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DEDICATION

This thesis is dedicated to the crazy ones. The misfits. The rebels. The troublemakers. The ones
who think they can change the world.
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ABSTRACT

Black-box machine learning models are seeing increasing deployment in safety-critical settings,
such as in autonomous vehicles and healthcare settings. This coupling increases the need to have
reliable, post-hoc, distribution-free methods of uncertainty quantification. Among these is “confor-
mal prediction,” which replaces point predictions with “prediction regions,” subsets of the output
space with probabilistic guarantees of covering the truth. Despite such guarantees, these implicitly
defined predictions regions do not immediately lend themselves to practical use. In this thesis, we
propose and develop one such use: model-based decision-making.

We develop this conformal decision-making framework over three works. In the first, we focus
on the development of conformal prediction in the space of scientific inquiry. Increasingly com-
mon in certain domains, such as astrophysics and neuroscience, is the use approximate variational
inference to do posterior estimation for parameters. Unfortunately, there are few guarantees about
the quality of these approximate posteriors. We propose Conformalized Amortized Neural Vari-
ational Inference (CANVI), a procedure that is scalable, provides guaranteed marginal coverage,
and seeks maximal predictive efficiency.

In the next work, we generalize the scope to “predict-then-optimize” problems, where the
decision-maker is forced to estimate the unknown parameters of a task and optimize their decision
against this surrogate objective. In the nominal approach, the parameters predicted are assumed
to precisely coincide with the true, unknown parameters, which can result in suboptimal decision-
making. Towards this end, we develop a robust analog of this nominal problem formulation, called
“Conformal Predict-Then-Optimize” (CPO), and demonstrate how such a robust formulation can
be efficiently solved. In the third work, we demonstrate the generality of CPO, demonstrating
its extensibility to recent works that proposed vector conformal scores and to model-based linear
control problems.

xi



CHAPTER 1

Introduction

Wonder is the beginning of wisdom.

Socrates

Machine learning algorithms are seeing increasingly widespread adoption in safety-critical set-
tings, including in autonomous vehicles, medical applications, and general policy enforcement
[Jenn et al., 2020, Gharib and Bondavalli, 2019, Tambon et al., 2022]. For this reason, the need
for uncertainty quantification has become ever more apparent. Such uncertainty estimates can be
subsequently used in several manners, from simply forcing the model to abstain from making a
prediction [Hamid et al., 2017, Schuster, 2025] to having a human expert verify the model pre-
dictions in-the-loop [Mozannar and Sontag, 2020, Keswani et al., 2021] to making downstream
decisions that design for worst-case scenarios from the upstream model [Gabrel et al., 2014].

Classically, such uncertainty estimates would be derived from either Bayesian statistics or large-
sample asymptotic analyses [Bolstad and Curran, 2016, Bucher, 2009]. These methods, however,
are becoming increasingly at odds with those models that are achieving state-of-the-art predic-
tive performance. In particular, parametric models have been largely replaced by black-box mod-
els across many safety-critical settings, most prominently in the form of large language mod-
els (LLMs) and agentic workflows [Zhang et al., 2024, Liu et al., 2024]. For this reason, there
is increasing interest in the accompanied development of methods of uncertainty quantification
that only require “black-box” access to such models [Lee and Chen, 2009, 2007]. One particular
method in this vein is “conformal prediction” [Shafer and Vovk, 2008, Angelopoulos et al., 2023].
While much work has been directed towards the improvement of the uncertainty estimation pro-
duced by conformalized predictors, there has been comparatively little emphasis placed on how
such uncertainty estimates can be practically leveraged.

The central focus of this thesis, therefore, is to answer the following question:

How can we design principled uncertainty estimates for black-box models and use such

uncertainty optimally for decision-making?

1



We answer this question over the course of three chapters, with each making novel contribu-
tions to the broader space of robust decision-making. In Chapter 2, we focus on scientific decision-
making: scientific hypotheses are being increasingly informed by simulation-based parameter in-
ference. Investigations across certain domains, such as astrophysics and neuroscience, however,
have reached a scale where classical Bayesian inference techniques are rendered intractable and
call for the use of ML-based approximate inference techniques. Unlike classical approaches, these
approximations lack any guarantees, rendering subsequent claims on scientific conclusions dubi-
ous. We, therefore, here develop a novel approach to leverage conformal prediction to correct for
these potential deficiencies of coverage of amortized variational inference and do so in a manner
that targets maximal predictive efficiency.

This use of conformal prediction for calibrated scientific decision making, however, is merely
a microcosm of the more general phenomenon of decision-making under uncalibrated predictors.
We, therefore, generalize from the scientific context to a broader “predict-then-optimize” prob-
lem setting in Chapter 3, in which an upstream prediction informs the setup of a downstream
decision-making problem. In place of making a decision simply by trusting this upstream predic-
tor, we develop a novel framework that considers a robust formulation informed by conformalizing
the upstream predictor, by which formal guarantees of the robust decision under the true, unseen

parameter can be established. This investigation is amongst the first in the broader conformal
prediction community to concretely address the question of:

What can prediction regions with formal coverage guarantees, especially over continuous spaces,

be used for?

Since this initial contribution, a number of follow-up works in the broader conformal prediction
community have generalized both the framework and applications of conformal decision-making.
Chapter 4 presents two such extensions. In particular, we first highlight how this framework can
be extended for decision-making under predictors conformalized using a recently proposed ex-
tension to the conformal prediction framework in which the standard scalar score function is re-
placed with a vector score formulation. We then extend this framework to settings of robust linear
quadratic regulator (LQR) control, developing the first linear control framework and algorithm to
have distribution-free, worst-case regret guarantees under dynamics misspecification.

We conclude this report by finally motivating some future-looking extensions in Chapter 5,
where we highlight further applications that would be of interest in the intersection of decision-
making with scientific discovery and engineering.

2



1.1 Preliminaries

We now present the background content necessary to understand the remainder of this thesis. The
presentation herein is a compressed version of what would be found in more comprehensive treat-
ments of each background topic. We first present a background on conformal prediction, the
framework that underpins the collection of methods developed throughout this thesis. We then
present the remaining topics, making reference to the chapter in which such material is respec-
tively leveraged.

1.1.1 Conformal Prediction

Given a dataset D = {(x(1), y(1)), . . . (x(N), y(N))} of i.i.d. observations from a distribution
P(X, Y ), conformal prediction [Angelopoulos and Bates, 2021, Shafer and Vovk, 2008] produces
prediction regions with distribution-free theoretical guarantees. A prediction region maps from
observations of X to sets of possible values for Y and is said to be marginally valid at the 1 − α

level if PX,Y (Y /∈ C(X)) ≤ α.
Split conformal is one popular version of conformal prediction. In this approach, marginally

calibrated regions C are designed using a “score function” s(x, y). Intuitively, the score function
should have the quality that s(x, y) is smaller when it is more reasonable to guess that Y = y

given the observation X = x. For example, if one has access to a function f̂(x) which attempts
to predict Y from X , one might take s(x, y) = ∥f̂(x) − y∥. The score function is evaluated
on each point of a dataset DC called the “calibration dataset,” yielding S = {s(x(j), y(j))}NC

j=1,
where NC := |DC|. Note that the calibration dataset cannot be used to pick the score function; if
data is used to design the score function, it must independent of DC . We then define q̂(α) as the
⌈(NC+1)(1−α)⌉/NC quantile of S. For any future x, the set C(x) = {y | s(x, y) ≤ q̂(α)} satisfies
1 − α ≤ P(Y ∈ C(X)). This inequality is known as the coverage guarantee, and it arises from
the exchangeability of the score of a test point s(x′, y′) with S. The coverage guarantee possesses
finite-sample properties.

As noted in Vovk’s tutorial [Shafer and Vovk, 2008], while the coverage guarantee holds for any
score function, different score functions may lead to more or less informative prediction regions.
For example, the score s(x, y) = 1 leads to the highly uninformative prediction region of all
possible values of Y . Predictive efficiency is one way to quantify informativeness, defined as the
inverse of the expected Lebesgue measure of the prediction region, i.e. (E[|C(X)|])−1 [Yang and
Kuchibhotla, 2021, Sesia and Candès, 2020]. Methods employing conformal prediction often seek
to identify prediction regions that are efficient and calibrated.

3



1.1.2 Variational Inference

We now discuss variational inference, the central focus of Chapter 2. Bayesian methods aim to
sample the posterior distribution P(Θ | X), typically using either MCMC or VI. VI has risen
in popularity recently due to how well it lends itself to amortization. Given an observation X ,
variational inference transforms the problem of posterior inference into an optimization problem
by seeking

φ∗(X) = argmin
φ

D(qφ(Θ)||P(Θ | X)), (1.1)

where D is a divergence and qφ is a member of a variational family of distributions Q indexed by
the free parameter φ. Normalizing flows have emerged as a particularly apt choice for Q, as they
are highly flexible and perform well empirically [Rezende and Mohamed, 2015, Agrawal et al.,
2020]. Amortized variational inference expands on this approach by training a neural network to
approximate φ∗(X). This leads to a variational posterior approximator q(Θ | X) = qφ∗(X)(Θ)

that can be rapidly computed for any value X . The characteristics of φ∗ depend in part on the
variational objective, D. For instance, using a reverse-KL objective, i.e. DKL(qφ(Θ)||P(Θ | X)),
is known to produce mode-seeking posterior approximations, whereas using a forward-KL objec-
tive, i.e. DKL(P(Θ | X)||qφ(Θ)), encourages mode-covering behavior [Murphy, 2023]. Popular
variational objectives include the Forward-Amortized Variational Inference (FAVI) objective [Am-
brogioni et al., 2019, Bornschein and Bengio, 2014], the Evidence Lower Bound (ELBO), and the
Importance Weighted ELBO (IWBO) [Burda et al., 2015].

1.1.3 Predict-Then-Optimize

We now discuss predict-then-optimize decision making problems, the central focuses of Chapter 3
and Chapter 4. Predict-then-optimize problems are formulated as

w∗(x) := min
w∈W

E[CTw | x], (1.2)

where w are decision variables, C an unknown cost parameter, x observed contextual variables,
andW a compact feasible region. The predict-then-optimize framework is so called as the nominal
approach first predicts ĉ := f(x) and subsequently solves minw ĉTw. Alternatively, a predictive
contextual distribution P(C | x) is assumed, with respect to which the optimization formulation is
solved. A full review is presented in [Elmachtoub and Grigas, 2022].

This formulation, however, is inappropriate in risk-sensitive downstream tasks. For this rea-
son, recent works have begun investigating a risk-sensitive variant or “robust” alternative to this
traditional formulation, namely by replacing E[CTw | x] with maxĉ∈U(x) ĉ

Tw [Ohmori, 2021,
Chenreddy et al., 2022, Sun et al., 2023], where U(x) is constructed to guarantee coverage of c.
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1.1.4 Representative Points

We now discuss representative points, an aspect studied in Chapter 3. The problem of summarizing
the distribution of a random vector with points Ξ := {ξ(i)}Ni=1 arises in many contexts, such as in
optimal stratification [Dalenius, 1950, Dalenius and Gurney, 1951], density estimation [Flury and
Tarpey, 1993], and signal quantization [Max, 1960]. Such points are known as representative
points (RPs). Denoting the space of all sets Ξ̂ such that |Ξ̂| ≤ n as ζ, the RPs of a random variable
X are

Ξ := argmin
Ξ̂∈ζ

EX

[
min
ξ(i)∈Ξ̂

||X − ξ(i)||22
]
. (1.3)

For a comprehensive review, see [Fang and Pan, 2023]. Despite extensive study, no general algo-
rithm exists for the efficient construction of representative points for arbitrary distributions. Typical
implementations use clustering algorithms, such as Lloyd’s algorithm, on {x(i)}Mi=1 ∼ P(X).

1.1.5 LQR & Control Co-Design

We now present a review of linear controls, a central focus of Chapter 4. The field of controls has a
long history in engineering physics and robotics [Zabczyk, 2020]. In the linear quadratic regulator
(LQR) setup, the state dynamics have a linear form ẋ = Ax+ Bu+ w, where x is the state, u the
control inputs, and w ∼ Dw the noise. Optimal control is then posed as an optimization problem,
with the objective J(u) weighing both the deviation from a target state and the necessary control
input. LQR optimal controllers take a linear feedback form, namely u∗(x) = −K∗x where K∗ is
known as the “optimal gain matrix” and solves

K∗(A,B) := argmin
K∈K(A,B)

E[J(K,A,B)] (1.4)

where J(K,A,B) :=

∫ ∞

0

(x⊤Qx+ (Kx)⊤R(Kx))dt

where K(A,B) := {K : Re(λi(A−BK)) < 0 ∀i} is known as the set of “stabilizing controllers”
for the A,B system dynamics and ẋ = (A−BK)x+w. Variations, where the integral is replaced
by a discretized sum or considered to some finite T , are also of interest. Solving this problem is
often done either by solving the algebraic Ricatti equation (ARE) [Willems, 1971] or via policy
gradient [Sun and Fazel, 2021].

We now briefly summarize the relevant pieces of uncertain co-control design to highlight
the robust control problem subproblem therein; for a full survey, refer to [Azad and Herber,
2022]. Engineering designs can often be specified by parameters θ, which could capture, for
instance, the dimensions of an airfoil or material properties of a DC battery grid. The dynamics
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are highly dependent on the design; for example, an airfoil with a shape θ1 will fly differently
from one given by θ2. Worst-case robust UCCD with dynamics misspecification, thus, solves
minK,θ maxÂ∈A(θ),B̂∈B(θ) E[o(K, Â, B̂, θ)], where ẋ = Âx + B̂u + w and (A(θ),B(θ)) are uncer-
tainty sets of the dynamics for such a design and o is the objective.

Often, the objective takes a decomposable form, namely with one term relating to system con-
trol and the other depending on the design parameter, i.e. o(K,A,B, θ) := ℓ(θ)+J(K,A(θ), B(θ))

[Chanekar et al., 2018, Ahmadi et al., 2023]. One commonly applied solution technique in this
setting is via bilevel optimization, in which an outer optimization loop is performed over design
parameters and an inner one over controllers for the current design iterate [Herber and Allison,
2019, Kamadan et al., 2017]. For this reason, the specification of the robust control subproblem
can be studied independently of the outer design optimization loop, as done herein.

1.1.6 Quantile Envelopes

We finally present a review of quantile envelopes, which form the backbone of the ensembling
approach discussed in Chapter 4. Generalizations of quantiles have a long history in statistics
[Rousseeuw and Struyf, 1998, Serfling, 2002]. Unlike univariate data, multivariate data do not
lend itself to an unambiguous definition of a quantile, as there is no canonical ordering in higher
dimensional spaces. The notion of a “directional quantile” for a random variable X ∈ Rn can,
however, be directly defined given some direction u ∈ Sn−1, namely as Q(X,α, u) = inf{q ∈
R : P(u⊤X ≤ q) ≥ α} [Kong and Mizera, 2012, Paindaveine and Šiman, 2011, Hallin et al.,
2010]. When there is no ambiguity, we just denote it as Q(α, u). For any given u, notice the
choice of quantile defines a corresponding halfplane H(u,Q(α, u)) =

{
x ∈ X : u⊤x ≤ Q(α, u)

}
.

The quantile envelope is then the intersection thereof:

D(α) =
⋂

u∈Sn−1

H(u,Q(α, u)). (1.5)

Notably, while each individual H(u,Q(α, u)) captures 1− α of the points, D(α) does not, as it is
the intersection thereof and hence captures < 1 − α of the mass. If 1 − α combined coverage is
sought, a correction, such as Bonferroni adjustment, is used for the individual planes.
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CHAPTER 2

Amortized Variational Inference with Coverage
Guarantees

If you thought that science was certain –

well, that is just an error on your part.
Richard Feynman

In this chapter, we discuss deficiencies of coverage under amortized variational inference and
remedies thereof using conformal prediction. Amortized variational inference is an often em-
ployed framework in simulation-based inference that produces a posterior approximation that can
be rapidly computed given any new observation. Unfortunately, there are few guarantees about the
quality of these approximate posteriors. We propose Conformalized Amortized Neural Variational
Inference (CANVI), a procedure that is scalable, easily implemented, and provides guaranteed
marginal coverage. Given a collection of candidate amortized posterior approximators, CANVI
constructs conformalized predictors based on each candidate, compares the predictors using a met-
ric known as predictive efficiency, and returns the most efficient predictor. CANVI ensures that
the resulting predictor constructs regions that contain the truth with a user-specified level of proba-
bility. CANVI is agnostic to design decisions in formulating the candidate approximators and only
requires access to samples from the forward model, permitting its use in likelihood-free settings.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and ex-
plore how the quality of a posterior approximation relates to the predictive efficiency of prediction
regions based on that approximation. Finally, we demonstrate the accurate calibration and high
predictive efficiency of CANVI on a suite of simulation-based inference benchmark tasks and an
important scientific task: analyzing galaxy emission spectra.
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Figure 2.1: CANVI is a wrapper around variational inference requiring minimal implementation
and computational overhead that produces prediction regions with guaranteed marginal calibra-
tion. Among a family of candidate amortized posterior approximators, CANVI can identify the
approximator leading to the most efficient prediction regions. CANVI can be used in any setting
where the forward model P(X | Θ) can be sampled.

2.1 Introduction

In many scientific applications, such as in astrophysics, neuroscience, and particle physics [Papa-
makarios and Murray, 2016, Lueckmann et al., 2017, Greenberg et al., 2019, Deistler et al., 2022,
Papamakarios et al., 2019, Boelts et al., 2022], posterior distributions P(Θ | x) are sought over a
large collection of x, typically on the order of 10,000 or more. In such scientific settings, (θ, x)
pairs are assumed to come from nature, which has led to the growth of “simulation-based infer-
ence,” in which a likelihood P(X | θ) and prior P(Θ) are posited and simulated to fit posteriors
[Cranmer et al., 2020, Lueckmann et al., 2021]. Even when the likelihood and prior are well spec-
ified, exact sampling from the posteriors is intractable, requiring running 10,000 separate MCMC
chains.

In these settings, amortized variational inference is frequently employed. Variational inference
(VI) has become a staple in Bayesian inference; however, it has been repeatedly noted that a major
shortcoming of VI is its lack of any theoretical guarantees and tendency to produce biased posterior
estimates [Blei et al., 2017, Murphy, 2022, Zhang et al., 2018, Yao et al., 2018]. The most com-
mon metric for assessing the calibration of such inference algorithms is the “expected coverage.”
Having calibrated expected coverage is a necessary but not sufficient condition for conditional
coverage, yet amortized variational approximations fail to even achieve this minimal requirement,
despite significant work to remedy this shortcoming [Deistler et al., 2022, Delaunoy et al., 2022,
Lemos et al., 2023, Delaunoy et al., 2023]. A lack of such calibration limits the capacity to reach
downstream scientific conclusions, highlighted in a recent meta-study of likelihood-free inference
algorithms [Hermans et al., 2021b].

In applications where many posteriors need to be estimated, credible regions with marginally

calibrated coverage can be sufficient for downstream scientific inquiries. For instance, in astro-
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physics, there is great interest in constraining the ΛCDM model, the current concordance model
in cosmology [Gilman et al., 2021, Hezaveh et al., 2016, Vegetti et al., 2010, Vegetti and Koop-
mans, 2009, Hogg and Blandford, 1994]. A recent work from this community, [Hermans et al.,
2021a], leveraged Bayesian inference towards this end, obtaining approximate posteriors for the
parameters of interest on each of 10,000 observations. Crucially, these posteriors were then used
to produce credible intervals with marginally valid frequentist coverage, from which they made
claims on the ΛCDM model.

Our insight is that conformal prediction can be leveraged to provide variational approxima-
tors with marginal coverage guarantees and provide users new ways to measure the quality of
variational approximators. In this manuscript, we present CANVI (Conformalized Amortized
Neural Variational Inference), a novel, general framework for producing marginally calibrated,
informative prediction regions from a collection of variational approximators. Such regions can
be produced with minimal implementation and computational overhead, requiring only samples
from the prior and P(X | Θ), as shown in Figure 2.1. In Section 2.3.3, we provide theoretical
analysis of the informativeness of the prediction regions produced by CANVI using a measure
known as “predictive efficiency.” High predictive efficiency is necessary to draw conclusions in
downstream scientific inquiries and relates to asymptotic conditional coverage with the appropri-
ate choice of score function. Finally, in Section 2.4, we show calibration and predictive efficiency
across simulation-based inference benchmark tasks and an important scientific task: analyzing
galaxy emission spectra.

2.2 Related Literature

Efforts to correct for miscalibration have been of great interest recently in light of its apparent
omnipresence highlighted in [Hermans et al., 2021b]. The notion of calibration studied therein,
and the one we concentrate on here, centers on the expected coverage probability of the highest
predictive density (HPD) of a posterior estimate q(Θ | X), defined for such a q, some fixed x,
and pre-specified coverage level α to be the set HPD(q(Θ | x), 1 − α) with smallest Lebesgue
measure such that PΘ∼q(Θ|x)(Θ ∈ HPD(q(Θ | x), 1−α)) ≥ 1−α. The expected coverage is then
EX,Θ∼P(X,Θ)[1[Θ ∈ HPD(q(Θ | X), 1− α)]].

Such calibration has been studied across a number of posterior estimation techniques in the
likelihood-free inference community, which generally fall into one of three categories. Neural
posterior approximation (NPE) methods directly approximate the posterior density P(Θ | X)

[Papamakarios and Murray, 2016, Lueckmann et al., 2017, Greenberg et al., 2019, Deistler et al.,
2022], neural likelihood estimation (NLE) methods estimate the assumed intractable likelihood
P(X | Θ) [Papamakarios et al., 2019, Boelts et al., 2022], and neural ratio estimation (NRE)
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methods estimate the P(X | Θ)/P(X) ratio [Hermans et al., 2020, Durkan et al., 2020b, Miller
et al., 2022]. Both NLE and NRE rely on MCMC for posterior sampling after estimation.

While these approaches differ in their estimation strategies, they all suffer miscalibration if
naively employed. One suggestion advocated by [Hermans et al., 2021b] was ensembling, com-
patible with all the aforementioned posterior approximation strategies. Despite its improvement
in empirical calibration, ensembling affords no guarantees on calibration and also dramatically
increases the computational cost of training and inference alike. As an effort to address this lack
of guarantees and computational cost, recent calibration efforts have focused on modifying the
loss function to appropriately encourage conservatism in the learned posterior estimates, since the
downstream scientific use cases can afford such conservatism, unlike underdispersed posteriors.
In particular, [Delaunoy et al., 2022] took a first step in this direction by proposing a modification
over the vanilla NRE formulation with a regularization term that results in more conservative pos-
terior estimates. Such a method, however, has no guarantees and further relies on the selection of a
tunable λ parameter, whose optimal selection is unknown without awareness of the true posterior.
This approach was then extended to NPE and NLE in [Delaunoy et al., 2023] and [Falkiewicz et al.,
2023], which both again suffer from the deficiencies of producing overly conservative posteriors
and relying on the careful selection of λ.

2.3 Method

In response to the shortcomings highlighted in the previous section, we were interested in procur-
ing a method that has (1) guarantees on calibration without tuning parameters, (2) minimal com-
putational overhead, and (3) informative prediction regions. We demonstrate in Section 2.3.1 that
leveraging conformal prediction on an amortized VI approximator q(Θ | X) immediately ad-
dresses points (1) and (2). We then study in the following sections how this naive application can
be extended to the full CANVI algorithm by considering a collection of amortized VI approxi-
mators {q(1)(Θ | X), . . . , q(T )(Θ | X)} to address point (3). CANVI can be applied whenever
P(X,Θ) can be sampled. The coverage validity of CANVI is proven in Section 2.3.2, and analy-
ses of its predictive efficiency in Section 2.3.5.

2.3.1 CANVI: Score Function

In the simplest case, CANVI takes as input a single amortized posterior approximator q(Θ | X).
In traditional applications of split conformal, much concern is given to the loss of accuracy of the
predictor q in having to reserve a subset of the training data for calibration. Here we have no such
issues; we sample DC = {(xc

i , θ
c
i )}

NC
i=1

iid∼ P(Θ)P(X | Θ) from the joint distribution to produce a
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calibration dataset that can be arbitrarily large. Given q(Θ | X), we employ the following score,
as used in [Angelopoulos and Bates, 2021]:

s(xi, θi) = (q(θi | xi))
−1. (2.1)

Denoting the ⌈(NC + 1)(1 − α)⌉/NC quantile of the score distribution over DC as q̂C(α), C(x) =
{θ : 1/q(θ | x) ≤ q̂C(α)} is then marginally calibrated. It may be disjoint if the posterior is
multimodal.

While other choices of score functions also result in regions C(x) that address both the lack of
guarantees and computational cost of methods highlighted in Section 2.2, the particular choice of
Equation (2.1) has the desirable property that, if we recover the true posterior, that is q(Θ | X) =

P(Θ | X), we recover the HPDs, namely C(x) = HPD(P(Θ | x), 1 − α), achieving conditional
coverage. Note that the procedure described in this section and those that follow can be easily
extended to the group conditional setting if such coverage is of interest, whose discussion we defer
to Section A.1.

2.3.2 CANVI: Approximator Selection

To mitigate the risk of producing uninformative prediction regions, it is natural to explore multiple
posterior approximations, {q(t)(Θ | X)}Tt=1, since a poorly chosen approximator may lead to poor
predictive efficiency. These posterior approximations could, for instance, differ in their choice of
training objective, variational family, or hyperparameters. CANVI seeks to identify the variational
approximator q(t∗) for which the efficiency is greatest, defined for a threshold τ to be

ℓ(q, τ) := EX [L ({θ : 1/q(θ | X) ≤ τ})] , (2.2)

We defer the discussion of estimating ℓ(q, τ) to Section 2.3.4. Naively, one would expect by taking
(q(t

∗), q̂
(t∗)
C (α)) where t∗ := argmint ℓ(q

(t), q̂
(t)
C (α)), we achieve maximal efficiency and retain

coverage guarantees. However, defining C(x) with q̂
(t∗)
C (α) fails to retain coverage guarantees, as

the exchangeability of scores of future test points s(x′, θ′) with S is lost in conditioning on DC for
selecting t∗.

We must, therefore, perform an additional recalibration step after selecting t∗ to retain coverage
guarantees. CANVI performs such recalibration using an additional dataset DR again constructed
with i.i.d. draws from P(X,Θ). We take DR to be the same size as DC , i.e. |DR| = NC . CANVI
then computes the quantile q̂

(∗)
R (α) := q̂

(t∗)
R (α), which is used to define prediction regions C(x) :=

{θ : 1/q(t
∗)(θ | x) ≤ q̂

(∗)
R (α)}. However, such regions require analysis to guarantee high efficiency,

as we explore in Section 2.3.3.
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The full CANVI framework is provided in Algorithm 1. The validity of the CANVI procedure
follows directly from that of split conformal prediction, formally stated below and explicitly proven
in Appendix A.2.

Lemma 2.3.1. Let α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC, NT

)
Let (x′, θ′) ∼ P(X,Θ) ⊥⊥ D∪DC∪DR∪DT , withD being the data used to train {q(t)(Θ|X)}Tt=1.

Then 1− α ≤ P(1/q(∗)(θ′|x′) ≤ q̂
(∗)
R (α)).

Algorithm 1 CANVI: Note that VOLUMEEST is a volume estimator subroutine detailed in Sec-
tion 2.3.4.

1: procedure CPQUANTILE

Inputs: Posterior approximation q(Θ | X), Calibration set DC , Desired coverage 1− α
2: S ← { 1

q(θi|xi)
}NC
i=1

3: Return ⌈(NC+1)(1−α)⌉
NC

quantile of S
4: end procedure
5: procedure CANVI

Inputs: Posterior approximators {q(t)(Θ|X)}Tt=1, Prior P(Θ), Forward model P(X | Θ),
Desired coverage 1− α, Calibration size NC , Test size NT

6: DC,DR ∼ P(X,Θ),DT ∼ P(X)
7: for t ∈ {1, . . . T} do
8: q̂

(t)
C ← CPQUANTILE(q(t),DC, 1− α)

9: ℓ̂(t) ← VOLUMEEST(q(t),P(Θ), q̂
(t)
C ,DT )

10: end for
11: t∗ ← argmint ℓ̂

(t)

12: q̂
(∗)
R (α)← CPQUANTILE(q(t

∗),DR, 1− α)

13: Return q(∗)(Θ | X), q̂(∗)R (α)
14: end procedure

2.3.3 CANVI: Efficiency Analysis Assumptions

We now show that, with high probability, the pair CANVI produces (q(∗)(Θ|X), q̂
(∗)
R (α)) is

the most efficient amongst the candidate posteriors considered. The concern is that the post-
recalibrated quantile may result in significant degradation of the efficiency, i.e. ℓ(q(∗), q̂(∗)R (α)) ≫
ℓ(q(∗), q̂

(∗)
C (α)). This tradeoff between coverage and efficiency was studied in [Yang and Kuchib-

hotla, 2021].
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Recall 1 − α ≤ P(Θ ∈ C(X)) ≤ 1 − α + 1/(NC + 1). Denote the CDF of the score function
under the joint distribution P(X,Θ) as F(s) := PΘ,X(1/q(Θ | X)). The coverage guarantee,
thus, implies q̂(α) ∈ [F−1(1 − α),F−1(1 − α + 1/(NC + 1))] for q̂(α) from any calibration set.
In particular, q̂(∗)C (α) and q̂

(∗)
R (α) both lie in this range.

We bound the efficiency suboptimality by proceeding in two steps. We first demonstrate that the
quantiles of q(∗)(Θ | X) under DC and DR are close by demonstrating the quantile range of F−1 is
small. We then demonstrate the efficiency varies smoothly as a function of the quantile, allowing
us to bound the resulting efficiency change. Formally, we state these assumptions respectively as
follows, per [Yang and Kuchibhotla, 2021], which we then demonstrate follow from properties of
the chosen variational families.

Assumption 1. For each t, the ℓ(q(t), τ) is Lipschitz continuous in τ with constant LW .

Assumption 2. For each t, ∃ r, γ ∈ (0, 1] such that F−1
t (s) (inverse score CDF under q(t)), is

γ-Hölder continuous on [1− α, 1− α+ r] with continuity constant Lt.

2.3.3.1 Lipschitz Continuity of Efficiency

We now demonstrate Assumption 1 can be guaranteed with the appropriate selection of variational
family by the end user. It suffices to demonstrate ℓx(q, τ) := L({θ : 1/q(θ | x) ≤ τ}) is L-
Lipschitz continuous in τ for any x ∈ X , proven in Appendix A.4.1.

For any fixed x, ℓx(q, τ) is the intrinsic volume of the sublevel set of 1/q(θ | x). We summarize
and subsequently use relevant results from [Jubin, 2019] below. “Intrinsic volume” defines the
notion of volume for a lower dimensional manifold embedded in a higher dimensional space.
For a brief review of Riemannian manifolds, see Appendix A.3; a more complete presentation is
available in [Lee and Lee, 2012]. The n−k degree intrinsic volume of a flat compact n-dimensional
manifold N is

Ln−k(N) = bk

∫
∂N

tr
(∧k−1

S
)

vol∂N , (2.3)

where 0 ≤ k ≤ n, bk ∈ R, and S is the second fundamental form of ∂N in N . Lipschitz continuity
of Ln−k(M

τ
f ) was established as follows. The level sets M τ

f := f−1((−∞, τ ]) are restricted to
“regular values” of f , namely τ such that f(x) = τ =⇒ df(x) ̸= 0.

Theorem 2.3.2. Let (M, g) be an n-dimensional Riemannian manifold, f ∈ C3(M,R) bounded

below, and τ a regular value of f equipped with the standard uniform C3 topology. Then, if

0 ≤ k ≤ n, τ → Ln−k(M
τ
f ) is Lipschitz continuous [Jubin, 2019].

The Lipschitz continuity of ℓx(q, τ) then follows as a corollary for any variational families for
which the density is sufficiently smooth, namely q(θ | x) ∈ C3(Rn). The proof follows by taking
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ℓx(q, τ) := Ln((Rn)τs) for s(θ) = 1/q(θ|x), with τ = s(θ) for {θ : ∇θq(θ|x) ̸= 0} being the set of
regular values. This domain restriction is discussed more in Section 2.3.5. Notice s(θ) ∈ C3(Rn)

as both f(x) := 1/x and q(θ | x) are ∈ C3(Rn) and C3 is closed under function composition.
Formally,

Corollary 2.3.3. Suppose for any x ∈ X , q(θ | x) ∈ C3(Rn) is bounded above and τ is a regular

value of q(θ | x). Then, ℓ(q, τ) is Lipschitz continuous in τ .

Notably, this assumption on smoothness holds for most variational families used in practice,
including highly expressive flow-based variational families [Köhler et al., 2021].

2.3.3.2 Continuity of Conformal Quantiles

We now discuss the validity of Assumption 2. Comparable assumptions are commonly used in
the quantile estimation literature, as discussed in [Lei et al., 2018]. The Hölder constant cannot be
characterized in general, as it is intimately tied to specific details of the score distribution under
P(X,Θ). We, therefore, provide an explicit characterization for a particular family of distributions
in Theorem 2.3.4 and defer extensions to a broader set of families to future work. Details for this
proof are given in Appendix A.5.

Theorem 2.3.4. Let Θ and X be zero-mean unit-variance Gaussian random variables with cor-

relation ρ. Let q(t)(θ|x) = N (θ; tx, 1 − ρ2). Let κ := t2 − 2tρ + 1 and r > 0. Then F−1
t (z), is

1-Hölder continuous on [1− α, 1− α+ r] with Hölder constant

κΦ−1(1−α
2
)

√
exp

(
κ

1−ρ2
Φ−1(1−α

2
)2 − (1−α)2

2

)
√
(1− ρ2)/2

(2.4)

Notably, the Hölder constant is minimized in recovering the true posterior, as Equation (2.4) is
minimized at φ = ρ.

2.3.4 CANVI: Volume Estimation

We now provide an estimation procedure for ℓ(q, τ). Naively, we might expect taking the sample
average of ℓxi

(q, τ) over DT := {xi}NT
i=1 ∼ P(X) would suffice. However, exact calculation of

ℓxi
(q, τ) requires a grid-discretization over Supp(Θ|xi), which is only feasible when the support

has a known, small extent.
As a result, ℓx(q, τ) is estimated using an importance-weighted Monte Carlo estimate over S

samples from q. Such an estimator, however, suffers from high variance if q is underdispersed,
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as C(x) will cover regions of low variational density. To combat this issue, we use the well-
known fact that P(Θ | X) is narrower than P(Θ) to construct a “mixed sampler,” specifically with
zj ∼ Bern(λ) and θj ∼ q(Θ|xi)

zjP(Θ)1−zj , where the mixed density is now q̃(θj) = λq(θj|xi) +

(1− λ)P(θj). The necessity of such mixing is dependent on the nature of the variational posterior
with respect to the true posterior, which is unknown in practice. We, thus, average several estimates
over {λk} ∈ [0, 1]. Denoting the mixed density with λk as q̃k, for each xi and λk, we make S

draws {θjk}Sj=1 ∼ q̃k(Θ | xi). We empirically demonstrate the necessity of such mixed sampling
in Section 2.4.2.2. This procedure is summarized in Algorithm 2, with the final estimate ℓ̂(q, τ)

being
1

KNT

NT ,K∑
i,k=1

1

S

S∑
j=1

1

q̃k(θjk|xi)
1

[
1

q(θjk|xi)
≤ τ

]
(2.5)

Algorithm 2 VOLUMEEST

1: procedure VOLUMEEST

Inputs: Posterior approximation q(Θ | X), Prior P(Θ), CP quantile q̂, Test set DT
2: for i ∈ {1, . . .NT }, k ∈ {1, . . . K} do
3: for j ∈ {1, . . . S} do
4: zj ∼ Bern(k/K)
5: θj ∼ q(Θ | xi)

zjP(Θ)1−zj

6: q̃j ← (k/K)q(θj | xi) + (1− k/K)P(θj)
7: end for
8: Vi,k ← 1

S

∑S
j=1

1
q̃j
1[1/q(θj|xi) ≤ q̂]

9: end for
10: Return 1

KNT

∑
i,k Vi,k

11: end procedure

2.3.5 CANVI: Efficiency Proof

We now state the result of recovery of the optimal recalibrated approximator. To do so, we require
the Monte Carlo estimate to be sufficiently well-behaved to recover the optimal pre-recalibration
approximator.

