai, 2016; Xu et al., 2020).

Fine-tuning is a widely applied domain adaptation method, which trains a model on source

domain and fine-tune it on the target domain using small amount of data (Howard and

Ruder, 2018; Hoaglin and Iglewicz, 1987). Xu et al. (2020) has shown that under some

specific function class, e.g. linear model, transferable parameters and small discrepancy

assumptions can be translated between each other.

(5) Joint function class. Joint function class assumption assumes a hypothesis class

F over the joint function f = (f1, . . . , fT ) for a tasks set [T ]. Note that some methods

using small discrepancy also assume a hypothesis class. However, they use the same class to

approximate all the tasks, i.e. their solution is f = (f, . . . , f) ∈ FT .

Different from previous methods, the similarities between tasks are characterized by the

hypothesis class. For example, in the field of representation learning, Maurer et al. (2016);

Du et al. (2020); Tripuraneni et al. (2020) use the class {(f1 ◦ h, . . . , fT ◦ h) : h ∈ H, ft ∈
F ,∀t ∈ [T ]}. Tasks are similar under a common representation, while the task-specific

function ft can be irrelevant. The transferable parameters setting can be convert to the

joint function class setting using the class {(θ1, θ2) : ∥θ1 − θ2∥ ≤ d}, for two-task transfer

learning setting.

Another commonly used transfer learning method is the off-set model, assuming that the

optimal target function is a simple modification from the optimal function of source model

(Torrey and Shavlik, 2010; Wang and Schneider, 2015). Using the restricted function class

setting, the offset model can be written as {(f1, f2) : f1 ∈ F , f2 ∈ {f1 + h : h ∈ H}}. Du

et al. (2017) generalizes the setting by allowing a general transformation from f1 to f2.

1.1.2 MTL Algorithms

Different practices apply to MTL with different similarity assumptions. Zhang and Yang

(2017) gives a brief summary of the popular MTL algorithms. We improve the review by

corresponding them to different similarity assumptions.

Feature-based MTL. In this category, all MTL models assume that different tasks share

a feature representation, which corresponds to shared representation assumption. More

specifically, these methods can be further categorized into two approaches, including the

3



feature transformation approach, and the feature selection approach. Feature transformation

approach learns a transformation of the original feature inputs. A popular choice is to learn

a multi-layer neural network for each task and the parameters of the first K layers are shared

by different tasks, resulting a shared feature transformation (Caruana, 1998; Argyriou et al.,

2006, 2008). Another category aims to select a subset of original features as the shared

feature representation for different tasks. Subset feature selection can be viewed as a shared

transformation in a general sense. However, they can be significantly different in practice

as the set of shared transformation is restricted to subset selection. Lozano and Swirszcz

(2012) proposed a multi-level Lasso model whose sparsity is shared across different tasks.

Regularization-based approaches. If one believes that the true models of different tasks

with a parametric assumption are closed, they may consider minimizing the average loss

of different tasks by regularizing the distances between the parameters of different tasks

Evgeniou and Pontil (2004). In Chapter 4 we also introduce a regularization-based approach

to solve MTL with a special funnel structure in recommendation system (Xu et al., 2020).

Model fine-tuning. Another way of utilizing the closeness of the true model parameters

is model Fine-tuning. Fine-tuning refers to the practice of fine-tuning a deep neural network

with few steps of stochastic gradient descent method. A trendy area of meta-learning can

be viewed as finding a global parameter, from which fine-tuning is effective for all the tasks

(Vilalta and Drissi, 2002; Vanschoren, 2019). It implicitly assumes that the true parameters

of different tasks are close.

1.1.3 Adaptive Task Scheduling

While previous literature often assumes a predetermined (and often equal) number of obser-

vations for all the tasks, in many applications, we are allowed to decide the order in which

the tasks are presented and the number of observations from each task. Any strategy that

tries to improve the performance with a adaptively chosen task scheduling is usually referred

to curriculum learning (CL) (Bengio et al., 2009). The agent that schedules tasks at

each step is often referred as the task scheduler.

Though curriculum learning has been extensively used in modern machine learning (Gong

et al., 2016a; Sachan and Xing, 2016; Tang et al., 2018; Narvekar et al., 2020), there is very

little theoretical understanding of the actual benefits of CL. We also do not know whether

the heuristic methods used in many empirical studies can be theoretically justified. Chapter

3 summarizes my work on the theoretical justifications of curriculum learning.
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1.2 Multitask Reinforcement Learning

Recent interests of machine learning community has been detoured to a bigger scope that

learns how to make decisions to optimize a long-term goal. Inspired by behaviorist psy-

chology, reinforcement learning studies how to take actions in an environment to maximize

the cumulative reward and it shows good performance in many applications with AlphaGo,

which beats humans in the Go game, as a representative application. When environments

are similar, different reinforcement learning tasks can use similar policies to make decisions,

which is a motivation of the proposal of multi-task reinforcement learning (Wilson et al.,

2007; Li et al., 2009; Lazaric and Ghavamzadeh, 2010).

Many of these works (Wilson et al., 2007) solves different tasks through a hierarchical

Bayesian infinite mixture model. Li et al. (2009) characterizes each task is characterized via

a regionalized policy and a Dirichlet process is used to cluster tasks. Similarly to supervised

multitask representation learning, the value functions in Calandriello et al. (2014) in different

tasks are assumed to share sparse parameters and it applies the multi-task feature selection

method.

One may understand the benefits of multitask Reinforcement Learning in the same way

we understand the benefits for Supervised MTL. Many recent theoretical works have con-

tributed to understanding the benefits of MTRL (Agarwal et al., 2022; Brunskill and Li,

2013; Calandriello et al., 2014; Cheng et al., 2022; Lu et al., 2021; Uehara et al., 2021; Yang

et al., 2022; Zhang and Wang, 2021) by exploiting the shared structures across tasks. An

earlier line of works Brunskill and Li (2013) assumes that tasks are clustered and the algo-

rithm adaptively learns the identity of each task, which allows it to pool observations. For

linear Markov Decision Process (MDP) settings (Jin et al., 2020b), Lu et al. (2021) shows

a bound on the sub-optimality of the learned policy by assuming a full-rank least-square

value iteration weight matrix from source tasks. Agarwal et al. (2022) makes a different

assumption that the target transition probability is a linear combination of the source ones,

and the feature extractor is shared by all the tasks. Our work differs from all these works

as we focus on the reduced complexity of exploration design.

1.3 Diversity

A continuing topic throughout the thesis is the importance of having a diverse task set in

achieving good generalization performance and better sample efficiency in RL. Indeed, this

has been demonstrated by many empirical works. We give a brief review on how diversity is

discussed in empirical studies and the previous theoretical guarantees through diversity.
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Empirical evidence for supervised learning. In computer vision tasks, heterogeneous

datasets are often available. For instance, tasks may target at goals ranging from image

classification to harder ones like segmentation and object detection. Yu et al. (2020) con-

struct a diverse driving dataset with various prediction structures and serve different aspects

of a complete driving systems, which improves the performance by at least 20% on tasks

with different goals. Similar evidence has been observed for biological and medical domains

(Caruana et al., 1995; Mulyar et al., 2021; Aoki et al., 2022; Sun et al., 2022) and NLP (Sub-

ramanian et al., 2018; Radford et al., 2019). Some works even consider multitask learning

across different domains. For instance, Nguyen and Okatani (2019) study multitask learn-

ing for a hierarchical vision-language representation. Recent interest of machine learning

community on foundation model can also be understood a representation learning on an

extremely diverse task set Yu et al. (2022).

Diversity for RL. There is also a large body of literature discussing the role of diversity

for RL. For instance, in robotic learning, a common practice is to randomize training envi-

ronment (Akkaya et al., 2019). Domain randomization is shown to significantly improve the

generalization from policy trained on simulated environments to real-world environments in

various different applications (Sadeghi and Levine, 2016; Tobin et al., 2017; Peng et al., 2018;

Andrychowicz et al., 2020; Chen et al., 2021). Intuitively, if one thinks of training RL agent

as a process of mastering skills, then it has to seen a diverse enough tasks to demonstrate

different types of skills in order to achieve a good generalization performance.

Theories on diverse MTL. Despite the attention diversity received in empirical studies,

we still lack a good theoretical understanding of diversity. Tripuraneni et al. (2020) proposed

a first theoretical analysis on the generalization benefits of diversity in a multitask represen-

tation learning setting. We extend their results to a more general setting in Chapter 2 and

3. The role of diversity is even more under-explored for RL. We will make a first attempt to

understand the ”exploration” benefits of having a diverse task set.

1.4 Thesis Organization

This thesis is organized in the following manner. In Chapter 2, we study the benefits of

multitask learning in a shared representation function setting. We first show that diverse

task set provides a strong worst-case generalization error guarantee. We propose Eluder

dimension as a measure for the number of tasks needed to achieve diversity. Chapter 3

closely follows Chapter 2 and consider the curriculum learning scenario, where tasks can be
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adaptively chosen. We proposed an online learning algorithm that adaptively select task set

that achieves diversity. Chapter 4 bridges supervised learning and reinforcement learning

by considering a multitask learning on bandit setting. We show that under a special funnel

structure, MTL can significantly benefit with a smaller regret bound guarantee. Chapter

5 studies MTRL setting. We show that diversity continue to play an important role in

RL. Exploration is a core topic for online RL. We show that exploring on a diverse set of

tasks allows sample-efficient myopic exploration, which has been shown sample-inefficient

in the worst case. This has strong empirical implications as myopic exploration is easy to

implement and generalizes well.
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CHAPTER 2

Supervised Multitask Learning

Recent papers on the theory of representation learning has shown the importance of a quan-

tity called diversity when generalizing from a set of source tasks to a target task. Most of

these papers assume that the function mapping shared representations to predictions is lin-

ear, for both source and target tasks. In practice, researchers in deep learning use different

numbers of extra layers following the pretrained model based on the difficulty of the new

task. This motivates us to ask whether diversity can be achieved when source tasks and

the target task use different prediction function spaces beyond linear functions. We show

that diversity holds even if the target task uses a neural network with multiple layers, as

long as source tasks use linear functions. If source tasks use nonlinear prediction functions,

we provide a negative result by showing that depth-1 neural networks with ReLu activation

function need exponentially many source tasks to achieve diversity. For a general function

class, we find that eluder dimension gives a lower bound on the number of tasks required

for diversity. Our theoretical results imply that simpler tasks generalize better. Though

our theoretical results are shown for the global minimizer of empirical risks, their qualita-

tive predictions still hold true for gradient-based optimization algorithms as verified by our

simulations on deep neural networks. 1

2.1 Introduction

It has become a common practice (Tan et al., 2018) to use a pre-trained network as the

representation for a new task with small sample size in various areas including computer

vision (Marmanis et al., 2015), speech recognition (Dahl et al., 2011; Jaitly et al., 2012;

Howard and Ruder, 2018) and machine translation (Weng et al., 2020). Most representation

learning is based on the assumption that the source tasks and the target task share the same

low-dimensional representation.

1This chapter is based on the paper Xu and Tewari (2021) published at NeurIPS 2021 with Ambuj Tewari.
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In this chapter, following the work of Tripuraneni et al. (2020), we assume that each

task, indexed by t, generates observations noisily from the mean function f ∗
t ◦ h∗, where h∗

is the true representation shared by all the tasks and f ∗
t is called the prediction function.

We assume h∗ ∈ H, the representation function space and ft ∈ Ft, the prediction function

space. Tripuraneni et al. (2020) proposed a diversity condition which guarantees that the

learned representation will generalize to target tasks with any prediction function. Assume

we have T source tasks labeled by 1, . . . , T and F1 = · · · = FT = Fso. We denote the target

task by ta and let Et(f, h) ∈ R be the excess error of f, h ∈ Ft ×H for task t. The diversity

condition can be stated as follows: there exists some ν > 0, such that for any f ∗
ta ∈ Fta and

any h ∈ H,

inf
fta∈Fta

Eta(fta, h)
Excess error given h for target task

≤ ν inf
ft∈Fso,t=1,...,T

1

T

T∑
t=1

Et(ft, h)

Excess error given h for source tasks

.

The diversity condition relates the excess error for source tasks and the target task with

respect to any fixed representation h. A smaller ν indicates a better transfer from source

tasks to the target task. Generally, we say T source tasks achieve diversity over Fta when ν

is finite and relatively small.

The number of source tasks plays an important role here. To see this, assume Fso =

Fta = F is a discrete function space and each function can be arbitrarily different. In this

case, we will need the target task to be the same as at least one source task, which in turn

requires T ≥ |F| and ν ≥ |F|. So far, it has only been understood that when both source

tasks and target task use linear prediction functions, it takes at least d source tasks to be

diverse, where d is the number of dimension of the linear mappings. This chapter answers

the following two open questions with a focus on the deep neural network (DNN) models:

How does representation learning work when Fso ̸= Fta?

How many source tasks do we need to achieve diversity with nonlinear prediction functions?

There are strong practical motivations to answer the above two questions. In practice,

researchers use representation learning despite the difference in difficulty levels of source and

target tasks. We use a more complex function class for substantially harder target task, which

means Fso ̸= Fta. This can be reflected as extra layers when a deep neural network model is

used as prediction functions. On the other hand, the source task and target task may have

different objectives. Representation pretrained on a classification problem, say ImageNet,

may be applied to object detection or instance segmentation problems. For instance, Oquab

et al. (2014) trained a DNN on ImageNet and kept all the layers as the representation except

for the last linear mapping, while two fully connected layers are used for the target task on
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object detection.

Another motivation for our work is the mismatch between recently developed theories in

representation learning and the common practice in empirical studies. Recent papers on the

theory of representation learning all require multiple sources tasks to achieve diversity so as

to generalize to any target task in F (Maurer et al., 2016; Du et al., 2020; Tripuraneni et al.,

2020). However, most pretrained networks are only trained on a single task, for example, the

ImageNet pretrained network. To this end, we will show that a single multi-class classification

problem can be diverse.

Lastly, while it is common to simply use linear mapping as the source prediction function,

there is no clear theoretical analysis showing whether or not diversity can be achieved with

nonlinear prediction function spaces.

Main contributions. We summarize the main contributions made in this chapter.

1. We show that diversity over Fso implies diversity over Fta, when both Fso and Fta are

DNNs and Fta has more layers. More generally, the same statement holds when Fta

is more complicated than Fso, in the way that Fta = F ′
ta ◦ (F⊗m

so ) for some positive

integer m2 and function class F ′
ta.

2. Turning our attention to the analysis of diversity for non-linear prediction function

spaces, we show that for a depth-1 NN, it requires Ω(2d) many source tasks to establish

diversity with d being the representation dimension. For general Fso, we provide a

lower bound on the number of source tasks required to achieve diversity using the

eluder dimension (Russo and Van Roy, 2013) and provide a upper bound using the

generalized rank (Li et al., 2021).

3. We show that, from the perspective of achieving diversity, a single source task with

multiple outputs can be equivalent to multiple source tasks. While our theories are

built on empirical risk minimization, our simulations on DNNs for a multi-variate

regression problem show that the qualitative predictions our theory makes still hold

when stochastic gradient descent is used for optimization.

2.2 Preliminaries

We first introduce the mathematical setup of the problem studied In this chapter along with

the two-phase learning method that we will focus on.

2F⊗T is the T times Cartesian product of F .
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Problem setup. Let X denote the input space. We assume the same input distribution

PX for all tasks, as covariate shift is not the focus of this work. In our representation learning

setting, there exists a generic feature representation function h∗ ∈ H : X 7→ Z that is shared

across different tasks, where Z is the feature space andH is the representation function space.

Since we only consider the different prediction functions, each task, indexed by t, is defined

by its prediction function f ∗
t ∈ Ft : Z 7→ Yt ⊂ [0, 1], where Ft is the prediction function

space of task t and Yt is the corresponding output space. The observations Yt = f ∗
t ◦h∗(X)+ϵ

are generated noisily with mean function f ∗
t ◦ h∗, where X ∼ PX and ϵ is zero-mean noise

that is independent of X.

Our representation is learned on source tasks f ∗
so := (f ∗

1 , . . . , f
∗
T ) ∈ F1×· · ·×FT for some

positive integer T . We assume that all the prediction function spaces Ft = Fso are the same

over the source tasks. We denote the target task by f ∗
ta ∈ Fta : Z 7→ Yt ⊂ [0, 1], where

Fta is the target prediction function space. Unlike the previous papers (Du et al., 2020;

Tripuraneni et al., 2020; Maurer et al., 2016), which all assume that the same prediction

function space is used for all tasks, we generally allow for the possibility that Fso ̸= Fta.

Learning algorithm. We consider the same two-phase learning method as in Tripuraneni

et al. (2020). In the first phase (the training phase), n = (n1, . . . , nT ) samples from each

task are available to learn a good representation. In the second phase (the test phase), we

are presented nta samples from the target task to learn its prediction function using the

pretrained representation learned in the training phase.

We denote a dataset of size n from task ft by S
n
t = {(xti, yti)}ni=1. We use empirical risk

minimization (ERM) for both phase. In the training phase, we minimize average risks over

{Snt
t }Tt=1:

R̂(f , h | f ∗
so) :=

1∑
t nt

T∑
t=1

nt∑
i=1

lso(ft ◦ h(xti), yti),

where lso : Y × Y 7→ R is the loss function for the source tasks and f = (f1, . . . , fT ) ∈ F⊗T
so .

The estimates are given by (f̂so, ĥ) ∈ argminf ,h R̂(f , h | f ∗
so). In the second phase, we obtain

the dataset {xta,i, yta,i}nta
i from the target task and our predictor f̂ta is given by

argmin
f∈Fta

R̂(f, ĥ | f ∗
ta) :=

1

nta

nta∑
i=1

lta(f ◦ ĥ(xta,i), yta,i),

for some loss function lta on the target task. We also use R(·, · | ·) for the expectation

of the above empirical risks. We denote the generalization error of certain estimates f, h

by E(f, h | ·) := R(f, h | ·) − minf ′∈F ,h′∈HR(f
′, h′ | ·), where F can be either F⊗T

so or Fta
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depending on the tasks. Our goal is to bound the generalization error of the target task.

For simplicity, our results are presented under square loss functions. However, we show

that our results can generalize to different loss functions in Appendix 2.A. We also assume

n1 = · · · = nT = nso for some positive integer nso.

2.2.1 Model complexity

As this chapter considers general function classes, our results will be presented in terms of

the complexity measures of classes of functions. We follow the previous literature (Maurer

et al., 2016; Tripuraneni et al., 2020), which uses Gaussian complexity. Note that we do

not use the more common Rademacher complexity as the proofs require a decomposition

theorem that only holds for Gaussian complexity.

For a generic vector-valued function class Q containing functions q : Rd 7→ Rr and N data

points, XN = (x1, . . . ,xN)
T , the empirical Gaussian complexity is defined3 as

ĜN(Q) = Eg

[
sup
q∈Q

1√
N

N∑
i=1

gTi q(xi)

]
, gi ∼ N (0, Ir) i.i.d.

The corresponding population Gaussian complexity is defined as GN(Q) = EXN

[
ĜN(Q)

]
,

where the expectation is taken over the distribution of XN .

2.2.2 Diversity

Source tasks have to be diverse enough, to guarantee that the representation learned from

source tasks can be generalized to any target task in Fta. To measure when transfer can

happen, we introduce the following two definitions, namely that of transferability and diver-

sity.

Definition 2.1. For some ν, µ > 0, we say the source tasks f ∗
1 , . . . , f

∗
T ∈ Fso are (ν, µ)-

transferable to task f ∗
ta if

sup
h∈H

inff∈Fta E(f, h | f ∗
ta)

inff∈F⊗T
so
E(f , h | f ∗

so) + µ/ν
≤ ν.

Furthermore, we say they are (ν, µ)-diverse over Fta if above ratio is bounded for any true

3Note that the standard definition has a 1/N factor instead of 1/
√
N . We use the variant so that ĜN

does not scale with N in most of the cases we consider and only reflects the complexity of the class.
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target prediction functions f ∗
ta ∈ Fta, i.e.

sup
f∗
ta∈Fta

sup
h∈H

inff∈Fta E(f, h | f ∗
ta)

inff∈F⊗T
so
E(f , h | f ∗

so) + µ/ν
≤ ν.

When it is clear from the context, we denote E(f, h | f ∗
ta) and E(f , h | f ∗

so) by Eta(f, h)
and Eso(f , h), respectively. We will call ν the transfer component and µ, the bias introduced

by transfer. The definition of transferable links the generalization error between source tasks

and the target task as shown in Theorem 2.1. The proof can be found in Appendix 2.A.

Theorem 2.1. If source tasks f ∗
1 , . . . , f

∗
T are (ν, µ)-diverse over Fta, then for any f ∗

ta ∈ Fta,

we have

Eta(f̂ta, ĥ) ≤ νEso(f̂so, ĥ) + µ+

√
2πĜnta

(
Fta ◦ ĥ

)
√
nta

+

√
9 ln(2/δ)

2nta

.

The first term in Theorem 2.1 can be upper bounded using the standard excess error bound

of Gaussian complexity. The benefit of representation learning is due to the decrease in the

third term from Ĝnta(Fta ◦ H)/
√
nta without representation learning to Ĝnta(Fta ◦ ĥ)/

√
nta

in our case. For the problem with complicated representations, the former term can be

extremely larger than the later one.

In the rest of the paper, we discuss when we can bound (ν, µ), for nonlinear and noniden-

tical Fso and Fta.

2.3 Negative transfer when source tasks are more com-

plex

Before introducing the cases that allow transfer, we first look at a case where transfer is

impossible.

Let the source task use a linear mapping following the shared representation and the target

task directly learns the representation. In other words, f ∗
ta is identical mapping and known to

the learner. We further consider Fso = {z 7→ wT z : w ∈ Rp} andH = {x 7→ Hx : H ∈ Rp×d}.
The interesting case is when p ≪ d. Let the optimal representation be H∗ and the true

prediction function for each source task be w∗
1, . . . , w

∗
T . In the best scenario, we assume

that there is no noise in the source tasks and each source task collects as many samples as

possible, such that we will have an accurate estimation on each w∗T
t H∗ ∈ Rp×d which we

denote by W ∗
t .
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However, the hypothesis class given the information from source tasks are

{H ∈ Rp×d : ∃w ∈ Rp, wTH = Wt for all t = 1, . . . , T}.

As H∗ is in the above class, any QH∗ for some rotation matrix Q ∈ Rp×p is also in the

class. In other words, a non-reducible error of learnt representation is maxQ ∥H∗ − QH∗∥22
in the worst case.

More generally, we give a condition for negative transfer. Consider a single source task

f ∗
so. Let H∗

so := argminh∈H minf∈Fso Eso(f, h) and H∗
ta := argminh∈H minf∈Fta Eta(f, h). In

fact, if one hopes to get a representation learning benefit with zero bias (µ = 0), we need all

h ∈ H∗
so to satisfy inff∈Fta Eta(f, h) = 0, i.e. any representation that is optimal in the source

task is optimal in the target task as well. Equivalently, we will need H∗
so ⊂ H∗

ta. As shown

in Proposition 2.1, the definition of transferable captures the case well.

Proposition 2.1. If there exists a h′ ∈ H∗
so such that h′ /∈ H∗

ta, then minfta Eta(fta, h′) > 0.

Furthermore, there is no ν <∞, such that f ∗
so is (ν, 0)-transferable to f ∗

ta.

Proof. The first statement is by definition. Plugging g′ into the Definition 2.1, we will have

ν =∞

The negative transfer happens when the optimal representation for source tasks may not

be optimal for the target task. As the case in our linear example, this is a result of more

complex Fso, which allows more flexibility to reduce errors. This inspires us to consider the

opposite case where Fta is more complex than Fso.

2.4 Source task as a representation

Before discussing more general settings, we first consider a single source task, which we refer

to as so. Assume that the source task itself is a representation of the target task. Equiva-

lently, the source task has a known prediction function f ∗
so(x) = x. This is a commonly-used

framework when we decompose a complex task into several simple tasks and use the output

of simple tasks as the input of a higher-level task.

A widely-used transfer learning method, called offset learning, which assumes f ∗
ta(x) =

f ∗
so(x) +w∗

ta(x) for some offset function w∗
ta falls within the framework considered here. The

offset method enjoys its benefits when wta has low complexity and can be learnt with few

samples. It is worth mentioning that our setting covers a more general setting in Du et al.

(2017), which assumes f ∗
ta(x) = G(f ∗

so(x), w
∗
ta(x)) for some known transformation function G

and unknown w∗
ta.
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We show that a simple Lipschitz condition on Fta gives us a bounded transfer-component.

Assumption 2.1 (Lipschitz assumption). Any fta ∈ Fta is L-Lipschitz with respect to L2

distance.

Theorem 2.2. If Assumption 2.1 holds, task f ∗
so is (L, 0)-transferable to task f ∗

ta and we

have with a high probability,

Eta(f̂ta, ĥ) = Õ

(
LĜnso(H)√

nso

+
Ĝnta(Fta ◦ ĥ)√

nta

)
.

Theorem 2.2 bounds the generalization error of two terms. The first term that scales

with 1/
√
nso only depends on the complexity of H. Though the second term scales with

1/
√
nta, it is easy to see that Ĝnta(Fta ◦ ĥ) = Ĝnta(Fta) ≪ Ĝnta(Fta ◦ H) with the dataset

{ĥ(xta,i)}nta
i=1.

2.4.1 General case

Previously, we assume that a single source task is a representation of the target task. Now

we consider a more general case: there exist functions in the source prediction space that

can be used as representations of the target task. Formally, we consider Fta = F ′
ta ◦ (F⊗m

so )

for some m > 0 and some target-specific function space F ′
ta : Y⊗m

so 7→ Yta. Note that Fta is

strictly larger than Fso when m = 1 and the identical mapping x 7→ x ∈ F ′
ta. In practice,

ResNet (Tai et al., 2017) satisfies the above property.

Assumption 2.2. Assume any f ′
ta ∈ F ′

ta is L′-Lipschitz with respect to L2 distance.

Theorem 2.3. If Assumption 2.2 holds and the source tasks are (ν, µ)-diverse over its own

space Fso, then we have

Eta
(
f̂ta, ĥ

)
= Õ

L′m

(
νĜTnso(F⊗T

so ◦ H)√
Tnso

+ µ

)
+

Ĝnta

(
Fta ◦ ĥ

)
√
nta

 .

It is shown in Tripuraneni et al. (2020) that Ĝ∑
s ns(F⊗S

so ◦ H) can be bounded

by Õ(ĜTnso(H) +
√
T Ĝnso(Fso)). Thus, the first term scales with ĜTnso(H)/

√
Tnso +

Ĝnso(Fso)/
√
nso. Again the common part shared by all the tasks decreases with

√
Tnso,

while the task-specific part scales with
√
nso or

√
nta.
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2.4.2 Applications to deep neural networks

Theorem 2.3 has a broad range of applications. In the rest of the section, we discuss its

application to deep neural networks, where the source tasks are transferred to a target task

with a deeper network.

We first introduce the setting for deep neural network prediction function. We consider

the regression problem with Yso = Yta = R and the representation space Z ⊂ Rp. A depth-K

vector-valued neural network is denoted by

f(x) = σ (WK (σ (. . . σ (W1x)))) ,

where each Wk is a parametric matrix of layer k and σ is the activation function. For

simplicity, we let Wk ∈ Rp×p for k = 1, . . . K. The class of all depth-K neural network is

denoted byMK . We denote the linear class by L = {x 7→ αTx+β : ∀α ∈ Rp, ∥α∥2 ≤M(α)}
for some M(α) > 0. We also assume

max{∥Wk∥∞, ∥Wk∥2∥} ≤M(k),

where ∥·∥∞ and ∥·∥2 are the infinity norm and spectral norm. We assume any z ∈ Z, ∥z∥∞ ≤
DZ .

Deeper network for the target task. We now consider the source task with prediction

function of a depth-Kso neural network followed by a linear mapping and target task with

depth-Kta neural network. We let Kta > Kso. Then we have

Fta = L ◦MKta−Kso ◦MKso and Fso = L ◦MKso .

Using the fact thatM1 = σ(L⊗p), we can write Fta as L◦MKta−Kso−1 ◦σ ◦ (F⊗p
so ). Thus,

we can apply Theorem 2.3 and the standard Gaussian complexity bound for DNN models,

which gives us Corollary 2.1.

Corollary 2.1. Let Fso be depth-Kso neural network and Fta be depth-Kta neural network.

If source tasks are (ν, 0)-diverse over Fso, we have

Eta
(
f̂ta, ĥ

)
=

Õ

(
pνM(α)ΠKta

k=1M(k)

(
ĜTnso(H)√

Tnso

+
DZ

√
Kso√
nso

)
+
DZ

√
Kta ·M(α)ΠKta

k=1M(k)
√
nta

)
. (2.1)

Note that the terms that scales with 1/
√
nso and 1/

√
nta have similar coefficients
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M(α)ΠKta
k=1M(k), which do not depends on the complexity of H. The term that depends

on ĜTnso(H) scales with 1/
√
Tnso as we expected.

2.5 Diversity of non-linear function classes

While Corollary 2.1 considers the nonlinear DNN prediction function space under a diversity

condition, it is not clearly understood how diversity can be achieved for nonlinear spaces.

In this section, we first discuss a specific non-linear prediction function space and show a

fundamental barrier to achieving diversity. Then we extend our result to general function

classes by connecting eluder dimension and diversity. We end the section with positive results

for achieving diversity under a generalized rank condition.

We consider a subset of depth-1 neural networks with ReLu activation function: F =

{x 7→ [⟨x,w⟩ − (1 − ϵ/2)]+ : ∥x∥2 ≤ 1, ∥w∥ ≤ 1} for some ϵ > 0. Our lower bound

construction is inspired by the similar construction in Theorem 5.1 of Dong et al. (2021).

Theorem 2.4. Let T = {f1, . . . , fT} be any set of depth-1 neural networks with ReLu

activation in F . For any ϵ > 0, if T ≤ 2d log(1/ϵ)−1, there exists some representation h∗, h′ ∈
H, some distribution PX and a target function f ∗

ta ∈ F , such that

inf
f∈F⊗T

Eso(f , h′) = 0, while inf
f∈F
Eta(f, h′) = ϵ2/32.

Theorem 2.4 implies that we need at least Ω(2d log(1/ϵ)) source tasks to achieve diversity.

Otherwise, we can always find a set of source tasks and a target task such that the general-

ization error in source tasks are minimized to 0 while that in target task is ϵ2/32. Though

ReLu gives us a more intuitive result, we do show that similar lower bounds can be shown

for other popular activation functions, for example, sigmoid function (see Appendix 2.A).

2.5.1 Lower bound using eluder dimension

We extend our result by considering a general function space F and build an interesting

connection between diversity and eluder dimension (Russo and Van Roy, 2013). We believe

we are the first to notice a connection between eluder dimension and transfer learning.

Eluder dimension has been used to measure the sample complexity in the Reinforcement

Learning problem. It considers the minimum number of inputs, such that any two functions

evaluated similarly at these inputs will also be similar at any other input. However, diversity

considers the minimum number of functions such that any two representations with similar
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outputs for these functions will also have similar output for any other functions. Thus, there

is a kind of duality between eluder dimension and diversity.

We first formally define eluder dimension. Let F be a function space with support X and

let ϵ > 0.

Definition 2.2 ((F , ϵ)-dependence and eluder dimension (Osband and Roy (2014))). We

say that x ∈ X is (F , ϵ)-dependent on {x1, . . . , xn} ⊂ X iff

∀f, f̃ ∈ F ,
n∑

i=1

∥∥∥f (xi)− f̃ (xi)∥∥∥2
2
≤ ϵ2 =⇒ ∥f(x)− f̃(x)∥2 ≤ ϵ.

We say x ∈ X is (F , ϵ)-independent of {x1, . . . , xn} iff it does not satisfy the definition of

dependence.

The eluder dimension dimE(F , ϵ) is the length of the longest possible sequence of elements

in X such that for some ϵ′ ≥ ϵ every element is (F , ϵ′)-independent of its predecessors.
We slightly change the definition and let dims

E(F , ϵ) be the shortest sequence such that

any x ∈ X is (F , ϵ)-dependent on the sequence.

Although dims
E(F , ϵ) ≤ dimE(F , ϵ), it can be shown that in many regular cases, say linear

case and generalized linear case, dimE(F , ϵ) is only larger then dims
E(F , ϵ) up to a constant.

Definition 2.3 (Dual class). For any F : X 7→ Y, we call F∗ : F 7→ Y its dual class iff.

F∗ = {gx : gx(f) = f(x),∀x ∈ X}.

Theorem 2.5. For any function class F : X 7→ R, and some ϵ > 0, let F∗ be the dual class

of F . Let dE = dims
E(F∗, ϵ). Then for any sequence of tasks f1, . . . , ft, t ≤ dE − 1, there

exists a task ft+1 ∈ F such that for some data distribution PX and two representations h,

h∗,
inff ′

t+1∈F EX∥f ′
t+1(h(X))− ft+1(h

∗(X))∥22
1
t
inff ′

1,...,f
′
t

∑t
i=1 EX∥f ′

i(h(X))− fi(h∗(X))∥22
≥ t/2.

Theorem 2.5 formally describes the connections between eluder dimension and diversity.

To interpret the theorem, we first discuss what are good source tasks. Any T source tasks

that are diverse could transfer well to a target task if the parameter ν could be bounded by

some fixed value that is not increasing with T . For instance, in the linear case, ν = O(d)
no matter how large T is. While for a finite function class, in the worst case, ν will increase

with T before T reaches |F|. Theorem 2.5 states that if the eluder dimension of the dual

space is at least dE, then ν scales with T until T reaches dE, as if the function space F is

discrete with dE elements.

Note that this result is consistent with what is shown in Theorem 2.9 as eluder dimension

of the class discussed above is lower bounded by Ω(2d) as well (Li et al., 2021).
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2.5.2 Upper bound using approximate generalized rank

Though we showed that diversity is hard to achieve in some nonlinear function class, we

point out that diversity can be easy to achieve if we restrict the target prediction function

such that they can be realized by linear combinations of some known basis. Tripuraneni et al.

