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ABSTRACT

Kernel methods and neural networks are two important schemes in the supervised

learning field. The theory of kernel methods is well understood, but their perfor-

mance in practice, particularly on large-size datasets, is not as good as neural net-

works. In contrast, neural networks are the most popular method in today’s machine

learning with a lot of fascinating applications, but even basic theoretical properties

about neural networks, such as the universal consistency or sample complexity, have

not been understood. Random features methods approximate kernel methods and

resolve the scalability issues. Meanwhile, they have a deep connection with neural

networks. Some empirical studies demonstrate the competitive performance of ran-

dom features methods, but the theoretical guarantees on the performance are not

available.

This thesis presents theoretical results on two aspects of random features method:

the generalization performance and the approximation properties. We first study

the generalization error of random features support vector machines using tools from

the statistical learning theory. Then we establish the fast learning rate of random

Fourier features corresponding to the Gaussian kernel, with the number of features

far less than the sample size. This justifies the computational advantage of random

features over kernel methods from the theoretical aspect. As an effort in exploring the

possibility of designing random features, we then study the universality of random

features and show that the random ReLU features method can be used in supervised

vi



learning tasks as a universally consistent method. The depth separation result and

the multi-layer approximation result point out the limitation of random features

methods and shed light on the advantage of deep architectures.
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CHAPTER I

Introduction

1.1 Motivation and Background

Supervised learning is one of the main fields of machine learning. It dates back

to the pre-computer era as known as regression. The main goal of a supervised

learning algorithm is to infer the target function using finitely many labeled data.

As enormous data and computation power are available today, people have a stronger

demand for supervised learning algorithms that can handle,

1. huge size of data,

2. high dimensional data,

3. and highly non-linear target functions without much prior knowledge.

For example, assigning correct labels to images from ImageNet is nowadays an im-

portant benchmark test for supervised learning algorithms. This dataset contains

more than 14 million labeled images. Each image has more than 256 by 256 pixels.

And there are no good theories on manually designing the map between images and

their labels.

In general, to find the solution, a supervised learning algorithm first selects a

family of functions parametrized in some way, and then adjusts the parameters of

the model using empirical risk minimization. To understand the performance of a

1
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supervised learning algorithm, we must answer the following questions:

1. What is the family of functions that can be learned by the algorithm?

2. How do the dimension and size of the training set affect the performance of the

solution?

3. And how do the dimension and size of the dataset affect the computational cost

of training and testing?

Vapnik developed a complete framework for studying these questions, and pro-

posed a class of powerful supervised learning algorithms, kernel support vector

machines[37]. Before the revival of neural networks, kernel support vector machines

were popular for their impressive performance in practice and well-understood the-

ory. Nowadays they are still competitive on tasks for which the training sets have size

ranging from thousands to 10 thousands. A main drawback of kernel support vector

machines, however, is their scalability. When a kernel support vector machine is

trained on a dataset with m samples, it requires m2 iterations to compute the Gram

matrix by evaluating the kernel function over every pair of samples. In practice,

to avoid occupying m2 storage, each entry of the Gram matrix will be re-evaluated

when queried and this costs Ω(m2) operation time. Since the solution of a kernel

support vector machine has the form of
∑m

i=1 cik(xi, ·), it requires m iterations to

process a new data point in the inference stage. This is not acceptable for most

modern machine learning applications, where models are trained on huge training

sets like ImageNet and have to process vast data once deployed. In contrast, for

a neural network with a fixed architecture, the number of iterations scales linearly

with respect to the sample size during training, and the time cost to process a new

data point in the inference stage is only relevant to the size of the neural network

but irrelevant to the training sample size.
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Though kernel support vector machines have above drawbacks in practice, they

are still appealing from a theoretical point of view. The optimization problem to be

solved in the training process of kernel support vector machines is a convex problem,

and thus the global optimal solutions are guaranteed to be found by the algorithm,

while it is still unclear whether the solution is close to the global optimum in the

case of neural networks, since the training process involves solving a non-convex

optimization problem. As people seek a method that possesses the benefits from

both sides, random features methods catch people’s attention.

Generally speaking, using random features in a supervised learning task includes

following steps: first selecting a set of non-linear functions {φωi}Ni=1, which are de-

fined on the domain of data, from a family of functions {φω}ω∈Ω according to a

certain probability distribution over Ω, then mapping each data point x to a vector

φN(x) := [φωi(x)]Ni=1, and finally running a linear regression or classification algo-

rithm on top of new feature vectors and labels, {φN(xi), yi}mi=1. This idea dates back

to decades ago when people searched for a better way to obtain a neural network

model than the backpropagation method. When the non-linear functions {φωi}Ni=1

are selected randomly and then fixed in the training phase, the process of adjusting

the coefficients on top of the random nodes is a convex optimization problem and

thus more tools are available to solve it (see [18], [16] and references therein). Rahimi

and Recht showed in their seminal work that certain types of random features can

also be treated as approximations to kernel methods [29]. Since then, more and

more researchers have viewed random features method as a way to accelerate kernel

methods. Some experiments on large-size datasets confirm that the random features

method in supervised learning tasks can achieve comparable performance to deep

neural nets [17, 9].
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To understand the performance of the random features method in supervised

learning tasks, we need to answer the three questions brought up at the beginning

of this section. In other words, we need to study the generalization, approxima-

tion and optimization properties of algorithms using random features. The training

phase of the classification or regression algorithms based on random features is not

different from linear support vector machines or ridge regressions, and some powerful

optimization methods like stochastic dual coordinate descent have been intensively

studied. We direct readers interesting in this topic to the relevant references [32, 14].

This dissertation will focus on the generalization and approximation aspects of ran-

dom features method. In particular, we study the generalization performance of

random features methods on classification tasks and prove that the fast learning

rate is achievable with the number of features being far less than the number of

samples. This result together with previous works on the performance of random

features methods on regression tasks justifies the computational advantage of random

features over kernel methods. We then explore the possibility of choosing different

feature maps other than the well-known random Fourier features. We prove several

sufficient conditions for the universality of hypothesis classes of random features with

neural network type feature maps. We also show how the functions in the reproduc-

ing kernel Hilbert space induced by the random ReLU features can be approximated

by ReLU networks with bounded weights. As part of comparison with the deep

networks, we study the depth separation and multi-layer networks approximation

results for the composition of functions in the reproducing kernel Hilbert space.

The organization of the dissertation will be as follows: in the rest of the first

chapter, we will review related references on the generalization and approximation

properties of random features methods; in Chapter II, we will present our main
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theoretical and experimental results on the generalization performance of random

features method on classification tasks; in Chapter III, we will discuss the universality

and related quantitative approximation results of random features; we will close this

dissertation with the discussion on future works in Chapter IV.

1.2 Generalization Performance of Random Features Methods

For the rest of the dissertation, we will always use N for the number of random

features andm for the number of samples. In our theoretical work, we always consider

support vector machines on top of random features in binary classification tasks and

ridge regression in regression tasks unless stated otherwise. We will call the former

one random features support vector machine (RFSVM) and the latter one random

features kernel ridge regression (RFKRR). The abbreviation RFKRR comes from

[30], which we will discuss in this section.

Despite competitive practical performance shown in experiments, there is a lack

of theoretical guarantees for the learning rate of supervised learning algorithms based

on random features. In the paper proposing random features methods, Rahimi and

Recht only gave the approximation gap of order O(1/
√
N) between the Gram matri-

ces generated by N random features and the corresponding kernels. In a follow-up

paper [29], they obtained a risk gap of order O(1/
√
N) between the best classifier

of random features methods and that of kernel support vector machines. Although

the order of the error bound matches the underlying approximation gap, it is too

pessimistic to explain the actual computational benefits of random features method

in practice. For example, without knowledge of data distribution, the generaliza-

tion error of kernel support vector machines is of order O(1/
√
m). According to the

risk gap of order O(1/
√
N) for random features methods, we have to use at least
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m random features to achieve a comparable performance guarantee. However, when

the number of random features is the same with the sample size, the computational

benefits brought by random features methods do not exist any more.

[8] and [36] considered the performance of RFSVMs as a perturbed optimization

problem. The dual form of a kernel support vector machine (KSVM) is a constrained

quadratic optimization problem determined by the Gram matrix generated by the

kernel function on the samples. Although the maximizer of a quadratic function

depends continuously on the quadratic form, its dependence is weak and thus, both

papers failed to obtain an informative bound on the excess risk of RFSVMs in clas-

sification problems. Moreover, such an approach requires the RFSVM and KSVM

that we want to compare share the same hyper-parameters. This assumption is prob-

lematic because the optimal configuration of hyper-parameters for RFSVMs is not

necessarily the same as that for the corresponding KSVMs. In fact, since the random

features methods lead to finite dimensional hypothesis class once the random features

are selected, they are less vulnerable to overfitting than kernel methods. Therefore,

in this dissertation, we will treat RFSVMs more like an independent learning model

instead of just an approximation to KSVMs.

In the regression setting, the learning rate of RFKRR was studied by [30] under

the assumption that the regression function is in the reproducing kernel Hilbert space

(RKHS), namely the realizable case. They show that the uniform feature sampling

only requires O(
√
m log(m)) features to achieve an O(1/

√
m) risk with respect to

the squared loss. They further show that a data-dependent sampling can achieve a

rate of O(1/mα), where 1/2 ≤ α ≤ 1, with even fewer features, when the regression

function is sufficiently smooth and the spectrum of the kernel operator induced by the

random features decays sufficiently fast. However, the method leading to these results
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depends on the closed form of the linear least squares solution, and thus we cannot

easily extend these results to non-smooth loss functions used in the classification

case. [3] recently shows that for any given approximation accuracy, the number of

random features required is determined by the leverage score, which is further upper

bounded by the degrees of freedom of the kernel operator, when the random feature

is optimized. This result is crucial for the sample complexity analysis of RFSVMs,

though not many details are provided on this topic in Bach’s work.

In Chapter II, we investigate the performance of RFSVMs formulated as a regu-

larized optimization problem on classification tasks. In contrast to the slow learning

rate in previous results by [29] and [3], we show, for the first time, that RFSVMs

can achieve fast learning rate with far fewer features than the number of samples

when the optimized features are available, and therefore the potential computational

benefits of RFSVMs on classification tasks are justified.

1.3 Approximation Properties of Random Features Methods

Another question related to the random features methods is what feature maps

and feature distributions can be gainfully used for supervised learning tasks. Random

Fourier features and random binning features proposed in [29] all originate from such

popular kernels as Gaussian or Laplacian. People are interested in these random

features because the corresponding RKHSs are dense in the space of continuous

functions under the supremum norm [25]. As a standalone learning method, we want

flexibility in choosing the feature map and parameter distribution for such purposes

as to lower computational cost or to inject prior knowledge. In Chapter III, we

consider the random features using the following form of feature maps σ(ω · x + b),

where (ω, b) are parameters chosen randomly according to a certain distribution, and
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σ(·) is a nonlinear function. We call this type of random features “neural network

type”, since they result in solutions to supervised learning tasks in the form of neural

networks. And hence, random features of neural network type provide a foundation

for the comparision between kernel methods and neural networks. We are particularly

interested in using the rectified linear unit (ReLU) as the feature map, because ReLUs

are widely used in deep neural networks as activation functions. Note that we do

not evaluate the derivatives of feature maps in random features methods, so the

advantage of ReLUs in preventing vanishing or exploding gradient does not play a

role in our case. However, using ReLUs in the random features methods may still

provide some computational advantages. The feature vector associated with ReLU

feature map is always sparser than that of sigmoidal or sinusoidal nodes, and faster

to evaluate, since each node either outputs 0 or identity.

When the feature map is chosen to be ReLU(ω · x + b) where the weight vector

(ω, b) obeys standard Gaussian over Rd+1 or uniform distribution over Sd, the induced

kernel is one of the arccos kernels and can be written in a closed form [7]. When

some other distributions or feature maps are considered, there may not be a good

closed form for the induced kernels. In these cases, to justify the use of a random

features method, we need to answer the question:

For a given feature map of the form σ(ω · x + b) and a given distribution of ω

and b, under what conditions it is guaranteed that there exists a linear combination

of randomly chosen σ(ωi ·x+ bi)’s that is a good approximator to a target continuous

function?

A related concept to this question is universality. A supervised learning algo-

rithm or equivalently its hypothesis class is called universal, if the hypothesis class

of this algorithm is dense in the space of continuous functions. From classic results
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we know that neural networks for any non-polynomial activation functions are uni-

versal [23], but it requires an appropriate setup of weights for the neural networks to

be good approximators. Hence, it does not imply that by randomly sampling inner

weights, with high probability there exists a linear combination of chosen random

nodes approximating the target continuous function well. [3] analyzed the approxi-

mation property of the arccos kernels. Proposition 3 in [3] implies the universality

of arccos kernels by explicitly constructing functions in the RKHS of arccos kernels

as approximators to Lipschitz functions. However this result heavily relies on the

uniform parameter distribution over the unit sphere and only considers homogeneous

non-decreasing feature maps.

In Chapter III, we answer the question we asked above. The first step is to

establish the universality of the corresponding RKHS induced by random features.

The general theory on the universality of RKHSs has been studied by [25], where

the universality of Gaussian and Laplacian kernels are proved. we use tools from

functional analysis to provide a set of sufficient conditions on the feature map σ and

the distribution of (ω, b) for the universality of the corresponding kernels.

On top of the universality of the induced kernels, the approximation capability

of random features methods can be characterized by [4], which shows how well the

linear combination of random features approximates functions in the RKHS. [15]

proved that for any continuous function, there exists a linear combination of ran-

domly selected nodes approximating it, as long as σ is bounded and continuous,

and the probability distribution over (ω, b) is absolutely continuous. Our results re-

produce his result with a much simpler proof, and extend it to unbounded feature

maps.

As an application of our results on the approximation properties of random fea-
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tures, we show that the random ReLU features method is universally consistent. We

compare the performance of random ReLU features to random Fourier features on

several benchmark datasets. We observe that random ReLU features method can

achieve an accuracy similar to random Fourier features method on the classification

tasks but requires a shorter training and testing time.

As an extension of our interest in the RKHS induced by the random ReLU fea-

tures, we further study the composition of functions in the RKHS. [12] shows that

3-layer ReLU networks with polynomial many activation nodes can express functions

that can never be approximated by any 2-layer ReLU networks with polynomial many

activation nodes. This phenomenon is called depth separation. It partly explains

the advantage of deep networks over the shallow ones. [22] shows a similar depth

separation result for functions in Barron’s class and their compositions. Following

these works, we show a depth separation result for functions in the RKHS induced

by random ReLU features. This result shows that compositions of functions from the

RKHSs induced by the random ReLU features are substantially more complicated

than functions in the RKHS; see Section 3.6 for the statement. We further prove

that compositions of functions from the RKHS can be approximated by multilayer

ReLU networks, with all weights bounded by constants depending on the RKHS

norm of the components of the target function. The depth separation result and

the approximation result together show the potential limit of random ReLU features

compared to deep ReLU networks.

We designed a synthetic dataset according to the construction in the depth sep-

aration result and use it to demonstrate the difference of performance of random

ReLU features, 2-layer neural networks and 3-layer neural networks. The experi-

ment clearly shows the limit of shallow models. And surprisingly the improvement
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of optimized inner weights over the randomly chosen ones is not as significant as the

improvement brought by the depth.



CHAPTER II

The Upper Bound on the Learning Rate of RFSVM

In this chapter, we study the learning rate of random features methods in two

scenarios, the realizable case and the unrealizable case. In the realizable case, we

assume that there exists a good approximator to the Bayes classifier in the RKHS of

the random feature, or that the Bayes classifier itself is in it. In the unrealizable case,

we take into consideration the risk gap between the Bayes classifier and the good

approximator in the RKHS. In particular, we will show the following three results:

1. We prove that under Massart’s low noise condition, with optimized random fea-

tures, RFSVM can achieve the learning rate of Õ(m
− c2

1+c2 ) 1, with Õ(m
2

2+c2 ) fea-

tures when the Bayes classifier belongs to the RKHS of a kernel whose spectrum

decays polynomially (λi = O(i−c2)). When the spectrum of the kernel operator

decays sub-exponentially, the learning rate can be improved to Õ(1/m) with

Õ(lnd(m)) features, where d is the dimension of raw features of data.