Assumption 3. If t∗ := argmin1≤t≤T ℓ(q(t), q̂
(t)
R (α)) and t̂∗ := argmin1≤t≤T ℓ̂(q(t), q̂

(t)
R (α)) for

α ∈ (0, 1), then ∃∆, ϵ > 0, such that with probability at least 1 − ϵ, |ℓ(q(t̂∗), q̂(t̂
∗)

R (α)) −
ℓ(q(t

∗), q̂
(t∗)
R (α))| < ∆.

Important to note is that ℓ̂ is only used to select t∗, after which we make claims on ℓ (i.e. not the
estimate) for the recalibrated quantiles in Theorem 2.3.5. As with Assumption 2, this assumption
is intimately tied to specific details of the score distribution under P(X,Θ), making its restatement
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in more natural distributional properties of q impossible. We demonstrate its validity empirically
across several posteriors in Section 2.4.2.

The proof of Theorem 2.3.5 now follows as an extension of Theorem 3 from [Yang and Kuchib-
hotla, 2021] and is explicitly provided in Appendix A.4.2. Notably, we use Corollary 2.3.3 to re-
place Assumption 1 with a more natural set of conditions for this context. This requires ensuring
that, for any x, q̂(∗)C (α) and q̂

(∗)
R (α) are regular values of s(θ). We, thus, assume for any x and

θ ̸= 0, L({θ : ∇θq(θ|x)}) = 0, which naturally holds for variational families used in practice, i.e.
any non-piecewise constant density estimator.

Theorem 2.3.5. Suppose for any x ∈ X and t = 1, ..., T , q(t)(θ | x) ∈ C3(Rn) is bounded above

and for θ ̸= 0, L({θ : ∇θq
(t)(θ|x)}) = 0. Further assume P (X,Θ) is bounded above. Let

α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC, NT

)
If, for r ≥ max{

√
log(4T/δ)/2NC, 2/NC} and δ ∈ [0, 1], Assumption 2 holds and for ∆, ϵ > 0

Assumption 3 holds, then with probability at least (1− ϵ)(1− δ),

ℓ(q(∗), q̂
(∗)
R (α)) ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + ∆ + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
, (2.6)

where γ, LW , and L[T ] = max1≤t≤T Lt are constants defined in Assumptions 2 and 1.

Again, in any setting where it is possible to sample from P(X,Θ), NC can be made arbitrarily
large, tightening the bound in Equation 2.6. Practitioners can, thus, focus on obtaining efficient
predictors knowing that CANVI will make the optimal selection with high probability.

2.4 Experiments

As discussed, the main advantages of CANVI over alternative strategies are its guaranteed cali-
bration without the need for tuning parameters, minimal computational overhead, and informative
prediction regions. For this reason, we present three experiments herein. The first (Section 2.4.1)
seeks to validate the first two claims by comparing BNRE, BNRE C, NPE, NRE, NRE C, and
Ratio BNPE to the vanilla version of CANVI i.e. when it is applied to a single q(Θ | X), where
no recalibration is necessary.

Notably, the informativeness of prediction regions, the focus of the third claim, is only of in-
terest once a predictor is calibrated, meaning the comparison with alternatives is only meaningful
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Figure 2.2: Calibration on the SBI benchmarks across different calibration strategies. Perfect
calibration corresponds to the highlighted y = x curve. Conservative prediction regions lie above
this calibrated line and overconfident ones below. Conformalized lines (CANVI) are difficult to
distinguish, as they all lie along the desired y = x curve.
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when they are nearly calibrated. As demonstrated in Section 2.4.1, however, the alternatives fail
to consistently demonstrate calibration, rendering such a comparison moot. For this reason, the
following experiment (Section 2.4.2) focuses on demonstrating that applying the full CANVI pro-
cedure to a collection {q(t)(Θ | X)}Tt=1 both retains coverage under recalibration and ultimately
recovers the most efficient predictor. The latter hinges upon the validity of Assumption 3 for the
Monte Carlo efficiency estimator in Equation (2.5). We, therefore, demonstrate in the subsequent
experiments that this estimator exhibits the desired estimation consistency when applied in settings
where posterior estimators are trained to different epochs (Section 2.4.2.1) or with different train-
ing objectives (Section 2.4.2.2). Finally, we demonstrate CANVI can computationally scale up to
scientific problems of interest in Section 2.4.3.

In all experiments, coverage for variational posteriors is assessed using Monte Carlo estimation,
namely by constructing the highest density credible region per xi. That is, for a given xi, the ζ

such that {θj | q(θj | xi) ≥ ζ} captures 1 − α of the probability mass is estimated by drawing
{θj}Nj=1 ∼ q(Θ|xi) and finding the 1−α quantile of {q(θj|xi)}Nj=1. Coverage of the true parameter
θ can be assessed by checking if q(θ | xi) ≥ ζ. Details are provided in Section A.7, and code is
available at https://github.com/yashpatel5400/canvi.git.

2.4.1 Coverage Calibration

We evaluate on the standard SBI benchmark tasks, highlighted in [Delaunoy et al., 2023]. For
full descriptions of the tasks, refer to Section A.6. Again following the precedent from previous
SBI works, we present the calibration of the models trained over several simulation budgets (|D|).
CANVI was applied to an NPE, in which DC was taken to be 10% of the simulation budgets and
the remainder used for training. Calibration was completed in under one second for each task.
Coverage was assessed 1,000 i.i.d. samples. Figure 2.2 demonstrates the miscalibration of the
alternative approaches and the correction afforded with CANVI.

2.4.2 Predictive Efficiency

2.4.2.1 Training Epochs

We now study the application of CANVI to a collection of posteriors. In this experiment, q(t)

is taken to be the t-th iterate of training a Neural Spline Flow family against the LFAVI objective
[Durkan et al., 2019]. Generally, we expect efficiency to improve with training iterates, as q(Θ |
x) better approximates P(Θ | x); however, the most efficient iterate may not occur at t = T .
Selecting an intermediate t is comparable to the practice of retaining the training iterate with the
best validation performance in prediction tasks.
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Table 2.1: Coverage rates and standard errors for θ before (rows 1-4) and after conformalization
(rows 5-8) by CANVI, for ARCH (left table) and SED (right table), assessed by checking for
inclusion of θ in the 1 − α highest density region. Non-conformalized regions were estimated
empirically from batches of 1000 i.i.d. samples per point. ℓ(q, q̂C(0.05)) were computed with
explicit gridding, discretizing each dimension into 200 bins; such estimation was intractable for
Θ ∈ R11 for SEDs. ℓ̂ was estimated using Algorithm 2, with K = 1 and K = 10 mixing
discretizations.

1− α ELBO IWBO FAVI

0.50 0.0007 (0.0008) 0.1031 (0.0110) 0.5514 (0.0127)
0.75 0.0044 (0.0018) 0.1994 (0.0115) 0.7534 (0.0127)
0.90 0.0195 (0.0044) 0.3263 (0.0122) 0.8797 (0.0065)
0.95 0.0396 (0.0061) 0.4074 (0.0186) 0.9260 (0.0083)

0.50 0.4970 (0.0124) 0.5019 (0.0167) 0.5086 (0.0144)
0.75 0.7488 (0.0139) 0.7559 (0.0126) 0.7565 (0.0092)
0.90 0.8978 (0.0080) 0.9036 (0.0111) 0.9005 (0.0110)
0.95 0.9496 (0.0071) 0.9548 (0.0052) 0.9487 (0.0081)

ℓ(q, q̂C(0.05)) 1.3184 (0.2178) 1.4211 (0.1128) 0.7451 (0.0641)
ℓ̂K=1(q, q̂C(0.05)) 50.6595 (8.1313) 69.6484 (2.2495) 19.3635 (0.8868)
ℓ̂K=10(q, q̂C(0.05)) 1.4151 (0.2181) 1.5206 (0.1114) 0.8402 (0.0656)

1− α ELBO IWBO FAVI

0.50 0.1683 (0.0088) 0.6185 (0.0111) 0.4986 (0.0180)
0.75 0.4556 (0.0146) 0.7978 (0.0079) 0.7550 (0.0105)
0.90 0.5803 (0.0106) 0.8881 (0.0064) 0.9028 (0.0092)
0.95 0.6824 (0.0144) 0.9248 (0.0083) 0.9532 (0.0085)

0.50 0.4901 (0.0156) 0.4937 (0.0101) 0.5024 (0.0203)
0.75 0.7485 (0.0163) 0.7513 (0.0139) 0.7542 (0.0163)
0.90 0.8985 (0.0098) 0.9013 (0.0096) 0.9022 (0.0067)
0.95 0.9499 (0.0084) 0.9510 (0.0061) 0.9461 (0.0059)

ℓ̂(q, q̂C(0.05)) ∞ 1.3849 (1.2357) ×109 5.3732 (3.3302) ×106

Figure 2.3: ℓ(q, τ) and ℓ̂(q, τ) for τ = q̂
(t)
C (α). Error bars across test batches are plotted.

We first study the validity of Assumption 3 by comparing ℓ̂(q, τ) to ℓ(q, τ). To compare to
ℓ(q, τ), we restrict experiments to projected posteriors of Θ̃ = (θ1, θ2) for the Two Moons, Gaus-
sian Mixture, SLCP, and Gaussian Linear Uniform tasks, for which explicit gridding was tractable.
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ℓ̂(q(t), q̂
(t)
C (α)) was estimated for a fixed α = 0.05 and t taken every 100 training steps with 5

batches of 100 test points (|DT | = 100) using S = 10, 000 importance-weighted i.i.d. samples
for each of K = 10 mixed samplers. From Figure 2.3, we see that ℓ̂(q, τ) tracks closely to ℓ(q, τ)

across all tasks, giving credence to Assumption 3. We visualize the credible regions in Section A.8.

2.4.2.2 Training Objectives

We now similarly study q(t) across training objectives, taking one iterate of q trained against each
of LFAVI, LELBO, and LIWBO (K = 10), giving us three amortized posteriors as input for CANVI,
for a lag-one ARCH model:

y(m) = θ1y
(m−1) + e(m), e(m) = ξ(m)

√
0.2 + θ2 (e(m−1))

2
,

where y(0) = 0, e(0) = 0, M = 100, and the ξ(m) are independent standard normal random
variables [Thomas et al., 2022], detailed in Section A.6.9.

Table 2.1 shows that prior to conformalization, the variational posteriors are generally miscali-
brated: training by the ELBO or IWBO results in significant under-coverage, as targeting either is
known to find solutions that are mode-seeking. While the variational posterior obtained by FAVI
is better calibrated, it still needs correction. As multiple posterior approximators were considered,
CANVI had to be applied with recalibration. Table 2.1 shows that the recalibrated 1 − α predic-
tion regions are nearly perfectly calibrated. Importantly, correction by CANVI can result in either
larger or smaller 1−α regions, depending on the direction of miscalibration. In settings where the
variational posterior is overdispersed, applying CANVI results in smaller 1 − α density regions,
explicitly shown in Section A.9.7. Table 2.1 also demonstrates using the better calibrated LFAVI-
trained approximation results in higher efficiency compared to the LELBO and LIWBO counterparts.

We also demonstrate the necessity of using mixed sampling for ℓ̂. In particular, we compare
the estimates when using only the variational posterior as a sampler (ℓ̂K=1) and when averaging
10 mixed samplers (ℓ̂K=10), from which we observe the estimator accuracy greatly improves with
mixing, especially in the underdispersed IWBO and ELBO cases.

2.4.3 Galaxy Spectral Energy Distributions

We now present the application of CANVI to an important scientific problem. The spectrum
of an astronomical object is measured via a spectrograph, which records the flux across a large
grid of wavelength values [York et al., 2000, Abareshi et al., 2022], which we simulate with the
Probabilistic Value-Added Bright Galaxy Survey simulator (PROVABGS). PROVABGS maps θ ∈
R11 to galaxy spectra, detailed further and visualized in Appendix A.10.
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A mixture of 20 Gaussian distributions was used as the variational posterior and trained against
the LFAVI,LELBO, and LIWBO objectives, as in Section 2.4.2.2. Table 2.1 shows that the ELBO
and IWBO tend to be overly concentrated, failing to contain the entire parameter vector θ in the
1 − α highest-density region often. FAVI, on the other hand, is reasonably well-calibrated. After
applying CANVI, all three methods achieve nearly perfect calibration across a range of desired
confidence levels. Of course, the utility of these corrected regions depends on the level of informa-
tion contained in the original model. For the ELBO or IWBO cases, the corrected regions achieve
statistical validity, but are too large to be informative. Notably, the underdispersion of the ELBO
approximator led to q̂C(0.05) = 0 (up to machine precision), resulting in a volume estimate of∞.
For FAVI, on the other hand, application of CANVI results in statistical guarantees with minimal
alterations to the high-density regions.
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CHAPTER 3

Conformal Contextual Robust Optimization

If a machine is expected to be infallible, it

cannot also be intelligent.
Alan Turing

In this chapter, we extend our discussion on leveraging conformal prediction for decision-
making from the scientific context to the more general predict-then-optimize setting. In doing
so, we additionally demonstrate how the implicitly defined, non-convex prediction regions of con-
formal prediction can be practically leveraged. Data-driven approaches to predict-then-optimize
decision-making problems seek to mitigate the risk of uncertainty region misspecification in safety-
critical settings. Current approaches, however, suffer from considering overly conservative uncer-
tainty regions, often resulting in suboptimal decision-making. To this end, we propose Conformal-
Predict-Then-Optimize (CPO), a framework for leveraging highly informative, nonconvex con-
formal prediction regions over high-dimensional spaces based on conditional generative models,
which have the desired distribution-free coverage guarantees. Despite guaranteeing robustness,
such black-box optimization procedures alone inspire little confidence owing to the lack of ex-
planation of why a particular decision was found to be optimal. We, therefore, augment CPO to
additionally provide semantically meaningful visual summaries of the uncertainty regions to give
qualitative intuition for the optimal decision.
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3.1 Introduction

Predict-then-optimize or contextual robust optimization problems are of long-standing interest in
safety-critical settings where decision-making happens under uncertainty [Sun et al., 2023, El-
machtoub and Grigas, 2022, Elmachtoub et al., 2020, Peršak and Anjos, 2023]. In traditional
robust optimization, results are made to be robust to distributions anticipated to be present upon
deployment [Ben-Tal et al., 2009, Beyer and Sendhoff, 2007]. Since such decisions are sensitive to
proper model specification, recent efforts have sought to supplant this with data-driven uncertainty
regions [Cheramin et al., 2021, Bertsimas et al., 2018, Shang and You, 2019, Johnstone and Cox,
2021].

Model misspecification is ever more present in contextual robust optimization, spurring ef-
forts to define similar data-driven uncertainty regions [Ohmori, 2021, Chenreddy et al., 2022, Sun
et al., 2023]. Such methods, however, focus on box- and ellipsoid-based uncertainty regions, both
of which are necessarily convex and often overly conservative, resulting in suboptimal decision-
making.

Conformal prediction provides a principled framework for producing distribution-free predic-
tion regions with marginal frequentist coverage guarantees [Angelopoulos and Bates, 2021, Shafer
and Vovk, 2008]. By using conformal prediction on a user-defined score function s(x, y) and ob-
taining an empirical 1 − α quantile q̂(α) of s(x, y) over a calibration set DC , prediction regions
C(x) = {y | s(x, y) ≤ q̂(α)} attain marginal coverage guarantees. Such prediction regions, how-
ever, are notably defined implicitly. For simple scores, such as residuals, an explicit expression of
such regions can be written, making these the most common approaches used in practice [Tumu
et al., 2023, Horwitz and Hoshen, 2022, Angelopoulos et al., 2022, Hu et al., 2022, Mao et al.,
2022].

The disadvantage is that such score functions ignore the structure that is often present in high-
dimensional data, such as images. Choices of simplistic scores, thus, tend to be overly conservative
and often produce convex prediction regions even when P(Y |X) is non-convex. Recent work
has demonstrated that defining scores using conditional generative models produces sharper and,
hence, more informative prediction regions [Feldman et al., 2023a, Wang et al., 2022, Patel et al.,
2023]. We, thus, extend the line of data-driven predict-then-optimize work by considering such
generative model-based prediction regions.

In addition to contributing to the predict-then-optimize line of inquiry, we view this work
as addressing a concern of the conformal prediction community: how to use implicitly defined
non-convex, high-dimensional prediction regions. Works producing such regions have themselves
noted the difficulty in their use [Sesia and Romano, 2021, Izbicki et al., 2022]. Initial works on
coverage for images have framed the utility of their results in highlighting regions of the image with
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Figure 3.1: CPO leverages informative, non-convex conformal prediction regions for robust
predict-then-optimize decision making. CPO uses a score function such that the resulting pre-
diction regions can be decomposed into convex subregions over which optimization can be carried
out efficiently. Visual summaries {ξ(i)} of the prediction region can similarly be efficiently sam-
pled to gain intuition on the optimal decision w∗.

the greatest variability and, hence, uncertainty [Angelopoulos et al., 2022, Horwitz and Hoshen,
2022, Belhasin et al., 2023].

Extending such visualization gives invaluable intuition to the end user. For instance, a black-
box optimization procedure for producing drug candidates to robustly bind to a predicted protein
structure offers little insight into the decision-making process; however, semantic summaries of
the uncertainty region would reveal regions of flexibility of the protein, clarifying why particular
structures were deemed optimal in the candidate drug. Such interest in explainable robust decision-
making was highlighted in a recent survey [Sadana et al., 2023], especially given the “right to
explanation” mandated by the EU’s “General Data Protection Regulation” [Doshi-Velez and Kim,
2017, Kaminski, 2019].

Our main contributions, thus, are:

• Proposing Conformal-Predict-Then-Optimize (CPO) to leverage informative, non-convex
prediction regions for decision-making.

• Providing interpretable visual summaries of uncertainty regions using representative points.

• Demonstrating the generality of CPO across a suite of benchmark tasks and a traffic routing
task based on probabilistic weather prediction.
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3.2 Method

We now propose CPO, a way to perform robust predict-then-optimize decision-making over in-
formative, non-convex prediction regions based on generative models. We then discuss how to
construct visual summaries of the contents of the conformal prediction regions using a collection
of N representative points.

3.2.1 CPO: Problem Formulation

Let c ∈ C, where (C, d) is a general metric space, and F be the σ-field of C. While the standard
predict-then-optimize framework assumes a linear objective function cTw, we consider general
convex-concave objective functions f(w, c) that are L-Lipschitz in c under the metric d for any
fixed w, as follows:

w∗(x) := min
w,U

max
ĉ∈U(x)

f(w, ĉ)

s.t. PX,C(C ∈ U(X)) ≥ 1− α,
(3.1)

where U : X → F is a uncertainty region predictor. Exact solution of this problem is intractable,
as no practical methods exist to optimize over the predictor function space U . Practical solution of
this optimization problem, thus, involves optimizing over several prespecified uncertainty region
predictors {Ui}Ni=1. For any fixed U , this robust counterpart to the nominal predict-then-optimize
problem produces a valid upper bound if c ∈ U(x). Denoting the pessimism gap as ∆(x, c) :=

minw maxĉ∈U(x) f(w, ĉ)−minw f(w, c), we clearly see ∆(x, c) ≥ 0 if c ∈ U(x), formalized below.

Lemma 3.2.1. Consider any f(w, c) that is L-Lipschitz in c under the metric d for any fixed w.

Assume further that PX,C(C ∈ U(X)) ≥ 1− α. Then,

PX,C (0 ≤ ∆(X,C) ≤ L diam(U(X))) ≥ 1− α. (3.2)

The proof is deferred to Section B.1. Thus, 1 − α validity of U ensures the RO procedure
produces a valid bound with probability 1 − α, with more efficient prediction regions resulting in
tighter upper bounds.

3.2.2 CPO: Score Function

We assume a conditional generative model q(C | X) is learned for this prediction task. For
most score functions, the min-max optimization problem of Equation (3.1) is computationally
intractable. Crucially, however, we can consider an extension to the score proposed in [Wang et al.,
2022], which lends itself to a decomposition under which such optimization becomes tractable. For
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a fixed K and {ĉk}Kk=1 ∼ q(C | x), let

s(x, c) = min
k

[d (ĉk, c)] . (3.3)

We refer to this score as “Generalized Probabilistic Conformal Prediction,” (GPCP) whose validity
follows from that of the original PCP framework [Wang et al., 2022]. We discuss the selection of
K in Section 3.2.4.

3.2.3 CPO: Optimization Algorithm

We fix α ∈ [0, 1] and take U(x) to be the 1 − α prediction region C(x). Let ϕ(w) :=

maxĉ∈C(x) f(w, ĉ). It follows that ϕ(w) is convex by Danskin’s Theorem by assumption of the
convexity of f in w. Exact solution of the min-max problem, thus, follows using standard gradient-
based optimization techniques on ϕ(w). By Danskin’s Theorem, ∇wϕ(w) = ∇wf(w, c

∗), where
c∗ := maxĉ∈C(x) f(w, ĉ). We follow the standard projected gradient descent optimization scheme,
projecting intoW at each iterate, denoted by ΠW .

Efficient solution of this RO problem, therefore, reduces to being able to efficiently solve
the maximization problem over C(x). While challenging over general nonconvex regions, the
GPCP score formulation lends itself to a highly structured prediction region, namely of the form
C(x) =

⋃K
k=1 Bq̂(ĉk) with Bq̂ being a ball of radius q̂, the conformal quantile, under the d metric.

This decomposition of C(x) means the maximum can be efficiently computed by aggregating the
maxima over the individual balls:

max
ĉ∈C(x)

f(w, ĉ) = max
k

max
ĉ∈Bq̂(ĉk)

f(w, ĉ), (3.4)

where the maximum over a ball can be efficiently computed with traditional convex optimization
techniques. This procedure is summarized in Algorithm 3. The convergence of this procedure
proceeds as follows, whose proof is deferred to Section B.2.

Lemma 3.2.2. Let ϕ(w) := maxĉ∈⋃K
k=1 Bq̂(ĉk)

f(w, ĉ) for {ĉk}Kk=1 ⊂ C, q̂ ∈ R+, and f(w, c)

convex-concave and L-Lipschitz in c for any fixed w. Let w∗ ∈ W be a minimizer of ϕ. For

any ϵ > 0, define T := L2||w0−w∗||
ϵ2

and η := ||w0−w∗||
L
√
T

. Then the iterates {wt}Tt=0 returned by

Algorithm 3 satisfy

ϕ

(
1

T + 1

T∑
t=0

wt

)
− ϕ(w∗) ≤ ϵ. (3.5)
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Algorithm 3 CPO-OPT

1: procedure CPO-OPT

Inputs: Context x, CGM q(C | X), Optimization steps T , Score samples K, Conformal
quantile q̂

2: w ∼ U(W), {ĉk}Kk=1 ∼ q(C | x)
3: for t ∈ {1, . . . T} do

4:
{
c∗k ← argmaxĉ∈Bq̂(ĉk)

f(w, ĉ)
}K

k=1
5: c∗ ← argmaxc∗k f(w, c

∗
k)

6: w ← ΠW(w − η∇wf(w, c
∗))

7: end for
8: Return w
9: end procedure

3.2.4 CPO: K Selection

Crucially, the convergence highlighted in Theorem 3.2.2 reveals that the number of “outer” itera-
tions (i.e. T ) has no dependence on K. This is apparent from the proof, in which the iterate count
T hinges upon the Lipschitz constant of ϕ(w) = maxk maxĉ∈Bq̂(ĉk) f(w, ĉ) := maxk ϕk(w), which
critically is L-Lipschitz regardless of what K is selected, as each ϕk(w) is L-Lipschitz.

We can, thus, solely focus attention on the impact the choice of K has on the “inner” optimiza-
tion computational cost, namely maxk ϕk(w). This linearly increasing cost with K, however, must
be juxtaposed with the improved statistical efficiency of such prediction regions. In particular,
[Wang et al., 2022] empirically demonstrated region size generally decreased nonlinearly up to a
saturation point as a function of K.

Critically, this inflection point can be determined prior to performing the optimization, since
doing so only requires access to q(C | X) and test samples to estimate the prediction region size.
As pointed out in [Wang et al., 2022] and proven in [Chan, 2008], estimation of the volume of a
union of hyperspheres is complicated by the need to account for overlapped regions. K is, thus,
chosen based on Monte Carlo estimates of the prediction region volume using Voronoi cells of the
hypersphere centers given by [Edelsbrunner, 1995]:

ℓ̂({Bq̂(ĉk)}) := |Bq̂|
K∑
k=1

PC∼U(Bq̂(ĉk))(C ∈ V (ĉk)), (3.6)

where C ∼ U(Bq̂(ĉk)) denotes a random variable defined uniformly over the region associated
with ĉk, |Bq̂| the volume of a hypersphere of radius q̂, and V (ĉk) the Voronoi cell of ĉk, defined as
{z ∈ Rd | d(ĉk, z) ≤ d(ĉk′ , z), k

′ ̸= k}. Muller’s method enables efficient sampling of U(Bq̂(ĉk))
[Muller, 1959, Fishman, 2013].
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We then choose K∗ to be the inflection point, namely the argminK |ℓ̂K − ℓ̂K+1| ≤ ϵ for some
user-specified ϵ volume tolerance. Critically, these volume estimates must be performed on a
distinct subset of the data from DC as exchangeability with future test points is otherwise lost in
conditioning on DC for selecting K∗ [Yang and Kuchibhotla, 2021]. We, thus, partition DC :=

DC1 ∪ DC2 , using DC1 for calibration and DC2 for volume estimation, detailed in Algorithm 4.

Algorithm 4 CPO
1: procedure VOLUMEEST

Inputs: Context x, CGM q(C | X), Conformal quantile q̂
2: {ĉk}Kk=1 ∼ q(C1:K | x)
3:

{
{ck,m}Mm=1 ∼ U(Bq̂(ĉk))

}K
k=1

4: Return |Bq̂|
∑K

k=1
1
M

∑M
m=1 1 [ck,m ∈ V (ĉk)]

5: end procedure

6: procedure CPO
Inputs: Context x, CGM q(C | X), Optimization steps T , Desired coverage 1 − α, Max
samples Kmax, Volume Tolerance ϵ, Calibration sets DC1 ,DC2

7: for K ∈ {1, . . . Kmax} do
8: sK(x, c)← minĉk∈{ĉi}∼q(C1:K |x) [d (ĉk, c)]
9: SK ←

{
sK(x

(i), c(i)) | (x(i), c(i)) ∈ DC1
}

10: q̂K ←
⌈(|DC1 |+1)(1−α)⌉

|DC1 |
quantile of SK

11: ℓ̂K ← 1
|DC2 |

∑|DC2 |
i=1 VOLUMEEST(x(i), q, q̂K)

12: end for
13: K∗ ← argminK

∣∣∣ℓ̂K − ℓ̂K+1

∣∣∣ ≤ ϵ

14: Return CPO-OPT(x, q, T,K∗, q̂K∗)
15: end procedure

3.2.5 CPO: Representative Points

We now frame the problem of summarizing the prediction region C(x). We critically note that this
issue of interpretability is non-existent in traditional approaches to robust predict-then-optimize,
where uncertainty regions are interpretable by construction, being balls around nominal estimates
Bϵ(ĉ). In other words, there is a fundamental tension in qualitative interpretability and the ex-
pressiveness of uncertainty regions, requiring a bespoke method for recovering intuition when
leveraging conformal prediction regions. Formally, for a user-specified number of summary points
N and query x, we seek

Ξ(x) := argmin
Ξ̂∈ζ

EC∼U(C(x))

[
min
ξ̂(i)∈Ξ̂

d(C, ξ(i))

]
. (3.7)
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We use the shorthand d(C,Ξ) := minξ(i)∈Ξ d(C, ξ
(i)). In other words, we wish to construct repre-

sentative points for a uniform sampling of the prediction region. A naive approach would simply
involve explicitly gridding the output space C, filtering such points with the rejection criterion of
C(x), and clustering the remaining points per the d metric. This, however, is intractable in high-
dimensional cases. Thus, a sampling method is employed to circumvent gridding, paralleling the
technique leveraged for volume estimation.

M samples are initially drawn {ck,m}Mm=1 ∼ U(Bq̂(ĉk)) for each k. Importantly, such uniform
sampling of the balls leads to non-uniform sampling over C(x) if naively aggregated across k, as
overlapped regions will be more densely sampled. For this reason, we subsample by discarding
those samples ck,m for which ck,m ∈ V (ĉk′) for k ̸= k′. This results in samples C := {ci} drawn
from the desired U(C(x)).

RPs must be aggregated separately for each connected subregion of Ωℓ ⊂ C(x) to ensure each
ξ(i) ∈ C(x). That is, we must identify Cℓ := C ∩ Ωℓ. To do so, we determine if two points (ci, cj)
belong to the same Ωℓ by considering the corresponding connected components problem defined
on the graph induced by the edge criterion ei,j = 1[d(ci, cj) < q̂]. For each Cℓ, we find a subset
Nℓ := N(|Cℓ|/|C|) of the total N representative points, for which we use K-MEANS++ with the
d metric. The full procedure is in Algorithm 5.

Algorithm 5 CPO-RPS: QUERYBALL(T , x, r) is an assumed subroutine that returns all points
in the kd tree T that are within a radius r of x.

1: procedure CPO-RPS

Inputs: Context x, CGM q(C | X), RP count N , Conformal quantile q̂
2: {ĉk}Kk=1 ∼ q(C1:K | x)
3:

{
{ck,m}Mm=1 ∼ U(Bq̂(ĉk))

}K
k=1

4: C ← {ck,m | ck,m ∈ V (ĉk)}K,M
k=1,m=1

5: T ← KD-TREE(C)
6: E ←

⋃
i{ci × QUERYBALL(T , ci, q̂) | ci ∈ T }

7: {Cℓ} ← CONNECTEDCOMPONENTS(G(C, E))
8: Ξ←

⋃L
ℓ=1{K-MEANS++(Cℓ, N

(
|Cℓ|
|C|

)
, d)}

9: Return Ξ
10: end procedure

3.2.6 CPO: Projection

After obtaining Ξ, further insight can be gleaned by exploring the local projection around each ξ(i).
An example of this is visualizing the road-level variability in traffic predictions from uncertainty
in upstream weather predictions, shown in Figure 3.5. To do this, we visualize the extent of the
Voronoi cell V (i) ⊂ C(x) associated with ξ(i) along the C space dimensions. That is, for each
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Voronoi cell, we visualize the Frechet variance along the projections {πj}Jj=1, where J = dim(C).
Such projections preserve the structure of the objects being modeled, making them visually inter-
pretable. For instance, πj in the traffic example corresponds to the projection of V (i) to a single

road j. Similarly, πj would project to a single atom for a molecular reconstruction task. Formally,∣∣∣V (i)
j

∣∣∣ := ∑
c∈V (i)

d2(πj(c), πj(ξ
(i))). (3.8)

3.3 Experiment

We now demonstrate the utility of the CPO framework. Code is available at https://github.
com/yashpatel5400/csi.

3.3.1 SBI: Fractional Knapsack

We first study the fractional knapsack problem under various complex contextual mappings,
namely

w∗(x) := min
w,U

max
ĉ∈U(x)

−ĉTw (3.9)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX,C(C ∈ U(X)) ≥ 1− α,

where p ∈ Rn and B > 0. The distributionsP(C) andP(X | C) are taken to be those from various
simulation-based inference (SBI) benchmark tasks provided by [Hermans et al., 2021b], chosen as
they have P(C | X) with complex structure. We specifically study Two Moons, Lotka-Volterra,
Gaussian Linear Uniform, Bernoulli GLM, Susceptible-Infected-Recovered (SIR), and Gaussian
Mixture, fully described in Section A.6. We note that, while these particular distributions have
little semantic meaning in the traditional context of fractional knapsack, this experiment highlights
the capacity for CPO to succeed even for complex distributions, which we leverage in a more
semantically meaningful case in Section 3.3.2.

3.3.1.1 SBI: Quantitative Assessment

We first demonstrate the quantitative improvement in decision-making from leveraging CPO over
the box- (PTC-B) and ellipsoid-based (PTC-E) regions proposed in [Sun et al., 2023], as well as
box- and ellipsoid-based sets constructed based solely on observations of P(C), i.e. where we
ignore x, referred to as Box and Ellipsoid. For CPO, we use

s(x, c) = min
k
||ĉk − c||22. (3.10)
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Table 3.1: Coverages across tasks for α = 0.05 are shown in the left table, where coverage was
assessed over a batch of 1,000 i.i.d. test samples. Objective optima are shown in the right table,
averaged over a batch of 10 i.i.d. test samples with standard deviations in parentheses. The nominal
optima are included as reference points.

Box PTC-B Ellipsoid PTC-E CPO

Gaussian Uniform 0.94 0.96 0.95 0.95 0.95
Gaussian Mixture 0.95 0.93 0.94 0.93 0.94
Bernoulli GLM 0.96 0.95 0.95 0.94 0.94
Lotka Volterra 0.95 0.96 0.94 0.94 0.95

SIR 0.94 0.95 0.93 0.95 0.93
Two Moons 0.93 0.94 0.94 0.94 0.96

Box PTC-B Ellipsoid PTC-E CPO Nominal

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) -0.27 (0.35) -0.43 (0.4) -4.48 (0.56)
0.0 (0.0) -6.6 (1.67) 0.0 (0.0) -7.38 (1.78) -7.77 (1.87) -11.66 (1.23)
0.0 (0.0) -0.18 (0.49) 0.0 (0.0) -0.06 (0.25) -0.18 (0.37) -3.53 (0.27)

-0.52 (0.02) -0.05 (0.24) -0.02 (0.0) -0.22 (0.18) -0.68 (0.26) -1.88 (0.01)
-0.16 (0.02) -0.22 (0.09) -0.08 (0.01) -0.22 (0.06) -0.38 (0.05) -0.52 (0.02)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) -0.15 (0.11) -0.38 (0.01)

q(ĉ | x) was taken to be a neural spline normalizing flow [Durkan et al., 2019] trained with FAVI
[Ambrogioni et al., 2019]. Visualizations of the exact and variational posteriors are provided in
Section A.9. Ks were chosen by studying the inflections of the prediction region volume estimate
under each distributional setup, with |DC1,2 | = 1000, seen in Figure 3.2. Inflection points were
around K = 10 for most setups.

For assessing coverage and the robust objective value, we sampled |DT | = 1000 test points
i.i.d. from P(X,C). Coverage was assessed across all 1000 samples by measuring the proportion
of samples for which s(x(i), c(i)) ≤ q̂. For assessing the objective, optimization was performed
across 10 samples, with p ∼ U([0, 1000]n), u ∼ U(0, 1), and B ∼ U(maxi pi,

∑
i pi − umaxi pi)

sampled per run.
The results are seen in Table 3.1. We include the nominal optima as a reference, i.e. minw−cTw

for the true c. Recall that, by Theorem 3.2.1, with proper U(x), the robust objective values should
be valid upper bounds on the nominal optima, with more conservative regions resulting in more
vacuous bounds. We see this as, although all approaches result in valid coverage guarantees and
hence produce valid upper bounds, the overly conservative nature of alternate regions results in
their consistent looseness compared to CPO. Notably, these differences are more accentuated in
cases where P(C|X) has complex structure; level sets under the Gaussian Linear, Gaussian Mix-
ture, and Bernoulli GLM cases are roughly ellipsoidal, seen in Section A.9, resulting in comparable
performance between CPO and PTC-E. Thus, as discussed and highlighted in Section 3.3.2, the
benefits of CPO primarily manifest under difficult-to-model contextual distributions, where sets
for simple geometries become overly large.

3.3.1.2 SBI: Representative Point Recovery

We next demonstrate that Algorithm 5 can approximately recover RPs for such uncertainty regions,
leveraged to glean insights in the modeling task of Section 3.3.2. Notably, RPs are not unique; for
instance, any rigid rotation of Ξ for a uniform distribution over a 2D ball results in a distinct yet
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Figure 3.2: Average volume estimates ℓ̂({Bq̂(ĉ(i)k )}) over x(i) ∈ DC2 across SBI benchmarks.

optimal set Ξ̂ of RPs. The RP objective minimum, however, is unique, meaning suboptimality can
be assessed by measuring

∆(Ξ, Ξ̂) := EC∼U(C(x))

[
d(C, Ξ̂)− d(C,Ξ)

]
. (3.11)

N = 5 representative points were produced per setup. To compute Ξ, a grid discretization over the
space was performed followed by a clustering for each connected component of this discretization.
That is, the support C was discretized into 60 bins per dimension. Each discretized point ck was
assessed for membership in C(x), resulting in a collection of points C, from which we could
recover Ξ in the manner described in Section 3.2.5. Visualizations of the exact and approximate
RPs are provided for tasks where C ⊂ R2 in Section B.3.
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Figure 3.3: Suboptimality of the approximate representative points ∆(Ξ, Ξ̂) decreases over in-
creased sampling from the conformal prediction region.

