
Perturbation Algorithms for Adversarial Online

Learning

by

Zifan Li

Advisor: Ambuj Tewari

A senior thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Science
(Honors Statistics)

in The University of Michigan
2017



ACKNOWLEDGEMENTS

During my time at the University of Michigan, I have had the fortune to meet
and work with many extraordinary people who had made significant impact to my
life. I would like to express my sincere gratitude to a few of them here.

First and foremost, I would like to thank my thesis advisor Prof. Ambuj Tewari,
for his constant guidance and encouragement over the past two years. Throughout
the course of multiple research projects, including ones that lead to this thesis, he
was always willing to answer my questions and provide genuine advices, both in
academics and in life. Given the numerous setbacks I have encountered writing this
thesis, it cannot be more accurate to say that this thesis would not be possible
without his dedication and support.

Second, I am very grateful to Prof. Ji Zhu, whose course on data mining inspired
my interest in machine learning, for his supervision of some interesting statistical
projects and the tremendous help he offered for my graduate school applications.

Third, I would like to recognize Prof. Honglak Lee, Prof. Andrew Snowden,
Dr. Yuting Zhang, Kam Chung Wong, Yuan Chen, and all other people who have
either supervised me for research or have worked collabratively with me. Working
with them has greatly enriched my experience as a researcher and has truely been a
pleasure for me.

Lastly, I would also like to thank my parents, my brother, and my friends for
their unfailing support over the years, without whom my journey as an undergrduate
student at the University of Michigan would not have been so wonderful.

ii



ABSTRACT

Perturbation Algorithms for Adversarial Online Learning

by

Zifan Li

Online learning is an important paradigm of the machine learning, a field where

people study ways to let machine achieve better performance by learning from data.

One unique property of online learning is that data come in as a stream rather than

in a batch. The goal of online learning is to make a sequence of accurate predictions

given knowledge of the answers to previous prediction tasks. Online learning has

been studied extensively during the past decades. It has also drew great interest to

practitioners due to the recent emergence of large scale applications such as online

advertisement placement and online web ranking. In this thesis, we approach the

problem of online learning from a statistical and game-theoretic perspective. We

aim to develop novel perturbation-based algorithms that have guaranteed worst-case

performance for a variety of classical online learning problems, including the expert

advice problem and the adversarial multi-armed bandit problem.
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CHAPTER I

Introduction

Regret has occupied a central place in online learning literature. In the setting of

repeated games played in discrete time, the regret of a player, at any time point, is

the difference between the payoffs she would have received had she played the best,

in hindsight, constant strategy throughout, and the payoffs she did in fact receive.

We approach the problem from an adversarial perspective, i.e, we do not make any

stochastic assumption on the payoffs the player would receive, but rather try to design

algorithms that have guaranteed performance against any payoff sequences. Hannan

[1957] first showed the existence of algorithms with a “no-regret” property under the

adversarial setting: algorithms for which the average regret per time goes to zero

almost surely as the number of time points increases to infinity. Such algorithms are

also called “Hannan Consistent”. Unfortunately, the most naive algorithm one can

think of, i.e, just choose among the strategies that have the best performance so far

(called Fictitious Play or Follow the Leader), are not “Hannan Consistent”. And

it is well known that adding smoothness, either explicitly through regularization or

implicitly through perturbations, to the cumulative payoffs before computing best

response to other players’ previous moves is crucial to achieve Hannan consistency.

In this thesis, we study perturbation-based algorithms that enjoy the the no-regret
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property for two classical online learning problem, i.e, the expert advice problem and

the multi-armed bandit problem, through novel techniques such as Littlewood-Offord

theory or “generalized hazard rate”.

1.1 The Expert Advice Problem

If we think of other players collectively as the adversairial “environment” or “na-

ture”, then we arrive at the classical expert advice problem in online learning. For-

mally, consider the expert advice problem Cesa-Bianchi and Lugosi [2006] with N ex-

perts and T rounds. At each round t, the player choose one expert it ∈ {1, 2, . . . , N}

and then the adversary reveals a payoff vector gt where gt,j ∈ [−1, 1] is the payoff

associated with the jth expert at round t and the player accumulates a gain of gt,kt

where kt (possibly randomized) is the expert the player choosed for round t. We

define Gt =
∑t

s=1 gs the cumulative payoff vector at time t. The player’s goal is to

minimize the expected regret, which can be expressed as

RT = E

[
max

i∈{1,2,...,N}

T∑
t=1

gt,i −
T∑
t=1

gt,it

]
.

The fictitious play algorithm (which fails to be hannan consistent) has the simple

rule that

it ∈ arg max
i
Gt,i.

In the thesis, we will consider a variant of fictitious play, namely sampled fictitious

play. Here, the player samples past time points using some (randomized) sampling

scheme and plays best response to the plays of the other players restricted to the set

of sampled time points. In other words, at time t, player randomly selects a subset

St ⊆ {1, . . . , t − 1} of previous time points and plays best response to the other
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players’ moves only over St. That is,

it ∈ arg max
i

∑
τ∈St

gτ, i

We consider sampled fictitious play with a natural sampling scheme, namely Bernoulli

sampling, i.e., any particular round τ ∈ {1, . . . , t−1} is included in St independently

with probability 1/2. More specifically, if ε
(t)
1 , . . . , ε

(t)
t−1 are i.i.d. symmetric Bernoulli

(or Rademacher) random variables taking values in {−1,+1}, then

St = {τ ∈ {1, . . . , t− 1} : ε(t)τ = +1}

As will become clear later, the sampling scheme can be viewed as a perturbation to

the cumulative payoff vector before we compute the best response. In Chapter II, we

will show that sampled fictitious play, using Bernoulli sampling, is Hannan consis-

tent. Unlike several existing Hannan consistency proofs that rely on concentration of

measure results, ours instead uses anti-concentration results from Littlewood-Offord

theory.

1.2 The Multi-armed Bandit Problem

Let us now switch from the expert advice problem to the adversarial multi-armed

bandit problem. In this problem, an agent must make a sequence of choices from a

fixed set of options, just like in the expert advice probelm. However, what seperates

the bandit problem from the expert advice problem is that after each decision is made,

the agent receives some feedback associated with her choice, but no information is

provided on the outcomes of alternative options. Mathematically, if we use N to

denote the number of arms and T to denote the number of rounds. On each round

t = 1, . . . , T , a learner must choose a distribution pt over the set of N available

actions. The adversary (nature) chooses a payoff vector gt ∈ [−1, 0]N . The learner
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plays action kt sampled according to pt and suffers the loss gt,kt . Note that here we

use the term “loss” because of the fact that the payoff is restricted to be non-positive.

The learner observes only a single coordinate gt,kt of the payoff vector and receives

no information as to the values gt,j for j 6= kt. This limited information feedback

is what makes the bandit problem much more challenging than the full-information

setting (expert advice problem) in which the entire gt is observed.

As before, the learner’s goal is to minimize the expected regret where the expected

regret is defined the same way as before. We want to develop pertubation-based

algorithms that have good guaranteed worst case regret. More specifically, we are

interested in a class of algorithm called Follow the Perturbed Leader (FTPL), defined

as

pt = E
Z1,...,ZN

iid∼D
ei∗ , where i∗ = arg max

i=1,...,N
{Gi + Zi},

where Gi is the cumulative loss vector and D is some probability distribution. Recent

work by Abernethy et al. [2015] has highlighted the role of the hazard rate of the

distribution generating the perturbations. Assuming that the hazard rate is bounded,

it is possible to provide regret analyses for a variety of FTPL algorithms for the

multi-armed bandit problem. In Chapter III, we push the inquiry into regret bounds

for FTPL algorithms beyond the bounded hazard rate condition. There are good

reasons to do so: natural distributions such as the uniform and Gaussian violate

the condition. We give regret bounds for both bounded support and unbounded

support distributions without assuming the hazard rate condition. We also disprove

a conjecture that the Gaussian distribution cannot lead to a low-regret algorithm. In

fact, it turns out that it leads to near optimal regret, up to logarithmic factors. A key

ingredient in our approach is the introduction of a new notion called the generalized

hazard rate.
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1.3 Preprints

Both chapters in the thesis are preprints under review at the time of writing. We

list the publication information:

• Prediction with Expert Advice and Sampled Fictitious Play - Under review for

the Games and Economic Behavior journal (titled Sampled Fictitous Play

is Hannan Consistent).

• Adversarial Multi-armed Bandit and Follow the Perturbed Leader - Under re-

view for Conference on Learning Theory 2017 (titled Beyond the Hazard

Rate: More Perturbation Algorithms for Adversarial Multi-armed

Bandits).
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CHAPTER II

Prediction with Expert Advice and Sampled Fictitious Play

2.1 Introduction

In the setting of repeated games played in discrete time, the (unconditional) regret

of a player, at any time point, is the difference between the payoffs she would have

received had she played the best, in hindsight, constant strategy throughout, and

the payoffs she did in fact receive. Hannan [1957] showed the existence of procedures

with a “no-regret” property: procedures for which the average regret per time goes

to zero for a large number of time points. His procedure was a simple modification

of fictitious play: random perturbations are added to the cumulative payoffs of every

strategy so far and the player picks the strategy with the largest perturbed cumulative

payoff. No regret procedures are also called “universally consistent” [Fudenberg and

Levine, 1998, Section 4.7] or “Hannan consistent” [Cesa-Bianchi and Lugosi, 2006,

Section 4.2].

It is well known that smoothing the cumulative payoffs before computing the best

response is crucial to achieve Hannan consistency. One way to achieve smoothness is

through stochastic smoothing, or adding perturbations. Without perturbations, the

procedure becomes identical to fictitious play, which fails to be Hannan consistent

[Cesa-Bianchi and Lugosi, 2006, Exercise 3.8]. Besides Hannan’s modification, other
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variants of fictitious play are also known to be Hannan consistent, including (uncon-

ditional) regret matching, generalized (unconditional) regret matching and smooth

fictitious play (for an overview, see Hart and Mas-Colell [2013, Section 10.9]).

In this note, we consider another variant of fictitious play, namely sampled fic-

titious play. Here, the player samples past time points using some (randomized)

sampling scheme and plays the best response to the moves of the other players re-

stricted to the set of sampled time points. Sampled fictitious play has been considered

by other authors in the context of evolutionary games [Kaniovski and Young, 1995],

the game of matching pennies [Gilliland and Jung, 2006], and games with identical

payoffs [Lambert III et al., 2005]. To the best of our knowledge, it is not known

whether sampled fictitious play is Hannan consistent. The purpose of this note is to

show that it is indeed Hannan consistent when used with a natural sampling scheme,

namely Bernoulli sampling.

2.2 Preliminaries

Consider a game in strategic form where M is the number of players, Si is the

set of strategies for player i, and ui :
∏M

j=1 Si → R is the payoff function for player

i. For simplicity assume that the payoff functions of all players are [−1, 1] bounded.

We also assume the number of pure strategies is the same for each player and that

Si = {1, . . . , N}. Let S =
∏M

i=1 Si be the set of M -tuples of player strategies. For s =

(si)
M
i=1 ∈ S, we denote the strategies of players other than i by s−i = (sj)1≤j≤M,j 6=i.

The game is played repeatedly over (discrete) time t = 1, 2, . . .. A learning pro-

cedure for player i is a procedure that maps the history ht−1 = (sτ )
t−1
τ=1 of plays just

prior to time t, to a strategy st,i ∈ Si. The learning procedure is allowed to be

randomized, i.e., player i has access to a stream of random variables ε1, ε2, . . . and
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she is allowed to use ε1, . . . , εt−1, in addition to ht−1, to choose st,i. Player i’s regret

at time t is defined as

Rt,i = max
k∈Si

t∑
τ=1

ui(k, sτ,−i)−
t∑

τ=1

ui(sτ ).

This compares the player’s cumulative payoff with the payoff she could have received

had she selected the best constant (over time) strategy k with knowledge of the other

players’ moves.

A learning procedure for player i is said to be Hannan consistent if and only if

lim sup
t→∞

Rt,i

t
≤ 0 almost surely.

Hannan consistency is also known as the “no-regret” property and as “universal

consistency”. The term “universal” refers to the fact that the regret per time goes

to zero irrespective of what the other players do.

Fictitious play is a (deterministic) learning procedure where player i plays the

best response to the plays of the other players so far. That is,

st,i ∈ arg max
k∈{1,...,N}

t−1∑
τ=1

ui(k, sτ,−i).

As mentioned earlier, fictitious play is not Hannan consistent. However, consider

the following modification of fictitious play, called sampled fictitious play. At time

t, player randomly selects a subset St ⊆ {1, . . . , t − 1} of previous time points and

plays the best response to the other players’ moves only over St. That is,

(2.1) st,i ∈ arg max
k∈{1,...,N}

∑
τ∈St

ui(k, sτ,−i).