2. When the data-label distribution satisfies the separation condition; that is, when

the support of the distribution of the two classes of points are apart by a posi-

tive distance, we prove that the RFSVM using optimized random features cor-

responding to the Gaussian kernel can achieve a learning rate of Õ(1/m) with

Õ(ln2d(m)) number of features.
1Õ(n) represents a quantity less than Cn logk(n) for some k.

12
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3. Our theoretical analysis suggests reweighting random features before training.

We confirm its benefit in our experiments over synthetic datasets.

We begin in Section 2.1 with a brief introduction to RKHS, random features and the

formulation of support vector machines, and set up the notations we use throughout

the chapter. In Section 2.2, we state the main assumptions on the data and feature

distributions and related lemmas. The main theoretical results are presented in

Section 2.3 and 2.4. And in Section 2.5, we verify the performance of RFSVM in

experiments. In particular, we show the improvement brought by the reweighted

feature selection algorithm.

2.1 Kernel Support Vector Machines and Random Features

Throughout this chapter, a labeled data point is a point (x, y) in X × {−1, 1},

where X is a bounded subset of Rd. X × {−1, 1} is equipped with a probability

distribution P. We use PX to denote the marginal distribution on the data space.

2.1.1 Kernels and Random Features

A positive definite kernel function k (x, x′) defined on X×X determines the unique

corresponding reproducing kernel Hilbert space (RKHS), denoted by (Fk, ‖ · ‖k). A

map φ from the data space X to a Hilbert space H such that

(2.1) 〈φ (x) , φ (x′)〉H = k (x, x′)

for any x, x′ ∈ X is called a feature map of k and H is called a feature space. For

any f ∈ Fk, there exists an h ∈ H such that 〈h, φ(x)〉H = f(x), and the infimum of

the norms of all such h’s is equal to ‖f‖k. On the other hand, given any feature map

φ into H, a kernel function is defined by Equation 2.1, and we call Fk the RKHS

corresponding to φ, denoted by Fφ.
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A common choice of feature space consists of L2 functions of a probability space

(Ω, ω, ν). For any probability density function q(ω) with respect to ν, φ(ω;x)/
√
q(ω),

whenever q(ω) 6= 0, with probability measure q(ω)dν(ω) defines the same kernel

function with the feature map φ(ω;x) under the distribution ν. (φ, ν) is called

a random feature. One can sample the values of φ(ω;x), the image of x under

the feature map φ in the L2 space, at points {ω1, . . . , ωN} i.i.d. according to the

probability distribution ν to approximately represent φ(·;x). Then the vector

1√
N

(φ(ω1;x), . . . , φ(ωN ;x))>

in RN is called a random feature vector of x, denoted by φN(x). The corresponding

kernel function determined by φN is denoted by kN .

A well-known construction of random features is the random Fourier features

proposed by [28]. The feature map is defined as follows,

φ : X → L2(Rd, ν)⊕ L2(Rd, ν)

x 7→ (cos (ω · x) , sin (ω · x)) .

And the corresponding random feature vector is

φN(x) =
1√
N

(cos (ω1 · x) , · · · , cos (ωN · x) , sin (ω1 · x) , · · · , sin (ωN · x))> ,

where ωi’s are sampled according to ν. For the random Fourier feature, different

choices of ν define different translation invariant kernels by Bochner’s theorem [28].

For example, when ν is the normal distribution with mean 0 and variance γ−2, the

induced kernel function is the Gaussian kernel with bandwidth parameter γ,

kγ(x, x
′) = exp

(
−‖x− x

′‖2

2γ2

)
.

Equivalently, we may consider the feature map φγ(ω;x) := φ(ω/γ;x) with ν being

standard normal distribution.
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A more general and more abstract feature map can be constructed using an or-

thonormal set of L2(X ,PX ). Given the orthonormal set {ei} consisting of uniformly

bounded functions, and a nonnegative sequence (λi) ∈ `1, we can define a feature

map

φ(ω;x) =
∞∑
i=1

√
λiei(x)ei(ω) ,

with feature space L2(X , ω,PX ). The corresponding kernel is given by k(x, x′) =∑∞
i=1 λiei(x)ei(x

′). The feature map and the kernel function are well defined because

of the boundedness assumption on {ei}. This representation can be obtained for any

continuous kernel function on a compact set by Mercer’s Theorem ([20]).

Every positive definite kernel function k satisfying
∫
k(x, x) dPX (x) <∞ defines

an integral operator on L2(X ,PX ) by

Σ : L2(X ,PX )→ L2(X ,PX )

f 7→
∫
X
k(x, t)f(t) dPX (t) .

Σ is of trace class with trace norm
∫
k(x, x) dPX (x). When the integral operator is

determined by a random feature (φ, ν), we denote it by Σφ,ν , and the ith eigenvalue

in a descending order by λi(Σφ,ν). Whenever the probability distribution ν is obvious

in the context, we use Σφ for convenience. Note that the regularization parameter in

the support vector machine is also denoted by λ but with no subscripts. The decay

rate of the spectrum of Σφ plays an important role in the analysis of learning rate of

random features method.

2.1.2 Supervised Learning and Support Vector Machines

Given m samples {(xi, yi)}mi=1 generated i.i.d. by P and a function f : X → R,

usually called a decision function in the machine learning context, the empirical and
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the expected risks with respect to the loss function ` are defined by

R`
m (f) :=

1

m

m∑
i=1

` (yi, f (xi)) and R`
P (f) := E(x,y)∼P` (y, f (x)) ,

respectively. A function f ∗ that minimizes R`
P is called a Bayes decision function. A

supervised learning task seeks for a good decision function f̂ that achieves a small

excess risk R`
P(f̂)−R`

P(f ∗). According to whether the label y is ordinal or categorical,

a supervised learning task is categorized into regression or classification, respectively.

The 0-1 loss is commonly used to measure the performance of binary classifiers:

`0−1(y, f(x)) =


1 if yf(x) ≤ 0;

0 if yf(x) > 0.

For regression tasks, the most common loss function is the squared loss.

A Bayes classifier for the binary classification is given by

f ∗P(x) := sgn (E[y | x]) .

Note that the Bayes classifier may not be unique in this case. In particular, the

values of the classifier at data points labeled by 1 or −1 with probability of 1/2

do not affect its performance. And also the values of the classifier at points with

marginal probability 0 do not affect its performance either.

The set of decision functions, F , that is searched by a supervised learning algo-

rithm is called the hypothesis class. And to find the good decision function with

samples, the most common method is to minimize the empirical risk. However, for a

binary classification problem, it is hard to find the global minimizer of the empirical

risk because the loss function is discontinuous and non-convex. A popular surrogate

loss function in practice is the hinge loss: `h(f) = max(0, 1 − yf(x)). Its clipped
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version is useful in the analysis of the learning rate:

`1(y, f(x)) =



2 if yf(x) ≤ −1;

1− yf(x) if − 1 < yf(x) ≤ 1;

0 if 1 ≤ yf(x).

And we have that inff R
1
P(f) = R1

P(f ∗P) = 2R0−1
P (f ∗P) and

R1
P(f)− inf

f
R1

P(f) ≥ R0−1
P (f)−R0−1

P (f ∗P) .

See [34] for more details.

Different supervised learning algorithms assume different underlying hypothesis

classes. One commonly used hypothesis class is the class of linear functions on X .

Obviously we should not expect good performance from linear classifiers on X when

the points of different classes are not separable by a hyperplane; for example, when

the data distribution is as shown in Figure 2.2. The idea to solve linearly non-

separable problems is to map the dataset to a higher dimensional space, actually an

infinite dimensional space in most cases, so that the labels can be linearly separated

in the new feature space. The new space is usually a Hilbert space, and the inner

product can be encoded as the kernel function on X ×X . The structure among the

features is thus fully characterized by the value of the kernel function evaluated at

each pair of sample points. However, in most cases, for example when the kernel is

universal, the capacity of the hypothesis class is so large that any configuration of

labels can be linearly classified, assuming that no different labels are assigned to the

same data point. Such a resultant classifier often has a poor performance on the test

set, because it encodes all the noise or irrelevant factors from the training set. This

is the overfitting phenomenon in statistics, and it can be quantified by the so-called

generalization errors, R`
m(f)−R`

P(f).
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To prevent overfitting, we need to constrain the complexity of the hypothesis class.

A direct way to do this is to force the norm of functions we consider in the hypothsis

class less than some constant chosen as a hyper-parameter. Equivalently, we can add

a regularizer into the optimization objective with a scalar multiplier λ. There are

many different ways to choose the norm constraint or the form of regularizer, served

for different properties desired from the solution. Throughout this dissertation, we

only consider the commonly used `2 regularization. Therefore, the solution of the

binary classification problem is given by minimizing the following objective

Rh
m,λ(f) = Rh

m(f) +
λ

2
‖f‖2

F ,

over a hypothesis class F .

When F is the RKHS of some kernel function, the algorithm described above is

called kernel support vector machine. Note that for technical convenience, we do

not include the bias term in the formulation of decision function so that all these

functions are from the RKHS instead of the product space of RKHS and R (see

Chapter 1 of [34] for more explanation of such a convention). Note that Rm,λ is

strongly convex and thus the infimum will be attained by some function in F . We

denote it by fm,λ. By the representer theorem, we have that

fm,λ(x) =
m∑
i=1

αik(xi, x) .

Therefore, the optimization problem is reduced to a quadratic problem over Rm and

the Gram matrix Gk := [k(xi, xj)]i,j is required.

When random features φN and the corresponding RKHS are considered, we add N

into the subscripts of the notations defined above to indicate the number of random

features. For example FN for the RKHS, fN,m,λ for the solution of the optimization

problem.
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2.2 Assumptions on the Data and Feature Distributions

In this section we state the main assumptions on the distribution of data and

features, which are required for the results in the next sections. The first assumption

is about the ambiguity of labels. Since we assume that the data-label pair (x, y)

obeys a joint distribution P, it is possible that different y’s are assigned to the same

x in a dataset. If a data point is assigned to two labels with 1/2 probabilities for

each, the classifier should ignore it in the training phase. However, since we only

have access to samples instead of the true distribution, there is usually no means to

identify noisy data points from clean ones. Therefore, noisy labels will be very hard

to learn. The following property quantifies the level of noisiness and will affect the

upper bound of learning rate.

Assumption II.1. There exists V ≥ 2 such that for all x,

|E(x,y)∼P[y | x]| ≥ 2/V .

This assumption is called Massart’s low noise condition in many references (see

for example [19]). When V = 2, almost all the data points have deterministic labels.

Therefore it is easier to learn the true classifier based on observations. In the proof,

Massart’s low noise condition guarantees the variance condition ([34])

E[(`h(f(x))− `h(f ∗P(x)))2] ≤ V (Rh(f)−Rh(f ∗P)) ,

which is a common requirement for the fast learning rate results. Massart’s condition

is an extreme case of a more general low noise condition, called Tsybakov’s condition,

and our main results can be extended to Tsybakov’s condition. However, for the

simplicity of the statement of the results, we only consider Massart’s condition.

The second assumption is about the quality of random features. [4] proved the
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following useful theorem, which we will use to verify the finite approximatability of

RKHSs induced by random features.

Theorem II.2 (Proposition 1 of [3]). For µ > 0 and a random feature (φ, ν), let

dmax(1, µ) := sup
ω∈Rd+1

‖(Σ + µI)−1/2φ(·;ω)‖2
L2(P) ,

where Σ : L2(P)→ L2(P) is defined by

Σf =

∫
kφ,ν(x, y)f(y) dP(y) .

For δ > 0, when

(2.2) N ≥ 5dmax(1, µ) log

(
16dmax(1, µ)

δ

)
,

there exists β ∈ RN with norm less than 2, such that

(2.3) sup
‖f‖φ,ν≤1

‖f − β · φN(·)‖L2(P) ≤ 2
√
µ ,

with probability greater than 1− δ.

Based on this theorem, we make the following definition.

Assumption II.3. A feature map φ : X → L2(Ω, ω, ν)) is called optimized if there

exists a small constant µ0 such that for any µ ≤ µ0,

sup
ω∈Ω
‖(Σ + µI)−1/2φ(ω;x)‖2

L2(P) = tr(Σ(Σ + µI)−1) =
∞∑
i=1

λi(Σ)

λi(Σ) + µ
.

For any given µ, the quantity on the left hand side of the inequality is called the

maximal leverage score with respect to µ, which is directly related to the number

of features required to approximate a function in the RKHS of (φ, ν). The quantity

on the right hand side is called degrees of freedom by [3] and effective dimension by

[30], denoted by d(µ). As shown in the following examples, whatever the RKHS is,

we can always construct an optimized feature map for it.



21

Assume that a feature map φ : (X)→ L2(Ω, ω, ν) satisfies that φ(ω;x) is bounded

for all ω and x. We can always convert it to an optimized feature map using the

method proposed by [3]. We rephrase it using our notation as follows.

Denote

(2.4) p(ω) =
‖(Σ + µI)−1/2φ(·;ω)‖2

L2(X ,P)∫
Ω
‖(Σ + µI)−1/2φ(·;ω)‖2

L2(X ,P) dν(ω)
.

Since φ is bounded, its L2 norm is finite. The function p defined above is a prob-

ability density function with respect to ν. Then the new feature map is given by

φ̃(ω;x) = φ(ω;x)/
√
p(ω) together with the measure p(ω)dν(ω). Note that this

transformation of random features does not change the kernel and the corresponding

integral operator Σ. With φ̃, we have

sup
ω∈Ω

∥∥∥(Σ + µI)−1/2φ̃(·;ω)
∥∥∥2

= sup
ω∈Ω

∥∥(Σ + µI)−1/2φ(·;ω)
∥∥2

p(ω)

=

∫
Ω

‖(Σ + µI)−1/2φ(·;ω)‖2
L2(X ,P) dν(ω)

= tr(Σ(Σ + µI)−1) .

When the feature map is constructed mapping into L2(X ,P) as described in Sec-

tion 2.1, it is also optimized. Indeed, we can compute

sup
ω∈X

∥∥(Σ + µI)−1/2φ(·;ω)
∥∥2

= sup
ω∈X

∥∥∥∥∥
∞∑
i=1

√
λi√

λi + µ
ei(·)

∥∥∥∥∥
2

=
∞∑
i=1

λi
λi + µ

.

When a feature map is optimized, it is easy to control its leverage score by the

decay rate of the spectrum of Σ, as described below.

Definition II.4. We say that the spectrum of Σ : L2(X ,P)→ L2(X ,P) decays at a

polynomial rate if there exist c1 > 0 and c2 > 1 such that

λi(Σ) ≤ c1i
−c2 .
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We say that it decays sub-exponentially if there exist c3, c4 > 0 such that

λi(Σ) ≤ c3 exp(−c4i
1/d) .

The decay rate of the spectrum of Σ characterizes the capacity of the RKHS to

find a solution, which further determines the number of random features required

in the learning process. Indeed, when the feature map is optimized, the number of

features required to approximate a function in the RKHS with accuracy O(
√
µ) is

upper bounded by O(d(µ) ln(d(µ))). When the spectrum decays polynomially, the

degrees of freedom d(µ) is O(µ−1/c2), and when it decays sub-exponentially, d(µ) is

O(lnd(c3/µ)). These are described in the following lemma.

Lemma II.5. If λi(Σ) ≤ c1i
−c2, where c2 > 1, we have

(2.5) d(µ) ≤ 2c2

c2 − 1

(
c1

µ

)1/c2

,

for µ < c1.

If λi(Σ) ≤ c3 exp(−c4i
1/d), we have

(2.6) d(µ) ≤ 5c−d4 lnd(c3/µ) ,

for µ < c3 exp
(
−
(
c4 ∨ 1

c4

)
d2
)

.

Proof. Both results make use the following observation:

(2.7) d(µ) =
∞∑
i=1

λi
λi + µ

≤ mµ +
1

µ

∞∑
mµ+1

λi ,

where mµ = max{i : λi ≤ µ}|.