To make explicit discretization possible, problems were projected into lower-dimensional ver-
sions, namely C ⊂ R4. Figure 3.3 demonstrates the suboptimality of Ξ̂ decreases with increasing
samples. Of note is that this convergence is slower in higher dimensional problems: for low dimen-
sional cases, recovery of optimal RPs happens for small M , meaning any fluctuations thereafter
are noise, as seen in the Two Moons case.

3.3.2 Robust Vehicle Routing

Optimal routing is a long-standing point of interest in the operations research community, with
widespread applications such as in resource distribution and urban traffic flow management [Mor
and Speranza, 2022, Saberi and Verbas, 2012, Okulewicz and Mańdziuk, 2019, Kořenář, 2003].
We study the traffic flow problem from [Angelelli et al., 2021].

Recent work has demonstrated the utility of generative models in quantifying uncertainty for
weather predictions over traditional physics-based approaches [Agrawal et al., 2019, Ayzel et al.,
2020, Franch et al., 2020, Shi et al., 2017]. We specifically leverage a latent diffusion model for
such forecasting from [Leinonen et al., 2023]. Formally, a forecaster P(Ỹ | x) maps precipitation
readings from radar networks x ∈ RT×W×H , specifically over T time steps with resolutions W×H ,
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Table 3.2: Coverage was assessed over 128 i.i.d. test samples and average objective optima over
10 i.i.d. test samples with standard deviations in parentheses.

Box PTC-B Ellipsoid PTC-E CPO Nominal

Coverage 0.94 0.93 0.94 0.92 0.94 —
Objective 7863.45 (0.0) 34559.03 (171.3) 7038.77 (0.0) 8807.68 (4.22) 4171.22 (321.34) 299.50 (0.0)

to Ỹ ∈ RW×H , the precipitation for some fixed ∆T point beyond x.
We consider the robust traffic flow problem (RTFP) for a source-target pair (s, t) over the net-

work graph of Manhattan, where |V| = 4584 and |E| = 9867. The precipitation Ỹ was combined
with the nominal speed limits to obtain the final travel costs c along edges, fully described in
Section B.4. Formally, we seek

w∗(x) := min
w

max
ĉ∈U(x)

ĉTw (3.12)

s.t.w ∈ [0, 1]E , Aw = b,PX,C(C ∈ U(X)) ≥ 1− α

where we represents the proportion of traffic routed along edge e, C ∈ R|E| is the edge weight
vector, A ∈ R|V|×|E| is the node-arc incidence matrix, and b ∈ R|V| has entries bs = 1, bt = −1,
and bk = 0 for k /∈ {s, t}.

We again demonstrate the quantitative improvement in decision-making resulting from using
the more informative CPO prediction regions. Experiments were conducted with s and t chosen
uniformly at random from V . We take the score as defined in Equation (3.10) on the edge weight
space rather than the initial precipitation map space. Results are shown in Table 3.2. Again, al-
though all approaches achieve coverage guarantees, bounds resulting from alternate regions are
significantly looser compared to those from CPO. This is especially prominent in this task com-
pared to those of Section 3.3.1 due to the high dimension of the prediction space(R|E|) and complex
nature of P(C|X).
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Figure 3.4: Solutions for the RTFP under the Box (left) and CPO (right) uncertainty regions.

Notably, the formulation in Equation (3.12) is a relaxation of the standard LP formulation of the
robust shortest paths problem (RSPP), in whichW = {0, 1}E . Given that A is a totally unimodular
matrix, the solutions of the box-constrained RTFP and RSPP are equivalent, i.e. for both Box
and PTC-B; they, however, are not equivalent under more general constraint sets [Chaerani et al.,
2005], i.e. Ellipsoid, PTC-E, and CPO, resulting in the observed suboptimality of box constraints.
This is highlighted in Figure 3.4, where the Box constraint results in a fully concentrated allocation
of traffic along a single path.

Despite apparent quantitative improvements resulting from the CPO optimal solution, it is dif-
ficult to directly understand why such allocations were deemed optimal without a qualitative im-
pression of U(x), as framed in Section 3.2.5.
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Figure 3.5: Two RPs for C(x) for travel time prediction (left) and the extents of their Voronoi cells
(right).

We, therefore, now construct N = 5 representative points and their corresponding projections,
two of which are visualized in Figure 3.5. The RPs highlight the multimodal nature of the edge
weights distribution, where ξ(1) exhibits a case of precipitation more heavily concentrating along
the northeast corridor across Manhattan and ξ(2) one where it concentrates on the west. In addition,
the projection around ξ(2) reveals especially high uncertainty on the path through Central Park with
less on surrounding roads. CPO, thus, hedges its allocation in Figure 3.4 more evenly across paths,
unlike the concentrated allocation under the Box region.
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CHAPTER 4

Applications of Conformal Decision Making

A good decision is based on knowledge

and not on numbers.
Plato

We now present two applications of the conformal decision-making framework developed over
the previous chapter. In the first application, we demonstrate how this framework can be general-
ized to cases where the predictor is an ensemble of models and is conformalized via an extension
to the standard conformal prediction pipeline known as “conformal score aggregation (CSA).” In
CSA, the standard scalar score function is replaced by a vector-valued function and the quantile
threshold, consequently, replaced by a “quantile envelope.” We empirically demonstrate that this
interfacing with CSA improves the conservatism of the resulting conformal decision-making.

We then explore the application of this decision-making to settings of robust linear control.
End-to-end engineering design pipelines, in which designs are evaluated using concurrently de-
fined optimal controllers, are becoming increasingly common in practice. To discover designs that
perform well even under the misspecification of system dynamics, such end-to-end pipelines have
now begun evaluating designs with a robust control objective. Current approaches of specifying
such robust control subproblems, however, rely on hand specification of perturbations anticipated
to be present upon deployment or margin methods that ignore problem structure, resulting in a lack
of theoretical guarantees and overly conservative empirical performance. We, instead, propose a
novel methodology for LQR systems that leverages conformal prediction to specify such uncer-
tainty regions in a data-driven fashion. Such regions have distribution-free coverage guarantees on
the true system dynamics, in turn allowing for a probabilistic characterization of the regret of the
resulting robust controller. We then demonstrate that such a controller can be efficiently produced
via a novel policy gradient method that has convergence guarantees. We then demonstrate the su-
perior empirical performance of our method over alternate robust control specifications, such as
H∞ and LQR with multiplicative noise, across a collection of engineering tasks.
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4.1 Conformal Decision Making for Ensembles

4.1.1 Introduction

Ensemble methods are an oft-used class of statistical modeling techniques due to their ability
to reduce variance or improve predictive accuracy [Schapire et al., 1999, Zhang and Ma, 2012,
Dietterich, 2000]. Such methods are increasingly being coupled with complex, black-box models,
such as in multi-modal language models [Zhang et al., 2023, Radford et al., 2021, Sun, 2013,
Zhao et al., 2017, Yan et al., 2021]. Couplings of this sort are seeing ever-widening deployment in
safety-critical settings, such as medicine [Yuan et al., 2018, Li et al., 2018, Yuan et al., 2017] and
robotics [Brena et al., 2020, Blasch et al., 2021, Alatise and Hancke, 2020].

Increasing interest is, therefore, now being placed on quantifying uncertainty for such models
[Subedar et al., 2019, Tian et al., 2020, Denker and LeCun, 1990, Havasi et al., 2020, Malinin
and Gales, 2018]. Towards this end, methods of uncertainty quantification have arisen, such as
deep ensembles and committee estimation [Rahaman et al., 2021, Abdar et al., 2021, Carrete et al.,
2023]. Such methods, however, sacrifice generality with the imposition of distributional assump-
tions, motivating the need for distribution-free uncertainty quantification for ensemble methods.

One method for performing distribution-free uncertainty quantification is conformal prediction,
which provides a principled framework for producing distribution-free prediction regions with
marginal frequentist coverage guarantees [Angelopoulos and Bates, 2021, Shafer and Vovk, 2008].
By using conformal prediction on a user-defined score function, prediction regions attain marginal
coverage guarantees. While calibration is guaranteed from this procedure, predictive efficiency,
i.e. the size of the resulting prediction regions, can be unboundedly large for poorly chosen score
functions.

As a result, methods have arisen to perform conformal model aggregation, which both provide
uncertainty estimates of the ensembled predictions and do so in ways as to minimize the predic-
tion region size [Gasparin and Ramdas, 2024a, Trunov and V’yugin, 2023, Yang and Kuchibhotla,
2024, V’yugin and Trunov, 2023, Gasparin and Ramdas, 2024b]. While such approaches succeed
in reducing the prediction region size over naive aggregation, they all aggregate the separately

conformalized prediction regions of the predictors in the ensemble. In doing so, they forgo the
possibility of automatically leveraging shared structure amongst the scores of the individual pre-
dictors, resulting in conservative prediction regions.

In its place, therefore, a recent work [Rivera et al., 2024] proposed to perform aggregation in
score space by extending traditional conformal prediction to consider a multivariate score function
and defining prediction regions using “quantile envelopes” in place of scalar quantiles. Doing so
enables efficient, data-driven, automated conformal model aggregation. They demonstrated that
such aggregation improved predictive efficiency across classification tasks. We here demonstrate
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that such an approach can similarly be leveraged in regression settings, both for direct coverage
and decision-making applications.

4.1.2 Related Works

Ensemble methods consist of K predictors fk : Xk → Y; notably, such predictors need not map
from the same set of covariates. A naive approach for uncertainty quantification would then be to
conformalize the ensembled predictor. That is, for an ensembling algorithm F : YK → Y , a score
function s(F(f1(x), ..., fK(x)), y) would be defined. Denoting the ⌈(NC +1)(1−α)⌉/NC quantile
of the score distribution over DC as q̂(α), C(x) = {y : s(x, y) ≤ q̂(α)} would then be calibrated.

Such an approach, however, lacks some desirable properties. In particular, prediction regions
C(x) should have the quality that, if a particular predictor has less uncertainty in its predictions,
as is frequently true of ensemble settings where the predictors span multiple input data modalities,
upon routing to that predictor, the corresponding size of the prediction region should be smaller
than if it had been routed to a different predictor. While the naive approach does, in principle,
support this property, it ultimately relies on defining an uncertainty-aware ensembling algorithm
F . In its typical form, however, F simply takes point predictions f1(x), ..., fK(x) in as input,
meaning any uncertainty-awareness would need to be baked in a priori into the definition of F
through domain knowledge of the uncertainties of the predictors f1, ..., fK , which can seldom be
specified precisely, sacrificing the predictive efficiency of C(x).

Conformal model aggregation, thus, seeks to mitigate these deficiencies by aggregating the pre-
diction regions C1(x), ..., CK(x) rather than the individual point predictions [Gasparin and Ram-
das, 2024a, Yang and Kuchibhotla, 2024, V’yugin and Trunov, 2023, Gasparin and Ramdas,
2024b]. While there are several methods in this vein, they can be categorized into one of two
general approaches. The first line of work seeks to perform model selection, in which a single
conformal predictor is selected Ck∗ , typically based on the criterion of minimizing region size
k∗ := argmink E[L(Ck(X))] [Yang and Kuchibhotla, 2024, V’yugin and Trunov, 2023].

Generally, however, methods leveraging the full collection of predictors produce less conser-
vative regions [Gasparin and Ramdas, 2024a,b]. Such works aggregate the individual prediction
regions into a final region by defining C(x) := {y |

∑K
k=1wk1[y ∈ Ck(x)] ≥ â} for weights

{wk} ∈ [0, 1] such that
∑K

k=1wk = 1 and a threshold â. Methods then differ in the procedure
by which {wk} and â are prescribed, several of which were prescribed by [Gasparin and Ramdas,
2024b], whose detailed presentation is deferred to Section C.7 for space reasons. We note that the
methods of [Gasparin and Ramdas, 2024a] are designed for a different setting than that considered
herein, namely that in which conformal coverage is sought adaptively over data streams.

In this vein, [Luo and Zhou, 2024] have recently proposed a vector-score extension as that

39



discussed herein, in which candidate weight vectors {wm} ∈ RK are searched over for score ag-
gregation. That is, a vector s(x) := (s1(x, y), ..., sK(x, y)) ∈ RK of scores sk(x, y) corresponding
to each predictor fk(x) is predicted and its aggregate prediction region defined on the projection
⟨wm∗ , s⟩ for wm∗ the weight resulting in the smallest prediction region. This method, however,
has two shortcomings addressed in [Rivera et al., 2024]. The first is that their method can only
be applied in classification settings and the second that their approach only uses a single weighted
projection, resulting in suboptimal aggregation and, therefore, conservative prediction regions.

We now present a review of the score aggregation strategy proposed in [Rivera et al., 2024]. As
mentioned, this approach proposed considering a vector s(x) := (s1(x, y), ..., sK(x, y)) ∈ RK of
scores components sk(x, y) similar to [Luo and Zhou, 2024]. From here, a collection of projection
directions {um}Mm=1, with each um ∈ SK−1 ∩RK

+ , and corresponding quantiles {q̂m} were defined
such that the prediction region defined by simultaneous coverage under each projection direction,
i.e. C(x) := {y | u⊤

ms(x, y) ≤ q̂m ∀m = 1, ...,M}, satisfies the typical marginal conformal
coverage guarantees.

In particular, such {q̂m} are defined over a two-step procedure: by splitting the calibration set
SC into two sets S(1)

C and S(2)
C , an initial set of quantiles {q̃m} are defined that achieve optimally

tight coverage of 1 − α of the points in S(1)
C . This procedure, however, requires conditioning on

S(1)
C to define the optimal {q̃m}, in turn violating the required exchangeability assumptions. For

this reason, the held-out S(2)
C is then used for final calibration, in which an adjustment factor t̂ is

fit such that q̂m := t̂q̃m satisfies 1 − α coverage of S(2)
C . This two stage procedure parallels the

recalibration step of CANVI (Section 2.3.2).

4.1.3 Ensemble Predict-Then-Optimize

With this generalization of the score function, a natural question is how to leverage the result-
ing prediction regions C(x). For classification, where |Y| ∈ N, explicit construction of C(x) is
straightforward: for any x, C(x) can be constructed by iterating through y ∈ Y and checking if
s(x, y) ∈ Q̂ by comparing s(x, y) against each one of the thresholds q̂m after projection.

In the case of regression, however, the prediction region cannot be explicitly constructed in the
general case, since Y contains uncountably many elements. In fact, explicit construction is gen-
erally not of interest for downstream regression applications. We, therefore, focus on the predict-
then-optimize application discussed in the previous chapter, and demonstrate the CSA prediction
regions can be leveraged in their framework. Such an extension has natural applications to the
settings discussed in this original study. For instance, the robust traffic routing setting considered
in Section 3.3.2 naturally lends itself to an ensembling approach in considering multiple predictive
models, such as a q2(C | X) predicting traffic based instead on historical trends.
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We note that the below described algorithm is better understood with a visual accompani-
ment, which we provide in Section C.2. In Section 3.2.3, we demonstrated that solving the
robust problem variant w∗(x) := minw maxĉ∈C(x) f(w, ĉ) in a computationally efficient man-
ner is feasible by performing gradient-based optimization on w, where the gradient ∇wϕ(w)

of ϕ(w) := maxĉ∈C(x) f(w, ĉ) can be computed by leveraging Danskin’s Theorem so long as
maxĉ∈C(x) f(w, ĉ) is efficiently computable for any fixed w. We focus on demonstrating that this
remains the case for CSA, specifically considering the case where individual view score functions
take the form of the “GPCP” score considered therein. In this setup, each constituent predictor is
a generative model qk(C | X) from which {ĉkj}Jkj=1 ∼ qk(C | X) samples are drawn. Note that Jk
need not be constant across k. The GPCP score, used to define the score components, is

sk(x, c) = min
j∈1,...,Jk

[||ĉkj − c||2] . (4.1)

Notably, this framework subsumes many standard regression settings, e.g., for a deterministic
predictor, one can take qk(C | X) = δ(fk(X)). To compute maxĉ∈C(x) f(w, ĉ), we first let
j⃗ ∈ J = {j1, ..., jK} be an indexing tuple, where each jk ∈ {1, ..., Jk}. That is, each j⃗ is a
vector that “selects” one sample per predictor. Notably then, the projection u⊤

ms(ĉ⃗j, c) is convex in
c, since the projection directions are all restricted to SK−1

+ . Thus,

c∗
j⃗
:= argmax

c
f(w, c) s.t. u⊤

ms(ĉ⃗j, c) ≤ q̂m ∀m ∈ {1, ...,M} (4.2)

remains a standard convex optimization problem. The final maximum can then be found by aggre-
gation, namely c∗ = argmaxj⃗∈J f(w, c∗

j⃗
). While |J | =

∏K
k=1 Jk, we note that certain cases of

ensemble prediction, such as multi-view prediction, tend to have a limited number of predictors in
practice, most typically K = 2 or K = 3. This coupled with the fact that computing over these
indices is trivially parallelizable means this approach is still computationally tractable. The full
procedure is outlined in Algorithm 8 in Section C.2.1 due to space limitations.

4.1.4 Experiments

We now study CSA empirically across several tasks, demonstrating its coverage guarantees with
reduced conservatism. We first discuss how this method directly lends itself to improvement in
regression settings in Section 4.1.4.1 by directly analyzing the sizes of the resulting prediction re-
gions. In particular, we compare the score aggregation technique to those methods presented in
Section 4.2.3, viz. the model selection of [Yang and Kuchibhotla, 2024], the aggregation methods
of [Gasparin and Ramdas, 2024a], and the single weighted score projection (VFCP) of [Luo and
Zhou, 2024]. We additionally include the naive strategy in which the ensemble predictor is directly
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conformalized, using a natural aggregate “ensemble” score, explicitly described in the following
sections. From the work of [Gasparin and Ramdas, 2024a], we consider the following methods: the
standard majority-vote CM , partially randomized thresholding CR, and fully randomized threshold-
ing CU approaches (see Section C.7).

From these experiments, we find that the score aggregation approach significantly outperforms
all alternate ensembling strategies in terms of predictive efficiency, in turn motivating its use in
decision-making contexts. We, therefore, next apply the methods developed over Section 4.1.3
to an extension of the traffic prediction task studied in the previous chapter. Notably, the methods
against which we perform comparisons in the direct regression experiments do not lend themselves
for use in the predict-then-optimize setting, so we eliminate them from consideration therein.

4.1.4.1 Regression Tasks

We now study the predictive efficiency of CSA across a suite of regression tasks from [Fischer
et al., 2023]. The data for each task were split with 50/45/5% for training, calibration, and testing
for coverage and interval lengths, with five trials conducted over randomized selections of such
sets. A 5/95% split was used for DC

(1)-DC
(2). The problem setup was replicated from [Gasparin

and Ramdas, 2024b], in which four prediction methods were ensembled, namely an OLS model, a
LASSO linear model, a random forest (RF), and an XGBoost model. A residual function was used
as the score across all methods, namely s(x, y) = |f̂(x)− y|. Here, the “Ensemble” score was the
standard s(x, y) := |µ(x)−y|

σ(x)
, where (µ(x), σ(x)) are the ensemble mean and standard deviation.

Prediction intervals could be analytically constructed for the CM , CR, and CU methods. To assess
CSA, however, a discretized grid GY ⊂ Y of coarseness ∆y was considered, and an interval length
estimate given byL(C(x)) ≈ ∆y·|{y : y ∈ GY , s(x, y) ∈ Q̂}|. We also present an ablation, labeled
“Single-Stage,” to demonstrate the two-stage calibration of the calibration procedure presented in
[Rivera et al., 2024] is necessary to retain coverage; this single-stage approach does not split SC
and instead directly computes {q̂m} on SC per Section 4.1.2.

We provide the results for α = 0.05 and α = 0.025 to demonstrate the consistency of the
method performance. A subset of the results is given in Table 4.1; the full set of results is deferred
to Section C.4. We see that CSA retains the coverage guarantees typical of conformal prediction
yet produces significantly smaller prediction intervals than both the individual models and the
alternate aggregation strategies. We additionally see that the “Single-Stage” approach fails to
retain coverage, demonstrating the necessity of the two-stage calibration. We provide a visual
comparison of the prediction regions resulting from these methods in Section C.5.

We additionally assessed the robustness of our method to imbalanced ensembles. The exper-
iments of [Gasparin and Ramdas, 2024b] were conducted on a UCI benchmark task [Asuncion
et al., 2007] with an ensemble of an OLS model, a LASSO linear model, a random forest, and an
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Table 4.1: The results for five distinct tasks are shown below for α = 0.05 (top five rows) and
α = 0.025 (bottom five rows). For each, the average coverages (grey rows) and prediction set
lengths (white rows) with standard deviations are given, both assessed over 5 randomized draws
of the training, calibration, and test sets. In cases where the method failed to achieve sufficient
coverage (i.e. < .93 for α = 0.05 and < 0.96 for α = 0.025), we do not include it in comparison
for set length.

Dataset/α OLS LASSO RF XGBoost CM CR CU Ensemble Single-Stage CSA

361234 0.97 (0.011) 0.966 (0.011) 0.939 (0.002) 0.954 (0.006) 0.956 (0.011) 0.948 (0.01) 0.96 (0.013) 0.95 (0.006) 0.955 (0.013) 0.957 (0.01)
(α = 0.05) 9.673 (0.160) 9.645 (0.154) 10.080 (0.160) 9.157 (0.052) 9.196 (0.123) 8.703 (0.086) 9.524 (0.056) 17.759 (0.275) 7.646 (0.073) 7.688 (0.181)

361235 0.947 (0.0) 0.945 (0.005) 0.968 (0.016) 0.95 (0.005) 0.955 (0.016) 0.897 (0.005) 0.953 (0.011) 0.932 (0.021) 0.745 (0.011) 0.984 (0.005)
(α = 0.05) 20.961 (0.651) 24.241 (0.246) 10.096 (0.587) 11.387 (0.452) 11.782 (0.057) — 16.088 (0.118) 15.823 (1.272) 6.162 (0.458) 11.695 (0.266)

361236 0.975 (0.008) 0.975 (0.008) 0.961 (0.0) 0.948 (0.012) 0.948 (0.012) 0.938 (0.012) 0.965 (0.008) 0.934 (0.004) 0.94 (0.004) 0.963 (0.004)
(α = 0.05) 4.44e4 (1.17e3) 4.45e4 (1.23e3) 5.08e4 (3.86e2) 4.10e4 (1.22e3) 4.32e4 (1.00e3) 4.09e4 (1.09e3) 4.44e4 (8.52e2) 6.05e4 (2.41e3) 3 .10 e4 (2 .48 e3 ) 3.34e4 (1.28e3)

361237 0.969 (0.023) 0.969 (0.023) 0.981 (0.0) 0.923 (0.0) 0.954 (0.015) 0.9 (0.008) 0.969 (0.023) 0.885 (0.038) 0.8 (0.015) 0.977 (0.008)
(α = 0.05) 44.019 (0.990) 44.069 (1.115) 27.035 (1.014) — 26.524 (1.244) — 31.967 (1.118) — 14.473 (0.503) 23.145 (0.199)

361241 0.954 (0.001) 0.956 (0.001) 0.944 (0.005) 0.957 (0.002) 0.954 (0.002) 0.923 (0.0) 0.952 (0.0) 0.949 (0.001) 0.917 (0.006) 0.951 (0.001)
(α = 0.05) 19.133 (0.062) 20.245 (0.095) 18.102 (0.055) 18.482 (0.062) 17.958 (0.062) — 18.932 (0.034) 29.548 (0.191) 15.199 (0.427) 17.328 (0.097)

361234 0.987 (0.008) 0.987 (0.008) 0.974 (0.004) 0.977 (0.008) 0.982 (0.008) 0.971 (0.01) 0.981 (0.01) 0.97 (0.008) 0.976 (0.01) 0.973 (0.006)
(α = 0.025) 11.939 (0.137) 11.871 (0.084) 12.484 (0.168) 11.972 (0.009) 11.587 (0.110) 11.157 (0.086) 11.965 (0.050) 25.598 (0.974) 9.306 (0.259) 8.855 (0.059)

361235 0.987 (0.0) 0.982 (0.011) 0.979 (0.011) 0.984 (0.005) 0.989 (0.005) 0.966 (0.016) 0.976 (0.005) 0.958 (0.021) 0.889 (0.011) 0.989 (0.005)
(α = 0.025) 24.595 (0.825) 28.841 (1.129) 11.811 (0.992) 14.237 (0.786) 14.472 (0.172) 12.278 (0.026) 19.231 (0.356) — 7.719 (0.467) 12.563 (0.766)

361236 0.992 (0.004) 0.992 (0.004) 0.981 (0.0) 0.965 (0.008) 0.975 (0.008) 0.965 (0.008) 0.977 (0.012) 0.955 (0.008) 0.955 (0.012) 0.973 (0.004)
(α = 0.025) 4.86e4 (8.74e2) 4.86e4 (8.68e2) 5.61e4 (3.69e2) 4.66e4 (1.57e3) 4.76e4 (8.10e2) 4.57e4 (1.06e3) 4.92e4 (7.53e2) — 3 .29 e4 (3 .11 e3 ) 3.58e4 (1.95e3)

361237 0.981 (0.0) 0.981 (0.0) 0.981 (0.0) 0.977 (0.008) 0.962 (0.0) 0.962 (0.0) 0.977 (0.008) 0.965 (0.008) 0.927 (0.031) 0.981 (0.0)
(α = 0.025) 47.738 (0.542) 47.440 (0.959) 30.785 (0.037) 26.208 (0.897) 30.554 (0.561) 27.182 (0.803) 35.982 (0.619) 67.660 (6.380) 18.214 (0.436) 26.897 (0.515)

361241 0.979 (0.001) 0.978 (0.001) 0.976 (0.001) 0.978 (0.001) 0.978 (0.0) 0.964 (0.002) 0.977 (0.0) 0.972 (0.002) 0.958 (0.003) 0.979 (0.0)
(α = 0.025) 21.772 (0.085) 23.089 (0.106) 21.543 (0.009) 21.454 (0.109) 20.862 (0.088) 19.291 (0.060) 21.905 (0.041) 40.082 (0.045) 17.765 (0.329) 19.897 (0.062)

MLP, and they found the conformalized random forest to outperform all the proposed aggregation
strategies, due to the lack of orthogonal information in considering the other predictors. We find
that, in these degenerate cases, where the best decision is to simply choose a single predictor, our
method outperforms other aggregation methods and nearly matches the performance of the best
conformalized predictor in hindset; the results are presented in Section C.6 across a number of
UCI benchmarks.

4.1.4.2 CSA Predict-Then-Optimize

We now revisit the robust traffic routing task of Section 3.3.2. As a recap, in this task, a time series
of T preceding precipitations is used to predict future precipitations and, in turn, future traffic, as
fully described in Section B.4. We consider the traffic routing problem for a fixed source-target
pair (s, t) over the graph of Manhattan, where |V| = 4584 and |E| = 9867. Formally,

w∗(x) := min
w

max
ĉ∈C(x)

ĉTw s.t. w ∈ [0, 1]E , Aw = b,PX,C(C ∈ C(X)) ≥ 1− α

where x ∈ RT×H×W are the previous precipitation readings, we ∈ R|E| the traffic proportion routed
along road e, c ∈ R|E| the transit times anticipated across roads, A ∈ R|V|×|E| the graph incidence
matrix, and b ∈ R|V| the vector that specifies the routing problem, in which bs = 1, bt = −1, and
bk = 0 for s the travel source node, t the terminal node, and k /∈ {s, t} all other nodes.

43



We then consider two probabilistic models for traffic prediction, namely one based on the clas-
sical probabilistic Lagrangian integro-difference approach (STEPS) of [Pulkkinen et al., 2019] and
one on the modern latent diffusion model (LDM) approach of [Gao et al., 2024]. As a result of the
higher inference cost of the latter, we consider the setup where J1 > J2, specifically with J1 = 4

and J2 = 1, highlighting the flexibility of non-uniform sampling from predictors discussed in
Section 4.1.3. As discussed in Section 4.1.4, the alternate aggregation strategies do not lend them-
selves for use in this setting. We, therefore, only compare CSA to the separate conformalizations
of the two predictors, with the score from Equation (4.1). We here evaluate the methods using the
expected suboptimality gap proportion, ∆% = EX [∆(X,C(X))/minw f(w,C(X))], where ∆ is
defined as discussed in Section 1.1.3. This measures the conservatism of the robust optimal value
and is bounded in [0, 1].

Experiments were conducted with |DC | = 200, with a 20/80% split used for DC
(1)-DC

(2). The
suboptimality was then computed across 100 i.i.d. test samples. To assess the improvement, we
conducted two paired t-tests, where H0 : ∆

(CSA)
% = ∆

(STEPS)
% and H1 : ∆

(CSA)
% < ∆

(STEPS)
%

and similarly for ∆(CSA)
% and ∆

(LDM)
% . The results are provided in Table 4.2, from which we find

that CSA significantly reduces the suboptimality after accounting for Bonferroni multiple testing.
We see that, while conformalization of either of the two views individually already produces the
desired coverage, CSA produces more informative prediction regions, and hence less conservative
robust upper bounds.

Table 4.2: Coverages for α = 0.05 for the individually conformalized and CSA approach and
p-values of the paired t-tests comparing ∆% are shown, both computed over 100 i.i.d. test samples.

Coverage P-values for H1

STEPS LDM CSA ∆
(CSA)
% < ∆

(STEPS)
% : 3.61× 10−4

0.981 0.962 0.968 ∆
(CSA)
% < ∆

(LDM)
% : 9.50× 10−4

4.2 Conformal Robust Control of Linear Systems

We now discuss another application of the developed conformal decision-making framework. This
extension focuses on the setting of linear controls problems, leveraging conformal prediction for
robust model-based linear control.

4.2.1 Introduction

Seeking control over a family of dynamical systems is a problem often encountered in engineering
[Killian et al., 2016, Wu et al., 2018, Aksland et al., 2023]. One prevalent application of this is in
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cases where engineering designs and their respective controllers are being concurrently developed,
known as control co-design (CCD) [Garcia-Sanz, 2019]. Traditional engineering design loops
operated sequentially, first proposing a design and then developing a controller [Reyer et al., 2001,
Friedland, 1995]. Such workflows, however, sacrificed the improved optimality possible in their
coupling, hence the increasing interest in leveraging end-to-end co-control design pipelines [Fathy
et al., 2001, Falck et al., 2021].

Initial works in CCD studied optimal design assuming perfectly specified, deterministic system
dynamics [Allison et al., 2014, Azad et al., 2018, 2019, Behtash and Alexander-Ramos, 2018].
Such assumptions have, however, become overly restrictive, resulting in interest in robust exten-
sions of the CCD formulation, referred to as uncertain CCD (UCCD) [Azad and Herber, 2022,
2023b, Bird et al., 2023]. Such uncertainty can arise from many sources in the design process,
such as noise in the controllers, uncertainties in the design parameters, or unmodeled dynamics.
The UCCD specification also differs depending on the risk tolerance in the downstream appli-
cation. For instance, in risk-neutral settings, stochastic specifications are appropriate [Azad and
Alexander-Ramos, 2020b, Cui et al., 2022, Behtash and Alexander-Ramos, 2024], whereas in risk-
averse settings, probabilistic [Cui et al., 2020a,b, Nguyen et al., 2022] or worst-case forms [Azad
and Alexander-Ramos, 2021, Nash et al., 2021, Azad and Alexander-Ramos, 2020a] are used.

We focus on the worst-case robust UCCD formulation (WCR-UCCD), specifically on dynam-
ics misspecification. WCR-UCCD requires specifying a dynamics uncertainty region. Existing
methods of specification, however, tend to be ad-hoc and, thus, fail to provide any guarantees of
the robust solution as it relates to the selection of this uncertainty set, rendering its choice often
difficult and resulting in suboptimal controller synthesis [Azad and Alexander-Ramos, 2020b].

We, thus, focus herein on providing a principled distribution-free specification of the robust

control subproblem in WCR-UCCD and an associated solution method with convergence guaran-
tees. One special case of interest in UCCD is in the setting of linear quadratic regulators (LQRs),
where the underlying system dynamics take on a linear structure [Ahmadi et al., 2023, Fathy et al.,
2003, Jiang et al., 2016]. LQR systems are of broad interest both due to their analytic tractabil-
ity and widespread applicability to practical engineering systems [Zhao et al., 2024, Mamakoukas
et al., 2019, Bevanda et al., 2022]. We, therefore, propose a method for specifying the LQR WCR-
UCCD control subproblem that lends itself to efficient solution by leveraging conformal prediction
on observed design information. A related use of conformal prediction for predict-then-optimize
problems was the focus of the previous chapter. Unlike that setting, however, the application of
conformal prediction to control has complications related to the stability of controllers under model
uncertainty. Our contributions are as follows:

• Providing a framework to define robust LQR control problems with distribution-free prob-
abilistic regret guarantees, across deterministic or stochastic and discrete- or continuous-
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time dynamics, and demonstrating empirical improvements over alternative robust control
schemes.

• Extending conformalized predict-then-optimize to cases where calibration data is observed
with noise and where the domains of both the maximization and minimization components
of the robust formulation depend on the conformalized predictor.

• Providing a novel policy subgradient method for robust controller synthesis with conver-
gence guarantees proven via subgradient dominance.

4.2.2 Methodology

We now discuss conformally robust LQR, providing the formulation in Section 4.2.2.1, regret guar-
antees in Section 4.2.2.3 and Section 4.2.2.4, and a controller synthesis algorithm with convergence
guarantees in Section 4.2.2.5.

4.2.2.1 Problem Formulation

For the presentation below, let xt ∈ Rn, ut ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m. Let C denote
the full dynamics matrix C := [A,B] ∈ Rn×(n+m). We additionally assume a linear control
scheme, namely ut = −Kxt for some gain matrix K. Additionally, denote W := [In×n −K⊤]⊤ ∈
R(n+m)×n, such that the closed-loop dynamics are given by CW = A − BK. As discussed in
Section 1.1.5, we assume a dataset of designs and associated trajectories is observed. We assume
such a dataset D consists of N samples (θ(i), C(i)) ∼ P(Θ, C) and K(i) ∼ P(K), where P(Θ, C)

is an unknown joint distribution over designs and dynamics and P(K) an unknown distribution
on gain matrices. We make no assumptions on such distributions other than that each gain matrix
K(i) is a stabilizing controller for the respective C(i) dynamics. Note that these underlying true
dynamics C(i) are never observed directly by the learning algorithm; only the resulting trajectories
are observed. Such trajectories are generated by evolving the state via x

(i)
t+1 = (C(i)W (i))x

(i)
t over

a time horizon T . The final dataset, therefore, takes the form D = {θ(i), {(x(i)
t , u

(i)
t )}Tt=1}Ni=1. We

are interested in studying a risk-sensitive formulation of LQR:

K∗
rob(U(θ)) := argmin

K∈K(U(θ))

max
[Â,B̂]:=Ĉ∈U(θ)

E[J(K, Â, B̂)]

s.t. ẋ = Âx+ B̂u+ w PΘ,C(C ∈ U(Θ)) ≥ 1− α,

where J is the objective function particular to the setting of interest, differing between infinite and
finite time horizons and continuous and discrete time dynamics, and U(θ) is an uncertainty set
over dynamics. Notably, the notion of stabilizing controllers must be generalized in this robust
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formulation, since the nominal formulation is for a specific C. We, thus, consider those controllers
that stabilize the entire uncertainty set, which we refer to as the “universal stabilizing set,” formally
K(U(θ)) :=

⋂
Ĉ∈U(θ)K(Ĉ), where K(Ĉ) is Equation (1.4) evaluated for a particular Â, B̂.

4.2.2.2 Score Function

From the trajectories in D, we can perform system identification using least squares estimation to
recover estimates of the system dynamics, (Ã(i), B̃(i)) [Ljung et al., 1987]. With this, we obtain
a final dynamics dataset D̃ = {θ(i), C̃(i)}Ni=1, which we then leverage in the standard manner of
split conformal prediction. That is, we split D̃ = D̃T ∪ D̃C , the former of which we use to train
a system parameters predictor Ĉ := f(θ). Notably, leveraging split conformal in this setting has
the complication that the ground truth used, namely in D̃C , is itself an estimate C̃ even though
coverage is sought on C. We assume for this initial discussion that for a fixed coverage level α,
we can obtain prediction regions with the desired coverage, satisfying PΘ,C(C ∈ U(Θ)) ≥ 1− α,
using D̃C . The treatment of this gap between C̃ and C is discussed in Section 4.2.2.4.