(2020) has shown that any source tasks f1, . . . , fT ∈ F are (1/T, µ)-diverse over the space

{f ∈ F : ∃f̃ ∈ conv(f1, . . . , fT ) such that supz ∥f(z) − f̃(z)∥ ≤ µ}, where conv(f1, . . . , fT )

is the convex hull of {f1, . . . , fT}. This can be characterized by a complexity measure, called

generalized rank. Generalized rank is the smallest dimension required to embed the input

space such that all hypotheses in a function class can be realizable as halfspaces. Generalized

rank has close connections to eluder dimension. As shown in Li et al. (2021), eluder dimension

can be upper bounded by generalized rank.

Definition 2.4 (Approximate generalized rank with identity activation). Let Bd(R) := {x ∈
Rd | ∥x∥2 ≤ R}. The µ-approximate id-rk(F , R) of a function class F : X 7→ R at scale R is

the smallest dimension d for which there exists mappings ϕ : X 7→ Bd(1) and w : F 7→ Bd(R)
such that

for all (x, f) ∈ X × F : |f(x)− ⟨w(f), ϕ(x)⟩| ≤ µ.

Proposition 2.2. For any F with µ-approximate id-rk(F , R) ≤ di for some R > 0, there

exists no more than di functions, f1, . . . , fdi, such that w(f1), . . . w(fdi) span Rddi . Then

f1, . . . , fdi are (di, µ)-diverse over F .

Proposition 2.2 is a direct application of Lemma 7 in Tripuraneni et al. (2020). Upper

bounding id-rank is hard for general function class. However, this notation can be useful for

those function spaces with a known set of basis functions. For example, any function space

F that is square-integrable has a Fourier basis. Though the basis is an infinite set, we can

choose a truncation level d such that the truncation errors of all functions are less than µ.

Then the hypothesis space F has µ-approximate id-rank less than d.

2.6 Experiments

In this section, we use simulated environments to evaluate the actual performance of rep-

resentation learning on DNNs trained with gradient-based optimization methods. We also

test the impact of various hyperparameters. Our results indicate that even though our the-

ory is shown to hold for ERM estimators, their qualitative theoretical predictions still hold

when Adam is applied and the global minima might not be found. Before we introduce

our experimental setups, we discuss a difference between our theories and experiments: our
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experiments use a single regression task with multiple outputs as the source task, while our

analyses are built on multiple source tasks.

2.6.1 Diversity of problems with multiple outputs

Though we have been discussing achieving diversity from multiple source tasks, we may only

have access to a single source task in many real applications, for example, ImageNet, which

is also the case in our simulations. In fact, we can show that diversity can be achieved

by a single multiclass classification or multivariate regression source task. The diversity

for the single multi-variate regression problem with L2 loss is trivial as the loss function

is decomposable. For multi-class classification problems or regression problems with other

loss functions, we will need some assumptions on boundedness and continuous. We refer the

readers to Appendix 2.A for details.

2.6.2 Experiments setup

Our four experiments are designed for the following goals. The first two experiments (Figure

2.1, a and b) target on the actual dependence on nso, nta, Kso and Kta in Equation (2.1) that

upper bounds the errors of DNN prediction functions. Though the importance of diversity

has been emphasized by various theories, no one has empirically shown its benefits over

random tasks selection, which we explore in our third experiment (Figure 2.1, c). Our

fourth experiment (Figure 2.1, d) verifies the theoretical negative results of nonlinearity of

source prediction functions showed in Theorem 2.4 and 2.5.

Though the hyper-parameters vary in different experiments, our main setting can be

summarized below. We consider DNN models of different layers for both source and target

tasks. The first K layers are the shared representation. The source task is a multi-variate

regression problem with output dimension p andKso layers following the representation. The

target task is a single-output regression problem with Kta layers following the representation.

We used the same number of units for all the layers, which we denote by nu. A representation

is first trained on the source task using nso random samples and is fixed for the target

task, trained on nta random samples. In contrast, the baseline method trains the target

task directly on the same nta samples without the pretrained network. We use Adam with

default parameters for all the training. We use MSE (Mean Square Error) to evaluate the

performance under different settings.
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2.6.3 Results

Figure 2.1 summaries our four experiments, with all the Y axes representing the average

MSE’s of 100 independent runs with an error bar showing the standard deviation. The

X axis varies depending on the goal of each experiment. In subfigure (a), we test the

effects of the numbers of observations for both source and target tasks, while setting other

hyperparameters by default values. The X axis represents nso and the colors represents nta.

In subfigure (b), we test the effects of the number of shared representation layers K. To

have comparable MSE’s, we keep the sum K+Kta = 6 and run K = 1, . . . , 5 reflected in the

X axis, while keeping Kso = 1. In subfigure (c), we test the effects of diversity. The larger

p we have, the more diverse the source task is. We keep the actual number of observations

nso · p = 4000 for a fair comparison. Lastly, in subfigure (d), we test whether diversity is

hard to achieve when the source prediction function is nonlinear. The X axis is the number

of layers in source prediction function Kso. The nonlinearity increases with Kso. We run

Kso = 1, 2, 3 and add an activation function right before the output such that the function

is nonlinear even if Kso = 1.
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Figure 2.1: (a) Effects of the numbers of observations for both source (nso) and target
tasks (nta). (b) Effects of the number of shared representation layers K. (c) Effects of
diversity determined by the output dimensions p. We keep the actual number of observations
nso · p = 4000. (d) Effects of nonlinearity of the source prediction function. Higher Kso

indicates higher nonlinearity.
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In Figure 2.1 (a), MSE’s decrease with larger numbers of observations in both source and

target tasks, while there is no significant difference between nso = 1000 and 10000. The

baseline method without representation learning performs worst and it performs almost the

same when nta reaches 1000. In (b), there are positive benefits for all different numbers of

the shared layers and the MSE is the lowest at 5 shared layers. As shown in Figure 2.1 (c),

the MSE’s and their variances are decreasing when the numbers of outputs increase, i.e.,

higher diversity. Figure 2.1 (d) shows that there is no significant difference between baseline

and Kso = 1, 2, 3. When Kso = 2, 3 there is a negative effects.

2.7 Discussion

In this chapter, we studied representation learning beyond linear prediction functions. We

showed that the learned representation can generalize to tasks with multi-layer neural net-

works as prediction functions as long as the source tasks use linear prediction functions. We

show the hardness of being diverse when the source tasks are using nonlinear prediction func-

tions by giving a lower bound on the number of source tasks in terms of eluder dimension.

We further give an upper bound depending on the generalized rank. This generalization

works for source and target tasks with distinct label spaces. For example, regression task

can generalize to classification tasks with a logistic regression model (see Lemma 2.4 for a

change of loss function result).

Different prediction functions for source and target tasks as we studied in this chapter

introduce asymmetry in terms of the model design. As we discussed, we may add more

layers of neural network on top of the learned representation function. We argue that this

asymmetry exists in many real-world applications, e.g. vision tasks, when we target at

downstream task generalization. In practice, when we aim at improving a set of source

tasks performance, where asymmetry can be an issue, we may choose the same source task

prediction function class and make it large enough to include the functions of interest for all

the tasks.

Future works. Focusing on future work, we need better tools to understand the recently

proposed complexity measure generalized rank. Our analyses rely on the ERM, while in

practice as well as in our simulations, gradient-based optimization algorithms are used.

Further analyses on the benefits of representation learning that align with practice on the

choice of optimization method should be studied. Our analyses assume arbitrary source

tasks selection, while, in real applications, we may have limited data from groups that are

under-represented, which may lead to potential unfairness. Algorithm that calibrates this
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potential unfairness should be studied.

Another direction of future work is to propose reasonable assumptions for a guarantee

of generalization even when the source prediction functions are nonlinear. Possibly the

interesting functions are within a subset of the target prediction function class, which makes

generalization easier.

In this work, we consider provided and fixed source tasks. In practice, many empirical

methods (Graves et al., 2017) are proposed to adaptively select unknown source tasks. An

interesting direction is to ask whether adaptively task selection could achieve the optimal

level of diversity and to design algorithms for that purpose.

2.A Missing Proofs

Proof of Theorem 2.1

Proof. Note that the second phase is to find the best function within the class Fta ◦ ĥ. We

first apply the standard bounded difference inequality (Bartlett and Mendelson, 2002) as

shown in Theorem 2.6.

Theorem 2.6 (Bartlett and Mendelson (2002)). With a probability at least 1− δ,

sup
f∈Fta

|Rta(f ◦ ĥ)− R̂ta(f ◦ ĥ)| ≤
√
2πĜnta(Fta ◦ ĥ)√

nta

+

√
9 ln(2/δ)

2nta

=: ϵ(ĥ, nta, δ),

furthermore, the total generalization error can be upper bounded by

Eta(f̂ta ◦ ĥ) ≤ inf
f∈Fta

Eta(f, ĥ)︸ ︷︷ ︸
approximation error

+ ϵ(ĥ, nta, δ)︸ ︷︷ ︸
generalization error over Fta◦ĥ

. (2.2)

Theorem 2.6 is stated in terms of Gaussian complexity. It is more common to use

Radamecher complexity, which can be upper bounded by
√
2π of the corresponding Gaussian

complexity. For the generalization bound in terms of Rademacher complexity, Theorem 26.5

of Shalev-Shwartz and Ben-David (2014) has a full proof. Then recall that Yt and Yta ⊂ [0, 1],

we get rid of the loss function by the contraction lemma, which leads to Theorem 2.6. The

result follows by the definition,

inf
f∈Fta

Eta(f, ĥ) ≤
inffta∈Fta Eta(fta, ĥ)

inffso∈F⊗S
so
Eso(fso, ĥ) + µ/ν

(Eso(f̂so, ĥ) + µ/ν) ≤ νEso(f̂so, ĥ) + µ.
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Proof of Theorem 2.2

Proof. To show f ∗
so is (L, 0)-transferable to f ∗

ta, we bound the approximation error of the

target task given any fixed h ∈ H.

Eta(f ∗
ta, h)

= EX,Y [lta(f
∗
ta ◦ h(X), Y )− lta(f ∗

ta ◦ h∗(X), Y )]

= EX∥f ∗
ta ◦ h(X)− f ∗

ta ◦ h∗(X)∥22
≤ LEX∥h(X)− h∗(X)∥22. (2.3)

Now using Assumption 2.1, we have

Eso(h) = EX,Y [lso(h(X), Y )− lso(h∗(X), Y )]

= EX∥h∗(X)− h(X)∥22

Combined with Equation (2.3), we have suph∈H[Eta(f ∗
ta, h)/Eso(h)] ≤ L.

Firstly, using Theorem 2.6 on source tasks solely, we have Eso(ĥ) = Õ(Ĝnso(G)/
√
nso).

Definition 2.1 gives us

inf
f∈Fta

Eta(f, ĥ) ≤ LEso(ĥ) = Õ(LĜnso(G)/
√
nso).

Combined with (2.2), we have

Eta
(
f̂ta, ĥ

)
= Õ

LĜnso(G)√
nso

+
Ĝnta

(
Fta ◦ ĥ

)
√
nta

 .

Proof of Theorem 2.3

Proof. Let f ∗
ta(x) = f ′∗

ta(f
∗
1 ◦ h∗(x), . . . f ∗

m ◦ h∗(x)). Define new tasks t1, . . . tm. Each ti has

the prediction function f ∗
i .

By Definition 2.1, the source tasks are (ν, µ)-transferable to each ti. By Theorem 2.1, we

have

inf
fi∈Fso

Eti(fi, ĥ) ≤ νEso(f̂so, ĥ) + µ.
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Since we use L2 loss,

inf
fi∈Fso

EX∥fi ◦ ĥ(X)− f ∗
i ◦ h∗(X)∥22 = inf

fi∈Fso

Eti(fi, ĥ) ≤ νEso(f̂so, ĥ) + µ.

As this holds for all i ∈ [m], we have

inf
f1,...,fm∈Fso

EX∥(f1◦ĥ(X), . . . , fm◦ĥ(X))−(f ∗
1 ◦h∗(X), . . . , f ∗

m◦ĥ∗(X))∥22 ≤ m(νEso(f̂so, ĥ)+µ).

Using Assumption 2.2, we have

inf
f∈Fta

Eta(f, ĥ) ≤ L′m(νEso(f̂so, ĥ) + µ).

Theorem 2.3 follows by plugging this into (2.2).

Proof of Corollary 2.1 This section we prove Corollary 2.1 using Theorem 2.3, the

standard bound for Gaussian complexity of DNN model and the Gaussian complexity de-

composition from Tripuraneni et al. (2020).

The following theorem bounds the Rademacher complexity of a deep neural network

model given an input dataset XN = (x1, . . . ,xN)
T ∈ RN×d.

Theorem 2.7 (Golowich et al. (2018)). Let σ be a 1-Lipschitz activation function with

σ(0) = 0. Recall that MK is the depth K neural network with d-dimensional output

with bounded input ∥xji∥ ≤ DZ and ∥Wk∥∞ ≤ M(k) for all k ∈ [K]. Recall that

L =
{
x 7→ αTx+ β : ∀α ∈ Rp, ∥α∥2 ≤M(α)

}
is the linear class following the depth-K neural

network. Then,

Rn(L ◦MK ;XN) ≤
2DZ

√
K + 2 + log d ·M(α)ΠK

k=1M(k)√
n

.

Since for any function class F , Ĝn(F) ≤ 2
√
log n · R̂n(F), we also have the bound for the

Gaussian complexity under the same conditions.

Applying Theorem 2.7, we have an upper bound for the second term in Theorem 2.3:

Ĝnta

(
Fta ◦ ĥ

)
√
nta

≤

2DZ

√
log(nta)

√
Kta + 2 + log(d)MαΠ

Kta
k=1M(k)

√
nta

= Õ
(
DZ

√
KtaM(α)ΠKta

k=1M(k)
√
nta

)
.

It only remains to bound ĜTnso

(
F⊗T

so ◦ H
)
/
√
Tnso in Theorem 2.3. To proceed, we
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introduce the decomposition theorem for Gaussian complexity (Tripuraneni et al., 2020).

Theorem 2.8 (Theorem 7 in Tripuraneni et al. (2020)). Let the function class F consist of

functions that are L(F)-Lipschitz and have boundedness parameter DX = supf,f ′,x,x′ ∥f(x)−
f ′(x′)∥2. Further, define Q = {h(X̄) : h ∈ H, X̄ ∈ ∪Tj=1{Xj}}. Then the Gaussian complex-

ity of the function class F⊗T (H) satisfies,

ĜX

(
F⊗T (H)

)
≤ 4DX

(nT )3/2
+ 128C

(
F⊗T (H)

)
· log(nT ),

where C (F⊗t(H)) = L(F)ĜX(H) + maxq∈Q Ĝq(F).

With Theorem 2.8 applied, we have

ĜTnso

(
F⊗T

so ◦ H
)

√
Tnso

≤ 8DX

(Tnso)2
+
128

(
L(Fso)ĜTnso(H) + maxq∈Q Ĝq(Fso)

)
· log(Tnso)

√
Tnso

. (2.4)

The second term relies on the Lipschitz constant of DNN, which we bound with the

following lemma. Similar results are given by Scaman and Virmaux (2018); Fazlyab et al.

(2019).

Lemma 2.1. If the activation function is 1-Lipschitz, any function in L ◦ MK is

M(α)ΠK
k=1M(k)-Lipschitz with respect to L2 distance.

Proof. The linear mapping x 7→ Wkx is ∥Wk∥2-Lipschitz. Combined with the Lipschitz

of activation function we have σ(Wkx) is also ∥Wk∥2-Lipschitz. Then the composition of

different layers has Lipschitz constant ΠkMk. The Lemma follows by adding the Lipschitz

of the last linear mapping.

Thus, we have

L(Fso) ≤M(α)ΠKso
k=1M(k).

By Theorem 2.7,

max
q∈Q

Ĝq(Fso) = Õ(
DZ

√
KsoM(α)ΠKso

k=1M(k)
√
nso

).

Plug the above two equations into (2.4), we have

ĜTnso

(
F⊗T

so ◦ H
)

√
Tnso

= Õ

(
DX

(Tnso)2
+M(α)ΠKso

k=1M(k)(
ĜTnso(H)√

Tnso

+
DZ

√
Kso√
nso

)

)
,

where DX = sup(h,f,x),(h′,f ′,x′)∈H×Fso×X ∥h ◦ f(x)− h′ ◦ f ′(x′)∥.
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Lemma 2.2. The boundedness parameter DX satisfies DX ≤ DZM(α)ΠKso
k=1M(k).

Proof. The proof is given by induction. Let rk denote the vector-valued output of the k-th

layer of the prediction function. First note that

DX ≤ 2 sup
f∈Fso,z∈Z

∥f(z)∥2 ≤ 2M(α)∥rKso∥2.

For each output of the k-th layer, we have

∥rk∥2 = ∥σ(Wkrk−1)∥2 ≤ ∥Wkrk−1∥22 ≤ ∥Wk∥22∥rk−1∥22,

where the first inequality is by the 1-Lipschitz of the activation function. By induction, we

have

DX ≤ 2DZM(α)ΠKso
k=1M(k).

Recall that Fta = L ◦ MKta−Kso−1 ◦ (F⊗p
so ) and the Lipschitz constant L′ ≤

M(α)ΠKta
Kso+2M(k). Using Theorem 2.3 and apply Lemma 2.2, we have

Eta
(
f̂ta, ĥ

)
=

Õ

(
pνΠKta

k=Kso+2M(k)

(
M(α)ΠKso

k=1M(k)(
ĜTnso(H)√

Tnso

+
DZ

√
Kso√
nso

)

)
+
DZ

√
Kta ·M(α)ΠKta

k=1M(k)
√
nta

)
.

Lower bound results for the diversity of depth-1 NN We first give the proof using

ReLu activation function (Theorem 2.4), as the result is more intuitive before we extend the

similar results to other activation functions.

Proof. As we consider arbitrary representation function and covariate distribution, for sim-

plicity we write X ′ = h∗(X) and Y ′ = h(X).

We consider a subset of depth-1 neural networks with ReLu activation function: F =

{x 7→ [⟨x,w⟩ − (1− ϵ/4)]+ : ∥x∥2 ≤ 1, ∥w∥ ≤ 1}. Let fw be the function with parameter w.

Consider U ⊂ {x : ∥x∥2 = 1} such that ⟨u, v⟩ ≤ 1− ϵ for all u, v ∈ U, u ̸= v.

Lemma 2.3. For any T ⊂ F , |T | ≤ ⌊|U |/2⌋, there exists a V ⊂ U , |V | ≥ ⌊|U |/2⌋ such that

any f ∈ T , f(v) = 0 for all v ∈ V .

Proof. For any set T , let UT = {u : ∃t ∈ T , u ∈ argmaxu∈U⟨u, ft⟩} be a subset of U . Thus,

|UT | ≤ T ≤ ⌊|U |/2⌋. Let V = U \ UT .
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For any f ∈ T , let uf be its closed point in U . Let vf be its closed point in V . Let θf

be the angle between uf and vf . By the definition of U , we have cos(θf ) = ⟨uf , vf⟩ ≤ 1− ϵ.
We will show that ⟨f, vf⟩ ≤ 1− ϵ/4.

Note that since ⟨f, vf⟩ ≤ ⟨f, uf⟩, we have the angle between f and v is larger than θf/2.

By the simple fact that cos(θf/2) ≤ 1 − (1 − cos(θf ))/4, we have ⟨f, vf⟩ ≤ 1 − ϵ/4. Thus,

f(vf ) = 0 and f(v) = 0 for all v ∈ V .

For any set of prediction functions in source tasks, let V be the set defined in the above

lemma. Consider any u ∈ U \ V and let V ′ = U \ (V ∪ u). By this construction, we have

fu(u) = ϵ/4, while all f ∈ T , f(u) = 0. Note that

inf
f∈F

1

|V ′|
∑
x∈V ′

(fu(u)− f(x))2 ≥
|V ′| − 1

16|V ′|
ϵ2 ≥ 1

32
ϵ2,

while ∑
f∈T

1

|V ′|
∑
x∈V ′

(f(u)− f(x))2 = 0.

Thus, we let X ′ = u almost surely and Y ′ follows a uniform distribution over V ′. This

is true when the covariate distribution is the same as Y ′ and h = x 7→ x and h∗ = x 7→ u.

Recalling the definition of diversity, we have

inf
f∈F

EX′,Y ′(fu(X
′)− f(Y ′))2 = ϵ2/32 and

1

T

∑
ft∈T

inf
f ′
t∈F

EX′,Y ′(fs(X
′)− f ′

s(Y
′))2 = 0.

Note that the same result holds when the bias b ≤ −(1 − ϵ/4). For general bounded

∥b∥2 ≤ 1, one can add an extra coordinate in x as an offset.

In Theorem 2.4, we show that in depth-1 neural network with ReLu activation function,

we will need exponentially many source tasks to achieve diversity. Similar results can be

shown for other non-linear activation functions that satisfies the following condition:

Assumption 2.3. Let σ : R 7→ R be an activation function. We assume there exists x1, x2 ∈
R, x1 > x2, such that |σ(x1)| ≥ supx≤x2

|σ(x)|M for some M > 0.

ReLu satisfies the assumption with any M > 0 for any x1 > 0 and x2 ≤ 0. Also note

that any continuous activation function that is lower bounded and increasing satisfies this

assumption.

Theorem 2.9. Let σ satisfies the above assumption with M for some x1 and x2. Let F =

{x 7→ σ(8(x1 − x2)⟨x,w⟩ − 7x1 + 8x2)) : ∥x∥2 ≤ 1, ∥w∥2 ≤ 1}. Let T = {f1, . . . , fT} be

28



any set of depth-1 neural networks with ReLu activation in F . If T ≤ 2d log(2)−1, there exists

some representation h∗, h′ ∈ H, some distribution PX and a target function f ∗
ta ∈ F , such

that
inff∈F Eta(f, h′)
inff∈F Eso(f , h′)

≥ (M − 1)2

8
.

Proof. We follow the construction in the proof of Theorem 2.9, fix an ϵ = 1/2 and let

U ⊂ {x : ∥x∥2 = 1} such that ⟨u, v⟩ ≤ 1− ϵ for all u, v ∈ U, u ̸= v.

For any source tasks set T , let UT = {u : ∃t ∈ T , u ∈ argmaxu∈U⟨u, ft⟩} be a subset of

U . Thus, |UT | ≤ T ≤ ⌊|U |/2⌋. Let V = U \ UT . For any f ∈ T , v ∈ V , similarly to the

previous argument, we have ⟨f, v⟩ ≤ 1− ϵ/4 = 1/8. Therefore, ⟨f, v⟩ ≤ 1− ϵ/4 = 1/8 ≤ x2.

For any set of prediction functions in source tasks, let V be the set defined in the above

lemma. Consider any u ∈ U \ V and let V ′ = U \ (V ∪ u). By this construction, we have

fu(u) = σ(x1), while all f ∈ T , f(u) = σ(x2). Note that

inf
f∈F

1

|V ′|
∑
x∈V ′

(fu(u)− f(x))2 ≥
|V ′| − 1

|V ′|
≥ 1

2
(σ(x1)− σ(x2))2,

while ∑
f∈T

1

|V ′|
∑
x∈V ′

(f(u)− f(x))2 ≤ 4 sup
x≤x2

σ(x2)
2.

Thus
inff∈F

1
|V ′|
∑

x∈V ′(fu(u)− f(x))2∑
f∈T

1
|V ′|
∑

x∈V ′(f(u)− f(x))2
≥ (M − 1)2

8

Proof of Theorem 2.5

Proof. Since dims(F∗) is at least dE, for any set {f1, . . . , ft}, there exists a ft+1 that is

(F∗, ϵ)-independent of {f1, . . . , ft}. By definition, we have

∃x1, x2 ∈ X ,
t∑

i=1

∥fi(x1)− fi(x2)∥22 ≤ ϵ2, while ∥ft+1(x1)− ft+1(x2)∥22 ≥ ϵ2.

We only need to construct appropriate data distribution PX and representation g, g∗ to

finish the proof. As we do not make any assumption on g, g∗ and PX , it would be simple to

let X1 = g(X) and X2 = g∗(X).

We let the distribution of X1 be the point mass on x1. Let X2 be the uniform distribution

over {x1, x2}.
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For the excess error of source tasks, we have

inf
f ′
1,...,f

′
t

t∑
i=1

EX1,X2∥f ′
i(X1)− fi(X2)∥22

≤
t∑

i=1

EX1,X2∥fi(X1)− fi(X2)∥22

=
t∑

i=1

1

2
∥fi(x1)− fi(x2)∥22 ≤

ϵ2

2
.

For the excess error of the target task ft+1, we have

inf
f ′
t+1∈F

EX∥f ′
t+1(X1)− ft+1(X2)∥22

= inf
f ′
t+1∈F

[
1

2
∥f ′

t+1(x1)− ft+1(x2)∥22 +
1

2
∥f ′

t+1(x1)− ft+1(x1)∥22]

≥ inf
a∈R

[
1

2
∥a− ft+1(x2)∥22 +

1

2
∥a− ft+1(x1)∥22]

=
1

4
∥ft+1(x1)− ft+1(x2)∥22 ≥

ϵ2

4
.

The statement follows.

Extending to general loss functions In all the above analyses, we assume the square

loss function for both source and target tasks. We first show that diversity under square loss

implies diversity under any convex loss function. Let ∇l(x, y) be the gradient of function

∇l(·, y) evaluated at x.

Lemma 2.4. Any task set F that is (ν, µ)-diverse over any prediction space under square

loss is also (ν/c1, µ/c1)-diverse over the same space under loss l, if l is c1 strongly-convex

and for all x ∈ X
E[∇l(g∗(X), Y ) | X = x] = 0 (2.5)

Proof. Using the definition of the strongly convex and (2.5),

EX,Y [l(ft ◦ h(X), Y )− l(f ∗
t ◦ h∗(X), Y )]

≥ EX,Y [∇l (f ∗
t ◦ h∗(X), Y )T (f ∗

t ◦ h∗(X)− ft ◦ h(X)) + c1 ∥f ∗
t ◦ h∗(X)− ft ◦ h(X)∥22]

= c1EX,Y [∥f ∗
t ◦ h∗(X)− ft ◦ h(X)∥22],

which is the generalization error under the square loss.
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Note that Equation (2.5), is a common assumption made in various analyses of stochastic

gradient descent (Jin et al., 2021b).

On the other direction, we show that any established diversity over the target task with

square loss also implies the diversity over the same target task with any loss l if ∇2l ≻ c2I

for some c2 > 0.

Lemma 2.5. Any task set F that is (ν, µ)-diverse over a target prediction space under

square loss is also (νc2, µc2)-diverse over the same space under loss l, if ∇2l(·, y) ≻ c2I for

all y ∈ Yta and for all x ∈ X we have E[∇l(g∗(X), Y ) | X = x] = 0.

Proof. The proof is the same as the proof above except for changing the direction of inequal-

ity. Using the definition of the strongly convex and (2.5),

EX,Y [l(ft ◦ h(X), Y )− l(f ∗
t ◦ h∗(X), Y )]

≤ EX,Y [∇l (f ∗
t ◦ h∗(X), Y )T (f ∗

t ◦ h∗(X)− ft ◦ h(X)) + c2 ∥f ∗
t ◦ h∗(X)− ft ◦ h(X)∥22]

= c2EX,Y [∥f ∗
t ◦ h∗(X)− ft ◦ h(X)∥22],

which is the generalization error under the square loss.

Missing proofs in Section 6 Assume we have T tasks, which is (ν, µ)-diverse over Fso,

and Yso ⊂ R. Then we can construct a new source task so with multivariate outputs, i.e.

Yso ⊂ RT , such that Hso = F⊗T
so and each dimension k on the output, given an input x, is

generated by

Yk(X) = f ∗
k ◦ h∗(X) + ϵ.

Intuitively, this task is equivalent to T source tasks of a single output, which is formally

described in the following Theorem.

Theorem 2.10. Let so be a source task with Yso ⊂ RK and f ∗
so(·) = (m∗

1(·), . . . ,m∗
K(·)) for

some classM : Z 7→ R. Then if the task set t1, . . . , tK with prediction functions m∗
1, . . . ,m

∗
K

from hypothesis class M is (ν, µ)-diverse over M, then so is ( ν
K
, µ
K
)-diverse over the same

class.

Proof. This can be derived directly from the definition of diversity. We use t to denote the
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new task. By definition,

inf
fso∈Fso

Eso(fso, h) = inf
hso

EX∥(m1 ◦ (X), . . . ,mK ◦ h(X))− (m∗
1 ◦ h∗(X), . . . ,m∗

K ◦ h∗(X))∥22

=
K∑
k=1

inf
mk∈M

∥mk ◦ h(X)−m∗
k ◦ h∗(X)∥22

=
K∑
k=1

inf
mk∈M

Etk(ftk , h)

As (t1, . . . , tK) is (ν, µ)-diverse, we have

supm∗∈M infm∈M Em∗(m,h)

infhso∈Fso Eso(fso, h) + µ/ν
=

1

K

supm∗∈M infm∈M Em∗(m,h)
1
K

∑K
k=1 infmk∈M Etk(hk, h) +

µ
νK

≤ ν

K
.

For the multiclass classification problem, we try to explain the success of the pretrained

model on ImageNet, a single multi-class classification task. For a classification problem with

K-levels, a common way is to train a model that outputs a K-dimensional vector, upon

which a Softmax function is applied to give the final classification result. A popular choice

of the loss function is the cross-entropy loss.

Now we formally introduce our model. Let the Softmax function be q : RK 7→ [0, 1]K .

Assume our response variable y ∈ RK is sampled from a multinomial distribution with mean

function q(f ∗
so ◦ h∗(x)) ∈ [0, 1]K , where h∗ ∈ H : X 7→ Z and f ∗

so ∈ Fso : Z 7→ RK . We use

the cross-entropy loss l : [0, 1]K × [0, 1]K 7→ R, l(p, q) = −
∑K

k=1 pk log(qk).

Assumption 2.4. [Boundedness] We assume that any f ◦ h(x) ∈ Fso × H is bounded

in [− log(B), log(B)] for some constant positive B. We also assume the true function

mink U(f
∗ ◦ h∗(x))k ≥ 1/B∗ for some B∗ > 0.

Theorem 2.11. Under Assumption 2.4, a K-class classification problem with f ∗
so(·) =

(m∗
1(·), . . . ,m∗

K(·)) for some m∗
1, . . . ,m

∗
K ∈ M and Softmax-cross-entropy loss function is

(2B2
∗B

4ν,B2
∗µ)-diverse over any the function class M as long as f ∗

so with L2 loss is (ν, µ)-

diverse overM.

Proof. We consider any target task with prediction function from M⊗K′
. Let U : RK′ 7→

[0, 1]K
′
be the softmax function. We first try to remove the cross-entropy loss. By definition,
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the generalization error of any f ◦ h ∈M⊗K′ ×H is

Eta(f ◦ h)− Eta(h∗ ◦ h∗)

= EX,Y [−
K′∑
i=1

1(Y = i) log(
U(f ◦ h)
U(f ∗ ◦ h∗)

)]

= EX [−
K′∑
i=1

U(f ∗ ◦ h∗) log( U(f ◦ h)
U(f ∗ ◦ h∗)

)], (2.6)

which gives us the KL-divergence between two distributions U(f ◦ h) and U(f ∗ ◦ h∗).

Lemma 2.6. For any two discrete distributions p, q ∈ [0, 1]K, we have

KL(p, q) ≥ 1

2
(

K∑
i=1

|p− q|)2 ≥ 1

2

K∑
i=1

(pi − qi)2.

On the other hand, if mini pi ≥ b for some positive b, then

KL(p, q) ≤ 1

b2

K′∑
i=1

(pi − qi)2.

Proof. The first inequality is from Theorem 2 in Dragomir and Gluscevic (2000). The second

inequality is by simple calculus.

By the assumption 2.4, we have that for any h, g, x,

U(f ◦ h(x))i ∈ [
1

KB2
,

1

1 + (K − 1)/B2
].
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We also have
∑K

i=1 exp(f ◦ h(x)i) ∈ [K/B,KB]. To proceed,

supf∗
ta∈M⊗Kta inf f̂ta Eta(f̂ta ◦ h)− Eta(f

∗
ta ◦ h∗)

inf f̂so∈M⊗Kso Eso(f̂so ◦ h)− Eso(f ∗
so ◦ h∗) +

B2
∗µ

2B2
∗B

4ν

(Applying (2.6) and Lemma 2.6)

≤ 2B2
∗
supf∗

ta∈M⊗Kta inf f̂ta EX∥U(f̂ta ◦ h(X))− U(f ∗
ta ◦ h∗(X))∥22

inf f̂so∈M⊗Kso EX∥U(f̂so ◦ h(X))− U(f ∗
so ◦ h∗(X))∥22 +

µ
B4ν

(Using the boundedness of
K∑
i=1

exp (f ◦ h(x)i))

≤ 2B2
∗B

2
supf∗

ta∈M⊗Kta inf f̂ta EX∥ exp(f̂ta ◦ h(X))− exp(f ∗
ta ◦ h∗(X))∥22

inf f̂so∈M⊗Kso EX∥ exp(f̂so ◦ h(X))− exp(f ∗
so ◦ h∗(X))∥22 +

µ
B2ν

(Using the Lipschitz and convexity of exp)

≤ 2B2
∗B

4
supf∗

ta∈M⊗Kta inf f̂ta EX∥f̂ta ◦ h(X)− f ∗
ta ◦ h∗(X)∥22

inf f̂so∈M⊗Kso EX∥f̂so ◦ h(X)− f ∗
so ◦ h∗(X)∥22 + µ/ν

≤ 2B2
∗B

4ν.

The diversity follows.

2.B Experimental details

Each dimension of inputs is generated from N (0, 1). We use Adam with default parameters

for all the training with a learning rate 0.001. We choose ReLu as the activation function.

True parameters. The true parameters are initialized in the following way. All the biases

are set by 0. The weights in the shared representation are sampled from N (0, 1/
√
nu). The

weights in the prediction function for the source task are set to be orthonormal when Kso = 1

and p ≤ nu. For the target prediction function or source prediction function if Kso > 1, the

weights are sampled from N (0, 1/
√
nu) as in the representation part.