When λi ≤ c1i
−c2 , denote tµ = (c1/µ)1/c2 and then mµ = btµc. For the tail part,

1

µ

∞∑
mµ+1

λi ≤ 1 +
1

µ

∫ ∞
tµ

c1x
−c2 dx

≤ 1 +
1

c2 − 1

(
c1

µ

) 1
c2

.
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Combining them together, when c1/µ > 1, the constant 1 can be absorbed by the

second term with a coefficient 2.

When λi ≤ c3 exp(−c4i
1/d), denote tµ = 1

cd4
lnd
(
c3
µ

)
, and then mµ = btµc. For the

tail part, we need to discuss different situations.

First, if d = 1, then we directly have

1

µ

∞∑
mµ+1

λi
λi + µ

≤ 1

µ

(
µ+

∫ ∞
tµ

c3 exp(−c4x) dx

)

= 1 +
1

c4

.

When µ < c3 exp(−(c4 ∨ 1
c4

)), we can combine these terms into 3tµ.

Second, if d ≥ 2, when µ ≤ c3 exp(−c4e), we have that

(2.8) exp(−c4x
1/d) ≤ exp(−c4

t
1/d
µ

ln tµ
lnx) = x

−c4
t
1/d
µ

ln tµ .

Then,

1

µ

∞∑
mµ+1

λi ≤ 1 +
1

µ

∫ ∞
tµ

c3 exp(−c4x
−1/d) dx

≤ 1 +
c3

µ

∫ ∞
tµ

x
−c4

t
1/d
µ

ln tµ

= 1 +
tµ

c4
t
1/d
µ

ln tµ
− 1

.

When c4 ≥ 1, we may assume that µ ≤ c3 exp(−c4d
2), and then

(2.9) c4
t
1/d
µ

ln tµ
− 1 ≥ c4d

2

2d ln d
≥ 4

3
.

So the upper bound has the form 5tµ.

When c4 < 1, we may assume that µ ≤ c3 exp(−d2/c4), and then

(2.10) c4
t
1/d
µ

ln tµ
− 1 ≥ d2/c4

2d ln(d/c4)
≥ 4

3
.

So the upper bound also has the form 5tµ.
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Examples on the kernels with polynomial and sub-exponential spectrum decays

can be found in [3]. In particular, we know the random Fourier feature with the

Gaussian feature distribution and sub-Gaussian data distribution induces a kernel

operator with sub-exponentially decaying spectrum; see Section 2.4. The random

ReLU feature with the uniform feature distribution and the uniform data distribution

over the sphere induces a kernel operator with polynomially decaying spectrum; see

Section 3.4.

2.3 Learning Rate in Realizable Cases

With these preparations, we can state our first theorem.

Theorem II.6. Assume that P satisfies Assumption II.1, and the random feature

(φ, ν) satisfies Assumption II.3 and |kφ,ν | ≤ 1. Then for any g ∈ Fφ with ‖g‖φ ≤ R

and ‖g − f ∗P‖L2(P) ≤ ε, when the spectrum of Σφ decays polynomially, by choosing

λ = m
− c2

2+c2

N = 10Cc1,c2m
2

2+c2 (log(32Cc1,c2m
2

2+c2 ) + log(1/δ)) ,

we have

R0−1
P (fN,m,λ)−R0−1

P (f ∗P) ≤ Cc1,c2,V,Rm
− c2

2+c2

(
(log3/2(1/δ) + log(m))

)
+ 6ε ,

with probability 1− 4δ.

When the spectrum of Σφ decays sub-exponentially, by choosing

λ = 1/m

N = 25Cd,c4 logd(m)(log(80Cd,c4 logd(m)) + log(1/δ)) ,

we have

R0−1
P (fN,m,λ)−R0−1

P (f ∗P) ≤ Cc3,c4,d,R,V
1

m

(
logd+2(m) + log3/2(1/δ)

)
+ 6ε ,
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with probability 1− 4δ when m ≥ exp((c4 ∨ 1
c4

)d2/2).

When the Bayes classifier belongs to the RKHS of the feature map, we have g = fP

and ε = 0, so this theorem characterizes the learning rate of RFSVM in realizable

cases. The statement connects to the unrealizable case when fP does not belong to

the RKHS but an approximator g together with R and ε can be constructed.

For polynomially decaying spectrum, when c2 > 2, we get a learning rate faster

than 1/
√
m. [30] obtained a similar fast learning rate for kernel ridge regression

with random features, assuming polynomial decay of the spectrum of Σφ and the

existence of a minimizer of the risk in Fφ. Theorem II.6 extends their result to

classification problems and also the case when Σφ has an exponentially decaying

spectrum. For RFKRR, the rate faster than O(1/
√
m) will be achieved whenever

c2 > 1, and the number of features required is only square root of our result. This

is mainly caused by the fact that the loss function in the regression problem is the

squared loss. For classification problems, we need calibration between the target

0-1 loss and the surrogate loss. The calibration function for the squared loss is also

squared, while that for the hinge loss is linear. The result for the case where Σφ

has a sub-exponentially decaying spectrum shows that RFSVM can achieve Õ(1/m)

with only Õ(logd(m)) features. The learning rate for sub-exponentially decaying

spectrum has not been investigated for RFKRR. Note however that when d is large,

the sub-exponential case requires a large number of samples, even possibly larger

than the polynomial case. We therefore suspect that there is considerable room for

improving our analysis of high dimensional data in the sub-exponential decay case. In

particular, removing the exponential dependence on d under reasonable assumptions

is an interesting direction for future work.

The proof of Theorem II.6 follows from the sample complexity analysis scheme
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used by [34] and the approximation error result of [3]. The sample complexity analysis

or the control of the generalization error relies on the analysis of the local Rademacher

complexity.

The empirical Rademacher complexity for a class of functions F is defined as

RD(F) := E

[
sup
f∈F

1

m

m∑
i=1

εif(xi)

∣∣∣∣D
]
,

where D is a set of m samples drawn i.i.d. according to the data distribution PX and

εi’s are i.i.d. symmetric Bernoulli, also known as Rademacher, random variables. The

(expected) Rademacher complexity Rm(F) is defined as the expectation of RD(F)

over D. The Rademacher complexity is a common tool in statistical learning theory.

Similar to the VC-dimension, it quantifies the capacity of the hypothesis class. In a

coarse analysis of the generalization error based on the Rademacher complexity, the

class of functions considered is the ball of a fixed constant radius in the RKHS. To

conduct a finer analysis, we need to consider the Rademacher complexity for functions

with small risks. This leads to the definition of local Rademacher complexity, see the

statement of Theorem II.7 for detailed description and [34] for more explanations.

The fast rate is achieved due to the fact that the Rademacher complexity of the

RKHS ofN random features with regularization parameter λ is onlyO(
√
N log(1/λ)),

while N and 1/λ need not be too large to control the approximation error when the

optimized features are available.

The relation between the sample complexity and the local Rademacher complexity

of the hypothesis class is described by Theorem II.7. In the theorem, `1 is the clipped

hinge loss, and R∗ := inff R
h
P(f). We also have that R∗ = Rh

P(f ∗P).

Theorem II.7. (Theorem 7.20 in [34]) For a RKHS F , denote inff∈F R
1
P,λ(f)−R∗
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by r∗. For r > r∗, consider the following function classes

Fr := {f ∈ F | R1
P,λ(f)−R∗ ≤ r}

and

Hr := {`1 ◦ f − `1 ◦ f ∗P | f ∈ Fr} .

Assume that there exists V ≥ 1 such that for any f ∈ F ,

EP(`1 ◦ f − `1 ◦ f ∗P)2 ≤ V (R1
P(f)−R∗) .

If there is a function ϕm : [0,∞)→ [0,∞) such that ϕm(4r) ≤ 2ϕm(r) and Rm(Hr) ≤

ϕm(r) for all r ≥ r∗, Then, for any δ ∈ (0, 1], f0 ∈ F with ‖`hinge ◦ f0‖∞ ≤ B0, and

r > max

{
30ϕm(r),

72V ln(1/δ)

m
,
5B0 ln(1/δ)

m
, r∗
}
,

we have

R1
P,λ(fm,N,λ)−R∗ ≤ 6

(
Rh

P,λ(f0)−R∗
)

+ 3r

with probability greater than 1− 3δ.

To establish the fast rate of RFSVM using the theorem above, we must understand

the local Rademacher complexity of RFSVM; that is, we must find a formula for

ϕm(r). The variance condition Equation 2.2 is satisfied under Assumption II.1.

With this variance condition, we can upper bound the Rademacher complexity of

RFSVM in terms of the number of features N and the regularization parameter λ.

It is particularly important to have 1/λ inside the logarithm function.

First, we will need the summation version of Dudley’s inequality using entropy

number defined below, instead of covering number.

Definition II.8. For a semi-normed space (E, ‖ · ‖), we define its (dyadic) entropy

number by

en(E, ‖ · ‖) := inf

{
ε > 0 : ∃s1, . . . , s2n−1 ∈ B1 s.t. B1 ⊂

2n−1⋃
i=1

B(si, ε)

}
,
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where B1 is the unit ball in E and B(a, r) is the ball with center at a and radius r.

Note that functions in Hr are basically compositions of functions in Fr and the

loss function, so we have the following lemma. ‖ · ‖L2(D) is the semi-norm defined by

‖ · ‖L2(D) := ( 1
m

∑
i f

2(xi))
1/2.

Lemma II.9. ei(Hr, ‖ · ‖L2(D)) ≤ ei(Fr, ‖ · ‖L2(D))

Proof. Assume that T is an ε-covering over Fr with |T | = 2i. By definition ε ≥

ei(Fr, ‖ · ‖L2(D)). Then T ′ = `1 ◦ T − `1 ◦ f ∗P is a covering over Hr. For any f and g

in Fr, ∥∥`1 ◦ f − `1 ◦ g
∥∥
L2(D)

≤ 1 · ‖f − g‖L2(D) ,

because `1 is 1-Lipschitz. And hence the radius of the image of an ε-ball under `1

is less than ε. Therefore `1 ◦ T − `1 ◦ f ∗P is an ε-covering over Hr with cardinatily 2i

and ε ≤ ei(Fr, ‖ · ‖L2(D)). By taking infimum over the radius of all such T and T ′,

the statement is proved.

Now we need to give an upper bound for the entropy number of Fr with semi-norm

‖ · ‖L2(D) using a volumetric estimate.

Lemma II.10. ei(Fr, ‖ · ‖L2(D)) ≤ 3(2r/λ)1/22−i/2N .

Proof. Since F consists of functions

f(x) =
1√
N

N∑
i=1

wiφ(ωi;x) ,

under the semi-norm ‖ · ‖L2(D) it is isometric with the N -dimensional subspace U of

Rm spanned by the vectors

{(φ(ω1;xi), . . . , φ(ωN ;xi))}mi=1



29

for fixed m samples. For each f ∈ Fr, we have R1
P,λ(f)−R∗ ≤ r , which implies that

‖f‖F ≤ (2r/λ)1/2 . By the property of RKHS, we get

|f(x)| ≤ ‖f‖F ‖k(x, ·)‖F ≤
(

2r

λ

)1/2

· 1 ,

where we use the fact that k(x, ·) is the evaluation functional in the RKHS.

Denote the isomorphism from F (modulo the equivalent class under the semi-

norm) to U by I. Then we have

I(Fr) ⊂ Bm
∞

((
2r

mλ

)1/2
)
∩ U ⊂ Bm

2

((
2r

λ

)1/2
)
∩ U .

The intersection region can be identified as a ball of radius (2r/λ)1/2 in RN . Its

entropy number by volumetric estimate is given by

ei

(
BN

2

((
2r

λ

)1/2
)
, ‖ · ‖2

)
≤ 3

(
2r

λ

)1/2

2−
i
N .

With the lemmas above, we can get an upper bound on the entropy number of

Hr. However, we should note that such an upper bound is not the best when i is

small. Because the ramp loss `1 is bounded by 2, the radius of Hr with respect to

‖ · ‖L2(D) is bounded by 1, which is irrelevant with r/λ. This observation will give us

finer control on the Rademacher complexity.

Lemma II.11. Assume that λ < 1/2. Then

RD(Hr) ≤
√

(ln 16)N log2 1/λ

m

(
3
√

2ρ+ 18
√
r
)
,

where ρ = suph∈Hr ‖h‖L2(D).

Proof. By Theorem 7.13 in [34], we have

RD(Hr) ≤
√

ln 16

m

(
∞∑
i=1

2i/2e2i(Hr ∪ {0}, ‖ · ‖L2(D)) + sup
h∈Hr
‖h‖L2(D)

)
.
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It is easy to see that ei(Hr ∪ {0}) ≤ ei−1(Hr) and e0(Hr) ≤ suph∈Hr ‖h‖L2(D). Since

ei(Hr) is a decreasing sequence with respect to i, together with the lemma above,

we know that

ei(Hr) ≤ min

{
sup
h∈Hr
‖h‖L2(D), 3

(
2r

λ

)1/2

2−
i
N

}
.

Even though the second one decays exponentially, it may be much greater than the

first term when 2r/λ is huge for small i’s. To achieve the balance between these two

bounds, we use the first one for first T terms in the sum and the second one for the

tail. So

RD(Hr) ≤
√

ln 16

m

(
sup
h∈Hr
‖h‖L2(D)

T−1∑
i=0

2i/2 + 3

(
2r

λ

)1/2 ∞∑
i=T

2i/22−
2i−1
N

)
.

The first sum is
√

2
T−1√
2−1

. When T is large enough, the second sum is upper bounded

by the integral ∫ ∞
T−1

2x/22−2x−1/N dx ≤ 6N

2T/2
2−

2T

4N .

To make the form simpler, we bound
√

2
T−1√
2−1

by 3 · 2T/2, and denote suph∈Hr ‖h‖L2(D)

by ρ. Taking T to be

log2

(
2N log2

(
1

λ

))
.

we get the upper bound of the form

RD(Hr) ≤
√

ln 16

m

(
3ρ

√
2N log2

1

λ
+

18
√
Nr

log2(1/λ)

)
.

When λ < 1/2, log2 1/λ > 1, so we can further enlarge the upper bound to the form

RD(Hr) ≤
√

(ln 16)N log2 1/λ

m

(
3
√

2ρ+ 18
√
r
)
.

Next lemma analyzes the expected Rademacher complexity for Hr.
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Lemma II.12. Assume λ < 1/2 and Eh2(x, y) ≤ V Eh(x, y). Then

Rm(Hr) ≤ C1

√
N(V + 1) log2(1/λ)

m

√
r + C2

N log2(1/λ)

m
.

Proof. With Lemma II.11, we can directly compute the upper bound for Rm(Hr) by

taking expectation over D ∼ Pm.

Rm(Hr) = ED∼PmRD(Hr)

≤
√

(ln 16)N log2 1/λ

m

(
3
√

2E sup
h∈Hr
‖h‖L2(D) + 18

√
r

)
.

By Jensen’s inequality and A.8.5 in [34], we have

E sup
h∈Hr
‖h‖L2(D) ≤

(
E sup
h∈Hr
‖h‖2

L2(D)

)1/2

≤

(
E sup
h∈Hr

1

m

m∑
i=1

h2(xi, yi)

)1/2

≤
(
σ2 + 8Rm(Hr)

)1/2
,

where σ2 := Eh2. When σ2 > Rm(Hr), we have

Rm(Hr) ≤
√

(ln 16)N log2(1/λ)

m

(
9
√

2σ + 18
√
r
)

≤
√

(ln 16)N log2(1/λ)

m

(
9
√

2
√
V r + 18

√
r
)

≤ 36

√
2(ln 16)N(V + 1) log2(1/λ)

m

√
r .

The second inequality is because Eh2 ≤ V Eh and Eh ≤ r for h ∈ Hr.

When σ2 ≤ Rm(Hr), we have

Rm(Hr) ≤
√

(ln 16)N log2(1/λ)

m

(
9
√

2
√
Rm(Hr) + 18

√
r
)

≤ 36

√
(ln 16)N log2(1/λ)

m

√
r + 362 (ln 16)N log2(1/λ)

m
.

The last inequality can be obtained by dividing the formula into two cases, either

Rm(Hr) < r or Rm(Hr) ≥ r and then take the sum of the upper bounds of two

cases.
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Combining all these inequalities, we finally obtain an upper bound

Rm(Hr) ≤ C1

√
(V + 1)N log2(1/λ)

m

√
r + C2

N log2(1/λ)

m
,

where C1 and C2 are two absolute constants.