We take the score to be s(θ, C) = ||f(θ) − C||op, where || · ||op is the matrix operator norm,
i.e. ||A||op = σmax(A), from which the resulting prediction regions take on the form of Bq̂(f(θ)),
namely a ball of radius q̂, the conformal quantile, under the || · ||op metric.

4.2.2.3 Coverage Guarantee Consequences

We now characterize the regret induced by the robustness across LQR setups, that is R(θ, C) :=

E[J(K∗
rob(U(θ)), C)−J(K∗(C), C)], where the randomness is over stochastics in the true system

dynamics C := [A,B] and in the P(C | θ) map. We explicitly note C in the regret notation
to emphasize that, while the controller K is defined using estimated system dynamics, the final
evaluation over the true C dynamics.

We provide the regret statements for the continuous, infinite time horizon cases below and
defer the discrete-time and finite time horizon cases to the Appendix. Both settings require a mild
assumption that the problem parameters have bounded norms, formalized in Assumption 4; this
will hold for any realistic problem setup. Notably, however, the two settings differ in that the
stochastic dynamics requires Q(t) and R(t) be discounted over t, while the deterministic case
is fully compatible with non-discounted rewards. Intuitively, this discounting is necessary, as
stability alone in the stochastic setting does not ensure a bounded objective; the state can continue
to oscillate and result in an unbounded accumulation of error if the terms tied to the state covariance
matrix do not decay. Other works frame this assumption as “mean-square stability,” (see e.g.
[Gravell et al., 2020a]). We formally pose this as Assumption 5.
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Assumption 4. For any θ, K ∈ K(Bq̂(f(θ))), and Ĉ ∈ Bq̂(f(θ)), D(K) :=
√
n||Q +

K⊤RK||∞||x0||2∞||W ||op <∞

Assumption 5. For any θ, ∃ constants α1, β1 > 0 such that for all Ĉ ∈ Bq̂(f(θ)), K ∈ K(Ĉ),

and t ≥ 0, ||Q(t) +K⊤R(t)K|| ≤ β1e
−α1t and minĈ∈Bq̂(f(θ))

(2α2(Ĉ) + α1) > 0 where α2(Ĉ) :=

maxK∈K(Ĉ)(−maxiRe(λi(ĈW ))) > 0.

The regret bound below decomposes into two terms. The first captures the suboptimality in
designing a controller with the conformal dynamics set instead of against the true dynamics; this
coincides with the suboptimality characterized in previous works described in Section 1.1.3. The
other is a novel aspect that arises in this controls setting: since the robust control problem opti-
mizes over a restricted set of controllers, namely those that universally stabilize the full conformal
dynamics set instead of those that only stabilize the true dynamics, there is an additional “domain
gap” suboptimality. Intuitively, if the true optimal controller falls in K(Bq̂(f(θ))), this latter term
should vanish. Towards this end, we introduce the following notion.

Definition 1. Let M(C,K∗(C)) := A − BK∗(C) be diagonalizable. Define r(C,K∗(C)) :=
mini

(
−ℜ(λi(M))

)
κ(U) ∥W∥op , where M = UΛU−1, κ(U) is the condition number of U , and W = [I −

K∗(C)⊤]⊤.

Across the theorems stated below, therefore, if the conformal radius is smaller than this
r(C,K∗(C)) margin term, the “domain gap” term vanishes. Intuitively, this property follows as the
stability of the system can be characterized by the closed-loop eigenvalues, whose values change
by a bounded amount in considering the perturbations captured in the conformal region. We ad-
ditionally see that, as q̂ → 0, the suboptimality vanishes, as we would expect in recovering the
true dynamics. Thus, users should seek to produce prediction regions with coverage that are as
small as possible to produce informative upper bounds on the nominal optimal value. Notably,
the statements below are given in terms of the objective Lipschitz constants L: explicit expres-
sions of L along with the discrete-time and finite time horizons theorems and proofs are given in
Sections C.8.2 to C.8.5.

Theorem 4.2.1 (Deterministic, continuous-time). Let J(K,C) :=
∫∞
0
(x(t)⊤(Q+K⊤RK)x(t))dt

for w = 0. Assume that PΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1− α. Then, under Assumption 4,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see Definition 1) ∆dom(Θ, C) = 0.
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Theorem 4.2.2 (Stochastic, continuous-time). Let J(K,C) :=

E
[∫∞

0
(x(t)⊤(Q(t) +K⊤R(t)K)x(t))dt

]
with w(t) a white noise process with spectral density Σ

such that D2(K) := ||Σ||op||W ||op < ∞. Assume further that PΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1 − α.

Then, under Assumption 4 and Assumption 5,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see Definition 1) ∆dom(Θ, C) = 0.

4.2.2.4 Ambiguous Ground Truth

We now discuss the complication of obtaining coverage guarantees on C despite only observing
estimates C̃ = C + ϵ in the dataset, where ϵ ∼ N (0,Σ). This form of the estimation error can
be shown to hold asymptotically under mild assumptions by classical results from least squares
estimation, as shown for LTI system identification in [Ljung et al., 1987].

The coverage guarantee result given in Theorem 4.2.3 is the multivariate extension of Theorem
A.5 from [Feldman et al., 2023b] and is a novel contribution to the broader space of conformal
prediction. Intuitively, we show that if, for all θ, the density P(C | θ) peaks in U(θ), we retain
marginal coverage guarantees. If P(C | θ) is unimodal and radially symmetric about its mode, this
condition is satisfied so long as U(θ) captures the mode. The map between design parameters θ and
A,B is often unimodal, making such a structural assumption reasonable; this was true classically,
where a deterministic map was parametrically given by physics (discussed more in Section C.8.6),
and remains true of data-driven surrogates in UCCD [Azad and Herber, 2023a, Azad et al., 2024].
U(θ) capturing the mode is also a weak assumption assuming a zero-centered distribution for ϵ,
since it then amounts to capturing the mode of P(C̃ | θ), which holds for any sufficiently accurate
predictor. We empirically demonstrate that such assumptions hold and, thus, that the coverage
guarantees are retained in Section 4.2.4. The full proof of this theorem is deferred to Section C.8.7.

Theorem 4.2.3. Let C̃ = C + ϵ where vec(ϵ) ∼ N (0,Σ), where ϵ ⊥⊥ (Θ, C). Assume U(θ) =

{C ′ | ||f(θ) − C ′||op ≤ q̂} satisfies PΘ,C̃(C̃ ∈ U(Θ)) ≥ 1 − α, where || · ||op denotes the matrix

operator norm. If for any θ ∈ Θ and δ > 0, P(q̂2 − δ ≤ ∥C − f(θ)∥2op ≤ q̂2 | Θ = θ) > P(q̂2 ≤
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ), then

PΘ,C(C ∈ U(Θ)) ≥ PΘ,C̃(C̃ ∈ U(Θ)) ≥ 1− α.
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4.2.2.5 Optimization Algorithm

Due to our generalization over traditional approaches to robust control (discussed in detail in Sec-
tion 4.2.3), the standard approaches of solution used in those cases, namely generalized alge-
braic Riccati equations (GARE) or policy gradient, cannot be applied without modification. We,
thus, now discuss how policy gradient can be adapted to efficiently solve the problem of inter-
est and then demonstrate corresponding convergence results in Section 4.2.2.6. Given the novelty
of the framing of Equation (4.2) over previous framings, specifically in the geometry of the un-
certainty regions, the policy gradient expressions derived here too are novel, highlighted below.
We frame this discussion around the deterministic, discrete-time, infinite time horizon setting, in
which xt+1 = (A − BK)xt. We assume that the initial state is drawn from a known distribution
x(0) ∼ N (0, X0). Naively, computing the gradient would require estimation of the infinite sum
in J ; however, it is well known that the gradient can be computed using a Lyapunov formulation,
given by

∇KJ(K,A,B) = 2((R +B⊤PKB)K −B⊤PKA)XK , (4.3)

where XK and PK respectively solve the two Lyapunov equations ℓX(XK ,∆K) = 0 and
ℓP (PK ,∆K , K) = 0 for specified Q,R,K, and ∆K := A−BK, where

ℓX(XK ,∆K) := ∆KXK∆
⊤
K −XK +X0 (4.4)

ℓP (PK ,∆K , K) := ∆⊤
KPK∆K +Q+K⊤RK − PK

Note that, while ℓP also depends on the choice of Q and R, we do not explicitly note this
in the notation as they remain fixed throughout the problem. If the continuous-time setting is
of interest instead, there are analogous Lyapunov equations and gradient expressions to those
respectively in Equation (4.3) and Equation (4.4). To solve Equation (4.2), we wish to per-
form gradient updates on K instead with respect to ϕ(K) := maxĈ∈U(θ) J(K, Ĉ). Naively,
one could proceed through the remaining analysis by leveraging Danskin’s Theorem to compute
the gradient of ∇Kϕ(K), which would result in the expression ∇Kϕ(K) = ∇KJ(K,C∗(K)),
where C∗(K) := argmaxĈ∈U(θ) J(K, Ĉ); however, the existence of such a gradient requires that
C∗(K) be the unique maximizer. Such an assumption is unlikely to hold in practice; for this
reason, we instead relax this assumption and proceed using subgradients. That is, we suppose
C∗(K) := ArgmaxĈ∈U(θ) J(K, Ĉ) instead is a set and denote by ∂Kϕ(K) := {∇KJ(K,CK) :

CK ∈ C∗(K)} the vertices of the subdifferential.
Thus, robust policy optimization proceeds by iteratively updating K with any vertex of the sub-

differential, namely by evaluating Equation (4.3) with [AK , BK ] := CK for some CK ∈ C∗(K)

and (X∗
K , P

∗
K), the solutions to the Lyapunov equations when ∆∗

K := AK − BKK. We initial-
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ize this procedure with the optimal controller for the nominally predicted dynamics, i.e. K(0) :=

K∗(f(θ)). Extending LQR policy gradient methods to the robust setting, therefore, reduces to be-
ing able to efficiently solve the maximization problem of CK over U(θ) := Bq̂(f(θ)). This can be
estimated with gradient ascent, where the Lyapunov expression ∇CJ(K,C) = 2PKCWXKW

⊤

is derived in Section C.8.8. The use of subgradients for policy optimization and the derivation
of the explicit ∇CJ(K,C) expression in its Lyapunov formulation are novel contributions to the
robust LQR space; these aspects were heretofore unstudied as previously studied robust formula-
tions (in Section 4.2.3) could be translated into GAREs and, therefore, did not require algorithmic
innovation. The algorithm is given in Algorithm 6.

Algorithm 6 CONFORMALIZED PREDICT-THEN-CONTROL (CPC)

1: procedure CPC(θ, f(θ), q̂, ηK , ηC , TK , TC)
Inputs: Design θ, Predictor f(θ), Conformal quantile q̂, Step sizes ηK , ηC , Max steps TK , TC

2: Ĉ := f(θ), K(0) ← SOLVEARE(Ĉ)
3: for tK ∈ {0, . . . TK − 1} do
4: [A(0), B(0)] := C(0) ← Ĉ
5: for tC ∈ {0, . . . TC − 1} do
6: ∆(tC) := A(tC) −B(tC)K(tK)

7: X(tC) ← Solve(ℓX(X,∆(tC)) = 0;X)
8: P (tC) ← Solve(ℓP (P,∆

(tC), K(tK)) = 0;P )
9: C(tC+1) ← ΠBq̂(Ĉ)

(
C(tC) + ηC (2P (tC)C(tC)W (tK)X(tC)(W (tK))⊤)

)
10: end for
11: ∆∗ := AK −BKK

(tK) ▷ C∗ := C(TC)

12: X∗ ← Solve(ℓX(X,∆∗) = 0;X)
13: P ∗ ← Solve(ℓP (P,∆

∗, K(tK)) = 0;P )
14: K(tK+1) ← K(tK) − ηK

(
2((R + (BK)

⊤P ∗BK)K
(tK) − (BK)

⊤P ∗AK)X
∗)

15: end for
16: Return K(TK)

17: end procedure

4.2.2.6 Policy Gradient Convergence Guarantees

We now wish to demonstrate this policy gradient approach retains the desired convergence proper-
ties it satisfies in the nominal case. Convergence guarantees surprisingly hold in the standard case
despite the nonconvexity of the problem in K due to a property known as “gradient dominance”
[Gravell et al., 2020a]. A function f : Rd1×d2 → R is gradient-dominated if, for some µ > 0,
f(x)− f(x∗) ≤ µ||∇xf(x)||2F , where x∗ := argminx f(x).

We proceed through the analysis similarly leveraging gradient dominance; however, our anal-
ysis has the novel problem of having to handle the non-uniqueness of the subgradient being used,
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namely that our algorithm may perform updates with one of the collection of subdifferential ver-
tices than using the uniquely defined gradient. For this reason, we instead consider a general-
ized notion of subgradient domination, defined as ∃ some µ > 0 such that f(x) − f(x∗) ≤
µming∈∂f(x) ||g||2F . We show that ϕ satisfies subgradient dominance and that this then produces
convergence guarantees for Algorithm 6 in Theorem C.8.12.

The full proof is deferred to Section C.8.9 and parallels the proof strategy presented in [Fazel
et al., 2018]; the main technical challenges are in demonstrating that bounds on expressions related
to J(K,C) and ∇KJ(K,C) are retained in our robust setting and that the non-uniqueness of the
maximizer does not interfere with convergence. Intuitively, the non-uniqueness manifests as a
looser gradient dominance constant and, thus, convergence decay rate, since µ must be taken to
be the loosest constant amongst those of the maximizing set. In line with [Fazel et al., 2018], we
assume XK ≽ 0 across Ĉ ∈ C and K ∈ K(C). This is true if the system is controllable for any
Ĉ ∈ C, which holds if the nominal dynamics are well-behaved and the predictor f(θ) is sufficiently
accurate, resulting in a small C set. The statements below are made for a general set of dynamics
C, though we are interested in C := U(θ). We defer the presentation of the explicit poly-expression
in Theorem 4.2.4 to Section C.8.9.

Theorem 4.2.4. Let J(K,C) :=
∑∞

t=0(x
⊤
t (Q + K⊤RK)xt) for w = 0. Let K(t), ϕ(K) :=

maxC∈C J(K,C), and K∗
rob(C) := argminK∈K(C) ϕ(K) be the t-th iterate of Algorithm 6. Assume

for each iterate t, the optimization over C converges, i.e. C(TC) = C∗(K(t)), that K(t) ∈ K(C),
and that XK ≽ 0 for all Ĉ ∈ C and K ∈ K(C). Denote ν := minĈ∈C minK∈K(C) σmin(XK). If in

Algorithm 6 ηK ≤ min[Â,B̂]∈C poly(
νσmin(Q)

J(K(0),C)
, 1

||Â||
, 1

||B̂||
, 1
||R|| , σmin(R)), then, there exists a γ > 0

such that ϕ(K(T ))− ϕ(K∗
rob(C)) ≤ (1− γ)T (ϕ(K0)− ϕ(K∗

rob(C))).

Formally, such convergence is guaranteed only if iterates K(t) remain within K(U(θ)). One
modification to Algorithm 6 would involve projecting intermediate iterates to this stabilizing set
by solving

ΠK(U(θ))(K̃
(t)) := argmin

K
||K − K̃(t)||op

s.t. max
[Â,B̂]:=Ĉ∈U(θ)

max
i

Re(λi(Â+ B̂K)) < 0.

There, however, is no known efficient algorithm to solve this projection step. Despite being of
theoretical concern, this instability issue fails to be practically relevant, since the controller iterates
remain well within the set of stabilization for sufficiently accurate predictors f(θ). If instabilities
arise, an approximate solution can be obtained by replacing maxĈ∈U(θ) of Equation (4.4) with a
finite sampling {Ĉ(i)} over U(θ).
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4.2.3 Related Works

Robust control can be broadly categorized into trajectory-based and trajectory-free robustness.
The former adjusts an initially posited control scheme in an online fashion based on feedback
measurements [Azad and Herber, 2022, Seiler et al., 2020, Paraskevopoulos, 2017], whereas the
latter directly incorporates desired robustness into the optimization problem prior to deployment
[Gravell and Summers, 2020, Gravell et al., 2022]. Given that control co-design seeks to identify a
controller prior to deploying a design, we specifically highlight methods of trajectory-free robust
control.

A popular classical trajectory-free method is H∞ control. H∞ is typically formulated as min-
imizing ||Twz||∞, i.e. the frequency space transfer function from w → z for some performance
state z. By defining z =

[
Q1/2x R1/2u

]
, we recover a recognizable LQR formulation, with the

objective replaced by

u∗ = min
{ut}

max
{wt}

∞∑
t=0

(x⊤
t Qxt + u⊤

t Rut − γ2w⊤
t wt), (4.5)

which can be solved via generalized Riccati equations [Başar and Bernhard, 2008]. Here, γ can
either be fixed to perform suboptimalH∞ synthesis or it can be determined via bisection to identify
the smallest γ such that a solution exists. Notably, the nominal H∞ formulation seeks additive,
unstructured disturbance rejection. Of interest herein, however, was robustness to multiplicative

uncertainties through the system dynamics. Towards this end, µ-synthesis offers an extension to
H∞ control by allowing users to specify norm-bounded uncertainties on system dynamics [Bevrani
et al., 2015, Chen et al., 2014].

This need for manual specification in µ-synthesis, however, incurs conservatism or controller
instability if poorly specified, resulting in increasing interest in data-driven specifications. In this
vein, a formulation known as LQR with multiplicative noise (LQRm), has recently become of
interest, where the controller is:

K∗ := argmin
K

E{δi},{γi}[J(K,A,B)] (4.6)

ẋ :=

(
A+

p∑
i=1

δiAi

)
x+

(
B +

q∑
i=1

γiBi

)
u+ w,

where {Ai} and {Bi} and the distributions of {δi} ∼ Dδ and {γi} ∼ Dγ can be specified, either
with data-free or with data-driven estimation. Most common among data-free specifications are
so-called “margin methods.” Briefly, margin methods specify {δi} and {γi} by finding those {δi}
and {γi} that result in borderline-stable dynamics when paired with the corresponding, manually
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Table 4.3: Each of the results below are the p-values of paired t-tests conducted pairwise between
methods testing H1 : R(CPC)

% < R(alt)
% over 1,000 i.i.d. test samples. For any comparison method

with > 80% unstable cases (see Table C.11 for percentages), we have marked the entry with “—”.

Airfoil Load Positioning Furuta Pendulum DC Microgrids Fusion Plant

Random Critical — — — — —
Random OL MSS (Weak) 0.0003 — — — —
Random OL MSUS — — — — —
Row-Col Critical — — — — —
Row-Col OL MSS (Weak) 0.0117 — — — —
Row-Col OL MSUS 0.0009 — — — —
Shared Lyapunov 0.0001 0.0000 0.0112 0.0913 0.0023
Auxiliary Stabilizer 0.0001 0.0005 0.0055 0.0428 0.0630
H∞ 0.0009 0.0000 0.0071 0.0004 0.0013

specified ({Ai}, {Bi}) and some choice of controller: the particular controller varies across margin
strategies. A full description of the margin methods considered is given in Section C.8.10.

As with H∞, such data-free LQRm methods sacrifice stability or risk conservatism in ignoring
the nature of the dynamics predictor misspecification, resulting in recent works that give data-
driven parameterizations [Gravell et al., 2020b]. Here, two approaches were proposed to learn
the margin parameters, which we refer to as the “Shared Lyapunov” and “Auxiliary Stabilizer”
approaches, described fully in their paper. While such approaches improve upon the conservatism
of classical data-free margin methods, they still require the hand specification of the perturbation
matrices {Ai} and {Bi}.

4.2.4 Experiments

We now study five setups of interest in the infinite horizon, discrete-time, deterministic setting,
namely LQR control of an airfoil [Chrif and Kadda, 2014], a load positioning system [Ahmadi
et al., 2023, Jiang et al., 2016], a Furuta pendulum [Arulmozhi and Victorie, 2022], a DC mi-
crogrid [Liu et al., 2023a], and a nuclear plant [Kirgni and Wang, 2023]. The dimensions of
(θ, A,B) are (R15,R4×4,R4×2) for the airfoil, (R5,R4×4,R4×1) for the load positioning sys-
tem, (R9,R4×4,R4×1) for the Furuta pendulum, (R17,R9×9,R9×1) for the DC microgrid, and
(R26,R8×8,R8×1) for the nuclear plant. The full setup details are provided in Section C.8.11.

We compare against H∞ control with γ bisection, the data-free margin methods, and the data-
based methods for the LQRm setup as discussed in Section 4.2.3. The data-free margin methods
are as implemented by [Gravell and Summers, 2020] and are fully described in Section C.8.10,
of which we specifically consider “Random Critical,” “Random OL MSS (Weak),” “Random OL
MSUS,” “Row-Col Critical,” “Row-Col OL MSS (Weak),” and “Row-Col OL MSUS.” The data-
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based methods are the “Shared Lyapunov” and “Auxiliary Stabilizer” approaches from [Gravell
et al., 2020b]. As discussed, we are considering the trajectory-free setting, so we do not compare
against methods that achieve robustness adaptively over trajectories, such as those in [Gravell and
Summers, 2020, Gravell et al., 2022].

In the experiments, we construct D as per Section 4.2.2.1, using random gain matrices K(i).
N was taken to be 2, 000 with |DC| = 400 and the remaining DT used to train f(θ), taken to be
feed-forward neural networks.

4.2.4.1 Robust Control Regret & Stability

We first study the empirical regret across the aforementioned systems and robust control methods
over 1, 000 i.i.d. test points from P(Θ, C). To make results comparable across θ(i), we normalize
each trial by its nominal objective, i.e., R% = R(Θ, C)/J(K∗(C), C), as in [Sun et al., 2023]. If
the uncertainty regions of the robust problems are poorly specified, i.e. if the regions of robustness
do not capture the true dynamics, the resulting robust controller may have unbounded cost, i.e.
J(K∗

rob, C) = ∞. We, thus, only compute R% over the stabilizing controllers and separately
report the proportion of destabilized cases. Lower values are desirable for both.

For each comparison method, we report the result of a one-side paired t-test of H1 : R(CPC)
% <

R(alt)
% in Table 4.3. We defer the presentation of the raw regret values and the percent of cases with

stabilized dynamics to Section C.8.12 due to space constraints. Notably, the alternative approaches
generally incur greater regret than CPC. For H∞, this is expected as the misspecification here is
in the dynamics matrices, differing from the adversarial exogenous noise that H∞ is designed
to protect against. Similarly, the data-free margin methods protect against perturbations that are
misaligned with the true dynamics misspecification, which result in significant instability for the
higher-dimensional problems (i.e. the “Furuta Pendulum,” “DC Microgrids,” and “Fusion Plant”
tasks). The data-driven LQRm methods improve significantly upon these margin approaches in
stability, yet they are too conservative as they do not make use of the anticipated structures of the
errors made in the predictions by f̂(θ).

4.2.4.2 Ambiguous Ground Truth Calibration

To validate the results of Theorem 4.2.3 and demonstrate the empirical validity of the associated
assumption, we computed the empirical coverages across various levels of desired coverage α ∈
(0, 1) for the experimental setups. As previously discussed, the calibration here was performed
using a calibration set of estimated dynamics D̃ = {(θ(i), C̃(i))} but coverage was assessed on the
true dynamics {C(i)}. We computed this in the manner described in Section 4.2.4 for α varying
by increments of 0.05. For assessing coverage, we again used 1, 000 test points drawn i.i.d. from
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Figure 4.1: Calibration plots for the tasks, assessed on 1,000 i.i.d. test samples of C with calibra-
tion performed using the estimated C̃, affirming Theorem 4.2.3.

P(Θ, C) and measured the proportion of samples for which s(θ(i), C(i)) ≤ q̂. The results are shown
in Figure 4.1, where we see the desired calibration under calibration with estimated dynamics.
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CHAPTER 5

Future Directions

If we knew what it was we were doing, it

would not be called research, would it?
Albert Einstein

Over the previous chapters of this thesis, we have developed a generalizable framework for
robust decision-making that leverages conformal prediction, demonstrating its use in scientific
decision-making, single-stage decision making problems for both standard and ensembled pre-
dictors, and finally robust linear controls problems. Critically, while this developed framework
encompasses a diverse collection of applications, there remain a number of routes for further de-
velopment. We specifically highlight some directions of recent investigation that seem particularly
compelling and present the associated preliminary results along such directions. Notably, these
directions all generalize the decision-making framework along the lines of leveraging conformal
prediction over infinite-dimensional function spaces.
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5.1 Non-Parameteric Conformal Distributionally Robust Opti-
mization

As a direct extension on the ideas presented in Chapter 3, we propose leveraging conformal pre-
diction to make guarantees on stochastic contextual predict-then-optimize tasks. Stochastic op-
timization is a mature field often used in safety-critical situations, such as in the deployment of
self-driving cars [Ben-Tal et al., 2009, Gabrel et al., 2014, Beyer and Sendhoff, 2007, Rahimian
and Mehrotra, 2019]. Traditionally, problems are framed as seeking decisions w ∈ W that mini-
mize EP(C)[f(w,C)] for some objective f and random information dictating the decision quality
w.

In cases where contextual information is present, this requires explicit modeling of the posterior
P(C | X) distribution. Similar to the settings discussed in Chapter 2, amortized variational infer-
ence is frequently employed, with decisions subsequently made against Eqφ(x)(C)[f(w,C)]. While
variational inference provides a computationally efficient alternative to MCMC, it has been repeat-
edly noted that a major shortcoming of VI is its lack of any theoretical guarantees and tendency to
produce biased posterior estimates [Blei et al., 2017, Murphy, 2022, Zhang et al., 2018, Yao et al.,
2018].

Separately, distributionally robust optimization (DRO) arose, in which solutions of this opti-
mization set are instead sought over an ambiguity set U(P) of distributions [Rahimian and Mehro-
tra, 2019, Kuhn et al., 2019, Lin et al., 2022]. Significant progress has been achieved in this vein,
but DRO requires a priori knowledge of plausible ambiguity sets or noise distributions to produce
answers that are practically useful. For instance, an overly conservative ambiguity set will likely
result in suboptimal performance in typical circumstances. Towards this end, data-driven DRO has
recently become of interest, in which plausible ambiguity sets are learned empirically [Delage and
Ye, 2010, Mohajerin Esfahani and Kuhn, 2018, Chen et al., 2022].

We, therefore, extend CPO and propose CDPO (Conformal-Distributional-Predict-Then-
Optimize), a procedure that leverages conformal prediction to produce prediction regions over
probability measures and thereby produces guarantees on stochastic decision-making algorithms
that rely on amortized variational inference, in turn unifying the fields of distributionally robust
optimization and predict-then-optimize decision-making.

5.1.1 CDPO: Score Function

Let c ∈ C, where (C, d) is a general metric space, and F be the σ-field of C. We again consider
general convex-concave objective functions f(w, c) that are L-Lipschitz in c under the metric d for
any fixed w. With this generalization, the robust formulation of stochastic predict-then-optimize
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can be stated as
w∗(x) := inf

w∈W
sup

Q̂∈U(x)

EQ̂[f(w,C)]

s.t. PX,PC
(PC ∈ U(X)) ≥ 1− α,

(5.1)

where U : X →M(F) is a uncertainty region predictor over the space of probability measures on
F . Exact solution of this problem is intractable, as no practical methods exist to optimize over the
measure space U . For any fixed U , this robust counterpart to the stochastic predict-then-optimize
problem produces a valid upper bound if we use the following score function:

s(x,PC) =W1(Q̂φ(x)(C),PC), (5.2)

where W1 represents the 1-Wasserstein distance. To compute the quantile q̂ of such a score
over DC , we assume the recovery of the exact posterior P(C | x) for a subset of x, namely via
MCMC methods. From here, C(x) = {Q | s(x,Q) ≤ q̂(α)} has marginal guarantees in the form
PX,PC

(PC ∈ U(X)) ≥ 1 − α. Notably, even computing W for multi-dimensional distributions
is a computationally challenging task; however, we can use the well-known equivalence between
computing W1 and the Assignment Problem, which can be solved in O(N3) with the Hungarian
Algorithm [Peyré et al., 2019].

With this choice of score function, we can bound the nominal stochastic optimal value. Let

∆(x,PC) := inf
w∈W

sup
Q̂∈U(x)

EQ̂[f(w,C)]− inf
w∈W

EPC
[f(w,C)].

We clearly see ∆(x,PC) ≥ 0 if PC ∈ U(x). This framing again makes clear the consequences of
leveraging efficient prediction regions with guaranteed coverage, formalized below.

Lemma 5.1.1. Consider any f(w, c) that is L-Lipschitz in c under the metric d for any fixed w.

Assume further that PX,PC
(PC ∈ U(X)) ≥ 1 − α with supq∈U(x)W1(Q,PC) = diam(U(x)).

Then,

PX,PC
(∆(X,PC) ≤ L diam(U(X))) ≥ 1− α. (5.3)

The proof is explicitly provided in Section D.1. Thus, 1 − α validity of the prediction region
ensures the result of the RO procedure is a valid bound with probability 1−α, and greater efficiency
of the prediction region translates to a tighter upper bound.

5.2 Uncertainty Quantification for Dynamic NeRFs

The ultimate application aim of this line of distribution-free uncertainty quantification is for vol-
umetric reconstruction of proteins from Cryo-EM. We pose the reconstruction task as an inverse
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problem of recovering ϕ : R3 → R from observations of the following generative model:

I = H ∗
∫ ∞

−∞
ϕ(RT

i x⃗+ t⃗i)dz + η, (5.4)

where I ∈ Rn×n are the observed images, H is the point-spread function, Ri, t⃗i are the rotation
and translation of the density, and η is observation noise. Such reconstruction closely mirrors the
traditional problem of volumetric reconstruction from computer vision, specifically in the field of
photogrammetry. We, therefore, will pursue progress in this vein prior to redirecting it to the more
complex Cryo-EM data.

Volumetric reconstruction inspired by or directly using neural radiance fields (NeRFs) is becom-
ing increasingly prevalent in scientific applications, such as in Cryo-EM reconstruction [Zhong
et al., 2021a,b, Levy et al., 2022b, Gupta et al., 2021, Nashed et al., 2021, Levy et al., 2022a,
Scheres, 2012, Ullrich et al., 2019, Chen and Ludtke, 2021]. Applications of NeRFs have tradi-
tionally been in artistic domains, where recovery of precision is of secondary concern to the quality
of user experience. However, in scientific inquiries, precision and accompanying uncertainty quan-
tification are of utmost importance.

Neural radiance fields have demonstrated incredible fidelity in novel view synthesis from input
views [Mildenhall et al., 2021], having spawned an entire sub-domain of research purely focused
on such NeRF reconstruction [Gao et al., 2022]. However, such reconstruction tasks are often
inherently underconstrained problems, meaning a whole distribution of depths could map to the
observed images. NeRFs excel at producing point estimates of the volume. They, however, give
no sense of the uncertainty associated with such predictions.

The rising need for such uncertainty quantification can be seen in the recent work in the NeRF
community on Bayesian uncertainty quantification [Ritter and Karaletsos, 2021, Shen et al., 2021,
Sünderhauf et al., 2022, Shen et al., 2022, Hoffman et al., 2023]. These works, however, modify
the training process and requisite architectures greatly, limiting their adoption by end users. In this
vein, a recent work [Goli et al., 2023] introduced a post-hoc method for uncertainty quantification
relying on Laplace approximations. This work, however, is limited to static reconstruction, making
it inapplicable to Cryo-EM reconstruction.

We, therefore, propose an extension to this method to enable its use for dynamic object re-
construction. We view such a contribution as a first step toward providing principled uncertainty
quantification for Cryo-EM reconstruction methods and as the first post-hoc method for doing
uncertainty quantification for dynamic reconstruction.
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5.2.1 Neural Radiance Fields (NeRFs)

While modern machine learning has had some impact on SfM algorithms, it has had noticeably
more in reconstruction algorithms, particularly in the form of neural radiance fields (NeRFs). At
their core, the core idea of NeRFs is to directly estimate the 3D volume rather than going through
the intermediary of the depth. In particular, we estimate such a volume as Φ : R5 → R4, where
the inputs are the point inside the volume x := (x, y, z) and viewing direction d := (θ, ϕ) and the
outputs are the color c := (r, g, b) and transmission density τ . An image for a given viewpoint is
produced by “volumetric rendering,” i.e. for a ray r(t) corresponding to a pixel, we compute

C(r) =

∫ t1

t0

T (t)τ(r(t))c(r(t), d)dt,

where T (t) = exp

(
−
∫ t

t1

τ(r(u))du

)
.

Thus, F is trained against the standard L2 loss, i.e. L := ||C − Ĉ||22, across images. Note that this
assumes the camera pose is known a priori, which is in practice typically obtained via conventional
SfM algorithms.

For dynamic reconstruction, we extend this pipeline by introducing a deformation field Φt,
which conceptually warps a static “canonical frame” represented now by Φx to the current frame.
That is, Φt(x, t) → ∆x, maps a position x in the reconstructed canonical volume to its adjusted
position at time t, meaning the reconstruction at time t is now represented by Φx(x + ∆x). For
instance, a canonical frame may reconstruct a person standing upright, with Φt(x, t) warping their
legs to appropriately bend if they are seated in frame t.

5.2.2 Static Uncertainty Quantification

We briefly summarize the method as presented in [Goli et al., 2023] before proposing its exten-
sion to dynamic object reconstruction. In this setup, we assume prior knowledge of the training
camera poses, {Tn}. We are specifically interested in quantifying epistemic uncertainty here, that
is, highlighting regions of the reconstruction that are underconstrained by the input views. For
instance, a single image is, without prior knowledge, insufficient to determine the depths of con-
tained scene elements. With more viewpoints, the reconstruction becomes more constrained. We,
therefore, wish to capture those regions of the reconstruction which, upon perturbation, would re-
sult in immaterial changes in the viewpoints observed in the fitting process. For instance, if only
frontal views of a person are observed during fitting, any perturbation to regions of the volume
corresponding to their back would not be observable in projecting to {Tn}, which we wish to
highlight.
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Such a field conceptually acts much in the way the deformation was described in section 5.2.1.
We, therefore, formalize “spatial uncertainty” as a property of this aforementioned perturbation
field, detailed as follows. Assume we have fitted Φθ∗ := (cθ∗ , τθ∗). Denoting the perturbation field
as Dφ(x), rendering under perturbation involves rendering with the modified functions:

c̃φ(x) := cθ∗(x+Dφ(x), d)

τ̃φ := τθ∗(x+Dφ(x)).

We denote the modified rendering result, i.e. section 5.2.1 using (c̃φ(x), τ̃φ) as C̃(r). We, therefore,
wish to characterize the φ under which observations C̃(r) are unchanged. Critically, unlike the
deformation field of section 5.2.1, Dφ(x) is explicitly defined, specifically as

Dφ(x) := Trilinear(x, φ), (5.5)

where φ ∈ RM3×3 for M a discretization resolution of the reconstructed volume. That is, for each
vertex m of a discretized representation of Φ, we associate a corresponding displacement vector
φm. We, therefore, wish to find the posterior P(φ | X) of these parameters, with the variance of
the appropriate component of φ being the desired spatial uncertainty characterization of interest.
Important to note is that θ∗ is not modified in this post-hoc analysis.

We now leverage Laplace approximation to obtain the desired posterior, modeling the prior as
φ ∼ N (0, λ−1). The derivation is in [Goli et al., 2023], with the final covariance being

I(φ)−1 ≈

(
2

R

∑
r

Jφ(r)Jφ(r)
T + 2λI

)−1

, (5.6)

where Jφ(r) is the Jacobian of C̃ evaluated at r, namely Jφ(r) :=
∂C̃
∂φ

. Only the diagonal entries
of this matrix are considered due to previous studies on the sparsity structure of NeRF parameter
correlations, from which we obtain the desired characterization of vertex displacement variances.

The static version immediately lends itself to an extension to dynamic reconstruction. We
specifically aim to produce uncertainty quantification in the warped frames, i.e. by characterizing
a perturbation field on Φx(x+∆x+Dθ(x)), where ∆x = Φt(x, t).

5.3 Conformally Robust Engineering Design

Much of engineering design centers on optimizing design parameters under a PDE-constrained
functional, such as optimizing car or aircraft designs for drag minimization or structural designs
for withstanding stress [Sokolowski et al., 1992, Hsu, 1994, Challis and Guest, 2009, Dunning and
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Kim, 2015]. Traditionally, workflows would require repeatedly running domain-specific numerical
PDE solvers to evaluate the designs as they were iteratively refined [Zhang et al., 2006, Caron et al.,
2025]. Such workflows, however, suffered from slow iteration time, as numerical PDE solvers
incur a significant computational cost that cannot be amortized over their runs across different
designs. For this reason, significant interest has arisen in neural surrogate models that learn a “flow
map,” with which a PDE can be efficiently approximately solved across different input conditions
with an inference pass [Pathak et al., 2022, Wen et al., 2022, Bonev et al., 2023].