If multiple strategies achieve the maximum, then the tie is broken uniformly at

random, and independently with respect to all previous randomness. Also, if St
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turns out to be empty (an event that happens with probability exactly 2−(t−1) under

the Bernoulli sampling described below), we adopt the convention that the argmax

above includes all N strategies.

In this note, we consider Bernoulli sampling, i.e., any particular round τ ∈

{1, . . . , t − 1} is included in St independently with probability 1/2 . More specifi-

cally, if ε
(t)
1 , . . . , ε

(t)
t−1 are i.i.d. symmetric Bernoulli (or Rademacher) random variables

taking values in {−1,+1}, then

(2.2) St = {τ ∈ {1, . . . , t− 1} : ε(t)τ = +1}

and therefore, ∑
τ∈St

ui(k, sτ,−i) =
t−1∑
τ=1

(1 + ε
(t)
τ )

2
ui(k, sτ,−i).

Note that the procedure defined by the combination of (2.1) and (2.2) is completely

parameter free, i.e., there is no tuning parameter that has to be carefully tuned in

order to obtain desired convergence properties.

2.3 Result and Discussion

Our main result is the following.

Theorem 1. Sampled fictitious play (2.1) with Bernoulli sampling (2.2) is Hannan

consistent.

Before we move on to the proof, a few remarks are in order.

Rate of convergence Our proof gives the rate of convergence of (expected) average

regret as O(N2
√

log log t/t) where the constant hidden in O(·) notation is small

and explicit. It is known that the optimal rate is O(
√

logN/t) [Cesa-Bianchi and

Lugosi, 2006, Section 2.10]. Therefore, our rate of convergence is almost optimal
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in t but severely suboptimal in N . This raises several interesting questions. What

is the best bound possible for Sampled Fictitious Play with Bernoulli sampling? Is

there a sampling scheme for which Sampled Fictitious Play procedure achieves the

optimal rate of convergence? The first question is partially answered by Theorem 32

in Appendix 1.2 which states that the dependency on N is likely to be polynomial

instead of logarithmical, but there is still some gap between the lower bound and the

upper bound we provide.

Asymmetric probabilities Instead of using symmetric Bernoulli probabilities, we

can choose ε
(t)
τ such that P (ε

(t)
τ = +1) = α. As α → 1, the learning procedure

becomes fictitious play and as α → 0, it selects strategies uniformly at random.

Therefore, it is natural to expect that the regret bound will blow up near the two

extremes of α = 1 and α = 0. We can make this intuition precise, but only for

{−1, 0, 1}-valued payoffs (instead of [−1, 1]-valued). For details, see Appendix 1.3 in

the supplementary material.

Follow the perturbed leader Note that

arg max
k∈{1,...,N}

t−1∑
τ=1

(1 + ε
(t)
τ )

2
ui(k, sτ,−i) = arg max

k∈{1,...,N}

( t−1∑
τ=1

ui(k, sτ,−i)+
t−1∑
τ=1

ε(t)τ ui(k, sτ,−i)
)
.

Therefore, we can think of sampled fictitious play as adding a random perturbation

to the expression that fictitious play optimizes. Such algorithms are referred to as

“follow the perturbed leader” (FPL) in the computer science literature (“fictitious

play” is known as “follow the leader”). This family was originally proposed by

Hannan [1957] and popularized by Kalai and Vempala [2005]. Closer to this paper

are the FPL algorithms of Devroye et al. [2013] and van Erven et al. [2014]. However,

none of these papers considered sampled fictitious play.
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Extension to conditional (or internal) regret In this paper we focus on uncondi-

tional (or external) regret. Other notions of regret, especially conditional (or inter-

nal) regret can also be considered. Internal regret measures the worst regret, over

N(N − 1) choices of k 6= k′, of the form “every time strategy k was picked, strategy

k′ should have been picked instead”. There are generic conversions [Stoltz and Lu-

gosi, 2005, Blum and Mansour, 2007] that will convert any learning procedure with

small external regret to one with small internal regret. These conversion, however,

require access to the probability distribution over strategies at each time point. This

probability distribution can be approximated, to arbitrary accuracy, by making the

choice of the strategy in (2.1) multiple times each time selecting the random subset

St independently. However, doing so and using a generic conversion from external to

internal regret will lead to a cumbersome overall algorithm. It will be nicer to design

a simpler sampling based learning procedure with small internal regret.

2.4 Proof of the Main Result

We break the proof of our main result into several steps. The first and third steps

involve fairly standard arguments in this area. Our main innovations are in step two.

2.4.1 Step 1: From Regret to Switching Probabilities

In this step, we assume that players other than player i (the “opponents”) are

oblivious, i.e., they do not adapt to what player i does. Mathematically, this means

that the sequence st,−i does not depend on the moves st,i of player i. We will prove a

uniform regret bound that holds for all deterministic payoff sequences {st,−i}Tt=1, by

which we can conclude that the same bound holds for oblivious but random payoff

sequences as well. Since player i is fixed for the rest of the proof, we will not carry

the index i in our notation further. Let the vector gt ∈ [−1, 1]N be defined as
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gt,k = ui(k, st,−i) for k ∈ {1, . . . , N}. Moreover, we denote player i’s move st,i as kt.

With this notation, regret at time T equals

RT = max
k∈{1,...,N}

T∑
t=1

gt,k −
T∑
t=1

gt,kt .

In this step, we will look at the expected regret. Because the opponents are oblivious,

this equals

E [RT ] = max
k∈{1,...,N}

T∑
t=1

gt,k − E

[
T∑
t=1

gt,kt

]
= max

k∈{1,...,N}

T∑
t=1

gt,k −
T∑
t=1

E [gt,kt ] .

Recall that

kt ∈ arg max
k∈{1,...,N}

t−1∑
τ=1

(1 + ε
(t)
τ )

2
gτ,k.

Since gt’s are fixed vectors, by independence we see that the distribution of kt is
exactly the same whether or not we share the Rademacher random variables across

time points. Therefore, we do not have to draw a fresh sample ε
(t)
1 , . . . , ε

(t)
t−1 at time t.

Instead, we fix a single stream ε1, ε2, . . . of i.i.d. Rademacher random variables and

set (ε
(t)
1 , . . . , ε

(t)
t−1) = (ε1, . . . , εt−1) for all t. With this reduction in number of random

variables used, we now have

(2.3) kt ∈ arg max
k∈{1,...,N}

t−1∑
τ=1

(1 + ετ )gτ,k.

We define Gt =
∑t

τ=1 gτ , the cumulative payoff vector at time t. Define g̃t =

(1 + εt)gt and G̃t =
∑t

τ=1 g̃τ . We also define

gt,i	j = gt,i − gt,j , g̃t,i	j = g̃t,i − g̃t,j.

With these definitions, we have

G̃t,i	j = G̃t,i − G̃t,j =
t∑

τ=1

g̃τ,i −
t∑

τ=1

g̃τ,j

=
t∑

τ=1

(1 + ετ )(gτ,i − gτ,j) =
t∑

τ=1

(1 + ετ )gτ,i	j.

The following result upper bounds the regret in terms of downward zero-crossings of

the process G̃t,i	j, i.e., the times t when it switches from being non-negative at time

t− 1 to non-positive at time t.
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Theorem 2. We have the following upper bound on the expected regret:

E [RT ] ≤ 2N2 max
1≤i,j≤N

T∑
t=1

|gt,i	j|P
(
G̃t−1,i	j ≥ 0, G̃t,i	j ≤ 0

)
.

The proof of this theorem can be found in Appendix 1.1. We now focus on

bounding the switching probabilities for a fixed pair i, j.

2.4.2 Step 2: Bounding Switching Probabilities Using Littlewood-Offord Theory

Our strategy is to do a “multi-scale” analysis and, within each scale, apply

Littlewood-Offord theory to bound the switching probabilities. The need for a multi-

scale argument arises from the requirement in Littlewood-Offord theorem (see The-

orem 3 below) for a lower bound on the step sizes of random walks. We partition

the set of T time points [T ] := {1, . . . , T} into K + 1 disjoint sets at different scales,

denoted as {Ak}Kk=0 where

Ak =



{t ∈ [T ] : |gt,i	j| ≤ 1√
T
} k = 0

{t ∈ [T ] : T−
1

2k < |gt,i	j| ≤ T−
1

2k+1 } k = 1, . . . , K − 1

{t ∈ [T ] : T−
1

2K < |gt,i	j| ≤ 2} k = K

.

Note that actually Ak depends on i, j as well but for the sake of clarity we drop this

dependence in the notation. The cardinality of a finite set A will be denoted by |A|.

The number K + 1 of different scales is determined by

K = arg min{k ∈ N : T−
1

2k ≥ 1/2}.

∀t, i, gt,i ∈ [−1, 1] so |gt,i	j| ∈ [0, 2]. The scales here are chosen such that K is not

very large (of order O
(

log log(T )
)

) and still covers the entire range of the payoffs.
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It easily follows that,

T∑
t=1

|gt,i	j|P
(
G̃t−1,i	j ≥ 0, G̃t,i	j ≤ 0

)
=

T∑
t=1

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

=
K∑
k=0

∑
t∈Ak

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)
.

We now want to argue that the probabilities involved above are small. The crucial

observation is that, if a switch occurs, then the random sum
∑t

τ=1 ετgτ,i	j has to lie

in a sufficiently small interval. Such “small ball” probabilities are exactly what the

classic Littlewood-Offord theorem controls.

Theorem 3 (Littlewood-Offord Theorem of Erdös, Theorem 3 of Erdős [1945]). Let

x1, . . . , xn be n real numbers such that |xi| ≥ 1 for all i. For any given radius ∆ > 0,

the small ball probability satisfies

sup
B
P (ε1x1 + · · ·+ εnxn ∈ B) ≤ S(n)

2n
(b∆c+ 1)

where ε1, . . . , εn are i.i.d. Rademacher random variables, B ranges over all closed

balls (intervals) of radius ∆, and bxc refers to the integral part of x, S(n) is the

largest binomial coefficient belonging to n.

Using elementary calculations to upper bound S(n)
2n

gives us the following corollary.

Corollary 4. Under the same notation and conditions as Theorem 3, we have

sup
B
P (ε1x1 + · · ·+ εnxn ∈ B) ≤ CLO(b∆c+ 1)

1√
n

where CLO = 2
√

2e
π

< 3.

The proof of this corollary can be found in Appendix 1.1.
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The scale of payoffs for time periods in A0 is so small that we do not need any

Littlewood-Offord theory to control their contribution to the regret. Simply bound-

ing the probabilities by 1 gives us the following.

Theorem 5. The following upper bound holds for switching probabilities for time

periods within A0:

∑
t∈A0

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

≤
√
|A0| ≤ 20CLO

√
|A0|.

where CLO > 1.

The proof of this theorem can also be found in Appendix 1.1.

The real work lies in controlling the switching probabilities for payoffs at inter-

mediate scales. The idea in the proof of the results is to condition on the εt’s outside

Ak. Then the probability of interest is written as a small ball event in terms of the

εt’s in Ak. Applying Littlewood-Offord theorem concludes the argument.

Theorem 6. For any k ∈ {1, . . . , K}, we have

∑
t∈Ak

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

≤ 20CLO
√
|Ak|.

Again, the proof of this theorem is deferred to Appendix 1.1.

We finally have all the ingredients in place to control the switching probabilities.

Corollary 7. The following upper bound on the switching probabilities holds.

T∑
t=1

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

≤ 20CLO
√
T log2(4 log2 T ).
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Proof. Using Theorem 5 and Theorem 6, we have

T∑
t=1

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

=
K∑
k=0

∑
t∈Ak

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

≤
K∑
k=0

20CLO
√
|Ak|.

Since
∑K

k=0

√
|Ak| ≤

√
K + 1 ·

√∑K
k=0 |Ak| and

∑K
k=0 |Ak| = T , we have

K∑
k=0

20CLO
√
|Ak| ≤ 20CLO

√
(K + 1)T .

By definition of K, we have that T−
1

2K−1 < 1
2
, K ≤ log2(log2(T )) + 1 which finishes

the proof.

Thus, ∀i, j ∈ {1, . . . , N, i 6= j}, we have

T∑
t=1

|gt,i	j|P
(
G̃t−1,i	j ≥ 0, G̃t,i	j ≤ 0

)
≤ 20CLO

√
T log2(4 log2 T ),

which, when plugged into Theorem 2, immediately yields the following corollary.

Corollary 8. Against an oblivious opponent, both versions — the single stream ver-

sion (2.3) and the fresh-randomization-at-each-round version (2.1) — of sampled

fictitious play enjoy the following bound on the expected regret.