Hyperparameters. Without further mentioning, we use the number of hidden units, nu =

4, input dimension p = 4, K = 5, Kta = Kso = 1, the number of observations nso = 1000

and nta = 100 by default. Note that since p is set to be 4 by default, equivalently we will

have nso · p = 4000 observations.
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CHAPTER 3

Adaptive Task Scheduling

In the previous chapter, we consider the setting where the task set and the number of

observations from each task are given to the algorithm. We show that if the task set is diverse,

we can give strong generalization error guarantee. However, it might occurs in practice that

one is given a sufficiently large task set and a simple random choice of tasks does not lead

to diversity. For example, if one have T tasks with T ≫ d in a linear representation learning

setting with linear prediction functions. Consider a hard case, where all T −d tasks have the

same coefficient for the prediction function, while the rest of the d tasks satisfy the diversity

condition. If one have total number of observations N equally allocated for different tasks,

we have a small ν, aka. bad diversity. However, there exists a potentially good allocation

that achieves diversity. The question is whether we can adaptively choose tasks (when they

are unknown) to achieve that optimal rate.

To this end, we study curriculum learning (CL), a commonly used machine learning

training strategy that tries to improve the performance by adaptively choosing good tasks

for learning. We study CL in the multitask linear regression problem under both structured

and unstructured settings. For both settings, we derive the minimax rates for CL with the

oracle that provides the optimal curriculum and without the oracle, where the agent has

to adaptively learn a good curriculum. Our results reveal that adaptive learning can be

fundamentally harder than the oracle learning in the unstructured setting, but it merely

introduces a small extra term in the structured setting. To connect theory with practice,

we provide justification for a popular empirical method that selects tasks with highest local

prediction gain by comparing its guarantees with the minimax rates mentioned above. 1

1This chapter is based on my paper (Xu and Tewari, 2022) with Ambuj Tewari published at ICML 2022.
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3.1 Introduction

It has long been realized that we can design more efficient learning algorithms if we can make

them learn on multiple tasks. Transfer learning, multitask learning and meta-learning are

just few of the sub-areas of machine learning where this idea has been pursued vigorously.

Often the goal is to minimize the weighted average losses over a set of tasks that are expected

to be similar. While previous literature often assumes a predetermined (and often equal)

number of observations for all the tasks, in many applications, we are allowed to decide

the order in which the tasks are presented and the number of observations from each task.

Any strategy that tries to improve the performance with a better task scheduling is usually

referred to curriculum learning (CL) (Bengio et al., 2009). The agent that schedules

tasks at each step is often referred as the task scheduler.

Though curriculum learning has been extensively used in modern machine learning (Gong

et al., 2016a; Sachan and Xing, 2016; Tang et al., 2018; Narvekar et al., 2020), there is very

little theoretical understanding of the actual benefits of CL. We also do not know whether

the heuristic methods used in many empirical studies can be theoretically justified. Even

the problem itself has not been rigorously formulated. To address these challenges, we first

formulate the curriculum learning problem in the context of the linear regression problem.

We analyze the minimax optimal rate of CL in two settings: an unstructured setting where

parameters of different tasks are arbitrary and a structured setting where they have a low-

rank structure. Finally we discuss the theoretical justification of a popular heuristic task

scheduler that greedily selects tasks with highest local prediction gain.

Related literature. Despite the lack of the literature on curriculum learning theory, we

found the following problems under a similar setting. Active learning (Settles, 2009, 2011),

addresses the problem of actively selecting unlabeled data points to maximize model accu-

racy. Active learning can be treated as a curriculum learning when each unlabeled point is a

task with point mass. Active learning has also been used for domain adaptation or transfer

learning setting Persello and Bruzzone (2012). Multi-source domain adaptation Wang and

Deng (2018); Sun et al. (2015) also considers multiple candidate source domains for a given

target task. Bhatt et al. (2016) proposed an iterative adaptation methods to integrate the

source data from each domain. However, such adaptive procedure has not been theoretically

understood.
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3.2 Background

We would like to point out previous work on three crucial aspects of CL: two types of benefits

one may expect from CL, task similarities assumptions, and task scheduler used in empirical

studies.

Two types of benefits. There are two distinct ways to understand the benefits of CL.

From the perspective of optimization, some papers argue that the benefits of curriculum can

be interpreted as learning from more convex and more smooth objective functions, which

serves as a better initialization point for the non-convex target objective function (Bengio

et al., 2009). The order of task scheduling is essential here. As an example, Figure 3.1

shows the objective functions of a problem with four source tasks and one target task with

increasing difficulty (non-convexity). Directly minimizing the target task (marked in purple

line) using gradient descent can be hard due to the non-convexity. However, the simple

gradient descent algorithm can converge to the global optima of the current task if it starts

from the global optima of the previous task. We refer to the benefit that involves a faster

convergence in optimization as optimization benefit. Optimization benefits highly depend

on the order of scheduling. Generally speaking, if one directly considers the empirical risk

minimizer (ERM) which requires global minimization of empirical risk, there may not be

any optimization benefit.

The second type of benefit concerns the benefit brought by carefully choosing the number

of observations from each task while independent of the order, which we call statistical

benefit. For example, we have two linear regression problems that are identical except for

the standard deviation of the Gaussian noise on response variables. If we consider the OLS

estimator on the joint dataset of the two tasks, there is a reduction in noise level when more

samples are allocated to the task with a lower level, and the benefit is independent of the

order by the nature of OLS. A statistical benefit can be seen as any benefit one can get except

for the reduction in the difficulties of optimization. Weinshall and Amir (2020) focused on a

special curriculum learning task where each sample is considered a task and they analyzed

the error rate on the samples of different noise levels. They analyzed the benefits on the

error rate of linear models, whose global minimizer can be easily found. Thus, it should also

count as the statistical benefits.

In general, the two types of benefits can coexist. A good curriculum should account

for both the non-convexity and the noise levels. However, due to the significantly different

underlying mechanism in the two learning benefits. it is natural to study them separately.

This chapter will focus on the analysis of the statistical benefits. Thus, we analyze

37



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

1

2

3

4

Target

Figure 3.1: An example of tasks with increasing non-convexity. Solid lines of different colors
represent the true object functions of different tasks.
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algorithms that map datasets to an estimator for each task that may involve finding global

minima of the empirical errors for non-convex functions.

Similarity assumptions. We discussed the problem with two almost identical tasks,

where we can achieve perfect transfer and the trivial curriculum that allocates all the samples

to the simpler task is optimal. However, tasks are generally not identical. Understanding

how much benefits the target task can gain from learning source tasks has been a central

problem in transfer learning and multitask learning literature. The key is to propose mean-

ingful similarity assumptions.

Let X and Y be the input and output space. Assume we have T tasks with data distri-

butions D1 . . . , DT over X × Y . Let (Xt, Yt) be a sample from task t. Let ft = E[Yt | Xt],

a mapping X 7→ Y , be the mean function. In this chapter, we adopt the simple parametric

model on the mean function with ft represented by parameter θ∗t ∈ Rd.

We consider two scenarios: structured and unstructured. In Section 3.3, we adopt simple

linear regression models and do not assume any further internal structure on the true param-

eters. Two tasks are similar if ∥θ∗t1−θ
∗
t2
∥2 is small. A learned parameter is directly transferred

to the target task. This setting has been applied in many previous studies (Yao et al., 2018;

Bengio et al., 2009; Xu et al., 2021). In Section 3.4, we study the multitask representation

learning setting (Maurer et al., 2016; Tripuraneni et al., 2020; Xu and Tewari, 2021), where

a stronger internal structure is assumed. To be specific, we write ft(x) = xTB∗β∗
t , where

x ∈ Rd, B∗ ∈ Rd×k is the linear representation mapping and β∗
t ∈ Rk is the task specific

parameter. Generally, the input dimension is much larger than the representation dimension

(d≫ k).

These two settings, while representative, do not exhaust all of the settings in the literature.

We refer the reader to Teshima et al. (2020) for a brief summary of theoretical assumptions

on the task similarity.

Task schedulers. Many empirical methods have been developed to automatically schedule

tasks. Liu et al. (2020) designed various heuristic strategies for task selection for computer

vision tasks. Cioba et al. (2021) discussed several meta-learning scenarios where the optimal

data allocations are different, which interestingly aligns with our theoretical results. For

a more general use, one major family of task scheduler is based on the intuition that the

task scheduler should select the task that leads to the highest local gain on the target loss

(Graves et al., 2017). Since the accurate prediction gain is not accessible, online decision-

making algorithms (bandit and reinforcement learning) are frequently used to adaptively

allocate samples (Narvekar et al., 2020). However, there is no theoretical guarantee that
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such greedy algorithms can lead to the optimal curriculum.

Notation. For any positive integer n, we let [n] = {1, . . . , n}. We use the standard

O(·),Ω(·) and Θ(·) notation to hide universal constant factors. We also use a ≲ b and

a ≳ b to indicate a = O(b) and b = Ω(b).

3.3 Unstructured Linear Regression

In this section, we study the problem of learning from T tasks to generate an estimate for a

single target task.

3.3.1 Formulations

We consider linear regression tasks. Let 1 . . . , T denote T tasks. Let θ∗t ∈ Rd denote the true

parameter of task t. The response Yt of task t is generated in the following manner

Yt = XT
t θ

∗
t + ϵt,

where ϵt is assumed to be the Gaussian noise with E[ϵ2t ] = σ2
t and Xt ∼ N (0,Σt), where

Σt ∈ Rd×d is the covariance matrix that is positive definite. Any task, therefore, can be fully

represented by a triple (θ∗t , σt,Σt).

Throughout the chapter, we are more interested in the unknown parameters rather than

the covariate distribution or the noise level. We simply denote θ∗ ∈ Rd×T the parameters of

a problem (T tasks) and let θ∗
t be the t-th column of the matrix.

We make a uniform assumption on the covariance matrix of input variables. The same

assumption is also used by Du et al. (2020).

Assumption 3.1 (Coverage of covariate distribution). We assume that all C0Id ≻ Σt ≻ C1Id

for some constant C0, C1 > 0 and any t ∈ [T ].

Goal. Let Sn
t be random n samples from task t. Let l : R × R 7→ R be a loss function

and Lt(θ) = E[l(XT θ, Y )] be the expected loss of a given hypothesis θ evaluated on task t.

Moreover, we denote the excess risk by

Gt(θ) = Lt(θ)− inf
θ′
Lt(θ

′).

Our goal in this section is to minimize the expected loss of the last task T , which we call

the target task. Throughout the chapter, we use square loss function.
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Transfer distance. Algorithms tend to perform better when the tasks are similar to each

other, such that any observations collected from non-target task bear less transfer bias. We

define transfer distance between tasks t1, t2 as ∆t1,t2 = ∥θ∗t1 − θ
∗
t2
∥2.

It is not fair to compare the performances between problems with different transfer dis-

tances. To study a minimax rate, we are interested in the worst performance over a set of

problems with similar transfer distance. Let Q ∈ RT be the distance vector encoding the

upper bounds on the distance between the target task to any task. We define the hypothesis

set with known transfer distance as Θ(Q) = {θ∗ : ∥θ∗
t −θ∗

T∥2 ≤ Qt} ⊂ RT×d. The hypothesis

set with unknown transfer distance can be defined as Θ̃(Q) = ∪p{θ∗ : ∥θ∗
t − θ∗

T∥2 ≤ Qpt},
where p ∈ [T ]T is any permutation of [T ]. We say this hypothesis set has unknown transfer

distance because even if there exists some small Qt such that the transfer distance is low,

an agent does not know which task has the low transfer distance.

Curriculum learning and task scheduler. In this chapter, we concern only the statis-

tical learning benefits. Since the order of selecting tasks does not affect the outcome of the

algorithm, we denote a curriculum by c ∈ [N ]T , where each ct is the total number of obser-

vations from task t and
∑

t ct = N . Note that c can consist of random variables depending

on the task scheduler. The set of all the curriculum with a total number of observations N

is denoted by CN = {c ∈ [N ]T :
∑

t ct = N}.
Any curriculum learning involves a multitask learning algorithm, which is defined as a

mapping A from a set of datasets (Sn1
1 , . . . , S

nT
T ) to a hypothesis θ for the target task.

A task scheduler runs the following procedure. At the start of the step i ∈ [N ], we

have ni,1, . . . , ni,T observations from each task. The task scheduler T at step i is defined

as a mapping from the past observations (S
ni,1

1 , . . . , S
ni,T

T ) to a task index. Then a new

observation from the selected task T (Sni,1

1 , . . . , S
ni,T

T ) ∈ [T ] is sampled.

Minimax optimality and adaptivity. One of the goals of this chapter is to understand

the minimax rate of the excess risk on the target task over all the possible combinations of

multitask learning algorithms and task schedulers. We first attempt to understand a limit

of that rate by considering an oracle scenario that provides the optimal curriculum for any

problem.

Rigorously, we denote the loss of a fixed curriculum c ∈ CN with respect to a fixed

algorithm A and problem θ by

RN
T (c,A | θ) = ES

c1
1 ,...,S

cT
T
GT (A(Sc1

1 , . . . , S
cT
T )).

We define the following oracle rate, which takes infimum over all the possible fixed cur-
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riculum designs given a fixed task set with different θ in a hypothesis set Θ.

RN
T (Θ) := inf

A
sup
θ∈Θ

inf
c∈CN

RN
T (c,A | θ). (3.1)

In general, the above oracle rate considers an ideal case, because the optimal curriculum

depends on the unknown problem and any learning algorithm has to adaptively learn the

problem to decide the optimal curriculum.

We ask the following question: can adaptively learned curriculum perform as well as the

optimal one as in Equ. (3.1)? To answer the question, we define the minimax rate for

adaptive learning:

R̃N
T (Θ) := inf

A
inf
T

sup
θ∈Θ

EGT (A(S
cT ,1

1 , . . . , S
cT ,T

T )), (3.2)

where cT ∈ CN is the curriculum adaptively selected by the task scheduler T and the

expectation is taken over both datasets S1, . . . , ST and cT .

In this section, we are interested in the oracle rate in (3.1) compared to some naive

strategy that allocates all the samples to one task. This answers how much benefits one can

achieve compared to some naive learning schedules. We are also interested the gap between

Equ. (3.1) and Equ. (3.2).

3.3.2 Oracle rate

In this section, we analyze the oracle rate defined in Equ. (3.1). We first give an overview

of our results. For any problem instance, there exists a single task t such that the naive

curriculum with ct = N matches a lower bound for the oracle rate defined in Equ. (3.1).

For any task t ∈ [T ], its direct transfer performance of the OLS estimator on the target

task T can be roughly bounded by ∆2
t,T + dσ2

t /N .

Thus, our result implies that essentially, the goal of curriculum learning is to identify the

best task that balance the transfer distance and the noise level.

Theorem 3.1. Let Q be a fixed distance vector defined above. The oracle rate within Θ(Q)

in Equ. (3.1) can be lower bounded by

RN
T (Θ(Q)) ≳ C0min

t
{Q2

t +
dσ2

t

N
}. (3.3)

Proof highlights. Kalan et al. (2020) showed a minimax rate of the transfer learning

problem with only one source task. They considered three scenarios, which can be uniformly
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lower bounded by the right hand side of Equ. (3.3). Our analysis can be seen as an extension

of their results to multiple source tasks. In general, let the rate in (3.3) be δ and C > 0

be a constant. Let t∗ be the best task indicated by (3.3). Any task t with a large distance

(Qt > Cδ) is not helpful to learn the target task. Thus, samples from these tasks can be

discarded without reducing the performance. For any task t with Qt ≤ Cδ, we will show

that any sample from task t gives almost as much as information as the best task t∗ gives.

Thus, one can replace them with a random sample from the best task t∗ without reducing

the loss. Then the problem can be converted to a single source task problem, from where

we follow the lower bound construction in Kalan et al. (2020).

3.3.3 Minimax rate for adaptive learning

The problem can be hard when the transfer distance is unknown. We introduce an intuitive

example to help understand our theoretical result. Assume we have three tasks including one

target task and two source tasks. One of the two source tasks is identical to the target task.

We have n samples for both source tasks, while no observations from the target task. In

this example, even if one of the source tasks is identical to the target task, no algorithm can

decide which source task should be adopted, since we have no information from the target

task. In other words, any algorithm can be as bad as the worst out of the two source tasks.

This is not an issue when the transfer distance is known to the agent in the oracle scenario.

This example implies that to adaptively gain information from source tasks, we will need

sufficient information from the target task. Otherwise, there is risk of including information

from tasks that contaminates the target task. Similarly, David et al. (2010) also showed that

without any observations from the target task, domain adaptation is impossible.

More generally, even if we have some data from the target task, we will show that one

is not able to avoid σ2
T term, the learning difficulty of the target task. Now we formally

introduce our results.

Theorem 3.2. Assume T ≥ 4. Let Qsub > 0. Let Q be a fixed distance vector that satisfies

Q1 = 0 and Qt = Qsub > 0 for all t = 2, . . . , T − 1. The minimax rate in Equ. (3.2) can be

lower bounded by

R̃N
T (Θ̃(Q)) ≳ min{σ

2
T log(T )

N
,Q2

sub}+min
t

dσ2
t

N
. (3.4)

Theorem 3.2 implies that without knowing the transfer distance, any adaptively learned

curriculum of any multitask learning algorithm will suffer an unavoidable loss of σ2
T log(T )/N ,

when Qsub is large. Compared to the rate σ2
Td/N without transfer learning, there is still a
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potential improvement of a factor of d/ log(T ) when Qsub and σ
2
t are small.

Upper bound. As we showed above, there is a potential improvement of d/ log(T ). This

is because given the prior information that one of the source tasks is identical to the target

task, the problem reduces from estimating a d-dimensional vector to identifying the best

task from a candidate set, whose complexity reduces to log(T ).

In fact, a simple fixed curriculum could achieve the above minimax rate. Assume that

any ∥θ∗t ∥2 ≤ C2 for some constant C2 > 0. Let cT = N/2 and for all the other tasks

ct = N/(2T − 2). For each t = 1, . . . T − 1, let θ̃t be the OLS estimator using only its own

samples. Let θ̂t be the projection of θ̃t onto {θ : ∥θ∥2 ≤ C2}. Then we choose one estimator

from t = 1, . . . , T − 1, that minimizes the empirical loss for the target task:

t∗ = argmin
t∈[T−1]

N/2∑
i=1

(YT,i −XT
T,iθ̂t)

2. (3.5)

Theorem 3.3. Assume there exists a task t such that ∆t,T = 0 and ∥θ∗t ∥2 ≤ C2. With a

probability at least 1− δ, θ̂t∗ satisfies

GT (θ̂t∗) ≲ C0C
2
2 log(Td/δ)

(
C2σ

2
T

N
+
dTσ2

t∗

C1N
+

√
d

N

)
. (3.6)

Under a mild condition that
√
dσ2

T ≫
√
N , the first two terms dominate.

Note that t∗ is a random value. However, when all t satisfy dTσ2
t < ∆maxσ

2
T log(T ), the

first term is the dominant term and our bound matches the lower bound in (3.4). This could

happen when σ2
T ≫ σ2

t for all t = 1, . . . , T − 1.

General function class. As we mentioned before, though it is difficult to identify the good

source tasks, the complexity of doing so is still lower than learning the parameters directly.

We remark that this result can be generalized to any function class beyond linear functions.

Keeping all the other setup unchanged, we assume that the mean function f ∗
t ∈ Ft : X 7→ Y

for some input space X and output space Y shared by all the tasks. For convenience, we

assume there is no covariate shift, i.e. the input distributions are the same. We give an

analogy of Theorem 3.3.

Assumption 3.2 (Assumption B in Jin et al. (2021c)). Assume l(·, y) is L2-strongly convex

and L1-Lipschitz at any y ∈ Y. Furthermore, for all x ∈ Rd and t ∈ [T ],

E[∇l(f ∗
t (X), Y ) | X = x] = 0.
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Assume we have N/(2T − 2) observations for all tasks t = 1, . . . , T and N/2 observations

for the target task. Let f̂t be the empirical risk minimizer of the task t. Similarly to (3.5),

let

t∗ = argmin
t∈[T−1]

lNT (f̂t),

where lNT is the empirical loss on task T . Let L∗ = mint∈[T−1] LT (f
∗
t ) and t′ =

argmint∈[T−1] LT (f
∗
t ). We will use Rademacher complexity to measure the hardness of learn-

ing a function class. We refer readers to Bartlett and Mendelson (2002) for the detailed

definition of Rademacher complexity.

Proposition 3.1. Given the above setting and Assumption 3.2, we have with a probability

at least 1− δ,

GT (f̂t∗) ≲ L∗ +
L1

L2

(
RN/T (Ft′) +

√
log(1/δ)

N/T

)
,

where RN(F) is the Rademacher complexity of function space F .

This bound improves the bound for single target task learning, which scales withRN(FT ),

when RN(FT ) ≫ RN/T (Ft∗). The underlying proof idea is still that identifying good tasks

is easier than learning the model itself.

3.4 Structured Linear Regression

Now we consider a slightly different setting, where we want to learn a shared linear repre-

sentation that generalizes to any target task within a set of interest.

A lot of recent papers have shown that to achieve a good generalization ability of the

learned representation, the algorithm have to choose diverse source tasks (Tripuraneni et al.,

2020; Du et al., 2020; Xu and Tewari, 2021). They all study the performance of a given

choice of source tasks, while it has been unclear whether an algorithm can adaptively select

diverse tasks.

3.4.1 Problem setup

We adopt the setup in Du et al. (2020). Let d, k > 0 be the dimension of input and

representation, respectively (k ≪ d). We also set T ≤ d. Let B∗ ∈ Rd×k be the shared

representation. Let β∗
1 , . . . , β

∗
T ∈ Rk be the linear coefficients for prediction functions. The

model setup is essentially the same as the setup in Section 3.3.1 except for the true parameters
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being B∗βt. We call this setting structured because if one stacks the true parameters as a

matrix, the matrix has a low-rank structure. To be specific, the output of task t given by

Yt = XT
t B

∗β∗
t + ϵt.

We use the same setup for the covariate Xt as in Section 3.3 and we consider σ2
1 = · · · =

σ2
T = σ2 for some σ2 > 0.

Diversity. Let ti be the task selected by the scheduler at step i. It has been well understood

that to learn a representation that could generalize to any target task t′ with arbitrary β∗
t′ ,

we will need a lower bound on the following term

λk

(
N∑
i=1

β∗
ti
β∗T
ti

)
=: λN,k, (3.7)

where λk is the k-th largest eigenvalue of a matrix, i.e. the smallest eigenvalue. Basically,

we hope the source tasks cover all the possible directions such that any new task could be

similar to at least some of the source tasks. Equ. (3.7) serves as an assumption in Du

et al. (2020). When the true β∗
t are known, we can simply diversely pick tasks. When the

β∗
t are unknown, the trivial strategy that equally allocates samples will perform badly. For

example, let T ≫ k and let all the βt, t = k + 1, . . . , T be identical. The trivial strategy will

only cover one direction sufficiently, which ruins the generalization ability.

In this section, we will show that it is possible to adaptively schedule tasks to achieve the

diversity even in the hard case discussed above.

3.4.2 Lower bounding diversity

In this section, we introduce an OFU (optimism in face of uncertainty) algorithm that

adaptively selects diverse source tasks.

Two-phase estimator. We first introduce an estimator on the unknown parameters. As-

sume up to step i, we have dataset S
ni,1

1 , . . . , S
ni,T

T for each task t. We evenly split each

dataset S
ni,t

t to two datasets S
(1)
i,t and S

(2)
i,t , both with a sample size of ⌊ni,t/2⌋. We solve the

optimization problem below:

B̂i = argmin
B∈Rd×k

min
βt∈Rk,t∈[T ]

∑
t∈[T ]

∑
(x,y)∈S(1)

i,t

∥y − xTBβt∥2,
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and β̂i,t = argmin
βt∈Rk

∑
(x,y)∈S(2)

i,t

∥yj − xjBβtj∥2.

Note that we split the dataset such that B̂i and β̂i,t are independent.

Algorithm 1 CL by optimistic scheduling

1: Input: T tasks and total number of observations N and constant γ > 0.
2: Sample ⌈γ(d+ log(N/δ))⌉ samples for each task.
3: for i = T ⌈γ(d+ log(N/δ))⌉+ 1, . . . , N do
4: Construct confidence set Bi,t for each t ∈ [T ] according to Equ. (3.8).
5: Select ti according to Equ. (3.9).
6: end for
7: return: Curriculum (t1, . . . , tN).

Optimistic task scheduler. Our algorithm runs by keeping a confidence bound for B∗β∗
t

for each t ∈ [T ] and each step i ∈ [N ]. Lemma 3.1 introduces a suitable upper bound

construction. Lemma 3.1 holds under the following assumptions.

Lemma 3.1. Let κ = C0/C1. Assume Assumption 3.1 hold. There exists universal constants

γ > 0, α > 0 such that, at all step i > T ⌈γ(d+ log(N/δ))⌉, with a probability 1− δ, we have

for all t ∈ [T ],

∥B̂T
i β̂i,t −B∗β∗

i,t∥22 ≲
αC5σ

2dk log(κNδ/T )

C2
1ni,t

,

where ni,t is the number of observations from task t up to step i.

Following the bound in Lemma 3.1, we construct the confidence set with width

Wi,t :=
C5σ

2dk log(κNδ/T )

C2
1ni,t

.

At each step i for each task t, we construct a confidence set around B̂iβ̂i,t,

Bi,t = {θ ∈ Rd : ∥B̂iβ̂i,t − θ∥22 ≤ Wi,t}. (3.8)

Then following the principle of optimism in face of uncertainty, we select the task ti such

that

ti ∈ argmax
t∈[T ]

max
θ∈Bi,t

λk(
i−1∑
j=1

θ̃j θ̃
T
j + θθT ) (3.9)

and θ̃i = argmaxθ∈Bi,t
λk(
∑i−1

j=1 θ̃j θ̃
T
j + θθT ). Here θ̃i is our belief for task t at the step i.
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Now we are ready to present our lower bound results for diversity. Our results hold

under two assumptions. The first assumption require the representation matrix B∗ is not

degenerated. We also assume boundedness on β∗
t ’s.

Assumption 3.3. Assume the largest singular value of B∗ is smaller than C4 for some

C4 > 0.

Assumption 3.4 (Boundedness). We also assume that ∥β∗
t ∥2 ≤ C5 for all t ∈ [T ].

Theorem 3.4. Suppose Assumption 3.3 and 3.4 hold. Assume for all ν ∈ Rk, ∥ν∥2 = 1,

there exists some task t such that νTB∗β∗
t β

∗T
t B∗Tν ≥ λ for some λ > 0. Let ti, i = 1, . . . , N

be the tasks select by Algorithm 1 for some constant α. Then there exists some α > 0, such

that with a probability at least 1− δ,

λN,k

N
≳

λ

C4k
−

√
σ2C2

5dkT log(κN/(Tδ))

C2
1C

2
4λN

.

If we are provided with the oracle, we will only have the first term above. When N is

sufficiently large, the second term in Theorem 3.4 is negligible and we will achieve diversity

asymptotically as long as dkT ≪ N . Our proof follows the standard framework for OFU

algorithms. We first show the correctness of the confidence set implied by Lemma 3.1. Then

the key steps are to show the optimism, i.e. λk(
∑N

i=1 θ̃iθ̃
T
i ) = Ω(λ/k) and to bound the

difference term between the belief λk(
∑N

i=1 θ̃iθ̃
T
i ) and the actual value λN,k. We provide the

proof in Appendix 3.A.

3.4.3 Upper bound results

Though the lower bound in Theorem 3.4 is already satisfying, we still want to shed some

light on whether the dependency on
√

1/N is avoidable by showing an upper bound result

in Theorem 3.5.

Theorem 3.5. For any curriculum learning algorithm, there exists T tasks (T > k) such

that for all ν ∈ Rk, ∥ν∥2 = 1, there exists some β∗
t , ∥β∗

t ν∥ ≥ 1 and

E[
λN,k

N
] ≲

maxt1,...,tN∈[T ] λk(
∑N

i=1 β
∗
ti
β∗T
ti
)

N
−
√
σ2T

Nk3
.

Theorem 3.5 states that the
√

1/N dependency is unavoidable, while there is still a gap of

dk4 between the upper bound and the lower bound. Our hard case construction is inspired by

the case where the naive strategy that allocates samples evenly. To be specific, we consider
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T tasks such that k of them are diversely specified and all the other T −k tasks are identical.

Naive strategies will fail by having λN,k ≈ 1
kT
. We divide T tasks into ⌊T/k⌋ blocks. Then

we construct similar problems. Different problems have the diverse tasks in different blocks.

The difficulty of the problem becomes identifying the block with diverse tasks, which is

analogous to the idea of bandit model in a general sense. From here, we follow a similar

proof of stochastic bandits (Lattimore and Szepesvári, 2020). The full proofs can be found

in Appendix 3.A.

3.5 Analysis of Prediction Gain

In this section, we give some theoretical guarantees on prediction-gain driven task scheduler

under the unstructured setting discussed in Section 3.3. We do not consider the structured

setting because it is not clear how to apply the prediction-gain driven method to multitask

representation learning setting.

Prediction Gain and convergence rate. We define prediction gain in the following way.

At the step i, a multitask learning algorithm A maps any trajectory Hi = {xti,j, yti,j}ij=1 to

a parameter θ ∈ Rd for the target task. Let the estimate at step i be θi. The prediction gain

is defined as

G(A,Hi+1) := LT (θi)− LT (θi+1).

At the start of the round i, the prediction-gain based task scheduler selects ti ∈ [T ] such

that G(A,Hi) is maximized.

Note that in general, prediction gain is not observable to the algorithm before xti,i and

yti,i are actually sampled. There are simple ways to estimate prediction gain, for example,

from several random samples from each task.

In a linear model, the prediction gain is equivalent to convergence rate.

LT (θi)− LT (θi+1) = ∥θi − θ∗T∥2ΣT
− ∥θi+1 − θ∗T∥2ΣT

.

Weinshall and Amir (2020) discussed various benefits of curriculum learning by show that

their strategy gives higher local convergence rate. It is not clear from the context that the

greedy strategy that selects the highest local prediction gain gives the best total prediction

gain in long run.

Decomposing prediction gain. Considering a identical covariance matrix Σt = I, the

loss over a given parameter θ can be written as ∥θ − θ∗T∥22 + σ2
T .
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Assume the gradient is calculated from a sample from the task t. According to the update

of SGD, at the step i, we have

θi+1 − θ∗T = (I − ηix(t)i x
(t)T
i )(θi − θ∗T ) + ηix

(t)
i (ϵi + xTi θ

∆
t,T ),

where θ∆t,T = θ∗t − θ∗T .
The one-step prediction gain is

∥θi − θ∗T∥2 − ∥θi+1 − θ∗T∥2

= ηi∥θi − θ∗T∥2(2−ηi∥x
(t)
i ∥22)xixT

i

− η2i ∥x
(t)
i (ϵi + xTi θ

∆
t,T )∥22

− ηi(θi − θ∗T )T (I − ηix
(t)
i x

T
i )x

(t)
i (ϵi + xTi θ

∆
t,T ).

The first term on the R.H.S is the absolute gain shared by all the tasks. On expectation,

the second term is

−Eη2i ∥xi(ϵi − xTi θ∆t,T )∥22 = −Eη2i ∥xi∥22(σ2
t + ∥θ∆t,T∥2xixT

i
). (3.10)

In expectation, the third term is

−Eηi(θi − θ∗T )T (I − ηixixTi )xixTi θ∆t,T = −E(1− ηi∥xt∥22)ηi(θi − θ∗T )TxixTi θ∆t,T . (3.11)

Now we discuss term (3.10) and (3.11), respectively. (3.11) is independent of σ2
t and it is

a dynamic effects depending on the current estimate θi. That means (3.11) is independent

of the task difficulty and its constantly changes. When (θi − θ∗T )TxtxTt (θ∗t − θ∗T )T < 0, the

task t has a larger prediction gain. This is when the gradient descent direction is consistent

in both target and the task t.

For term (3.10), we notice that task difficulty σ2
t and transfer distance ∆t,T play equal

importance in the prediction gain measure regardless of the number of observations.

Optimality of prediction gain. Let t∗ be the optimal task defined by

t∗ = argmin
t

∆2
t,T +

dσ2
t

N
.

We consider an averaging SGD algorithm with a step size ηi = 1/i. In general, let

θ̄N =
∑N

i=1 θi/N . The following Theorem shows that the performance of the averaging SGD

with an accurate prediction-gain based task scheduler matches the minimax lower bound in

Theorem 3.1.
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Theorem 3.6. Assume Σ1 = · · · = ΣT = I. Assume ∥θ∗t ∥22 ≤ C5 for all t. Given T tasks

with noise levels σ2
1, . . . , σ

2
T and transfer distance ∆1,T , . . . ,∆T,T , let θ̄N be the averaging SGD

estimator with an accurate prediction-gain based task scheduler defined above. We have

GT (θ̄N) ≲ ∆2
t∗,T +

(dσ2
t∗ + C5) log(N)

N
. (3.12)

Theorem 3.6 gives an upper bound on GT (θ̄N) that matches the lower bound in Theorem

3.1.

3.5.1 Simulation Studies

To compliment the theoretical analyses, we conduct simulations studies by applying actual

SGD with tasks chosen to maximize the local prediction gain. We consider two SGD sce-

narios: 1) assuming the algorithm has the accurate estimate on the prediction gain as in our

analysis; 2) algorithms that have to estimate prediction gain.

For the second scenario, we follow Graves et al. (2017), which regard the task scheduling

as a sequential decision-making problem. A popular choice of agent is to use adversarial

bandit model. To be specific, we use EXP3 algorithm. See Appendix 3.B for details of the

algorithm. Bandit algorithm runs by maximizing rewards. In our experiments, let θi be the

estimate at the step i. We sample one observation (xi, yi) from the target task after each

gradient descent, and the reward ri at the step i is given by

ri = (yi − θTi−1xi)
2 − (yi − θTi xi)2.