One concern with purely relying on such surrogate models in design optimization pipelines is
that they lack any guarantees of recovering the true solution functions, unlike classical numeri-
cal solvers. This, in turn, has led to the proliferation of methods to provide uncertainty estimates
for such models [Zou and Karniadakis, 2023, Psaros et al., 2023, Zhu et al., 2019, Martina-Perez
et al., 2021, Tripathy and Bilionis, 2018]. Such uncertainty quantification methods, however, rely
on distributional assumptions, whose utility fails with distributional misspecification [Sahin et al.,
2024, Mollaali et al., 2023]. For this reason, recent efforts have been directed towards develop-
ing distribution-free, data-driven approaches to uncertainty quantification by leveraging confor-
mal prediction [Gopakumar et al., 2024, Ma et al., 2024], a principled framework for producing
distribution-free prediction regions with marginal frequentist coverage guarantees [Angelopoulos
and Bates, 2021, Shafer and Vovk, 2008].

These initial efforts to leverage conformal prediction, however, fall short along two axes. The
first is that they fail to provide coverage of the infinite-dimensional functions being predicted by
neural operators. Initial works in this direction only produced coverage guarantees on predictions
of a fixed-discretization, in turn sacrificing the discretization-invariant property that is central to
neural operators [Gopakumar et al., 2024, Ma et al., 2024]. A recent work took steps towards
addressing this deficiency by guaranteeing simultaneous coverage up to some maximally observed
resolution; this approach, however, still fails to provide coverage over the untruncated function
space [Gray et al.]. In addition, such uncertainty quantification has yet to be leveraged for down-
stream use cases. The space of finite-dimensional conformal prediction followed a similar trend,
with the proliferation of methods that produce calibrated regions with only more recent works
discovering their applicability to decision-making tasks [Lekeufack et al., 2024, Cresswell et al.,
2024, Kiyani et al., 2025, Cortes-Gomez et al., 2024]. We present initial results toward this end in
Section D.2.
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APPENDIX A

Amortized Variational Inference with Coverage
Guarantees

A.1 Group Conditional CANVI

We now discuss how CANVI can be easily extended to provide a stronger notion of group con-
ditional coverage over the purely marginal coverage over X that was provided in the paper. Here,
instead of defining a global q̂, a collection {q̂i}Ki=1 is obtained by defining centroids over the X
space {ci}Ki=1, constructing balls of radius ϵ around them Bϵ(ci) ⊂ X , and performing calibration
using Di

C := {(xj, θj)}NC
j=1 with xj ∈ Bϵ(ci).

To compare, we define a global quantile q̂ using KN samples. Specifically, we take N =

100, 000 and K = 5, meaning calibration was performed using 500,000 i.i.d. samples for the
overall calibration set. Coverage was assessed over α ∈ [0, 1] discretized at steps of .05 over
K = 5 regions. Coverage was assessed over 10 batches of 100,000 i.i.d. test samples.
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Figure A.1: Calibration on the SBI benchmarks with overall quantile and region-specific quantiles,
respectively the dashed and solid lines. Region-specific conformalized lines are slightly difficult
to distinguish, as they all lie along the desired y = x curve. Error bars from coverage assessments
across test batches are plotted, although they are difficult to see due to the low variance between
estimates across batches.

Figure A.1 demonstrates the miscalibration of the regions produced using the overall quantile
and subsequent correction with region-specific calibration. We additionally plot the calibration
across the X space of the Two Moons task to demonstrate the non-uniformity of coverage across
regions and subsequent corrections in Figure A.2.

Figure A.2: Coverage for Two Moons with the overall and region-specific quantiles with α = 0.05.
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A.2 CANVI Validity

Lemma A.2.1. Let α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC, NT

)
Let (x′, θ′) ∼ P(X,Θ) ⊥⊥ D∪DC∪DR∪DT , withD being the data used to train {q(t)(Θ|X)}Tt=1.

Then 1− α ≤ P(1/q(∗)(θ′|x′) ≤ q̂
(∗)
R (α)).

Proof. Consider the score function s(∗)(x, θ) := 1/q(∗)(θ | x). Observe that (x′, θ′) ∪ DR are
jointly sampled i.i.d. from P(X,Θ), independent of the datasets used to design s(∗)(x, θ), namely
D ∪ DC ∪ DT . Denoting SR := {s(∗)(xi, θi)}(xi,θi)∈DR , scores s(∗)(x′, θ′) ∪ SR, thus, too are
i.i.d and, hence, exchangeable. The coverage guarantee then follows from the general theory of
conformal prediction, presented in [Angelopoulos and Bates, 2021]. ■

A.3 Riemannian Manifolds

Let (M, g) denote a Riemannian manifold, with g denoting the metric tensor associated with this
space. By definition, a manifoldM is locally isomorphic to Euclidean space, from which we can
define the notion of a tangent space TzM at each point z ∈M. The metric tensor g then defines a
local notion of distance, namely g : TzM×TzM→ R. This, therefore, induces a local notion of
length, namely for x ∈ TzM, ||x||z =

√
g(x, x).

Global distances over the manifold, therefore, can then be denoted by integrating such a local
notion across a path γ. Concretely, a path is defined between a, b ∈ M by γ : [0, 1] → M such
that γ(0) = a, γ(1) = b. The length of such a path is then ℓ(γ) :=

∫ 1

0
||γ′(t)||γ(t)dt. A natural

choice of distance, therefore, is the minimum length of a constant velocity path, formally

d(a, b) = inf
γ:||γ′(t)||=1,γ(0)=a,γ(1)=b

ℓ(γ) (A.1)

A.4 CANVI: Efficiency Analysis

A.4.1 Lipschitz Continuity of Efficiency

Lemma A.4.1. Let ℓ(q, τ) be as defined in Equation 2.2. If ℓx(q, τ) is L-Lipschitz continuous in τ

for any x ∈ X , then ℓ(q, τ) is L-Lipschitz continuous.
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Proof.

|ℓ(q, τ1)− ℓ(q, τ2)| = |EX [L ({θ : 1/q(Θ | X) ≤ τ1})− L ({θ : 1/q(Θ | X) ≤ τ2})]|

=

∣∣∣∣∫ P(x) [ℓx(q, τ1)− ℓx(q, τ2)]

∣∣∣∣ ≤ ∫ P(x) |ℓx(q, τ1)− ℓx(q, τ2)| dx

≤ L |τ1 − τ2|
∫
P(x)dx = L |τ1 − τ2| ,

completing the proof as desired. ■

A.4.2 Predictive Efficiency of CANVI

The proof emerges through a reduction of CANVI to a special case of the “Validity First Con-
formal Prediction for the Smallest Prediction Set” (VFCP) algorithm presented in the [Yang and
Kuchibhotla, 2021]. The VFCP algorithm is provided for convenience in Algorithm 7. Note that
we made the appropriate replacements in notations to match those presented in the main body of
our paper for clarity.

To further underscore the parallel, we present an immaterially modified version of VFCP,
where it is assumed the data are split prior to the algorithm execution into disjoint sets D,DC ,
and DR. We assume input prediction methods A(1), ...,A(T ) have been trained on D. Finally, the
presentation in [Yang and Kuchibhotla, 2021] allows for generic definitions of the measure func-
tion of C(x), referred to as “Width” therein. We present it with the particular Lebesgue measure
function as presented in the main body to avoid confusion. These three modifications in the algo-
rithm presentation have no manifest effects in the proof of [Yang and Kuchibhotla, 2021], meaning
all results as presented there apply with the appropriate choices of inputs in Algorithm 7.

We similarly consider an immaterially modified form of CANVI, that is, one in which DC and
DR are pre-generated in precisely the fashion outlined Algorithm 1 and provided as input. Thus,
inputs to CANVI parallel those of VFCP, namely {q(t)(Θ | X)}Tt=1, 1− α,DC, and DR.

Intuitively, the proof follows from the fact that CANVI is a special case of Algorithm 7, where
the particular structural assumptions we make imply the corresponding assumptions as stated in
the theorem from [Yang and Kuchibhotla, 2021]. Algorithm 7 is presented using the so-called
“nested set formulation” of conformal prediction. Briefly, the nested sets formulation starts by
requiring the user to specify a set-valued function Fr instead of a score function. Sets must be
nested over increasing r. Despite being seemingly more expressive, the equivalence of the nested
set and split score conformal methods was demonstrated in [Gupta et al., 2022]. In particular, for
a chosen score function s(x, θ), the corresponding nested set function would be F

(t)
τ = {(x, θ) |

s(t)(x, θ) ≤ τ}, where s(t) denotes the score function as defined with A(t). The presentation of
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Algorithm 7 using the nested set formulation was, thus, a means to allow for the employment
of relevant proof strategies from classical learning theory. We now proceed through the formal
equivalence of CANVI and a special case of VFCP.

We first state for reference the original theorem for VFCP, which we leverage in the proof of
theorem.

Theorem A.4.2. Suppose Assumption 1 holds. Let α ∈ (0, 1), DC and DR be drawn i.i.d. from

P(X,Θ), and

C(∗)R = VFCP
(
A(t), 1− α,DC, DT , s(x, θ)

)
If, for r ≥ max{

√
log(4T/δ)/2NC, 2/NC} and δ ∈ [0, 1], Assumption 2 holds, then with probabil-

ity at least (1− δ),

EX [L(C(∗)R (X))] ≤ min
1≤t≤T

EX [L(C(t)R (X))] + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
, (A.2)

where γ, LW , and L[T ] = max1≤t≤T Lt are constants defined in Assumptions 2 and 1 [Yang and

Kuchibhotla, 2021].

We now present the proof of our theorem. The proof proceeds in two steps. We first demonstrate
the CANVI and VFCP algorithms are equivalent if we assume access to the exact ℓ(q, τ), which,
coupled with the assumptions imposed on q, allows us to directly leverage the results of Theorem
A.4.2. We then demonstrate, under Assumption 3, we recover the desired bound even if t∗ is
chosen with ℓ̂(q, τ).

Theorem A.4.3. Suppose for any x ∈ X and t = 1, ..., T , q(t)(θ | x) ∈ C3(Rn) is bounded

above and for θ ̸= 0, L({θ : ∇θq
(t)(θ|x)}) = 0. Further assume P (X,Θ) is bounded above. Let

α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC, NT

)
If, for r ≥ max{

√
log(4T/δ)/2NC, 2/NC} and δ ∈ [0, 1], Assumption 2 holds and for ∆, ϵ > 0

Assumption 3 holds, then with probability at least (1− ϵ)(1− δ),

ℓ(q(∗), q̂
(∗)
R (α)) ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + ∆ + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
, (A.3)

where γ, LW , and L[T ] = max1≤t≤T Lt are constants defined in Assumptions 2 and 1.
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Algorithm 7 VALIDITY FIRST CONFORMAL PREDICTION (VFCP) [Yang and Kuchibhotla,
2021]

1: procedure VFCP
Inputs: Predictors {A(t)}Tt=1, Target coverage 1 − α, Calibration set DC , Recalibration set
DR, Score s(x, θ)

2: UsingA(t), construct an increasing (nested) sequence of sets {F (t)
τ }τ∈T , where T ⊂ R and

F (t)
τ = {(x, θ) | s(t)(x, θ) ≤ τ},

where s(t) denotes the score function as defined with A(t)

3: Compute conformal prediction set C(t) based on {F (t)
τ }τ∈T . Specifically, for each (xi, θi) ∈

DC and t ∈ {1, 2, ..., T}, denote its corresponding score as

s(t)(xi, θi) := inf
τ∈T
{(xi, θi) ∈ F (t)

τ }

4: Compute the corresponding conformal prediction set as

C(t)C := {(x, θ) : s(t)(x, θ) ≤ q̂
(t)
C (α)},

where q̂
(t)
C (α) is the ⌈(|DC|+ 1)(1− α)⌉-th largest element of {s(t)(xi, θi)}i∈DC

5: Let C(t)C (x) := {θ : (x, θ) ∈ C(t)C }. Set

t∗ := argmin
1≤t≤T

EX [L(C(t)C (X))]

6: For each (xi, θi) ∈ DR, define the conformal score

s(∗)(xi, θi) := inf
τ∈T
{(xi, θi) ∈ F (t∗)

τ }

7: Compute the corresponding conformal prediction set as

C(∗)R := {(x, θ) : s(∗)(x, θ) ≤ q̂
(∗)
R (α)},

where q̂
(∗)
R (α) := ⌈(|DR|+ 1)(1− α)⌉-th largest element of {s(∗)(xi, θi)}i∈DR

8: Return the prediction set C(∗)R
9: end procedure
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Proof. Let C(∗)R = VFCP
(
{q(t)(Θ | X)}Tt=1, 1− α,DC, DT , 1/q(θ | x)

)
. We first wish to demon-

strate C(t),VFCP
C,R (x) = C(t),CANVI

C,R (x) for any fixed x, where we use the C,R condensed notation to
mean this equality holds both under DC and DR. This equivalence can be shown in demonstrating
the equivalence in corresponding scores, as the resulting empirical score distributions and hence
quantiles over DC and DR and finally future prediction regions follow to then be equivalent by the
algorithm structure.

This equivalence follows as a straightforward instance of the equivalence of the set-valued and
standard conformal prediction frameworks. In particular, we recover the original score formula-
tion, as:

s(t)(xi, θi) := inf
τ∈T
{(xi, θi) ∈ F (t)

τ } = inf
τ∈T
{(xi, θi) ∈ {(x, θ) | 1/q(t)(θ | x) ≤ τ}} = 1/q(t)(θi | xi).

The bound under access to the exact ℓ(q, τ) then follows from Theorem A.4.2 under demonstration
of the appropriate assumptions. Assumption 2 holds by assumption. Assumption 1 holds for any
ϑ(t) := {θ : ∇θq

(t)(θ|x)} by Corollary 2.3.3. In the application of Assumption 1 for the proof of
Theorem A.4.2, it suffices for F−1

t (1 − α) ∈ ϑ(t) and F−1
t (1 − α + 1/(NC + 1)) ∈ ϑ(t). Since

L({θ : ∇θq
(t)(θ|x)}) = 0 and P(X,Θ) is bounded above, this means PX,Θ(F−1

t (1−α) ∈ ϑ(t)) =

1 and PX,Θ(F−1
t (1− α+ 1/(NC + 1)) ∈ ϑ(t)) = 1. Thus, if t∗ is chosen in CANVI using ℓ(q, τ),

by Theorem A.4.2, with probability 1(1− δ) = 1− δ,

ℓ(q(∗), q̂
(∗)
R (α)) ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
.

The extension of this to the case of interest, where t∗ is chosen using ℓ̂(q, τ), is now a straightfor-
ward application of Assumption 3, from which we have that ∃∆, ϵ > 0, such that with probability
at least 1− ϵ∣∣∣ℓ(q(t̂∗), q̂(t̂∗)R (α))− ℓ(q(t

∗), q̂
(t∗)
R (α))

∣∣∣ < ∆ =⇒ ℓ(q(t̂
∗), q̂

(t̂∗)
R (α)) < ℓ(q(t

∗), q̂
(t∗)
R (α)) + ∆. (A.4)

Switching back to denoting ℓ(q(∗), q̂
(∗)
R (α)) := ℓ(q(t̂

∗), q̂
(t̂∗)
R (α)), this implies that, with probability

(1− ϵ)(1− δ),

ℓ(q(∗), q̂
(∗)
R (α)) ≤ ℓ(q(t

∗), q̂
(t∗)
R (α)) + ∆

≤ min
1≤t≤T

ℓ(q(t), q̂
(t)
R (α)) + ∆ + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
,

completing the proof as desired.
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■

A.5 Gaussian Hölder Continuity

Theorem A.5.1. Let Θ and X be zero-mean unit-variance Gaussian random variables with cor-

relation ρ. Let q(t)(θ|x) = N (θ; tx, 1 − ρ2). Let κ := t2 − 2tρ + 1 and r > 0. Then F−1
t (z), is

1-Hölder continuous on [1− α, 1− α+ r] with Hölder constant

κΦ−1(1−α
2
)

√
exp

(
κ

1−ρ2
Φ−1(1−α

2
)2 − (1−α)2

2

)
√
(1− ρ2)/2

(A.5)

Proof. Notice that in the bivariate Gaussian case, we have closed forms for the following:

Θ | x ∼ N (ρx, 1− ρ2) X | θ ∼ N (ρθ, 1− ρ2)

Θ ∼ N (0, 1) X ∼ N (0, 1).

We wish to find the distribution of s(X,Θ) = 1/q(Θ | X) jointly over X,Θ to find F−1
t (z)

explicitly. The CDF of this score can be computed as follows:

P (1/qt(Θ | X) ≤ q) = P
(√

2π(1− ρ2)e
(tX−Θ)2

2(1−ρ2) ≤ q

)
= P

(
R2 ≤ 2(1− ρ2) log

(√
q2

2π(1− ρ2)

))
= P

(
R ≤

√
(1− ρ2) log

(
q2

2π(1− ρ2)

))
,

where R := |tX −Θ|. From the above calculation, F−1
t (z) must satisfy:

P

R ≤

√
(1− ρ2) log

(
F−1
t (z)2

2π(1− ρ2)

) = z.

Notice now that, since (X,Θ) are bivariate Gaussian:

tX −Θ ∼ N (0, t2 + 1− 2tρ) =⇒ R ∼ HalfNormal(t2 + 1− 2tρ).

Therefore, the z quantile of R is
√

t2 + 1− 2tρΦ−1
(
1− α

2

)
. Solving for F−1

t (z) in this quantile

71



produces the final threshold:√
(1− ρ2) log

(
F−1
t (z)2

2π(1− ρ2)

)
=
√

t2 + 1− 2tρΦ−1
(
1− α

2

)
=⇒ log

(
F−1
t (z)2

2π(1− ρ2)

)
=

t2 + 1− 2tρ

1− ρ2

(
Φ−1

(
1− α

2

))2
=⇒ F−1

t (z) =

√
2π(1− ρ2) exp

(
t2 + 1− 2tρ

1− ρ2

(
Φ−1

(
1− α

2

))2)
.

The Hölder constant follows from bounding the derivative of F−1
t (z), namely

κΦ−1( z
2
)

√
exp

(
κ

1−ρ2
Φ−1( z

2
)2 − (z)2

2

)
√
(1− ρ2)/2

This expression is monotonically decreasing in z and hence maximized for z = 1 − α in the
interval, giving the desired expression.

■

A.6 Simulation-Based Inference Benchmarks

The benchmark tasks are a subset of those provided by [Lueckmann et al., 2021]. For convenience,
we provide brief descriptions of the tasks curated by this library; however, a more comprehensive
description of these tasks can be found in their manuscript.

A.6.1 Gaussian Linear

10-dimensional Gaussian model with a Gaussian prior:

Prior: N (0, 0.1⊙ I)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

A.6.2 Gaussian Linear Uniform

10-dimensional Gaussian model with a uniform prior:
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Prior: U(−1, 1)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

A.6.3 SLCP with Distractors

Simple Likelihood Complex Posterior (SLCP) with Distractors has uninformative dimensions in
the observation over the standard SLCP task:

Prior: U(−3, 3)

Simulator: x | w = p(y) where p reorders

y with a fixed random order

y[1:8] ∼ N

([
w1

w2

]
,

[
w4

3 w2
3w

2
4 tanh(w5)

w2
3w

2
4 tanh(w5) w4

4

])
,

y9:100 ∼
1

20

20∑
i=1

t2(µ
i,Σi), µi ∼ N (0, 152I),

Σi
j,k ∼ N (0, 9),Σi

j,j = 3ea, a ∼ N (0, 1),

A.6.4 Bernoulli GLM Raw

10-parameter GLM with Bernoulli observations and Gaussian prior. Observations are not sufficient
statistics, unlike the standard “Bernoulli GLM” task:

Prior: β ∼ N (0, 2), f ∼ N (0, (F TF )−1)

Fi,i−2 = 1, Fi,i−1 = −2

Fi,i = 1 +

√
i− 1

9
, Fi,j = 0; i ≤ j

Simulator: x(i) | w ∼ Bern(η(v(i)T f + β)),

η(⊙) = exp(⊙)/(1 + exp(⊙))

A.6.5 Gaussian Mixture

A mixture of two Gaussians, with one having a much broader covariance structure:
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Prior: β ∼ U(−10, 10)

Simulator: x | w ∼ 0.5N (x | w, I) + 0.5N (x | w, .01I)

A.6.6 Two Moons

Task with a posterior that has both global (bimodal) and local (crescent-shaped) structure:

Prior: β ∼ U(−1, 1)

Simulator: x | w =[
r cos(α) + 0.25

r sin(α)

]
+

[
−|w1 + w2|/

√
2

(−w1 + w2)/
√
2

]
α ∼ U(−π/2, π/2), r ∼ N (0.1, 0.012)

A.6.7 SIR

Epidemiology model with S (susceptible), I (infected), and R (recovered). A contact rate β and
mean recovery rate of γ are used as follows:

Prior: β ∼ LogNormal(log(0.4), 0.5),

γ ∼ LogNormal(log(1/8), 0.2)

Simulator: x = (x(i))10i=1; x
(i) | w ∼ Bin(1000,

I

N
),

where I is simulated from:
dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI

A.6.8 Lotka-Volterra

An ecological model commonly used in describing dynamics of competing species. w parameter-
izes this interaction as w = (α, β, γ, δ):
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Prior: α ∼ LogNormal(−.125, 0.5)

β ∼ LogNormal(−3, 0.5), γ ∼ LogNormal(−.125, 0.5)

δ ∼ LogNormal(−3, 0.5)

Simulator: x = (x(i))10i=1,

x1,i | w ∼ LogNormal(log(X), 0.1),

x2,i | w ∼ LogNormal(log(Y ), 0.1)

where X, Y is simulated from:
dX

dt
= αX − βXY,

dY

dt
= −γY + δXY

A.6.9 ARCH

The two-dimensional parameter θ = (θ1, θ2) includes both an autoregressive component (θ1) and
a component controlling the level of conditional noise (θ2). Given a full realization of the time
series y1:T , we aim to amortize inference over θ. Priors are taken to be θ1 ∼ Unif(−1, 1) and
θ2 ∼ Unif(0, 1). One important change from the model of [Thomas et al., 2022] is that we fix
e(0) = 0 rather than drawing this quantity from a standard Gaussian.

The Adam optimizer was used with a learning rate of 0.0001 for 25,000 training steps for each
of the three methods: IWBO (K = 10), ELBO, FAVI. Due to constraints arising from the uniform
priors on the parameters, the IWBO and ELBO implementations rely on logit transformations of
the latent random variables θ to avoid zero-density regions that result in undefined gradients. The
encoder network is trained to learn distributions on the unconstrained space of the transformed
random variable θ′, and visualizations are produced by performing the inverse transformation.
While FAVI avoids these issues because it is likelihood-free, for an apples-to-apples comparison
we also implement FAVI on the unconstrained latent space as well.

A.7 Training Details

All encoders were implemented in PyTorch [Paszke et al., 2019] with a Neural Spline Flow ar-
chitecture. The NSF was built using code from [Durkan et al., 2020a]. Specific architecture hy-
perparameter choices were taken to be the defaults from [Durkan et al., 2020a] and are available
in the code. Optimization was done using Adam [Kingma and Ba, 2014] with a learning rate of
10−3 over 5,000 training steps. Minibatches were drawn from the corresponding prior P(Θ) and
simulator P(X | Θ) as specified per task in the preceding section. Training these models required
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between 10 minutes and two hours using an Nvidia RTX 2080 Ti GPUs for each of the SBI tasks.

A.8 Prediction Regions

Credible regions for qφ(Θ | x) (for a single x ∼ P(X)) on a subset of the SBI benchmark tasks
are plotted below over varying degrees of training, as indicated in the figures. As expected, the
efficiency of the prediction regions improves over training across all tasks, resulting in smaller

regions for each target coverage 1− α.

A.8.1 Gaussian Linear

Figure A.3: Gaussian Linear conformal prediction regions

76



A.8.2 Gaussian Linear Uniform

Figure A.4: Gaussian Linear Uniform conformal prediction regions

A.8.3 SLCP

Figure A.5: SLCP conformal prediction regions
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A.8.4 Bernoulli GLM Raw

Figure A.6: Bernoulli GLM Raw conformal prediction regions

A.8.5 Gaussian Mixture

Figure A.7: Gaussian Mixture conformal prediction regions
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A.8.6 Two Moons

Figure A.8: Two Moons conformal prediction regions

A.9 Posteriors

We provide visualizations of approximate and reference posteriors (produced with MCMC from
[Lueckmann et al., 2021]) to justify the overdispersion claims made on the variational approxima-
tion procedure.

79



A.9.1 Gaussian Linear

Figure A.9: Gaussian Linear true vs. approximate posterior distributions

A.9.2 Gaussian Mixture

Figure A.10: Gaussian Mixture true vs. approximate posterior distributions
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A.9.3 Gaussian Linear Uniform

Figure A.11: Gaussian Linear Uniform true vs. approximate posterior distributions

A.9.4 Two Moons

Figure A.12: Two Moons true vs. approximate posterior distributions

81



A.9.5 SLCP

Figure A.13: SLCP true vs. approximate posterior distributions
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A.9.6 Bernoulli GLM

Figure A.14: Bernoulli GLM true vs. approximate posterior distributions

A.9.7 ARCH

For selected points from the training sets, we show the exact and approximate posteriors obtained
by training according to the ELBO, IWBO, and FAVI objectives. The ground-truth parameter value
is noted in red.
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Figure A.15: ARCH true vs. approximate posterior distributions under ELBO (top-right), FAVI
(bottom-left), and IWBO (bottom-right) training objectives.

Figure A.16: ARCH true vs. approximate posterior distributions under ELBO (top-right), FAVI
(bottom-left), and IWBO (bottom-right) training objectives.
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Depending on the miscalibration of the variational posterior on either per-objective or per-point
basis, the conformalized 1 − α high-density region (HDR) either shrinks or expands, and can be
visualized in two dimensions. Figure A.17, Figure A.18 show examples where the 50% prediction
regions obtained from the FAVI-learned variational posterior shrinks and grows after applying
CANVI.

Figure A.17: 50% prediction region, observation 7, before (left) and after (right) applying CANVI.

Figure A.18: 50% prediction region, observation 8, before (left) and after (right) applying CANVI.

We visualize the efficiency of the iterates qφ across training iterations in Figure A.19. Recalling
the form of Equation (2.5), it is unsurprising that FAVI tends to be more efficient, as it trains
using simulated data (over which Equation (2.5) is computed). To estimate Equation (2.5), at
every 500 training steps, we simulate 20 θ, x pairs from the forward model. A larger number of
Monte Carlo samples can be used but at an increased cost. As the resulting estimates are noisy,
we smooth the resulting series with a Savitzky-Golay filter with a window length of 10 and third-
degree polynomial order for better visualization.
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Figure A.19: Efficiency estimates for variational posteriors trained by ELBO, IWBO, and FAVI
across training iterations.

A.10 SED Experimental Details

The PROVABGS emulator (Section 2.4.3) was trained to minimize the MSE using normalized
simulated PROVABGS outputs with fixed log stellar mass parameter [Hahn et al., 2023]. Training
data were generated from PROVABGS with a fixed magnitude parameter (θ0 = 10.5), resampled
onto a 5 Angstrom grid, and normalized to integrate to one. After training, forward passes through
the emulator are significantly faster than the base simulator. We provide two simulated draws
from our emulator in Figure A.20. We use the recommended priors from [Hahn et al., 2023] on
the remaining eleven parameters. As these are highly constrained (uniform priors, vastly different
scales, and a 4-dimensional vector on the simplex), we similarly operate on an unconstrained, 10-
dimensional space by invertible transformations. All three methods were trained for 10,000 steps
using the Adam optimizer with learning rate 0.0001. K = 1000 was used for the IWBO.
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Figure A.20: Two example draws from our neural network emulator of PROVABGS.

We let the output of our simulator be a mean parameter µ ∈ R1400, and generate observed
data independently binwise via xi ∼ N (µi, |µi|2σ2) for a fixed hyperparameter σ = .1 and all
i = 1, . . . , 1400. We adopt this noise model for simplicity, as it imposes a fixed signal-to-noise
ratio (SNR) of 1/σ = 10 across all spectra and wavelength bins.
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APPENDIX B

Conformal Contextual Robust Optimization

B.1 Prediction Region Validity Lemma

Lemma B.1.1. Consider any f(w, c) that is L-Lipschitz in c under the metric d for any fixed w.

Assume further that PX,C(C ∈ U(X)) ≥ 1− α. Then,

PX,C (∆(X,C) ≤ L diam(U(X))) ≥ 1− α. (B.1)

Proof. We consider the event of interest conditionally on a pair (x, c) where c ∈ U(x):

min
w

max
ĉ∈U(x)

f(w, ĉ)−min
w

f(w, c)

≤ max
w
| max
ĉ∈U(x)

f(w, ĉ)− f(w, c)|

≤ L max
ĉ∈U(x)

d(ĉ, c) ≤ Ldiam(U(x)).

Since we have the assumption that P(C ∈ U(X)) ≥ 1−α, the result immediately follows. ■

B.2 Optimization Convergence Lemma

We first begin by citing a standard result of projected gradient descent, from which the result of
interest immediately follows.

Lemma B.2.1. Let K be a closed convex set, and f : K → R be convex, differentiable, and L-

Lipschitz. Let x∗ ∈ K be a minimizer of f , and define T := L2||x0−x∗||
ϵ2

and η := ||x0−x∗||
L
√
T

. Then the

iterates {xt}Tt=0 returned by projected gradient descent satisfy

f

(
1

T + 1

T∑
t=0

xt

)
− f(x∗) ≤ ϵ. (B.2)
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Lemma B.2.2. Let ϕ(w) := maxĉ∈⋃K
k=1 Bq̂(ĉk)

f(w, ĉ) for {ĉk}Kk=1 ⊂ C, q̂ ∈ R+, and f(w, c)

convex-concave and L-Lipschitz in c for any fixed w. Let w∗ ∈ W be a minimizer of ϕ. For

any ϵ > 0, define T := L2||w0−w∗||
ϵ2

and η := ||w0−w∗||
L
√
T

. Then the iterates {wt}Tt=0 returned by

Algorithm 3 satisfy

ϕ

(
1

T + 1

T∑
t=0

wt

)
− ϕ(w∗) ≤ ϵ. (B.3)

Proof. Notice that ϕ(w) is convex by Danskin’s Theorem by assumption of the convexity of f
in w. By Danskin’s Theorem, ∇wϕ(w) = ∇wf(w, c

∗), where c∗ := maxĉ∈C(x) f(w, ĉ). Further
notice

ϕ(w) := max
ĉ∈C(x)

f(w, ĉ) = max
k

max
ĉ∈Bq̂(ĉk)

f(w, ĉ). (B.4)

Denote ϕk(w) := maxĉ∈Bq̂(ĉk) f(w, ĉ). Clearly, ϕk(w) is L-Lipschitz by assumption on the
structure of f . Further, as the point-wise maximum of L-Lipschitz functions is itself L-Lipschitz,
it follows that ϕ(w) = maxk ϕk(w) is also L-Lipschitz. The conclusion, thus, follows by applying
Theorem B.2.1 to ϕ(w). ■

B.3 SBI Representative Points

B.3.1 Gaussian Mixture

Figure B.1: Recovery of the true representative points under approximation algorithm given in
Algorithm 5 for a Gaussian Mixture posterior.
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B.3.2 Two Moons

Figure B.2: Recovery of the true representative points under approximation algorithm given in
Algorithm 5 for a Two Moons posterior.

B.4 Robust Vehicle Routing Setup

The routing graph of Manhattan was extracted using OSMnx, with local highway speeds extracted
using OpenStreetMap [Boeing, 2017]. Highway speed imputation was performed on edges where
such information was not available, specifically by averaging over those highways of comparable
categorization, namely “residential,” “secondary,” or “tertiary.” Doing so defined a nominal travel
cost c̃.

We now wish to modify these nominal travel costs to account for the weather predictions made
upstream. That is, we wish to account for the precipitation map Ỹ ∈ RW×H in these edge weights.
To do so, we use the global coordinates (cvx, c

v
y) ∈ R2 of each v ∈ V to find the precipitation at the

corresponding location. Concretely, we determine the pixel coordinate by scaling the coordinate
to the range of the region that was forecasted. So, for a forecast over the window (cmin

x , cmax
x ) ×

(cmin
y , cmax

y ), the corresponding pixel lookup is:

pvx = ⌊ cvx − cmin
x

cmax
x − cmin

x

⌋ ×W pvy = ⌊
cvy − cmin

y

cmax
y − cmin

y

⌋ ×H.

The corresponding precipitation associated with each vertex, therefore, is Ỹpvx,p
v
y
. We define the

final travel cost for each edge e ∈ E with endpoints (es, et) as:
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Figure B.3: Precipitation maps (left) are converted to edge weights (right) as per Equation (B.5).
Solving the shortest paths problem (SPP) on this newly weighted graph, therefore, can produce
distinct routes from that based on the nominal travel-time SPP, as highlighted by the two distinct
paths under the nominal and weather-weighted graphs on the right.

ce := c̃e · exp

{
Ỹpesx ,pvy

+ Ỹp
et
x ,p

et
y

2

}
. (B.5)

We then solve SPP on the weighted directed graph with edge weights ce. An example of this
weighting and the corresponding shortest path is illustrated in Figure B.3.
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APPENDIX C

Applications of Conformal Decision Making

C.1 Conformal Decision Making for Ensembles

C.2 CSA Predict-Then-Optimize Visual Walkthrough

We now present a visual accompaniment of the predict-then-optimize algorithm presented in Sec-
tion 4.1.3. We once again take K = 2 for visual clarity in this walkthrough, where the predictors
are as discussed in Section 4.1.3, namely assumed to be generative predictors qk(C | X) where
the number of samples per predictor are fixed to be {Jk}. For illustration, we assume J1 = 5 and
J2 = 3, meaning predictions with the first model are made by drawing 5 samples and 3 for the
second. We assume the CSA calibration of Section 4.1.2 has already been performed, from which
a collection of projection directions and quantiles {(um, q̂m)}Mm=1 are available that implicitly de-
fine an acceptance region Q̂. We further assume the individual predictor score functions are all the
GPCP score given in Equation (3.3), with dk from Equation (3.3) specifically here taken to simply
be the standard Euclidean 2-norm, giving

sk(x, c) = min
j∈1,...,Jk

||ĉkj − c||. (C.1)

We now wish to compute c∗ = maxĉ∈C(x) f(w, ĉ). To do so, we must start by defining this region
C(x) for the test point x, which we do by drawing the respective number of samples from the two
models, producing samples {ĉ1j}5j=1 and {ĉ2j}3j=1, as shown in Figure C.1.
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Figure C.1: Samples drawn from the two generative models {ĉ1j}5j=1 ∼ q1(C | x) (blue) and
{ĉ2j}3j=1 ∼ q2(C | x) (green). Note that this is a visualization in the C space, i.e. not the space of
multivariate scores.

By definition, ∀c ∈ C(x),

u⊤
m

(
min

j1=1,...,5
||ĉ1j1 − c||, min

j2=1,...,3
||ĉ2j2 − c||

)
≤ q̂m ∀m = 1, ...,M. (C.2)

As a result, we must have that, ∀c ∈ C(x), ∃ j1 = 1, ..., 5 and j2 = 1, ..., 3 such that
u⊤
m (||ĉ1j1 − c||, ||ĉ2j2 − c||) ≤ q̂m ∀m = 1, ...,M . Solving for c∗, therefore, amounts to con-

sidering each pair j⃗ := (j1, j2) ∈ J , where J := {1, ..., 5} × {1, ..., 3}, and solving

c∗
j⃗
:= argmax

c
f(w, c)

s.t. u⊤
m

(
||ĉ1⃗j1 − c||, ||ĉ2⃗j2 − c||

)
≤ q̂m ∀m ∈ {1, ...,M}

(C.3)

Notice that, for any fixed j⃗, this is a standard convex optimization problem with a convex feasible
region. We illustrate how the feasible region would be constructed for a fixed j⃗ in Figure C.2.
Note that the construction of this feasible is never explicitly done in practice and is only implicitly
used by convex solver routines in practice. We can, therefore, then solve Equation (C.3) over all
possible j⃗ ∈ J and aggregate the maxima to compute c∗.
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Figure C.2: A candidate c ∈ C is in prediction region if the projections of its distances (d1, d2)

from at least one pair of points indexed by j⃗ := (j1, j2) is in the acceptance region Q̂. Here, we
illustrate a point c that lies in the feasible region from its proximity to the j⃗ := (4, 1) pair of points.
Note that the left is again a visualization over the C space, whereas the right is of the score space.