E [RT ] ≤ 40CLON
2
√
T log2(4 log2 T ).

2.4.3 Step 3: From Oblivious to Adaptive Opponents

Now we consider adaptive opponents. In this setting, we can no longer assume

that player i plays against a fixed sequence of payoff vectors {gt}Tt=1. Note that gt,k is

just shorthand for ui(k, st,−i) and opponents can react to player i’s moves k1, . . . , kt−1

in selecting their strategy tuple st,−i. Thus, gt is a function gt(k1, . . . , kt−1). Faced
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with general adaptive opponents, the single stream version (2.3) can incur terrible

expected regret as stated below.

Theorem 9. The single stream version of the sampled fictitious play procedure (2.3)

can incur linear expected regret against adaptive opponents.

The proof of this theorem can be found at the end of Appendix 1.1.

However, for the fresh randomness at each round procedure (2.1), we can apply

Lemma 4.1 of Cesa-Bianchi and Lugosi [2006] along with Corollary 8 to derive our

next result that holds for adaptive opponents too. There are two conditions that

we must verify before we apply that lemma. First, the learning procedure should

use independent randomization at different time points. Second, the probability

distribution of st,i over the N available strategies should be fully determined by

s1,−i, . . . , st−1,−i and should not depend explicitly on player i own previous moves

s1,i, . . . , st−1,i. Both of these conditions are easily seen to hold for sampled fictitious

play as defined in (2.1) and (2.2).

Theorem 10. For any T, for any δT > 0, with probability at least 1− δT , the actual

regret RT of sampled fictitious play as defined in (2.1) and (2.2) satisfies, for any

adaptive opponent,

RT ≤ 40CLON
2
√
T log2(4 log2 T ) +

√
T

2
log

1

δT
.

Now pick δT = 1
T 2 . Consider the events ET = {RT ≥ 12CLON

2
√
T log2(4 log2 T )+

√
T log T} with P (ET ) ≤ δT . Since

∑∞
T=1 δT < ∞, we have

∑∞
T=1 P (ET ) < ∞.

Therefore, using Borel-Cantelli lemma, the event “infinitely many ET ’s occur” has

probability 0. That is, with probability 1, we have lim supT→∞
RT

T log T
≤ C for some

constant C. In particular, with probability 1, lim supT→∞
RT
T

= 0, which proves

Theorem 1.
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2.5 Conclusion

We proved that a natural variant of fictitious play is Hannan consistent. In the

variant we considered, the player plays the best response to moves of her opponents

at sampled time points in the history so far. We considered one particular sampling

scheme, namely Bernoulli sampling. It will be interesting to consider other sampling

strategies including sampling with replacement. It will also be interesting to consider

notions of regret, such as tracking regret [Cesa-Bianchi and Lugosi, 2006, Section 5.2],

that are more suitable for non-stationary environments by biasing the sampling to

give more importance to recent time points.
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CHAPTER III

Adversarial Multi-armed Bandit and Follow the Perturbed
Leader

3.1 Introduction

Starting from the seminal work of Hannan [1957] and later developments due to

Kalai and Vempala [2005], perturbation based algorithms (called “Follow the Per-

turbed Leader (FTPL)”) have occupied a central place in online learning. Another

major family of online learning algorithms, called “Follow the Regularized Leader

(FTRL)”, is based on the idea of regularization. In special cases, such as the ex-

ponential weights algorithm for the experts problem, it has been folk knowledge

that regularization and perturbation ideas are connected. That is, the exponential

weights algorithm can be understood as either using negative entropy regularization

or Gumbel distributed perturbation (for example, see the discussion in Abernethy

et al. [2014]).

Recent work have begun to further uncover the connections between perturbation

and regularization. For example, in online linear optimization, one can understand

regularization and perturbation as simply two different ways to smooth a non-smooth

potential function. The former corresponds to infimal convolution smoothing and the

latter corresponds to stochastic (or integral convolution) smoothing [Abernethy et al.,

2014]. Having a generic framework for understanding perturbations allows one to
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study a wide variety of online linear optimization games and a number of interesting

perturbations.

FTRL and FTPL algorithms have also been used beyond “full information” set-

tings. “Full information” refers to the fact that the learner observes the entire move

of the adversary. The multi-armed bandit problem is one of the most fundamental

examples of “partial information” settings. Regret analysis of the multi-armed ban-

dit problem goes back to the work of Robbins [1952] who formulated the stochastic

version of the problem. The non-stochastic, or adversarial, version was formulated

by Auer et al. [2002], who provided the EXP3 algorithm achieving O(
√
NT logN)

regret in T rounds with N arms. They also showed a lower bound of Ω(
√
NT ), which

was later matched by the Poly-INF algorithm [Audibert and Bubeck, 2009, Audib-

ert et al., 2011]. The Poly-INF algorithm can be interpreted as an FTRL algorithm

with negative Tsallis entropy regularization [Audibert et al., 2011, Abernethy et al.,

2015]. For a recent survey of both stochastic and non-stochastic bandit problems,

see Bubeck and Cesa-Bianchi [2012].

For the non-stochastic multi-armed bandit problem, Kujala and Elomaa [2005]

and Poland [2005] both showed that using the exponential (actually double expo-

nential/Laplace) distribution in an FTPL algorithm coupled with standard unbiased

estimation technique yields near-optimal O(
√
NT logN) regret. Unbiased estima-

tion needs access to arm probabilities that are not explicitly available when using

an FTPL algorithm. Neu and Bartók [2013] introduced the geometric resampling

scheme to approximate these probabilities while still guaranteeing low regret. Re-

cently, Abernethy et al. [2015] analyzed FTPL for adversarial multi-armed bandits

and provided regret bounds under the condition that the hazard rate of the per-

turbation distribution is bounded. This condition allowed them to consider a vari-
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ety of perturbation distributions beyond the exponential, such as Gamma, Gumbel,

Frechet, Pareto, and Weibull.

Unfortunately, the bounded hazard rate condition is violated by two of the most

widely known distributions: namely the uniform1 and the Gaussian distributions. As

a result, the results of Abernethy et al. [2015] say nothing about the regret incurred

in an adversarial multi-armed bandit problem when we use these distributions to

generate perturbations. Contrast this to the full information experts setting where

using these distributions as perturbations yields optimal
√
T regret and even yields

the optimal
√

logN dependence on the dimension in the Gaussian case [Abernethy

et al., 2014].

The Gaussian distribution has lighter tails than the exponential. The hazard rate

of a Gaussian increases linearly on the real line (and is hence unbounded) whereas

the exponential has a constant hazard rate. Does having too light a tail makes a

perturbation inherently bad? The uniform is even worse from a light tail point of

view: it has bounded support! In fact, Kujala and Elomaa [2005] had trouble dealing

with the uniform distribution and remarked, “we failed to analyze the expert setting

when the perturbation distribution was uniform.” Does having a bounded support

make a perturbation even worse? Or is it that the hazard rate condition is just

a sufficient condition without being anywhere close to necessary for a good regret

bound to exist. The analysis of Abernethy et al. [2015] suggests that perhaps a

bounded hazard rate is critical. They even made the following conjecture.

Conjecture 1. If a distribution D has a monotonically increasing hazard rate hD(x)

that does not converge as x → +∞ (e.g., Gaussian), then there is a sequence of

losses that incur at least a linear regret.

1The uniform distribution is also historically significant as it was used in the original FTPL algorithm of ?.

21



The main contribution of this paper is to provide answers to the questions raised

above. First, we show that boundedness of the hazard rate is certainly not a re-

quirement for achieving sublinear (in T ) regret. Bounded support distributions, like

the uniform, violate the boundedness condition on the hazard rate in the most ex-

treme way. Their hazard rate blows up not just asymptotically at infinity, as in the

Gaussian case, but as one approaches the right edge of the support. Yet, we can

show (Corollary 15) that using the uniform distribution results in a regret bound

of O((NT )2/3). This bound is clearly not optimal. But optimality is not the point

here. What is surprising, especially if one regards Conjecture 1 as plausible, is that

a non-trivial sublinear bound holds at all. In fact, we show (Corollary 16) that using

any continuous distribution with bounded support and bounded density results in a

sublinear regret bound.

Second, moving beyond bounded support distributions to ones with unbounded

support, we settle Conjecture 1 in the negative. In Theorem 22 we show that, instead

of suffering linear regret as predicted by Conjecture 1, a perturbation algorithm using

the Gaussian distribution enjoys a near optimal regret bound of O(
√
NT logN log T ).

A key ingredient in our approach is a new quantity that we call the generalized hazard

rate of a distribution. We show that bounded generalized hazard rate is enough to

guarantee sublinear regret in T (Theorem 18).

Finally, we investigate the relationship between tail behavior of random pertur-

bations and the regret they induce. We show that heavy tails, along with some

fairly mild assumptions, guarantee a bounded hazard rate (Theorem 25) and hence

previous results can yield regret bounds for these perturbations. However, light tails

can fail to have a bounded hazard rate. Nevertheless, we show that under reason-

able conditions, light tailed distributions do have a bounded generalized hazard rate
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(Theorem 26). This result allows us to show that reasonably behaved light-tailed

distributions lead to near optimal regret (Corollary 27). In particular, the exponen-

tial power (or generalized normal) family of distributions yields near optimal regret

(Theorem 29)

All proofs in the chapter are deferred to the appendix.

3.2 Follow the Perturbed Leader Algorithm for Bandits

Recall the setting of the adversarial multi-armed bandit problem [Auer et al.,

2002]. An adversary (or Nature) chooses loss vectors gt ∈ [−1, 0]N for 1 ≤ t ≤ T

ahead of the game. Such an adversary is called oblivious. At round t = 1, . . . , T

in a repeated game, the learner must choose a distribution pt ∈ ∆N over the set

of N available arms (or actions). The learner plays action it sampled according to

pt and incurs the loss gt,it ∈ [−1, 0]. The learner observes only gt,it and receives no

information about the values gt,j for j 6= it.

The learner’s goal is to minimize the regret. Regret is defined to be the difference

in the realized loss and the loss of the best fixed action in hindsight:

(3.1) RegretT := max
i∈[N ]

T∑
t=1

(gt,i − gt,it).

To be precise, we consider the expected regret, where the expectation is taken with

respect to the learner’s randomization. Note that, under an oblivious adversary, the

only random variables in the above expression are the actions it of the learner.

The maximization in (3.1) implies that g is strictly speaking a negative gain

vector, not a loss vector. Nevertheless, we use the term loss, as we impose the

assumption that gt ∈ [−1, 0]N throughout the paper. The decision to consider the

loss setting is important: our proof will not work for gains. It is known that the

adversarial multi-armed bandit problem does not exhibit symmetry with respect to
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gains versus losses. Often losses are easier to handle than gains [Bubeck and Cesa-

Bianchi, 2012]. Finally, our decision to treat losses as negative gains stems from the

desire to work with convex, not concave, potential functions.

3.2.1 The Gradient-Based Algorithmic Template

We will consider the algorithmic template described in Framework 1, which is the

Gradient Based Prediction Algorithm (GBPA) (see, for example, Abernethy et al.

[2015]). Let ∆N be the (N − 1)-dimensional probability simplex in RN . Denote the

standard basis vector along the ith dimension by ei. At any round t, the action choice

it is made by sampling from the distribution pt which is obtained by applying the

gradient of a convex function Φ̃ to the estimate Ĝt−1 of the cumulative gain vector

so far. The choice of Φ̃ is flexible but it must be a differentiable convex function such

that its gradient is always in ∆N .

Note that we do not require that the range of ∇Φ̃ be contained in the interior

of the probability simplex. If we required the gradient to lie in the interior, we

would not be able to deal with bounded support distributions such as the uniform

distribution. Even though some entries of the probability vector pt might be 0, the

estimation step is always well defined since pt,it > 0. But allowing pt,i to be zero

means that ĝt is not exactly an unbiased estimator of gt. Instead, it is an unbiased

estimator on the support of pt. That is, E[ĝt,i|i1:t−1] = gt,i for any i such that pt,i > 0.

Here, i1:t−1 is shorthand for i1, . . . , it−1. Therefore, irrespective of whether pt,i = 0

or not, we always have

(3.2) E[pt,iĝt,i|i1:t−1] = pt,igt,i.

When pt,i = 0, we have ĝt,i = 0 but gt,i ≤ 0, which means that ĝt overestimates gt
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outside the support of pt. Hence, we also have

(3.3) E[ĝt|i1:t−1] � gt,

where � means element-wise greater than.

Framework 1: Gradient-Based Prediction Alg. (GBPA) Template for Multi-Armed Bandits.