To evaluate the accurate prediction gain, we directly calculate the distance ∥θi − θ∗t ∥2.
Following the setup throughout the chapter, we consider a multitask linear regression

problem. We set T = 5 and σ2
t = 0.001, 0.01, 0.1, 1, 1 for t = 1, . . . , 5, respectively. Note

that the 5-th task is the target task. We test the effects of total number of observations

n = 10, 50, 100, 500, 1000 and the effects of dimension d = 5, 10, 50, 100. By default, we set

n = 1000 and d = 5. The true parameters of all the tasks are sampled from N (0, 0.001Id).

On expectation, the transfer distance ∆2
t,T between task t and the target task is about 0.01d.

The input x’s are sampled from the same distribution N (0, Id) for all the tasks.

Figure 3.2 shows the L2 distance of the final estimate and the true parameters of the

target task. Our simulation results suggest that 1) prediction-gain based task scheduler can

significantly improve the performance over the target task, when there exists some source

task with low transfer distance and low noise; 2) there is still benefits when scheduler has

to adaptive select tasks which coincidences our Theorem 3.3. The results are robust under
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Figure 3.2: L2 distance between the final estimate θi and θ
∗
T under different total numbers

of observations n and different numbers of dimensions d. The confidence intervals are the
standard deviation of 1000 independent runs.

different choices of n and d.

3.6 Discussion

In this chapter, we discussed the benefits of Curriculum Learning under two special settings:

multitask linear regression and multitask representation learning. In the multitask linear

regression setting, it is fundamentally hard to adaptively identify the optimal source task to

transfer. In the multitask representation learning setting, a good curriculum is the curricu-

lum that diversifies the source tasks. We show that the extra error caused by the adaptive

learning is small and it is possible to achieve a near-optimal curriculum. Then we provided

theoretical justification for the popular prediction-gain driven task scheduler that has been

used in the empirical work.

Our results suggest some natural directions for future work. We show a lower bound (Thm.

3.5) on the diversity in the multitask representation learning setting, while leaving a gap of d

compared to our upper bound (Thm. 3.4). We believe this gap is because a loose construction

of the hard cases that ignores the difficulty of learning the shared representation. Another

direction is to show whether prediction-gain methods with no accurate gain estimation could

still have performance close to lower bounds for the adaptive learning setting.

An important direction is to consider the how the order of presenting tasks affects the

learning performance. Since the order of tasks are irrelevant for the analysis on empirical

risk minimizer, one have to analyze the actual benefits in terms of optimization.

3.A Missing Proofs

Proof of Theorem 1

52



Proof. Our proof is inspired by the proof of Kalan et al. (2020), which gives a lower bound

construction for the two-tasks transfer learning problem. Our results can be seen as an

extension of their constructions to multiple-source tasks setting.

We define the optimal task

t∗ = argmin
t
{Q2

t +
dσ2

t

N
}.

Let δ2 = (Q2
t∗ +

dσ2
t∗

N
)/64. In general, we construct T ×M parameters {θt,i}t∈[T ],i∈[M ] with

the t-th row corresponding to the hypothesis set of the t-th task.

We start by constructing the the hypothesis set of the target task and the task t∗. Let

δ′ = Qt∗/16 + δ. By definition, we have δ′ ≤ 1.5δ.

Consider the set Θ = {θ : ∥θ∥2 ≤ 2δ′}. Let {θt∗,1, . . . , θt∗,M} be a δ′-packing of the set in

the L2-norm (∥θt∗,i − θt∗,j∥2 ≥ δ′). We can find the packing with log(M) ≤ d log(2). Since

θt∗,i, θt∗,j ∈ Θ, we also have ∥θt∗,i − θt∗,j∥2 ≤ 4δ′ for any i, j ∈ [M ].

Now we construct hypothesis set for the target task. For all i ∈ [M ], we choose θT,i such

that ∥θT,i − θt∗,i∥2 = Qt∗/16. So the construction for the target tasks satisfies

∥θT,i − θT,j∥2 ≥ δ′ −Qt∗/16 ≥ δ/2 and ∥θT,i − θT,j∥2 ≤ 4δ′ +Qt∗/16 ≤ 5δ′.

Now we discuss two cases. For any task t with Qt ≥ 5δ′, we randomly pick a parameter

in the hypothesis set of the target task which we denote by θ̃t and we set all θt,i = θ̃t for all

i ∈ [M ]. This construction is valid since any ∥θt,i − θT,i∥2 ≤ 5δ′ ≤ Qt.

For any task t with Qt ≤ 5δ′, we will use the same construction as we use for t∗.

Let J be a random variable uniformly over [M ] representing the true hypothesis. The

samples for each task t is i.i.d. generated from the linear model described in Section 3.3.1

with a parameter θt,J . Our goal is to show that on expectation, any algorithm will perform

badly as in Theorem 3.1.

Let Et be a random sample from task t given the true parameter being θt,J . Similarly to

(5.2) in Kalan et al. (2020), using Fano’s inequality, we can conclude that

RN
T (Θ(Q)) ≥ δ2

(
1− log(2) +

∑T
t=1 ntI(J ;Et)

log(M)

)
. (3.13)

We proceed by giving an uniform bound on the mutual information. We will need the

following lemma to upper bound the mutual information term.

Lemma 3.2 (Lemma 1 in Kalan et al. (2020)). The mutual information between J and any
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sample Et can be upper bounded by I(J ;Et) ≤ 1
M2

∑
i,j DKL

(
Pθt,i∥Pθt,j

)
, where Pθt,i is the

induced distribution by the parameter θt,i. Furthermore we have

DKL

(
Pθt,i∥Pθt,j

)
= ∥Σ1/2

t (θt,i − θt,j)∥22/(2σ2
t ) ≤ C0∥θt,i − θt,j∥22/(2σ2

t ).

Using Lemma 3.2, we bound the mutual information of any task t.

Lemma 3.3. Under the constructions introduced above, the mutual information

I(J ;Et) ≤
512C0

7σ2
t∗
δ′2 for all t ∈ [T ].

Proof. For any task in the first case discussed above (Qt ≥ 5δ′), the mutual information

I(J ;Et) is 0. Thus the statement holds trivially.

Now we discuss the second case above. By definition, we have

Q2
t +

dσ2
t

N
≥ Q2

t∗ +
dσ2

t∗

N
= 64δ2. (3.14)

Note that

Qt ≤ 5δ′ = 5(Qt∗,T/16 + δ) ≤ 7.5δ.

Plugging back into (3.14), we have dσ2
t /N ≥ 7δ2, and by definition we have dσ2

t∗/N ≤ 64δ2.

Therefore, we have σ2
t ≥ 7σ2

t∗/(64).

Since the constructions are the same for the second case, the mutual information can be

uniformly bounded by

I(J,Et) ≤
1

M2

∑
i,j

32C0

7σ2
t∗
∥θt∗,i − θt∗,j∥22 ≤

512C0

7σ2
t∗
δ′2.

Finally, we follow the analysis in Section 7.4 of Kalan et al. (2020). Using Lemma 3.A on

Equation (3.13), we have

RN
T (Θ(Q)) ≥ δ2

(
1−

log(2) +N 512C0

7σ2
t∗
δ′2

log(M)

)
.

Plugging in δ′ = Qt∗/16 + δ, we can conclude

RN
T (Θ(Q)) ≳ Q2

t∗ +
dσ2

t∗

N
.

54



Proof of Theorem 2

Proof. We first show the lower bound of the first term within the maximization. We construct

the following problem: we have T − 1 tuples of parameters {(θ1,i, . . . , θT,i}T−1
i=1 , where θt,i

corresponds to the parameters of the t-th task. Let {θ̃i}T−1
i=1 be a set of parameters that are

2δ-separated for some δ > 0. The parameters of our source and target tasks are chosen in

the following manners:

1. θt,i = θ̃t for all t ∈ [T − 1].

2. θT,i = θ̃i for all i ∈ [T − 1].

Two important properties of this construction is that 1) there is always one source task that

is identical to the target task; 2) the information from source tasks can not help learn the

target task.

Let J follow the uniform distribution over [T − 1]. Assume we have n1, . . . , nM and

nT be the number of observations for T − 1 source tasks and target task from parameter

(θ1,J , . . . , θT−,J), respectively.

Proposition 3.2. Since J is independent of (θ1,J , . . . , θT−1,J), we have the mutual informa-

tion I(J ; θ1,J , . . . , θT−1,J) = 0.

Let ψ be any test statistics that maps our dataset to an index. For all ψ, by Fano’s

Lemma, we can conclude that

R̃N
T (Θ̃(Q)) ≥ δ2

1

M

M∑
i=1

P{ψ(Sn1
1 , . . . , S

nM
M , SnT

T ) ̸= j}

≥ δ2
(
1− I(J ;ψ(Sn1

1 , . . . , S
nT
T )) + log(2))

log(T − 1)

)
(3.15)

To proceed, we analyze the mutual information

I(J ;ψ(Sn1
1 , . . . , S

nT
T ))

≤ I(J ;Sn1
1 , . . . , S

nT
T )

(By the independence of Sn1
1 , . . . , S

nT−1

T−1 and SnT
T )

≤ I(J ;Sn1
1 , . . . , S

nT−1

T−1 ) + I(J ;SnT
T )

= I(J ;SnT
T ).
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Let E be a random sample from the target task. We follow the analysis from Kalan et al.

(2020), which construct θ̃ by the 2δ-packing of the set

{θ : θ ∈ Rd, ∥θ∥2 ≤ 4δ}.

Then we can find such packing as long as T − 1 ≤ d log(2). The mutual information by the

above construction gives

I(J ;SnT
T ) ≤ nT I(J ;E) ≤ nT

32δ2

σ2
T

.

By choosing the optimal δ∗ = log((T − 1)/2)σ2
T/(64nT ), we have for some c > 0,

R̃N
T ≳

σ2
T log(T − 1)

nT

.

Note that the lower bound by Theorem 3.1 still applies here. In total, since nT ≤ N , we

have

R̃N
T ≳

σ2
T log(T )

N
+min

t

dσ2
t

N
.

The above analysis only works when Q2
sub ≥ δ∗ = log((T − 1)/2)σ2

T/(64nT ). Otherwise, one

will at least suffer Q2
sub plus the learning difficulty term mint

dσ2
t

N
.

Proof of Theorem 3.3 Since the number of observations for each source task is N/(2T −
2), we notice that

Lt(θ̂t∗)− Lt(θ
∗
t∗) ≲

C0dTσ
2
t∗ log(T/δ)

N
.

Using Assumption 3.1 and the definition of the loss function, we have

∥θ̂t∗ − θ∗t∗∥22 ≤
C0dTσ

2
t∗ log(T/δ)

C1N
.

The proof of Theorem 3.3 is similar to many proofs of generalization bound. We let the

empirical loss on the target task w.r.t θ be

L̂T (θ) =
2

N

N/2∑
i=1

(
YT,i −XT

T,iθ
)2
.

Write YT,i = XT
T,iθ

∗
T + ϵT,i. Let Σ̂T = 1

nT

∑nT

i=1XT,iX
T
T,i be the sample covariance matrix. We
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start with

LT (θ̂t∗)− min
t∈[T−1]

LT (θ̂t)

≤ L̂T (θ̂t∗)− min
t∈[T−1]

L̂T (θ̂t) + 2 max
t∈[T−1]

|LT (θ̂t)− L̂T (θ̂t)|

= 2 max
t∈[T−1]

|LT (θ̂t)− L̂T (θ̂t)|,

where the last equality is based on the definition of t∗.

Now we bound the difference term. Let nT = N/2.

Lemma 3.4. With a probability at least 1− δ, we have

|LT (θ̂t)− L̂T (θ̂t)| ≲
C1C

2
2d log(T/δ)σ

2
T

nT

+

√
d+ log(δ)

nT

for all t ∈ [T − 1].

Proof. We make the following decomposition.

|LT (θ̂t)− L̂T (θ̂t)|

= |∥θ̂t − θ∗T∥2ΣT
+ σ2

T −
1

nT

nT∑
i=1

[XT
T,i(θ̂t − θ∗T )− ϵT,i]2|

≤ ∥θ̂t − θ∗T∥2ΣT−Σ̂T
+ |σ2

T −
1

nT

nT∑
i=1

ϵ2T,i|+
1

nT

|
nT∑
i=1

XT
T,i(θ̂t − θ∗T )ϵT,i|.

Now we bound the three terms above separately. The second term is the concentration

for χ2(nT ) distribution. We have with a probability at least 1−δ/(3T ), |σ2
T − 1

nT

∑nT

i=1 ϵ
2
T,i| ≲

σ2
T (
√
log(3T/δ)/nT + log(3T/δ)/nT ).

To proceed, we consider the concentration of sample covariance matrix.

Lemma 3.5 (Matrix Hoeffding’s inequality). Let X1, . . . , Xn be centered, independent, sym-

metric, d× d random matrices that are sub-Gaussian with parameters V1, . . . , Vn. Then for

all δ > 0 with a probability 1− δ,

∥ 1
n

n∑
i=1

Xi∥op ≤
√

log(2d/δ)
2σ2

n
, where σ2 = ∥ 1

n

n∑
i=1

Vi∥.

Using the boundedness of both θ̂t and θ
∗
T , ∥θ̂t − θ∗T∥2 ≲ C2. Then applying Lemma 3.5,

we have with a probability at least 1− δ/(3T ),

∥θ̂t − θ∗T∥2ΣT−Σ̂T
≲ C2

2C0
log(Td/δ)

nT

.
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For the third term, we apply the martingale concentration inequality on the sum∑nT

i=1X
T
T,i(θ̂t−θ∗T )ϵT,i, we have with a probability at least 1−δ/(3T ), we have for all t ∈ [T−1]

1

nT

|
nT∑
i=1

XT
T,i(θ̂t − θ∗T )ϵT,i| ≲

C0C2σ
2
T log(T/δ)

nT

.

Proof of Proposition 3.1

Proof. The target task is basically minimizing the empirical loss over T − 1 estimators. We

first apply the standard generalization bound with Radermacher complexity

LT (f̂t∗) ≤ min
t∈[T−1]

LT (f̂t) +

√
2 log(T − 1)

N
+ c

√
2 log(1/δ)

N
,

where c is a universal constant.

To proceed, we bound mint∈[T−1] LT (f̂t). By the assumption, we have L∗ = mint LT (f
∗
t ).

Let the task that realizes the minimization be t′. Using Assumption 3.2, we have

min
t∈[T−1]

LT (f̂t) ≤ LT (f̂t′) = E(XT ,YT )l(f̂t′ , YT ) ≤ L∗ + L1EXT
∥f̂t′ − f ∗

t′∥2 ≤ L∗ +
L1

L2

(Lt′(f̂t′)− L∗
t′).

We can apply the generalization bound on Lt′(f̂t′)− L∗
t′ , which gives us the result.

Proof of Theorem 3.4

Proof of Lemma 3.1 We will borrow some techniques from Du et al. (2020) for the

proof of Theorem 3.4. We start with the proof of Lemma 3.1, which provides a valid confi-

dence set for the unknown parameters B∗β∗
t . First, we let X

(1)
i,t be the covariance matrix of

the first split S
(1)
i,t .

Claim 3.1 (Covariance concentration on the first split.). For δ ∈ (0, 1), there exists a

constant γ1 > 0 such that with a probability at least 1− δ/10, we have

0.9Σt ≺
2

ni,t

X
(1)T
i,t X

(1)
i,t ≺ 1.1Σt for all i ∈ {i′ ∈ [N ] : ni′,t ≥ γ1(d+ log(N/δ))}.

Claim 3.2 (Covariance concentration on the second split.). For δ ∈ (0, 1), there exists some

γ2 > 0 such that for any given B ∈ Rd×2k that is independent of X
(2)
i,t , with a probability at
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least 1− δ/10, we have

0.9BTΣtB ≺
2

ni,t

BTX
(2)T
i,t X

(2)
i,t B ≺ 1.1BTΣtB for all i ∈ {i′ ∈ [N ] : ni′,t ≥ γ2(d+ log(N/δ)).

Let γ = max{γ1, γ2}. Recall that κ = C0/C1. Then the good events in Claim 3.1 and 3.2

hold for all i : ni,∗ ≥ ⌈γ(d + log(N/δ))⌉. We first apply the Claim A.3 in Du et al. (2020),

which guarantees the loss on the source training data. We rephrase it here as Lemma 3.6.

Note that the only difference is that we require the good events hold for all i : ni,t’s are

sufficiently large.

Lemma 3.6 (Claim A3 in Du et al. (2020)). With a probability at least 1− δ/5, we have

T∑
t=1

∥X(1)
i,t (B̂iβ̂i,t −B∗β∗

t )∥22 ≲ σ2 (kT + dk log(κi/T ) + log(N/δ)) , (3.16)

for all i : ni,∗ > ⌈γ(d+ log(N/δ))⌉

Note that X
(1)
i,t B̂iβ̂i,t = P

X
(1)
i,t B̂i

Yt = P
X

(1)
i,t B̂i

(X
(1)
i,t B

∗β∗
t + zt). To proceed, for any fixed

t′ ∈ [T ], we have

σ2 (kT + dk log(κi/T ) + log(N/δ))

≳
T∑
t=1

∥X(1)
i,t (B̂iβ̂i,t −B∗β∗

t )∥22

=
T∑
t=1

∥PXtB̂i
(X

(1)
i,t B

∗β∗
t + zt)∥22

≥
T∑
t=1

∥PXtB̂i
X

(1)
i,t B

∗β∗
t ∥22

≥ 0.9
T∑
t=1

ni,t

2
∥P

Σ
1/2
t B̂i

ΣtB
∗β∗

t ∥22 (Using Claim 3.1)

≥ 0.45C1

T∑
t=1

ni,t∥PΣ
1/2

t′ B̂i
Σt′B

∗β∗
t ∥22

= 0.45C1

i∑
j=1

∥P
Σ

1/2

t′ B̂i
Σt′B

∗β∗
tj
∥22
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Then we have

∥B̂iβ̂t′ −B∗β∗
t′∥22

≤ 1

C1

∥Σ2
t′(B̂iβ̂t′ −B∗β∗

t′)∥22

≤ 1

0.9C1ni,t′
∥X(2)

i,t′ (B̂iβ̂t′ −B∗β∗
t′)∥22 (Using Claim 3.2)

=
1

0.9C1ni,t′

(
∥P

X
(2)

i,t′ B̂i
X

(2)
i,t′B

∗β∗
t′∥22 + ∥PX

(2)

i,t′ B̂
zt′∥22

)
For the second term above,

1

σ2
∥P

X
(2)

i,t′ B̂
zt′∥22 ∼ χ2(k).

Thus with a probability at least 1 − δ, ∥P
X

(2)

i,t′ B̂
zt′∥22 ≲ k + log(NT/δ) for all t′ ∈ [T ] and

i > T ⌈γ(d + log(N/δ))⌉. Therefore, we obtain the bound: for all i > T ⌈γ(d + log(N/δ))⌉
and all t′ ∈ [T ], it holds that

∥B̂iβ̂t′ −B∗β∗
t′∥22 ≲

σ2

C1

(
kT + dk log(κi/T ) + log(N/δ)

C1ni,t′/C5

+
k + log(NT/δ)

ni,t′

)
≲
C5σ

2dk log(κNδ/T )

C2
1ni,t′

.

Proof of the full theorem Now we prove the full theorem. By Assumption 3.3, we

convert our target λd(
∑N

i=1 β
∗
ti
β∗T
ti
) to λd(

∑N
i=1B

∗β∗
ti
β∗T
ti
B∗T ):

1

N
λd(

N∑
i=1

β∗
ti
β∗T
ti
) ≥ 1

NC4

λd(
N∑
i=1

B∗β∗
ti
β∗T
ti
B∗T ).

Then we follow the standard decomposition framework of UCB analysis:

1

N
λd(

N∑
i=1

B∗β∗
ti
β∗T
ti
B∗T ) =

1

N

(
λk(

N∑
i=1

θ̃iθ̃
T
i ) + λk(

N∑
i=1

B∗Tβ∗
ti
β∗T
ti
B∗)− λk(

N∑
i=1

θ̃iθ̃
T
i )

)
.

(3.17)

Our proof proceeds by first showing

1

N
λk(

N∑
i=1

θ̃iθ̃
T
i ) ≥ λ/d,
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which is usually interpreted as optimism. Then we bound the difference term

1

N

(
λk(

N∑
i=1

B∗β∗
ti
β∗T
ti
B∗T )− λk(

N∑
i=1

θ̃iθ̃
T
i )

)
,

which is expected to vanish when N becomes large.

Proof of optimism. We apply Lemma 3.1 and have θ̃i ∈ Bα
i,t. Since B∗β∗

t ∈ Bα
i,t for all

t ∈ [T ], i ∈ [N ], it is easy to show that the greedy selection over Bα
i,t will lead to

λk(
N∑
i=1

θ̃iθ̃
T
i ) ≥ λ(

N

k
− 1).

We prove by induction. Assume at any step n, we have for all ∥ν∥2 = 1,

νT
n∑

i=1

θ̃iθ̃
T
i ν ≥ λ(i/k − 1).

We will show that at the step n+ k, we will at least have

νT
n∑

i=1

θ̃iθ̃
T
i ν ≥ λ(i/k).

The proof is simple, if there exists a ν such that the above inequality fails, we will select a

task that brings it to λ(i/k). This process can be done at most k times.
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Upper bounding the differences. We first write the difference of eigenvalues in terms

of the difference of the matrices. We will use a trick here.

λk(
N∑
i=1

B∗β∗
ti
β∗T
ti
B∗T )− λk(

N∑
i=1

θ̃iθ̃
T
i )

= min
∥ν∥2=1

νT
N∑
i=1

B∗β∗
ti
β∗T
ti
B∗Tν − min

∥ν∥2=1
νT

N∑
i=1

θ̃iθ̃
T
i ν

≥ min
∥ν∥2=1

νT
N∑
i=1

B∗β∗
ti
β∗T
ti
B∗Tν − min

∥ν∥2=1
νT

N∑
i=1

θ̃iθ̃
T
i ν

≥ min
∥ν∥2=1

(
νT

N∑
i=1

(B∗β∗
ti
β∗T
ti
B∗T − θ̃iθ̃Ti )ν

)

≥
N∑
i=1

min
∥ν∥2=1

νT (B∗β∗
ti
β∗T
ti
B∗T − θ̃iθ̃Ti )ν

≥ −
N∑
i=1

∥B∗β∗
ti
− θ̃i∥2(∥B∗β∗

ti
∥2 + ∥θ̃i∥2)

≥ −2C5

N∑
i=1

∥B∗β∗
ti
− θ̃i∥2.

Applying Lemma 3.1 and by the construction of the confidence set Bα
i,t, we have

∥B∗β∗
ti
− θ̃i∥2 ≲

√
C5σ2dk log(κNδ/T )

C2
1ni,t

.

Thus,

λk(
N∑
i=1

B∗β∗
ti
β∗T
ti
B∗T )− λk(

N∑
i=1

θ̃iθ̃
T
i )

≳ −
∑
i

√
C2

5σ
2dk log(κNδ/T )

C2
1ni,t

≳ −
∑
i

√
C2

5σ
2dkTN log(κNδ/T )

C2
1

.

Plugging this back to the decomposition term (3.17) we arrive the final bound.

Proof of Theorem 3.5 Assume we have T tasks in total. We pick a set of orthogonal

vectors {β1, . . . , βk} ∈ Rk with ∥βi∥22 = λ. We first construct a simple instance in the

following way: the first k tasks are diverse such that (β∗
i , . . . , β

∗
k) = (β1, . . . , βk). Then all the

other tasks share the same parameter β1. We denote the instance by v. This construction is
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hard for naive task scheduler that evenly allocates samples to all the tasks since the direction

for β∗
1 will be over-exploited.

We evenly divide T tasks into M = ⌊T/k⌋ blocks. Let Tm be the total number of visits

in the m-th block. For any task scheduler, there exists m′ ∈ [M ] such that E[Tm] ≤ N
M

by

pigeonhole theorem.

Then we construct another instance denoted by v′ such that v is the same as v′ except

for that the m-th block has the parameters (2β1, . . . , 2βk) for the k tasks in the block.

Let Pv and Pv′ be the probability measure on the linear regression model with true

parameter defined in Section 3.3.1 for v and v′.

Define ∆N,k(T , v) be the expected difference using task scheduler T on instance v, i.e.

∆N,k(T , v) := max
t1,...,tN

λk(
N∑
i=1

β∗
ti
β∗T
ti
)− λN,k.

Thus, applying Bretagnolle–Huber inequality (Theorem 14.2 (Lattimore and Szepesvári,

2020)) we have

∆N,k(T , v) +∆N,k(T , v′) ≥
Nλ

2k
(Pv(T1 ≤ N/M) +Pv′(T1 > N/M)) ≥ Nλ

2k
exp(−D(Pv, Pv′)).

where D(P,Q) is the relative entropy between distributions P and Q.

Then we apply Lemma 15.1 (Lattimore and Szepesvári, 2020), which we rephrase here.

Lemma 3.7. Let Pt and P
′
t be the probability measure of the t-th task using true parameters

from v and v′, respectively. We also let T̄t be the number of observations on the t-th task.

Then we have

D(Pv, Pv′) =
T∑
t=1

Ev[T̄t]D(Pt, P
′
t) ≤ Ev[Tm] max

t=m(k−1)+1,...,mk
D(Pt, P

′
t).

Now since D(Pt, P
′
t) = ∥βt − β∗

t ∥2/(2σ2) = λ2/(2σ2), we have

∆N,k(T , v) + ∆N,k(T , v′) ≥
Nλ

2k
exp(

Nλ2

2Mσ2
).

Choosing λ = 2Mσ2

N
, we have

∆N,k(T , v) + ∆N,k(T , v′) ≥ σ
√
NM/k = σ

√
NT/k3.

Proof of Theorem 3.6
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Proof. We follow the standard procedure of the convergence analysis of SGD. Let ti be the

task that the task scheduler chooses at the step i. Let v
(t)
i be the virtual gradient calculated

at the step i if task t is scheduled, i.e.

v
(t)
i = x

(t)T
i (θ∗t − θi)x

(t)
i + ϵ

(t)
i x

(t)
i ,

where ϵ
(t)
i and x

(t)
i is the random noise and the input sampled at the step i from task t. To

start with, let θ
(t)
i+1 be the virtual next step if task t is scheduled. We have

θ
(t)
i+1 − θ∗T = θi − θ∗T − ηiv

(t)
i .

By algebra, we derive

∥θ(t)i+1 − θ∗T∥2 − ∥θi − θ∗T∥2

= −2ηi(θi − θ∗T )Tx
(t)
i x

(t)T
i (θi − θ∗T )+

2ηi(θi − θ∗T )Tx
(t)
i x

(t)T
i (θ∗t − θ∗T )−

2ηix
(t)T
i (θi − θ∗T )ϵi + η2i ∥v

(t)
i ∥2.

Taking expectations over x
(t)
i and ϵ

(t)
i and arrange the equation, we have

∥θi − θ∗T∥2 =
∥θi − θ∗T∥2 − Et,i∥θ(t)i+1 − θ∗T∥2

2ηi
+ (θi − θ∗T )T (θ∗t − θ∗T ) +

ηi
2
∥v(t)i ∥2., (3.18)

where Et,i takes marginal expectation over the randomness of x
(t)
i and ϵ

(t)
i . Note that

LT (θi)− σ2
T = ∥θi − θ∗T∥2.

Plugging this into Equ. (3.18), we have

LT (θi)− σ2
T =
∥θi − θ∗T∥ − Et,i∥θ(t)i+1 − θ∗T∥2

2ηi
+ (θi − θ∗T )T (θ∗t − θ∗T ) +

ηi
2
∥v(t)i ∥2.

Since this holds for any t, we let t = t∗ and note that by the definition of the task scheduler

with accurate prediction gain estimate,

E∥θi − θ∗T∥2 ≤ E∥θ(t)i − θ∗T∥2.
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We have

E[LT (θi)]− σ2
T

≤ E
∥θ(t

∗)
i − θ∗T∥2 − ∥θ

(t∗)
i+1 − θ∗T∥2

2ηi
+ E(θi − θ∗T )T (θ∗t∗ − θ∗T ) +

ηi
2

E∥v(t
∗)

i ∥2.

Summing over all i = 1, . . . , N , we have∑
i

E[LT (θi)]−Nσ2
T

≤
N∑
i=1

E
∥θ(t

∗)
i − θ∗T∥2 − ∥θ

(t∗)
i+1 − θ∗T∥2

2ηi
+

N∑
i=1

E(θi − θ∗T )T (θ∗t∗ − θ∗T ) +
N∑
i=1

ηi
2

E∥v(t
∗)

i ∥2.

Note that taking ηi = 1/i, the first term on the right hand side collapses to −NE∥θ(t)N+1 −
θ∗T∥2 ≤ 0.

To proceed, we have

N∑
i=1

E(θi − θ∗T )T (θi − θ∗T )

≤
N∑
i=1

E(θi − θ∗T )T (θ∗t∗ − θ∗T ) +
∑
i

ηi
2

E∥v(t
∗)

i ∥2

≤
N∑
i=1

E(θi − θ∗T )T (θ∗t∗ − θ∗T ) + log(N)(σ2
t∗d+ C5)

≤

√√√√ N∑
i=1

E∥θi − θ∗T∥2

√√√√ N∑
i=1

∥θ∗t∗ − θ∗T∥2 + log(N)(σ2
t∗d+ C5).

By solving the inequality, we have

N∑
i=1

E∥θi − θ∗T )T∥2 ≤
N∑
i=1

E∥θ∗t∗ − θ∗T∥2 + log(N)(σ2
t∗d+ C5)

≤
N∑
i=1

∆2
t∗,T + log(N)(σ2

t∗d+ C5)

Divided by N on both side, we reach Theorem 3.6.
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3.B Additional details for simulations

We provide the details for EXP3 algorithm. The EXP3 task scheduler picks tasks from

{1, . . . , T}, which is the action set for the bandit problem. In our experiment, η = 0.85.

Algorithm 2 Exponential-weight Algorithm for Exploration and Exploitation (Exp3)

1: Input: T,K, η

2: Set Ŝ0,t = 0 for all t ∈ [T ].

3: for i = 1, . . . , n do

4: Calculate Pit ←
exp(ηŜi−1,t)∑

t′∈[T ] exp(ηŜi−1,t′)
for all t ∈ [T ]

5: Sample ti from Pi and receive reward ri

6: Calculate Ŝi,t ← Ŝi−1,t + 1− 1{ti=a}(1−ri)

Pit

7: end for
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CHAPTER 4

Multitask Contextual Bandits

In this chapter, we take one step beyond supervised learning and study contextual bandit

problem, a sequential decision-making problem, which is a special case of reinforcement

learning. We identify an interesting structural assumption called Funnel Structure that allows

significant MTL improvement. Funnel structure, a well-known concept in the marketing

field, occurs in those systems where the decision maker interacts with the environment in

a layered manner receiving far fewer observations from deep layers than shallow ones. For

example, in the email marketing campaign application, the layers correspond to Open, Click

and Purchase events. Conversions from Click to Purchase happen very infrequently because

a purchase cannot be made unless the link in an email is clicked on.

We formulate this challenging decision making problem as a contextual bandit with funnel

structure and develop a multi-task learning algorithm that mitigates the lack of sufficient

observations from deeper layers. We analyze both the prediction error and the regret of

our algorithms. We verify our theory on prediction errors through a simple simulation.

Experiments on both a simulated environment and an environment based on real-world

data from a major email marketing company show that our algorithms offer significant

improvement over previous methods. 1

4.1 Introduction

We consider decision making problems arising in online recommendation systems or adver-

tising systems (Pescher et al., 2014; Manikrao and Prabhakar, 2005). Traditional approaches

to these problems only optimize a single reward signal (usually purchase or final conversion),

whose positive rate can be extremely low in some real recommendation systems. This reward

sparsity can lead to a slow learning speed and unstable models. Nevertheless, some non-

sparse signals are usually available in these applications albeit in a layered manner. These

1This chapter is based on my paper published at AISTATS 2020 with Amirhossein Meisami and Ambuj
Tewari (Xu et al., 2020)
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signals can be utilized to boost the performance of the final sparse signal. As a special case,

funnel structure generates a sequence of binary signals by layers and the observations are

cumulative products of the sequence. An example of email conversion funnel is shown in

Figure 4.1.

Funnel structure characterizes a wide range of problems in advertising systems. In the

email campaign problem, the learning agent decides the time to send emails to maximize

purchases. Apart from the final reward on purchase, we also observe the opening and clicking

status of an email. There are also papers studying the participation funnel in MOOCs (Clow,

2013; Borrella et al., 2019). Students go through the layers of Awareness, Registration,

Activity, Progress and Completion until they drop or complete the course. For both of the

funnels, the drop-off fraction at each layer is large. For example, in email campaigns, the

conversion rates are typically 10% for Open, 4% for Click and 2.5% for Purchase.

Funnel structure studies in the marketing field. Conversion funnel has been at the

center of the marketing literature for several decades (Howard and Sheth, 1969; Barry, 1987;

Mulpuru, 2011). This line of work focuses on the attribution of advertising effects and is

more interested in analyzing buyers’ behavior at each layer. Schwartz et al. (2017) learns

contextual bandit with a Funnel Structure. However, their model directly learns on the final

purchase signal and signals on other stages are only used for performance evaluation. Hence,

it lacks a comprehensive method that exploits the structural information of a funnel.

Contextual bandits. The decision making problem is modelled as a contextual bandit

problem (Li et al., 2010, 2011; Beygelzimer et al., 2011) in this chapter. Previous works

on contextual bandits mainly focus on a single reward. Drugan and Nowe (2013); Turğay

et al. (2018) study multi-objective bandits by considering a Pareto regret, which optimizes

the vector of rewards for different objectives, while our work focuses on optimizing the final

reward by exploiting the whole task set.