C.2.1 CSA Predict-Then-Optimize Algorithm

We provide the condensed presentation of the predict-then-optimize algorithm below.

Algorithm 8 PREDICT-THEN-OPTIMIZE UNDER CSA
1: procedure PREDICT-THEN-OPTIMIZE UNDER CSA

Inputs: Context x, Predictors {qk(C | X)}Kk=1, Optimization steps T , Sample counts
{Jk}Kk=1, CSA quantile {(um, q̂m)}Mm=1

2: {{ĉkj}Jkj=1 ∼ qk(C | X)}Kk=1,J =
∏K

k=1[Jk]

3: w(0) ∼ U(W)
4: for t ∈ {1, . . . T} do
5: for j⃗ ∈ J do c∗

j⃗
← argmaxc f(w

(t), c) s.t. ∀m ∈ 1, ...,M u⊤
ms(ĉ⃗j, c) ≤ q̂m

6: c∗ ← argmaxc∗
j⃗
f(w(t), c∗

j⃗
)

7: w(t) ← ΠW(w(t−1) − η∇wf(w
(t−1), c∗))

8: end for
9: Return w(T )

10: end procedure

C.3 Computational Efficiency

C.3.1 Vectorized Score Computation

We now discuss the vectorized form of the computations discussed in Section 4.1.2. In particular,
putting the scores into a matrix S

(1)
C = [s1, ..., sNC1

]⊤ ∈ RNC1
×K and directions into a matrix
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U = [u1, ..., uM ]⊤ ∈ RK×M , all the projections u⊤
msi can be computed as S(1)

C U ∈ RNC1
×M , where

[S
(1)
C U ]i,m is precisely u⊤

msi. q̃ ∈ RM := {q̃m := quantile([S
(1)
C U ]:,m; 1− α)} is then the quantile

per row.
For any test point s′ ∈ RK , we can then very efficiently check if it falls into the region by

checking if it satisfies Us′ ≤ q̃ component-wise. Each iteration of the loop to find β∗, therefore, is
very fast, and we find the search typically converges in 5-10 iterations.

The final step is computing t̂. Computing this follows similarly to above, where we take the
scores S(2)

C , compute projections S(2)
C U ∈ RNC2

×M , find T̃ := S
(2)
C U/q̃ ∈ RNC2

×M , where division
is interpreted as being defined component-wise along the rows, computing the maxima similarly
along the rows [T ∗]i := max T̃i,:, and finally computing t̂ as the 1− α quantile of T ∗.

C.3.2 Empirical Efficiency Validation

To demonstrate the computational efficiency of this vectorized approach, we reran the experiment
on the “Parkinsons” UCI task with both varying numbers of predictors (K) and projection direc-
tions (M ); for each combination, we measured the total time taken to compute the quantile (i.e. to
run Algorithm 1) and to perform the projection to assess coverage for the test points. The addi-
tional predictors were taken to be random forests with different numbers of trees. K is given in the
left column and M in each column heading, with the entry for each (K,M) pair being reported
in seconds. As expected, by the vectorized nature of the computations, as discussed in the main
paper, the performance scales gracefully over M at roughly O(M) and remains roughly constant
in K.

Table C.1: Performance values for varying K (number of predictors) and M (number of projection
directions). All values are reported in seconds.

K
M 10 100 1000 10000

6 0.111668 0.373029 2.32803 37.2561
8 0.0961056 0.327051 2.16211 36.7216

10 0.117146 0.373464 2.73875 37.2603
12 0.123772 0.384527 2.35386 37.0735
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C.4 Full OpenML Results

Table C.2: Average coverages across tasks for α = 0.05 are shown in the top row and average
prediction set lengths in the bottom row, where both were assessed over a batch of i.i.d. test samples
(20% of the dataset size). Standard deviations and means were computed across 5 randomizations
of draws of the training, calibration, and test sets. In cases where the method failed to achieve
sufficient coverage (defined as < 0.93), we do not include it in comparison for set length. Similarly,
the single-stage approach fails to achieve coverage due to lack of exchangeability with test points.

Dataset Metrics Linear Model LASSO Random Forest XGBoost CM CR CU Ensemble CSA (Single-Stage) CSA

361234 Coverage 0.97 (0.011) 0.966 (0.011) 0.939 (0.002) 0.954 (0.006) 0.956 (0.011) 0.948 (0.01) 0.96 (0.013) 0.95 (0.006) 0.955 (0.013) 0.957 (0.01)
Length 9.673 (0.160) 9.645 (0.154) 10.080 (0.160) 9.157 (0.052) 9.196 (0.123) 8.703 (0.086) 9.524 (0.056) 17.759 (0.275) 7.646 (0.073) 7.688 (0.181)

361235 Coverage 0.947 (0.0) 0.945 (0.005) 0.968 (0.016) 0.95 (0.005) 0.955 (0.016) 0.897 (0.005) 0.953 (0.011) 0.932 (0.021) 0.745 (0.011) 0.984 (0.005)
Length 20.961 (0.651) 24.241 (0.246) 10.096 (0.587) 11.387 (0.452) 11.782 (0.057) — 16.088 (0.118) 15.823 (1.272) 6.162 (0.458) 11.695 (0.266)

361236 Coverage 0.975 (0.008) 0.975 (0.008) 0.961 (0.0) 0.948 (0.012) 0.948 (0.012) 0.938 (0.012) 0.965 (0.008) 0.934 (0.004) 0.94 (0.004) 0.963 (0.004)
Length 44407.071 (1173.758) 44509.269 (1229.817) 50820.568 (385.951) 41045.069 (1221.808) 43185.942 (1002.516) 40905.295 (1089.411) 44437.938 (851.862) 60509.250 (2410.320) 30953.589 (2482.065) 33439.322 (1275.213)

361237 Coverage 0.969 (0.023) 0.969 (0.023) 0.981 (0.0) 0.923 (0.0) 0.954 (0.015) 0.9 (0.008) 0.969 (0.023) 0.885 (0.038) 0.8 (0.015) 0.977 (0.008)
Length 44.019 (0.990) 44.069 (1.115) 27.035 (1.014) — 26.524 (1.244) — 31.967 (1.118) — 14.473 (0.503) 23.145 (0.199)

361241 Coverage 0.954 (0.001) 0.956 (0.001) 0.944 (0.005) 0.957 (0.002) 0.954 (0.002) 0.923 (0.0) 0.952 (0.0) 0.949 (0.001) 0.917 (0.006) 0.951 (0.001)
Length 19.133 (0.062) 20.245 (0.095) 18.102 (0.055) 18.482 (0.062) 17.958 (0.062) — 18.932 (0.034) 29.548 (0.191) 15.199 (0.427) 17.328 (0.097)

361242 Coverage 0.944 (0.004) 0.955 (0.0) 0.947 (0.004) 0.942 (0.0) 0.948 (0.0) 0.914 (0.003) 0.944 (0.001) 0.949 (0.003) 0.9 (0.006) 0.944 (0.002)
Length 70.248 (0.304) 84.510 (0.282) 50.442 (0.421) 54.844 (0.036) 54.217 (0.115) — 65.635 (0.094) 61.613 (0.372) 44.602 (0.170) 57.935 (0.070)

361243 Coverage 0.922 (0.03) 0.952 (0.015) 0.956 (0.022) 0.952 (0.015) 0.937 (0.022) 0.893 (0.044) 0.937 (0.022) 0.919 (0.022) 0.748 (0.126) 0.956 (0.022)
Length — 71.388 (0.152) 75.924 (2.291) 72.877 (0.729) 68.493 (0.993) — 72.048 (0.024) — 43.742 (10.285) 68.220 (1.605)

361244 Coverage 0.97 (0.022) 0.97 (0.022) 0.97 (0.022) 0.97 (0.022) 0.97 (0.022) 0.97 (0.022) 0.97 (0.022) 0.974 (0.015) 0.963 (0.037) 0.956 (0.015)
Length 3.274 (0.004) 3.274 (0.004) 3.336 (0.023) 3.284 (0.010) 3.272 (0.000) 3.269 (0.003) 3.289 (0.002) 4.854 (0.293) 0.287 (0.008) 0.287 (0.008)

361247 Coverage 0.96 (0.001) 0.953 (0.003) 0.94 (0.001) 0.951 (0.003) 0.963 (0.001) 0.903 (0.007) 0.951 (0.0) 0.954 (0.001) 0.843 (0.003) 0.943 (0.006)
Length 0.025 (0.000) 0.038 (0.000) 0.006 (0.000) 0.016 (0.000) 0.015 (0.000) — 0.022 (0.000) 0.013 (0.000) 0.005 (0.000) 0.008 (0.000)

361249 Coverage 0.96 (0.002) 0.956 (0.002) 0.962 (0.003) 0.972 (0.007) 0.953 (0.005) 0.938 (0.002) 0.965 (0.005) 0.936 (0.01) 0.931 (0.0) 0.953 (0.005)
Length 3.008 (0.006) 3.068 (0.009) 2.800 (0.000) 2.780 (0.025) 2.775 (0.006) 2.558 (0.019) 2.894 (0.000) 4.706 (0.099) 2.216 (0.020) 2.614 (0.043)

Table C.3: Average coverages across tasks for α = 0.025 are shown in the top row and average
prediction set lengths in the bottom row, where both were assessed over a batch of i.i.d. test samples
(20% of the dataset size). Standard deviations and means were computed across 5 randomizations
of draws of the training, calibration, and test sets. In cases where the method failed to achieve
sufficient coverage (defined as < 0.96), we do not include it in comparison for set length. Similarly,
the single-stage approach fails to achieve coverage due to lack of exchangeability with test points.

Dataset Metrics Linear Model LASSO Random Forest XGBoost CM CR CU Ensemble CSA (Single-Stage) CSA

361234 Coverage 0.987 (0.008) 0.987 (0.008) 0.974 (0.004) 0.977 (0.008) 0.982 (0.008) 0.971 (0.01) 0.981 (0.01) 0.97 (0.008) 0.976 (0.01) 0.973 (0.006)
Length 11.939 (0.137) 11.871 (0.084) 12.484 (0.168) 11.972 (0.009) 11.587 (0.110) 11.157 (0.086) 11.965 (0.050) 25.598 (0.974) 9.306 (0.259) 8.855 (0.059)

361235 Coverage 0.987 (0.0) 0.982 (0.011) 0.979 (0.011) 0.984 (0.005) 0.989 (0.005) 0.966 (0.016) 0.976 (0.005) 0.958 (0.021) 0.889 (0.011) 0.989 (0.005)
Length 24.595 (0.825) 28.841 (1.129) 11.811 (0.992) 14.237 (0.786) 14.472 (0.172) 12.278 (0.026) 19.231 (0.356) — 7.719 (0.467) 12.563 (0.766)

361236 Coverage 0.992 (0.004) 0.992 (0.004) 0.981 (0.0) 0.965 (0.008) 0.975 (0.008) 0.965 (0.008) 0.977 (0.012) 0.955 (0.008) 0.955 (0.012) 0.973 (0.004)
Length 48591.496 (873.946) 48578.821 (867.718) 56132.760 (368.832) 46623.663 (1565.744) 47630.890 (810.373) 45714.911 (1062.420) 49188.464 (753.205) — 32881.580 (3110.734) 35777.096 (1949.538)

361237 Coverage 0.981 (0.0) 0.981 (0.0) 0.981 (0.0) 0.977 (0.008) 0.962 (0.0) 0.962 (0.0) 0.977 (0.008) 0.965 (0.008) 0.927 (0.031) 0.981 (0.0)
Length 47.738 (0.542) 47.440 (0.959) 30.785 (0.037) 26.208 (0.897) 30.554 (0.561) 27.182 (0.803) 35.982 (0.619) 67.660 (6.380) 18.214 (0.436) 26.897 (0.515)

361241 Coverage 0.979 (0.001) 0.978 (0.001) 0.976 (0.001) 0.978 (0.001) 0.978 (0.0) 0.964 (0.002) 0.977 (0.0) 0.972 (0.002) 0.958 (0.003) 0.979 (0.0)
Length 21.772 (0.085) 23.089 (0.106) 21.543 (0.009) 21.454 (0.109) 20.862 (0.088) 19.291 (0.060) 21.905 (0.041) 40.082 (0.045) 17.765 (0.329) 19.897 (0.062)

361242 Coverage 0.977 (0.003) 0.978 (0.001) 0.975 (0.002) 0.968 (0.003) 0.973 (0.004) 0.955 (0.002) 0.971 (0.002) 0.975 (0.0) 0.936 (0.001) 0.977 (0.001)
Length 83.892 (0.143) 99.811 (0.866) 65.672 (0.212) 68.119 (0.187) 68.155 (0.357) — 80.032 (0.354) 85.678 (0.371) 53.549 (0.585) 69.388 (0.128)

361243 Coverage 0.985 (0.007) 0.985 (0.007) 0.985 (0.007) 0.956 (0.022) 0.985 (0.007) 0.97 (0.015) 0.985 (0.007) 0.978 (0.007) 0.748 (0.126) 0.985 (0.007)
Length 92.698 (1.567) 87.949 (0.147) 88.993 (2.345) — 84.569 (0.557) 79.879 (0.739) 87.950 (0.308) 137.673 (15.214) 46.504 (12.957) 79.976 (2.585)

361244 Coverage 0.974 (0.015) 0.974 (0.015) 0.974 (0.015) 0.974 (0.015) 0.974 (0.015) 0.974 (0.015) 0.974 (0.015) 0.989 (0.022) 0.963 (0.037) 0.974 (0.015)
Length 5.274 (0.004) 5.274 (0.004) 5.336 (0.023) 5.284 (0.010) 5.272 (0.000) 5.269 (0.003) 5.289 (0.002) 11.283 (1.039) 0.287 (0.008) 0.287 (0.008)

361247 Coverage 0.98 (0.0) 0.976 (0.003) 0.969 (0.004) 0.974 (0.001) 0.977 (0.003) 0.945 (0.004) 0.971 (0.003) 0.982 (0.001) 0.906 (0.003) 0.974 (0.004)
Length 0.029 (0.000) 0.042 (0.000) 0.009 (0.000) 0.019 (0.000) 0.018 (0.000) — 0.025 (0.000) 0.016 (0.000) 0.008 (0.000) 0.012 (0.000)

361249 Coverage 0.981 (0.003) 0.981 (0.003) 0.984 (0.002) 0.991 (0.002) 0.981 (0.003) 0.976 (0.002) 0.981 (0.003) 0.971 (0.007) 0.962 (0.011) 0.977 (0.003)
Length 3.645 (0.023) 3.674 (0.026) 3.600 (0.000) 3.322 (0.019) 3.402 (0.005) 3.201 (0.019) 3.543 (0.000) 6.533 (0.252) 2.719 (0.164) 2.972 (0.064)

96



C.5 CSA Prediction Region Visualizations

We now visualize some of the prediction regions corresponding to some of the trials run in Sec-
tion C.4. While we find these intervals to be connected across these tasks, we expect visualizations
over multivariate output spaces, i.e. for 2D regression problems, would reveal sets to be non-
connected.

Figure C.3: Prediction regions across methods for task 361235 for α = 0.05 (left) and 0.025
(right).
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Figure C.4: Prediction regions across methods for task 361242 for α = 0.05 (left) and 0.025
(right).

C.6 UCI Results

We consider those regression tasks from the UCI repository [Asuncion et al., 2007] that have at
least 1,000 samples. The complete collection of results is presented in Table C.4. As discussed in
the main text, across nearly all the UCI benchmark tasks, we find that the conformalized random
forest does optimally and that ensembling methods provide no further benefit over simply taking
this single predictor. In this degenerate case, we would expect an optimal aggregator to simply then
return this optimal single predictor. We then find CSA to consistently significantly outperform
other aggregation strategies and to return a prediction region of size comparable to that of the
nominal random forest.
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Table C.4: Average coverages across tasks for α = 0.05 are shown in the top row and average
prediction set lengths in the bottom row, where both were assessed over a batch of i.i.d. test sam-
ples (10% of the dataset size). We are highlighting the robustness compared to other aggregation
strategies here and so bold the best performing amongst the aggregation methods. Standard devia-
tions and means were computed across 5 randomizations of draws of the training, calibration, and
test sets. Note that, while the single-stage prediction regions are the smallest, they fail to achieve
the desired coverage level and are, therefore, precluded from comparison.

Dataset Metrics Linear Model LASSO Random Forest XGBoost CM CR CU Ensemble CSA (Single-Stage) CSA

airfoil Coverage 0.966 (0.011) 0.926 (0.011) 0.934 (0.026) 0.966 (0.011) 0.945 (0.021) 0.916 (0.016) 0.934 (0.026) 0.958 (0.032) 0.805 (0.058) 0.953 (0.011)
Length 19.062 (0.615) — 11.368 (0.188) 11.770 (0.261) 12.371 (0.131) — 16.227 (0.025) 16.097 (1.052) 8.609 (0.719) 14.075 (0.734)

bike Coverage 0.944 (0.007) 0.947 (0.004) 0.954 (0.002) 0.958 (0.003) 0.938 (0.006) 0.908 (0.0) 0.946 (0.003) 0.955 (0.0) 0.963 (0.007) 0.947 (0.003)
Length 3.178 (0.011) 3.343 (0.021) 0.065 (0.000) 0.111 (0.000) 0.111 (0.001) — 1.722 (0.007) 0.682 (0.004) 0.156 (0.019) 0.134 (0.007)

concrete Coverage 0.977 (0.008) 0.977 (0.008) 0.981 (0.0) 0.915 (0.023) 0.962 (0.0) 0.915 (0.023) 0.981 (0.0) 0.915 (0.023) 0.854 (0.054) 0.977 (0.008)
Length 44.295 (0.424) 44.470 (0.326) 26.053 (2.114) — 26.488 (1.141) — 32.455 (1.165) — 19.712 (6.592) 25.302 (3.244)

kin40k Coverage 0.949 (0.002) 0.949 (0.001) 0.946 (0.002) 0.948 (0.003) 0.945 (0.002) 0.919 (0.002) 0.949 (0.0) 0.945 (0.002) 0.907 (0.004) 0.941 (0.006)
Length 3.781 (0.017) 3.781 (0.016) 2.333 (0.026) 3.343 (0.026) 3.269 (0.018) — 3.291 (0.009) 4.985 (0.003) 2.138 (0.001) 2.456 (0.042)

parkinsons Coverage 0.937 (0.003) 0.946 (0.0) 0.958 (0.009) 0.953 (0.007) 0.936 (0.001) 0.904 (0.008) 0.936 (0.005) 0.955 (0.004) 0.873 (0.043) 0.951 (0.003)
Length 35.957 (0.323) 36.430 (0.328) 3.254 (0.423) 11.268 (0.114) 10.992 (0.074) — 21.470 (0.003) 14.161 (0.083) 3.457 (0.727) 4.584 (0.637)

pol Coverage 0.944 (0.001) 0.942 (0.002) 0.951 (0.004) 0.955 (0.001) 0.938 (0.001) 0.909 (0.003) 0.946 (0.001) 0.953 (0.005) 0.884 (0.009) 0.952 (0.003)
Length 97.944 (0.150) 97.771 (0.386) 28.000 (0.000) 48.572 (1.279) 45.056 (0.821) — 69.078 (0.362) 57.432 (0.663) 24.321 (1.370) 33.230 (1.569)

protein Coverage 0.958 (0.001) 0.957 (0.002) 0.953 (0.003) 0.959 (0.003) 0.957 (0.003) 0.928 (0.003) 0.953 (0.003) 0.955 (0.0) 0.91 (0.002) 0.963 (0.004)
Length 2.316 (0.000) 2.412 (0.011) 2.151 (0.014) 2.210 (0.006) 2.134 (0.002) — 2.269 (0.001) 3.707 (0.039) 1.717 (0.036) 1.994 (0.000)

pumadyn32nm Coverage 0.961 (0.011) 0.961 (0.01) 0.947 (0.001) 0.962 (0.003) 0.96 (0.007) 0.935 (0.003) 0.95 (0.013) 0.957 (0.013) 0.906 (0.026) 0.963 (0.001)
Length 3.997 (0.024) 3.979 (0.031) 1.525 (0.027) 3.518 (0.058) 3.507 (0.051) 2.350 (0.043) 3.242 (0.033) 5.351 (0.139) 1.564 (0.048) 1.858 (0.078)

tamielectric Coverage 0.953 (0.002) 0.953 (0.002) 0.947 (0.003) 0.953 (0.003) 0.952 (0.003) 0.926 (0.007) 0.949 (0.0) 0.948 (0.003) 0.909 (0.003) 0.949 (0.002)
Length 0.950 (0.001) 0.951 (0.001) 1.271 (0.006) 0.953 (0.001) 0.948 (0.001) — 1.029 (0.003) 4.539 (0.038) 0.774 (0.005) 0.799 (0.004)

wine Coverage 0.96 (0.005) 0.943 (0.01) 0.931 (0.015) 0.923 (0.02) 0.928 (0.005) 0.884 (0.015) 0.948 (0.005) 0.946 (0.015) 0.805 (0.054) 0.933 (0.015)
Length 2.352 (0.002) 3.521 (0.025) 2.619 (0.050) — — — 2.621 (0.039) 3.390 (0.042) 1.683 (0.224) 2.291 (0.026)

C.7 Conformal Aggregation Methods

We now describe the methods from [Gasparin and Ramdas, 2024a] that were compared against
experimentally, specifically the standard majority-vote CM , partially randomized thresholding CR,
and fully randomized thresholding CU approaches. As discussed in Section 4.2.3, these methods
all follow the structural form of

C(x) :=

{
y |

K∑
k=1

wk1[y ∈ Ck(x)] ≥ â

}
(C.4)

and largely differ in their choice of weights and thresholds. The standard majority-vote CM is the
most natural choice, defined by

CM(x) :=

{
y | 1

K

K∑
k=1

1[y ∈ Ck(x)] >
1

2

}
. (C.5)
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The randomized methods differ in that independent randomization is leveraged over the threshold,
namely with:

CR(x) :=

{
y | 1

K

K∑
k=1

1[y ∈ Ck(x)] >
1

2
+

U

2

}
(C.6)

CU(x) :=

{
y | 1

K

K∑
k=1

1[y ∈ Ck(x)] > U

}
, (C.7)

for U ∼ Unif([0, 1]). Notably, all these methods retain the guarantees typical of conformal predic-
tion.

C.8 Conformal Robust Control of Linear Systems

C.8.1 Prediction Region Validity Lemma

Given that we characterize both the continuous- and discrete-time settings below, we produce a
generalized definition to that presented in Definition 1.

Definition 2. Let M(C,K∗(C)) := A−BK∗(C) be the optimal closed-loop matrix. Define

r(C,K∗(C)) :=


mini −Re(λi(M))

κ(U) ||W ||2 Continuous time setting
mini(1−|λi(M)|)

κ(U) ||W ||2 Discrete time setting

where M = UΛU−1, κ(U) is the condition number of U , and W = [I −K∗(C)⊤]⊤.

Lemma C.8.1. Let J(K,C) be a function such that, for any fixed θ, it is non-negative and L-

Lipschitz in Ĉ ∈ Bq̂(f(θ)) under the operator norm for any K ∈ K(U(θ)), where K : Ω(Θ) →
Ω(C) and Ω1 ⊂ Ω2 =⇒ K(Ω2) ⊂ K(Ω1). Further assume that PΘ,C(C ∈ U(Θ)) ≥ 1−α. Then:

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α. (C.8)

Further, if q̂ < r(C,K∗(C)), (see Definition 2) ∆dom(Θ, C) = 0.

Proof. We consider the event of interest conditionally on a pair (θ, C) where Ĉ ∈ Bq̂(f(θ)).
By assumption, we then have that K(Bq̂(f(θ))) ⊂ K(C). As previously noted, the subopti-
mality here is defined over the true C matrix, meaning, unlike previous works, we here wish to
bound J(K∗(Bq̂(f(θ))), C)−minK∈K(C) J(K,C) in place of minK∈K(C) maxĈ∈Bq̂(f(θ))

J(K, Ĉ)−
minK∈K(C) J(K,C), where K∗(Bq̂(f(θ))) := argminK∈K(Bq̂(f(θ)))

maxĈ∈Bq̂(f(θ))
J(K, Ĉ). We
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begin by matching the minimization sets in the terms as follows:∣∣∣∣J(K∗(Bq̂(f(θ))), C)− min
K∈K(C)

J(K,C)

∣∣∣∣
=

∣∣∣∣J(K∗(Bq̂(f(θ))), C)− min
K∈K(Bq̂(f(θ)))

J(K,C) + min
K∈K(Bq̂(f(θ)))

J(K,C)− min
K∈K(C)

J(K,C)

∣∣∣∣
≤
∣∣∣∣J(K∗(Bq̂(f(θ))), C)− min

K∈K(Bq̂(f(θ)))
J(K,C)

∣∣∣∣︸ ︷︷ ︸
statistical robustness cost

+

∣∣∣∣ min
K∈K(Bq̂(f(θ)))

J(K,C)− min
K∈K(C)

J(K,C)

∣∣∣∣︸ ︷︷ ︸
universal stabilization cost

As discussed in the main text, the error decomposes into two terms: the first from making the con-
troller robust to adversarial dynamics matrices and the second from requiring that such a controller
stabilize the whole collection of dynamics. We now bound each term separately, starting with the
first term. We first note:

J(K∗(Bq̂(f(θ))), C) ≤ max
Ĉ∈Bq̂(f(θ))

J(K∗(Bq̂(f(θ))), Ĉ) =: min
K∈K(Bq̂(f(θ)))

max
Ĉ∈Bq̂(f(θ))

J(K, Ĉ)

where the first step follows by the assumption C ∈ Bq̂(f(θ)) and second by definition of
K∗(Bq̂(f(θ))). From here,∣∣∣∣J(K∗(Bq̂(f(θ))), C)− min

K∈K(Bq̂(f(θ)))
J(K,C)

∣∣∣∣
≤

∣∣∣∣∣ min
K∈K(Bq̂(f(θ)))

max
Ĉ∈Bq̂(f(θ))

J(K, Ĉ)− min
K∈K(Bq̂(f(θ)))

J(K,C)

∣∣∣∣∣
≤ max

K∈K(Bq̂(f(θ)))
| max
Ĉ∈Bq̂(f(θ))

J(K, Ĉ)− J(K,C)|

≤ L max
Ĉ∈Bq̂(f(θ))

||Ĉ − C||op ≤ 2Lq̂.

We now demonstrate that the second term vanishes within a radius of “safety,” which we do through
perturbation analysis of the closed-loop margin. In particular, notice that, since K(Bq̂(f(θ))) ⊂
K(C), this term vanishes if the minimizer over K(C) lies in K(Bq̂(f(θ))). That is, this difference
vanishes if K∗(C) := argminK∈K(C) J(K,C) satisfies K∗(C) ∈ K(Bq̂(f(θ))). Notably, this is
equivalent to finding a condition under which K∗(C) stabilizes all the dynamics matrices Ĉ ∈
Bq̂(f(θ)).

To procure a test of this property, we consider an approach from the theory of switched linear
systems, where controllers are sought that stabilize a collection of adjusting dynamics matrices.
In particular, recall that Bq̂(f(θ)) is constructed under an operator norm and, therefore, any Ĉ ∈
Bq̂(f(θ)) can be viewed as a bounded perturbation to the nominal prediction corresponding to θ.
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That is, that Ĉ = C + ∆ for ||∆||op ≤ q̂. Thus, we can equivalently view the task as seeking a
condition that guarantees that, if ||C − Ĉ||op ≤ q̂, K∗(C) stabilizes Ĉ.

We now consider the W := [In×n −K∗(C)⊤]⊤ matrix and analyze the closed-loop stability of
ĈW . By definition, we have that ĈW := (C + ∆)W =: CW + E, where we know that CW is
stabilized by K∗(C), since K∗(C) ∈ K(C). By this latter point, we know CW satisfies one of
two properties, depending on whether the system being analyzed is a continuous- or discrete-time
setting. In the case of continuous time, we have that mini−Re(λi(CW )) > 0 and that, for discrete
time, mini(1− |λi(CW )|) > 0.

Under the additional assumption of CW being diagonalizable, we have that CW = UΛU−1

for Λ = diag(λ1, ..., λn). With this, we now return to analyzing the perturbed CW + E. By the
Bauer–Fike bound, we know that for any eigenvalue λ′

j of CW +E, mini |λ′
j−λi| ≤ κ(U)||E||op,

where κ(U) is the condition number of U . Thus, if these perturbed eigenvalues remain within the
stabilized regions, Ĉ is stabilized by K∗(C).

In the continuous-time setting, this is guaranteed if κ(U)||E||op < mini−Re(λi(CW )) or, by
the fact that ||E|| := ||∆W || ≤ ||∆|| · ||W || ≤ q̂||W ||, if

κ(U)(q̂||W ||) < min
i
−Re(λi(CW )) ⇐⇒ q̂ <

mini−Re(λi(CW ))

κ(U)||W ||

The discrete-time setting follows analogously, simply with the stability condition replaced by the
discrete-time analog, i.e. if κ(U)||E||op < mini(1− |λi(CW )|). That is, a sufficient condition for
stabilization is that

κ(U)(q̂||W ||) < min
i
(1− |λi(CW )|) ⇐⇒ q̂ <

mini(1− |λi(CW )|)
κ(U)||W ||

Since we have the assumption that PΘ,C(C ∈ U(Θ)) ≥ 1−α, the result immediately follows. ■

C.8.2 Deterministic Discrete-Time Regret Analysis

Theorem C.8.2. [Deterministic, discrete-time] Let J(K,C) :=
∑∞

t=0(x
⊤
t (Q + K⊤RK)xt) with

w = 0. Assume that PΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1− α. Then, under Assumption 4,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see discrete-time in Definition 2) ∆dom(Θ, C) = 0.

Proof. We consider any fixed θ and demonstrate that J(K, Ĉ) is non-negative and L-Lipschitz in
Ĉ ∈ Bq̂(f(θ)) under the operator norm for any K ∈ K(Bq̂(f(θ))), from which Theorem C.8.1 can
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be invoked to arrive at the desired conclusion. Given the assumed determinism of the dynamics,
we have that xt = (ĈW )tx0, meaning the above objective setup can equivalently be expressed as:

∞∑
t=0

x⊤
0 ((ĈW )t⊤(Q+K⊤RK)(ĈW )t)x0, (C.9)

J is clearly non-negative by construction. It, therefore, suffices to demonstrate this objective is
Lipschitz continuous with an appropriate Lipschitz constant. Notice the Lipschitz constant can be
obtained by bounding the magnitude of the gradient with respect to Ĉ, which we do as follows

∇Ĉ

(
∞∑
t=0

x⊤
0 ((ĈW )t⊤(Q+K⊤RK)(ĈW )t)x0

)

=
∞∑
t=0

tdiag((Q+K⊤RK)(ĈW )tx0)(ĈW )(t−1)diag(x0)W
⊤

+
∞∑
t=0

tdiag((Q⊤ + (RK)⊤K)(ĈW )tx0)(ĈW )(t−1)diag(x0)W
⊤

We now bound the magnitude of this quantity as follows:

L ≤ max
Ĉ∈Bq̂(f(θ))

||
∞∑
t=0

tdiag((Q+K⊤RK)(ĈW )tx0)(ĈW )(t−1)diag(x0)W
⊤

+
∞∑
t=0

tdiag((Q⊤ + (RK)⊤K)(ĈW )tx0)(ĈW )(t−1)diag(x0)W
⊤||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t
∣∣∣∣∣∣diag((Q+K⊤RK)(ĈW )tx0)(ĈW )(t−1)diag(x0)W

⊤
∣∣∣∣∣∣
op

+
∞∑
t=0

t
∣∣∣∣∣∣diag((Q⊤ + (RK)⊤K)(ĈW )tx0)(ĈW )(t−1)diag(x0)W

⊤
∣∣∣∣∣∣
op
,

where we have used diag(x0) for a vector x0 to denote a diagonal matrix with x0 placed along
its main diagonal. We now bound each of these two terms separately, although the structure of
the two is the same, so we explicitly show steps for bounding the first, from which the same can
be repeated on the second. Importantly, we make use of the fact ||diag(x0)||op = ||x0||∞ and
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||A||∞ ≤
√
n||A||op for A ∈ Rn×n as follows:

max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t||diag((Q+K⊤RK)(ĈW )tx0)(ĈW )(t−1)diag(x0)W
⊤||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t||diag((Q+K⊤RK)(ĈW )tx0)||op||(ĈW )(t−1)||op||diag(x0)||op||W⊤||op

= max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t||(Q+K⊤RK)(ĈW )tx0||∞||x0||∞||(ĈW )(t−1)||op||W ||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t||Q+K⊤RK||∞||(ĈW )t||∞||x0||∞||x0||∞||(ĈW )(t−1)||op||W ||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t(
√
n||Q+K⊤RK||∞||x0||2∞||W ||op)||(ĈW )t||op||(ĈW )(t−1)||op.

We now collect all terms independent of t into D(K) =
√
n||Q+K⊤RK||∞||x0||2∞||W ||op:

≤ D(K) max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t||(ĈW )t||op||(ĈW )(t−1)||op.

Critically, we can now demonstrate that this sum is bounded by virtue of K being a universal
stabilizer of the dynamics set Bq̂(f(θ)). By this stabilization, we know that ĈW is Schur stable,
i.e. mini(1 − |λi(ĈW )|) > 0 or maxi |λi(ĈW )| < 1. Thus, there exists a P ≻ 0 such that for
some τ ∈ (0, 1), we have

(ĈW )⊤P (ĈW ) ⪯ τ 2P.

We now denote the norm induced by such a P as ||·||P . Then, ||ĈW ||P ≤ τ , meaning ||(ĈW )t|| ≤
τ t. By the norm equivalence between the induced matrix norm and the standard operator norm, we
have that

||(ĈW )t||op ≤ κ(P )||(ĈW )t||P ≤ κ(P )τ t,

where κ(P ) :=
√

λmax(P )/λmin(P ) is the condition number of P . We now see that the previous
sum converges:

D(K) max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t||(ĈW )t||op||(ĈW )(t−1)||op ≤ D(K)κ(P )2 max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

tτ 2t−1

≤ D(K)κ(P )2
τ

(1− τ 2)2
,
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completing the proof. ■

The finite LQR case follows immediately as a corollary of the above, stated below for com-
pleteness.

Corollary C.8.3. [Deterministic, discrete-time, finite-horizon] Let J(K,C) :=
∑T

t=0(x
⊤
t (Q +

K⊤RK)xt) with w = 0. Assume that PΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1− α. Then:

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see discrete-time in Definition 2) ∆dom(Θ, C) = 0.

C.8.3 Deterministic Continuous-Time Regret Analysis

The proof follows in much the same manner as the discrete-time case, with modest adjustments to
the exact specification of the assumptions regarding the dynamics.

Theorem C.8.4. [Deterministic, continuous-time] Let J(K,C) :=
∫∞
0
(x(t)⊤(Q+K⊤RK)x(t))dt

for w = 0. Assume that PΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1− α. Then, under Assumption 4,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see continuous-time in Definition 2) ∆dom(Θ, C) = 0.