GBPA(Φ̃): Φ̃ is a differentiable convex function such that ∇Φ̃ ∈ ∆N

Nature: Adversary chooses “gain” vectors gt ∈ [−1, 0]N for t = 1, . . . , T
Learner initializes Ĝ0 = 0
for t = 1 to T do

Sampling: Learner chooses it according to the distribution pt = ∇Φ̃(Ĝt−1)
Cost: Learner incurs (and observes) “gain” gt,it ∈ [−1, 0]
Estimation: Learner creates estimate of gain vector ĝt :=

gt,it
pt,it

eit

Update: Cumulative gain estimate so far Ĝt = Ĝt−1 + ĝt
end for

We now present a basic result bounding the expected regret of GBPA in the multi-

armed bandit setting. It is basically just a simple modification of the arguments in

Abernethy et al. [2015] to deal with the possibility that pt,i = 0. We state and prove

this result here for completeness without making any claim of novelty.

Lemma 11. (Decomposition of the Expected Regret) Define the non-smooth

potential Φ(G) = maxiGi. The expected regret of GBPA(Φ̃) can be written as

(3.4) ERegretT = Φ(GT )− E

[
T∑
t=1

〈pt, gt〉

]
.

Furthermore, the expected regret of GBPA(Φ̃) can be bounded by the sum of an over-

estimation, an underestimation, and a divergence penalty:

(3.5)

ERegretT ≤ Φ̃(0)︸︷︷︸
overestimation penalty

+E

 Φ(ĜT )− Φ̃(ĜT )︸ ︷︷ ︸
underestimation penalty

+E

 T∑
t=1

E[DΦ̃(Ĝt, Ĝt−1)|i1:t−1]︸ ︷︷ ︸
divergence penalty

 ,
where the expectations are over the sampling of it and DΦ̃ is the Bregman divergence

induced by Φ̃.
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3.2.2 Stochastic Smoothing of Potential Function

Let D be a continuous distribution with finite expectation, probability density

function f , and cumulative distribution function F . Consider GBPA with potential

function of the form:

(3.6) Φ̃(G;D) = E
Z1,...,ZN

i.i.d∼ D
Φ(Gi + Zi),

which is a stochastic smoothing of the non-smooth function Φ(G) = maxiGi. We

will often hide the dependence on the distribution D if the distribution is obvious

from the context or when the dependence on D is not of importance in the argument.

Since Φ is convex, Φ̃ is also convex. For stochastic smoothing, we have the following

result to control the underestimation and overestimation penalty.

Lemma 12. For any G, we have

(3.7) Φ(G) + E[Z1] ≤ Φ̃(G) ≤ Φ(G) + EMAX(N)

where EMAX(N) is any function such that

EZ1,...,ZN [max
i
Zi] ≤ EMAX(N).

In particular, this implies that the overestimation penalty Φ̃(0) is upper bounded by

Φ(0) +EMAX(N) = EMAX(N) and the underestimation penalty Φ(ĜT )− Φ̃(ĜT )

is upper bounded by −E[Z1].

Note that Φ is differentiable with probability 1 (under the randomness of the Zi’s)

due to the fact that Zi’s are random variables with a density. By Proposition 2.3 of

Bertsekas [1973], we can swap the order of differentiation and expectation:

(3.8) ∇Φ̃(G;D) = E
Z1,...,ZN

i.i.d∼ D
ei∗ , where i∗ = arg max

i=1,...,N
{Gi + Zi}.
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Note that, for any G, the random index i∗ is unique with probability 1. Hence, ties

between arms can be resolved arbitrarily. It is clear from above that ∇Φ̃, being an

expectation of vectors in the probability simplex, is in the probability simplex. Thus,

it is a valid potential to be used in Framework 1. Note that

(3.9)
∇iΦ̃(G) =

∂Φ̃

∂Gi

= EZ1,...,ZN1{Gi + Zi > Gj + Zj,∀j 6= i}

= EG̃−i [PZi [Zi > G̃−i −Gi]] = EG̃−i [1− F (G̃−i −Gi)].

where G̃−i = maxj 6=iGj + Zj. If D has unbounded support then this partial deriva-

tive is non-zero for all i given any G. However, it can be zero if D has bounded

support. Moreover, we have the following useful identity that writes the Hessian

of the smoothed potential function in terms of the expectation of the probability

density function.

(3.10)

∇2
iiΦ̃(G) =

∂

∂Gi

∇iΦ̃(G) =
∂

∂Gi

EG̃−i [1− F (G̃−i −Gi)]

= EG̃−i

[
∂

∂Gi

(1− F (G̃−i −Gi))

]
= EG̃−if(G̃−i −Gi).

3.2.3 Connection to Follow the Perturbed Leader

The sampling step of Framework 1 with a stochastically smoothed Φ as the poten-

tial Φ̃ (Equation 3.6) can be done efficiently. Instead of evaluating the expectation

(Equation 3.8), we just take a random sample. Doing so gives us an equivalent of Fol-

low the Perturbed Leader Algorithm (FTPL) [?] applied to the bandit setting. On

the other hand, the estimation step is hard because generally there is no closed-form

expression for ∇Φ̃.

To address this issue, Neu and Bartók [2013] proposed Geometric Resampling

(GR), an iterative resampling process to estimate ∇Φ̃ (with bias). They showed

that the extra regret after stopping at M iterations of GR introduces an estimation

bias that is at most NT
eM

as an additive term. That is, all GBPA regret bounds that
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we prove will hold for the corresponding FTPL algorithm that does M iterations

of GR at every time step, with an extra additive NT
eM

term. This extra term does

not affect the regret rate as long as M =
√
NT , because the lower bound for any

adversarial multi-armed bandit algorithm is of the order
√
NT .

3.2.4 The Role of the Hazard Rate and Its Limitation

In previous work, Abernethy et al. [2015] proved that for a continuous random

variable Z with finite and nonnegative expectation and support on the whole real

line R, if the hazard rate of the random variable is bounded, i.e,

sup
z

f(z)

1− F (z)
<∞,

then the expected regret of GBPA can be upper bounded as

ERegretT = O
(√

NT × EMAX(N)
)
.

Common families of distributions whose regret can be controlled in this way include

Gumbel, Frechet, Weibull, Pareto, and gamma (see Abernethy et al. [2015] for de-

tails). However, there are many other families of distributions where the hazard

rate condition fails. For example, if the random variable has a bounded support,

then the hazard rate would certainly explode at the end of the support. This is, in

some sense, an extreme case of violation because the random variable does not even

have a tail. There are also some random variables that do have support on R but

have unbounded hazard rate, e.g. Gaussian, where the hazard rate monotonically

increases to infinity. How can we perform analyses of the expected regret of GBPA

using those random variables as perturbations? To address these issues, we need to

go beyond the hazard rate.
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3.3 Perturbations with Bounded Support

In this section, we prove that GBPA with any continuous distribution that has

bounded support, bounded density enjoys sublinear expected regret. From Lemma 11

we see that the expected regret can be upper bounded by the sum of three terms. The

overestimation penalty can be bounded very easily via Lemma 12 for a distribution

with bounded support. The underestimation penalty is non-positive as long as the

distribution has non-negative expectation. The only term that needs to be controlled

with some effort is the divergence penalty.

We first present a general lemma that allows us to write the divergence penalty

under a stochastic smoothing potential Φ̃ as a sum involving certain double integrals.

Lemma 13. When using a stochastically smoothed potential as in (3.6), the diver-

gence penalty can be written as

(3.11)

E
[
DΦ̃(Ĝt, Ĝt−1)|i1:t−1

]
=

∑
i∈supp(pt)

pt,i

∫ ∣∣∣∣ gt,ipt,i

∣∣∣∣
0

EĜ−i

[∫ s

0

f(Ĝ−i − Ĝt−1,i + r)dr

]
ds

where pt = ∇Φ̃(Ĝt−1), Ĝ−i = maxj 6=i Ĝt−1,j + Zj and supp(pt) = {i : pt,i > 0}.

Note that each summand in the divergence penalty expression above involves an

integral of the density function of the distribution D over an interval. The main idea

to control the divergence penalty for a bounded support distribution is to truncate

the interval at the end of the support. For points that are close to the end of the

support, we bound the integral by the product of the bound on the density and the

interval length. For points that are far from the end of the support, we bound the

integral through the hazard rate as was done by Abernethy et al. [2015].

For a general continuous random variable Z with bounded density, bounded sup-

port, we first shift it (which obviously does not change the action choice it and
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hence the expected regret) and scale it so that the support is a subset of [0, 1] with

inf{z : F (z) = 0} = 0 and inf{z : F (z) = 1} = 1 where F denotes the CDF of Z. A

benefit of this normalization is that the expectation of the random variable becomes

non-negative so the underestimation penalty is guaranteed to be non-positive. After

scaling, we assume that the bound on the density is L. We consider the perturbation

ηZ where η > 0 is a tuning parameter. Write Fη(x) and fη(x) to denote the CDF

and PDF of the scaled random variable ηZ respectively . If F is strictly increasing,

we know that F−1 exists. If not, define F−1(y) = inf{z : f(z) = y}. Elementary

calculation gives the following useful facts:

Fη(z) = F (
z

η
), fη(z) =

f( z
η
)

η
, F−1

η (y) = ηF−1(y).

Theorem 14. (Divergence Penalty Control, Bounded Support) The diver-

gence penalty in the GBPA regret bound using the perturbation ηZ, where Z is drawn

from a bounded support distribution satisfying the conditions above, can be upper

bounded, for any ε > 0, by

NL
( 1

2ηε
+ 1− F−1(1− ε)

)
.

The regret bound for the uniform distribution is now an easy corollary.

Corollary 15. (Regret Bound for Uniform) For GBPA run with a stochas-

tic smoothing using an appropriately scaled [0, 1] uniform perturbation, the expected

regret can be upper bounded by 3(NT )2/3.

For a general perturbation with bounded support and bounded density, the rate

at which 1 − F−1(1 − ε) goes to 0 as ε → 0 can vary but we can always guarantee

sublinear expected regret.
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Corollary 16. (Asymptotic Regret Bound for Bounded Support) For stochas-

tically smoothed GBPA using general continuous random variable Z with bounded

density and bounded support contained in [0, 1], the expected regret grows sublinearly,

i.e.,

lim
T→∞

ERegretT
T

= 0.

3.4 Perturbations with Unbounded Support

Unlike perturbations with bounded support, perturbations with unbounded sup-

port (on the right) do have non-zero right tail probabilities, ensuring that pt,i > 0

always. However, the tail behavior may be such that the hazard rate is unbounded.

Still, under mild assumptions, perturbations with unbounded support (on the right)

can also be shown to have near optimal expected regret in T , using the notion of

generalized hazard rate that we now introduce.

3.4.1 Generalized Hazard Rate

We already know how to control the underestimation and overestimation penalties

via Lemma 12. So our main focus will be to control the divergence penalty. Towards

this end, we define the generalized hazard rate for a continuous random variable Z

with support unbounded on the right, parameterized by α ∈ [0, 1), as

(3.12) hα(z) :=
f(z)|z|α

(1− F (z))1−α ,

where f(z) and F (z) denotes the PDF and CDF of Z respectively. Note that by

setting α = 0 we recover the standard hazard rate.

One of the main results of this paper is the following. Note that it includes the

result (Lemma 4.3) of Abernethy et al. [2015] as a special case.
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Theorem 17. (Divergence Penalty Control via Generalized Hazard Rate)

Let α ∈ [0, 1). Suppose we have ∀z ∈ R, hα(z) ≤ C. Then,

E[DΦ̃(Ĝt, Ĝt−1)|i1:t−1] ≤ 2C

1− α
×N.

A regret bound now easily follows.

Theorem 18. (Regret Bound via Generalized Hazard Rate) Suppose we use

a stochastic smoothing with a perturbation distribution whose generalized hazard rate

is bounded: hα(x) ≤ C, ∀x ∈ R for some α ∈ [0, 1), and

EZ1,...,ZN [max
i
Zi]− E[Z1] ≤ Q(N),

where Q(N) is some function of N . Then, the expected regret of GBPA is no greater

than

2× (
2C

1− α
)1/(2−α) × (NT )1/(2−α) ×Q(N)(1−α)/(2−α).

In particular, this implies that the algorithm has sublinear expected regret.

3.4.2 Gaussian Perturbation

In this section we prove that GBPA with the standard Gaussian perturbation

incurs a near optimal expected regret in both N and T . Let F (z) and f(z) denote

the CDF and PDF of standard Gaussian distribution.

Lemma 19 (Baricz [2008]). For standard Gaussian random variable, we have

z <
f(z)

1− F (z)
<
z

2
+

√
z2 + 4

2
.

This lemma together with example 2.6 in Thomas [1971] show that the hazard

rate of a standard Gaussian random variable increases monotonically to infinity.