Related works This work is the first work that applies the multi-task learning to con-

textual bandits with funnel structure. There has been works considering contextual bandits

with a sequential transfer (Lazaric et al., 2013; Soare et al., 2014), a multi-task learning

approach (Deshmukh et al., 2017) and a multi-goal setting (Drugan and Nowe, 2013; Turğay

et al., 2018). However, none of their algorithms adapts to the funnel structure due to the

imbalance in the sample sizes of different layers. On the other side, Schwartz et al. (2017)

focuses on funnel structure contextual bandits without multi-task learning. Some Reinforce-

ment Learning algorithms with auxiliary rewards (Jaderberg et al., 2016; Lin et al., 2019) can
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also be applied to this problem. This line of work does not use the full information as it either

learns on the output of the last layer or learns on an weighted average of different layers.

Our experiments also verify that using the full information could improve performances.

4.2 Formulation

In this section, we introduce the formulation for funnel structure and discuss how the for-

mulation applies to our email campaign problem. We also introduce the generalized linear

model and the assumptions for our theoretical analyses.

Funnel structure. A funnel, denoted by F = {J,X , (Z1, . . . , ZJ)}, consists of the number

of layers J ∈ N, feature space X ∈ Rd for some d > 0 and a sequence of J mappings

(Z1, . . . , ZJ). Each Zj is a mapping from feature space to [0, 1]. On each interaction, a

funnel takes an input feature x ∈ X and generates a sequence of binary variables z1, . . . , zJ

from Bernoulli distributions with parameters Z1(x), . . . , ZJ(x), respectively. Then it returns

r1, . . . rJ , for rj =
∏j

s=1 zs, to the learning agent.

Email conversion funnel. We illustrate how the formulation applies to the email conver-

sion funnel. Our email conversion funnel, as shown in Figure 4.1, has 3 layers representing

Open, Click and Purchase, respectively. Every email sent to a user randomly generates

r1, r2, r3 representing whether the email is actually opened, clicked or purchased using the

mechanism described above, while z1, z2, z3 are the indicators for the three events given

previous events happened.

On the sparsity of the funnel, if an email is never opened, neither click or purchase could

happen. Out of all the emails sent to users, 10% of them were opened, 0.4% were clicked,

and 0.01% led to a purchase. More generally, when there exists a rj = 0, all the successors

ri’s, i > j, become 0, which leads to unobservable zj+1, . . . , zJ . On average, given a feature

x, the probability of observing zj is Pj−1(x), which decreases exponentially as the layers

go deeper.

Contextual bandit with funnel structure. Our contextual bandit with funnel structure

is denoted by M = {A,X , Px, {Fa}a∈A}, where A is the finite action space with |A| = A,

X is the common context space, Px is the context distribution and each arm a ∈ A is

assigned a funnel denoted by Fa = {J,X , (Za
1 , . . . , Z

a
J)}. On each round of t-th interaction,

the environment generates a context xt ∼ Px, the agent takes an action at and the funnel
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Sent (100%)

Open (10%)

Click (0.4%)

Purchase (0.01%)

z1 ∼ B(Z1(x))

z2 ∼ B(Z2(x))

z3 ∼ B(Z3(x))

Underlying Process Observations

r1 = z1

r2 = r1 × z2

r3 = r2 × z3

Figure 4.1: An illustration of the email conversion funnel. Given any input x, the profile
information of the user, the funnel generates, z1, . . . z3, from Bernoulli distributions with
parameter Z1(x), Z2(x), Z3(x), representing whether the email would be opened, clicked or
purchased given the conversion of the previous layers happened. The observations r1, . . . , r3
represent whether the email is actually opened, clicked or purchased, respectively.

Fat returns the reward vector (r1t, . . . , rJt) taken the input context xt based on the process

described above.

Note that our setting, when J = 1, differs from the contextual bandit setting in Chu et al.

(2011); Filippi et al. (2010), where each arm has a unique context but the same mapping

from context to reward function. Filippi et al. (2010) assumes a canonical exponential family

density function. We consider a binomial signal, whose density might not be in canonical

exponential family.

Assumptions. Most analyses on multi-task learning assume some similarities among tasks

set to allow knowledge transfer. Here we assume a generalized linear model (GLM) and a

prior-known hypothesis class over the unknown parameters for all the layers. The hypothesis

class characterizes the relatedness across layers.

Assumption 4.1 (Generalized linear model). Assume all Zj = µ(xT θ∗j ) for some mean

function µ : R 7→ [0, 1] and θ∗j is the true parameter of layer j. A throughout example of this

chapter is the model for logistic regression, where µ(y) = 1/(1 + exp(−y)).

We also assume that the mean function µ is Lipschitz continuous and convex.

Assumption 4.2. We assume that µ is monotonically increasing and µ′(x) ≥ cµ for all

x ∈ X . We also require that function µ satisfies |µ′(x)| ≤ κ.
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Assumption 4.3. Assume X ⊂ {x ∈ R : ∥x∥ ≤ dx}.

Generally, we assume that the joint parameter is from a hypothesis class. Two special

cases of interest are introduced, upon which we design our practical algorithms.

Assumption 4.4 (Similarity assumption). Let θ = (θT1 , θ
T
2 , . . . , θ

T
j )

T ∈ RdJ and θ∗ is the

joint vector for the true parameters. We assume θ∗ ∈ Θ0 ⊂ RdJ . Throughout the chapter,

we discuss two special cases:

1. Sequential dependency: Θ0 := {θ ∈ RdJ : ∥θj − θj−1∥2 ≤ qj, for j > 1 and

∥θ1∥ ≤ q1 for some q1, . . . qJ ∈ R+.

2. Clustered dependency: Θ0 := {θ ∈ RdJ : ∃θ0 ∈ Rd, ∥θj − θ0∥2 ≤ qj,∀j ∈ [J ]} for

some q1, . . . qJ ∈ R+.

For any set Θ ⊂ RdJ , we denote the marginal set of task j by Θ[j] i.e., Θ[j] = {θ ∈ Rd :

∃θ ∈ Θ,θj = θ}.
We first note that a hypothesis class over the joint parameters is a common assumption

in multi-task learning literature (Maurer et al., 2016; Zhang and Yang, 2017; Pentina et al.,

2015). Also, in another line of work focusing on transfer learning, the theoretical analyses

often assume a discrepancy between tasks (Wang et al., 2019a). We argue in Appendix 4.A

that under our GLM assumptions, the discrepancy assumption is almost the same as ours.

The role of diversity. Note that diversity continues to play an important role in the

proposed dependencies. If the environment only has two tasks, then there will be a large

distance between parameters ∥θj−θj−1∥ or ∥θj−θ0∥. By adding more tasks to fill in the gap

between original task set, we improve the diversity whiling having a smaller set of discrepancy

q’s.

4.3 Supervised learning

Before discussing the contextual bandits with funnel structure, we first consider the super-

vised learning scenario for a single funnel and seek a bound for the prediction error of each

layer:

PEj = |µ(xT θ∗j )− µ(xT θ̂j)|,

for some estimates θ̂1, . . . , θ̂J ∈ Rd.

For a single funnel, our algorithm learns on the dataset {xi, r1i, . . . , rJi}ni=1 of size n. Let

nj =
∑n

i=1 1(rj−1,i = 1) be the number available observations for layer j and j1, . . . jnj
be
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the indices of these nj samples, i.e. rj−1,ji > 0 for all i ∈ [nj]. Let zj,ji = rj,ji/rj−1,ji . We

denote the square loss function of layers j by

lj(θ) :=

nj∑
i=1

(zj,ji − µ(xTjiθ))
2. (4.1)

4.3.1 Implications from a single-layered case

We first investigate a single-layered case and see how prior knowledge helps improve the

upper bound on prediction error. Lemma 4.1 bounds the prediction error using either prior

knowledge or collected samples. The proof of Lemma 4.1 is provided in Appendix 4.A.

Lemma 4.1. Using the model defined above, assume J = 1 and the true parameter θ∗ ∈ Θ0.

Let the dataset be {xi, zi}ni=1 and let θ̃ be the solution that maximizes the L2 function in (4.1)

and θ̂ be its projection onto Θ0. Let q := supθ1,θ2∈Θ0
∥θ1 − θ2∥2. Then with a probability at

least 1− δ, we have

|µ(xT θ̂)− µ(xT θ∗)| ≤ κmin{ sup
θ1,θ2∈Θ0

|xT (θ1 − θ2)|, ∥x∥M−1
n

4cδ
cµ

√
d

n ∨ 1
}

≤ κmin{dxq, ∥x∥M−1
n

cδ
cµ

√
d

n
}, (4.2)

furthermore, we have a confidence set on θ∗,

θ∗ ∈ {θ : ∥θ̂ − θ∥Mn ≤
cδ
cµ

√
d

n
}, (4.3)

where Mn = 1
n

∑n
i=1 xix

T
i , cδ = 80dx

√
2 ln(8/δ).

Equation (4.2) bounds the prediction error with a minimum of two terms. The first term

in (4.2) is directly derived from prior knowledge. The second term is a parametric bound

without any regularization (Srebro et al., 2010). In fact, (4.2) is a tight upper bound on

prediction error as shown in Appendix 4.A.

Lemma 4.1 implies a ”transfer or learn” scenario: when the sample size for the new

task is not large enough, i.e. n = o(1/q2), it is more beneficial to directly apply the prior

knowledge. Otherwise, one can drop the prior knowledge and use parametric bound.

4.3.2 Multi-task learning algorithm

Our algorithm, inspired by the ”transfer or learn” idea, consists of two steps: 1) optimize the

loss function for each layer within its marginal set and calculate the confidence set defined in
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Algorithm 3 Regularized MTL for funnel structure

Input: number of layers J , hypothesis set Θ0, dataset {xi, r1i, . . . , rJi}ni=1 generated from
the funnel, accuracy δ > 0.
# Calculate confidence set.
for j = 1 to J do

Solve θ̄j = ProjΘ0[j](argmin lj(θ)).

Calculate Θ̂j defined in Equation (4.3) by

Θ̂j = {θ : ∥θ − θ̄j∥Mj,nj
≤ cδ
cµ

√
d

nj

},

for Mj,nj
=
∑nj

i=1 xj,jix
T
j,ji

.
end for
# Re-estimate parameters.
Calculate joint set Θ̂ = {θ : θj ∈ Θ̂j for all j ∈ [J ]}.
Set Θ1 ← Θ0 ∩ Θ̂.
for j = 1 to J do

Solve θ̂j = ProjΘ1[j](argmin lj(θ)).
end for
Return θ̂1, . . . , θ̂J .

(4.3); 2) take the intersection between the confidence set and Θ0, which generates Θ1. Then

project the unconstrained solution onto the new set Θ1. The details are shown in Algorithm

3, where ProjΘ(θ) denotes the projection of θ onto the set Θ.

4.3.3 Upper bound on prediction error

Directly applying Lemma 4.1 within the set Θ1 gives us a bound on prediction error depend-

ing on the marginal set Θ1[j] and nj as shown in Corollary 4.1.

Corollary 4.1. Let θ̂1, . . . , θ̂J be the estimates from Algorithm 3 and Θ1 be the set defined

in Algorithm 3. With a probability at least 1− δ, for all j ∈ [J ], we have

PEj ≤ κmin{ sup
θ1,θ2∈Θ1[j]

|xT (θ1 − θ2)|, ∥x∥M−1
n

cδ
cµ

√
d

nj

}. (4.4)

However, it is more interesting to discuss the actual form of Θ1 = Θ0 ∩ Θ̂ and its interac-

tions with nj under some special assumptions on Θ0. As mentioned in Assumption 4.4, we

consider two cases: sequential dependency and clustered dependency.

Recall that for the sequential dependency, we assume θ∗ ∈ Θ0 := {θ ∈ RdJ : ∥θj−θj−1∥2 ≤
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qj, for j > 1 and ∥θ1∥2 ≤ q1} for some q1, . . . qJ > 0. Before presenting our results, we need

an extra assumption on the distribution of covariates.

Assumption 4.5. Assume the minimum eigenvalue of Mj,nj
is lower bounded by a constant

λ > 0 for all j ∈ [J ].

Assumption 4.5 guarantees that the distribution of the covariate covers all dimensions.

Theorem 4.1 (Prediction error under sequential dependency). For any funnel with a se-

quential dependency of parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates from Algorithm

3. If nj+1 ≤ nj/4, q1 ≥, . . . ,≥ qJ and Assumption 5 is satisfied, then with a probability at

least 1− δ, for any j0 ∈ [J ], we have

PEj ≤

 κ∥x∥2
cδ/J
cµλ

√
d
nj
, if j < j0,

κ∥x∥2(
cδ/J
cµλ

√
d

nj0
+
∑j

i=j0+1 qi), if j ≥ j0,

where we let n0 = ∞. The smallest bound of all choices of j0 is achieved when j0 is the

smallest j ∈ [J ], such that

cδ
√
d

cµλ
(

1
√
nj

− 1
√
nj−1

) ≥ qj, (4.5)

if none of j’s in [J ] satisfies (4.5), j0 = J + 1.

Theorem 4.1 shows that for some funnel under sequential dependency assumption, there

exists a threshold layer j0, before which the bounds without multi-task learning are tighter.

After j0, we use the bounds depending on prior knowledge. For small nj’s, j0 = 1 and for

sufficient large nj’s, j0 = J+1. Figure 4.2 shows an example of how the threshold j0 changes

when total number n increases in a 5-layered funnel.

For the clustered dependency, the prediction error bound can be characterized by Theorem

4.2.

Theorem 4.2 (Prediction error under clustered dependency). For any funnel with a clus-

tered dependency of parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates from Algorithm 3.

With a probability at least 1− δ,

PEj ≤ κ∥x∥2min{
cδ/J
cµλ

√
d

nj0

+ qj,
cδ/J
cµλ

√
d

nj

},

where j0 = argminj∈[J ]
cδ
cµλ

√
d
nj

+ qj.

Under the clustered dependency, there is a single layer that gives the tightest confidence

set on the unknown center, which is used by all the other layers.
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Figure 4.2: An example of how the prediction error bound in Theorem 4.1 changes when
the number of observations increases in a 5-layered funnel. We set ∥x∥2cδ

√
d/(cµλ) = 1,

qj = (12− 2j)/100 and nj = 0.2j−1n. Solid lines mark the prediction error bound defined in
Theorem 4.1 and dashed lines mark the prediction error without multi-task learning (second
term in (4.3)). Black points marked the change of j0.

4.4 Regret Analysis for Contextual Bandit

In this section, we bound regrets for contextual bandits with funnel structure and discuss

the benefits of multi-task learning.

Extra notations. For simpler demonstration, we define Pj : X 7→ [0, 1], such that Pj(x) =∏j
i=1 Zi(x). For any θ = (θT1 , θ

T
2 , . . . , θ

T
j )

T ∈ RdJ , let Pj(x,θ) =
∏j

i=1 µ(x
T θj). To account

for multiple funnels, we let nt
a,j be the number of observations for the j-th layer of funnel

Fa up to step t . Let θ∗a,j be the true parameters and θ∗
a be the joint vector. Further we let

λta,j be the sample minimum eigenvalue covariance matrix of layer j of funnel Fa, λa,j be the

minimum eigenvalue of its expectation and λ̄ be a lower bound over all a and j.

Regret of contextual bandits with funnel structure is defined as

T∑
t=1

[
PJ(xt,θ

∗
a∗t
)− PJ(xt,θ

∗
at)
]
,

where a∗t is the optimal action for input xt, at is the the action chosen by the agent at step

t and T is the total steps.
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Algorithm 4 Contextual Bandit with a Funnel Structure

t→ 1, total number of steps T , memory Ha = {} for all a ∈ [A]. Initialize θa,⋆ with zero
vectors.
for t = 1 to T do

Receive context xt.
Compute P+

J (xt, θ̂a) based on (4.6) for all a ∈ [A].

Choose at = argmaxa∈A P̂
+
J (xt, θ̂a,j).

Receive rt,1, . . . , rt,J from funnel Fat .
Set Hat → Hat ∪ {(xt, (rt,1, . . . , rt,J))}.
Update θ̂at,⋆ by algorithm 3 with dataset Hat .

end for

4.4.1 Optimistic algorithm

We propose a variation of the famous UCB (upper confidence bound) algorithm that adds

bonuses based on the uncertainty of the whole funnel. The prediction error of funnel Fa of

a given input x is |PJ(x, θ̂
t
a)− PJ(x,θ

∗
a)| for θ̂t

a which is the joint vector of estimates θ̂ta,j at

the step t.

From Lemma 4.1, we define ∆µt
a,j by

κ∥xt∥2min{ sup
θ1,θ2∈Θt

a,1

∥θ1 − θ2∥2,
cδ/3AJT

cµλta,j

√
d

nt
a,j ∨ 1

},

where Θt
a,1 is the intersection set from Algorithm 3 for funnel a at step t. Using simple

Taylor’s expansion, we have Lemma 4.2.

Lemma 4.2. Using the estimates from Algorithm 3, we have, with the same probability in

(4.4),

|PJ(x, θ̂
t
a)− PJ(x,θ

∗
a)| ≤∑

j

PJ(x, θ̂
t
a)

µ(xT θ̂ta,j)
∆µt

a,j +
∑
i ̸=j

∆µt
a,j∆µ

t
a,i =: ∆µ

t
a. (4.6)

Define P+
J (x, θ̂t

a) = PJ(x, θ̂
t
a)+∆µt

a. We are able to derive an optimistic algorithm shown

in Algorithm 4. Now we use the prediction error on the whole funnel to analyze the regret.

4.4.2 Regret analysis

Theorem 4.3 bounds regrets for Algorithm 4. The regret in Theorem 4.3 can be bounded

by three terms in (4.7). The first term in (4.7) represents the normal regret without any
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multi-task learning with an order O(
∑

a,j

√
nT
a,j), which reduces to the standard

√
AT when

J = 1. Note that the impact of one layer on regret is bounded with the square root of its

number of observations. The second term is a constant term that does not depend on T .

The third term represents the benefits of multi-task learning. Full version of Theorem 4.3 is

given and proved in Appendix 4.A.

Theorem 4.3. Using Algorithm 4, under the Assumptions 1-4, with high probability, the

total regret

T∑
t=1

[
PJ(xt,θ

∗
a∗t
)− PJ(xt,θ

∗
at)
]
= O(c0

∑
a,j

√
nT
a,j +

∑
a,j

c20Jd
4
x

p̄2a,j
)−

∑
a,j

∆a,j (4.7)

where O ignores all the constant terms and logarithmic terms for better demonstrations,

c0 = (κdxcδ/3AJT

√
d)/(cµλ̄), p̄a,j := ExPj−1(x,θ

∗
a) and

∆a,j =
T∑

t=1;at=a

Pj(x
T
t θ̂

t
at)

c0 1√
nt
a,j ∨ 1

−∆µt
a,j

 .
represents the benefits of transfer learning.

We discuss the actual form of benefits under sequential dependency. If the hypothesis

class is truly sequential dependency with parameters qa,1, . . . , qa,J for each funnel Fa, we have

∆a,j = O(
∑
j′≤j

1/qa,j′),

for sufficient large T . Generally, for sufficient large total steps, the benefits scale with∑
a,j(J − j + 1)/qa,j.

4.5 Experiments

In this section, we first present a simulation on the power of multi-task learning using Algo-

rithm 3. Then we propose a more practical contextual bandit algorithm, which is tested on

a simulated environment and our real-data email campaign environment.

4.5.1 Simulation on supervised learning

We use a simulation to verify the bound in Theorem 4.1 and the curves in Figure 4.2.

We consider a 5-layered funnel with sequential dependency. The link function is µ(x) =
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Figure 4.3: Estimation errors (L2 distance to θ∗j ) of θ̄j and θ̂j under different number of
interactions with the funnel. Colors represents the layers. Solid (Dashed) lines represents
the estimation errors of θ̂j (θ̄j). Each point in the plot is an average over 10 independent
runs.

1/(1 + exp(−x)). We set d = 5 and θj+1 = θj + ujqj, where uj ∈ Rd is a unit vector with a

random direction and qj = 1.2 − 0.2j. In the simulation, we apply Algorithm 3 under the

sequential dependency and calculate the estimation error of the estimates without parameter

transfer (θ̄j) and the final estimates θ̂j. The results are shown in Figure 4.3. We observe a

similar pattern as in Figure 4.2 and the errors of deeper layers are controlled well despite of

their small sample sizes.

4.5.2 Simulations on contextual bandits

Practical algorithm. Calculating the intersection between two sets is not easy when Θ0

has a complex form. Also, we may not have access to Θ0 in real data analysis. We, therefore,

develop practical algorithms especially for the sequential dependency and clustered depen-

dency. Both of the algorithms reduced to optimizing parameters under a L2 regularization.

An equivalent form is to optimize under L2 penalty. Our practical contextual bandit al-

gorithm optimize loss function using an L2 penalty controlled by tuned hyper-parameters

(Algorithm 5 in Appendix 4.B). Since exploration is not the primary interest of this work,

we also adopt a ϵ-greedy exploration for the simplicity of implementation.
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Compared algorithms. Apart from the naive algorithm that directly learns on the sig-

nals rJ , some methods learn on the averaged rewards across the funnel. This approach is

commonly used in Reinforcement Learning with auxiliary rewards (Jaderberg et al., 2016;

Lin et al., 2019), where the true reward is sparse and there are some non-sparse auxiliary

rewards that can accelerate learning. We call this method Mix in the following experiments.

Inspired by the idea of Mix and that of curriculum learning Bengio et al. (2009), we also

test the method that learns on the signals for each layer sequentially.

To sum up, we compare the following five strategies:

1. Target: we train a single model that only predicts the reward from the last stage, i.e.

rJ .

2. Mix: we train a single model that only predicts the average rewards from all the stages,

i.e. 1
J

∑J
j=1 rj)

3. Sequential: for a total steps T , we train a single model on rewards r1, . . . , rJ−1 sequen-

tially for equal number of steps αT/(J − 1) for some constant α ∈ [0, 1] and train the

model on the final reward rJ for the rest of steps.

4. Multi-layer clustered: Algorithm 5 under clustered dependency.

5. Multi-layer sequential: Algorithm 5 under sequential dependency.

Simulated Environments. We first tested the performance of multi-task learning algo-

rithms on the contextual bandit setting. In our contextual bandit setting, number of action

is set to be A = 50, for each action, we independently generate a funnel with J = 8 stages.

The link function is from the logistic regression, where we sample the unknown parame-

ter θa,j sequentially. In this case, θa,1 is sampled from N(0, σ2) and θa,j is sampled from

N(θa,j−1, σ
2/j) for for j > 1. This gives us a funnel with decreasing uncertainty. Context x

is sampled from a Gaussian distribution N(0, σ2
x).

We set the parameters for the environment to be A = 50; J = 8;σ = 1;σx = 0.08; d =

45;T = 3000.

Model setup. For Target, Mix and Sequential, we use a Neural Network model with one

hidden layer, d-dimensional input and A-dimensional output. Each dimension on the output

vector represents the predicted conversion probability for an action. The number of units for

the hidden layer is searched in {8, 16, 32, 64}. Sequential has the hyper-parameter a, which

is searched in {0.1, 0.2, 0.4, 0.6}.
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For Multi-layer clustered and Multi-layer sequential, each stage is modeled with the same

one-layer Neural Networks defined above. The number of units for the hidden layer is

searched in {1, 4, 8, 16}. The penalty parameter λ is searched in {0.001, 0.005, 0.01, 0.05}.
An ϵ-greedy exploration is applied.
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Figure 4.4: Cumulative regrets over 3000 steps using the best hyper-parameters for each of
the five algorithms. The confidence interval is calculated from independent runs.

As shown in Figure 4.4, our practical algorithms beat all the other algorithms in terms of

cumulative regrets. Algorithm 5 under sequential has lower regrets compared to that under

clustered dependency.

4.5.3 Email campaign environment

We further test our algorithms on the Email Campaign problem, which aims at the act of

sending a commercial message, typically to a group of people, using email.

Dataset. We randomly selected 5609706 users, who were active up to the data collection

date and then tracked all the interactions of those users in the following 51 days, which adds

up to 39488647 emails. Each email has a five-dimensional context, consisting of: NumSent,

the number of emails sent to the user since 2019-12-01; NumOpen, the number of emails

opened by the user since 2019-12-01; NumClick, the number of emails whose links were

clicked by the user since 2019-12-01; BussinessGroup, categorical variable indicating the

business group of the user; and Recency, number of hours since last email was sent to the

user, which is categorized into ’0-12’, ’13-24’, ’25-36’, ’37-48’, ’49+’.

80



The agent takes actions of the time to send an email. The action space is divided into six

blocks: 00:00-04:00, 04:00-08:00, 08:00-12:00, 12:00-16:00, 16:00-20:00, 20:00-24:00.

Three rewards are available for each email, indicating whether the email is opened,

whether the email is clicked and whether the email leads to a purchase respectively. Note

that we say an email leads a purchase if the user purchases in the following 30 days.

The email campaign problem defines a funnel with three layers. On average, the rates

for opening, clicking and purchasing are about 10%, 0.4% and 0.01%, respectively in the

dataset. As we can see, the signals for learning purchasing behaviour are sparse. We will

show in our experiments that how multi-task learning can improve the sample efficiency.

Data-based environment. We first build a data-based contextual bandit environment

using population distribution. At each step, the environment randomly samples a context

from the dataset and the agent takes an action from the six blocks. The environment then

samples a reward vector from the set of rewards with the same action and context.

Purchase Click Open
(10−2)

Target 4.09 3.88 24.6
Mix 4.23 6.63 47.0
Sequential 2.1 0.981 0.495
Multi-layer clu. 6.34 0.753 -18.1
Multi-layer seq. 1.06 2.04 3.03

Table 4.1: Average increases in the number of Purchase, Click or Open over 10000 steps
compared to the Random policy using 20 independent runs. The standard deviations are all
less than 10−3 for Purchase and 10−1 for Click and Open.

Results. We searched the same set of hyper-parameters as used in the previous experiments

except for the number of hidden units. The hidden units for the two multi-layer algorithms

are searched in {8, 16, 32, 64} instead.
We first tested the decrease in prediction error for the five algorithms with actions ran-

domly selected. Hyper-parameters with the lowest cumulative square prediction errors were

selected. As shown in Figure 4.5, our multi-task learning algorithms have much lower cumu-

lative prediction errors. The total prediction errors converge after 2500 steps.

We further applied our practical algorithm in Algorithm 5 and selected the hyper-

parameters with the lowest regret. Table 1 showed the average increased number of Purchase,

Click and Open within 10000 steps with respect to a purely random policy over 10 inde-

pendent runs. The results are shown in Table 4.1. As one can see in the table, Multi-layer
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Figure 4.5: The cumulative square errors for five algorithms. The solid lines are averaged
over 10 independent runs and regions mark the 1 standard deviation over the 10 runs.

clustered improved Purchase rate the most by 0.0634 over 10000 steps. However, Mix im-

proved the average number of Click or Open the most. This indicates that the three tasks

are not exactly the same.

The advantages of our algorithms over the compared three algorithms are the use of full

information and the appropriate regularization, which allows knowledge transfer between

layers. Target, Seq. andMix all use a single model for the whole funnel, where the similarities

between layers are not clear and they all lose some information while processing signals.

Target and Seq. learn only on a single signal from one layer on each step. Mix adopts a

weighted average.

4.6 Discussion

In this chapter, we formulated an important problem, funnel structure, from the marketing

field. We used a multi-task learning algorithm to solve the contextual bandit problem with

a funnel structure and offered its regret analysis. We verified our theorem using a simple

simulation environment and tested the performances of our algorithm on both simulation

and real-data environment.

Note that our bounds on prediction error in Theorem 4.1 and Theorem 4.2 do not scale
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with 1/
√∑

j nj under the special case when θ1 = · · · = θJ . However, the sparsity of the

funnel implies that the optimal rate is only smaller than our bound by a constant factor that

does not depend on J . To see this, assuming that nj+1/nj = q, we have
∑

j nj → n/(1− q),
which is a constant value.

In terms of the real-data environment, we adopted the population model that may lead

to high variance in context and action pairs that do not have sufficient observations and our

environment may not fully reflect the true environment. A better data-based environment

may be proposed using rare event simulation Rubino and Tuffin (2009).

4.A Missing Proofs

Connection to discrepancy measure In this section, we discuss how our assumption

relates to discrepancy assumptions. Consider Y-discrepancy that measures the maximum ab-

solute distance between the loss function: dist (D1,D2) := suph∈H |LD1(h)− LD2(h)| , where
D1 and D1 represents the source domain and target domain and LD1 and LD2 are expected

loss for two domains.

Note that under the GLM assumption, the L2 distance in unknown parameters resembles

the discrepancy using square loss. Consider a funnel with two layers and ∥θ1 − θ2∥2 = q.

Lemma 4.3 indicates that q ≈ dist(D1,D2).

Lemma 4.3. We have under square loss function, dist(D1,D2) ≤ 4κdxq.

Proof.

We first show the second inequality.

dist (D1,D2)

= sup
θ
|Ex(µ(x

T θ))− µ(xT θ∗1))2 − Ex(µ(x
T θ)− µ(xT θ∗2))2|

≤ sup
θ
|Exµ(x

T θ)(µ(xT θ∗1)− µ(xT θ∗2))|+ |Ex(µ
2(xT θ∗1)− µ2(xT θ∗2))|

≤ 4|Ex(µ(x
T θ∗1)− µ(xT θ∗2))|

≤ 4Ex|µ(xT θ∗1)− µ(xT θ∗2)|

≤ 4κEx|xT (θ∗1 − θ∗2)|

≤ 4κdxq
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On the other hand, an lower bound of dist (D1,D2) is also closely related to q.

dist (D1,D2)

= sup
θ
|Ex(µ(x

T θ))− µ(xT θ∗1))2 − Ex(µ(x
T θ)− µ(xT θ∗2))2|

= sup
θ
|Ex(µ(x

T θ∗1)− µ(xT θ∗2))(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))|

= sup
θ
|Ex

∫
t

µ′ (txT θ∗1 + (1− t)xT θ∗2
)
dt(xT (θ∗1 − θ∗2))(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))|

= sup
θ
|(θ∗1 − θ∗2)T [Exx

∫
t

µ′ (txT θ∗1 + (1− t)xT θ∗2
)
dt(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))]|

(Let θ → −∞)

≥ |(θ∗1 − θ∗2)Tνθ∗1 ,θ∗2 | (letting νθ∗1 ,θ∗2 = [Exx

∫
t

µ′ (txT θ∗1 + (1− t)xT θ∗2
)
dt(µ(xT θ∗1) + µ(xT θ∗2))]).

Let θ∗2 = θ∗1+∥θ∗1−θ∗2∥2µ, where µ is a unit vector. For sufficient small ∥θ∗1−θ∗2∥2, νθ∗1 ,θ∗2 →
2Ex[xµ

′(xT θ∗1)µ(x
T θ∗1)] =: νθ∗1 , which is a constant vector. Thus

lim
∥θ∗1−θ∗2∥2→0

dist(D1,D2)

∥θ∗1 − θ∗2∥2
= |µTνθ∗1 |.

For sufficient small ∥θ∗1 − θ∗2∥, discrepancy scales with ∥θ∗1 − θ∗2∥.

Proof of Lemma 4.1 In this subsection, we introduce the proof of Lemma 4.1. Many

proofs could achieve a very similar bound. Here we use the idea of local Rademacher com-

plexity.

Proof.

We discuss two cases: 1) θ̂ ∈ int(Θ0). 2) θ̂ /∈ int(Θ0).

In both cases, one simply has

|µ(xT θ̂)− µ(xT θ∗)| ≤ κ|xT (θ̂ − θ∗)| ≤ κ sup
θ1,θ2∈Θ0

|xT (θ1 − θ2)|,

which completes the first term in the minimum.

Now we prove the parametric bound. We first assume that case 1 holds. In this case,

the constraint does not come into effects and θ̂ is the global minimal. By Theorem 26.5 in

Shalev-Shwartz and Ben-David (2014), we have under an event, whose probability is at least

1− δ,

L(θ̂)− L(θ∗) ≤ 2Rn(z) + 5

√
2 ln(8/δ)

n
, (4.8)
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where R(z) is the Rademacher complexity defined by

Rn(z) = Eσ
1

n
sup
θ∈Θ

n∑
i=1

∥zi − µ(xTi θ)∥2Mn
σi,

and the variables in σ are distributed i.i.d. from Rademacher distribution. Let us call the

event EA.

As for any i ∈ [n], let ϕi(t) := (zi− µ(t))2, which satisfies |ϕ′
i(t)| = |2(zi− µ(t))µ′(t)| ≤ κ,

using Contraction lemma (Shalev-Shwartz and Ben-David, 2014), we have

Rn(z) ≤ Eσ
1

n
sup
θ∈Θ

∑
i

κ(xTi θ)σi

= κEσ
1

n
sup
θ∈Θ

n∑
i=1

xTi (θ − θ∗)σi. (4.9)

≤ κEσ
1

n
sup
θ∈Θ
∥
∑
i

xiσi∥M−1
n
∥θ − θ∗∥Mn

≤ κEσ
1

n
∥
∑
i

xiσi∥M−1
n

sup
θ∈Θ0

∥θ − θ∗∥Mn .

Next, using Jensen’s inequality we have that

Eσ
1

n
∥
∑
i

xiσi∥M−1
n

≤ 1

n

(
Eσ∥

∑
i

xiσi∥2M−1
n

)1/2

=
1

n

(
Eσtr[M

−1
n (
∑
i

xiσi)(
∑
i

xiσi)
T ]

)1/2

=
1

n

(
tr[M−1

n Eσ(
∑
i

xiσi)(
∑
i

xiσi)
T ]

)1/2

(4.10)
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Finally, since the variables σ1, . . . , σm are independent we have

Eσ(
∑
i

xiσi)(
∑
i

xiσi)
T

= Eσ

∑
k,l∈[n]

σkσlxkx
T
l

= Eσ

∑
i∈[n]

σ2
i xix

T
i

=
∑
i∈[n]

xix
T
i = nMn.

Plugging this into (4.10), assuming Mn is full rank, we have

(4.9) ≤
√
d/n sup

θ∈Θ0

∥θ − θ∗∥Mn . (4.11)

Lemma 4.4. Under the notation in Lemma 4.1 and Assumption 4.2, if an estimate θ̂ satisfies

L(θ̂) ≤ L(θ∗) + bn, then

∥θ̂ − θ∗∥2Mn
≤ dxbn

cµ
.