The last lemma gives the explicit formula of ϕm(r), which will be finally plugged

into Theorem II.7.

Lemma II.13. When

(2.11) r = (900C2
1 + 120C2)N(V + 1)

ln(1/λ)

m
+ (5B0 + 72V )

ln(1/δ)

m

we have

r ≥ max{30ϕm(r),
72V ln(1/δ)

m
,
5B0 ln(1/δ)

m
}.

It can be checked by simply plugging r into ϕm(r).

Now with all these preparation, we can complete our proof of Theorem II.6

Proof. Under the assumption of Theorem II.6, B0 = 2
√
NR+1 in Theorem II.7. We

also have that r∗ ≤ Rh
P,λ(f0)−R∗. By Lemma II.13, we can set

r = (900C2
1 + 120C2)N(V + 1)

ln(1/λ)

m

+ (10
√
NR + 5 + 72V )

ln(1/δ)

m
+Rh

P,λ(f0)−R∗ .

By Theorem II.2, we have

Rh
P,λ(f0)−R∗ = Rh

P,λ(f0)−Rh
P,λ(g) +Rh

P,λ(g)−R∗

≤ 2
√
µR + 4R2λ

2
+ ε ,

with probability 1− δ when N ≥ 5d(µ) log
(

16d(µ)
δ

)
.

When the spectrum of Σ decays polynomially,

d(µ) ≤ 2c2

c2 − 1

(
c1

µ

)1/c2

.
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Assume m > c
−(2+c2)/(2c2)
1 . By choosing µ = c1m

− 2c2
2+c2 < c1 and λ = m−c2/(2+c2), we

have

N = 10c1,2m
2

2+c2 (ln(32c1,2m
2

2+c2 ) + ln(1/δ)) ,

and

Rh
P,λ(fm,N,λ)−R∗

≤ 18R

m
c2

2+c2

+
18R2

m
c2

2+c2

+ 30C1,2c1,2(ln 32c1,2 +
2

2 + c2

lnm+ ln(1/δ))(V + 1)
c2

2 + c2

lnm

m
c2

2+c2

+
15(10c1,2(ln(32c1,2m

2
2+c2 ) + ln(1/δ)))1/2Rm

1
2+c2 + 5 + 216V

m
ln(1/δ) ,

with probability 1− 4δ, where

C1,2 = 900C2
1 + 120C2, c1,2 =

c2c
1/c2
1

c2 − 1
.

When the spectrum of Σ decays sub-exponentially,

d(µ) ≤ 5c−d4 lnd(c3/µ) .

Assume that m > exp(−(c4 ∨ 1
c4

)d2/2). By choosing µ = c3/m
2 and λ = 1/m, we

have

N = 25cd,4 lnd(m)(ln(80cd,4 lnd(m)) + ln(1/δ)) ,

and

Rh
P,λ(fm,N,λ)−R∗

≤
18R
√
c3

m
+

18R2

m

+ 150C1,2cd,4(ln 160cd,4 + d ln lnm+ ln(1/δ))(V + 1)
lnd+1m

m

+
150(cd,4 lnd(m)(ln(80cd,4 lnd(m)) + ln(1/δ)))1/2R + 5 + 216V

m
ln(1/δ) ,
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with probability 1− 4δ, where

C1,2 = 900C2
1 + 120C2, cd,4 =

(
2

c4

)d
.

2.4 Learning Rate in Unrealizable Cases

To obtain the learning rate of RFSVM in unrealizable case, we need to find the

approximator g in Theorem II.6 and give the estimate on Rh
P(g)−R∗ and ‖g‖φ. The

construction of the approximator to the Bayes classifier relies on specific properties of

the RKHS induced by the random feature. We focus on the RKHS corresponding to

the Gaussian kernel in this section. Chapter III will discuss the construction for the

RKHS induced by the random ReLU features. The general idea of the construction is

to design an operator that maps the Bayes classifier to the RKHS. The approximation

property of RKHS of Gaussian kernel has been studied in [34], where the margin noise

exponent is defined to derive the risk gap. Here we introduce the simpler and stronger

separation condition, which leads to a stronger result.

The points in X can be collected in to two sets according to their labels as follows,

X1 := {x ∈ X | E(y | x) > 0}

X−1 := {x ∈ X | E(y | x) < 0} .

The distance of a point x ∈ Xi to the set X−i is denoted by ∆(x).

Assumption II.14. We say that the data distribution satisfies a separation condi-

tion if there exists τ > 0 such that PX (∆(x) < τ) = 0.

Intuitively, Assumption II.14 requires the two classes to be far apart from each

other almost surely. This separation assumption is an extreme case when the margin

noise exponent goes to infinity.
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The separation condition characterizes a different aspect of the data distribution

from Massart’s low noise condition. Massart’s low noise condition guarantees that the

labels of data represent the distribution behind them accurately, while the separation

condition guarantees the existence of a smooth, in the sense of small derivatives,

function achieving the same risk with the Bayes classifier.

With both assumptions imposed on P, we can get a fast learning rate of ln2d+1 m/m

with only ln2d(m) random features, as stated in the following theorem.

Theorem II.15. Assume that X is bounded by radius ρ, and that the data distribu-

tion has density function upper bounded by a constant B and satisfies Assumption II.1

and II.14. Then by choosing

λ = 1/m γ = τ/
√

lnm N = Cτ,d,ρ ln2dm(ln lnm+ ln(1/δ)) ,

the RFSVM using an optimized feature map corresponding to the Gaussian kernel

with bandwidth γ achieves the learning rate

R0−1
P (fN,m,λ)−R0−1

P (f ∗P) ≤ Cτ,V,d,ρ,B
ln2d+1(m)(ln ln(m) + ln(1/δ))

m
,

with probability greater than 1− 4δ for m ≥ m0, where m0 depends on τ, ρ, d.

This theorem only assumes that the data distribution satisfies low noise and sepa-

ration conditions, and shows that with an optimized feature distribution, the learning

rate of Õ(1/m) can be achieved using only ln2d+1(m) � m features. This justifies

the benefit of using RFSVM in binary classification problems. The assumption of a

bounded data set and a bounded distribution density function can be dropped if we

assume that the probability density function is upper bounded by C exp(−c‖x‖2/2),

which suffices to provide the sub-exponential decay of spectrum of Σφ. But we pre-

fer the simpler form of the results under current conditions. We speculate that the

conclusion of Theorem II.15 can be generalized to all sub-Gaussian data.
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Theorem II.15 requires a further analysis of the approximation error of RKHS

to the Bayes classifier. This part adopts [34]’s idea of margin noise exponent. We

say that the data distribution P has margin noise exponent β > 0 if there exists a

positive constant c such that∫
{x:∆(x)<t}

|y|dP(x, y) ≤ ct−β ∀t ∈ (0, 1) .

Therefore, infinite β corresponds to Assumption II.14 with τ = 1. However, the

original proof of the approximation error that works with the margin noise exponent

cannot be generalized to the case of infinite β, because the coefficient Γ(d + β)/2d

will blow up (see Theorem 8.18 in [34]). This issue can be resolved by modifying the

original proof, as shown below.

Lemma II.16. Assume that there exists τ > 0 such that∫
{x:∆(x)<t}

|2η(x)− 1| dPX (x) = 0 ,∀t < τ ,

where X ⊂ Bd(ρ) and η(x) is a version of P(y = 1|x). Then there exists a function

f in the RKHS of the kernel

kγ(x, x
′) = exp

(
−‖x− x

′‖2

2γ2

)
where γ < τ/

√
d− 1 such that

Rh(f)−R∗ < 4τ d−2

Γ(d/2)
exp

(
−τ

2

γ2

)
γd−2 ,

‖f‖F ≤
(
√
π/2ρ2)d/2

Γ(d/2 + 1)
γ−d/2

and

|f(x)| ≤ 1 .

Proof. First we define

Xy := {x : (2η(x)− 1)y > 0} for y = ±1 ,
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and g(x) := (
√

2πγ)−d/2sign(2η(x)− 1). It is square integrable since η(x) = 1/2 for

all x /∈ X . Then we map g onto the RKHS by the integral operator determined by

kγ,

f(x) :=

∫
Rd
φγ(t;x)g(t) dt ,

where

φγ(t;x) =

(
2

πγ2

)d/4
exp

(
−‖x− t‖

2

γ2

)
.

Note that it is a special property of Gaussian kernel that the feature map onto

L2(Rd) also has a Gaussian form. For other type of kernels, we may not have such a

convenient characterization.

We know that

‖f‖H = ‖g‖L2 ≤
√

Vol(Bd(ρ))

(
√

2πγ)d/2
=

(
√
π/2ρ2)d/2

Γ(d/2 + 1)
γ−d/2 .

Moreoever,

|f(x)| ≤
∫
Rd
φγ(t;x)(

√
2πγ)−d/2 dt

= (πγ2)−d/2
∫
Rd

exp

(
−‖x− t‖

2

γ2

)
dt

= 1 .

Since f is uniformly bounded by 1, by Zhang’s inequality [34], we have

Rh(f)−R∗ = EPX (|f(x)− sign(2η(x)− 1)||2η(x)− 1|) .

Now we give an upper bound on |f(x)− sign(2η(x)− 1)|. Assume x ∈ X1. Then we



38

know that f(x) ≤ sign(2η(x)− 1) = 1,

1− f(x) = 1−
(

1

πγ2

)d/2 ∫
Rd

exp

(
−‖x− t‖

2

γ2

)
sign(2η(t)− 1) dt

= 1−
(

1

πγ2

)d/2 ∫
X1

exp

(
−‖x− t‖

2

γ2

)
dt

+

(
1

πγ2

)d/2 ∫
X−1

exp

(
−‖x− t‖

2

γ2

)
dt

≤ 2− 2

(
1

πγ2

)d/2 ∫
B(x,∆(x))

exp

(
−‖x− t‖

2

γ2

)
dt

≤ 2− 2

(
1

πγ2

)d/2 ∫
B(0,∆(x))

exp

(
−‖t‖

2

γ2

)
dt

= 2

(
1

πγ2

)d/2 ∫
Rd\B(0,∆(x))

exp

(
−‖t‖

2

γ2

)
dt

=
4

Γ(d/2)γd

∫ ∞
∆(x)

exp

(
− r

2

γ2

)
rd−1 dr .

Here the key is that B(x,∆(x)) ⊂ X1 when x ∈ X1. For x ∈ X−1, we have the same

upper bound for 1 + f(x). Therefore, we have

Rh(f)−R∗ ≤ 4

Γ(d/2)γd

∫
X

∫ ∞
0

1(∆(x),∞)(r) exp

(
− r

2

γ2

)
rd−1|2η(x)− 1| drdPX (x)

=
4

Γ(d/2)γd

∫ ∞
0

∫
X

1(0,r)(∆(x)) exp

(
− r

2

γ2

)
rd−1|2η(x)− 1| dPX (x)dr

≤ 4

Γ(d/2)γd

∫ ∞
τ

exp

(
− r

2

γ2

)
rd−1 dr

To get the last line, we apply the assumption on the expected label clarity. Now we

only need to give an estimate of the integral.∫ ∞
τ

exp

(
− r

2

γ2

)
rd−1 dr ≤

∫ ∞
τ

C exp

(
−αr

2

γ2

)
dr

where

C = τ d−1 exp(−(d− 1)/2) α = 1− 2γ2τ−2(d− 1) .
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It is required that γ <
√

2τ/
√
d− 1 so that α > 0. And then we can give an upper

bound to the excess risk

Rh(f)−R∗ ≤ 4τ d

Γ(d/2)(2τ 2 − (d− 1)γ2)
exp

(
−τ

2

γ2

)
γd−2 .

If we further require that γ < τ/
√
d− 1, then we have a simpler upper bound,

4τ d−2

Γ(d/2)
exp

(
−τ

2

γ2

)
γd−2 .

Some remarks on this result:

1. The proof follows almost step by step the proof of [34]. The only difference

occurs at where we apply Assumption II.14.

2. The approximation error is basically dominated by exp(−c/γ2), and thus leaves

us large room for balancing with the norm of the approximator.

3. The proof relies on the construction of the integral operator that maps L2(Rd)

function to the RKHS of the Gaussian kernel. A similar conclusion may hold

for General RBF kernels using the fact that any RBF kernel can be expressed

as an average of Gaussian kernel over different values of γ. A relevant reference

is [31]. In Chapter III, we will see a similar construction for the RKHS induced

by random ReLU features.

The last component for the proof of Theorem II.15 is the sub-exponential decay

rate of the spectrum of Σ determined by the Gaussian kernel. The distribution of the

spectrum of the convolution operator with respect to a distribution density function

p has been studied by [38]. It shows that the number of eigenvalues of Σ greater

than µ is asymptotic to (2π)−d times the volume of{
(x, ξ) : p(x)k̂(ξ) > µ

}
,
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where k̂ is the Fourier transform of the kernel function k. By applying [38]’s work in

our case, we have the following lemma. It is essentially Corollary 27 in [13], but our

version explicitly shows the dependence on the band width β.

Lemma II.17. Assume k̂(ξ) ≤ α exp(−β‖ξ‖2). If the density function p(x) of

probability distribution PX is bounded by B and X is a bounded subset of Rd with

radius ρ, then

λi(Σ) ≤ CαB exp

(
−β
(

4Γ4/d(d/2 + 1)

π4/dρ2

)
i2/d
)
,

where λ1 ≥ λ2 ≥ · · · are eigenvalues of Σ in descending order.

Proof. Denote by Et the set

{
(x, ξ) : k̂(ξ)p(x) > t

}
.

The volume, that is, the Lebesgue measure of Et is denoted by Vol(Et). By Theorem

II of [38], the non-increasing function φ(α) defined on R+ which is equi-measurable

with p(x)k̂(ξ) describes the behaviour of λis. Indeed, λi ≤ Cφ((2π)di). By the

volume formula of 2d-dimensional ball we have the following estimate,

sup{s ∈ R+ : φ(s) > t} = Vol(Et)

≤ Cd,ρ

(
ln(αB/t)

β

)d/2
,

where

Cd,ρ =
ρdπd+2

Γ2(d/2 + 1)
.

Solving for t, we know that

φ(s) ≤ αB exp

(
−β
( s
A

)2/d
)
.
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Therefore, we have

λi(Σ) ≤ CαB exp

(
−β
(

(2π)di

A

)2/d
)

= CαB exp

(
−β
(

4Γ4/d(d/2 + 1)

π4/dρ2

)
i2/d
)
.

Now we can prove Theorem II.15.

Proof. Note that, by Lemma II.16, we can construct g ∈ F such that Rh
P,λ(g) − R∗

is controlled. And by Theorem II.2, we can find an f0 ∈ FN with similar risk to g.

And this will be our f0 as required by Theorem II.7. So we have

Rh
P,λ(f0)−R∗ ≤

2(
√
π/2ρ2)d

Γ2(d/2 + 1)

λ

γd
+

2(
√
π/2ρ2)d/2

Γ(d/2 + 1)
γ−d/2

√
µ

+
4τ d−2

Γ(d/2)
exp

(
−τ

2

γ2

)
γd−2 ,

and with probability 1− δ, when N = 5d(µ) ln(16d(µ)/δ). And

‖f0‖∞ ≤ C
√
Nγ−d/2 ,

We choose γ = τ/
√

lnm and λ = 1/m. Under the boundedness assumption on the

density function and the property of Gaussian kernel, we know that by Lemma II.17,

λi(Σ) ≤ CγB exp

(
−γ2 4Γ4/d(d/2 + 1)

π4/dρ2
i2/d
)
.

And similar to the second part of Theorem II.6, by identifying

c3 = CγB = CBτ/
√

lnm c4 =
4τ 2Γ4/d(d/2 + 1)

π4/dρ2 lnm
:=

A

lnm
,

and choosing µ = c3/(m
2d2 ∨ exp(d

2

c4
∨ c4d

2)), we have

d(µ) ≤ 5d2d(c−2d
4 ∨ 1 ∨ c−d4 2d lndm) .
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Then when m ≥ exp(A), we have d(µ) ≤ 5(A2 ∧ A/2)−d ln2dm, and

N = 5d(µ)(ln(16d(µ)) + ln(1/δ))

≤ 25(A2 ∧ A/2)−d ln2dm(ln(80(A2 ∧ A/2)−d) + 2d ln lnm+ ln(1/δ)) .