However, we can still bound the generalized hazard rate for strictly positive α.
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Lemma 20. (Generalized Hazard Bound for Gaussian) For any α ∈ (0, 1),

we have

f(z)|z|α

(1− F (z))1−α ≤ C1

where C1 = 2
α

.

The bounded generalized hazard rate shown in the above lemma can be used

to control the divergence penalty. Combined with other knowledge of the standard

Gaussian random variable we are able to give a bound on the expected regret.

Corollary 21. The expected regret of GBPA with standard Gaussian random variable

as perturbation has an expected regret at most

2(C1C2NT )1/(2−α)(
√

2 logN)(1−α)/(2−α)

where C1 = 2
α

, C2 = 2
1−α , and α ∈ (0, 1).

It remains to optimally tune α in the above bound. Note the tuning parameter α

appears only in the analysis, not in the algorithm.

Theorem 22. (Regret Bound for Gaussian) The expected regret of GBPA with

standard Gaussian random variable as perturbation has an expected regret at most

96
√
NT ×N1/ log T

√
logN log T

for T > 4. If we assume that T > N , the expected regret can be upper bounded by

278
√
NT ×

√
logN log T.

3.4.3 Sufficient Condition for Near Optimal Regret

In Section 3.4.1 we showed that if the generalized hazard rate of a distribution

is bounded, the expected regret of the GBPA can be controlled. In this section,
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we are going to prove that under reasonable assumptions on the distribution of the

perturbation, the FTPL enjoys near optimal expected regret.

Assumptions (a)-(c). Before we proceed, let us formally state our assumptions

on the distributions we will consider. The distribution needs to (a) be continuous

and has bounded density (b) has finite expectation (c) has support unbounded in

the +∞ direction.

Note that if the expectation of the random perturbation is negative, we shift it

so that the expectation is zero. Hence the underestimation penalty is non-positive.

In addition to the assumptions we have made above, we make another assumption

on the eventual monotonicity of the hazard rate.

Assumption (d) h0(z) =
f(z)

1− F (z)
is eventually monotone.

“Eventually monotone” means that ∃z0 ≥ 0 such that if z > z0, f(z)
1−F (z)

is non-

decreasing or non-increasing. This assumption might appear hard to check, but

numerous theorems are available to establish the monotonicity of hazard rate, which

is much stronger than what we are assuming here. For example, see Theorem 2.4 in

Thomas [1971], Theorem 2 and Theorem 4 in Chechile [2003], Chechile [2009]. In

fact, most natural distributions do satisfy this assumption [Bagnoli and Bergstrom,

2005].

Before we proceed, we mention a standard classification of random variables into

two classes based on their tail property.

Definition 23 (see, for example, Foss et al. [2009]). A function f(z) ≥ 0 is said to

be heavy-tailed if and only if

lim
z→∞

sup f(z)eλz =∞ for all λ > 0.
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A distribution with CDF F (z) and F (z) = 1−F (z) is said to be heavy-tailed if and

only if F (z) is heavy-tailed. If the distribution is not heavy-tailed, we say that it is

light-tailed.

It turns out that under assumptions (a)-(d), if the distribution is also heavy-

tailed, then the hazard rate itself is bounded. If the distribution is light-tailed, we

need an additional assumption on the eventual monotonicity of a function similar to

generalized hazard rate to ensure the boundedness of the generalized hazard rate.

But before we state and prove the main results, we introduce some functions and

prove an intermediate lemma that will be useful to prove the main results.

Define R(z) = − logF (z) so that we have F (z) = e−R(x) and R′(z) = f(z)

F (z)
= h0(z).

Lemma 24. Under assumptions (a)-(d), we have

F (z)eλz is eventually monotone ∀λ > 0.

We are finally ready to present the main results in this section.

Theorem 25. (Heavy Tail Implies Bounded Hazard) Under assumptions (a)

- (d), if the distribution is also heavy-tailed, then the hazard rate is bounded, i.e,

sup
z

f(z)

F (z)
<∞.

Unlike heavy-tailed distributions, the hazard rate of light-tailed distributions

might be unbounded. However, it turns out that if we make an additional assump-

tion on the eventual monotonicity of a function similar to the generalized hazard

rate, we can still guarantee the boundedness of the generalized hazard rate.

Assumption (e) ∃δ ∈ (0, 1] such that
f(z)

(1− F (z))1−δ is eventually monotone.
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Theorem 26. (Light Tail Implies Bounded Generalized Hazard) Under as-

sumptions (a) - (e), if the distribution is also light-tailed, then for any α ∈ (δ, 1), the

generalized hazard rate hα(z) is bounded, i.e,

sup
z

f(z)|z|α

(F (z))1−α
<∞.

Combining the above result with control of the divergence penalty gives us the

following corollary.

Corollary 27. Under assumptions (a)-(e), if the distribution is also light-tailed, the

expected regret of GBPA with perturbations drawn from that distribution is, for any

α ∈ (δ, 1) and ξ > 0,

O
(

(TN)1/(2−α)N ξ
)
.

In particular, if assumption (e) holds for any δ ∈ (0, 1), then the expected regret of

GBPA is O
(

(TN)1/2+ε
)

for any ε > 0, i.e, it is near optimal in both N and T .

Next we consider a family of light-tailed distributions that do not have a bounded

hazard rate.

Definition 28. The exponential power (or generalized normal) family of distribu-

tions, denoted as Dβ where β > 1, is defined via the cdf

fβ(z) = Cβe
−zβ , z ≥ 0.

The next theorem shows that GBPA with perturbations from this family of dis-

tributions enjoys near optimal expected regret in both N and T .

Theorem 29. (Regret Bound for Power Exponential Family) ∀β > 1, the

expected regret of GBPA with perturbations drawn from Dβ is, for any ε > 0,

O
(

(TN)1/2+ε
)

.
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3.5 Conclusion and Future Work

Previous work on providing regret guarantees for FTPL algorithms in the ad-

versarial multi-armed bandit setting required a bounded hazard rate condition. We

have shown how to go beyond the hazard rate condition but a number of questions

remain open. For example, what if we use FTPL with perturbations from discrete

distributions such as Bernoulli distribution? In the full information setting Devroye

et al. [2013] and van Erven et al. [2014] have considered random walk perturba-

tion and dropout perturbation, both leading to minimax optimal regret. But to the

best of our knowledge those distributions have not been analyzed in the adversarial

multi-armed bandit problem.

An unsatisfactory aspect of even the tightest bounds for FTPL algorithms from

existing work, including ours, is that they never reach the minimax optimal O(
√
NT )

bound. They come very close to it: up to logarithmic factors. It is known that

FTRL algorithms, using the negative Tsallis entropy as the regularizer, can achieve

the optimal bound [Audibert and Bubeck, 2009, Audibert et al., 2011, Abernethy

et al., 2015]. Is there a perturbation that can achieve the optimal bound?

We only considered multi-armed bandits in this work. There has been some inter-

est in using FTPL algorithms for combinatorial bandit problems (see, for example,

Neu and Bartók [2013]). In future work, it will be interesting to extend our analysis

to combinatorial bandit problems.
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Appendix A

Proof(s) of Chapter II

1.1 Proofs

We first present a lemma that helps us in proving Theorem 2.

Lemma 30. Let kt and g̃t be defined as in (2.3) and the text following that equation.

We have,
T∑
t=1

g̃t,kt+1 ≥
T∑
t=1

g̃t,kT+1
= max

k∈{1,...,N}

T∑
t=1

g̃t,k.

Proof. This is a classical lemma, for example, see Lemma 3.1 in [Cesa-Bianchi and

Lugosi, 2006]. We follow the same idea, i.e, proving through induction but adapt it

to handle gains instead of losses. The statement is obvious for T = 1. Assume now

that
T−1∑
t=1

g̃t,kt+1 ≥
T−1∑
t=1

g̃t,kT .

Since, by definition,
∑T−1

t=1 g̃t,kT ≥
∑T−1

t=1 g̃t,kT+1
, the inductive assumption implies

T−1∑
t=1

g̃t,kt+1 ≥
T−1∑
t=1

g̃t,kT+1
.

Add g̃T,kT+1
to both sides to obtain the result.

Proof of Theorem 2. We will prove a result for Bernoulli sampling with general prob-

abilities, i.e., when P (εt = +1) = α where α is not necessarily 1/2. We will show
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that

E [RT ] ≤ N2

α
max

1≤i,j≤N

T∑
t=1

|gt,i	j|P
(
G̃t−1,i	j ≥ 0, G̃t,i	j ≤ 0

)
from which the theorem follows as a special case when α = 1/2.

Obviously we have E(g̃t,i) = 2αgt,i because of the fact that E(εt) = 2α − 1.

Furthermore, E[g̃t,kt |ε1, . . . , εt−1] = 2αgt,kt because kt is fully determined by past

randomness ε1, . . . , εt−1 and past payoffs g1, . . . , gt−1 that are given. This implies

that E[g̃t,kt ] = E [E[g̃t,kt|ε1, . . . , εt−1]] = 2αE[gt,kt ]. We now have,

E [RT ] = max
k∈{1,...,N}

T∑
t=1

gt,k − E

[
T∑
t=1

gt,kt

]

=
1

2α
max

k∈{1,...,N}
E

[
T∑
t=1

g̃t,k

]
− 1

2α
E

[
T∑
t=1

g̃t,kt

]

≤ 1

2α
E

[
max

k∈{1,...,N}

T∑
t=1

g̃t,k −
T∑
t=1

g̃t,kt

]
.
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Using Lemma 30, we can further upper bound the last expression as follows,

E [RT ] ≤ 1

2α
E

[
T∑
t=1

g̃t,kt+1 −
T∑
t=1

g̃t,kt

]

=
1

2α

T∑
t=1

E
[
(1 + εt)(gt,kt+1 − gt,kt)

]
≤ 1

2α

T∑
t=1

E
[
(1 + εt)|gt,kt+1 − gt,kt|

]
≤ 1

α

T∑
t=1

E
[
|gt,kt − gt,kt+1|

]
=

1

α

T∑
t=1

∑
1≤i,j≤N

E
[
|gt,i − gt,j|1(kt=i,kt+1=j)

]
=

1

α

∑
1≤i,j≤N

T∑
t=1

E
[
|gt,i − gt,j|1(kt=i,kt+1=j)

]
≤ N2

α
max

1≤i,j≤N

T∑
t=1

|gt,i − gt,j|P (kt = i, kt+1 = j)

≤ N2

α
max

1≤i,j≤N

T∑
t=1

|gt,i − gt,j|P
(
G̃t−1,i ≥ G̃t−1,j, G̃t,i ≤ G̃t,j

)
=
N2

α
max

1≤i,j≤N

T∑
t=1

|gt,i	j|P
(
G̃t−1,i	j ≥ 0, G̃t,i	j ≤ 0

)
.

The next lemma is useful to determine the appropriate constant in the Littlewood-

Offord Theorem.

Lemma 31. Suppose X1, . . . , Xt are i.i.d. Bernoulli random variables that take value

of 1 with probability α and 0 with probability 1−α. If t > max( 2
1−α ,

2
α

) ≥ max( 2α
1−α ,

2
α

),

then for all k,

P

(
t∑
i=1

Xi = k

)
≤ e

2π
×

√
2

α(1− α)
× t−

1
2 .

Proof. Note that for 0 ≤ k < t,

P (x = k + 1)

P (x = k)
=

(
t

k+1

)
αk+1(1− α)t−k−1(
t
k

)
αk(1− α)t−k

=
α(t− k)

(1− α)(k + 1)
.

40



Therefore, the maximum probability of Bernoulli distribution P (X = k) is achieved

when k = k̂ = b(t + 1)αc where bxc denotes the integral part of x. Clearly k̂ ∈

[tα− 1, (t+ 1)α]. Thus,

√
k̂(t− k̂) ≥ min

(√
(tα− 1)(t− tα + 1),

√
(t+ 1)α(t− tα− α)

)
= t×min

(√
(α− 1

t
)(1− α +

1

t
),

√
(1 +

1

t
)α(1− α− α

t
)
)

≥ t×min
(√

(α− α

2
)(1− α),

√
α(1− α− 1− α

2
)
)

=

√
α(1− α)

2
t.

With this preliminary inequality, we are ready to prove the lemma.

P (
t∑
i=1

Xi = k) ≤ P (
t∑
i=1

Xi = k̂)

=

(
t

k̂

)
× αk̂(1− α)t−k̂

=
t!

(k̂)!(t− k̂)!
× αk̂(1− α)t−k̂

≤ tt+
1
2 e1−t(√

2πk̂k̂+ 1
2 e−k̂

)(√
2π(t− k̂)

t−k̂+ 1
2 e−(t−k̂)

) × αk̂(1− α)t−k̂

=
e

2π
× 1√

k̂(t− k̂)
× tt+

1
2

k̂k̂(t− k̂)t−k̂
× αk̂(1− α)t−k̂

≤ e

2π
×

√
2

α(1− α)
× tt−

1
2 × αk̂(1− α)t−k̂

k̂k̂(t− k̂)t−k̂
.