Proof. Let gn(θ) =
∑

i xi(µ(x
T
i θ) − µ(xTi θ

∗)). For any θ, ∇gn(θ) =
∑

i xix
T
i µ

′(xTi θ). By

simple calculus,

gn(θ
∗)− gn(θ̂) =

∫ 1

0

∇gn
(
sθ∗ + (1− s)θ̂

)
ds(θ∗ − θ̂).

As µ(t) ≥ cµ, we have
∫ 1

0
∇gn

(
sθ∗ + (1− s)θ̂

)
ds ≻ cµMn. Plugging this into the inequality

above we have

∥θ∗ − θ̂∥2Mn
≤ 1

cµ
(
∑
i

xi(µ(x
T
i θ)− µ(xTi θ∗)))2 =

1

cµ
ϵTMnϵ ≤

dx
cµ
ϵT ϵ =

dx
cµ

(L(θ̂)− L(θ∗)),

where ϵ := (µ(xTi θ̂)− µ(xTi θ∗))ni=1.

Applying (4.8) and Lemma 4.4, we complete the proof by

∥θ̂ − θ∗∥Mn ≤

√
2dx
√
d

cµ
√
n

sup
θ∈Θ
∥θ − θ∗∥Mn + 5

√
2 ln(8/δ)

n

≤

√
20
√

2 ln(8/δ)dx
√
d supθ∈Θ0

∥θ − θ∗∥Mn

cµ
√
n

. (4.12)

86



We apply (4.12) iteratively 2. Let Θ(1) := Θ0. For any t > 1, let Θ(t) = {θ ∈ Rd :

∥θ − θ̂∥Mn ≤
√

20
√

2d ln(8/δ)

cµ
√
n

supθ∈Θ(t−1)
∥θ − θ∗∥Mn}. When t→∞, we have

Θ(∞) =
20dx

√
2d ln(8/δ)

cµ
√
n

.

By (4.12), we have θ∗ ∈ ∩t≥1Θ(∞) and ∥θ̂ − θ∗∥Mn ≤
40dx
√

2d ln(8/δ)

cµ
√
n

, which completes the

second part of Lemma 4.1.

For any x ∈ X , we have

|µ(xT θ̂)− µ(xT θ∗)| ≤ κ∥x∥M−1
n

40dx
√

2d ln(8/δ)

cµ
√
n

. (4.13)

When case 2 holds, let θ̂′ be the global minimizer. Using the analysis above, we have

∥θ̂′ − θ∗∥Mn ≤
40dx

√
2d ln(8/δ)

cµ
√
n

.

Then by triangle inequality

∥θ̂ − θ∗∥Mn ≤ ∥θ̂ − θ̂′∥Mn + ∥θ̂′ − θ∗∥Mn ≤
80dx

√
2d ln(8/δ)

cµ
√
n

.

Tightness of Lemma 4.1 We use an example to show the tightness of Lemma 4.1. Assume

a linear predictor, i.e. µ(t) = t. Consider the following distribution, let X be uniform over

the d-standard basis vector em, for m = 1, . . . , d. Let Z | (X = ei) ∼ Bern(ri), where

ri ∈ [0, 1] is pre-determined and unknown. The optimal parameter θ∗ = (r1, . . . , rd)
T . Let

nm be the number of samples collected for dimension m. Let Θ0 := {θ : ∥θ∥2 ≤ q}.
When n is sufficiently large n > 1/q2, θ̂ is the regularized minimizer. It can be shown

that for any θ̂, there exists θ∗ such that E[θ̂i − θ∗i ]2 ≥ (rm(1− rm))/nm. Then E∥θ̂ − θ∗∥22 ≥∑d
m=1

ri(1−ri)
nm

≥ d2(ri(1−ri))
n

= Ω(d
2

n
).

Then we also see that when n is small (≤ 1
q2
), the estimation error is Ω(q). We use

the same example as above. This time, we assume ∥θ∗∥ ≤ q
2
. If we have a ∥θ̂∥ = q, then

∥θ∗−θ̂∥ ≥ q/2 = Ω(q). Otherwise, we use the lower bound above: ∥θ∗−θ̂∥ ≥ Ω( d√
n
) = Ω(dq).

2Note that (4.12) holds under the same event EA as the estimates θ̂ keeps the same each round as it is
the global minimizer.

87



The above argument corresponds to the upper bound in Lemma 4.1, where we use prior

knowledge when n is small and use the parametric bound when n is large.

Proof of Theorem 4.1 In this subsection, we show the missing proof for Theorem 4.1.

Theorem 4.4 (Prediction error under sequential dependency). For any funnel with a se-

quential dependency of parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates from Algorithm

3. If nj+1 ≤ nj/4, q1 ≥, . . . ,≥ qJ and Assumption 5 is satisfied, then with a probability at

least 1− δ, for any j0 ∈ [J ], we have

PEj ≤

 κ∥x∥2 cδ
cµλ

√
d
nj
, if j < j0,

κ∥x∥2( cδ
cµλ

√
d

nj0
+
∑j

i=j0+1 qj), if j ≥ j0,
(4.14)

where we let n0 =∞. The bound is smallest when j0 is the smallest j ∈ [J ], such that

4cδ
√
d

cµλ
(

1
√
nj

− 1
√
nj−1

) ≥ qj, (4.15)

if none of j’s in [J ] satisfies (4.15), j0 = J + 1.

Proof. First we reshape the ellipsoid in (4.3) to a ball.

Lemma 4.5 (Reshape). For any vector x ∈ Rd and any matrix M ≻ 0 ∈ Rd×d, ∥x∥2 ≤
1
λ
∥x∥M , where λ is the minimum eigenvalue of M .

Proof. We directly use the definition of positive definite matrix: λ2∥x∥22−∥x∥2M = xT (λ2I −
M)x ≤ 0. Thus, ∥x∥2 ≤ 1

λ2∥x∥M . #

Using Lemma 4.5 and Assumption 4.5, we have ∥θ̄j − θ∗j∥2 ≤ 1
λ
∥θ̄j − θ∗j∥Mn ≤ 4cδ

cµλ

√
d
n
.

Thus the set Θ̂j ⊂ {θ : ∥θ − θ̄j∥2 ≤ 4cδ
cµλ

√
d
n
} =: Θ̂ball

j .

For every j, one can derive two bounds. First we can directly apply Corollary 4.1 and

get PEj ≤ κ∥x∥2 4cδ
cµλ

√
d
nj
. Second, for any j0, we have θ∗j ∈ Θ1[j] ⊂ {θ : ∥θ̄j0 − θ∥2 ≤

4cs
cµλ

√
d

nj0
+
∑

j0+1≤i≤j qi} and get PEj ≤ κ∥x∥2( cδ
cµλ

√
d

nj0
+
∑j

i=j0+1 qj).

Now we show the second argument: of all those bounds the one defined in (4.14) with j0

defined in (4.15) is the smallest. For any j ≤ j0 and j1 ≤ j, we have

4cδ
cµλ

√
d

nj

=
4cδ
√
d

cµλ

(
j∑

i=j1+1

(
1
√
ni

− 1
√
ni−1

) +
1
√
nj1

)
≤ 4cδ
cµλ

√
d

nj1

+

j∑
i=j1+1

qi. (4.16)
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The second inequality is given by ( 1√
ni
− 1√

ni−1
) ≤ qi for all i < j0. For any j ≥ j0 and

j1 ≤ j0, by (4.16), we have

4cδ
cµλ

√
d

nj0

+

j∑
i=j0+1

qi ≤
4cδ
cµλ

√
d

nj1

+

j∑
i=j1+1

qi.

Now we prove that for all i ≥ j0,

4cδ
√
d

cµλ
(

1
√
ni

− 1
√
ni−1

) ≥ qi. (4.17)

We use induction. Assume for some i1, (4.17) is satisfied. Under the assumption that

ni1−1 ≤ ni1/4 and qi1 ≥ qi1+1, we have

4cδ
√
d

cµλ
(

1
√
ni1+1

− 1
√
ni1

) =
4cδ
√
d

cµλ
(

1
√
ni1+1

+
1

√
ni1−1

− 2
√
ni1

+
1
√
ni1

− 1
√
ni1−1

)

≥ 4cδ
√
d

cµλ
(

1
√
ni1+1

+
2
√
ni1

− 2
√
ni1

+
1
√
ni1

− 1
√
ni1−1

)

≥ 4cδ
√
d

cµλ
(+

1
√
ni1

− 1
√
ni1−1

)

≥ qi1 ≥ qi1+1.

Using 4.17, for any j ≥ j1 > j0,

4cδ
cµλ

√
d

nj0

+

j∑
i=j0+1

qi =
4cδ
√
d

cµλ

(
j1∑

i=j0+1

(
1

√
ni−1

− 1
√
ni

) +
1
√
nj1

)
+

j∑
i=j0+1

qi ≤
4cδ
cµλ

√
d

nj1

+

j∑
i=j1+1

qi.

Finally, we conclude that j0 gives the smallest bound. #

Similar argument can be used to show Theorem 4.2. For any j0 ∈ [J ], we have

PEj ≤ κ∥x∥2min

{
cδ/J
cµλ

√
d

nj0

+ qj,
cδ/J
cµλ

√
d

nj

}
.

Out of all the choices of j0, the best one is achieved by j0 = argminj∈[J ]
cδ
cµλ

√
d
nj

+ qj.

Proof of Theorem 4.3

Theorem 4.5. Using Algorithm 4, under the Assumptions 1-4, with a probability at least
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1− δ, the total regret

T∑
t=1

[
P (xt,θ

∗
a∗t
)− P (xt,θ∗

at)
]

≤ 2
√
2c0
∑
a,j

√
nT
a,j +

∑
a,j

8c20Jd
4
x log(6AJT/δ)

p̄2a,j
−
∑
a,j

∆a,j. (4.18)

where O ignores all the constant terms and logarithmic terms for better demonstrations,

c0 = (κdxcδ/AJT

√
d)/(cµλ̄), p̄a := ExPJ−1(x

Tθ∗
a) and

∆a,j =
T∑

t=1;at=a

Pj(x
T
t θ̂

t
at)

c0 1√
nt
a,j ∨ 1

−∆µt
a,j

 .
represents the benefits of transfer learning.

Let p̄a,j := ExPj−1

(
xT θ∗a

)
. We first show that upper bound the number of steps t with

λtat,j ≤ λ̄/2 or nt
a,j ≤ 1

2
nt
a,1p̄a,j. These steps are considered bad events.

Lemma 4.6 shows that with high probability, the number of observations for each layer is

close to its expectation.

Lemma 4.6. With a probability at least 1 − δ, we have nt
a,j ≥ nt

a,1p̄a,j −
√

2nt
a,1 log(1/δ).

Especially, when nt
a,1 > 8 log(1/δ)/p̄2a,j =: cn,a, we have nt

a,j ≥ 1
2
nt
a,1p̄a,j.

Proof. This is a direct application of Hoeffding inequality.

Lemma 4.7. For any x1, . . . , xn i.i.d, ∥xi∥ ≤ dx, let λn be the minimum eigenvalue of∑
i xix

T
i /n and λ̄ be the minimum eigenvalue of its expectation. We have λn ≥ λ̄/2, when

n > d4x log(1/δ)/λ̄
2.

Proof. For all x1, . . . , xn, write xi =
∑d

s=1 νs,ix̃s, where x̃1, . . . , x̃d are any basis of Rd. We

have Eν2s,i ≥ λ̄. For Hoeffding’s inequality, since νs,i ≤ dx, with a probability 1− δ, we have

1

n

∑
i

ν2s,i ≥ Eν2s,1 − d2x

√
log(1/δ)

n
≥ λ̄− d2x

√
log(1/δ)

n
.

For n > d4x log(1/δ)/λ̄
2, we have 1

n

∑
i ν

2
s,i ≥ λ̄/2. There exists a choice of x̃1, . . . , x̃d such

that λn = 1
n

∑
i ν

2
s,i.

Combining Lemma 4.6 and Lemma 4.7, we have with a probability at least 1 − δ/3,
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#{t : ∃j, λtat,j ≤ λ̄/2 or nt
a,j ≤ 1

2
nt
a,1p̄a,j} can be upper bounded by∑

a,j

max
{
8 log(6AJT/δ)/p̄2a,j, 2d

4
x log(6AJT/δ)/(λ̄

2p̄a,j)
}
. (4.19)

In the following proof, we assume for all t, λta,j ≥ λ̄/2 and nt
a,j ≥ 1

2
nt
a,1p̄a,j. We also

assume the event in Lemma 4.1 happens for all a ∈ [A], j ∈ [J ] and t < T . The probability

is at least 1− δ/3 as each probability is at least 1− δ/(3AJT ).
The total regret is

T∑
t=1

[
P (xt,θ

∗
a∗t
)− P (xt,θ∗

at)
]

≤
T∑
t=1

[
P (xt,θ

∗
a∗t
)− P+(xt, θ̂at) + P+(xt, θ̂at)− P (xt,θ∗

at)
]

(Using P (xt,θ
∗
a∗t
)− P+(xt, θ̂at) ≤ 0)

≤
T∑
t=1

[
P+(xt, θ̂

t
at)− P (xt,θ

∗
at)
]

(Using Lemma 4.2)

≤
T∑
t=1

∑
j

PJ

(
x, θ̂tat

)
µ
(
xT θ̂tat,j

)∆µt
at,j +

∑
i ̸=j

∆µt
at,j∆µ

t
at,i


≤

T∑
t=1

[∑
j

Pj(xt, θ̂
t
at)∆µ

t
at,j +

∑
i ̸=j

∆µt
at,j∆µ

t
at,i

]

=
T∑
t=1

[∑
j

(Pj(xt, θ
∗
at) + Pj(xt, θ̂

t
at)− Pj(xt, θ

∗
at))∆µ

t
at,j +

∑
i ̸=j

∆µt
at,j∆µ

t
at,i

]

≤
T∑
t=1

∑
j

Pj

(
xt, θ

∗
at

) c0√
nt
at,j︸ ︷︷ ︸

1○

−
T∑
t=1

∑
j

Pj

(
xt, θ

∗
at

)
(

c0√
nt
at,j

−∆µt
at,i)︸ ︷︷ ︸

2○

+
T∑
t=1

∑
i ̸=j

∆µt
at,j∆µ

t
at,i︸ ︷︷ ︸

3○

+
T∑
t=1

[∑
j

(Pj(xt, θ̂
t
at)− Pj(xt, θ

∗
at))∆µ

t
at,j

]
︸ ︷︷ ︸

4○

.

We further bound the terms separately. The first term 1○ represents the bound one could

have without multi-task learning.

91



T∑
t=1

∑
j

Pj(xt, θ
∗
at)

c0√
nt
at,j

≤
T∑
t=1

∑
j

1(rt,j−1 = 1)
c0√
nt
at,j

+
T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
nt
at,j

(Using Lemma 19 in Jaksch et al. (2010))

≤ c02
√
2
∑
a,j

√
nT
a,j +

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
nt
at,j

(4.20)

As E[Pj(xt, θ
∗
at) − 1(rt,j−1 = 1)] = 0, the second term in (4.20) is a martingale. Using

Azuma-Hoeffding inequality, with a probability at least 1− δ/3, for all T ,

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
nt
at,j

≤ c0
√

2 log(3TJ/δ). (4.21)

Combined with (4.20),

1○ ≤ 2
√
2c0
∑
a,j

√
nT
a,j + c0

√
2 log(3TJ/δ). (4.22)

Next we bound 3○. We notice that this is a quadratic term. We first show Lemma 4.6 that

lower bounds the number of observations for each layer. Lemma 4.6 is a direct application

of Hoeffding’s inequality.
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For any pair i, j, we have

T∑
t=1

∆µt
at,j∆µ

t
at,i

≤ c20

T∑
t=1

1√
nt
at,i

1√
nt
at,j

≤ c20

T∑
t=1

1(nt
at,1 ≤ cn,at)

1√
nt
at,i

1√
nt
at,j

+ 1(nt
at,1 > cn,at)

1√
nt
at,i

1√
nt
at,j


≤ c20

∑
a

cn,a + c20
∑
t

4

p̄2an
t
at,1

≤ c20
∑
a

cn,a + c20
∑
a

4 log(nT
a,1)

p̄2a

≤ 4c20
∑
a

log(nT
a,1A/δ)

p̄2a
. (4.23)

where we let p̄a := ExPJ

(
xT θ∗a

)
.

Thus, 3○ is upper bounded by 4c20J
2
∑

a

log(nT
a,1A/(3δ))

p̄2a
.

Finally we bound term 4○. Using Lemma 4.2 on only first j layers, we have

4○ ≤
∑
t

∑
j

[
∑
i

∆µt
at,i +

∑
i,k

∆µt
at,k∆µ

t
at,i]∆µ

t
at,j ≤ (J + 1)× 3○. (4.24)

The proof is completed by combining Equations (4.19), (4.21), (4.22), (4.23) and (4.24).

93



4.B Experiments Details

Algorithm 5 Practical Algorithm for Contextual Bandit with a Funnel Structure

t→ 1, total number of steps T , memory Ha = {} for all a ∈ [A]. Initialize θ̂a,⋆ with zero

vectors.

θ̂a,0 → 0.

for t = 1 to T do

Receive context xt.

Choose at = argmaxa∈A P̂J(xt, θ̂a,j).

Set at = Unif([A]) with probability ϵ.

Receive rt,1, . . . , rt,J from funnel Fat .

Set Hat → Hat ∪ {(xt, (rt,1, . . . , rt,J))}.
for j = 1, . . . , J do

# For sequential dependency

θ̂at,j → argmin
θ

l(θ,Hat) + λj∥θ − θ̂at,j−1∥2

# For clustered dependency

θ̂at,j → argmin
θ

l(θ,Hat) + λj∥θ −
1

J

∑
i

θ̂at,i∥2

end for

end for

Practical algorithm

Simulated environment.

1. Target: units 16

2. Mix: units 32

3. Sequential: units 32

4. Multi-layer Clustered: units 4; λ 0.001

5. Multi-layer Sequential: units 8; λ 0.001
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Data-based environment.

1. Target: units 64

2. Mix: units 64

3. Sequential: units 64

4. Multi-layer Clustered: units 64; λ 0.005

5. Multi-layer Sequential: units 16; λ 0.001
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CHAPTER 5

Multitask Reinforcement Learning

Multitask Reinforcement Learning (MTRL) approaches have gained increasing attention for

its wide applications in many important Reinforcement Learning (RL) tasks. However, while

recent advancements in MTRL theory have focused on the improved statistical efficiency

by assuming a shared structure across tasks, exploration–a crucial aspect of RL–has been

largely overlooked. In this chapter, we address this gap by showing that when an agent is

trained on a sufficiently diverse set of tasks, algorithms with myopic exploration design like

ϵ-greedy that are inefficient in general can be sample-efficient for MTRL. To the best of our

knowledge, this is the first theoretical demonstration of the ”exploration benefits” of MTRL.

It may also shed light on the enigmatic success of the wide applications of myopic exploration

in practice. To validate the role of diversity, we conduct experiments on synthetic robotic

control environments, where a more diverse training task set leads to improved performance.

5.1 Introduction

Reinforcement Learning often involves solving multitask problems. For instance, robotic

control agents are trained to simultaneously solve multiple goals in multi-goal environments

(Andreas et al., 2017; Andrychowicz et al., 2017). In mobile health applications, RL is

employed to personalize sequences of treatments, treating each patient as a distinct task

(Yom-Tov et al., 2017; Forman et al., 2019; Ghosh et al., 2023; Liao et al., 2020). Many

algorithms (Andreas et al., 2017; Andrychowicz et al., 2017; Hessel et al., 2019; Yang et al.,

2020) have been designed to jointly learn from multiple tasks, which shows significant im-

provement over these that learn each task individually. Towards the potential explanations

of such improvement, recent advancements in Multitask Reinforcement Learning (MTRL)

theory study the improved statistical efficiency in estimating unknown parameters by assum-

ing a shared structure across tasks (Agarwal et al., 2022; Brunskill and Li, 2013; Calandriello

et al., 2014; Cheng et al., 2022; Lu et al., 2021; Uehara et al., 2021; Xu et al., 2021; Yang
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et al., 2022; Zhang and Wang, 2021). Similar setups originate from Multitask Supervised

Learning, where it has been shown that learning from multiple tasks reduces the general-

ization error by a factor of 1/
√
N compared to single-task learning with N being the total

number of tasks (Maurer et al., 2016; Du et al., 2020). Nevertheless, these studies overlook

an essential aspect of RL–exploration.

Exploration design plays an important role in achieving sample-efficient learning. To un-

derstand how learning from multiple tasks, as opposed to single-task learning, could poten-

tially benefit exploration design, we consider a generic MTRL scenario, where an algorithm

interacts with a task setM in rounds T . In each round, the algorithm chooses an exploratory

policy π that is used to collect one episode of its own choice of M ∈ M. A sample-efficient

algorithm should output a near-optimal policy for each task in polynomial number of rounds.

Previous sample-efficient algorithms for single-task learning (|M| = 1) heavily rely on

strategic design on the exploratory policies, such as Optimism in Face of Uncertainty (Auer

et al., 2008; Bartlett and Tewari, 2009; Dann et al., 2017) and Posterior Sampling (Russo

and Van Roy, 2014; Osband and Van Roy, 2017). Strategic design is criticized for either

being restricted to environments with strong structural assumptions, or involving intractable

computation oracle, such as non-convex optimization (Jiang, 2018; Jin et al., 2021a). In

contrast, myopic exploration design like ϵ-greedy that injects random noise to a current

greedy policy is easy to implement and performs well in a wide range of applications (Mnih

et al., 2015; Kalashnikov et al., 2018), while it is shown to have exponential sample complexity

in the worst case for single-task learning (Osband et al., 2019). Throughout the paper, we

ask the main question:

Can algorithms with myopic exploration design be sample-efficient for MTRL?

In this chapter, we address the question by showing that a simple algorithm that explores

one task with ϵ-greedy policies from other tasks can be sample-efficient if the task set M
is adequately diverse. Our results may shed some light on the longstanding mystery that

ϵ-greedy is successful in practice, while being shown sample-inefficient in theory. We argue

that in a MTRL setting, ϵ-greedy policies may no longer behave myopically, as they explore

myopically around the optimal policies from other tasks. When the task set is adequately

diverse, this exploration may provide sufficient coverage.

To summarize our contributions, we discuss a sufficient diversity condition under a general

value function approximation setting (Dann et al., 2022; Jin et al., 2021a). We show that the

condition guarantees polynomial sample-complexity bound by running the aforementioned

algorithm with myopic exploration design. We further discuss how to satisfy the diversity

condition in different cases studies, including tabular cases, linear cases and linear quadratic
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regulator cases. In the end, we validate our theory with experiments on synthetic robotic

control environments, where we see that a diverse task set leads to a better policy learning

and an improved generalization performance compared to that of non-diverse tasks.

5.2 Problem Setup

The following are notations that will be used throughout the paper.

Notation. For a positive integer H, we denote [H] := {1, . . . , H}. For a discrete set A,
we denote ∆A by the set of distributions over A. We use O and Ω to denote the asymptotic

upper and lower bound notations and use Õ and Ω̃ to hide the logarithmic dependence. Let

{ei}i∈[d] be the standard basis that spans Rd. We let NF(ρ) denote the ℓ∞ covering number

of a function class F at scale ρ. For a class F , we denote the N -times Cartesian product of

F by (F)⊗N .

5.2.1 Proposed Multitask Learning Scenario

Throughout the paper, we consider each task as an episodic MDP denoted by M =

(S,A, H, PM , RM), where S is the state space, A is the action space, H ∈ N is the hori-

zon length in each episode, PM = (Ph,M)h∈[H] is the collection of transition kernels, and

RM = (Rh,M)h∈[H] is the collection of immediate reward distributions. Note that we con-

sider the setting, where all the tasks share the same state space, action space, and horizon

length.

An agent interacts with an MDP M in the following way: starting with a fixed initial

state s1, at each step h ∈ [H], the agent decides an action ah and the environment samples

the next state sh+1 ∼ Ph,M(· | sh, ah) and next reward rh ∼ Rh,M(sh, ah). An episode is

a sequence of states, actions, and rewards (s1, a1, r1, . . . , sH , ah, rH , sH+1). In general, we

assume that the sum of rh is upper bounded by 1 for any action sequence almost surely. The

goal of an agent is to maximize the cumulative reward
∑H

h=1 rh by optimizing their actions.

The agent chooses actions based on Markovian policies denoted by π = (πh)h∈[H] and each

πh is a mapping S 7→ ∆A, where ∆A is the set of all distributions over A. Let Π denote the

space of all such policies. For a finite action space, we let πh(a | s) denote the probability of

selecting action a given state s at the step h. In case of the infinite action space, we slightly

abuse the notation by letting πh(· | s) denote the density function.

Proposed learning scenario and objective. We consider the following multitask RL

learning scenario. An algorithm interacts with a set of tasksM sequentially for T rounds.

98



At the each round t, the algorithm chooses an exploratory policy, which is used to collect

one episode of its own choice of M ∈ M. At the end of T rounds, the algorithm outputs a

set of policies {πM}M∈M. The goal of an algorithm is to learn a near-optimal policy πM for

each task M ∈M. The sample complexity of an algorithm is defined as follows.

Definition 5.1 (MTRL Sample Complexity). An algorithm is said to have sample-

complexity of C : R × R 7→ N for a task set M if for any β > 0, δ ∈ (0, 1), it outputs a

β-optimal policy πM for each MDP M ∈ M with probability at least 1 − δ, by interacting

with the task set for C(β, δ) rounds.

A sample-efficient algorithm should have a sample-complexity polynomial in the param-

eters of interests. For the tabular case, where the state space and action space are finite,

C(β, δ) should be polynomial in |S|, |A|, |M|, H, and 1/β for a sample-efficient learning.

Current state-of-the-art algorithm (Zhang et al., 2021) on a single-task tabular MDP achieves

sample-complexity of Õ(|S||A|/β2)1. This bound translates to a MTRL sample-complexity

bound of Õ(|M||S||A|/β2) by running their algorithm individually for each M ∈M. How-

ever, their exploration design closely follows the principle of Optimism in Face of Uncertainty,

which is normally criticized for over-exploring.

5.2.2 Value Function Approximation

We consider the setting where value functions are approximated by general function classes.

Denote the value function of an MDP M with respect to a policy π by

Qπ
h,M(s, a) = EM

π

[
rh + V π

h+1,M (sh+1) | sh = s, ah = a
]

V π
h,M(s) = EM

π

[
Qπ

h,M (sh, ah) | sh = s
]
,

where by EM
π , we take expectation over the randomness of trajectories sampled by policy π

on MDP M and we let V π
H+1,M(s) ≡ 0 for all s ∈ S and π ∈ Π. We denote the optimal

policy for MDPM by π∗
M . The corresponding value functions are denoted by V ∗

h,M and Q∗
h,M ,

which is shown to satisfy Bellman Equation T M
h Q∗

h+1,M = Q∗
h,M , where for any g : S ×A 7→

[0, 1],
(
T M
h g
)
(s, a) = E[rh +maxa′∈A g (sh+1, a

′) | sh = s, ah = a].

The agent has access to a collection of function classes F = (Fh : S ×A 7→ R)h∈[H+1]. We

assume that different tasks share the same set of function class. For each f ∈ F , we denote

fh ∈ Fh the h-th component of the function f . We let πf = {πf
h}h∈[H] be the greedy policy

with πf
h(s) = argmaxa∈A fh(s, a). When it is clear from the context, we slightly abuse the

1This bound is under the regime with 1/β ≫ |S|
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notation and let f ∈ (F)⊗|M| be a joint function for all the tasks. We further let fM denote

the function for the task M and let fh,M be its h-th component.

Define Bellman error operator EMh such that EMh f = fh − T M
h fh+1 for any f ∈ F . The

goal of the learning algorithm is to approximate Q∗
h,M through the function class Fh by

minimizing the empirical Bellman error for each step h and task M .

To provide theoretical guarantee on this practice, we make the following realizability and

completeness assumptions. The two assumptions and their variants are commonly used in

the literature (Dann et al., 2017; Jin et al., 2021a).

Assumption 5.1 (Realizability and Completeness). For any MDP M considered in this

chapter, we assume F is realizable and complete under the Bellman operator such that Q∗
h,M ∈

Fh for all h ∈ [H] and for every h ∈ [H], fh+1 ∈ Fh+1 there is a fh ∈ Fh such that

fh = T M
h fh+1.

5.2.3 Myopic Exploration Design

As opposed to carefully designed exploration, myopic exploration injects random noise to

the current greedy policy. For a given greedy policy π, we use expl(π) to denote the myopic

exploration policy based on π. Depending on the action space, the function expl can take

different forms. The most common choice for finite action spaces is ϵ-greedy, which mixes

the greedy policy with a random action: expl(πh)(a | s) = (1 − ϵh)πh(a | s) + ϵh/A.
2 As

it is is our main study of exploration strategies, we let expl be ϵ-greedy function if not

explicitly specified. For a continuous action space, we consider exploration with Gaussian

noise: expl(πh)(a | s) = (1− ϵh)πh(a | s)+ ϵh exp(−a2/2σ2
h)/
√

2πσ2
h. Gaussian noise is useful

for Linear Quadratic Regulator (LQR) setting, which will be discussed in Appendix 5.C.

5.3 Generic Multitask RL Algorithm

In this section, we introduce a generic algorithm (Algorithm 6) for the proposed multitask

RL scenario without any strategic exploration, whose theoretical properties will be studied

throughout the paper. In a typical single-task learning, a myopically exploring agent samples

trajectories by running its current greedy policy estimated from the historical data equipped

with naive explorations like ϵ-greedy.

In light of the exploration benefits of MTRL, we study Algorithm 6 as a counterpart of

the single-task learning scenario in the MTRL setting. Algorithm 6 maintains a dataset

for each MDP separately and different tasks interact in the following way: in each round

2Note that we consider a more general setup, where the exploration probability ϵ can depend on h.
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Algorithm 6 explores every MDP with an exploratory policy that is the mixture (defined

in Definition 5.2) of greedy policies of all the MDPs in the task set (Line 8). One way to

interpret Algorithm 6 is that we share knowledge across tasks by policy sharing instead of

parameter sharing or feature extractor sharing in the previous literature.

Definition 5.2 (Mixture Policy). For a set of policies {πi}Ni=1, we denote Mixture({πi}Ni=1)

by the mixture of N policies, such that before the start of an episode, it samples I ∼
Unif([N ]), then runs policy πI for the rest of the episode.

We provide some justifications for the choice of the mixture policy. In the multi-goal

RL setting (Andrychowicz et al., 2017; Chane-Sane et al., 2021; Liu et al., 2022), where the

reward distribution is a function of goal-parameters, it is a common practice (Andrychowicz

et al., 2017) to relabel the rewards in trajectories in the experience buffer such that they

were as if sampled for a different task. On expectation, this is equivalent to exploring one

task with the mixture policy. More generally, many MTRL algorithms train one agent for

all the tasks, where tasks may be implicitly distinguished by the state space or be indexed

by a goal parameter (Portelas et al., 2020). In this scenario, the roll-outs of different tasks

are often stored in the same replay buffer and the learning of one task uses the exploratory

trajectories of all the other tasks.

The greedy policy is obtained from an offline learning oracle Q (Line 4) that maps a

dataset D = {(si, ai, ri, s′i)}Ni=1 to a function f ∈ F , such that Q(D) is an approximate

solution to the following minimization problem

argmin
f∈F

N∑
i=1

(
fhi

(si, ai)− ri −max
a′∈A

fhi+1(s
′
i, a

′)

)2

.

In practice, one can run fitted Q-iteration for an approximate solution.

5.4 Generic Sample Complexity Guarantee

In this section, we rigorously define the diversity condition and provide a sample-complexity

bound for Algorithm 6. We start with introducing an intuitive example on how diversity

encourages exploration in a multitask setting.

Motivating example. Figure 5.1 introduces a motivating example of grid-world environ-

ment on a long hallway with N +1 states. Since this is a deterministic tabular environment,

whenever a task collects an episode that visits its goal state, running an offline policy opti-

mization algorithm with pessimism will output its optimal policy.
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Algorithm 6 Generic Algorithm for Multitask Reinforcement Learning

1: Input: function class F = F1 × · · · × FH+1, task setM, exploration function expl
2: Initialize D0,M ← ∅ for all M ∈M
3: for round t = 1, 2, . . . , ⌊T/|M|⌋ do
4: Offline learning oracle outputs f̂t,M = Q(Dt−1,M) for each M ▷ Offline learning

5: Set myopic exploration policy π̂t,M ← expl(πf̂t,M ) for each M
6: Set π̂t ← Mixture({π̂t,M}M∈M) ▷ Exploratory policy
7: for M ∈M do
8: Sample one episode τt,M on MDP M with policy π̂t ▷ Collect new trajectory
9: Add τt,M to the dataset: Dt,M ← Dt−1,M ∪ {τt,M}
10: end for
11: end for
12: Return {π̂t,M}M∈M,t∈⌊T/|M|⌋

…

𝑁 + 1 States

Single task: 𝜖-greedy visits 
goal state with a prob. 𝜖!

…

…

…

𝑁
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𝑀!

…
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Figure 5.1: A diverse grid-world task set on a long hallway with N +1 states. From the left
to the right, it represents a single-task and a multitask learning scenario, respectively. The
triangles represent the starting state and the stars represent the goal states, where an agent
receives a positive reward. The agent can choose to move forward or backward.

Left penal of Figure 5.1 is a single-task learning, where the goal state is N steps away

from the initial state, making it exponentially hard to visit the goal state with ϵ-greedy

exploration. Figure 5.1 on the right demonstrates a multitask learning scenario with N

tasks, whose goal states ”diversely” distribute along the hallway. A main message of this

chapter is the advantage of exploring one task by running the ϵ-greedy policies of other

tasks. To see this, consider any current greedy policies (π1, π2, . . . , πN). Let i be the first

non-optimal policy, i.e. all j < i, πj is optimal for Mj. Since πi−1 is optimal, by running an

ϵ-greedy of πi−1 on MDP Mi, we have a probability of
∏i−1

h=1(1− ϵh)ϵi to visit the goal state

of Mi, allowing it to improve its policy to optimal in the next round. Such improvement can

only happen for N times and all policies will be optimal within polynomial (in N) number

of rounds if we choose ϵh = 1/(h + 1). Hence, myopic exploration with a diverse task set
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leads to sample-efficient learning. The rest of the section can be seen as generalizing this

idea to function approximation.