Plug N and λ into Equation 2.11.

3r = 75C1,2cd,τ,ρ(ln(80cd,τ,ρ) + 2d ln lnm+ ln(1/δ))(V + 1)
ln2d+1 m

m

+
(

150c
1/2
d,τ,ρ ln5d/4m(ln(80cd,τ,ρ) + 2d ln lnm+ ln(1/δ))1/2 + 216V

) ln(1/δ)

m

+ 3r∗ ,

where

C1,2 = 900C2
1 + 120C2, cd = (A2 ∧ A/2)−d .

We can bound r∗ by Rh
P,λ(f0)−R∗. Therefore, the overall upper bound on the excess

error is

R1
P,λ(fm,N,λ)−R∗

≤
18(
√
π/2ρ2)d

Γ2(d/2 + 1)

lnd/2m

τ dm

+
18(
√
π/2ρ2)d/2

Γ(d/2 + 1)

√
CBτ ln(d+1)/4m

τ d/2md2
+

36τ d−2

Γ(d/2)

τ d−2

m lnd/2−1m

+ 75C1,2cd,τ,ρ (ln(80cd,τ,ρ) + 2d ln lnm+ ln(1/δ)) (V + 1)
ln2d+1 m

m

+
(

150c
1/2
d,τ,ρ ln5d/4m(ln(80cd,τ,ρ) + 2d ln lnm+ ln(1/δ))1/2 + 216V

) ln(1/δ)

m
.

The analysis in both cases requires access to optimized features. If we drop the

assumption of optimized feature map, only weak results can be obtained for the

learning rate and the number of features required.
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As shown by [30], RFKRR can achieve excess risk ofO(1/
√
m) usingO(

√
m log(m))

features without the optimized feature assumption. However, it is inappropriate to

directly compare this result with the learning rate in classification scenario. Because

as surrogate loss functions, least square loss has a different calibration function with

hinge loss. Basically, O(ε) risk under square loss only implies O(
√
ε) risk under 0− 1

loss, while O(ε) risk under hinge loss implies O(ε) risk under 0− 1 loss. Therefore,

[30]’s analysis only implies an excess risk of O(m−1/4) in classification problems with

Õ(
√
m) features.

For RFSVM, we expect a similar result. Without assuming an optimized feature

map, the leverage score can only be upper bounded by κ2/µ, where κ is the upper

bound on the function φ(ω;x) for all ω, x. Substituting κ2/µ for d(µ) in the proofs of

learning rates, we need to balance
√
µ with 1/(µm) to achieve the optimal rate. This

balance is not affected by the spectrum of Σ or whether f ∗P belongs to F . Obviously,

setting µ = m−2/3, we get a learning rate of m−1/3, with Õ(m2/3) random features.

Even though this result is also new for RFSVM in regularized formulation, the gap

to previous analysis like [28] is too large. Considering that the random features

used in practice that are not optimized also have quite good performance, we need

further analysis on RFSVM without optimized feature map. In particular, we can

only show that 1/ε2 random features are sufficient to guarantee the learning rate

less than ε when 1/ε3 samples are available. Though not helpful for justifying the

computational benefit of random features method, this result matches the parallel

result for RFKRR in [30] and the approximation result in [33].

[30] also compared the performance of RFKRR with Nystrom method, which is

the other popular method to scale kernel ridge regression to large data sets.We do

not find any theoretical guarantees on the fast learning rate of SVM with Nystrom
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method on classification problems in the literature, though there are several works

on its approximation quality to the accurate model and its empirical performance

(see [39, 40]). The tools used in this paper should also work for learning rate analysis

of SVM using Nystrom method. We leave this analysis to the future.

2.5 Experimental Results

The main limit of our two theorems is the assumption of an optimized feature

distribution, which is not clear how to obtain in practice yet. Developing a data-

dependent feature selection method is therefore an important problem for future

work on RFSVM. [3] proposed an algorithm to approximate the optimized feature

map from any feature map. Adapted to our setup, the reweighted feature selection

algorithm is described as follows.

Algorithm 1: Reweighted Feature Selection

input : L uniform subsamples of data {xi}Li=1,

M feature vectors {ωi}Mi=1,

regularization hyperparameter λ;

output: N optimized features;

Generate the matrix Φ with columns φM(xi)/
√
L;

Compute {ri}Mi=1, the diagonal of ΦΦᵀ(ΦΦᵀ + µI)−1;

Resample N features from {ωi}Mi=1 according to the probability distribution

pi = ri/
∑
ri;

The theoretical guarantees of this algorithm have not been discussed in the lit-

erature. A result in this direction will be extremely useful for guiding practioners.

Instead, here we implement it in our experiment and empirically compare the perfor-

mance of RFSVM using this reweighted feature selection method to the performance

of RFSVM without this preprocessing step2.
2The source code is available at https://github.com/syitong/randfourier.
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The sample points shown in Figure 2.2 are generated from either the inner circle

or outer annulus uniformly with equal probability, where the radius of the inner circle

is 0.9, and the radius of the outer annulus ranges from 1.1 to 2. The points from the

inner circle are labeled by -1 with probability 0.9, while the points from the outer

annulus are labeled by 1 with probability 0.9. In such a simple case, the unit circle

describes the boundary of the Bayes classifier.

First, we compared the performance of RFSVM with that of KSVM on the training

set with 1000 samples, over a large range of regularization parameter (−7 ≤ log λ ≤

1). The bandwidth parameter γ is fixed to be an estimate of the average distance

among the training samples. After training, models are tested on a large testing set

(> 105). For RFSVM, we considered the effect of the number of features by setting

N to be 1, 3, 5, 10 and 20, respectively. Moreover, both feature selection methods,

simple random feature selection (labeled by ‘unif’ in the figures), which does not

apply any preprocess on drawing features, and reweighted feature selection (labeled

by ‘opt’ in the figures) are inspected. For the reweighted method, we set M = 100N

and L = 0.3m to compute the weight of each feature. Every RFSVM is run 10 times,

and the average accuracy and standard deviation are presented.

The results of KSVM, RFSVMs with 1 and 20 features are shown in Figure 2.5.

The performance of RFSVM is slightly worse than the KSVM, but improves as the

number of features increases. It also performs better when the reweighted method

is applied to generate features.

To further compare the performance of simple feature selection and reweighted

feature selection methods, we plot the learning rate of RFSVM with O(ln2(m)) fea-

tures and the best λs for each sample size m. KSVM is not included here since it

is too slow on training sets of size larger than 104 in our experiment compared to
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RFSVM. The error rate in Figure 2.3 is the excess risk between learned classifiers and

the Bayes classifier. We can see that the excess risk decays as m increases, and the

RFSVM using reweighted feature selection method outperforms the simple feature

selection.

According to Theorem II.15, the benefit brought by the optimized random fea-

ture, that is, the fast learning rate, will show up when the sample size is greater

than O(exp(d)). The number of random features required also depends on d, the

dimension of data. For data of small dimension and large sample size, as in our

experiment, it is not a problem. However, in applications of image recognition, the

dimension of the data is usually very large and it is hard for our theorem to explain

the performance of RFSVM. On the other hand, if we do not pursue the fast learning

rate, the analysis for general feature maps, not necessarily optimized, gives a learn-

ing rate of O(m−1/3) with O(m2/3) random features, which does not depend on the

dimension of data. Actually, for high dimensional data, there is barely any improve-

ment in the performance of RFSVM by using reweighted feature selection method;

see Figure 2.5). It is important to understand the role of d to fully understand the

power of random features method.
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Figure 2.1: Comparison between RFSVMs with KSVM Using Gaussian Kernel.
Top left: N = 1; top right: N = 3; middle left: N = 5; middle right: N = 10; bottom: N = 20.
“ksvm” is for KSVM with Gaussian kernel, “unif” is for RFSVM with direct feature sampling, and
“opt” is for RFSVM with reweighted feature sampling. Error bars represent standard deviation
over 10 runs. Each sub-figure shows the performance of RFSVM with different number of features.
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Figure 2.2: Distribution of Training Samples.

50 points are shown in the graph. Blue crosses rep-

resent the points labeled by -1, and red circles the

points labeled by 1. The unit circle is one of the

best classifier for these data with 90% accuracy.
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Figure 2.3: Learning Rate of RFSVMs.

The excess risks of RFSVMs with the simple ran-

dom feature selection (“unif”) and the reweighted

feature selection (“opt”) are shown for different

sample sizes. The error rate is the excess risk. The

error bars represent the standard deviation over 10

runs.
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Figure 2.4: The performance of RFSVMs on 10 dimensional data and MNIST.
The simple random feature selection (“unif”) and the reweighted feature selection (“opt”) are shown
for different size of sample data. Left: The data labeled with probability 0.9 to be -1 are within
the 10 dimensional ball centered at the origin and radius 0.9, and the data labeled with probability
0.9 to be 1 are within the shell of radius 1.1 to 2. The error rate is the excess risk. The error bars
represent the standard deviation over 10 runs. Right: The accuracy of RFSVM with two different
feature selection methods on MNIST.



CHAPTER III

The Approximation Properties of Random ReLU Features

In the analysis of the learning rate of random Fourier features in unrealizable

cases, the core is to understand the approximation property of the RKHS induced

by random Fourier features. In this chapter, we will consider the RKHS induced by a

class of random features inspired by neural networks. We are particularly interested

in the random features with ReLU as feature maps.

The results in this chapter are summarized as follows.

1. We establish sufficient conditions for the universality of RKHSs derived from

random features of neural network type (Theorem III.4). And based on this

result we are able to prove the universality of random features methods in

admissible cases (Corollary III.9 and III.8).

2. We describe the random ReLU features method (Algorithm 2) and prove its

universal consistency (Proposition III.11). We compare the performance of ran-

dom ReLU features to random Fourier features and confirm the advantages of

random ReLU features on computational cost.

3. We prove that compositions of functions in the RKHS induced by the ran-

dom ReLU feature can be efficiently approximated by multilayer ReLU net-

works (Proposition III.15). We also prove that the composition of functions in

49
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the RKHS generates functions more complicated than functions in the RKHS

(Proposition III.16). Beyond the proof of existence of the depth separation,

we designed synthetic data and experiments showing that the good multi-layer

approximator can be found by stochastic gradient descent while shallow models

have poor performance.

In Section 2.1, we review some basic functional analysis and probability results

that are useful for obtaining the approximation results, and define the notations used

in this chapter. The universality of the random ReLU features is given in Section 3.3.

We describe a simple random ReLU features method and prove an upper bound on

its generalization error in Section 3.4, which implies the universal consistency of the

algorithm. The approximation result by multilayer ReLU networks and the depth

separation result of RKHSs induced by the random ReLU feature are presented in

Section 3.5 and 3.6. The performance of random ReLU features in experiments

and comparison with random Fourier features and neural networks are discussed in

Section 3.7.

3.1 Universality and Random Features of Neural Network Type

Throughout the chapter, we assume that X is a closed subset contained in the d

dimensional ball centered at the origin with radius r. Let C(X ) denote the space of

all continuous functions on X equipped with the supremum norm. When a subset

of C(X ) is dense, we call it universal. To show that a subset is dense in a Banach

space, we need only consider its annihilator as described by the following lemma.

Lemma III.1. For a Banach space B and its subset U , the linear span of U is dense

in B if and only if U⊥, the annihilator of U , is {0}.

The proof can be easily derived from Theorem 8 in Chapter 8 of [20]. It is a
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consequence of Hahn-Banach theorem. Since X is compact, the dual space of C(X )

is the space of all signed measures equipped with the total variation norm, denoted

by M(X ) (see Theorem 14 in Chapter 8 of [20]). As the consequence of Lemma III.1

and the duality between C(X ) and M(X ), [25] uses the following useful criteria for

justifying the dense subset of C(X ).

Lemma III.2. F ⊂ C(X ) is universal if and only if for any signed measure ν,∫
X
f(x) dν(x) = 0 ∀f ∈ F =⇒ ν = 0 .

The definition of random features and the relation between random features and

kernels have been introduced in Section 2.1. We only remind readers that the RKHS

induced by the random feature (φ, µ) is denoted by (Hφ,µ, ‖ · ‖φ,µ). The feature map

we consider in this work is of the form φ(x;ω, b) = σ(ω ·x+b) where σ is a non-linear

function on R. The random features models using this feature map, as we pointed out

in Section I, are described by the same formula as that of two-layer neural networks

using σ as activation node. We will see in Section 3.3 that the universality of these

two models are also closely connected. To simplify our notations, we denote by (x, 1)

the concatenation of the d-dimensional vector x and a scalar 1. Since we do not treat

the bias variable b different from the coefficients ω, we view all the inner weights as a

d+ 1 dimensional vector and call it ω. Hence, the functions expressed by N random

features appear as

(3.1) fN(x) =
N∑
i=1

ciσ(ω · (x, 1)) .

We are most interested in the case where σ(z) = max(0, z), which is the ReLU node.

Other notations include: P denotes the data distribution over X ; | · | means the

Euclidean norm when the operand is a vector in Rd, but the total variation norm
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when the operand is a measure; fi:j represents the composition of functions fj◦· · ·◦fi;

R` denotes the expected risk with respect to the loss `; and τd denotes the uniform

probability distribution over Sd.

3.2 Barron’s Class and Maurey’s Sparsification Lemma

The seminal paper [5] considered the function class described by the following

formula,

f(x) = f0 +

∫ (
eiω·x − 1

)
dρ(ω) ,

where f0 ∈ R and ρ is a complex-valued measure on Rd. This class of functions is

called Barron’s class, denoted by Γ(X ). Let |ω|X = supx∈X |ω · x|. The subset of Γ

in which ρ satisfies ∫
|ω|X d|ρ|(ω) < R

for some constant R is denoted by ΓR. When σ in fN is a sigmoidal function, Barron

in his work gave upper bounds on the number N and the scale of the outer coefficients

ci to approximate functions in ΓR. As for the inner weights ωi’s, Barron proved that

they may increase to infinity as the approximation error goes to 0 for sigmoidal

activation nodes except for the unit step function.

Barron’s class provides a way to constrain the complexity of functions to enable

quantitative approximation analysis. At the same time, the class remains larger

than the simple hypothesis class Equation 3.1 so that it includes more functions of

interest. Barron’s class can also be used as a building block to construct a larger

function class by composition. [22] extended Barron’s result to multi-layer neural

networks and showed that they approximate compositions of Barron’s functions.

The proof of Barron’s result relies on the famous Maurey’s sparsification lemma[27].
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Lemma III.3. Assume that X1, . . . , Xn are n i.i.d. random variables with values in

the unit ball of a Hilbert space. Then with probability greater than 1− δ, we have

(3.2)

∥∥∥∥∥ 1

n

n∑
i=1

Xi − EX1

∥∥∥∥∥ ≤ 1√
n

(
1 +

√
2 log

1

δ

)
.

Furthermore, there exists xi, . . . , xn in the unit ball such that

(3.3)

∥∥∥∥∥ 1

n

n∑
i=1

xi − EX1

∥∥∥∥∥ ≤ 1√
n
.

We will use this lemma to prove a result for random ReLU features similar to

Barron’s result in Section 3.5.

3.3 Universality of Random Features

To study the approximation capability of random ReLU features models, we start

with the universality of the RKHS induced by random features of neural network

type.

Theorem III.4. Assume that |σ(z)| ≤ K|z|k +M for some M,K ≥ 0 and k ∈ N0.

Let µ be a probability distribution whose support is dense in Rd+1 with
∫
|ω|2k dµ(ω) ≤

M2. If σ is not a polynomial, the RKHS Hσ,µ is universal.