Let f(x) = αx(1−α)t−x

xx(t−x)t−x
, f ′(x) =

(
log( α

1−α) − log( x
t−x)

)
× f(x). Obviously f ′(x) is 0

when x = αt, positive when x < αt, and negative when x > αt. Thus,

f(x) ≤ ααt(1− α)t−αt

(αt)αt(t− αt)t−αt
= t−t.
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Hence,

P (
t∑
i=1

Xi = a) ≤ e

2π
×

√
2

α(1− α)
× tt−

1
2 × f(k̂)

≤ e

2π
×

√
2

α(1− α)
× t−

1
2 .

Proof of Corollary 4. Note that when α = 1
2
, Lemma 31 provides a bound on S(n)

2n
.

Plug in α = 1
2

to Lemma 31 and combine with Theorem 3, we know that if n > 4,

CLO =
√

2e
π

will suffice. If n ≤ 4, 2
√

2e
π
× n− 1

2 > 1 and Lemma 31 still holds.

Proof of Theorem 5. We write |A| to denote the cardinality of a finite set A.

∑
t∈A0

|gt,i	j|P (
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j)

≤
∑
t∈A0

1√
T
× 1 =

|A0|√
T
≤
√
|A0|.

Proof of Theorem 6. We write ε with a subset of [T ] as subscript to denote εt’s at

times that are within the subset. For example, ε[T ] = {ε1, . . . , εT}. We also write ε−A

to denote the set of εt’s that are within the complement of A with respect to [T ].

Case I: k ∈ {1, . . . , K − 1}

∑
t∈Ak

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,

t∑
τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

=
∑
t∈Ak

|gt,i	j|Eε[T ]
[1(

∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

]

=
∑
t∈Ak

|gt,i	j|Eε−Ak
[
EεAk [1(

∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

|ε−Ak ]
]

=Eε−Ak

[∑
t∈Ak

|gt,i	j|EεAk [1(
∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

|ε−Ak ]

]

≤ sup
ε−Ak

∑
t∈Ak

|gt,i	j|EεAk [1(
∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

|ε−Ak ].
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Let Ak = {tk,1, . . . , tk,|Ak|} with elements listed in increasing order of time index.

Also, define

Dn = Dn(ε−Ak) = −
tk,n−1∑

τ=1,τ∈−Ak

(1 + ετ )gτ,i	j.

Then, we have

∑
t∈Ak

|gt,i	j|EεAk [1(
∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

|ε−Ak ]

=

|Ak|∑
n=1

|gtk,n,i	j|EεAk [1(
∑n−1
s=1 εtk,sgtk,s,i	j≥−

∑n−1
s=1 gtk,s,i	j+Dn,

∑n
s=1 εtk,sgs,i	j≤−

∑n
s=1 gtk,s,i	j+Dn)|ε−Ak ]

=

|Ak|∑
n=1

|gtk,n,i	j|P

(
n−1∑
s=1

εtk,sgtk,s,i	j ≥ −
n−1∑
s=1

gtk,s,i	j +Dn,

n∑
s=1

εtk,sgtk,s,i	j ≤ −
n∑
s=1

gtk,s,i	j +Dn

∣∣∣∣∣∣ε−Ak
 .

By definition of the set Ak, we have |gtk,s,i	j| ≥ T−
1

2k , so T
1

2k |gtk,s,i	j| ≥ 1. Let

Mk = T
1

2k . Then, we have

|Ak|∑
n=1

|gtk,n,i	j|P

(
n−1∑
s=1

εtk,sgtk,s,i	j ≥ −
n−1∑
s=1

gtk,s,i	j +Dn,

n∑
s=1

εtk,sgtk,s,i	j ≤ −
n∑
s=1

gtk,s,i	j +Dn

∣∣∣∣∣∣ε−Ak


=

|Ak|∑
n=1

|gtk,n,i	j|P

(
n−1∑
s=1

εtk,sgtk,s,i	jMk ≥ −
n−1∑
s=1

gtk,s,i	jMk +DnMk ,

n∑
s=1

εtk,sgtk,s,i	jMk ≤ −
n∑
s=1

gtk,s,i	jMk +DnMk

∣∣∣∣∣∣ε−Ak


≤
|Ak|∑
n=1

|gtk,n,i	j|P

(
n∑
s=1

εtk,sgtk,s,i	jMk ∈ Bk,n

∣∣∣∣∣ε−Ak
)

where

Bk,n =

[
−

n∑
s=1

gtk,s,i	jMk +DnMk − 2|gtk,n,i	j|Mk,−
n∑
s=1

gtk,s,i	jMk +DnMk

]
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is a one-dimensional closed ball with radius ∆ = |gtk,n,i	j|Mk. Note that this ball is

fixed given ε−Ak . Since |gtk,s,i	j|Mk ≥ 1, we can apply Corollary 4 to get

P

(
n∑
s=1

εtk,sgtk,s,i	jMk ∈ Bk,n

∣∣∣∣∣ε−Ak
)
≤ CLO(∆ + 1)√

n
=
CLO(|gtk,n,i	j|Mk + 1)

√
n

.

Now we continue the derivation,

|Ak|∑
n=1

|gtk,n,i	j|P

(
n∑
s=1

εtk,sgtk,s,i	jMk ∈ Bk,n

∣∣∣∣∣ε−Ak
)

≤
|Ak|∑
n=1

|gtk,n,i	j|
CLO(|gtk,n,i	j|Mk + 1)

√
n

≤CLO

 |Ak|∑
n=1

|gtk,n,i	j|2Mk√
n

+

|Ak|∑
n=1

2√
n

 .

Since we have |gtk,n,i	j| < T−
1

2k+1 , |gtk,n,i	j|2T
1

2k = |gtk,n,i	j|2Mk < 1. Thus we have

the bound,

CLO

 |Ak|∑
n=1

|gtk,n,i	j|2Mk√
n

+

|Ak|∑
n=1

2√
n

 ≤ 3CLO

|Ak|∑
n=1

1√
n
≤ 6CLO

√
|Ak|.

Case II: k = K. Similar to the previous case, we have

∑
t∈AK

|gt,i	j|P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

≤ sup
ε−AK

∑
t∈AK

|gt,i	j|EεAk [1(
∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

|ε−AK ]

and writing the elements of AK in increasing order as {tK,1, . . . , tK,|AK |}, we get

∑
t∈AK

|gt,i	j|EεAK [1(
∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j)

|ε−AK ]

≤
|AK |∑
n=1

|gtK,n,i	j|P

(
n∑
s=1

εtK,sgtK,s,i	jMK ∈ BK,n

)

where

Dn = Dn(ε−AK ) = −
tK,n−1∑

τ=1,τ∈{−AK}

(1 + ετ )gτ,i	j,
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MK = T
1

2K ≤ 2, and

BK,n =

[
−

n∑
s=1

gtK,s,i	jMK +DnMK − 2|gtK,n,i	j|MK ,−
n∑
s=1

gtK,s,i	jMK +DnMK

]

is a one-dimensional closed ball with radius ∆ = |gtK,n,i	j|MK . Note that this ball

is fixed given ε−AK and hence, we can apply Corollary 4 to get

|AK |∑
n=1

|gtK,n,i	j|P

(
n∑
s=1

εtK,sgtK,s,i	jMK ∈ BK,n

)

≤
|AK |∑
n=1

|gtK,n,i	j|
CLO(|gtK,n,i	j|MK + 1)

√
n

≤CLO(4MK + 2)

|AK |∑
n=1

1√
n
≤ 20CLO

√
|AK |.

Combining the two cases proves the theorem.

Proof of Theorem 9. Consider a game with two strategies, i.e., N = 2. We refer

to player i as the “player” and the other players collectively as the “environment”.

On odd rounds, the environment plays payoff vector (0, 0). This ensures that after

odd rounds, the environment will know exactly which strategy the player will choose

as long as there is no tie in the player’s sampled cumulative payoffs, because no

matter whether the Rademacher random variable is −1 or +1, the next strategy

played will be the same as the strategy the player just played. On even rounds t, the

environment plays the payoff vector (0, 1− 0.1t) if the player chose the first strategy

in the previous round, and (1− 0.1t, 0) if the player chose the second strategy in the

previous round. Under this scenario, we make a critical observation that, as long as

it is not empty, there cannot be a tie in the cumulative payoffs of the two strategies.

Moreover, without a tie, the player will not be able to switch strategy on even rounds

so will not accumulate any payoff. Therefore, the total payoff acquired by the player

by following sampled fictitious play procedure will be at most 2 + T
8

since after the
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second round the probbility of a tie is at most 1
8
. because the player gains 0 on all

rounds. However, as evident from the environment’s procedure, the total payoff for

two strategies is at least 0.45T and thus the best strategy has a payoff no less than

0.225T because of the pigeonhole principle. Hence, the expected regret for the player

is at least 0.225T − T
8
− 2, which is linear in T .

1.2 Counterexample of Polynomial Dependence on N

In this section we present a counterexample which shows that the sampled ficti-

tious play algorithm (2.1) with Bernoulli sampling (2.2) has expected regret of Ω(N)

when T is 2N and N → ∞. This roughly corresponds to a lower bound of the

expected regret of order Ω(
√
NT ). The idea of this counterexample is from [?] and

private communication with Manfred Warmuth and Gergely Neu.

Theorem 32 (?). The sampled fictitious play algorithm has expected regret of Ω(N)

when T is 2N and N →∞.

Proof. Consider the payoff matrix of

0 −1 −1 −1 . . .

−1 0 0 −1 . . .

−1 0 −1 0 . . .

−1 0 −1 0 . . .

...
...

...
...

...

−1 0 −1 0 . . .


.

Each row represents a strategy and each column represents payoffs of the strategies

in a particular round. For m ∈ {1, . . . , N}, in the 2m − 1th round, the adversary

assigns a payoff of −1 to all strategy except strategy m. In the 2mth round, the

adversary assigns a payoff of −1 to strategy m and a payoff of 0 to the others. In all
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rounds after 2m, strategy m will always be given a payoff of −1. Therefore, we will

have N strategies and 2N rounds in total, with the best constant strategy being the

last strategy which accumulates payoff of −N .

To analyze the expected regret, we note that as long as round 2m − 1 is not

ignored, which happends with probability 1
2
, the algorithm will always choose from

strategy 1 to strategy m for round 2m, all of which acquire a gain of −1 and so the

algorithm will acquire an expected payoff of at most −1
2

on even rounds. On round

2m−1, we observe that the leader set from the previous round will consist of at least

all strategies from m to N , and possibly more strategies in the set {1,. . . ,m-1}. Since

all strategies except strategy m acquire a gain of −1 on round 2m− 1, we conclude

that the algorithm will acquire an expected gain of at most − N−m
N−m+1

on odd rounds.

Hence, the expected regret of Sampled Fictitious Play algorithm under this scenario

with N strategies and 2N rounds is

RT = −N −
(
−

N∑
m=1

(
N −m

N −m+ 1
)− N

2

)
≈ N

2
− log(N) = Ω(N).

1.3 Asymmetric Probabilities

In this section we prove that for binary payoff and arbitrary probability α ∈ (0, 1)

insead of just 1/2, the expected regret is O(
√
T ) where the constant hidden in O(·)

notation blows up in either of the two extreme case: α → 0 and α → 1. Note that

we are still considering the single stream version (2.3) of the learning procedure.

Theorem 33. For α ∈ (0, 1) and gt ∈ {−1, 0, 1}N , assuming that T > max( 2
1−α ,

2
α

),

the expected regret satisfies

E [RT ] ≤ 40N2Qα

α

√
T
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where Qα = e
2π
×
√

2
α(1−α)

.

Proof. We begin with the inequality obtained in the proof of Theorem 2:

(1.1) E [RT ] ≤ N2

α
max

1≤i,j≤N

T∑
t=1

|gt,i	j|P
(
G̃t−1,i	j ≥ 0, G̃t,i	j ≤ 0

)
.

As before, we fix i and j, and will bound the expression

T∑
t=1

|gt,i	j|P (
t−1∑
τ=1

(1 + ετ )gτ,i	j ≥ 0,
t∑

τ=1

(1 + ετ )gτ,i	j ≤ 0).