5.4.1 Multitask Myopic Exploration Gap

Dann et al. (2022) proposed an assumption named Myopic Exploration Gap (MEG) that

allows efficient myopic exploration for a single MDP under strong assumptions on the re-

ward function, or on the mixing time. We extend this definition to the multitask learning

setting. For the conciseness of the notation, we let expl(f) denote the following mixture

policy Mixture({expl(πfM )}M∈M) for a joint function f ∈ (F)⊗|M|. Intuitively, a large my-

opic exploration gap implies that within all the policies that can be learned by the current

exploratory policy, there exists one that can make significant improvement on the current

greedy policy.

Definition 5.3 (Multitask Myopic Exploration Gap (Multitask MEG)). For anyM, a func-

tion class F , a joint function f ∈ (F)⊗|M| we say that f has α(f,M,F)-myopic exploration

gap, where α(f,M,F) is the value to the following maximization problem:

max
M∈M

sup
f̃∈F ,c≥1

1√
c
(V f̃

1,M − V
fM
1,M), s.t. for all f

′ ∈ F and h ∈ [H],

EM
πf̃ [(EMh f ′)(sh, ah)]

2 ≤ cEM
expl(f)[(EMh f ′)(sh, ah)]

2

EM
πfM

[(EMh f ′)(sh, ah)]
2 ≤ cEM

expl(f)[(EMh f ′)(sh, ah)]
2.

Let M(f,M,F), c(f,M,F) be the corresponding M ∈M and c that attains the maximiza-

tion.

Design of myopic exploration gap. To illustrate the spirit of this definition, we special-

ize to the tabular case, where conditions in Definition 5.3 can be replaced by a concentrability

condition: for all s, a, h ∈ S ×A× [H], we require

µπf̃

h,M(s, a) ≤ cµ
expl(f)
h,M (s, a) and µπfM

h,M (s, a) ≤ cµ
expl(f)
h,M (s, a), (5.1)

where µπ
h,M(s, a) is the occupancy measure, i.e. the probability of visiting (s, a) at the step

h by running policy π on MDP M .

The design of myopic exploration gap connects deeply to the theory of offline Reinforce-

ment Learning. For a specific MDP M , Equation (5.1) defines a set of policies with concen-

trability assumption (Xie et al., 2021) that are the policies that can be accurately evaluated

through the offline data collected by the current behavior policy. As an extension to the
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definition in Dann et al. (2022), Multitask MEG considers the maximum myopic exploration

gap over a set of MDPs and the behavior policy is a mixture of all the greedy policies.

5.4.2 Sample Complexity Guarantee

We propose Diversity in Definition 5.5, which relies on having a lower bounded Multitask

MEG for any suboptimal policy. We then present Theorem 5.1 that provide an upper bound

for sample complexity of Algorithm 6 by assuming diversity.

Definition 5.4 (Multitask Suboptimality). For a multitask RL problem with MDP set M
and value function class F . Let Fβ ⊂ (F)⊗|M| be the β-suboptimal class, such that for any

f ∈ Fβ, there exists fM and πfM is β-suboptimal for MDP M , i.e. V πfM

1,M ≤ maxπ∈Π V
π
1,M−β.

Definition 5.5 (Diverse Tasks). For some function α̃ : [0, 1] 7→ R, and c̃ : [0, 1] 7→ R, we

say that a tasks set is (α̃, c̃)-diverse if any f ∈ Fβ has multitask myopic exploration gap

α(f,M,F) ≥ α̃(β) and c(f,M,F) ≤ c̃(β) for any constant β > 0.

Theorem 5.1 (Upper Bound for Sample Complexity). Consider a multitask RL problem with

MDP set M and value function class F such that M is (α̃, c̃)-diverse. Then Algorithm 6

with ϵ-greedy exploration function has a sample-complexity

C(β, δ) = O
(
|M|2H2dBE

ln c̃(β)

α̃2(β)β
ln

(
N ′

F (T−1) lnT

δ

))
,

where dBE = dimBE(F , 1/
√
T ) is the Bellman-Eluder dimension of class F and N ′

F(ρ) =∑H−1
h=1 NFh

(ρ)NFh+1
(ρ). A definition of Bellman-Eluder dimension is deferred to Appendix

5.E.

Remark 5.1. As a direct extension from Dann et al. (2022), we remark how their results

translate to our setup. They provide a single-task learning sample complexity bound that

depends on single-task MEG, which translates to a bound of Õ(|M|H2dBE/(α
2(β)β)) for

the multitask learning scenario. While there is an extra factor |M| in Theorem 5.1, Mul-

titask MEG can be arbitrarily larger than single-task MEG, leading to potential exponential

improvement on sample complexity.

5.5 Lower Bounding Myopic Exploration Gap

Following the generic result in Theorem 5.1, the key to the problem is to lower bound myopic

exploration gap α̃(β) and c(β). Since c̃(β) ≤ 1/α̃2(β) and the upper bound in Theorem 5.1
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depends logarithmically in c̃(β), we only need to lower bound α̃(β). In this section, we lower

bound α̃(β) for the linear MDP case. We defer an improved analysis for the tabular case

and an analysis for the Linear Quadratic Regulator cases to Appendix 5.C.

Linear MDPs have been an important case study for the theory of RL (Chen et al., 2022b;

Jin et al., 2020b; Wang et al., 2019b). It is a more general case than tabular MDP and has

strong implication for Deep RL. In order to employ ϵ-greedy, we consider finite action space,

while the state space can be infinite.

Definition 5.6 (Linear MDP (Jin et al., 2020b)). An MDP is called linear MDP if

its transition probability and reward function admit the following form. Ph(s
′ | s, a) =

⟨ϕh(s, a), µh(s
′)⟩ for some known function ϕh : S × A 7→ (R+)d and unknown function

µh : S 7→ (R+)d. Rh(s, a) = ⟨ϕh(s, a), θh⟩ for unknown parameters θh
3. Without loss of gen-

erality, we assume ∥ϕh(s, a)∥ ≤ 1 for all s, a, h ∈ S ×A×H and max {∥µh(s)∥ , ∥θh∥} ≤
√
d

for all s, h ∈ S × [H].

An important property of Linear MDPs is that the value function also takes the linear

form and the linear function class defined below satisfies Assumption 5.1.

Proposition 5.1 (Proposition 2.3 (Jin et al., 2020b)). For linear MDPs, we have for any

policy π, Qπ
h,M(s, a) = ⟨ϕh(s, a), w

π
h,M⟩, where wπ

h,M = θh,M +
∫
S V

π
h+1,M(s′)µh(s

′)ds′ ∈ Rd.

Therefore, we only need to consider Fh = {(s, a) 7→ ⟨ϕh(s, a), w⟩ : w ∈ Rd, ∥w∥2 ≤ 2
√
d}.

Now we are ready to define a diverse set of MDPs for the linear MDP case.

Definition 5.7 (Diverse MDPs for linear MDP case). We sayM is a diverse set of MDPs

for the linear MDP case, if they share the same feature extractor ϕh and the same measure

µh (leading to the same transition probabilities) and for any h ∈ [H], there exists a subset

{Mi,h}i∈[d] ⊂ M, such that the reward parameter θh,Mi,h
= ei and all the other θh′,Mi,h

= 0

with h′ ̸= h. 4

We need the assumption that the minimum eigenvalue of the covariance matrix is strictly

lower bounded away from 0. The feature coverage assumption is commonly use in the

literature that studies Linear MDPs (Agarwal et al., 2022). Suppose Assumption 5.2 hold,

we have Theorem 5.2, which lower bounds the multitask myopic exploration gap. Combined

with Theorem 5.1, we have a sample-complexity bound of Õ(|M|3H3d2|A|/(β3b21)) with

|M| ≥ d.

3Note that we consider non-negative functions only as µh is interpreted as a measure, which is normally
non-negative.

4Note that this diversity definition is quite restricted even for the linear MDPs. We discuss a potential
attempt to extend this definition and its technical challenge in Appendix 5.E.
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Assumption 5.2 (Feature coverage). For any ν ∈ Sd−1 and [ν]i > 0 for all i ∈ [d], there

exists a policy π such that Eπ[ν
⊺ϕh(sh, ah)] ≥ b1, for some constant b1 > 0.

Theorem 5.2. Consider M to be a diverse set as in Definition 5.7. Suppose Assumption

5.2 holds and β ≤ b1/2, then we have for any f ∈ Fβ, α(f,F ,M) = Ω(
√
β2b21/(|A||M|H)

by setting ϵh = 1/(h+ 1).

Proof highlight. We highlight the critical steps in the proof. The key is to show that

near-optimal policies lead to a full-rank feature covariance matrix at each step. Fix a f ∈ Fβ

and let π = expl({πfM}M∈M). Let h′ be the step such that {Mi,h′}i∈[d] are all β-optimal,

while some MDP in {Mi,h′+1}i∈[d] is not.
Let Φπ

h = Eπϕh(sh, ah)ϕh(sh, ah)
⊺ be the covariance matrix of the embeddings at the

step h by executing policy π. We first observe that if Φπ
h at the step h′ is full rank, the

concentrability condition in Definition 5.3 is satisfied for any policy for MDPs with positive

rewards at the step h′ + 1 (Lemma 5.1).

Lemma 5.1. Let F be the function class in Proposition 5.1. For any policy π such

that λmin(Φ
π
h) ≥ λ, then for any policy π′ and f ′ ∈ F , EM

π′

[(
EMh f ′)2 (sh, ah)] ≤

EM
π

[(
EMh f ′)2 (sh, ah)] /λ.

The proof is complete by further showing that near-optimal policies at the step h′ leads

a full-rank Φπ
h′+1 (Lemma 5.2). The following lemma connects the coverage between two

successive steps. We show that the feature covariance matrix at the step h′ + 1 is full-rank

as long as the MDPs {Mi,h}i∈[d] are b1/2-optimal.

Lemma 5.2. Fix a step h and fix a β < b1/2. Let {πi}di=1 be d policies such that πi is a

β-optimal policy for Mi,h as in Definition 5.7. Let π̃ = Mixture({expl(πi)}di=1). Then for

any ν ∈ Sd−1, we have λmin(Φ
π̃
h+1) ≥ ϵh

∏h−1
h′=1(1− ϵh′)b21/(2dA).

Connections to curriculum learning. Note that the proof reflects an interesting con-

nection to curriculum learning, as we show that the near-optimal policies at the step h lead

to a good coverage at the step h+1, which allows the algorithm to learn the optimal policies

at the step h+ 1. The proof is proceeded as if it follows a curriculum from smaller steps to

larger steps.

5.5.1 Discussions on the Tabular Case

Diverse tasks in Definition 5.7, when specialized to the tabular case, corresponds to S ×H
sparse-reward MDPs. Interestingly, similar constructions are used in reward-free exploration
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(Jin et al., 2020a), which shows that by calling an online-learning oracle individually for all

the sparse reward MDPs, one can generate a dataset that outputs a near-optimal policy for

any given reward function. We want to point out the intrinsic connection between the two

settings: our algorithm, instead of generating an offline dataset all at once, generates an

offline dataset at each step h that is sufficient to learn a near-optimal policy for MDPs that

corresponds to the step h+ 1.

Relaxing coverage assumption. Though feature coverage Assumption (Assumption 5.2)

is handy for our proof as it guarantees that any β-optimal policy (with β < b1/2) has a

probability at least b1/2 to visit their goal state, this assumption may not be reasonable for

the tabular MDP case. Intuitively, without this assumption, a β-optimal policy can be an

arbitrary policy and we can have at most S such policies in total leading to a cumulative

error of Sβ. A naive solution is to request a S−Hβ accuracy at the first step, which leads to

exponential sample-complexity. In Appendix 5.D, we show that an improved analysis can

be done for the tabular MDP without having to make the coverage assumption. However,

an extra price of SH has to be paid.

5.6 Implications of Diversity on Robotic Control En-

vironments

In this section, we conduct simulation studies on robotic control environments with practical

interests. Since myopic exploration has been shown empirically efficient in many problems of

interest, we focus on the other main topic–diversity. We investigate how our theory guides a

diverse task set selection. More specifically, our prior analysis on Linear MDPs suggests that

a diverse task set should prioritize tasks with full-rank feature covariance matrices. We ask

whether tasks with a more spread spectrum of the feature covariance matrix lead to a better

training task set. Note that the goal of this experiment is not to show the practical interests

of Algorithm 6. Instead, we are revealing interesting implications of the highly conceptual

definition of diversity in problems with practical interests.

Environment and training setup. We adopt the BipedalWalker environment from

Portelas et al. (2020). The learning agent is embodied into a bipedal walker whose motors

are controllable with torque (i.e. continuous action space). The observation space consists of

laser scan, head position, and joint positions. The objective of the agent is to move forward

as far as possible, while crossing stumps with varying heights at regular intervals (see Figure

5.2 (a)). The agent receives positive rewards for moving forward and negative rewards for
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torque usage. An environment or task, denoted as Mp,q, is controlled by a parameter vector

(p, q), where p and q denote the heights of the stumps and the spacings between the stumps,

respectively. Intuitively, an environment with higher and denser stumps is more challenging

to solve. We set the parameter ranges for p and q as p ∈ [0, 3] and q ∈ [0, 6] in this study.

The agent is trained by Proximal Policy Optimization (PPO) (Schulman et al., 2017)

with a standard actor-critic framework (Konda and Tsitsiklis, 1999) and with ϵ-greedy ex-

ploration. The architecture for the actor and critic feature extractors consists of two layers

with 400 and 300 neurons, respectively, and Tanh (Rumelhart et al., 1986) as the activation

function. Fully-connected layers are then used to compute the action and value. We keep

the hyper-parameters for training the agent the same as Romac et al. (2021).

5.6.1 Investigating Feature Covariance Matrix

We denote by ϕ(s, a) the output of the feature extractor. We evaluate the extracted feature

at the end of the training generated by near-optimal policies, denoted as π, on 100 tasks with

different parameter vectors (p, q). We then compute the covariance matrix of the features

for each task, denoted as Vp,q = EMp,q
π

∑H
h=1 ϕ(sh, ah)ϕ(sh, ah)

T , whose spectrums are shown

in Figure 5.2 (b) and (c).

By ignoring the extremely large and small eigenvalues on two ends, we focus on the largest

100-200 dimension, where we observe that the height of the stumps p has a larger impact

on the distribution of eigenvalues. In Figure 5.2 (b), we show the boxplot of the log-scaled

eigenvalues of 100-200 dimensions for environments with different heights, where we average

spacings. We observe that the eigenvalues can be 10 times higher for environments with

an appropriate height (1.0-2.3), compared to extremely high and low heights. However, the

scales of eigenvalues are roughly the same if we control the spacings and take average over

different heights as shown in Figure 5.2 (c). This indicates that choosing an appropriate

height is the key to properly scheduling tasks.

In fact, the task selection coincidences with the tasks selected by the state-of-the-art

Automatic Curriculum Learning (ACL). We investigate the curricula generated by ALP-

GMM (Portelas et al., 2020), a well-established curriculum learning algorithm, for training

an agent in the BipedalWalker environment for 20 million timesteps. Figure 5.2 (d) gives the

density plots of the ACL task sampler during the training process, which shows a significant

preference over heights in the middle range, with little preference over spacing.

Training on different parameters. To further validate our finding, we train the same

PPO agent with different means of the stump heights and see that how many tasks does

the current agent master. As we argued in the theory, a diverse set of tasks provides good
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(a) BipedalWalker environment
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Figure 5.2: (a) BipedalWalker Environment with different stump spacing and heights. (b-c)
Boxplots of the log-scaled eigenvalues of sample covariance matrices of the trained embed-
dings generated by the near optimal policies for different environments. In (b), we take
average over environments with the same height while in (c), over the same spacing. (d)
Task preference of automatically generated curriculum at 5M and 10M training steps respec-
tively. The red regions are the regions where a task has a higher probability to be sampled.

behavior policies for other tasks of interest. Therefore, we also test how many tasks it could

further master if one use the current policy as behavior policy for fine-tuning on all tasks.

The number of tasks the agent can master by learning on environments with heights ranging

in [0.0, 0.3], [1.3, 1.6], [2.6, 3.0] are 28.1, 41.6, 11.5, respectively leading to a significant

outperforming for diverse tasks ranging in [1.3, 1.6]. Table 5.1 in Appendix 5.F gives a

complete summary of the results.

5.7 Discussions

In this chapter, we propose a new perspective of understanding the sample efficiency of

myopic exploration design through diverse multitask learning. We show that by learning a

diverse set of tasks, multitask RL algorithm with myopic exploration design can be sample-

efficient. This chapter is a promising first step towards understanding the exploration benefits
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of MTRL and it shed lights on the longstanding mystery of the empirical success of myopic

exploration, which also leaves interesting future directions. A straightforward extension is

to consider the setting where both transition functions and reward functions can differ.

Towards diversity for general function classes. Though Theorem 5.1 is presented

for general value function approximators, we only studied the explicit form of diversity

for Tabular MDPs, Linear MDPs and Linear Quadratic Regulator cases. How to achieve

diversity for any general function class is an open problem. Recalling our proof for the Linear

MDP case, a sufficient condition is to include a set of MDPs for each step h, such that the

state distribution generated by their optimal policies satisfy the concentrability assumptions.

In other words, any MDP with positive reward only at the step h+ 1 can be offline-learned

through the dataset collected by these optimal policies. The diversity for general function

classes poses the question on the number of tasks it takes to have sufficient coverage at the

each step. We give a more detailed discussion of this topic in Appendix 5.E.

Improving sample-complexity bound. Our sample complexity bound can be sub-

optimal. For instance, Theorem 5.1 specialized to the tabular case has an upper sample

complexity bound of |M|2S3H5A2/β3, which leaves a large gap between the current optimal

bound of |M|SA/β2 if tasks are learned independently. We conjecture that this gap may

originate from two factors. First, the nature of the myopic exploration makes it less efficient

because the exploration are conducted in a layered manner. This might be complimented

by a lower bound for myopic exploration. Second, our algorithm collects trajectories for

every MDP with the mixture of all the policy in each round, which may be improved if a

curriculum is prior known.

5.A Related Works

Multitask RL. Many recent theoretical works have contributed to understanding the

benefits of MTRL (Agarwal et al., 2022; Brunskill and Li, 2013; Calandriello et al., 2014;

Cheng et al., 2022; Lu et al., 2021; Uehara et al., 2021; Yang et al., 2022; Zhang and Wang,

2021) by exploiting the shared structures across tasks. An earlier line of works (Brunskill and

Li, 2013) assumes that tasks are clustered and the algorithm adaptively learns the identity

of each task, which allows it to pool observations. For linear Markov Decision Process

(MDP) settings (Jin et al., 2020b), Lu et al. (2021) shows a bound on the sub-optimality of

the learned policy by assuming a full-rank least-square value iteration weight matrix from

source tasks. Agarwal et al. (2022) makes a different assumption that the target transition

probability is a linear combination of the source ones, and the feature extractor is shared by

all the tasks. Our work differs from all these works as we focus on the reduced complexity
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of exploration design.

Curriculum learning. Curriculum learning refers to adaptively selecting tasks in a spe-

cific order to improve the learning performance (Bengio et al., 2009) under a multitask

learning setting. Numerous studies have demonstrated improved performance in different

applications (Jiang et al., 2015; Pentina et al., 2015; Graves et al., 2017; Wang et al., 2021).

However, theoretical understanding of curriculum learning remains limited. Xu and Tewari

(2022) study the statistical benefits of curriculum learning under Supervised Learning set-

ting.

Myopic exploration. Myopic exploration, characterized by its ease of implementation

and effectiveness in many problems (Kalashnikov et al., 2018; Mnih et al., 2015), is the most

commonly used exploration strategy. Many theory works (Dabney et al., 2020; Dann et al.,

2022; Liu and Brunskill, 2018; Simchowitz and Foster, 2020) have discussed the conditions,

under which myopic exploration is efficient. However, all these studies consider a single MDP

and require strong conditions on the underlying environment. Our paper closely follows

Dann et al. (2022) where they define Myopic Exploration Gap. An MDP with low Myopic

Exploration Gap can be efficiently learned by exploration exploration.

5.B Efficient Myopic Exploration for Deterministic

MDP with known Curriculum

In light of the intrinsic connection between Algorithm 6 and curriculum learning. We present

an interesting results for curriculum learning showing that any deterministic MDP can be

efficiently learned through myopic exploration when a proper curriculum is given.

Proposition 5.2. For any deterministic MDPM , with sparse reward, there exists a sequence

of deterministic MDPs M1,M2, . . . ,MH , such that the following learning process returns a

optimal policy for M :

1. Initialize π0 by a random policy.

2. For t = 1, . . . , n, follow πt−1 with an ϵ-greedy exploration to collect 4At log(H/δ) tra-

jectories denoted by Dt. Compute the optimal policy πt from the model learned by

Dt.

3. Output πH .
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The above procedure will end in O(AH2 log(H/δ)) episodes and with a probability at least

1− δ, πH is the optimal policy for M .

Proof. We construct the sequence in the following manner. Let the optimal policy for an

MDP M be π∗
M . Let the trajectory induced by π∗

M be {s∗0, a∗0, . . . , s∗H , a∗H}. The MDP M

receives a positive reward only when it reaches s∗H . Without loss of generality, we assume

that M is initialized at a fixed state s0. We choose Mn such that

RMi
(s, a) = 1(PMn(s, a) = s∗i ).

Furthermore, we set

PMi
(s∗i |s∗i , a) = 1 ∀a ∈ A

and

PMi
= PM

otherwise.

This ensures that any policy that reaches s∗i on the i’th step is an optimal policy.

We first provide an upper bound on the expected number of episodes for finding an

optimal policy using the above algorithm for Mi.

Fix 2 ≤ i ≤ H. Let ϵ = 1
i
. Define k = |A|. Then

Then the probability for reaching optimal reward for Mi is less than or equal to

(1− 1

i
)i−1(

1

ki
)

So the expected number of episodes to reach this optimal reward (and thus find an optimal

policy) is
1

(1− 1
i
)i−1( 1

ki
)
= (i− 1)k(

i

i− 1
)i ≤ 4k(i− 1)

since i ≥ 2 and ( i
i−1

)i is decreasing. By Chebyshev’s inequality, a successful visit can be

found in 4k(i− 1) log(H/δ) with a probability at least 1− δ/H.

The expected total number of episodes for the all the MDP’s is therefore

H∑
j=2

4k(j − 1) log(H/δ) ≤ H

2
(4kH) log(H/δ)

which is O(kH2 log(H/δ)).
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5.C Missing Proofs

Generic Upper Bound for Sample Complexity In this section, we prove the generic

upper bound on sample complexity in Theorem 5.1. We first prove Lemma 5.3, which holds

under the same condition of Theorem 5.1.

Lemma 5.3. Consider a multitask RL problem with MDP setM and value function class F
such thatM is (α̃, c̃)-diverse. Then Algorithm 6 with exploration function expl satisfies that

the total number of rounds, where there exists an MDP M , such that πf̂t,M is β-suboptimal

for M , can be upper bounded by

O
(
|M|2H2d

ln c̃(β)

α̃(β)2
ln

(
N ′

F (T−1) lnT

δ

))
,

where d = dimBE(F , 1/
√
T ) is the Bellman-Eluder dimension of class F and N ′

F(ρ) =∑H−1
h=1 NFh

(ρ)NFh+1
(ρ).

Proof. Let us partition Fβ into Fβ = {FM,i}M∈M,i∈[imax] such that

FM,i := {f ∈ Fβ : c(f,M,F) ∈ [ei−1, ei] and M(f,M,F) =M}.

Furthermore, denote (f̂t,M)M∈M by f̂t. We define KM,i,t = {τ ∈ [t], f̂τ ∈ FM,i}. The proof in
Dann et al. (2022) can be seen as bounding the sum of KM,i,t for a specific M , while apply

the same bound for each M , which leads to an extra |M| factor.

Lemma 5.4. Under the same condition in Theorem 5.1 and the above definition, we have

|KM,i,T | ≤ O

(
H2d (F ′

i)

α2
β

ln
N ′

F(1/T ) ln(T )

δ

)
.

Proof. In the following proof, we fix an MDP M and without further specification, the

policies or rewards are with respect to the specific M . We study all the steps t ∈ KM,i,T .

For each t ∈ KM,i,T ,

1. Recall that π̂t is the mixture of exploration policy for all the MDPs:

Mixture({expl(π̂t,M ′)}M ′∈M);

2. Define π′
t as the improved policy that attains the maximum in the multitask myopic

exploration gap for f̂t in Definition 5.3.

Note that π′
t is a policy for M since t ∈ KM,i,t. A key step in our proof is to upper bound

the difference between the value of the current policy and the value of π′
t. By Lemma 5.5,
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The total difference in return between the greedy policies and the improved policies can be

bounded by∑
t∈KM,i,T

(V
π′
t

1,M(s1)− V
π̂t,M

1,M (s1)) ≤ (5.2)

∑
t∈KM,i,T

H∑
h=1

EM
π̂t,M

[(EMh f̂t,M)(sh, ah)]−
∑

t∈KM,i,T

H∑
h=1

EM
π′
t
[(EMh f̂t,M)(sh, ah)], (5.3)

where the exportation is taken over the randomness of the trajectory sampled for MDP M .

Under the completeness assumption in Assumption 5.1, by Lemma 5.6 we show that with

a probability 1− δ for all (h, t) ∈ [H]× [T ],

t−1∑
τ=1

EM
π̂τ

[(Ehft,M) (sh, ah)]
2 ≤ 3

t− 1

T
+ 176 ln

6N ′
F(1/T ) ln(2t)

δ
.

We consider only the event where this condition holds. Since c(f̂t,M,F) ≤ ei for all t ∈
KM,i,T , by Definition 5.3 we bound

∑
τ∈KM,i,t−1

EM
π′
τ

[
(EMh f̂t,M) (sh, ah)

]2
≤
∑

τ∈[t−1]

EM
π′
τ

[
(EMh f̂t,M) (sh, ah)

]2
≤ ei

∑
τ∈[t−1]

EM
π̂τ

[
(EMh f̂t,M) (sh, ah)

]2
≤ 179ei ln

6N ′
F(1/T ) ln(2t)

δ
.

Combined with the distributional Eluder dimension machinery in Lemma 5.8, this implies

that ∑
t∈KM,i,T

∣∣∣EM
π′
t

[(
EMh f̂t,M

)
(sh, ah)

]∣∣∣ ≤
O

(√
eid (F ′

i) ln
N ′

F(1/T ) ln(T )

δ
|KM,i,T |+min {|KM,i,T | , d (F ′

i)}

)
,

Note that we can derive the same upper-bound for
∑

t∈KM,i,T

∣∣∣EM
πt

[(
EMh f̂t,M

)
(sh, ah)

]∣∣∣. Then
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plugging the above two bounds into Equation (5.2), we obtain

∑
t∈KM,i,T

(V
π′
t

1,M(s1)− V
π̂t,M

1,M (s1)) ≤ O

(√
eiH2d (F ′

i) ln
N ′

F(1/T ) ln(T )

δ
|KM,i,T |+Hd (F ′

i)

)

By the definition of myopic exploration gap, we lower bound the LHS by∑
t∈KM,i,T

(V
π′
t

1,M(s1)− V
π̂t,M

1,M (s1)) ≥ |KM,i,T |
√
ei−1αβ.

Combining both bounds and rearranging yields

|KM,i,T | ≤ O

(
H2d (F ′

i)

α2
β

ln
N ′

F(1/T ) ln(T )

δ

)

Summing over M ∈M and i ∈ [imax], we conclude Theorem 5.1.

Lemma 5.5 (Lemma 3 Dann et al. (2022)). For any MDP M , let f = {fh}h∈[H] with

fh : S ×A 7→ R and πf is the greedy policy of f . Then for any policy π′,

V π′

1 (s1)− V πf

1 (s1) ≤
H∑

h=1

EM
πf [(Ehf) (sh, ah)]−

H∑
h=1

EM
π′ [(Ehf) (sh, ah)] .

Lemma 5.6 (Modified from Lemma 4 Dann et al. (2022)). Consider a sequence of policies

(πt)t∈N. At step τ , we collect one episode using π̂τ and define f̂τ as the fitted Q-learning

estimator up to step t over the function class F = {F}h∈[H]. Let ρ ∈ R+ and δ ∈ (0, 1). If

F satisfies Assumption 5.1, then with a probability at least 1− δ, for all h ∈ [H] and t ∈ N,

t−1∑
τ=1

EM
π̂τ
[(Ehf̂t)(sh, ah)]2 ≤ 3ρt+ 176 ln

6N ′
F(ρ) ln(2t)

δ
,

where N ′
F(ρ) =

∑H
h=1NFh

(ρ)NFh+1
(ρ) is the sum of ℓ∞ covering number of Fh×Fh+1 w.r.t.

radius ρ > 0.

Proof. The only difference between our statement and the statement in Dann et al. (2022)

is that they consider π̂τ = expl(f̂τ ), while this statement holds for any data-collecting policy

π̂τ . To show this, we go through the complete proof here.

Consider a fixed t ∈ N, h ∈ [H] and f = {fh, fh+1} with fh ∈ Fh, fh+1 ∈ Fh+1. Let
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(xt,h, at,h, rt,h)t∈N,h∈[H] be the collected trajectory in [t]. Then

Yt,h(f) =
(
fh (xt,h, at,h)− rt,h −max

a′
fh+1 (xt,h+1, a

′)
)2
−(

(Thfh+1) (xt,h, at,h)− rt,h −max
a′

fh+1 (xt,h+1, a
′)
)2

=(fh (xt,h, at,h)− (Thfh+1) (xt,h, at,h))

×
(
fh (xt,h, at,h) + (Thfh+1) (xt,h, at,h)− 2rt,h − 2max

a′
fh+1 (xt,h+1, a

′)
)
.

Let Ft be the σ-algebra under which all the random variables in the first t− 1 episodes are

measurable. Note that |Yt,h(f)| ≤ 4 almost surely and the conditional expectation of Yy,h(f)

can be written as

E [Yt,h(f) | Ft] = E [E [Yt,h(f) | Ft, xt,h, at,h] | Ft] = Eπt [(fh − Thfh+1) (xh, ah)
2].

The variance can be bounded by

Var [Yt,h(f) | Ft] ≤ E
[
Yt,h(f)

2 | Ft

]
≤ 16E

[
(fh − Thfh+1) (xt,h, at,h)

2 | Ft

]
= 16E [Yt,h(f) | Ft] ,

where we used the fact that |fh(xt,h, at,h)+(Thfh+1)(xt,h, at,h)−2rt,h−2maxa′ fh+1(xh+1, a
′)| ≤

4 almost surely. Applying Lemma 5.7 to the random variable Yt,h(f), we have that with

probability at least 1− δ, for all t ∈ N,

t∑
i=1

E [Yi,h(f) | Fi] ≤ 2At

√√√√ t∑
i=1

Var [Yi,h(f) | Fi] + 12A2
t +

t∑
i=1

Yi,h(f)

≤ 8At

√√√√ t∑
i=1

E [Yi,h(f) | Fi] + 12A2
t +

t∑
i=1

Yi,h(f),

where At =
√
2 ln ln(2t) + ln(6/δ). Using AM-GM inequality and rearranging terms in the

above we have

t∑
i=1

E [Yi,h(f) | Fi] ≤ 2
t∑

i=1

Yi,h(f) + 88A2
t ≤ 2

t∑
i=1

Yi,h(f) + 176 ln
6 ln(2t)

δ
.

Let Zρ,h be a ρ-cover of Fh × Fh+1. Now taking a union bound over all ϕh ∈ Zρ,h and
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h ∈ [H], we obtain that with probability at least 1− δ for all ϕh and h ∈ [H]

t∑
i=1

E [Yi,h (ϕh) | Fi] ≤ 2
t∑

i=1

Yi,h (ϕh) + 176 ln
6N ′

F(ρ) ln(2t)

δ
.

This implies that with probability at least 1 − δ for all f = {fh, fh+1} ∈ Fh × Fh+1 and

h ∈ [H],

t∑
i=1

E [Yi,h(f) | Fi] ≤ 2
t∑

i=1

Yi,h(f) + 3ρ(t− 1) + 176 ln
6N ′

F(ρ) ln(2t)

δ
.

Let f̂t,h be the h-th component of the function f̂t. The above inequality holds in particular

for f = {f̂t,h, f̂t,h+1} for all t ∈ N. Finally, we have

t−1∑
i=1

Yi,h

(
f̂t

)
=

t−1∑
i=1

(
f̂t,h (si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

−
t−1∑
i=1

((
Thf̂t,h+1

)
(si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

= inf
f ′∈Fh

t−1∑
i=1

(
f ′ (si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

−
t−1∑
i=1

((
Thf̂t,h+1

)
(si,h, ai,h)− ri,h −max

a′
f̂t,h+1 (si,h+1, a

′)
)2

≤ 0,

where the last inequality follows from the completeness in Assumption 5.1.

Lemma 5.7 (Time-Uniform Freedman Inequality). Suppose {Xt}∞t=1 is a martingale differ-

ence sequence with |Xt| ≤ b. Let

Varℓ (Xℓ) = Var (Xℓ | X1, · · · , Xℓ−1) .

Let Vt =
∑t

ℓ=1Varℓ(Xℓ) be the sum of conditional variances of Xt. Then we have that for

any δ′ ∈ (0, 1) and t ∈ N

P

(
t∑

ℓ=1

Xℓ > 2
√
VtAt + 3bA2

t

)
≤ δ′

where At =
√
2 ln ln(2(max(Vt/b2, 1))) + ln(6/δ′).
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Lemma 5.8 (Lemma 41 Jin et al. (2021a)). Given a function class Φ defined on X with

|ϕ(x)| ≤ C for all (ϕ, x) ∈ Φ × X and a family of probability measures Π over X . Suppose

sequences {ϕi}i∈[K] ⊂ Φ and {µi}i∈[K] ⊂ Π satisfy for all k ∈ [K] that
∑k−1

i=1 (Eµi
[ϕk])

2 ≤ β.