Proof. We consider any fixed θ and demonstrate the desired properties that J(K,C) is non-
negative and L-Lipschitz in Ĉ ∈ Bq̂(f(θ)) under the operator norm for any K ∈ K(Bq̂(f(θ))),
from which Theorem C.8.1 can be invoked to arrive at the desired conclusion. Given the assumed
determinism of the dynamics, we further have that x(t) = eĈWtx(0), meaning the above objec-
tive setup can equivalently be expressed with the uncertainty sets related to the objective function,
namely as: ∫ ∞

0

x(0)⊤(eĈWt)⊤(Q+K⊤RK)(eĈWt)x(0)dt. (C.10)

J is clearly non-negative by construction. It, therefore, suffices to demonstrate this objective is
Lipschitz continuous with an appropriate Lipschitz constant. We again proceed by bounding the
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norm of the gradient as follows:

∇Ĉ

(∫ ∞

0

x(0)⊤(eĈWt)⊤(Q+K⊤RK)(eĈWt)x(0)dt

)
=

∫ ∞

0

tdiag((Q+K⊤RK)eĈWtx(0))eĈWtdiag(x(0))W⊤dt

+

∫ ∞

0

tdiag((Q⊤ + (RK)⊤K)eĈWtx(0))eĈWtdiag(x(0))W⊤dt

We again bound each of these two terms separately, as follows:

max
Ĉ∈Bq̂(f(θ))

∣∣∣∣∣∣∣∣∫ ∞

0

tdiag((Q+K⊤RK)eĈWtx(0))eĈWtdiag(x(0))W⊤dt

∣∣∣∣∣∣∣∣
op

≤ max
Ĉ∈Bq̂(f(θ))

∫ ∞

0

t
∣∣∣∣∣∣diag((Q+K⊤RK)eĈWtx(0))

∣∣∣∣∣∣
op

∣∣∣∣∣∣eĈWt
∣∣∣∣∣∣
op
||diag(x(0))||op

∣∣∣∣W⊤∣∣∣∣
op
dt

= max
Ĉ∈Bq̂(f(θ))

∫ ∞

0

t
∣∣∣∣∣∣(Q+K⊤RK)eĈWtx(0)

∣∣∣∣∣∣
∞

∣∣∣∣∣∣eĈWt
∣∣∣∣∣∣
op
||x(0)||∞ ||W ||op dt

≤ max
Ĉ∈Bq̂(f(θ))

∫ ∞

0

t(
√
n
∣∣∣∣Q+K⊤RK

∣∣∣∣
∞ ||W ||op ||x(0)||

2
∞)
∣∣∣∣∣∣eĈWt

∣∣∣∣∣∣2
op
dt.

Collecting all terms independent of t into a constant D(K) =
√
n||Q+K⊤RK||∞||W ||op||x(0)||2∞

and using the bound ||eĈWt|| ≤ β(Ĉ)e−α(Ĉ)t, we reach the conclusion as:

= max
Ĉ∈Bq̂(f(θ))

D(K)

∫ ∞

0

t
∣∣∣∣∣∣eĈWt

∣∣∣∣∣∣2
op
dt ≤ D(K)β(Ĉ)2

∫ ∞

0

te−2α(Ĉ)tdt = max
Ĉ∈Bq̂(f(θ))

D(K)β(Ĉ)2

4α(Ĉ)2
,

as desired. ■

Once again, the proof in the finite time horizon case follows equivalently.

Corollary C.8.5. [Deterministic, continuous-time, finite-horizon] Let J(K,C) :=
∫ T

0
(x(t)⊤(Q+

K⊤RK)x(t))dt for w = 0. Assume thatPΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1−α. Then, under Assumption 4,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see continuous-time in Definition 2) ∆dom(Θ, C) = 0.
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C.8.4 Stochastic Discrete-Time Regret Analysis

We introduce below the discrete-time analog of the continuous-time decay assumption made in
Assumption 5 below.

Assumption 6. For any θ, ∃ constants α1, β1 > 0 such that for all Ĉ ∈ Bq̂(f(θ)), K ∈ K(Ĉ),

and t ≥ 0, ||Q(t) +K⊤R(t)K|| ≤ β1e
−α1t and minĈ∈Bq̂(f(θ))

(2α2(Ĉ) + α1) > 0 where α2(Ĉ) :=

infK∈K(Ĉ)(− log ρ(ĈW )) > 0.

Theorem C.8.6. [Stochastic, discrete-time] Let J(K,C) :=
∑∞

t=0(x
⊤
t (Q+K⊤RK)xt) with wt ∼

N (0,Σ) i.i.d. across t such that D2(K) := ||Σ||op||W ||op < ∞. Assume further that PΘ,C(C ∈
Bq̂(f(Θ))) ≥ 1− α. Then, under Assumption 4 and Assumption 6,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,

where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see discrete-time in Definition 2) ∆dom(Θ, C) = 0.

Proof. We again consider any fixed θ and demonstrate the desired properties that J(K, Ĉ) is non-
negative and L-Lipschitz in Ĉ ∈ Bq̂(f(θ)) under the operator norm for any K ∈ K(Bq̂(f(θ))),
from which Theorem C.8.1 can be invoked to arrive at the desired conclusion. Notice the objective
can be reformulated in the standard manner as follows:

J(K, Ĉ) := E[
∞∑
t=0

(x⊤
t (Qt +K⊤RtK)xt)] =

∞∑
t=0

E[(x⊤
t (Qt +K⊤RtK)xt)]

=
∞∑
t=0

E[Tr(x⊤
t (Qt +K⊤RtK)xt)] =

∞∑
t=0

E[Tr((Qt +K⊤RtK)xtx
⊤
t )]]

=
∞∑
t=0

Tr((Qt +K⊤RtK)E[xtx
⊤
t ]) =

∞∑
t=0

Tr((Qt +K⊤RtK)(E[xt]E[xt]
⊤ +Var(xt))).

We now use the following computations to evaluate this final expression:

E[xt] = E[(ĈW )xt−1 + wt]

= E[(ĈW )xt−1] + E[wt] = E[(ĈW )((ĈW )xt−2 + wt−1)]

= E[(ĈW )2xt−2] + (ĈW )E[wt−1)] = ... = (ĈW )tx0.
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Var(xt) = Var((ĈW )xt−1 + wt) = (ĈW )Var(xt−1)(ĈW )⊤ + Σ

= (ĈW )Var(xt−2)(ĈW )⊤ + (ĈW )Σ(ĈW )⊤ + Σ = ... =
t−1∑
k=0

(ĈW )kΣ(ĈW )k⊤.

With these simplifications, we are left with:

J(K, Ĉ) =
∞∑
t=0

x⊤
0 (ĈW )t⊤(Qt +K⊤RtK)(ĈW )tx0

+
∞∑
t=0

t−1∑
k=0

Tr((Qt +K⊤RtK)(ĈW )kΣ(ĈW )k⊤))

J is clearly non-negative by construction. We demonstrate this quantity is Lipschitz continuous
with an appropriate Lipschitz constant, again by bounding the gradient. The bound for the first
term was demonstrated in the proof of Theorem C.8.2, for which reason we solely present that of
the second term as follows:

∞∑
t=0

t−1∑
k=0

∇ĈTr((Qt +K⊤RtK)(ĈW )kΣ(ĈW )k⊤))

=
∞∑
t=0

t−1∑
k=0

k((((Qt +K⊤RtK)⊤(ĈW )kΣ⊤)⊙ (ĈW )(k−1))W⊤+

∞∑
t=0

t−1∑
k=0

k(((Qt +K⊤RtK)(ĈW )kΣ)⊙ (ĈW )(k−1))W⊤

We now bound each of these two terms separately, although the structure of the two is the same,
so we explicitly show steps for bounding the first, from which the same can be repeated on the
second.

max
Ĉ∈Bq̂(f(θ))

||
∞∑
t=0

t−1∑
k=0

k((((Qt +K⊤RtK)⊤(ĈW )kΣ⊤)⊙ (ĈW )(k−1))W⊤||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t−1∑
k=0

k||((Qt +K⊤RtK)⊤(ĈW )kΣ⊤)⊙ (ĈW )(k−1)||op||W ||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t−1∑
k=0

k||Qt +K⊤RtK||op||(ĈW )k||op||Σ||op||(ĈW )(k−1)||op||W ||op

≤ max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t−1∑
k=0

kβ1e
−α1t||(ĈW )k||op||Σ||op||(ĈW )(k−1)||op||W ||op
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We again repeat the proof technique leveraged in Section C.8.2, where we first collect all terms
independent of t into a constant D2(K) = ||Σ||op||W ||op. By precisely the same argument as
presented there, namely that K stabilizes Ĉ, we have that there is a P ≻ 0 such that for some
τ ∈ (0, 1), we have

(ĈW )⊤P (ĈW ) ⪯ τ 2P. =⇒ ||(ĈW )t||op ≤ κ(P )τ t,

where κ(P ) is the condition number of P . By Assumption 6, we have that α2(Ĉ) ≤ − log(τ) or
e−α2(Ĉ) ≥ τ . Therefore, we have that the prior sum is bounded by

≤ D2(K)κ(P )2 max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

t−1∑
k=0

kτ 2k−1

≤ D2(K)κ(P )2 max
Ĉ∈Bq̂(f(θ))

∞∑
t=0

β1e
−α1t

t−1∑
k=0

ke−α2(Ĉ)(2k−1)

≤ D2(K)κ(P )2β1 max
Ĉ∈Bq̂(f(θ))

t−1∑
k=0

ke−α2(Ĉ)(2k−1)

∞∑
t=k

e−α1t

= D2(K)κ(P )2β1 max
Ĉ∈Bq̂(f(θ))

t−1∑
k=0

ke−α2(Ĉ)(2k−1)

(
eα1−α1k

eα1 − 1

)

= D2(K)κ(P )2β1

(
1

eα1 − 1

)
max

Ĉ∈Bq̂(f(θ))

t−1∑
k=0

k(e−α2(Ĉ))(2k−1)(e−α1)k−1

= D2(K)κ(P )2β1

(
1

eα1 − 1

)
max

Ĉ∈Bq̂(f(θ))
e−α2(Ĉ)

t−1∑
k=0

k(e−(2α2(Ĉ)+α1))k−1

= D2(K)κ(P )2β1

(
1

eα1 − 1

)
max

Ĉ∈Bq̂(f(θ))

e−α2(Ĉ)

(1− e−(2α2(Ĉ)+α1))2
,

thus completing the proof. ■

C.8.5 Stochastic Continuous-Time Regret Analysis

Theorem C.8.7. [Stochastic, continuous-time] Let J(K,C) :=

E
[∫∞

0
(x(t)⊤(Q(t) +K⊤R(t)K)x(t))dt

]
with w(t) a white noise process with spectral density Σ

such that D2(K) := ||Σ||op||W ||op < ∞. Assume further that PΘ,C(C ∈ Bq̂(f(Θ))) ≥ 1 − α.

Then, under Assumption 4 and Assumption 5,

PΘ,C (0 ≤ R(Θ, C) ≤ 2Lq̂ +∆dom(Θ, C)) ≥ 1− α,
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where L is the Lipschitz constant of J(K, Ĉ) in Ĉ ∈ Bq̂(f(θ)) under the operator norm. Further,

if q̂ < r(C,K∗(C)), (see continuous-time in Definition 2) ∆dom(Θ, C) = 0.

Proof. We again consider any fixed θ and demonstrate the desired properties that J(K, Ĉ) is non-
negative and L-Lipschitz in Ĉ ∈ Bq̂(f(θ)) under the operator norm for any K ∈ K(Bq̂(f(θ))),
from which Theorem C.8.1 can be invoked to arrive at the desired conclusion. Notice the objective
can be reformulated in the standard manner as follows:

J(K, Ĉ) := E
[∫ ∞

0

(x(t)⊤(Q(t) +K⊤R(t)K)x(t))dt

]
=

∫ ∞

0

E[(x(t)⊤(Q(t) +K⊤R(t)K)x(t))]dt =

∫ ∞

0

E[Tr(x(t)⊤(Q(t) +K⊤R(t)K)x(t))]dt

=

∫ ∞

0

E[Tr((Q(t) +K⊤R(t)K)x(t)x(t)⊤)]]dt =

∫ ∞

0

Tr((Q(t) +K⊤R(t)K)E[x(t)x(t)⊤])dt

=

∫ ∞

0

Tr((Q(t) +K⊤R(t)K)(E[x(t)]E[x(t)]⊤ +Var(x(t))))dt.

We now obtain the expressions for E[x(t)] and Var(x(t)) using standard results from stochastic
differential equations. For a full review on this topic, see [Särkkä and Solin, 2019]:

J(K, Ĉ) =

∫ ∞

0

x(0)⊤(eĈWt)⊤(Q(t) +K⊤R(t)K)(eĈWt)x(0)dt

+

∫ ∞

0

∫ t

0

Tr((Q(t) +K⊤R(t)K)eĈWkΣeĈWk⊤)dkdt

J is clearly non-negative by construction. We demonstrate this quantity is Lipschitz continuous
with an appropriate Lipschitz constant, again by bounding the gradient in much the same manner
as the above bound. The bound for the first term was demonstrated in the proof of Theorem C.8.2,
which holds under the finiteness assumption of D1(K). We, thus, solely present that of the second
term as follows:∫ ∞

0

∫ t

0

∇ĈTr((Q(t) +K⊤R(t)K)e(ĈW )kΣe(ĈW )k⊤)dkdt

=

∫ ∞

0

∫ t

0

k(((Q(t)⊤ + (R(t)K)⊤K)ekĈWΣ⊤)⊙ ekĈW )W⊤dkdt

+

∫ ∞

0

∫ t

0

k(((Q(t) +K⊤R(t)K)ekĈWΣ)⊙ ekĈW )W⊤

We now bound each of these two terms separately, although the structure of the two is the same,
so we explicitly show steps for bounding the first, from which the same can be repeated on the
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second.

L ≤ max
Ĉ
||
∫ ∞

0

∫ t

0

k(((Q(t)⊤ + (R(t)K)⊤K)ekĈWΣ⊤)⊙ ekĈW )W⊤dkdt||op

≤ max
Ĉ

∫ ∞

0

∫ t

0

k||Q(t) +K⊤R(t)K||op||Σ||op||W ||op||ekĈW ||2opdkdt

We again now collect all terms independent of t into a constant D2(K) = ||Σ||op||W ||op, leaving

≤ max
Ĉ

D2(K)

∫ ∞

0

β1e
−α1t

∫ t

0

kβ2(Ĉ)2e−2α2(Ĉ)kdkdt

= max
Ĉ

D2(K)β1β2(Ĉ)2

4α2
2(Ĉ)

∫ ∞

0

e−α1t
(
1− 2α2(Ĉ)te−2α2(Ĉ)t − e−2α2(Ĉ)t

)
dt

= max
Ĉ

D2(K)β1β2(Ĉ)2

4α2
2(Ĉ)

(
1

α1

− 2α2(Ĉ)

(α1 + 2α2(Ĉ))2
− 1

α1 + 2α2(Ĉ)

)
= max

Ĉ

D2(K)β1β2(Ĉ)2

α1(α1 + 2α2(Ĉ))2

We, therefore, again have the desired upper bound on the Lipschitz constant, as desired. ■

C.8.6 Unimodal Assumption Explanation

In classical engineering design, one would prescribe the dynamics of the system by explicitly writ-
ing out the physics of the system; this is so universally done that it may not even feel like an
assumption in engineering design. This is the sense in which we mean that the design parameters
commonly have some “unimodal” (often Dirac) measure in mapping to the system dynamics. For
instance, if one is studying a cart pole system with a position x and angle θ, a common characteri-
zation (see Chapter 3 of [Tedrake, 2023]) is given by:

ẍ =
1

mc +mp sin
2 θ

[
fx +mp sin θ(lθ̇

2 + g cos θ)
]

θ̈ =
1

l(mc +mp sin
2 θ)

[
−fx cos θ −mplθ̇

2 cos θ sin θ − (mc +mp)g sin θ
]

Here, the parameters mc, mp, and l could all be viewed as the “design parameters” θ depending on
what one, as an engineer, has control over. Knowing that the underlying reality can be described
by single set of dynamics is, therefore, what motivates using a unimodal model, as we wished to
highlight with the models used in previous UCCD works.
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C.8.7 Coverage Guarantees Under Noisy Observations

Theorem C.8.8. Let C̃ = C + ϵ where vec(ϵ) ∼ N (0,Σ), where ϵ ⊥⊥ (Θ, C). Assume U(θ) =

{C ′ | ||f(θ) − C ′||op ≤ q̂} satisfies PΘ,C̃(C̃ ∈ U(Θ)) ≥ 1 − α, where || · ||op denotes the matrix

operator norm. If for any θ ∈ Θ and δ > 0, P(q̂2 − δ ≤ ∥C − f(θ)∥2op ≤ q̂2 | Θ = θ) > P(q̂2 ≤
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ), then

PΘ,C(C ∈ U(Θ)) ≥ PΘ,C̃(C̃ ∈ U(Θ)) ≥ 1− α.

Proof. Given that PΘ,C̃(C̃ ∈ U(Θ)) ≥ 1 − α, it suffices to show that P(C ∈ U(θ) | Θ = θ) ≥
P(C̃ ∈ U(θ) | Θ = θ) for all θ, as the conclusion can be drawn by the law of total probability:

P(C̃ ∈ U(Θ) | Θ = θ)

= P
(∥∥∥C̃ − f(θ)

∥∥∥2
op
≤ q̂2 | Θ = θ

)
= P

(
sup
∥x∥=1

{
∥Cx+ ϵx− f(θ)x∥22

}
≤ q̂2 | Θ = θ

)

= P

(
sup
∥x∥=1

{
∥Cx− f(θ)x∥22 + 2xT ϵT (Cx− f(θ)x) + ∥ϵx∥22

}
≤ q̂2 | Θ = θ

)

We now lower bound this inner quantity, from which

sup
∥x∥=1

{
∥Cx− f(θ)x∥22 + 2xT ϵT (Cx− f(θ)x) + ∥ϵx∥22

}
≥ sup

∥x∥=1

{
∥Cx− f(θ)x∥22 + 2xT ϵT (Cx− f(θ)x)

}
≥ ∥Cx′ − f(θ)x′∥22 + 2(x′)T ϵT (Cx′ − f(θ)(x′)) ,

for any choice of x′ : ||x′||2 = 1. The second line follows by the trivial fact that ∥ϵx∥22 ≥ 0 and the
third from the fact that the previous line is the supremum of all such possible values x′. We now
specifically take x′ := argmaxx ∥Cx− f(θ)x∥22 and denote it as x∗. From here, we arrive at the
final bound

sup
∥x∥=1

{
∥Cx− f(θ)x∥22 + 2xT ϵT (Cx− f(θ)x) + ∥ϵx∥22

}
≥ ∥(C − f(θ))(x∗)∥22 + 2(x∗)T ϵT (Cx∗ − f(θ)(x∗))

=: ∥C − f(θ)∥2op + 2(x∗)T ϵT (Cx∗ − f(θ)(x∗))

Since this is a lower bound on the original quantity of interest, we have that the probability this
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quantity is upper bounded by q̂2 is greater than that of the original quantity being upper bounded.
That is,

P

(
sup
∥x∥=1

{
∥Cx− f(θ)x∥22 + 2xT ϵT (Cx− f(θ)x) + ∥ϵx∥22

}
≤ q̂2 | Θ = θ

)
≤ P

(
∥C − f(θ)∥2op + 2x∗T ϵT (Cx∗ − f(θ)x∗) ≤ q̂2 | Θ = θ

)
Let δ = 2x∗T ϵT (Cx∗ − f(θ)x∗). Then:

:= P
(
∥C − f(θ)∥2op + δ ≤ q̂2 | Θ = θ

)
= P

(
∥C − f(θ)∥2op + δ ≤ q̂2 | Θ = θ, δ > 0

)
P(δ > 0 | Θ = θ)

+ P
(
∥C − f(θ)∥2op + δ ≤ q̂2 | Θ = θ, δ ≤ 0

)
P(δ ≤ 0 | Θ = θ)

= P
(
∥C − f(θ)∥2op ≤ q̂2 − δ | Θ = θ, δ > 0

)
P(δ > 0 | Θ = θ)

+ P
(
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ, δ > 0

)
P(δ ≤ 0 | Θ = θ)

In this final line, we made use of the fact that

P
(
∥C − f(θ)∥2op ≤ q̂2 − δ | Θ = θ, δ ≤ 0

)
= P

(
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ, δ > 0

)
,

which follows since the distribution of δ is symmetric about 0 by the symmetry of the distribution
of ϵ. In particular, δ = f(C, ϵ); since C ⊥⊥ ϵ, the joint distributions P(C, ϵ) and P(C,−ϵ) are
identical. Thus, the distribution of δ′ = f(C,−ϵ) matches that of δ. Using this, we add terms that
sum to 0 as follows:

= P
(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
− P(δ > 0 | Θ = θ)P

(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ, δ > 0

)
− P(δ ≤ 0 | Θ = θ)P

(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ, δ ≤ 0

)
 = 0

+ P
(
∥C − f(θ)∥2op ≤ q̂2 − δ | Θ = θ, δ > 0

)
P(δ > 0 | Θ = θ)

+ P
(
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ, δ > 0

)
P(δ ≤ 0 | Θ = θ),

where these newly added terms will be used for manipulation subsequently. From here, we re-
express this expression with expectations, where we again use the symmetry in δ in the second
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term:

= P
(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
− P (δ > 0 | Θ = θ)E

[
P(∥C − f(θ)∥2op ≤ q̂2 | Θ = θ) | δ > 0

]
− P (δ ≤ 0 | Θ = θ)E

[
P(∥C − f(θ)∥2op ≤ q̂2 | Θ = θ) | δ > 0

]
+ P (δ > 0 | Θ = θ)E

[
P
(
∥C − f(θ)∥2op ≤ q̂2 − δ | Θ = θ

)
| δ > 0

]
+ P (δ ≤ 0 | Θ = θ)E

[
P
(
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ

)
| δ > 0

]
.

With this rewrite, we can group terms and conclude using the stated assumption on the “peaking”
structure of the probability in the prediction region:

= P
(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
− P (δ > 0 | Θ = θ)E

[
P
(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
− P

(
∥C − f(θ)∥2op ≤ q̂2 − δ | Θ = θ

)
| δ > 0

]
+ P (δ ≤ 0 | Θ = θ)E

[
P
(
∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ

)
− P

(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
| δ > 0

]
= P

(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
− P (δ > 0 | Θ = θ)E

[
P
(
q̂2 − δ ≤ ∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
| δ > 0

]
+ P (δ ≤ 0 | Θ = θ)E

[
P
(
q̂2 ≤ ∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ

)
| δ > 0

]
.

We, therefore, have that P(C̃ ∈ U(θ) | Θ = θ) ≤ P
(
∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
+∆, where

∆ := P (δ ≤ 0 | Θ = θ)E
[
P
(
q̂2 ≤ ∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ

)
| δ > 0

]
− P (δ > 0 | Θ = θ)E

[
P
(
q̂2 − δ ≤ ∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
| δ > 0

]
By the assumption, we know that for all δ > 0:

P
(
q̂2 − δ ≤ ∥C − f(θ)∥2op ≤ q̂2 | Θ = θ

)
> P

(
q̂2 ≤ ∥C − f(θ)∥2op ≤ q̂2 + δ | Θ = θ

)
.
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We also know that P(δ ≤ 0 | Θ = θ) ≤ P(δ ≥ 0 | Θ = θ) since

P(δ ≤ 0 | Θ = θ) = P
(
2x∗T ϵT (Cx∗ − f(θ)x∗) ≤ 0 | Θ = θ

)
= EC|Θ=θ

[
Pϵ|C=c,Θ=θ

(
x∗T ϵT (c− f(θ)) x∗ ≤ 0

)]
= EC|Θ=θ [0.5]

= 0.5

Therefore, P
(∥∥∥C̃ − f(θ)

∥∥∥
op
≤ q̂ | Θ = θ

)
− P

(
∥C − f(θ)∥op ≤ q̂ | Θ = θ

)
≤ ∆ ≤ 0 ■

C.8.8 LQR C Gradient

We follow the presentation of [Fazel et al., 2018] to provide the derivation of ∇CJ(K,C). Note
that the following derivation is given for the discrete-time setting; the continuous-time derivation
follows in a similar fashion with a modification in the Lyapunov equations.

Lemma C.8.9. Let J(K,C) be the infinite horizon, discrete-time, deterministic analog of that

defined in Equation (1.4), i.e. J(K,C) :=
∑∞

t=0(x
⊤
t (Q+K⊤RK)xt) for w = 0. Then,

∇CJ(K,C) = 2PKCWXKW
T , (C.11)

where XK and PK respectively solve the following two Lyapunov equations: ∆KXK∆
⊤
K −XK =

−X0 and PK = ∆⊤
KPK∆K +Q+K⊤RK, where ∆K := A−BK.

Proof. By the standard reformulation of J(K,C) as described in [Fazel et al., 2018], we can
rewrite J(K,C, x0) = x⊤

0 PKx0, where we now make the notational change to make explicit the
dependence on x0, as it pertains to the derivation below. We then have that

J(K,C, x0) = x⊤
0 ∆

⊤
KPK∆Kx0 + x⊤

0 (Q+K⊤RK)x0

= J(K,C,∆Kx0) + x⊤
0 (Q+K⊤RK)x0.
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From here, we have that

∇CJ(K,C, x0) = ∇CJ(K,C,∆Kx0) +∇C
������������:0

(x⊤
0 (Q+K⊤RK)x0)

= 2PKCWx0x
T
0W

T +∇CJ(K,C,∆Kx1)|x1:=(A−BK)x0

= ...

= 2PKCW (
∞∑
t=0

xtx
T
t )W

T

= 2PKCWXKW
T ,

where the final equality follows from the well-known correspondence between this infinite sum
and the aforementioned Lyapunov reformulation. ■

C.8.9 Policy Gradient Convergence Guarantee

Lemma C.8.10. Suppose f(x, y) is c(y)-gradient dominated for any y ∈ Y , i.e. for any fixed y,

there is a c(y) such that, for any x ∈ X and x∗(y) := argminx∈X f(x, y):

f(x, y)− f(x∗(y), y) ≤ c(y)||∇xf(x, y)||2F .

Further, let ϕ(x) := maxy∈Y f(x, y) and x∗ := argminx∈X ϕ(x). Assume that

Argmaxy∈Y f(x, y) ̸= ∅ ∀x. Then,

ϕ(x)− ϕ(x∗) ≤ c∗(x) min
y∗∈Argmaxy∈Y f(x,y)

||∇xf(x, y
∗)||2F ,

where c∗(x) := supy∗∈Argmaxy∈Y f(x,y) c(y
∗).

Proof. Note that, for any maximizer y∗ ∈ Argmaxy∈Y f(x, y), we have

ϕ(x)− ϕ(x∗) := max
y∈Y

f(x, y)−max
y∈Y

f(x∗, y) = f(x, y∗)−max
y∈Y

f(x∗, y)

≤ f(x, y∗)− f(x∗, y∗) ≤ f(x, y∗)− f(x∗(y∗), y∗) ≤ c(y∗)||∇xf(x, y
∗)||2F

Given that this relationship holds for all such y∗, we immediately get that

ϕ(x)− ϕ(x∗) ≤ min
y∗∈Argmaxy∈Y f(x,y)

c(y∗)||∇xf(x, y
∗)||2F ≤ c∗(x) min

y∗∈Argmaxy∈Y f(x,y)
||∇xf(x, y

∗)||2F ,

where c∗(x) := supy∗∈Argmaxy∈Y f(x,y) c(y
∗). ■
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We now make use of the known fact that J(K,C) is gradient-dominated for any fixed C, in turn
satisfying the conditions of Theorem C.8.10, from which we reach the desired conclusion. The
former fact was demonstrated in [Bu et al., 2019], which we present below for sake of convenience
with modification of notational conventions to match that used herein.

Lemma C.8.11. (Lemma 5 of [Fazel et al., 2018]) Let J(K,C) be the infinite horizon, discrete-

time, deterministic analog of that defined in Equation (1.4), i.e. J(K,C) :=
∑∞

t=0(x
⊤
t (Q +

K⊤RK)xt) for w = 0. Then, if XK ≽ 0 and K ∈ K(C),

J(K,C)− J(K∗(C), C) ≤
||XK∗(C)||

σmin(X0)2σmin(R)
||∇KJ(K,C)||2F , (C.12)

where X0 ≻ 0 and XK and PK respectively solve the following two equations: ∆KXK∆
⊤
K−XK =

−X0 and PK = ∆⊤
KPK∆K +Q+K⊤RK, where ∆K := A−BK.

Lemma C.8.12. Let ϕ(K) := maxĈ∈C J(K, Ĉ) and K∗
rob(C) := argminK∈K(C) ϕ(K), with J

the infinite horizon, discrete-time, deterministic analog of that defined in Equation (1.4), i.e.

J(K,C) :=
∑∞

t=0(x
⊤
t (Q + K⊤RK)xt) for w = 0. Then, for K ∈ K(C) where XK ≽ 0 for

all Ĉ ∈ C, ϕ(K) satisfies

ϕ(K)− ϕ(K∗
rob(C)) ≤ µ∗(K) min

C∗∈Argmax
Ĉ∈C J(K,Ĉ)

||∇KJ(K,C∗)||2F

for µ∗(K) := supC∗∈Argmax
Ĉ∈C J(K,Ĉ)

||XK∗(C∗)||
σmin(X0)2σmin(R)

, where X0 ≻ 0 and XK and PK respectively

solve the following two equations: ∆KXK∆
⊤
K−XK = −X0 and PK = ∆⊤

KPK∆K+Q+K⊤RK,

where ∆K := A−BK.

Proof. The proof for this follows immediately by demonstrating the assumption of Theo-
rem C.8.10 is satisfied by Theorem C.8.11. ■

Theorem C.8.13. Let ϕ(K) := maxC∈C J(K,C) and K∗
rob(C) := argminK∈K(C) ϕ(K), with

J the infinite horizon, discrete-time, deterministic analog of that defined in Equation (1.4), i.e.

J(K,C) :=
∑∞

t=0(x
⊤
t (Q + K⊤RK)xt) for w = 0. Let K(t) be the t-th iterate of Algorithm 6.

Assume for each iterate t, the optimization over C converges, i.e. C(TC) = C∗(K(t)), that K(t) ∈
K(C), and that XK ≽ 0 for all Ĉ ∈ C and K ∈ K(C). Denote ν := minĈ∈C minK∈K(C) σmin(XK).

If in Algorithm 6

ηK ≤ min
[Â,B̂]:=Ĉ∈C

1

16
min

{(σmin(Q)ν

J(K, Ĉ)

)2
1

||B̂||||∇KJ(K, Ĉ)||(1 + ||Â− B̂K||)
,

σmin(Q)

2J(K, Ĉ)||R + B̂⊤PKB̂||

}
.

(C.13)
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then, there exists a γ > 0 such that ϕ(K(T ))− ϕ(K∗
rob(C)) ≤ (1− γ)T (ϕ(K0)− ϕ(K∗

rob(C))).

Proof. We follow the proof strategy developed in [Fazel et al., 2018], specifically in their pre-
sentation of Lemma 24, in which we leverage the above developed gradient dominance result,
namely that in Theorem C.8.12. We first note that Algorithm 6 is equivalent to performing sub-
gradient descent over ϕ(K) if we assume convergence of the inner maximization over C, that is if
C(TC) = C∗(K(t)) for some C∗ ∈ ArgmaxĈ∈C J(K

(t), Ĉ). It, therefore, suffices to characterize
subgradient descent, where K(t+1) := K(t) − ηKgt.

To complete this proof, it suffices to demonstrate ϕ(K(t)) − ϕ(K(t+1)) ≥ γ(K(t))||gt||2F for
some γ(K(t)) > 0, since this along with subgradient dominance can be used to establish the
desired convergence guarantees by first demonstrating this intermediate result:

ϕ(K(t+1))− ϕ(K∗
rob(C)) = (ϕ(K(t+1))− ϕ(K(t))) + (ϕ(K(t))− ϕ(K∗

rob(C)))

≤ −γ(K(t))||gt||2F + (ϕ(K(t))− ϕ(K∗
rob(C)))

≤
(
1− γ(K(t))/µ∗(K(t))

)
(ϕ(K(t))− ϕ(K∗

rob(C))).

To then demonstrate the final convergence, we can simply apply this result inductively as follows:

ϕ(K(t))− ϕ(K∗
rob(C)) ≤

(
1− γ(K(T ))/µ∗(K(T ))

)
(ϕ(K(T−1))− ϕ(K∗

rob(C)))

≤
(
1− γ(K(T ))/µ∗(K(T ))

) (
1− γ(K(T−1))/µ∗(K(T−1))

)
(ϕ(K(T−2))− ϕ(K∗

rob(C)))

≤ ... ≤ (ϕ(K0)− ϕ(K∗
rob(C)))

T∏
t=1

(
1− γ(K(t))/µ∗(K(t))

)
≤ (1− γ)T (ϕ(K0)− ϕ(K∗

rob(C))),

where we take γ := mint γ(K
(t))/µ∗(K(t)). We now prove ϕ(K(t))−ϕ(K(t+1)) ≥ γ(K(t))||gt||2F .

To do so, we leverage the result of combining Lemmas 3 and 24 from [Fazel et al., 2018], by
which it was demonstrated that for any fixed dynamics C, there is a β(C) > 0 such that J(K,C)−
J(K ′, C) ≥ β(C)||∇KJ(K,C)||2F if K,K ′ ∈ K(C), XK ≽ 0, and if η satisfies:

η ≤ 1

16
min

(
(
σmin(Q)ν(C)

J(K,C)
)2

1

||B||||∇KJ(K,C)||(1 + ||A−BK||)
,

σmin(Q)

2J(K,C)||R +B⊤PKB||

)
,

where ν(C) := minK∈K(C) σmin(XK). The stability assumption is satisfied in assuming all iterates
K(t) ∈ K(C), as K(C) ⊂ K(C). XK ≽ 0 is similarly true under the assumption that this property
holds for all optimization iterates. The assumption on the learning rate is guaranteed for any C ∈ C
under the assumption of Equation (C.13). To leverage this result, we must, therefore, re-express
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the quantity of interest into an expression with fixed dynamics:

ϕ(K(t))− ϕ(K(t+1)) := J(K(t), C∗(K(t)))− J(K(t+1), C∗(K(t+1)))

≥ J(K(t), C∗(K(t)))− J(K(t+1), C∗(K(t)))

≥ β(C∗(K(t)))||∇KJ(K
(t), C∗(K(t)))||2F

= β(C∗(K(t)))||gt||2F .

Thus, taking γ(K(t)) := β(C∗(K(t))) satisfies the desired property and completes the proof. ■

C.8.10 Experimental Controls Setup

As discussed in Section 4.2.3, the standard approach to “robustness via multiplicative noise” is
non-data-driven specification of the perturbations anticipated upon deployment. They all, however,
share the same standard structure of Equation (4.6), with differences being in the specification of
the collection {δi}pi=1, {γi}

q
i=1, {Ai}pi=1, and {Bi}qi=1, where p = q = 2 is used across experiments.

We consider two strategies for the specification of ({Ai}, {Bi}) and three for that of ({δi}, {γi}).
For the former:

• Random

– Ai[j, k] ∼ N (0, 1)

– Bi[j, k] ∼ N (0, 1)

• Random Row-Col

– Ai[j, :] = Ai[:, k] = 1 for j, k ∼ Unif([n])

– Bi[j, :] = Bi[:, k] = 1 for j ∼ Unif([n]), k ∼ Unif([m])

For the latter, the general strategy is to find those {δi}pi=1, {γi}
q
i=1 that result in unstable dy-

namics when paired with the corresponding ({Ai}, {Bi}) for some choice of controller, which
varies across the strategies considered. This in turn defines a problem such that, within some
radius of misspecified dynamics that retain stability, the controller still performs well. These
methods proceed by initializing δ

(0)
i = γ

(0)
i = 1 and iteratively multiplicatively increas-

ing each by some pre-defined factor ρ such that δ
(t)
i = ρδ

(t−1)
i and similarly for γ(t) until
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J(A,B, {Ai}, {Bi}, {δ∗i }, {γ∗
i }, K) =∞ in

J(A,B, {Ai}, {Bi}, {δi}, {γi}, K) :=

∫ ∞

0

(x⊤Qx+ (Kx)⊤R(Kx))dt (C.14)

s.t. ẋ =

(
(A+

p∑
i=1

δiAi)− (B +

q∑
i=1

γiBi)K

)
x.

The problem specifications, therefore, vary in the K used as the stopping criterion of Equa-
tion (C.14) and whether {δ∗i }, {γ∗

i } are modified in the final specification as follows:

• Critical: Consider K(t) := argminK J(A,B, {Ai}, {Bi}, {δ(t)i }, {γ
(t)
i }, K) in each iterate;

Take {δi := δ∗i }, {γi := γ∗
i }

• Open-Loop Mean-Square Stable (Weak): Consider K := 0; Take {δi := νδ∗i }, {γi :=

νγ∗
i } for some ν ∈ (0, 1)

• Open-Loop Mean-Square Unstable: Consider K := 0; Take {δi := δ∗i }, {γi := γ∗
i }

All prediction models f̂ : Θ → (A,B) were multi-layer perceptrons implemented in PyTorch
[Paszke et al., 2019] with optimization done using Adam [Kingma and Ba, 2014] with a learning
rate of 10−3 over 1,000 training steps. Training such models required roughly 10 minutes using an
Nvidia RTX 2080 Ti GPU for each experimental setup. Running the robust control optimization
algorithm took roughly one hour for 1,000 design trials.

C.8.11 Experimental Dynamical Systems Setup

We consider the following dynamical systems in the experiments. Note that parameters were
drawn from normal distributions centered on the nominally reported values from the respective
papers these dynamics were considered from.