The rest of the proof is similar to the proof of Theorem 6. Define the classes Ak =

{t : gt,i	j = k, t = 1, . . . , T} for k ∈ {−2,−1, 1, 2}. We have,

T∑
t=1

|gt,i	j|P

(
t−1∑
τ=1

(1 + ετ )gτ,i	j ≥ 0,
t∑

τ=1

(1 + ετ )gτ,i	j ≤ 0

)

≤2
T∑
t=1

P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

=2
∑

k∈{−2,−1,1,2}

∑
t∈Ak

P

(
t−1∑
τ=1

ετgτ,i	j ≤ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

εsgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)
.

For any k ∈ {−2,−1, 1, 2},

∑
t∈Ak

P

(
t−1∑
τ=1

ετgτ,i	j ≥ −
t−1∑
τ=1

gτ,i	j,
t∑

τ=1

ετgτ,i	j ≤ −
t∑

τ=1

gτ,i	j

)

≤ sup
ε−Ak

∑
t∈Ak

EεAk [1∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j

|ε−Ak ].

Let Ak = {tk,1, . . . , tk,|Ak|} with elements listed in increasing order of time index.

Also define, for n ∈ {1, . . . , |Ak|},

Dn = Dn(ε−Ak) = −
tk,n−1∑

τ=1,τ∈{−Ak}

ετgτ,i	j −
tk,n−1∑

τ=1,τ∈{−Ak}

gτ,i	j.
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We then proceed as follows.

∑
t∈Ak

EεAk [1∑t−1
τ=1 ετgτ,i	j≥−

∑t−1
τ=1 gτ,i	j ,

∑t
τ=1 ετgτ,i	j≤−

∑t
τ=1 gτ,i	j

|ε−Ak ]

=

|Ak|∑
n=1

EεAk [1(
∑n−1
s=1 εtk,sgtk,s,i	j≥−

∑n−1
s=1 gtk,s,i	j+Dn,

∑n
s=1 εtk,sgs,i	j≤−

∑n
s=1 gtk,s,i	j+Dn)|ε−Ak ]

=

|Ak|∑
n=1

P

(
n−1∑
s=1

εtk,sgtk,s,i	j ≥ −
n−1∑
s=1

gtk,s,i	j +Dn,

n∑
s=1

εtk,sgtk,s,i	j ≤ −
n∑
s=1

gtk,s,i	j +Dn

∣∣∣∣∣ε−Ak
)

≤
|Ak|∑
n=1

P

(
4⋃

u=0

(
n∑
s=1

εtk,sgtk,s,i	j = −
n−1∑
s=1

gtk,s,i	j +Dn − u)

∣∣∣∣∣ε−Ak
)

≤
|Ak|∑
n=1

(
4∑

u=0

P

(
n∑
s=1

εtk,sgtk,s,i	j = −
n−1∑
s=1

gtk,s,i	j +Dn − u

∣∣∣∣∣ε−Ak
))

≤5

|Ak|∑
n=1

Qα√
n
≤ 10Qα

√
|Ak|

where Qα = e
2π
×
√

2
α(1−α)

from Lemma 31. Putthing things together, we have

E [RT ] ≤ 20N2Qα

α

∑
k∈{−2,−1,1,2}

√
|Ak| ≤

40N2Qα

α

√
T .
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Appendix B

Proof(s) of Chapter III

2.1 Proofs

Proof of Lemma 11. First, note that the regret, by definition, is

RegretT = Φ(GT )−
T∑
t=1

〈eit , gt〉 .

Under an oblivious adversary, only the summation on the right hand side is random.

Moreover E[〈eit , gt〉 |i1:t−1] = 〈pt, gt〉. This proves the claim in (3.4).

From (3.2), we know that E[〈pt, ĝt〉 |i1:t−1] = 〈pt, gt〉 even if some entries in pt

might be zero. Therefore, we have

(2.1) ERegretT = Φ(GT )− E

[
T∑
t=1

〈pt, ĝt〉

]
.

From (3.3), we know that GT ≤ E[ĜT ]. This implies

(2.2) Φ(GT ) ≤ Φ(E[ĜT ]) ≤ E[Φ(ĜT )],

where the first inequality is because G � G′ ⇒ Φ(G) ≥ Φ(G′), and the second

inequality is due to the convexity of Φ. Plugging (2.2) into (2.1) yields

(2.3) ERegretT ≤ E

[
Φ(ĜT )−

T∑
t=1

〈pt, ĝt〉

]
.
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Now considering the quantity inside the expectation above and recalling the definition

of Bregman divergence

DΦ̃(Ĝt, Ĝt−1) = Φ̃(Ĝt)− Φ̃(Ĝt−1)−
〈
∇Φ̃(Ĝt−1), Ĝt − Ĝt−1

〉
we get,

Φ(ĜT )−
T∑
t=1

〈pt, ĝt〉 = Φ(ĜT )−
T∑
t=1

〈
∇Φ̃(Ĝt−1), ĝt

〉
= Φ(ĜT )−

T∑
t=1

〈
∇Φ̃(Ĝt−1), Ĝt − Ĝt−1

〉
= Φ(ĜT ) +

T∑
t=1

(
DΦ̃(Ĝt, Ĝt−1) + Φ̃(Ĝt−1)− Φ̃(Ĝt)

)
= Φ(ĜT ) + Φ̃(Ĝ0)− Φ̃(ĜT ) +

T∑
t=1

DΦ̃(Ĝt, Ĝt−1).(2.4)

The proof ends by plugging in (2.4) into (2.3) and noting that Φ̃(Ĝ0) = Φ̃(0) is not

random.

Proof of Lemma 12. We have,

Φ(G) + E[Z1] = max
i
Gi + E[Zi] = max

i
(Gi + E[Zi])

≤ E[max
i

(Gi + Zi)] = Φ̃(G)

≤ E[max
i
Gi + max

i
Zi] = max

i
Gi + E[max

i
Zi] = Φ(G) + E[max

i
Zi].

Noting that E[maxi Zi] ≤ EMAX(N) finishes the proof.

Proof of Lemma 13. To reduce clutter, we drop the time subscripts: we use Ĝ to

denote the cumulative estimate Ĝt−1, ĝ to denote the marginal estimate ĝt = Ĝt −

Ĝt−1, p to denote pt, and g to denote the true loss gt. Note that by definition of

Framework 1, ĝ is a sparse vector with one non-zero and non-positive coordinate
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ĝit = git/pit = − |git/pit |. Morever, conditioned on i1:t−1, it takes value i with

probability pi. For any i ∈ supp(p), let

hi(r) = DΦ̃(Ĝ− rei, Ĝ),

so that h′i(r) = −∇iΦ̃
(
Ĝ− rei

)
+∇iΦ̃

(
Ĝ
)

and h′′i (r) = ∇2
iiΦ̃
(
Ĝ− rei

)
. Now we

write:

E[DΦ̃(Ĝ+ ĝ, Ĝ)|i1:t−1] =
∑

i∈supp(p)

piDΦ̃(Ĝ+ gi/piei, Ĝ) =
∑

i∈supp(p)

piDΦ̃(Ĝ− |gi/pi| ei, Ĝ)

=
∑

i∈supp(p)

pihi(|gi/pi|) =
∑

i∈supp(p)

pi

∫ |gi/pi|
0

∫ s

0

h′′i (r)dr ds

=
∑

i∈supp(p)

pi

∫ |gi/pi|
0

∫ s

0

∇2
iiΦ̃
(
Ĝ− rei

)
dr ds

=
∑

i∈supp(p)

pi

∫ |gi/pi|
0

∫ s

0

EĜ−if(Ĝ−i − Ĝi + r)dr ds

=
∑

i∈supp(pt)

pt,i

∫ |gi/pi|
0

EĜ−i

[∫ s

0

f(Ĝ−i − Ĝi + r)dr

]
ds.

Proof of Theorem 14. From Lemma 13, we have, with Ĝ−i = maxj 6=i Ĝt−1,j + ηZj,

E
[
DΦ̃(Ĝt, Ĝt−1)|i1:t−1

]
=

∑
i∈supp(pt)

pt,i

∫ ∣∣∣∣ gt,ipt,i

∣∣∣∣
0

EĜ−i

[∫ s

0

fη(Ĝ−i − Ĝt−1,i + r)dr

]
ds

=
∑

i∈supp(pt)

pt,i

∫ ∣∣∣∣ gt,ipt,i

∣∣∣∣
0

EĜ−i

[∫ Ĝ−i−Ĝt−1,i+s

Ĝ−i−Ĝt−1,i

fη(z)dz

]
ds

=
∑

i∈supp(pt)

pt,i

∫ ∣∣∣∣ gt,ipt,i

∣∣∣∣
0

(
EĜ−i

[∫
[Ĝ−i−Ĝt−1,i,Ĝ−i−Ĝt−1,i+s]\[F−1

η (1−ε),η]

fη(z)dz︸ ︷︷ ︸
(I)

]

+

∫
[F−1
η (1−ε),η]

fη(z)dz︸ ︷︷ ︸
(II)

)
ds.(2.5)
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We bound the two integrals above differently. For the first integral, we add the

restriction fη(z) > 0 by intersecting the integral interval with the support of the

function fη(z), denoted as Ifη(z) so that 1 − Fη(z) is not 0 on the interval to be

integrated. Thus, we get,

(I) =

∫
([Ĝ−i−Ĝt−1,i,Ĝ−i−Ĝt−1,i+s]\[F−1

η (1−ε),η])∩Ifη(z)
fη(z)dz

=

∫
([Ĝ−i−Ĝt−1,i,Ĝ−i−Ĝt−1,i+s]\[F−1

η (1−ε),η])∩Ifη(z)
(1− Fη(z)) · fη(z)

1− Fη(z)
dz

≤
∫

([Ĝ−i−Ĝt−1,i,Ĝ−i−Ĝt−1,i+s]\[F−1
η (1−ε),η])∩Ifη(z)

(1− Fη(z)) · L
ηε

≤ (1− Fη(Ĝ−i − Ĝt−1,i))
sL

ηε
.(2.6)

The first inequality holds because fη(z) ≤ L/η and (1− Fη(z)) ≥ ε on the set of z’s

over which we are integrating. The second inequality holds because on the set under

consideration 1−Fη(z) ≤ 1−Fη(Ĝ−i− Ĝt−1,i) and the measure of the set is at most

s.

For the second integral, we use the bound fη(z) ≤ L/η again to get,

(2.7) (II) =

∫
[F−1
η (1−ε),η]

fη(z)dz ≤ L

η
· (η − F−1

η (1− ε)).

Plugging in (2.6) and (2.7) into (2.5), we can bound the divergence penalty by,

≤
∑

i∈supp(pt)

pt,i

∫ ∣∣∣∣ gt,ipt,i

∣∣∣∣
0

(
EĜ−i [1− Fη(Ĝ−i − Ĝt−1,i)]

sL

ηε
+
L(η − F−1

η (1− ε))
η

)
ds

=
∑

i∈supp(pt)

pt,i

∫ ∣∣∣∣ gt,ipt,i

∣∣∣∣
0

(
pt,i

sL

ηε
+ L(1− F−1(1− ε))

)
ds

=
∑

i∈supp(pt)

pt,i

(
pt,i

L

ηε

g2
t,i

2p2
t,i

+ L(1− F−1(1− ε)) |gt,i|
pt,i

)
≤

∑
i∈supp(pt)

( L

2ηε
+ L(1− F−1(1− ε))

)
≤ NL

( 1

2ηε
+ 1− F−1(1− ε)

)
.
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The second to last inequality holds because |gt,i| ≤ 1 and the last inequality holds

because the sum over i is at most over all N arms.

Proof of Corollary 15. For [0, 1] uniform distribution, we have L = 1, F−1(1 − ε) =

1− ε so the divergence penalty is upper bounded by

NT (
1

2ηε
+ ε).

If we let ε = 1√
2η

, we can see that the divergence penalty is upper bounded by

NT
√

2
η
. Together with the overestimation penalty which is trivially bounded by η

and a non-positive underestimation penalty, we see that the final regret bound is

NT

√
2

η
+ η.

Setting η = (NT )2/3 gives the desired result.

Proof of Corollary 16. For a general distribution, let ε = 1√
η
. Since the overesti-

mation penalty is trivially bounded by η and the underestimation penalty is non-

positive, the expected regret can be upper bounded by

LNT
( 1

2
√
η

+ 1− F−1(1− 1
√
η

)
)

+ η.

Setting η = (NT )2/3 we see that the expected regret can be upper bounded by

(
L

2
+ 1)(NT )2/3 + LNT (1− F−1(1− 1

√
η

).

Since

lim
T→∞

1− F−1(1− 1
√
η

) = lim
η→∞

1− F−1(1− 1
√
η

) = 1− F−1(1) = 0,

we conclude that

lim
T→∞

ERegretT
T

= 0.
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Proof of Theorem 17. Because of the unbounded support of Z, supp(pt) = {1, . . . , N}.