Then for all k ∈ [K] and w > 0,

k∑
t=1

|Eµt [ϕt]| ≤ O
(√

dimDE(Φ,Π, ω)βk +min {k, dimDE(Φ,Π, ω)}C + kω
)
.

Proof of Theorem 5.1. Denote B = Θ

(
|M|2H2dBE

ln c̃(β)
α̃(β)2β

ln

(
N̄F(T−1) lnT

δ

))
. The fol-

lowing Corollary transform Lemma 5.3 to Theorem 5.1, whose proof directly follows by

taking T = B/β. Since at most B rounds are suboptimal according to Lemma 5.3, the

mixing of all T policies are β-optimal. This leads to a sample complexity

C(α̃, c̃) = Θ

(
|M|2H2dBE

ln c̃(β)

α̃(β)2β
ln

(
N̄F (T−1) lnT

δ

))
Linear MDP case Note that in this section, we use Eπ for the expectation over transition

w.r.t a policy π.

Lemma 5.1. Let F be the function class in Proposition 5.1. For any policy π such that

λmin(Φ
π
h) ≥ λ, then for any policy π′ and f ′ ∈ F , Eπ′ [(E2hf ′) (sh, ah)] ≤ Eπ [(E2hf ′) (sh, ah)] /λ.

Proof. Recall that Φπ
h := Eπϕh(sh, ah)ϕh(sh, ah)

⊺.

We derive the Bellman error term using the fact that f ′ is a linear function and the

transitions admit the linear function as well. For any policy π, we have

Eπ[(E2hf ′)(sh, ah)]

= Eπ

[(
f ′
h(sh, ah)− ϕh(sh, ah)

⊺θh −max
a′

Esh+1
[f ′

h+1(sh+1, a
′) | sh, ah]

)2]
= Eπ

[(
ϕh(sh, ah)

⊺wh − ϕh(sh, ah)
⊺θh −max

a′
Esh+1

[ϕh+1(sh+1, a
′)⊺wh+1 | sh, ah]

)2]
= Eπ

[(
ϕh(sh, ah)

⊺wh − ϕh(sh, ah)
⊺θh − ϕh(sh, ah)

⊺

∫
s′
ϕh+1(s

′, πf ′

h+1(s
′))⊺wh+1µh(s

′)ds′
)2
]

= Eπ

[(
ϕh(sh, ah)

⊺(wh − θh − w′
h+1)

)2]
= (wh − θh − w′

h+1)
⊺Eπ [ϕh(sh, ah)ϕh(sh, ah)

⊺] (wh − θh − w′
h+1)

where w′
h+1 =

∫
s′
ϕh+1(s

′, πf ′

h+1(s
′))⊺wh+1µh(s

′)ds′. Since by the assumption in Definition 5.6

that ∥ϕh(s, a)∥ ≤ 1 for any s, a, we have Φπ′

h ≺ I. The result follow by the condition that
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λmin(Φ
π
h) ≥ λ.

Lemma 5.2. Fix a step h. Let {Mi,h}i∈[d] be the d MDPs such that θh,Mi,h
= ei as in

Definition 5.6. Let {πi}di=1 be d policies such that πi is a β-optimal policy for Mi,h with

β < b1/2. Let π̃ = Mixture({expl(πi)}di=1). Then for any ν ∈ Sd−1, we have λmin(Φ
π̃
h+1) ≥

ϵh
∏h−1

h′=1(1− ϵh′)b21/(2dA).

Proof. Let π be any stationary policy and recall that Π is the set of all the stationary policies.

We denote Aπ
h(s

′) ∼ πh(s
′) by the random variable for the action sampled at the step h using

policy π given the state is s′. Let ϕπ
h := Eπϕh(sh, ah).

We further define

aνh+1(s) := argmax
a∈A

[ν⊺ϕh+1(s, a)ϕh+1(s, a)
⊺ν].

Lower bound the following quadratic term for any unit vector ν ∈ Rd,

max
π∈Π

ν⊺Φπ
h+1ν

= max
π∈Π

Eπ

[∫
s′
ν⊺ϕh+1(s

′, Aπ
h+1(s

′))ϕh+1(s
′, Aπ

h+1(s
′))⊺νµh(s

′)⊺ϕh(sh, ah)ds
′
]

= max
π

Eπ[ϕh(sh, ah)
⊺]

(∫
s′
ν⊺ϕh+1(s

′, aνh+1(s
′))ϕh+1(s

′, aνh+1(s
′))⊺νµh(s

′)ds′
)

= max
π∈Π

(ϕπ
h)

⊺wν
h+1.

where we let wν
h+1 :=

∫
s′
ν⊺ϕh+1(s

′, aνh+1(s
′))ϕh+1(s

′, aνh+1(s
′))⊺νµh(s

′)⊺ds′.

By Assumption 5.2, we have maxπ∈Π Eπ[ϕh(sh, ah)
⊺]wν

h+1 ≥ b21.

For the mixture policy π̃ defined in our lemma,

ν⊺Φπ̃
h+1ν =

1

d

d∑
i=1

Eexpl(πi)[ν
⊺ϕh+1(sh+1, ah+1)ϕh+1(sh+1, ah+1)

⊺ν]

≥ ϵh
∏h−1

h′=1(1− ϵh′)

Ad

d∑
i=1

(ϕπi
h )⊺wν

h+1. (5.4)

Since πi is a b1/2-optimal policy for MDP Mi,h and again by Assumption 5.2, we have

θ⊺h,Mi,h
ϕπi
h ≥

1

2
max
π∈Π

θ⊺h,Mi,h
ϕπ
h. (5.5)

For any vector ν ∈ Rd, let [ν]i be the i-th dimension of the vector. Note that θh,Mi,h
= ei,

(5.5) indicates [ϕπi
h ]i ≥ 1

2
maxπ[ϕ

π
h]i.
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Combining the inequality (5.5) with (5.4), we have

ν⊺Φπ̃
h+1ν =

ϵh
∏h−1

h′=1(1− ϵh′)

dA

d∑
i=1

d∑
j=1

[ϕπi
h ]j[w

ν
h+1]j

≥ ϵh
∏h−1

h′=1(1− ϵh′)

dA

d∑
i=1

[ϕπi
h ]i[w

ν
h+1]i

≥ ϵh
∏h−1

h′=1(1− ϵh′)

dA

d∑
i=1

max
π

[ϕπ
h]i[w

ν
h+1]i

≥ ϵh
∏h−1

h′=1(1− ϵh′)

2dA
max

π
(ϕπ

h)
⊺wν

h+1

≥ ϵh
∏h−1

h′=1(1− ϵh′)b21
2dA

Proof of Theorem 5.2 Theorem 5.2. Consider M defined in Definition 5.7. With

Assumption 5.2 holding and β ≤ b1/2, for any f ∈ Fβ, we have lower bound α(f,F ,M) ≥√
eβ2b21/(2A|M|H) by setting ϵh = 1/h.

Proof. Let h′ be the smallest h, such that there exists Mi,h, π
fMi,h is β-suboptimal. Let

(i′, h′) be the index of the MDP that has the suboptimal policy. We show that Mi′,h′ has

lower bounded myopic exploration gap.

By definition, f is β-optimal for any MDPMi,h′−1. By Lemma 5.2, letting π̃ = expl(f, ϵh′),

we have

ν⊺Φπ̃
h′+1ν ≥

ϵh′
∏h′−1

h′′=1(1− ϵh′′)b21
2A|M|

.

By Lemma 5.1, we have that the optimal value function f ∗ for MDP Mi′,h′ satisfies that

for any f ′

EM
πf∗
[(
E2hf ′) (sh, ah)] ≤ 2A|M|

ϵh′
∏h′−1

h′′=1(1− ϵh′′)b21
EM
π

[(
E2hf ′) (sh, ah)] .

Thus, by Definition 5.3, the myopic exploration gap for f is lower bounded by

β
1√
c
= β

√
ϵh′
∏h′−1

h′′=1(1− ϵh′′)b21
2A|M|

≥

√
β2b21

2A|M|eH
,

if we choose ϵh = 1/(h+ 1).
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Linear Quadratic Regulator To demonstrate the generalizability of the proposed frame-

work, we introduce another interesting setting called Linear Quadratic Regulator (LQR).

LQR takes continuous state space Rds and action space Rda . In the LQR system, the

state sh ∈ Rds evolves according to the following transition: sh+1 = Ahsh + Bhah, where

Ah ∈ Rds×ds , Bh ∈ Rds×da are unknown system matrices that are shared by all the MDPs.

We denote sh = (sh, ah) as the state-action vector. The reward function for an MDP M

takes a known quadratic form rh,M(s, a) = s⊺Rs
h,Ms + a⊺Ra

h,Ma, where R
s
h,M ∈ Rds×ds and

Ra
h,M ∈ Rda×da 5.

Note that LQR is more commonly studied for the infinite-horizon setting, where stabiliz-

ing the system is a primary concern of the problem. We consider the finite-horizon setting,

which alleviates the difficulties on stabilization so that we can focus our discussion on explo-

ration. Finite-horizon LQR also allows us to remain consistent notations with the rest of the

paper. A related work (Simchowitz and Foster, 2020) states that naive exploration is opti-

mal for online LQR with a condition that the system injects a random noise onto the state

observation with a full rank covariance matrix Σ ≻ 0. Though this is a common assumption

in LQR literature, one may notice that the analog of this assumption in the tabular MDP is

that any state and action pair has a non-zero probability of visiting any other state, which

makes naive exploration sample-efficient trivially. In this section, we consider a deterministic

system, where naive exploration does not perform well in general.

Properties of LQR. It can be shown that the optimal actions are linear transformations

of the current state (Farjadnasab and Babazadeh, 2022; Li et al., 2022).

The optimal linear response is characterized by the discrete-time Riccati equation given

by

Ph,M = A⊺
h(Ph+1,M − Ph+1,M R̄

−1
h+1,MB

⊺
hPh+1,M)Ah +Rs

h,M ,

where R̄h+1,M = Ra
h + B⊺

hPh+1,MAh and PH+1 = 0. Assume that the solution for the above

equation is {P ∗
h,M}h∈[H+1], then the optimal control actions takes the form

ah = F ∗
h,Msh, where F

∗
h,M = −(Rs

h,M +B⊺
hP

∗
h,MBh)

−1B⊺P ∗
h,MAh.

and optimal value function takes the quadratic form: V ∗
h,M(s) = s⊺P ∗

h,Ms and

Q∗
h,M(x) = x⊺

[
Rs

h,M + A⊺
hP

∗
h+1,MAh A⊺

hP
∗
h+1,MBh

B⊺
hP

∗
h+1,MAh Ra

h,M +B⊺
hP

∗
h+1,MBh

]
x.

5Note that LQR system often consider a cost function and the goal of the agent is to minimize the
cumulative cost with Rs

h,M being semi-positive definite. We formulation this as a reward maximization
problem for consistency. Thus, we consider Rs

h,M ≺ 0
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This observation allows us to consider the following function approximation

F = (Fh)h∈[H+1], where each Fh = {x 7→ x⊺Ghx : Gh ∈ R(ds+da)×(ds+da)}.

The quadratic function class satisfies Bellman realiazability and completeness assumptions.

Definition 5.8 (Diverse LQR Task Set). Inspired by the task construction in linear MDP

case, we construct the diverse LQR set by M = {Mi,h}i∈[ds],h∈[H] such that these MDPs all

share the same transition matrices Ah and Bh and each Mi,h has Rs
h′,Mi,h

= 1[h′ = h]eie
⊺
i

and Ra
h′,Mi,h

= −I.

Assumption 5.3 (Regularity parameters). Given the task set in Definition 5.8, we define

some constants that appears on our bound. Let π∗
i,h be the optimal policy for Mi,h. Let

b4 = max
i,h

Eπ∗
i,h

max
h′
∥sh′∥2, and b5 = max

i,h
Eπ∗

i,h
max
h′
∥ah′∥2.

These regularity assumption is reasonable because the optimal actions are linear trans-

formations of states and we consider a finite-horizon MDP, with F ∗
h having upper bounded

eigenvalues.

Similarly to the linear MDP case, we assume that the system satisfies some visibility

assumption.

Assumption 5.4 (Coverage Assumption). For any ν ∈ Rds−1, there exists a policy π with

∥ah∥2 ≤ 1 such that

max
π

Eπ[s
⊺
hν] ≥ b3, for b3 > 1.

Theorem 5.3. Given Assumption 5.3, 5.4 and the diverse LQR task set in Definition 5.8,

we have that for any f ∈ Fβ with β ≤ (b23 − 1)b25/2,

α(f,F ,M) = Ω

(
max{b24, b25}b24

dsHmax{(b23 − 1)b25, dsσ
2}(b23 − 1)b25

)
.

Proof of Theorem 5.3

Lemma 5.9. Assume that we have a set of policies {πi}i∈[d] such that the i-th policy is a (b23−
1)b25/2-optimal policy for LQR with Rs

h,i = eie
⊺
i and Ra

h,i = −I. Let π̃ = Mixture(expl{πi}).
Then we have

λmin(Eπ̃sh+1s
⊺
h+1) ≥

dsmax{λ, dσ2}
2max{b24, b25}

∏h−1
h′=1(1− ϵh′)ϵh

λ,

with λ = (b23 − 1)b25.
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Proof. We directly analyze the state covariance matrix at the step h+1. Let ηh ∼ N (0, σ2)

Eπ̃sh+1s
⊺
h+1 = Eπ̃(Ahsh +Bhah)(Ahsh +Bhah)

⊺

⪰
∏h−1

h′=1(1− ϵh′)ϵh
ds

ds∑
i=1

(Eπi
(Ahsh +Bhηh)(Ahsh +Bhηh)

⊺)

=

∏h−1
h′=1(1− ϵh′)ϵh

ds

ds∑
i=1

(AhEπi
shs

⊺
hA

⊺
h +BhEηhη

⊺
hB

⊺
h) (5.6)

To proceed, we show that
∑ds

i=1 Eπi
shs

⊺
h ⪰ λI.

From Assumption 5.4, we have Eπ∗
i
[s⊺heie

⊺
i sh − aha

⊺
h] ⪰ b23b

2
5 − b25, and by the fact that πi

is a (b23 − 1)b25/2-optimal policy, we have

Eπ∗
i
[s⊺heie

⊺
i sh − aha

⊺
h] ⪰ (b23b

2
5 − b25)/2.

Since Eπi
aha

⊺
h ⪰ 0, we have Eπi

[s⊺heie
⊺
i sh] ⪰ (b23 − 1)b25/2. Therefore,

∑ds
i=1 Eπi

shs
⊺
h ⪰ λI

with λ = (b23 − 1)b25/2.

Combined with (5.6), we have

Eπ̃sh+1s
⊺
h+1 ⪰

∏h−1
h′=1(1− ϵh′)ϵh

ds

(
λAhA

⊺
h + dsσ

2BhB
⊺
h

)
.

Apply Assumption 5.4 again, for each νi = ei, i = 1, . . . , ds, there exists some pol-

icy π′
i with ∥ah∥2 ≤ b5, such that ν⊺i Eπ′

i
sh+1s

⊺
h+1νi ≥ b23b

2
5 − b25. Therefore, we have that∑ds

i=1 Eπ′
i
sh+1s

⊺
h+1 ⪰ (b23 − 1)b25I

The proof is completed by

ds∑
i=1

Eπ′
i
sh+1s

⊺
h+1 ⪯ 2

ds∑
i=1

(
AhEπ′

i
shs

⊺
hA

⊺
h +BhEπ′

i
aha

⊺
hB

⊺
h

)
⪯ 2

ds∑
i=1

(
b24AhA

⊺
h + b25BhEπ′

i
B⊺

h

)
⪯ 2max{b24, b25}

max{λ, dσ2}

∏h−1
h′=1(1− ϵh′)ϵh

ds
Eπ̃sh+1s

⊺
h+1.

To complete the proof of Theorem 5.3, we combine Lemma 5.10 and Lemma 5.9.

Supporting lemmas Lemma 5.10 shows that having a full rank covariance matrix for the

state sh is a sufficient condition for bounded occupancy measure.
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Lemma 5.10. Let F be the function class described above. For any policy π and h such that

λmin(Eπ[shs
⊺
h]) ≥ λ,

we have for any π′ such that maxh ∥sh∥2 ≤ b4, and for any f ′ ∈ F ,

EM
π′

[(
E2hf ′) (sh, ah)] ≤ b24

λ2
EM
π

[(
E2hf ′) (sh, ah)] .

Proof. Lemma 5.11 shows that the Bellman error also takes a quadratic form of sh.

Lemma 5.11. For any f ∈ F , there exists some matrix G̃h such that (Ehf)(x) = x⊺G̃hx.

To complete the proof of Lemma 5.10, let wh = sh⊗sh be the Kronecker product between

sh and itself. By Lemma 5.11, we can write (Ehf)(sh) = Vec(G̃h)
⊺wh. Again, this is an

analog of the linear form we had for thee linear MDP case. Thus, we can write (E2hf)(sh) =
Vec(G̃h)

⊺whw
⊺
h Vec(G̃h).

By Lemma 5.12 and the fact that Eπ(whw
⊺
h) = Eπ(shs

⊺
h) ⊗ Eπ(shs

⊺
h), we have

λmin(Eπwhw
⊺
h) ≥ λ2.

For any other policy π′, and using the fact that ∥wh∥ ≤ b24, we have

Eπ′(E2hf)(sh) = Eπ′ [Vec(G̃h)
⊺whw

⊺
h Vec(G̃h)] ≤

b24
λ2

Eπ[Vec(G̃h)
⊺whw

⊺
h Vec(G̃h)] ≤

b24
λ2

Eπ(E2hf)(sh).

Lemma 5.11. For any f ∈ F , there exists some matrix G̃h such that (Ehf)(x) = x⊺G̃hx.

Proof. The Bellman error of the LQR can be written as

(Ehf)(x) =

(
x⊺Ghx− s⊺Rs

hs− a⊺Ra
ha− max

a′∈Rda
[(Ahs+Bha)

⊺, a′⊺]Gh+1

[
Ahs+Bha

a′

])

Note that the optimal a′ can be written as some linear transformation of x. Thus we can

write

max
a′∈Rda

[(Ahs+Bha)
⊺, a′⊺]Gh+1

[
Ahs+Bha

a′

]
= x⊺G′x.

The whole equation can be written as a quadratic form as well.

Lemma 5.12. Let A ∈ Rd1×d1 have eigenvalues {λi}i∈[d] and B ∈ Rd2×d2 have eigenvalues

{µi}i∈[d]. The eigenvalues of A⊗B are {λiµj}i∈[d1],j∈d2.
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5.D Relaxing Visibility Assumption

Tabular Case A simple but interesting case to study is the tabular case, where the value

function class is the class of any bounded functions, i.e. Fh = {f : S × A 7→ [0, 1]}.
A commonly studied family of multitask RL is the MDPs that share the same transition

probability, while they have different reward functions, this problem is studied in a related

literature called reward-free exploration (Jin et al., 2020a; Wang et al., 2020; Chen et al.,

2022a). Specifically, Jin et al. (2020a) propose to learn S×H sparse reward MDPs separately

and generates an offline dataset, with which one can learn a near-optimal policy for any

potential reward function. With a similar flavor, we show that any superset of the S × H
sparse reward MDPs has low myopic exploration gap. Though the tabular case is a special

case of the linear MDP case, the lower bound we derive for the tabular case is slightly

different, which we show in the following section.

We first give a formal definition on the sparse reward MDP.

Definition 5.9 (Sparse Reward MDPs). LetM be a set of MDPs sharing the same transition

probabilities. We sayM contains all the sparse reward MDPs if for each s, h ∈ S×[H], there

exists some MDP Ms,h ∈M, such that Rh′,Ms,h
(s′, a′) = 1(s = s′, h = h′) for all s′, a′, h′.

To show a lower bound on the myopic exploration gap, we make a further assumption on

the occupancy measure µπ
h(s, a) := Prπ(sh = s, ah = a), the probability of visiting s, a at the

step h by running policy π.

Assumption 5.5 (Lower bound on the largest achievable occupancy measure). For all

s, h ∈ S × [H], we assume that maxπ µ
π
h(s) ≥ b1 for some constant b or maxπ µ

π
h(s) = 0.

Assumption 5.5 guarantees that any β-optimal policy (with β < b1) is not a vacuous

policy and it provides a lower bound on the corresponding occupancy measure. We will

discuss later in Appendix 5.D on how to remove this assumption with an extra S×H factor

on the sample complexity bound.

Proposition 5.3. Consider a set of sparse reward MDP as in Definition 5.9. Assume

Assumption 5.5 is true. For any β ≤ b1/2 and f ∈ Fβ, we have α(f,F ,M) ≥ ᾱ for some

constant ᾱ =
√
β2/(2e|M|AH) by choosing ϵh = 1/h.

Proof. We prove this lemma in a layered manner. Let h′ be the minimum step such that

there exists some Ms,h′ is β-suboptimal. By definition, in the layer h′ − 1, all the MDPs

are β-suboptimal, in which case πMs,h′−1
visits (s, h′ − 1) with a probability at least b/2.

Now we show that the optimal policy π∗
Ms,h′

of a suboptimal MDP Ms,h′ has lower bounded

occupancy ratio.
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For a more concise notation, we let M ′ =Ms,h′ . Note that

µ
π∗
M′

h′ (s) =
∑
s′∈S

µ
π∗
M′

h′−1(s
′)Ph′−1(s | s′, π∗

M ′(s′))

≤
∑
s′∈S

max
π∈Π

µπ
h′−1(s

′)Ph′−1(s | s′, π∗
M ′(s′))

(By the fact that µ
πMs′,h′−1

h′−1 (s′) is β-optimal policy of Ms′,h′−1)

≤
∑
s′∈S

b1
b1 − β

µ
πMs′,h′−1

h′−1 (s′)Ph′−1(s | s′, π∗
M ′(s′))

≤
∑
s′∈S

b1|M|A
(b1 − β)(1− ϵ)h′−1ϵ

µ
expl(π)
h′−1 (s′)Ph′−1(s | s′, expl(π)(s′))

=
b1|M|A

(b1 − β)(1− ϵ)h′−1ϵ
µ
expl(π)
h′ (s)

The occupancy measure ratio can be upper bounded by c = b1|M|A
(b1−β)(1−ϵ)h′−1ϵ

. Then the myopic

exploration gap can be lower bounded by

β√
c
=

√
(b1 − β)β2(1− ϵ)h′−1ϵ

b1|M|A
≥

√
β2(1− ϵ)h′−1ϵ

2|M|A
.

To proceed, we choose ϵh = 1/h, which leads to (1− ϵh)h−1ϵ ≥ 1/(eH).

Plugging this into Theorem 5.1, we achieve a sample complexity bound of O(S2AH5/β2),

with |M| = SH. This is not a near-optimal bound for reward-free exploration (a fair

comparison in our setup). This is because the sample complexity bound in Theorem 5.1 is

not tailored for tabular case.

Removing coverage assumption Though Assumption 5.2 and Assumption 5.4 are rel-

atively common in the literature, we have not seen an any like Assumption 5.5. In fact,

Assumption 5.5 is not a necessary condition for sample-efficient myopic exploration as we

will discuss in this section. The main technical invention is to construct a mirror transition

probability that satisfies the conditions in Assumption 5.5. However, we will see that a

inevitable price of an extra SH factor has to be paid.

To illustrate the obstacle of removing Assumption 5.5, recall that the proof of Proposition

5.3 relies on the fact that all β-optimal policies guarantee a non-zero probability of visiting

the state corresponding to their sparse reward with β < b1/2. Without Assumption 5.5, a

β-optimal policy can be an arbitrary policy. At the step h, we have at most S such MDPs,

which may accumulate an irreducible error of Sβ, which means that at the round h + 1,
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we can only guarantee Sβ-optimal policies. An naive adaptation will require us to set the

accuracy β′ = β/SH in order to guarantee a β error in the last step. The following discussion

reveals that the error does not accumulate in a multiplicative way.

Mirror MDP construction. It is helpful to consider a mirror transition probability mod-

ified from our original transition probability. We denote the original transition probability

by P = {Ph}h∈[H]. Consider a new MDP with transition P ′ = {P ′
h}h∈[H] and state space

S ′ = S ∪ {s0}, where s0 is a dummy state. We initialize P ′ such that

P ′
h(s

′ | s, a) = Ph(s
′ | s, a) for all s′, s, a, h, where s′, s ̸= s0, and P

′
h(s0 | s0, ·) = 1 (5.7)

Starting from h = 1, we update P ′
h by a forward induction according to Algorithm 7. The

design principle is to direct the probability mass of visiting (s, h+1) to (s0, h+1), whenever

the maximal probability of visiting (s, h+ 1) is less than β.

Algorithm 7 Creating Mirror Transitions

Input: Original Transition P , threshold β > 0.
Initialize P ′ according to (5.7)
for h = 1, 2, . . . , H − 1 do

for each s ∈ S such that maxπ µ
′π
h+1(s) ≤ β do

P ′
h(s0 | s̃, ã)← P ′

h(s0 | s̃, ã) + P ′
h(s | s̃, ã) for each s̃, ã.

P ′
h(s | s̃, ã)← 0 for each s̃, ã.

end for
end for
Return P ′

By definition of P ′, we have two nice properties.

Proposition 5.4. For any h ∈ [H], s ∈ S, we have maxπ µ
′π
h (s) = 0 or maxπ µ

′π
h (s) > β.

Thus, P ′ nicely satisfies our Assumption 5.5. We also have that P ′ is not significantly

different from P .

Proposition 5.5. For any policy π, µ′π
h (s) ≥ µπ

h(s)−HSβ. Further more, any (SH + 1)β-

suboptimal policy for P is at least β-suboptimal for P ′ with respect to the same reward.

Proof. We simply observe that maxπ µ
′π
h (s0) ≤ (h − 1)Sβ. This is true since at any round,

we have at most S states with maxπ µ
′π(s) ≤ β, all the probability that goes to s will be

deviated to s0. Therefore, for any π

µ′π
h+1(s0) ≤ µ′π

h (s0) + Sβ.
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Therefore, any (SH + 1)β-suboptimal policy for P has the myopic exploration gap of

β-suboptimal policy for P ′.

Theorem 5.4. Consider a set of sparse reward MDP as in Definition 5.9. For any β ∈ (0, 1)

and f ∈ Fβ, we have α(f,F ,M) ≥ ᾱ for some constant ᾱ = Ω(
√
β2/(|M|AS2H3)) by

choosing ϵh = 1/(h+ 1).

5.E Connections to Diversity

Diversity has been an important consideration for the generalization performance of mul-

titask learning. How to construct a diverse set, with which we can learn a model that

generalizes to unseen task is studied in the literature of multitask supervised learning.

Tripuraneni et al. (2020); Xu and Tewari (2021) studied the importance of diversity in

multitask representation learning. They assume that the response variable is generated

through mean function ft ◦ h, where h is the representation function shared by different

tasks and ft is the task-specific prediction function of a task indexed by t. They showed

that diverse tasks can learn the shared representation that generalizes to unseen downstream

tasks. More specifically, if ft ∈ F is a discrete set, a diverse set needs to include all possible

elements in F . If F is the set of all bounded linear functions, we need d tasks to achieve a

diverse set. Note that these results align with the results presented in the previous section.

Could there be any connection between the diversity in multitask representation learning and

the efficient myopic exploration?

Xu and Tewari (2021) showed that Eluder dimension is a measure for the hardness of being

diverse. Here we introduce a generalized version called distributional Eluder dimension (Jin

et al., 2021a).

Definition 5.10 (ε-independence between distributions). Let G be a class of functions

defined on a space X , and ν, µ1, . . . , µn be probability measures over X . We say ν

is ε-independent of {µ1, µ2, . . . , µn} with respect to G if there exists g ∈ G such that√∑n
i=1 (Eµi

[g])2 ≤ ε, but |Eν [g]| > ε

Definition 5.11 (Distributional Eluder (DE) dimension). . Let G be a function class defined

on X , and Π be a family of probability measures over X . The distributional Eluder dimension

dimDE(G,Π, ε) is the length of the longest sequence {ρ1, . . . , ρn} ⊂ Π such that there exists

ε′ ≥ ε where ρi is ε
′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].
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Definition 5.12 (Bellman Eluder (BE) dimension (Jin et al., 2021)). Let EhF be the set of

Bellman residuals induced by F at step h, and Π = {Πh}Hh=1 be a collection of H probability

measure families over X × A. The ε-Bellman Eluder dimension of F with respect to Π is

defined as

dimBE(F ,Π, ε) := max
h∈[H]

dimDE (EhF ,Π, ε)

Constructing a diverse set. For each h ∈ [H], consider a sequence of functions

f1, . . . , fd ∈ F , such that the induced policy (πfi)i∈[d] generates probability measures

(µfi
h+1)i∈[d] at the step h + 1. Let (µfi

h+1)i∈[d] be ϵ-independence w.r.t the function class

EhF between their predecessors. By the definition of BE dimension, we can only find at

most dimDE (EhF ,Π, ε) of these functions. Then conditions in Definition 5.3 is satisfied with

c = 1/(dH).

Revisiting linear MDPs. The task set construction in 5.7 seems to be quite restricted

as we require a set of standard basis. One might conjecture that a task set Mi,h with full

rank [θ1,h, . . . , θd,h] will suffice. From what we discussed in the general case, we will need the

occupancy measure generated by the optimal policies for these MDPs to be ϵ-independent

and any other distribution is ϵ-dependent. This is generally not true even if the reward

parameters are full rank. To see this, let us consider a tabular MDP case with two states

{1, 2}, where at the step h, we have two tasks M1, M2, with Rh,M1(s, a) = 1[s = 1] and

Rh,M2(s, a) = 0.511[s = 1] + 0.491[s = 2]. This gives θh,M1 = [1, 0] and θh,M2 = [0.49, 0.51]

as shown in Figure 5.3.

St
at

e 
2

State 1

45o

Reward 1

Reward 2

Figure 5.3: An illustration of why a full-rank set of reward parameters does not achieve
diversity. The red arrows are two reward parameters and the star marks the generated state
distributions of the optimal policies corresponding to the two rewards at the step h. Since
both optimal policies only visit state 1, they may not provide a sufficient exploration for the
next time step h+ 1.

Construct the MDP such that the transition probability and action space any policy either

visit state 1 or state 2 at the step h. Then the optimal policies for both tasks are the same
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policy which visits state 1 with probability one, even if the reward parameters [θh,M1 , θh,M2 ]

are full-rank.

5.F Experiment Details

Extra Training Details By choosing an environment denoted by Mp,q, we randomly

generate a p′ and q′ from N (p, 0.1), N (q, 0.1) to increase the robustness of the training for

all settings. This is also the default setup in Romac et al. (2021).

Table 5.1: Training on different environment parameters. Each row represents a training sce-
nario, where the first two columns are the range of sampled parameters. The mastered tasks
are out of 121 evaluated tasks with the standard deviation calculated from ten independent
runs.

Obstacle spacing Stump height Mastered task
[2, 4] [0.0, 0.3] 28.1± 6.1
[2, 4] [1.3, 1.6] 41.6± 9.8
[2, 4] [2.6, 3.0] 11.5± 10.9
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Figure 5.4: (b-c) Log-scaled eigenvalues of sample covariance matrices of the trained em-
beddings generated by the near optimal policies for different environments.
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CHAPTER 6

Summary and Future Work

In this thesis, we study the theoretical benefits of multitask learning in two major setups:

supervised learning and reinforcement learning. We emphasize that task diversity plays

an important role in all the settings discussed in this thesis. For supervised learning, we

study a multitask representation learning, where a shared representation function is learned

from source tasks and we show that a diversity condition on the source tasks guarantees a

worst-case generalization performance on a downstream task. We further ask if we are given

a potentially large dataset, whether a high diversity can be achieved when the algorithm

is allowed to adaptively choose tasks. We study this problem under the framework called

curriculum learning, where we show that diversity can be asymptotically achieved for linear

multitask representation learning problem. To bridge supervised learning and reinforcement

learning, we study a contextual bandit problem with funnel structure. We show that a

high diversity leads to smaller discrepancies between tasks in different layers of the funnel

structure, which allows us to show a smaller regret bound. In the reinforcement learning

setting, we, for the first time, connects diversity to the exploration of RL. We show that a

diverse task enables efficient myopic exploration, when policies are shared across different

tasks. We provide a more concrete diversity condition for linear MDPs.

6.1 Future Work

There is still a significant gap between the practice of MTL and the current theoretical

understanding. We highlight some promising directions.

Beyond ERM analysis. Most of current work on multitask representation learning are

based on empirical risk minimizer (ERM), which assumes a global minimizer can be found.

However, the optimization regime for even simple linear representation learning is non-

convex. It worth exploring whether there is an efficient optimization algorithm that enjoys

the similar theoretical guarantees ERM does.
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Beyond representation learning. Though representation learning is heavily studies in

both empirical and theoretical works, it does not cover all the interesting cases such as

covariate shift and more general joint function class setting. For instance, in causal inference,

the distribution may shift across tasks that is reflected on the causal graph. We may use a

joint function class to model such changes, where the benefits of multitask learning is not

well-undertood.

Diverse Reinforcement Learning. Our analysis are limited to problem with strong

structural assumptions, i.e., linear MDPs. It is not clear what is a task set that achieves

diversity in a general function approximation setting. Similar to the supervised learning

setting, one may seek an adaptive task scheduler for multitask RL. How to adaptively learning

a curriculum for Reinforcement Learning is still an open problem.
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Du, S. S., Koushik, J., Singh, A., and Póczos, B. (2017). Hypothesis transfer learning via
transformation functions. In Advances in Neural Information Processing Systems, pages
574–584.

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 109–117.

Farjadnasab, M. and Babazadeh, M. (2022). Model-free lqr design by q-function learning.
Automatica, 137:110060.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pappas, G. (2019). Efficient and
accurate estimation of lipschitz constants for deep neural networks. Advances in Neural
Information Processing Systems, 32:11427–11438.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C. (2010). Parametric bandits: The
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