Proof. First, it is easy to see that σ(ω · (x, 1)) ∈ L2(Rd+1, µ). Indeed, since |σ(z)| ≤

K|z|k +M , we have∫
σ2(ω · (x, 1)) dµ(ω) ≤ 2

∫
K2(ω · (x, 1))2k dµ(ω) + 2M2

≤ 2K2(|x|2 + 1)k
∫
|ω|2k dµ(ω) + 2M2

≤ 2K2(r2 + 1)kM2 + 2M2 ,

where r is the radius of X . Next, we show that the functions in Hσ,µ are all contin-

uous. For f ∈ Hσ,µ, assume that

f(x) =

∫
Ω

σ(ω · (x, 1))g(ω) dµ(ω)
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for some g ∈ L2(µ). To show that f is continuous at a given point x, we want to

show that for any ε > 0, there exists δ > 0 such that |f(x) − f(y)| < ε whenever

|x− y| < δ. Denote

I1(R) :=

∣∣∣∣∫
|ω|>R

(σ(ω · (x, 1))− σ(ω · (y, 1)))g(ω) dµ(ω)

∣∣∣∣ ,
and

I2(R) :=

∣∣∣∣∫
|ω|≤R

(σ(ω · (x, 1))− σ(ω · (y, 1)))g(ω) dµ(ω)

∣∣∣∣ .
Then since

I1(R) ≤
∫
|ω|>R

(
K(|ω · (x, 1)|k + |ω · (y, 1)|k) + 2M

)
|g(ω)| dµ(ω)

≤ 2
√

2‖g‖L2

(∫
|ω|>R

K2|ω|2k(r2 + 1)k +M2 dµ(ω)

)
,

we know that I1(R)→ 0 as R →∞. In particular, for sufficiently large R, we have

I1(R) < ε/2. On the other hand, since σ is continuous, there exists δ1 > 0 such that

|ω · (x, 1)− ω · (y, 1)| < δ1 implies that

I2(R) ≤
∫
|ω|≤R

ε

2‖g‖L2

|g(ω)| dµ(ω)

≤ ε

2
.

So if we set δ = δ1/R, we will have |f(x)− f(y)| < ε.

We just proved that all the functions in the Hσ,µ are all continuous. So we can

use Lemma III.2 to justify the universality. For a signed measure ν with finite total

variation, assume that∫
X

∫
Rd+1

σ(ω · (x, 1))g(ω) dµ(ω)dν(x) = 0 ,

for all g ∈ L2(Rd+1, µ). We want to show that ν must be the 0 measure. Since the

function σ(ω · (x, 1))g(ω) is integrable over µ× ν, by Fubini’s theorem we have∫
Rd+1

(∫
X
σ(ω · (x, 1)) dν(x)

)
g(ω) dµ(ω) ,
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equals 0 for all g ∈ L2(Rd+1, µ). Then

(3.4)

∫
Rd+1

σ(ω · (x, 1)) dν(x) = 0 µ-a.e.

Indeed the function of ω defined on the left hand side of Equation 3.4 has to be 0

everywhere because of continuity. Since σ is not a polynomial, by [23], we know that

ν must be a 0 measure. If it is not, then there exists f in C(X ) such that
∫
f dν = ε

where ε ≥ 0. Because the linear span of σ(ω · (x, 1)) is dense in C(X ), there must

exist cis and ωis such that∫ k∑
i=1

ciσ(ωi · (x, 1)) dν(x) ≥ ε

2
.

This contradicts Equation 3.4.

It is interesting to note that in the proof the universality of the RKHS induced

by a random feature can be derived from that of the corresponding neural networks.

Theorem III.4 shows that the RKHSs induced by a broad class of random features

of neural network type are dense in the space of continuous functions. And hence

these random features methods have sufficient capacity for supervised learning tasks.

The general theorem requires the feature distribution to be supported almost

everywhere on Rd+1. However, when the feature map is ReLU, this requirement can

be relaxed due to the homogeneity. The following proposition provides us a sufficient

condition for the universality of HReLU,µ.

Proposition III.5. Let µ be a probability distribution supported on a dense subset

of an d-dimensional ellipsoid centered at the origin. Then the RKHS HReLU,µ is

universal.

Proof. The proof is the same up to Eq. 3.4. We claim that∫
X
σ(ω · (x, 1)) dν(x) = 0
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for all ω ∈ Rd+1. If not, there exists β 6= 0 such that∫
X
σ(β · (x, 1)) dν(x) = ε > 0. .

Then there exists a positive constant c such that cβ belongs to the support of µ

because of the shape of the feature space. By homogeneity, we have∫
X
σ (cβ · (x, 1)) dν(x) = cε > 0 .

The function

g : ω 7→
∫
X
σ(ω · (x, 1)) dν(x)

is continuous over the ellipsoidal feature space Ω, and thus there exists δ > 0 such

that g(ω) is greater than ε/2 for all ω ∈ Bd+1(cβ, δ) ∩ Ω. This contradicts the fact

that the support of µ is dense over Ω. Then by the same argument at the end of the

proof of Theorem III.4, we complete the proof of the proposition.

This proposition is only stated for the regular feature space like Sd or ellipsoids

around the origin for simplicity of the statement. The proof actually works for any

set Ω satisfying the following property: for any ω 6= 0 in ∈ Rd+1, there exists a

scalar c > 0 such that cω ∈ Ω. This proposition allows us to restrict the ReLU

feature map to be a bounded function when the data set is bounded. And this will

be important for us when we prove the approximation capability of random ReLU

features methods.

As we mentioned in the introduction, the universality of HReLU,τd , where τd is the

uniform distribution over Sd, has been shown implicitly in [3]. However, due to the

non-constructive approach we take, it is much easier for us to prove the universality

of the RKHS induced by any homogeneous random feature σ with µ supported over

various domains described in the above paragraph.
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In the next, we study the approximation properties of random ReLU features. As

we mentioned in the introduction, since random features methods are not determin-

istic, the approximation property has to be stated with probability. Therefore we

first give the following definition.

Definition III.6. Given a random feature (σ, µ), if for any f in C(X ) and δ, ε > 0,

there exist a positive integer N such that with probability greater than 1− δ, we can

find coefficients {ci}Ni=1 such that

‖fN − f‖L2(P) > ε ,

we say that the random feature is universal.

If we’ve known that the RKHS induced by the random feature (σ, µ) is universal,

to show that it is universal in the sense of Definition III.6, we only need to verify

that any function f ∈ Hσ,µ can always be approximated by the linear combination

of finitely many random features, fN , with high probability of random choice of ωi’s.

This has been studied in [4]. To apply Bach’s result, we make the following definition.

Definition III.7. A random feature (σ, µ) is called admissible if for any λ > 0,

sup
ω∈Ω
〈σω, (Σ + λI)−1σω〉 <∞ ,

where Σ : L2(P)→ L2(P) is defined by

Σf =

∫
kσ,µ(x, y)f(y) dP(y) ,

and σω(x) = σ(ω · (x, 1)).

This property is used in [35, 30] to efficiently obtain random features in their

learning rate analysis. It is a data-dependent property except for special cases such

as bounded feature maps. How to design the admissible random features remains an
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open problem. Though it is data-dependent, it does not depend on the labels or tar-

get functions. And hence we may gain advantages in supervised learning tasks if we

can design random features according to the characteristics of the data distribution.

With this admissibility assumption, we have the following complete description

of universality of random features.

Corollary III.8. Assume that |σ(z)| ≤ K|z|k +M for some M,K ≥ 0 and k ∈ N0.

Let µ be a probability distribution whose support is dense in Rd+1 with
∫
|ω|2k dµ(ω) ≤

M2. If σ is not a polynomial and (σ, µ) is admissible with respect to the data distri-

bution P, the random feature (σ, µ) is universal.

Proof. The condition guarantees that Hσ,µ is dense in C(X ). For any f in C(X ) and

ε > 0, there exists f̃ ∈ Hσ,µ such that supx |f(x) − f̃(x)| < ε, which implies that

‖f − f̃‖L2(P) < ε. Assume that

f̃(x) =

∫
Ω

σ(ω · (x, 1))g(ω) dµ(ω) ,

where ‖g‖L2(µ) = G. Since (σ, µ) is admissible, there exists λ ≤ ε2/(4G2) such that

dmax(1, λ) = sup
ω∈Ω
〈σω, (Σ + λI)−1σω〉 <∞ .

So by Theorem II.2, there exists N ∈ N such that

‖f̃ − fN‖L2(P) ≤ 2G
√
λ ≤ ε ,

with probability over the random ωi ∼ µ greater than 1− δ.

It is easy to see that the random feature (σ, µ) is admissible when σ is bounded.

Therefore, we have the following corollary.

Corollary III.9. When σ is bounded and Hσ,µ is universal. The random feature

(σ, µ) is universal in the sense of Definition III.6.
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Proof. We need only check that (σ, µ) is admissible. Assume |σ| ≤ κ. Then, for any

λ > 0,

sup
ω∈Ω
〈σω, (Σ + λI)−1σω〉 ≤ λ−1‖σω‖2

L2(P) ≤
κ2

λ
.

[15] proved that under the assumptions of Corollary III.9, for any continuous

function f and randomly generated ωi’s, with probability 1, there exist ci’s such

that fN converges to f under L2(P)-norm as N goes to infinity. Note that Def-

inition III.6 only requires the convergence in probability instead of almost surely,

and thus Corollary III.9 seems to be weaker than Huang’s result. They are actu-

ally equivalent. To see this, first note that the statement is on the existence of

the approximator in the linear space of n random bases. Denote by E({ωi}ni=1) the

space spanned by {σ(ωi · (x, 1))}ni=1. The convergence in probability stated in Corol-

lary III.9 implies that there exists a subsequence {nk}∞k=1 such that with probability

1, the infinite sequence of {ωi}∞i=1 sampled randomly satisfies that E({ωi}nki=1) con-

tains an approximator converging to the target function as k goes to infinity. Since

E({ωi}ni=1) ⊂ E({ωi}mi=1) whenever n ≤ m, the almost sure convergence holds for all

n.

The above corollary shows that random ReLU features with parameter distribu-

tion µ supported on the ellipsoid around the origin can approximate any continuous

function with high probability over the random choice of parameter ωis. We will give

a detailed description of random ReLU features method in the supervised learning

context and discuss its performance in Section 3.4 and Section 3.7.
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3.4 Learning Rate of the Random ReLU Features Method

In this section, we describe a supervised learning algorithm using random ReLU

features, and give a loose upper bound on the number of nodes and sample size

required to achieve an excess risk of ε. The purpose is to show that random ReLU

features method is a universally consistent supervised learning algorithm.

Algorithm 2: Random ReLU features method.

input : {(xi, yi)}mi=1, γ, R, N ;

output: fN(x) =
∑N

j=1 cjReLU(ωj · (xi, 1/γ));

Generate {ωj}Nj=1 ⊂ Sd according to the uniform distribution over Sd;

Choose appropriate loss function ` according to the type of tasks, and solve the

optimization problem:

minimize∑N
j=1 c

2
j≤R2

1

m

m∑
i=1

`

(
N∑
j=1

cjReLU(ωj · (xi, 1/γ)), yi

)

The first hyper-parameter γ plays a similar role of the bandwidth parameter in

random Fourier features method. Since the numerical ranges of features in different

data sets may be large, introducing the bandwidth parameter can help normalize the

data.

The second hyper-parameter R is the constraint on the 2-norm of the outer weights

during the training. Considering the constrained instead of regularized form of op-

timization simplifies the generalization error analysis, and it is also practical based

on our experiment results. In fact, since for a fixed number of random features, the

capacity of the hypothesis class is limited, random features methods are less vulnera-

ble than traditional kernel method. This has been confirmed that carefully choosing

the batch size and step size can avoid overfitting without use of regularizer or norm

constraint in random features methods in regression tasks [6].
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When the target function belongs to HReLU,τd , the standard statistical learning

theory guarantees that Algorithm 2 will return a solution with excess risk sufficiently

small if the sample size m and the number of features N are large enough and R is

chosen to be greater than 2‖f0‖ReLU,τd . Then we have the following theorem.

Proposition III.10. Let ` be the hinge or logistic loss, and f0 ∈ HReLU,τd with norm

less than Rf0. If we choose m samples and N random features, where

m ≥

[(
4 + 2

√
2 ln

1

δ

)
R(
√
r2 + 1 + 1)

ε

]2

,

and

N ≥ 5(r2 + 1)

ε2
ln

(
16(r2 + 1)

ε2δ

)
,

and set γ = 1 and R = 2Rf0 in Algorithm 2. Then, with probability greater than

1− 2δ, we have

R`(fN)−R`(f0) ≤ 3ε ,

where fN is the solution returned by Algorithm 2.

Proof. Recall that the radius of X is r. Since f0 ∈ HReLU,τd and its norm is less than

Rf0 , by Theorem II.2, there exists

g : x 7→
N∑
i=1

ciReLU(ωi · (x, 1)) ,

with
∑
c2
i ≤ 4R2

f0
, such that with probability greater than 1 − δ over the features

{ωi}Ni=1,

(3.5) ‖g − f0‖L2(P) ≤ ε ,

given that

N ≥ 20(r2 + 1)

ε2
ln

(
64(r2 + 1)

ε2δ

)
.
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This implies that

(3.6) R`(g)−R`(f0) ≤ ε .

Next, we want to bound the excess risk between the solution fN returned by the

algorithm and g. Denote the RKHS induced by ReLU and the empirical distribution

over {ωi}Ni=1 by HN . Then both fN and g belongs to B(2Rf0), the ball centered at

0 with radius 2Rf0 in HN . By the statistical theory ([26]) we know that

R`(fN)−R`(g) ≤ 2 sup
f∈B(2Rf0 )

∣∣∣∣∣E`(f(x), y)− 1

m

m∑
i=1

`(f(xi), yi)

∣∣∣∣∣(3.7)

≤ 2Rm(` ◦B(2Rf0)) +

√
2 ln

1

δ

2Rf0(
√
r2 + 1 + 1)√
m

(3.8)

≤ 4Rf0

√
r2 + 1√
m

+

√
2 ln

1

δ

2Rf0(
√
r2 + 1 + 1)√
m

,(3.9)

(3.10)

with probability greater than 1− δ. Set

m =

(
4Rf0 + 2Rf0

√
2 ln

1

δ

)
(
√
r2 + 1 + 1)

ε2
.

Taking the union bound over the two inequalities, the proof is complete.

By Proposition III.5, we know that for any continuous function f ∗ and ε > 0,

there exists f0 ∈ HReLU,τd such that its RKHS norm is less than R and

‖f0 − f ∗‖L2(P) ≤ ε .

This proves the following statement.

Proposition III.11. The random ReLU features method (Algorithm 2) is universally

consistent.
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To obtain a meaningful learning rate of random ReLU methods beyond the uni-

versal consistency of the algorithm. We need to obtain tight upper bounds on the

generalization error and approximation error. The generalization error bound tighter

than Proposition III.10 can be obtained by using local Rademacher complexity as in

Chapter II.

For the approximation error, if a function f does not belong to the RKHS of

uniform ReLU features, we want to find a function g in the RKHS to approximate

it. In particular, to study the learning rate of random ReLU features support vector

machines, we need to know how to construct an approximator in the RKHS for

the Bayes classifier sign(2η(x) − 1). Here we may adopt the Assumption II.14 that

∆x ≥ τ for any x ∈ X1∪X−1 and η(x) > 1
2

for all x. Again, we consider that X ⊂ Sd.

Then following the proof of Proposition 3 of [3], we can construct the approximator

of the Bayes classifier by

g(x) =

∫
Sd

sign(2η(y)− 1)
1− r2

(1 + r2 − 2r(x · y))(d+1)/2
dσd(y) .

Then by choosing 1− r = C(d)δ−2/(d+1), we have ‖g‖RKHS ≤ δ and

sup
x∈X
|sign(2η(x)− 1)− g(x)| ≤ C(d, τ)δ−2/(d+1) .

And we also have |g(x)| ≤ 1 for all x. If we further have that the spectrum of the

kernel operator against the data distribution decays in the rate λi = O(i−d/2), then

we can prove that the learning rate of random ReLU with optimized feature sampling

will achieve O(m−1/8) with m samples and
√
m random features. If the spectrum of

the kernel operator against the data distribution decays exponentially, the learning

rate can be largely improved to O(1/m) with logm features. However, it is not clear

how to characterize the data distribution satisfying this requirement on Sd, if such a

data distribution exists.
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We also test the performance of random ReLU features method on several datasets

and make a comparison to random Fourier features in Section 3.7.

3.5 Multi-layer Approximation

In this section, we will prove that the composition of functions in HReLU,τd can be

approximated by multi-layer ReLU networks with bounded weights.