Lemma 13 gives us:

E[DΦ̃(Ĝt, Ĝt−1)|i1:t−1] =
N∑
i=1

pt,i

∫ |gt,i/pt,i|
0

EG̃−i

∫ s

0

f(G̃−i − Ĝt−1,i + r)drds

=
N∑
i=1

pt,i

∫ |gt,i/pt,i|
0

EG̃−i

∫ G̃−i−Ĝt−1,i+s

G̃−i−Ĝt−1,i

f(z)dzds

≤ C
N∑
i=1

pt,i

∫ |gt,i/pt,i|
0

EG̃−i

∫ G̃−i−Ĝt−1,i+s

G̃−i−Ĝt−1,i

(1− F (z))1−α|z|−αdz ds

≤ C
N∑
i=1

pt,i

∫ |gt,i/pt,i|
0

EG̃−i(1− F (G̃−i − Ĝt−1,i))
1−α
∫ G̃−i−Ĝt−1,i+s

G̃−i−Ĝt−1,i

|z|−αdz ds.

Since the function f(z) = |z|−α is symmetric, monotonically decreasing as |z| → ∞,

we have ∫ G̃−i−Ĝt−1,i+s

G̃−i−Ĝt−1,i

|z|−αdz ≤
∫ s/2

−s/2
|z|−αdz =

2α

1− α
s1−α.

Also, note that z1−α is concave. Hence, by Jensen’s inequality,

EG̃−i [(1− F (G̃−i − Ĝt−1,i))
1−α] ≤ (EG̃−i [1− F (G̃−i − Ĝt−1,i])

1−α = p1−α
t,i .

Hence,

E[DΦ̃(Ĝt, Ĝt−1)|i1:t−1] ≤ 2αC

1− α

N∑
i=1

pt,i

∫ |gt,i/pt,i|
0

p1−α
t,i s1−αds

=
2αC

1− α

N∑
i=1

p2−α
t,i

∫ |gt,i/pt,i|
0

s1−αds

=
2αC

(1− α)(2− α)

N∑
i=1

p2−α
t,i |gt,i/pt,i|

2−α

=
2αC

(1− α)(2− α)

N∑
i=1

|gt,i|2−α

≤ 2αC

(1− α)(2− α)
N ≤ 2C

1− α
N.
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Proof of Theorem 18. The divergence penalty can be controlled through Theorem 17

once we have bounded generalized hazard rate. It remains to control the overestima-

tion and underestimation penalty. By Lemma 12, they are at most EZ1,...,Zn [max
i
Zi]

and −E[Z1] respectively. Suppose we scale the perturbation Z by η > 0, i.e., we add

ηZi to each coordinate. It is easy to see that E[maxi=1,...,n ηZi] = ηE[maxi=1,...,n Zi]

and E[ηZ1] = ηE[Z1]. For the divergence penalty, observe that Fη(t) = F (t/η) and

thus fη(t) = 1
η
f(t/η). Hence, the constant in the assumption needs to scale by ηα−1.

Plugging new bounds for the scaled perturbations into Lemma 11 gives us

ERegretT ≤ ηα−1 2C

1− α
×NT + ηQ(N).

Setting η = ( 2CNT
(1−α)Q(N)

)1/(2−α) finishes the proof.

Proof of Lemma 20. Since the numerator of the left hand side is an even function of

z, and the denominator is a decreasing function, and the inequality is trivially true

when z = 0, it suffices to prove for z > 0, which we assume for the rest of the proof.

From Lemma 19 we can derive that

f(z)

1− F (z)
< z + 1.

Therefore,

f(z)|z|α

(1− F (z))1−α ≤
f(z)zα

(f(z)
z+1

)1−α
= (f(z)z)α(z + 1)1−α

≤ f(z)α(z + 1) ≤ zf(z)α + 1 =

√
1

2π
ze−αz

2/2 + 1.

Let g(z) = ze−αz
2/2, g′(z) = (1 − αz2)e−αz

2/2. Therefore g(z) is maximized at

z∗ =
√

1
α

. Therefore,

f(z)|z|α

(1− F (z))1−α ≤
√

1

2π
ze−αz

2/2 + 1 ≤
√

1

2π
z∗ + 1 ≤ z∗ + 1 =

√
1

α
+ 1 ≤ 2

α
.
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Proof of Corollary 21. It is known that for standard Gaussian random variable, we

have E[Z1] = 0 and

EZ1,...,Zn [max
i
Zi] ≤

√
2 logN.

Plug in to Theorem 18 gives the result.

Proof of Theorem 22. From Corollary 21 we see that the expected regret can be

upper bounded by

2(C1C2NT )1/(2−α)(
√

2 logN)(1−α)/(2−α)

where C1 = 2
α

and C1 = 2
1−α . Note that

2(C1C2NT )1/(2−α)(
√

2 logN)(1−α)/(2−α)

≤4(C1C2)1/(2−α)N1/(2−α)
√

logN
(1−α)/(2−α)

T 1/(2−α)

=4N1/(2−α)
√

logN
(1−α)/(2−α)

T 1/2 × (C1C2)1/(2−α)Tα/(4−2α)

≤4N1/2Nα/(4−2α)
√

logNT 1/2 × (
4

α(1− α)
)1/(2−α)Tα/(4−2α)

≤4N1/2Nα
√

logNT 1/2 × 4Tα

α(1− α)

≤16
√
NTNα

√
logN × Tα

α(1− α)
.

If we let α = 1
log T

, then Tα = T 1/ log T = e < 3. Then, we have, for T > 4,

Tα

α(1− α)
≤ 3 log T

1− 1
log T

=
3 log2 T

log T − 1
≤ 6 log T.

Putting things together finishes the proof.

Proof of Lemma 24. Let g(z) = F (z)eλz, then g′(z) = eλzF (z)(λ − f(z)

F (z)
). Since

f(z)

F (z)
is eventually monotone by assumption (d), g′(z) is eventually positive, negative

or zero. The lemma immediately follows.
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Proof of Theorem 25. If the distribution is heavy-tailed, we have

lim
z→∞

supF (z)eλz =∞ for all λ > 0.

By Lemma 24, we can erase the supremum operator and just write

lim
z→∞

F (z)eλz =∞ for all λ > 0.

Hence,

lim
z→∞

F (z)eλz = lim
x→∞

e−R(z)+λz =∞ for all λ > 0⇒ lim sup
z→∞

R(z)

z
= 0.

Note that R′(z) = f(z)

F (z)
, which is eventually monotone by assumption. Therefore, we

can conclude that

lim sup
z→∞

R′(z) <∞⇒ sup
z

f(z)

F (z)
<∞.

Proof of Theorem 26. If the distribution is light-tailed, we have

(2.8) lim
z→∞

F (z)eλ
∗z <∞ for some λ∗ > 0.

This immediately implies that

(2.9) lim
z→+∞

F (z)azb = 0 ∀a, b > 0.

Consider limz→∞
f(z)

F (z)
= limz→∞R

′(z). If limz→∞R
′(z) <∞ we can immediately

conclude that supz
f(z)

1−F (z)
<∞. If limz→∞R

′(z) =∞ instead, note that

lim
z→∞

∫ z

−z
R′(t)e−δR(t)dt = −1

δ
e−δR(z)|z=+∞

z=−∞ =
1

δ
<∞.

Moreover, since limz→∞R
′(z) =∞, R′(z)e−δR(z) is strictly positive for all z > z0 for

some z0. Furthermore, R′(z)e−δR(z) = f(z)

(F (z))1−δ
is eventually monotone by assumption

(e),
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Therefore, we can conclude that

lim
z→∞

R′(z)e−δR(z) =
f(z)

(F (z))1−δ
= 0.

∀α ∈ (δ, 1), from Equation (2.9) we have limz→+∞ z
αF (z)α−δ = 0, so

lim
z→+∞

f(z)zα

(F (z))1−α
= lim

z→+∞

f(z)

F (z)1−δ
× zαF (z)α−δ = 0.

and hence

sup
z

f(z)zα

(1− F (z))1−α <∞ ∀α ∈ (δ, 1).

Proof of Corollary 27. For a light-tailed distribution D, we have

lim
z→∞

FD(z)eλ
∗z <∞ for some λ∗ > 0.

This implies that

FD(z) ≤ Ce−λ
∗z for some C > 0, z > z0.

Let random variable Z follows distribution D. Since Z might take negative values,

we define a new distribution D′ that only takes non-negative value by

fD′(z) =


1

pD+
fD(z) if z ≥ 0

0 otherwise

.

where pD+ = P(Z ≥ 0) > 0 by right unbounded support assumption. Clearly, with

this definition of D′ we see that EZ1,...,ZN∼D[max
i
Zi] ≤ EZ1,...,ZN∼D′ [max

i
Zi] and for
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z > z0, we have FD′(z) = FD(z)
pD+

≤ C ′e−λ
∗z where C ′ = C

pD+
. Note that

EZ1,...,ZN∼D[max
i
Zi] ≤ EZ1,...,ZN∼D′ [max

i
Zi]

=

∫ ∞
0

P(max
i
Zi > x)dx

≤ u+

∫ ∞
u

P(max
i
Zi > z)dz

≤ u+N

∫ ∞
u

P(Zi > z)dz

≤ u+N

∫ ∞
u

C ′e−λ
∗zdz assuming u > z0

= u+
C ′N

λ∗
e−λ

∗u.

If we let u = log(N)
λ∗

, obviously u > z0 if N is sufficiently large. Thus, we see that

(2.10) EZ1,...,ZN∼D[max
i
Zi] ≤

log(N)

λ∗
+ C ′ = O(N ξ) ∀ξ > 0.

From Theorem 26 we see that ∀α ∈ (δ, 1),

(2.11)
f(z)zα

(1− F (z))1−α ≤ Cα ∀z ∈ R.

Plug 2.10 and 2.11 into Theorem 18 gives the desired result.

Proof of Corollary 29. By Corollary 27 we only need to check that assumptions (a)-

(d) hold for distribution Dβ, exponential power family is light-tailed, and assumption

(e) also holds for any δ ∈ (0, 1). By observing the density function fβ we can

trivially see that assumptions (a)-(c) hold and that the subbotin family is light-

tailed. Therefore, define

gδ,β(z) =
fβ(z)

(F β(z))1−δ
=

fβ(z)

(1− Fβ(z))1−δ ,

it suffices to show that ∀δ ∈ [0, 1), gδ,β(z) is eventually monotone. Note that

g′δ,β(z) =
f ′β(z)(1− Fβ(z))1−δ + (1− δ)(1− Fβ(z))−δf 2

β(z)

(1− Fβ(z))2−2δ

=
C2
βe
−zβ

(1− Fβ(z))2−δ ×
(

(1− δ)e−zβ − βzβ−1

∫ ∞
z

e−t
β

dt
)
.
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It further suffices to show that

mδ,β(z) = (1− δ)e−zβ − βzβ−1

∫ ∞
z

e−t
β

dt

is eventually non-negative or non-positive ∀β > 1, δ ∈ [0, 1). Note that since β > 1,

(2.12) βzβ−1

∫ ∞
z

e−t
β

dt =

∫ ∞
z

βzβ−1e−t
β

dt <

∫ ∞
z

βtβ−1e−t
β

dt = e−z
β

.

Therefore, m0,β(z) > 0 for all z ≥ 0, i.e, the hazard rate is always increasing and

assumption (d) is satisfied. Now, we are left to show that mδ,β(z) is eventually

non-negative or non-positive for any δ ∈ (0, 1). Note that

βzβ−1

∫ ∞
z

e−t
β

dt = β(
z

z + 1
)β−1(z + 1)β−1

∫ ∞
z

e−t
β

dt

≥ β(
z

z + 1
)β−1(z + 1)β−1

∫ z+1

z

e−t
β

dt

≥ (
z

z + 1
)β−1

∫ z+1

z

βtβ−1e−t
β

dt

= (
z

z + 1
)β−1

(
e−z

β − e−(z+1)β
)
.

Therefore,

lim inf
z→∞

βzβ−1
∫∞
z
e−t

β
dt

e−zβ
≥ lim inf

z→∞

( z
z+1

)β−1
(
e−z

β − e−(z+1)β
)

e−zβ

= lim
z→∞

(
z

z + 1
)β−1 − lim

z→∞
(

z

z + 1
)β−1ez

β−(z+1)β

= 1.

From Equation (2.12) we know that

lim sup
z→∞

βzβ−1
∫∞
z
e−t

β
dt

e−zβ
≤ 1.

Hence, we conclude that

lim
z→∞

βzβ−1
∫∞
z
e−t

β
dt

e−zβ
= 1,

which implies that mδ,β(z) is eventually non-positive for any δ ∈ (0, 1), i.e, assump-

tion (e) holds for any δ ∈ (0, 1).
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