C.8.11.1 Aircraft Control

We consider the experimental setup studied in [Chrif and Kadda, 2014], in which optimal control
is sought on the deflection angles of an aircraft. In particular, we assume the dynamics are given
by the following:

A =


γβ γp γr 1

Lβ Lp Lr 0

Nβ Np Nr 0

0 1 0 0

 B =


γδr γδa

Lδr Lδa

Nδr Nδa

0 0

 , θ := [γ, L,N ] ∈ R15
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The parameter sampling distributions are given in Table C.5.

Table C.5: Sampling of parameters for aircraft control task.

Parameter Symbols Distribution Hyperparameter Sampling
γ γβ, γp, γr, γδr , γδa N (µγ,Σγ) µγ ∼ U([0, 1]5), Σγ = AA⊤, A ∼ U([0, 1]5×5)
L Lβ, Lp, Lr, Lδr , Lδa N (µL,ΣL) µL ∼ U([0, 1]5), ΣL = AA⊤, A ∼ U([0, 1]5×5)
N Nβ, Np, Nr, Nδr , Nδa N (µN ,ΣN) µN ∼ U([0, 1]5), ΣN = AA⊤, A ∼ U([0, 1]5×5)

C.8.11.2 Load Positioning Control

We consider the load-positioning system of [Ahmadi et al., 2023, Jiang et al., 2016]. In this case,
the dynamics are given by:

A =


0 1 0 0

0 − dL
mL
− dL

mB

kB
mB

dB
mB

0 0 0 1

0 dL
mB

− kB
mB

− dB
mB

 B =


0

1
mL

+ 1
mB

0

− 1
mB

 , θ := [mB,mL, dL, kB, dB] ∈ R5

The parameter sampling distributions are given in Table C.6.

Table C.6: Sampling of parameters for load positioning task.

Parameter Symbol Distribution Hyperparameter Sampling
Mass of body mB mB = 1/u u ∼ U(0.04, 0.0667)
Mass of load mL mL = 1/u u ∼ U(0.3333, 1.0)

Stiffness of body kB kB = u ·mB u ∼ U(0.4, 1.3333)
Damping of body dB dB = u ·mB u ∼ U(0.004, 0.0667)
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C.8.11.3 Furuta Pendulum

We also consider the Furuta pendulum dynamical system given in [Arulmozhi and Victorie, 2022],
in which the system dynamics were specified by

A =
1

JT

0 0 JT 0

0 1
4
MpL

2
pLrg −(Jp + 1

4
mpL

2
p)Dr

1
2
mpLpLrDp

0 −1
2
mpLpg(Jr +mpL

2
r)

1
2
mpLpLrDr −(Jr +mpL

2
r)Dp



B =
1

JT


0

0

Jp +
1
4
mpL

2
p

−1
2
mpLpLr

 θ := [Mp,mp, Lp, Lr, JT , Jp, Jr, Dp, Dr] ∈ R9

The parameter sampling distributions are given in Table C.7.

Table C.7: Sampling of parameters for Furuta pendulum task.

Parameter Symbol Distribution Hyperparameter Values
Pendulum mass Mp |N (µMp , σ

2
Mp

)| µMp = 0.024, σMp ∼ U(0, 1)
Rotor mass mp |N (µmp , σ

2
mp

)| µmp = 0.095, σmp ∼ U(0, 1)
Pendulum length Lp |N (µLp , σ

2
Lp
)| µLp = 0.129, σLp ∼ U(0, 1)

Rotor length Lr |N (µLr , σ
2
Lr
)| µLr = 0.085, σLr ∼ U(0, 1)

Total inertia JT |N (µJT , σ
2
JT
)| µJT = f(µmp , µLr , µJr , µJp), σJT ∼ U(0, 1)

Pendulum inertia Jp |N (µJp , σ
2
Jp
)| µJp =

MpL2
p

12
, σJp ∼ U(0, 1)

Rotor inertia Jr |N (µJr , σ
2
Jr
)| µJr =

mpL2
r

12
, σJr ∼ U(0, 1)

Pendulum damping Dp |N (µDp , σ
2
Dp
)| µDp = 0.0005, σDp ∼ U(0, 1)

Rotor damping Dr |N (µDr , σ
2
Dr
)| µDr = 0.0015, σDr ∼ U(0, 1)
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C.8.11.4 DC Microgrids

We additionally consider the LQR model of DC microgrids given in [Liu et al., 2023a], in which
the system dynamics were specified by

A =



2(−u0d−NK2S)
Vsd

0 −2NK4S
Vsd

−4NK5S
Vsd

2u0

Vs
0 0 0 0

0 2(−u0d−NK3S)
Vsd

4NK4S
Vsd

6NK5S
Vsd

0 2u0

Vs
0 0 0

6NK2S
Vsd

4NK3S
Vsd

2(−u0d−NK4S)
Vsd

0 0 0 2u0

Vs
0 0

−4NK2S
Vsd

−2NK3S
Vsd

0 2(−u0d−NK5S)
Vsd

0 0 0 2u0

Vs
0

u0

Vt
0 0 0 −u0

Vt
0 0 0 0

0 u0

Vt
0 0 0 −u0

Vt
0 0 0

0 0 u0

Vt
0 0 −u0

Vt
0 0

0 0 0 u0

Vt
0 0 0 −u0

Vt
0

NRT
FCc

2

−NRT
FCc

3

NRT
FCc

4

NRT
FCc

5
0 0 0 0 0



B =



Ct
2−Cc

2

Vs/2
Ct

3−Cc
3

Vs/2
Ct

4−Cc
4

Vs/2
Ct

5−Cc
5

Vs/2
Cc

2−Ct
2

Vt
Cc

3−Ct
3

Vt
Cc

4−Ct
4

Vt
Cc

5−Ct
5

Vt

0



θ := [Vs, Vt, S, d,N,K2, K3, K4, K5, C
c
2, C

c
3, C

c
4, C

c
5, C

t
2, C

t
3, C

t
4, C

t
5] ∈ R17

The parameter sampling distributions are given in Table C.8.
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Table C.8: Sampling of parameters for DC microgrids task.

Parameter Symbol Distribution Hyperparameter Values
Source voltage Vs N (µVs , σ

2
Vs
) µVs = 40, σVs = 26.67

Terminal voltage Vt N (µVt , σ
2
Vt
) µVt = 500, σVt = 333.33

Surface area S N (µS, σ
2
S) µS = 24, σS = 16.00

Diffusion coefficient d N (µd, σ
2
d) µd = 1.27× 10−3, σd = 8.47× 10−4

Number of layers N N (µN , σ
2
N) µN = 37, σN = 24.67

Reaction rate constant 2 K2 N (µK2 , σ
2
K2
) µK2 = 8.768× 10−10, σK2 = 5.845× 10−10

Reaction rate constant 3 K3 N (µK3 , σ
2
K3
) µK3 = 3.222× 10−10, σK3 = 2.148× 10−10

Reaction rate constant 4 K4 N (µK4 , σ
2
K4
) µK4 = 6.825× 10−10, σK4 = 4.550× 10−10

Reaction rate constant 5 K5 N (µK5 , σ
2
K5
) µK5 = 5.897× 10−10, σK5 = 3.931× 10−10

Capacitance cell 2 (cathode) Cc
2 N (µCc

2
, σ2

Cc
2
) µCc

2
= 1.0, σCc

2
= 0.667

Capacitance cell 3 (cathode) Cc
3 N (µCc

3
, σ2

Cc
3
) µCc

3
= 1.0, σCc

3
= 0.667

Capacitance cell 4 (cathode) Cc
4 N (µCc

4
, σ2

Cc
4
) µCc

4
= 1.0, σCc

4
= 0.667

Capacitance cell 5 (cathode) Cc
5 N (µCc

5
, σ2

Cc
5
) µCc

5
= 1.0, σCc

5
= 0.667

Capacitance cell 2 (total) Ct
2 N (µCt

2
, σ2

Ct
2
) µCt

2
= 1.0, σCt

2
= 0.667

Capacitance cell 3 (total) Ct
3 N (µCt

3
, σ2

Ct
3
) µCt

3
= 1.0, σCt

3
= 0.667

Capacitance cell 4 (total) Ct
4 N (µCt

4
, σ2

Ct
4
) µCt

4
= 1.0, σCt

4
= 0.667

Capacitance cell 5 (total) Ct
5 N (µCt

5
, σ2

Ct
5
) µCt

5
= 1.0, σCt

5
= 0.667
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C.8.11.5 Nuclear Plant

We finally consider the terminal sliding-mode control of a nuclear plant from [Kirgni and Wang,
2023], given by:

A =



− β
Λ

β1

Λ
β2

Λ
β3

Λ

αfθ

Λ
αcθ
2Λ

− σXθ
νΣfΛ

0

λ1 −λ1 0 0 0 0 0 0

λ2 0 −λ2 0 0 0 0 0

λ3 0 0 −λ3 0 0 0 0
ϵfP0

µf
0 0 0 − Ω

µf

Ω
µf

0 0
(1−ϵf )P0

µc
0 0 0 Ω

µc

2M+Ω
2µc

0 0

(γXΣf − σXX0)ϕ0P0 0 0 0 0 0 − (λX + ϕ0P0θ) λI

γIΣfϕ0P0 0 0 0 0 0 0 −λI



B =



− θ
Λ

0

0

0

0

0

0

0


θ :=

[
αc, αf , β, β1, β2, β3,Λ, λI , λX , λ1, λ2, λ3, µf , µc, γX , γI , σX ,Σf ,

ν, ϵf ,Ω,M, θ, P0, ϕ0, X0

]
∈ R26

The parameter sampling distributions are given in Table C.9.
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Table C.9: Sampling of parameters for nuclear plant task. Note that some of the parameters,
specifically θ, µc, ν, Ω, M , ϕ0, X0, were not ascribed values in the paper from which the dynamics
were provided. These were assumed to be in normalized units for the simulation.

Parameter Symbol Distribution Hyperparameter Values
Coolant reactivity coefficient αc N (µαc , σ

2
αc
) µ = −2.0, σ = 2.0

Fuel reactivity coefficient αf N (µαf
, σ2

αf
) µ = −14.0, σ = 14.0

Total delayed neutron fraction β N (µβ, σ
2
β) µ = 0.0065, σ = 0.0065

Delayed neutron precursor (group 1) β1 N (µβ1 , σ
2
β1
) µ = 0.00021, σ = 0.00021

Delayed neutron precursor (group 2) β2 N (µβ2 , σ
2
β2
) µ = 0.00225, σ = 0.00225

Delayed neutron precursor (group 3) β3 N (µβ3 , σ
2
β3
) µ = 0.00404, σ = 0.00404

Prompt neutron lifetime Λ N (µΛ, σ
2
Λ) µ = 2.1, σ = 2.1

Iodine decay constant λI N (µλI
, σ2

λI
) µ = 10.0, σ = 10.0

Xenon decay constant λX N (µλX
, σ2

λX
) µ = 2.9, σ = 2.9

Decay const. neutron prec. group 1 λ1 N (µλ1 , σ
2
λ1
) µ = 0.0124, σ = 0.0124

Decay const. neutron prec. group 2 λ2 N (µλ2 , σ
2
λ2
) µ = 0.0369, σ = 0.0369

Decay const. neutron prec. group 3 λ3 N (µλ3 , σ
2
λ3
) µ = 0.632, σ = 0.632

Fuel heat capacity µf N (µµf
, σ2

µf
) µ = 0.0263, σ = 0.0263

Coolant heat capacity µc N (µµc , σ
2
µc
) µ = 1.0, σ = 1.0

Fission yield (xenon) γX N (µγX , σ
2
γX
) µ = 0.003, σ = 0.003

Fission yield (iodine) γI N (µγI , σ
2
γI
) µ = 0.059, σ = 0.059

Xenon absorption cross-section σX N (µσX
, σ2

σX
) µ = 3.5× 10−18, σ = 3.5× 10−18

Fission cross-section Σf N (µΣf
, σ2

Σf
) µ = 0.3358, σ = 0.3358

Neutrons per fission ν N (µν , σ
2
ν) µ = 1.0, σ = 1.0

Power deposition fraction in fuel ϵf N (µϵf , σ
2
ϵf
) µ = 0.92, σ = 0.92

Heat transfer coefficient Ω N (µΩ, σ
2
Ω) µ = 1.0, σ = 1.0

Coolant mass M N (µM , σ2
M) µ = 1.0, σ = 1.0

Control reactivity θ N (µθ, σ
2
θ) µ = 1.0, σ = 1.0

Nominal reactor power P0 N (µP0 , σ
2
P0
) µ = 3.0, σ =

√
3.0

Neutron flux ϕ0 N (µϕ0 , σ
2
ϕ0
) µ = 1.0, σ = 1.0

Nominal xenon conc. X0 N (µX0 , σ
2
X0
) µ = 1.0, σ = 1.0

C.8.12 Additional Experimental Results

C.8.12.1 Raw Results

We here provide the raw regrets from Section 4.2.4.1 in Table C.10 and the proportion of stabilized
dynamics in Table C.11.
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Table C.10: Each of the results below are median normalized regrets over 1,000 i.i.d. test samples
with median absolute deviations in parentheses. For clarity, we have not reported any cases with
> 80% unstable cases (see Table C.11 for respective percentages).

Airfoil Load Positioning Furuta Pendulum DC Microgrids Fusion Plant

Random Critical — — — — —
Random OL MSS (Weak) 0.091 (0.045) — — — —
Random OL MSUS — — — — —
Row-Col Critical — — — — —
Row-Col OL MSS (Weak) 0.101 (0.063) — — — —
Row-Col OL MSUS 0.104 (0.066) — — — —
CPC 0.085 (0.058) 0.033 (0.023) 0.002 (0.002) 0.000 (0.000) 0.011 (0.011)
Shared Lyapunov 0.349 (0.221) 0.358 (0.255) 0.055 (0.039) 0.000 (0.000) 0.030 (0.027)
Auxiliary Stabilizer 0.322 (0.202) 0.343 (0.256) 0.048 (0.036) 0.000 (0.000) 0.029 (0.027)
H∞ 0.288 (0.188) 0.087 (0.060) 0.063 (0.045) 0.012 (0.010) 0.035 (0.032)

Table C.11: Percentages of cases with unstable robust control over 1,000 i.i.d. test samples.

Airfoil Load Positioning Furuta Pendulum DC Microgrids Fusion Plant

Random Critical 1.000 1.000 1.000 1.000 1.000
Random OL MSS (Weak) 0.783 1.000 0.920 1.000 0.987
Random OL MSUS 0.825 1.000 0.961 1.000 0.990
Row-Col Critical 0.998 1.000 1.000 1.000 1.000
Row-Col OL MSS (Weak) 0.200 1.000 0.948 1.000 0.960
Row-Col OL MSUS 0.210 1.000 0.951 1.000 0.963
CPC 0.088 0.251 0.174 0.009 0.643
Shared Lyapunov 0.093 0.229 0.141 0.008 0.561
Auxiliary Stabilizer 0.087 0.223 0.142 0.007 0.556
H∞ 0.081 0.236 0.142 0.007 0.570

C.8.12.2 Method Timings

CPC is more computationally expensive than alternatives. This pairs well with the anticipated use
cases, namely in engineering design workflows involving UCCD, i.e. where the control problem
is solved offline.
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Table C.12: Comparison of average method timing (to convergence) across tasks as measured over
10 trials for each experimental setup.

Method Airfoil Load Position Pendulum Battery Fusion
H∞ 0.17 0.14 0.16 0.19 0.23
Shared Lyapunov 2.68 2.63 2.53 1.13 2.12
Auxiliary Stabilizer 1.70 1.75 1.85 1.01 1.41
Random Critical 7.50 1.74 6.78 7.02 10.50
Random OL MSS (Weak) 6.72 1.34 4.94 7.36 6.39
Random OL MSUS 6.63 2.18 7.25 15.21 7.11
Row-Col Critical 5.37 2.32 5.51 5.48 5.44
Row-Col OL MSS (Weak) 4.35 2.34 4.13 1.00 2.88
Row-Col OL MSUS 3.43 1.84 4.77 4.54 3.18
CRC 13.03 13.44 12.47 12.19 10.88
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APPENDIX D

Preliminary Results for Future Directions

D.1 Non-Parameteric Conformal Distributionally Robust Op-
timization

Proof. We consider the event of interest conditionally on a pair (x,PC) where PC ∈ U(x):

| inf
w∈W

sup
q∈U(x)

Eq[f(w,C)]− inf
w∈W

EPC
[f(w,C)]|

≤ sup
w∈W
| sup
q∈U(x)

Eq[f(w,C)]− EPC
[f(w,C)]|

≤ sup
w∈W

sup
q∈U(x)

|Eq[f(w,C)]− EPC
[f(w,C)]|

≤ sup
w∈W

sup
q∈U(x)

LW1(q,PC) = Ldiam(U(x)).

Since we have the assumption that P(C ∈ U(X)) ≥ 1−α, the result immediately follows. ■

D.2 Conformally Robust Engineering Design

D.2.1 Background

D.2.1.1 Sobolev Spaces

The study of numerical simulation of PDEs is a mature field. We, therefore, only provide a brief
introduction to the topic, referring readers to the book [Brezis and Brézis, 2011] for an excellent
treatment of the relevant materials. Differential problems are posited in the form

Du(x) = f(x) x ∈ Ω u(x) = 0 x ∈ ∂Ω, (D.1)
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where Ω ⊂ Rd is a compact domain, f, u : Rd → R are scalar fields, and D is a differential
operator. The existence and uniqueness of a solution u to such a posited PDE can then often
be established over a Sobolev space, defined as those functions with bounded Sobolev norm, i.e.
Ws,p(Ω) := {u(x) : ||u(x)||Ws,p(Ω) <∞}, where

||u(x)||Ws,p(Ω) :=
∑

α∈Λ≤s

||∂α
xu(x)||

p
Lp(Ω) where Λ≤s := {α ∈ Nd

0 : ||α||1 ≤ s}. (D.2)

Note that we employ the common condensed notation ∂α
xu := ∂α1

x1
...∂αd

xd
u for α := (α1, ..., αd).

Since all partials are with respect to x in this manuscript, we condense the notation further and
simply denote this operator as ∂α. Notably, this space assumes a Hilbert structure in the special
case of p = 2, which we denote as Hs(Ω) :=Ws,2(Ω). In the further specialized case of Ω = Td,
the space Hs(Td) can be defined by the equivalent norm over the function’s Fourier spectrum
arising from Parseval’s identity, namely

||u||2Hs(Td) :=
∑
n∈Zd

(1 + ||n||22)s⟨u, φn⟩2 where φn := e2πin·x, (D.3)

The notion of “equivalent norms” is the standard definition, where || · ||a and || · ||b are called
equivalent if ∃ c and C such that for any x, c||x||b ≤ ||x||a ≤ C||x||b.

D.2.1.2 Neural Operators

Data-driven approaches to modeling have classically focused on learning maps between finite-
dimensional spaces. With the increasing interest in leveraging machine learning in domains such as
solving PDEs, however, approaches that learn maps between infinite-dimensional function spaces
have emerged. So-called “operator-learning” methods, therefore, seek to learn a map G : A → U
between two function spaces A and U , where observations D := {(ai, ui)} have been made. We
assume that there exists some true, deterministic operator G such that u = G(a). While many
different learning-based approaches have been proposed to solve this learning problem, they all
can be abstractly framed as seeking to recover this true map, formally

min
Ĝ
||Ĝ − G||2L2(A,U) :=

∫
A
||Ĝ(a)− G(a)||2Uda. (D.4)

While the operator learning task can be framed in this general light, most works studying operator
learning methods have focused on the setting of PDEs, where it is of interest to learn the solution
operator of a given PDE [Li et al., 2020b,c,a, Bonev et al., 2023].

One such class of approaches are “spectral neural operators” [Fanaskov and Oseledets, 2023,
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Wu et al., 2023, Du et al., 2023, Liu et al., 2023b]. Such methods amortize classical spectral
methods, which posit that the solution function can be decomposed as u(x) =

∑
n unφn(x) for

some pre-specified {φn} basis and solve for the corresponding {un} coefficients. In this setting,
therefore, the generally posed neural operator objective of Equation (D.4) reduces to a simple
vector-to-vector regression loss over the spectral representations of ai and ui. That is, we assume
the existence of spectral decompositions for each, which we denote a⃗(i), u⃗(i) ∈ RNd

max , and train a
map G : RNd

max → RNd
max on the resulting dataset.

D.2.2 Method

We now discuss our proposed methodology for performing robust engineering design under
infinite-dimensional conformal prediction regions. In particular, we introduce the calibration pro-
cedure in Section D.2.2.1.

D.2.2.1 Spectral Operator Calibration

Throughout this exposition, we assume the PDE surrogate map is learned as a spectral neural
operator, as described in Section D.2.1.2. For notational ease, in the discussions that follow, we
adopt the convention that the full sequence of spectral coefficients of a function u is denoted {un}.
This implicitly indexes over n ∈ Zd. We distinguish this from truncated spectra with the same
vector notation as before, i.e. u⃗ := {un}n:|n|∞≤Nmax . Formally, therefore, the spectral operator is
learned as a finite-dimensional map G : RNd

max → RNd
max on a dataset of function spectra a⃗(i), u⃗(i) ∈

RNd
max .
As discussed, one crucial detail that distinguishes conformal guarantees in functional settings

versus those in typical settings is that the outputs in this setting are fundamentally only partially

observable. That is, functions are not directly observable: only discrete samplings, either as evalu-
ations in the spatial domain or as truncated spectral representations, can be observed. We, however,
seek to provide coverage guarantees on the full function, i.e. where the spectral expansion is not
truncated. To achieve this, we define the following family of score functions

sN ;ν (⃗a, u⃗) :=
∑

n∈Zd:|n|∞≤N

(1 + ||n||22)s−ν([G (⃗a)]n − u⃗n)
2 where ν ∈ {1, ..., s}. (D.5)

This choice of score is motivated by its equivalence via Parseval’s theorem to the (s− ν)-Sobolev
norm residual. Notably, the score function itself is parameterized by two values: the spectral
truncation N and the Sobolev norm parameter ν, where N ≤ Nmax. As discussed extensively over
later sections, the scoring over variable truncations is leveraged for multi-resolution optimization;
importantly, the quantiles over all truncations can be computed efficiently with a single vectorized
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operation.
Critical to note is that the score was defined using the (s − ν)-Sobolev norm rather than the

more natural choice of the s-Sobolev norm. The lower bound of ν ≥ 1 is necessary to guarantee
asymptotic coverage of the true function, as we formalize below. Note again that the statement of
Equation (D.6) is made directly on the full spectrum {u′

n}n∈Zd , not on its finite spectral projection,
i.e. not on u⃗′. Intuitively, the probabilistic bound is achieved by leveraging the conformal quantile
to control the behavior of the observed lower-order modes and the smoothness of functions in
Hs(Td) to ensure the decay of higher-order modes.

Theorem D.2.1. Let (⃗a(i), {u(i)
n })∪ (⃗a′, {u′

n}) ∼ P(A⃗, {Un}) and P(||{Un}||2s ≤ B) = 1 for some

B ≥ 0. Further, let DC := {(⃗a(i), u⃗(i))}. Let α ∈ (0, 1) and q̂N ;ν be the ⌈(NC + 1)(1 − α)⌉/NC

quantile of Equation (D.5) over DC for a fixed G and ν ∈ {1, ..., s}. Then

PA⃗′,{U ′
n}

(∑
n∈Zd

(1 + ||n||22)s−ν([G(A⃗′)]n − U ′
n)

2 ≤ q̂N ;ν +BN−2ν

)
≥ 1− α. (D.6)

Proof. We consider the event of interest conditionally on sN ;ν (⃗a
′, {u′

n}) ≤ q̂N ;ν . Then:∑
n∈Zd

(1 + ||n||22)s−ν([G (⃗a′)]n − u′
n)

2

=
∑

n∈Zd:|n|∞≤N

(1 + ||n||22)s−ν([G (⃗a′)]n − u′
n)

2

︸ ︷︷ ︸
E≤N

+
∑

n∈Zd:|n|∞>N

(1 + ||n||22)s−ν(u′
n)

2

︸ ︷︷ ︸
E>N

We now demonstrate how each of the above two terms can be bounded. For the former, the result
immediately follows in noting that E≤N is precisely sN ;ν (⃗a

′, u⃗′), from which we have E≤N ≤ q̂N ;ν

directly by assumption on (⃗a′, u⃗′). For the latter, we appeal to standard techniques for Fourier
truncation analysis as follows

∑
n∈Zd:|n|∞>N

(1 + ||n||22)s−ν(u′
n)

2 =
∑

n∈Zd:|n|∞>N

(1 + ||n||22)s

(1 + ||n||22)ν
(u′

n)
2

≤ 1

(1 +N2)ν

∑
n∈Zd:|n|∞>N

(1 + ||n||22)s(u′
n)

2 ≤ BN−2ν .

We conclude by noting that PA⃗′,{U ′
n}
(sN ;ν(A⃗

′, {U ′
n}) ≤ q̂N ;ν) ≥ 1 − α from standard results of

conformal prediction, completing the proof. ■

The implication of such statements is that the typical conformal quantile retains coverage guar-
antees on the underlying function if augmented with an additional, finite margin, which decays
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with a “more complete” observation of the function, i.e. with larger N . Intuitively, with obser-
vation of the full function, i.e. when N → ∞, this margin becomes zero. While such a result is
natural, an interesting note is that such a property does not hold if we took ν = 0 to define the
score in Theorem D.2.1. This result also motivates the choice of ν = s to achieve a faster decay
rate of the margin; however, this needs to be balanced against the increased conservatism of the
prediction regions that results from using higher values of ν.

From here, we can immediately make similar coverage claims on a commonly encountered
class of elliptic PDEs by appealing to results from classical results of elliptic regularity theory.
Briefly, an elliptic PDE operator L is given by

L = −
n∑

i,j=1

aij(x)∂xixj
+

n∑
i=1

bi(x)∂xi
+ c(x), (D.7)

and is one for which ∃ θ > 0 such that
∑n

i,j=1 a
ij(x)ξiξj ≥ θ|ξ|2 for a.e. x ∈ Td and ξ ∈ Rn. The

“order” of such an operator specifies its highest total derivative. In particular, we can establish the
following corollary; we provide the statement of the relevant result of classical regularity theory
from which this result follows. We present below a special case of the statement from [Sturm,
2017] for scalar fields on Td.

Theorem D.2.2. (Theorem 6 of [Sturm, 2017]) Let L be an elliptic operator of order ℓ on Td such

that Lu = f . Then, there exists C(L, s) such that for u ∈ Hs+ℓ(Td) ∩ Ker(L)⊥, f ∈ Hs(Td) and

∥u∥Hs+ℓ(Td) ≤ C(L, s)∥f∥Hs(Td).

Corollary D.2.3. Let L be an elliptic operator of order ℓ on Td such that Lu = f . Let s ∈ N such

that s ≥ ℓ. Let DC := {(f⃗ (i), u⃗(i))} and (f⃗ (i), {un}) ∪ (f⃗ ′, {u′
n}) ∼ P(F⃗ , {Un}), where Lui = fi,

and α ∈ (0, 1), G, N , ν ∈ {1, ..., s}, and q̂N ;ν be as defined in Theorem D.2.1 with respect to such

DC . Then, there exists C(L, s) such that for u ∈ Hs(Td) ∩Ker(L)⊥,

PF⃗ ′,{U ′
n}

(∑
n∈Zd

(1 + ||n||22)s−ν([G(F⃗ ′)]n − Û ′
n)

2 ≤ q̂N ;ν + C(L, s)∥F⃗ ′∥2Hs−ℓ(Td)N
−2ν

)
≥ 1− α

Notably, the requirement that u ∈ Ker(L)⊥ is to ensure u is a unique solution to the posited
PDE. An important special case of Theorem D.2.3 is when L = ∆. In this case, ℓ = 2, and the
requirement that u be a unique solution can be naturally enforced by restricting u to zero-mean
fields, i.e. restricting solutions to satisfy

∫
Td u(x) dx = 0. We denote this margin-padded quantile

as q̂∗N ;ν := q̂N ;ν+BN−2ν , for which the corresponding prediction region C∗N ;ν (⃗a) := B
||·||s−ν

q̂∗N ;ν
(G (⃗a))

has coverage guarantees per Equation (D.6).
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challenges to the certification of machine learning for safety critical systems. In European
congress on embedded real time systems (ERTS 2020), volume 1, 2020.

Yu Jiang, Yebin Wang, Scott A Bortoff, and Zhong-Ping Jiang. An iterative approach to the optimal
co-design of linear control systems. International Journal of Control, 89(4):680–690, 2016.

Chancellor Johnstone and Bruce Cox. Conformal uncertainty sets for robust optimization. In
Conformal and Probabilistic Prediction and Applications, pages 72–90. PMLR, 2021.

Benoı̂t Jubin. Intrinsic volumes of sublevel sets. arXiv preprint arXiv:1903.01592, 2019.

Abdullah Kamadan, Gullu Kiziltas, and Volkan Patoglu. Co-design strategies for optimal variable
stiffness actuation. IEEE/ASME Transactions on Mechatronics, 22(6):2768–2779, 2017.

Margot E Kaminski. The right to explanation, explained. Berkeley Technology Law Journal, 34
(1):189–218, 2019.

Vijay Keswani, Matthew Lease, and Krishnaram Kenthapadi. Towards unbiased and accurate
deferral to multiple experts. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics,
and Society, pages 154–165, 2021.

143



Taylor Killian, George Konidaris, and Finale Doshi-Velez. Transfer learning across patient vari-
ations with hidden parameter markov decision processes. arXiv preprint arXiv:1612.00475,
2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Hamza Boubacar Kirgni and Junling Wang. Lqr-based adaptive tsmc for nuclear reactor in load
following operation. Progress in Nuclear Energy, 156:104560, 2023.

Shayan Kiyani, George Pappas, Aaron Roth, and Hamed Hassani. Decision theoretic founda-
tions for conformal prediction: Optimal uncertainty quantification for risk-averse agents. arXiv
preprint arXiv:2502.02561, 2025.
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Václav Kořenář. Vehicle routing problem with stochastic demands. ALLOCATION FRAGMENTS
OF THE DISTRIBUTED DATABASE, page 24, 2003.

Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-Abadeh.
Wasserstein distributionally robust optimization: Theory and applications in machine learning.
In Operations research & management science in the age of analytics, pages 130–166. Informs,
2019.

John M Lee and John M Lee. Smooth manifolds. Springer, 2012.

Sang Hoon Lee and Wei Chen. A comparative study of uncertainty propagation methods for black-
box type functions. In International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, volume 48078, pages 1275–1284, 2007.

Sang Hoon Lee and Wei Chen. A comparative study of uncertainty propagation methods for black-
box-type problems. Structural and multidisciplinary optimization, 37(3):239–253, 2009.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094–1111, 2018.

Jussi Leinonen, Ulrich Hamann, Daniele Nerini, Urs Germann, and Gabriele Franch. Latent dif-
fusion models for generative precipitation nowcasting with accurate uncertainty quantification.
arXiv preprint arXiv:2304.12891, 2023.

Jordan Lekeufack, Anastasios N Angelopoulos, Andrea Bajcsy, Michael I Jordan, and Jitendra
Malik. Conformal decision theory: Safe autonomous decisions from imperfect predictions. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pages 11668–11675.
IEEE, 2024.

144



Pablo Lemos, Adam Coogan, Yashar Hezaveh, and Laurence Perreault-Levasseur. Sampling-based
accuracy testing of posterior estimators for general inference. arXiv preprint arXiv:2302.03026,
2023.

Axel Levy, Frédéric Poitevin, Julien Martel, Youssef Nashed, Ariana Peck, Nina Miolane, Daniel
Ratner, Mike Dunne, and Gordon Wetzstein. Cryoai: Amortized inference of poses for ab initio
reconstruction of 3d molecular volumes from real cryo-em images. In European Conference on
Computer Vision, pages 540–557. Springer, 2022a.

Axel Levy, Gordon Wetzstein, Julien NP Martel, Frederic Poitevin, and Ellen Zhong. Amortized
inference for heterogeneous reconstruction in cryo-em. Advances in Neural Information Pro-
cessing Systems, 35:13038–13049, 2022b.

Yifeng Li, Fang-Xiang Wu, and Alioune Ngom. A review on machine learning principles for
multi-view biological data integration. Briefings in bioinformatics, 19(2):325–340, 2018.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766,
2020c.

Fengming Lin, Xiaolei Fang, and Zheming Gao. Distributionally robust optimization: A review on
theory and applications. Numerical Algebra, Control and Optimization, 12(1):159–212, 2022.

Mingxing Liu, Junfeng Wang, Tao Lin, Quan Ma, Zhiyang Fang, and Yanqun Wu. An empirical
study of the code generation of safety-critical software using llms. Applied Sciences, 14(3):
1046, 2024.

Yulin Liu, Tianhao Qie, Xinan Zhang, Hao Wang, Zhongbao Wei, Herbert HC Iu, and Tyrone
Fernando. A novel online learning-based linear quadratic regulator for vanadium redox flow
battery in dc microgrids. Journal of Power Sources, 587:233672, 2023a.

Ziyuan Liu, Yuhang Wu, Daniel Zhengyu Huang, Hong Zhang, Xu Qian, and Songhe Song. Spfno:
Spectral operator learning for pdes with dirichlet and neumann boundary conditions. arXiv
preprint arXiv:2312.06980, 2023b.

Lennart Ljung et al. Theory for the user. System identification, 1987.

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnen-
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Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,
2018.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image dif-
fusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3836–3847, 2023.

Zhexin Zhang, Shiyao Cui, Yida Lu, Jingzhuo Zhou, Junxiao Yang, Hongning Wang, and
Minlie Huang. Agent-safetybench: Evaluating the safety of llm agents. arXiv preprint
arXiv:2412.14470, 2024.

Zhi-rong Zhang, Liu Hui, ZHAO Feng, et al. Application of cfd in ship engineering design practice
and ship hydrodynamics. Journal of Hydrodynamics, Ser. B, 18(3):315–322, 2006.

Dongdong Zhao, Xiaodi Yang, Yichang Li, Li Xu, Jinhua She, and Shi Yan. A kalman–koopman
lqr control approach to robotic systems. IEEE Transactions on Industrial Electronics, 2024.

Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview: Recent progress
and new challenges. Information Fusion, 38:43–54, 2017.

Ellen D Zhong, Tristan Bepler, Bonnie Berger, and Joseph H Davis. Cryodrgn: reconstruction
of heterogeneous cryo-em structures using neural networks. Nature methods, 18(2):176–185,
2021a.

Ellen D Zhong, Adam Lerer, Joseph H Davis, and Bonnie Berger. Cryodrgn2: Ab initio neural re-
construction of 3d protein structures from real cryo-em images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4066–4075, 2021b.

152



Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantifica-
tion without labeled data. Journal of Computational Physics, 394:56–81, 2019.

Zongren Zou and George Em Karniadakis. L-hydra: multi-head physics-informed neural networks.
arXiv preprint arXiv:2301.02152, 2023.

153


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Preliminaries

	Amortized Variational Inference with Coverage Guarantees
	Introduction
	Related Literature
	Method
	Experiments

	Conformal Contextual Robust Optimization
	Introduction
	Method
	Experiment

	Applications of Conformal Decision Making
	Conformal Decision Making for Ensembles
	Conformal Robust Control of Linear Systems

	Future Directions
	Non-Parameteric Conformal Distributionally Robust Optimization
	Uncertainty Quantification for Dynamic NeRFs
	Conformally Robust Engineering Design

	Appendices
	Amortized Variational Inference with Coverage Guarantees
	Group Conditional CANVI
	CANVI Validity
	Riemannian Manifolds
	CANVI: Efficiency Analysis
	Gaussian Hölder Continuity
	Simulation-Based Inference Benchmarks
	Training Details
	Prediction Regions
	Posteriors
	SED Experimental Details

	Conformal Contextual Robust Optimization
	Prediction Region Validity Lemma
	Optimization Convergence Lemma
	SBI Representative Points
	Robust Vehicle Routing Setup

	Applications of Conformal Decision Making
	Conformal Decision Making for Ensembles
	CSA Predict-Then-Optimize Visual Walkthrough
	Computational Efficiency
	Full OpenML Results
	CSA Prediction Region Visualizations
	UCI Results
	Conformal Aggregation Methods
	Conformal Robust Control of Linear Systems

	Preliminary Results for Future Directions
	Non-Parameteric Conformal Distributionally Robust Optimization
	Conformally Robust Engineering Design

	Bibliography