Barron showed that any function f in ΓR (see Section 3.2) can be approximated by

a single-hidden-layer sigmoidal neural network as described by Equation 3.1, with

sigmoidal σ, outer weights
∑
|ci| < R and L2(P) approximation error less than

R/
√
N .

To prove a similar quantitative approximation result for ReLU networks, but with

bounds on the inner weights, we consider the function class ΛR whose members have

the representation described by Equation 3.11.

(3.11) f(x) =

∫
Ω

ReLU(ω · (x, 1)) dµ(ω) ,

where µ is a signed measure satisfying
∫

Ω
|ω| d|µ|(ω) <∞. We further denote ΛR(X )

to be the subset of Λ(X ) such that
∫

Ω
|ω| d|µ|(ω) ≤ R.

Compared to Barron’s class, our definition of ΛR uses the Euclidean norm of ω

instead of |·|X . For compact X with radius r, |ω|X ≤ r|ω|. On the other hand, as long

as the convex hull of X ∪ {0} has non-empty interior, there always exists a constant

c such that |ω|X ≥ c|ω|. So in most cases | · | and | · |X only differ by a constant

factor. We should note that the integral representation of f in Equation 3.11 is not

unique. There exist cases where the same f can expressed by several different µ’s,

but only some of them satisfy the constraint of ΛR(X ). The original Barron’s class

exhibits a similar situation. For example, in the case where the Fourier transform

of an extension of f to the entire space is integrable, it provides a complex measure
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that generates f , and such an extension is not unique.

Some properties of ΛR(X ) and Λ(X ) are given below.

Proposition III.12.

1. Λ(X ) consists of continuous functions.

2. Functions in ΛR(X ) are R-Lipschitz.

3. Assume that µ is a probability measure on Ω with
∫

Ω
|ω|2 dµ(ω) = M2. Then

{f : ‖f‖HReLU,µ
≤ R} ⊂ ΛR

√
M2

(X ).

4. Λ(X ) is universal.

Proof.

1. This is implied by the second statement.

2. ReLU is 1-Lipschitz. For f in ΛC(X ) and x1, x2 in X ,

|f(x1)− f(x2)| =
∣∣∣∣∫ (ReLU(ω · (x1, 1))− ReLU(ω · (x2, 1)) dρ(ω)

∣∣∣∣
≤
∫
|ReLU(ω · (x1, 1)− ReLU(ω · (x2, 1)| d|ρ|(ω)

≤
∫
|ω · (x1 − x2, 0)| d|ρ|(ω)

≤ R|x1 − x2| .

3. For any f in the ball of radius R of the RKHS HReLU,µ, we have that

f(x) =

∫
σ(ω · (x, 1))g(ω) dµ(ω) and

∫
g2(ω) dµ(ω) ≤ R2 .

Then ∫
|ω||g(ω)| dµ(ω) ≤

(∫
ω · ω dµ(ω)

∫
g2(ω) dµ(ω)

)1/2

≤
√
M2R .
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4. Since

Λ(X ) ⊃
⋃
R>0

{
f ∈ HReLU,µ | ‖f‖HReLU,µ

≤ R
}

= HReLU,µ ,

Λ(X ) is universal, by Proposition III.4. This can also be shown by the fact

that Equation 3.1 belongs to Λ and the set of neural networks with ReLUs as

activation nodes is universal.

Later we will directly extend to the multi-layer ReLU network approximation

results for Λ to HReLU,τd using the third property in Proposition III.12. Usually

HReLU,µ is strictly included in Λ and so is Λ in C(X ). Indeed, when µ is absolutely

continuous with respect to Lebesgue measure, for any fixed ω, ReLU(ω·(x, 1)) belongs

to Λ(X ), but not HReLU,µ. And Λ(X ) only contains Lipschitz functions, but there

clearly exist continuous functions over X that are not Lipschitz.

For the functions in ΛR(X ), we can approximate them by ReLU networks. Stronger

than Barron’s approximation theorem, our theorem provides O(1) upper bounds for

both inner and outer weights of fN .

Theorem III.13. Assume that X is bounded by a ball of radius r. P is a probability

measure on X . For any f ∈ ΛR(X ), there exists g(x) =
∑N

i=1 ciReLU(ω̃i ·(x, 1)) with

|ci| = R̃/N ≤ R/N , and ‖ω̃i‖ = 1 for all i, such that ‖f − g‖L2(P) ≤ R
√
r2 + 1/

√
N .

It is not surprising that as with Barron’s work, the key step of the proof is the

Maurey’s sparsification lemma (see Section 3.1). With this lemma, we can prove our

main theorem.
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Proof. If f is constantly 0, we only need to choose ci to be 0 for all i ∈ [N ]. Now

assume that f is not constantly 0. Then we can always restrict the feature space

to S = Rd+1\{0} and have 0 <
∫
S
|ω| d|ρ|(ω) = R̃ ≤ R. f can be written into the

following form

f(x) =

∫
S

R̃τ(ω)ReLU

(
ω · (x, 1)

|ω|

)
|ω|
R̃

d|ρ|(ω) ,

where τ(ω) equals 1 when ω belongs to the positive set of ρ and -1 when it belongs

to the negative set of ρ. Since |ω|
R̃

d|ρ|(ω) is a probability measure and∥∥∥∥R̃τ(ω)ReLU

(
ω · (x, 1)

|ω|

)∥∥∥∥
L2(P)

≤ R̃
√
r2 + 1 ,

we can apply Lemma III.3 and get the conclusion that there exists ωis such that∥∥∥∥∥f − 1

N

N∑
i=1

R̃τ(ωi)ReLU

(
ωi · (x, 1)

|ωi|

)∥∥∥∥∥
L2(P)

≤ R̃
√
r2 + 1√
N

.

By setting ω̃i = ωi/|ωi| and ci = R̃τ(ωi)/N , the statement is proved.

Our theorem shows that for ReLU networks to approximate the functions in

ΛR(X ) within an error of ε, only O(C/ε2) nodes are required. Moreover, every

outer weights in front of the nodes are bounded by O(ε2) and only differ by signs,

and the inner weights are of unit length. Compared with the theorem in [5], where

outer weights are bounded by a constant under `1 norm, but bound on inner weights

depends inversely on the approximation error, our extra bounds on inner weights

largely shrink the search area for approximators. This improvement comes from the

fact that functions in ΛR(X ) are defined by the transformation induced by ReLU

functions, which is homogeneous of degree 1.

Inspired by [22]’s work, we also extend our result to the composite of functions in

ΛR. First, we need to define the class ΛR(X ) for vector-valued functions.
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Definition III.14. For a map f from Rm to Rn, we say that it belongs to the class

ΛR(X ) if each component (f)i ∈ ΛRi(X ) for 1 ≤ i ≤ n and
∑

iR
2
i ≤ R2.

Note that Proposition III.12 (2) still holds for the vector valued function class ΛR.

The following theorem, as an analogy to Theorem 3.5 in [22], shows that the

composition of functions in ΛR can be approximated by a multi-layer ReLU network

to approximate it. And all the weights in the neural network can be controlled by

constants related to R and dimensions of functions. This result justifies what type

of functions can be learned when the weight matrices of multi-layer ReLU networks

are constrained by some constants.

Proposition III.15. Assume that for all 1 ≤ i ≤ L + 1, Ki is a compact set with

radius r in Rmi, among which K1 = X . Let Bmi denote the unit ball in Rmi. P is a

probability measure on K1. fi : Rmi → Rmi+1 belongs to ΛRi(Ki + sBmi) for an s > 0

and any 1 ≤ i ≤ L. Then for ε > 0, there exists a set SL ⊂ K1 with

P(SL) > 1− ε2

s2

L−1∑
i=1

i2∏L
j=i+1R

2
j

,

and an L-layer neural networks g1:L where

gi : Rmi → Rmi+1

(gi(x))j =

Ni∑
k=1

ci,j,kReLU(ωi,j,k · (x, 1))

Ni =

∏L
j=iR

2
j ((r + s)2 + 1)

ε2

such that (∫
SL

‖f1:L − g1:L‖2 dP
)1/2

≤ Lε .

Moreover, the ith layer of the neural network g1:` contains mi+1Ni nodes.
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Let Wi→i+1 denote the weight matrix from layer i to layer i + 1 for 0 ≤ i ≤ L,

where W0→1 denotes the weights from input x to the first layer of nodes and WL→L+1

denotes the weights from the last layer to the output. Then we have

‖W0→1‖F ≤
L∏
i=1

Ri

√
m2((r + s)2 + 1) ,

‖Wi→i+1‖F ≤
√
mi+2 for 1 ≤ i ≤ L− 1 ,

‖WL→L+1‖F ≤
√

(r + s)2 + 1 .

Each bias term is bounded by 1.

Proof. For ` = 1, we construct the approximation g1 for f1 by applying Theo-

rem III.13 to each component of f1. First, set S1 = K1.∫
S1

‖g1(x)− f1(x)‖2 dP(x) =

m2∑
i=1

∫
S1

(f1(x)− g1(x))2
i dP(x)

≤
m2∑
i=1

R2
1,i((r + s)2 + 1)

N1

≤ R2
1((r + s)2 + 1)

N1

.

Set

N1 =

∏L
i=1 R

2
i ((r + s)2 + 1)

ε2

and the conclusion holds for ` = 1. Assume that there exist g1:` and S` as described

in the theorem. Define

S`+1 = S` ∩ {x ∈ K1 : ‖g1:`(x)− f1:`(x)‖ ≤ s} .

Then by Markov’s inequality and induction assumption,

P(S`+1) ≥ 1− ε2

s2

`−1∑
i=1

i2∏L
j=i+1R

2
j

− ε2`2

s2
∏L

i=`+1R
2
i

.

Then we want to construct g`+1 on g1:`(S`+1) to approximate f`+1, again by applying

Theorem III.13 to each component of f`+1. Note that the measure we consider here
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is the push-forward of P by g1:`, which is a positive measure with total measure less

than 1. ∫
g1:`(S`+1)

‖g`+1(x)− f`+1(x)‖2 dg1:`(P)(x) ≤
R2
`+1((r + s)2 + 1)

N`+1

.

And by triangle inequality,(∫
S`+1

‖g1:`+1(x)− f1:`+1(x)‖2 dP(x)

)1/2

≤

(∫
S`+1

‖g`+1 ◦ g1:`(x)− f`+1 ◦ g1:`(x)‖2 dP(x)

)1/2

+

(∫
S`+1

‖f`+1 ◦ g1:`(x)− f`+1 ◦ f1:`(x)‖2 dP(x)

)1/2

≤
R`+1

√
(r + s)2 + 1√
N`+1

+R`+1
`ε∏L

i=`+1Ri

.

Set

N`+1 =
((r + s)2 + 1)

∏L
i=`+1R

2
i

ε2
,

and we get the upper bound(∫
S`+1

‖g1:`+1(x)− f1:`+1(x)‖2 dP(x)

)1/2

≤ (`+ 1)ε∏L
i=`+2Ri

.

Now let’s examine the weight matrix and the bias term of the neural network g1:`.

Note that the weight matrix from ith layer to the (i + 1)th layer of g1:` consists of

ci,j,k from gi and ωi+1,j,k from gi+1. For 1 ≤ i ≤ L− 1, the exact form of the weight
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matrices is given by the matrix product Wi→i+1 = AB, where

Ai→i+1 =



(ωi+1,1,1)1 · · · (ωi+1,1,1)mi+1

...
. . .

...

(ωi+1,1,Ni+1
)1 · · · (ωi+1,1,Ni+1

)mi+1

(ωi+1,2,1)1 · · · (ωi+1,2,1)mi+1

...
. . .

...

(ωi+1,2,Ni+1
)1 · · · (ωi+1,2,Ni+1

)mi+1

...
. . .

...

(ωi+1,mi+2,1)1 · · · (ωi+1,mi+2,1)mi+1

...
. . .

...

(ωi+1,mi+2,Ni+1
)1 · · · (ωi+1,mi+2,Ni+1

)mi+1



Bi→i+1



R̃i,1τi,1,1
Ni

· · · R̃i,1τi,1,Ni
Ni

0 · · · 0 0 · · · 0

0 · · · 0 R̃i,2τi,2,1
Ni

· · · R̃i,2τi,2,Ni
Ni

0 · · · 0
...

. . .
...

0 · · · 0 0 · · · 0 R̃i,mi+1
τi,mi+1,1

Ni
· · · R̃i,mi+1

τi,mi+1,Ni

Ni


.

τi,j,ks are all ±1. Since |ωi,j,k| ≤ 1, each components are also bounded by 1. For any

row of Wi→i+1,

‖(Wi→i+1)k‖2 =

mi+1∑
j=1

Ni

R̃2
i,j

N2
i

≤ R2
i

Ni

.

Hence ‖Wi→i+1‖2
F ≤ R2

iNi+1mi+2/Ni. Plugging into the expressions of Ni and Ni+1

and taking square root, we get the upper bound mi+2 as in the statement. For the

bias term, we simply use the fact that it is a coordinate of ω and thus bounded by 1.

For the bottom layer the weight matrix is just given by A0→1, its Frobenius norm

can only bounded by (N1m2)1/2. On the other hand, the weight matrix of the top
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layer is given by BL→L+1, whose Frobenius norm is bounded by RL/
√
NL. Since

Ni is of the scale 1/ε2, ‖A0→1‖F is of the scale ε while ‖BL→L+1 is of the scale 1/ε.

To resolve this issue, we can rescale A0→1 down by a factor of ε. Because the ReLU

nodes are homogeneous of degree 1, for the function g1:L remains unchanged, we need

only scale all the bias terms in the intermediate layers down by the same factor ε,

and scale up BL→L+1 by the factor of 1/ε. For ε < 1, this rescaling keeps the weights

matrices in the intermediate layers unchanged, the bias terms are still all less than

1. And

‖εA0→1‖F ≤
L∏
i=1

Ri

√
m2((r + s)2 + 1) ,

‖BL→L+1/ε‖F ≤
√

(r + s)2 + 1 .

Let’s define the RKHS norm for a vector valued function as the 2-norm of the

RKHS norm of its component; that is, for f : Rn → Rm and a RKHS H on Rn,

‖f‖2
H :=

∑m
i=1 ‖(f)i‖2

H.

If we consider the random ReLU features whose feature distribution µ is supported

on Sd, by Proposition III.12 (3), we have that for any f with ‖f‖ReLU,µ ≤ R, f ∈

ΛR(X ). So for composition of functions in HReLU,µ we can also construct multi-layer

ReLU networks to approximate it. The depth separation result in the next section

shows that this is a specific advantage of deep networks compared to shallow ones.

3.6 Depth Separation for HReLU,τd

In this section, we prove that the depth separation result similar to [12] and [22]

also holds for functions in HReLU,τd ; that is, functions with poly(d) RKHS norm in

HReLU,τd cannot approximate compositions of such functions.
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Proposition III.16. There exist universal constants c, C such that for any d > C,

there exist a probability measure P on Rd, and two functions f : Rd → R and

g : R → R with ‖f‖ReLU,τd and ‖g‖ReLU,τd less than poly(d) so that the following

holds. For every two-layer ReLU networks h,

‖h− f ◦ g‖L2(µ) ≥ c .

The proof is based on the construction of [12], but we need to modify the functions

considered in their work so that they belong to HReLU,τd with poly(d) norm. This

result shows that the composition of functions in HReLU,τd generates substantially

more complicated functions than those in HReLU,τd .

Before the proof of the depth separation, we first show how to upper bound the

RKHS norm ‖ · ‖ReLU,τd of the function
√
|x|2 + 1. To get the upper bound, we start

with the polynomials of projection f(x̃) = α(β · x̃)p defined on Sd, and its RKHS

norm in the space induced by ReLU(ω · x̃) and τd. We denote this RKHS by H̃. And

we use x̃ to emphasize that these are points on Sd, while x represents a point in Rd.

A sufficient condition for the membership of RKHS induced by the random feature

(ReLU, τd) is provided in [4]. It shows that functions with bounded d
2

+ 3
2

derivatives

are in HReLU,τd , and the RKHS norm is upper bounded by the dd
2

+ 3
2
eth derivative.

For the polynomials of projection, we provide a different way to evaluate a tighter

upper bound of its norm.

The tool we use here is the spherical harmonics. The kernel derived from the

uniform ReLU feature (ReLU, τd) can be explicitly written as follows [7],∫
Sd

ReLU(ω · x̃)ReLU(ω · x̃′) dτd(ω) :=

√
1− (x̃ · x̃′)2 + (π − arccos(x̃ · x̃′)) x̃ · x̃′

2(d+ 1)π
,

Note that we rewrite the kernel function in a different but equivalent form com-

pared to the formula in Cho’s work to emphasize that it is of the form k(x̃ · ỹ), so
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called dot product kernels. The kernel function k(s) has the Taylor expansion

1

2(d+ 1)

(
1

π
+

1

2
s+

1

2π
s2 +

1

π

∞∑
k=2

(2k − 3)!!

(2k)!!

1

2k − 1
s2k

)
=
∞∑
j=0

ajs
j .

Then by [2], we know that k(x̃ · ỹ) has the Mercer type expansion

k(x̃ · ỹ) =
∞∑
i=1

N(i,d)∑
j=1

λiY
d
i,j(x̃)Y d

i,j(ỹ) ,

where {Y d
i,j} are the spherical harmonics on Sd, N(i, d) is the dimension of the

eigenspace corresponding to ith eigenvalue and

λi = |Sd−1|
∫ 1

−1

k(s)P d
i (s)(1− s2)

d−2
2 ds

= |Sd−1|
∫ 1

−1

∞∑
j=0

ajs
jP d

i (s)(1− s2)
d−2
2 ds

=
∞∑
j=0

ajc(i, j, d) .

c(i, j, d) > 0 when i ≤ j and i ≡ j mod 2 and c(i, j, d) = 0 otherwise. Now consider

the function f(x̃) = α(β · x̃)p. Without loss of generality, we assume that β ∈ Sd. Its

projection onto the subspace spanned by Y d
i,j is given by the Funk-Hecke formula∫

Sd
α(β · x̃)pY d

i,j(x̃) dσd(x̃) = αc(i, p, d)Y d
i,j(β) .

In other words, for even number p or p = 1,

α(β · x̃)p =

p∑
i=1

∑
j

αc(i, p, d)Y d
i,j(β)Y d

i,j(x̃) .

Then the RKHS norm of f is given by

‖f‖2
H̃ = α2

p∑
i=1

∑
j

c2(i, p, d)

λi

(
Y d
i,j(β)

)2
.

Note that λi ≥ apc(i, p, d). So we have

‖f‖2
H̃ ≤ α2

p∑
i=1

∑
j

a−1
p c(i, p, d)

(
Y d
i,j(β)

)2

= a−1
p α2(β · β)p

= a−1
p α2 .
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Since ap ≥ 1
2(d+1)πp2

, for p = 1 or even p, we have the following lemma.

Lemma III.17. ‖α(β · x̃)p‖H̃ ≤
√

2(d+ 1)παp.

Using this result, we can further justify whether a function belongs to the H̃ based

on its Taylor expansion.

Next, we show that the function g(x) = α(β · (x, 1))p(1 + ‖x‖2)(1−p)/2 defined on

Rd belongs to HReLU,τd . Assume that f(x̃) = α(β · x̃)p, then

α(β · (x, 1))p(1 + x2)(1−p)/2 =
√
‖x‖2 + 1f

(
(x, 1)√
‖x‖2 + 1

)

=

∫
Sd
h(ω)ReLU(ω · (x, 1)) dτd(ω) ,

for some h ∈ L2(Sd, τd). So

‖g|ReLU,τd ≤ ‖h‖L2(τd) = ‖f‖H̃ ≤
√

2(d+ 1)παp .

When p = 2, α = 1 and β = ~ej, we have∥∥∥∥∥ x2
j√

1 + ‖x‖2

∥∥∥∥∥
ReLU,τd

≤ 2
√

2(d+ 1)π .

And ∥∥∥√1 + ‖x‖2

∥∥∥
ReLU,τd

≤
d∑
j=1

∥∥∥∥∥ x2
j√

1 + ‖x‖2

∥∥∥∥∥
ReLU,τd

≤ 2
√

2π(d+ 1)3/2 .(3.12)

Now we prove Proposition III.16.

Proof. For any ωi ∈ Sd and ci ∈ R, we define

fi(t) = ciReLU(t(1− (ωi)
2
d+1)1/2 + (ωi)d+1) .

Then

fi

(
x · (ωi)1:d

‖(ωi)1:d‖

)
= ciReLU(ωi · (x, 1)) ,
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where we use the convention that 0/‖0‖ = 0. Then by Proposition 13 of [12], we

know for any ωi and ci, there exists a function g̃ and data distribution P such that∥∥∥∥∥
N∑
i=1

fi

(
x · (ωi)1:d

‖(ωi)1:d‖

)
− g̃(x)

∥∥∥∥∥
L2(P)

≥ δ

α
,

where δ and α are two constants. Now we construct g̃ as a composite function g ◦ f .

We choose f(x) =
√
‖x‖2 + 1. By Equation 3.12, ‖f‖H ≤ 2

√
2π(d + 1)3/2. The

data distribution is also chosen to be the squared Fourier transform of the indicator

function of unit volume ball, the same with [12]. Then we construct g based on the

function g̃ in Proposition 13 in [12]. By Lemma 12 in Eldan and Shamir’s work, we

know that there exists N -Lipschitz function f1 where N = c(αd)3/2 supported on

[α
√
d, 2α

√
d] with range in [−1, 1] such that

‖f1(‖x‖)− g̃(‖x‖)‖2
L2(P) ≤

3

α2
√
d
.

Now we define f2(t) = f1(
√
t2 − 1). It is supported on [

√
α2d+ 1,

√
4α2d+ 1] and

3N -Lipschitz. And we have f2(
√
‖x‖2 + 1) = f1(‖x‖). The last step is to find an

approximator from HReLU,τd for f2. This can be done be applying Proposition 6 in

[4], which implies in our setup that there exists a function f with ‖f‖H ≤M and

sup
|t|≤
√

4α2d+1

|f(t)− f2(t)| ≤ CN
√

4α2d+ 1

(
M

3N
√

4α2d+ 1

)−1/2

,

where C is a universal constant. By setting M = (3N
√

4α2d+ 1)3/2α2
√
d, we have

‖f ◦ g − g̃‖L2(P) ≤ O

(
1

αd1/4

)
.

Therefore, we proved that∥∥∥∥∥
N∑
i=1

fi

(
x · (ωi)1:d

‖(ωi)1:d‖

)
− f ◦ g(x)

∥∥∥∥∥
L2(P)

≥ δ

2α
:= c ,
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3.7 Experiments

We compared the performance of random ReLU features method to the popu-

lar random Fourier features with Gaussian feature distribution on four synthetic

data sets (see Figure 3.7) and three real data sets: MNIST [21], adult and covtype

[10]. Our purpose is to show that in practice, random ReLU features method dis-

play comparable performance with random Fourier features models and have several

advantages over random Fourier features with respect to computational efficiency.
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Figure 3.1: Illustration of distributions of synthetic data. Top left: sine. Top right: strips. Bottom
left: square. Bottom right: checkboard.

For all four synthetic data sets, we used 20 random features for each method; for

real data sets we used 2000 random features. For the binary classification tasks, we

used hinge loss. For the multi-class classification tasks like MNIST and covtype, we



78

chose logistic loss. Even though adding a regularization term is popular in practice,

we chose to constrain the 2-norm of the outer weights by a large constant (1000 for

synthetic data sets and 10000 for real data sets) as described in Section 3.4. The

optimization method was the plain stochastic gradient descent and the model was

implemented using Tensorflow [24]. The learning rate and bandwidth were screened

carefully for both models through grid search.

In Figure 3.2, we present the dependence of two methods on the bandwidth pa-

rameters in the screening step. Each point displays the best 5-fold cross validation

accuracy among all learning rates. We can see that the performance of random

Fourier features with Gaussian distribution is more sensitive to the choice of band-

width than random ReLU features.
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Figure 3.2: Cross validation accuracy of random Fourier features and random ReLU features. Top
left: adult. Top right: mnist. Bottom: covtype.
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We list the accuracy and training time for two methods in Table 3.1. We can see

that on all the data sets, random ReLU features method requires shorter training

time. It outperforms random Fourier features with higher accuracy on adult and

MNIST data sets. Its performance is similar to random Fourier features on sine,

checkboard and square. However, its performance on strips and covtype data set is

significantly worse.

The training time and testing time (not listed) of random ReLU features are

always shorter than random Fourier features. This is mainly because half of random

ReLU feature vectors coordinates are zero. For random Fourier features, we cannot

expect that.

Table 3.1: Left: accuracy of random ReLU features versus random Fourier features. Right: training
time of random ReLU features versus random Fourier features; Time is shown in seconds.

Fourier ReLU

sine 0.993(0.007) 0.984(0.005)
strips 0.834(0.084) 0.732(0.006)
square 0.948(0.038) 0.934(0.015)
checkboard 0.716(0.045) 0.743(0.027)
adult 0.838(0.002) 0.846(0.002)
mnist 0.937(0.001) 0.951(0.001)
covtype 0.816(0.001) 0.769(0.002)

Fourier ReLU

sine 1.597(0.050) 1.564(0.052)
strips 1.598(0.056) 1.565(0.052)
square 1.769(0.061) 1.743(0.057)
checkboard 1.581(0.078) 1.545(0.073)
adult 6.648(0.181) 5.849(0.216)
mnist 70.438(0.321) 69.229(1.080)
covtype 125.719(0.356) 112.613(1.558)

The depth separation and multi-layer approximation results in Section 3.5 only

prove the existence of the advantage of deeper models. It is not clear whether we

can find good multi-layer approximators with significant better performance than

shallow models. Therefore, we designed a synthetic data set that is supposed to

hard to learn by shallow models according to the depth separation result to test

depth separation phenomenon. The data distribution is rotation invariant over R4

with rapid oscillating density. The classification target function g is ±1 at the high

density region and 0 otherwise. The regression target function g̃ is obtained by

mollifying g with the smooth bump function. See Figure 3.7 for the illustration of
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the data distribution and the target functions.

Figure 3.3: Illustration of distributions of synthetic data for depth separation experiment. Left:
radial density of data. Right: Smoothed (blue) and unsmoothed (red) target labels.

For both classification and regression tasks, we trained three models: random

ReLU models, 2-layer neural nets, and 3-layer neural nets. The random ReLU models

and 2-layer neural nets have exactly the same structure. The only difference is

whether the inner weights are randomly chosen or trained together with top layer.

The performance is examined for two models with 20 nodes up to 5120 nodes. The

3-layer neural nets are simply fully connected with the equal width in each layer. To

make a fair comparison, we maintain the total number of parameters of the 3-layer

neural nets to be the same with the shallow models at each level.

Figure 3.4: Performance of the deep and shallow models in the regression task. Left: the predicted
labels (red) by random ReLU models compared to the true labels (blue) plotted against
normalized radius of data. Middle: the predicted labels (red) by 2-layer neural nets
compared to the true labels (blue) plotted against normalized radius of data. Right:
the predicted labels (red) by 3-layer neural nets compared to the true labels (blue).
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From Figure 3.7 we can see that 3-layer neural nets consistently achieve signif-

icantly better performance and the gap between 2-layer neural nets and random

ReLU features is not as obvious. By plotting the predicted labels on tested data

in Figure 3.4, we can see that 3-layer neural nets indeed learned a function closer

to the true function. The random ReLU models, however, learned a more regular

function and did not adapt to the rapid oscillation of the true labels. It is surprising

that 2-layer neural nets’ performance is not significantly better than random ReLU

and the learned function is also quite similar to the one learned by random ReLU.

This may imply that the structure of the model has a more important impact on

the performance than the number of adjustable parameters. The performance of the

three models in classification tasks is consistent with that in regression tasks.1

0 1 2 3 4 5 6 7 8
log(# of parameters)

0.3

0.4

0.5

0.6

0.7

0.8

m
se

Performance of Shallow and Deep Models

RF
NN1
NN2

0 1 2 3 4 5 6 7 8
log(# of parameters)

0.4

0.5

0.6

0.7

0.8

ac
cu
ra
cy

Performance of Shallow and Deep Models

RF
NN1
NN2

Figure 3.5: Left: mean squared loss of the deep and shallow models in the regression task. Right:
classification accuracy of the deep and shallow models in the classification task.

1All the code can be downloaded from https://github.com/syitong/randrelu



CHAPTER IV

Open Problems and Future Works

This chapter collects the problems that are important for understanding random

features method but have not been solved yet, and discusses how the knowledge of

random features can help us understand the performance of neural networks better.

4.1 Open Problems for Random Features

How to obtain optimized random features? We have seen that the optimized

random feature plays an important role in the approximation error analysis, and

experiments show that using reweighted feature selection (Algorithm 1) indeed im-

proves the performance of the algorithm in classification tasks. However, there are

two issues to be resolved. First, the reweighted feature selection algorithm can only

return approximate optimized random features. We do not understand how the

hyper-parameters in reweighted feature selection affect the learning rate of the algo-

rithm if approximate random features are used. Second, since the optimized random

feature only depends on the data distribution PX , in the cases where PX is known,

for example in a controlled experiment, how to design the random feature is also a

valuable question.

82
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Dependence on the dimension of raw features. The fast learning rate of RFSVM

in the unrealizable case depends on d, the dimension of X , exponentially. This is

caused by the fact that the approximation error between the approximator in the

RKHS of the Gaussian kernel and the target Bayes classifier depends on d. Similarly

for the random ReLU feature, we also have the approximation error depending on d.

Considering that in practice, the dimension of raw data is usually very high, such an

exponential dependence on d is not acceptable. Our experiments on high dimensional

synthetic data and MNIST seems to confirm the impact of the dimension. We do

not know the optimality of the dependence on the dimension yet, and neither how

to make use of the fact that many high dimensional data in practice actually have a

small intrinsic dimension.

Decay rate of the spectrum of ΣReLU,τd . To obtain the learning rate of random

features methods, we need to understand the decay rate of the operator induced by

the random ReLU feature. Currently, we can only characterize the decay rate in the

case where PX is the uniform distribution over Sd by using the spherical harmonics.

In this case, the decay rate is polynomial and thus the learning rate is not useful

for explaining the practical performance. For some other common data distribution

such as the sub-Gaussian or bounded data distribution, we do not know how to

characterize the decay rate of the operator yet. If we can prove exponential decay

rate for some data distribution, then it is possible to prove the fast learning rate of

the random ReLU feature.

4.2 Random Features and Neural Networks

Historically, one important motivation of random features is to obtain a neural

network model without solving a non-convex optimization problem. Nowadays, using
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stochastic gradient descent to solve non-convex optimization problems seems to be

a standard way to train neural networks, and it works surprisingly well in practice.

However, we still do not fully understand why this happens. The performance of

random features methods provides some lower bound for that of neural networks,

because random features methods return partially trained neural networks as solu-

tions. If we further optimize the inner weights of a random feature solution with

some norm constraint over inner weights, we can obtain a learning rate guarantee

for the resultant neural network.

The recent progress on the achievability of zero training error, and thus the global

optimality, of training neural networks via gradient descent provides a different way

to understand the connection between random features and neural networks [1, 11].

[1] shows that when an over-parameterized 2-layer neural network is used, 0 training

error is achievable with high probablity over the random initialization of weights.

And the resultant neural network is not far from the randomly initialized one, so

the generalization error is controlled. Then the target function in the RKHS of the

random feature corresponding to the neural network can be efficiently learned by

running gradient descent on the non-convex optimization problem. Meanwhile, with

the over-parameterization assumption, simply optimizing the outer weights with the

inners being fixed after random initialization can also result in a random features

model with 0 training error and bounded generalization error.

All these comparisons between random features and neural networks do not pro-

vide support for the advantage of 2-layer neural networks over the random features

models. Recalling the experiment in Section 3.7, it is actually not clear yet whether

such an advantage exists. On the other hand, it seems that the deep neural networks

indeed have advantage over shallow models based on the evidence from experiments
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and the theoretically confirmed depth separation phenomenon. But there is no the-

ory yet on how and when the gradient descent can find the good multi-layer network

approximator.
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