
Learning to Rank: Online Learning, Statistical Theory
and Applications

by

Sougata Chaudhuri

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2016

Doctoral Committee:

Assistant Professor Ambuj Tewari, Chair
Assistant Professor Jacob Abernethy
Associate Professor Long Nguyen
Associate Professor Clayton D. Scott

c© Sougata Chaudhuri 2016

All Rights Reserved

ACKNOWLEDGEMENTS

I would first like to express my deepest gratitude to my thesis advisor Ambuj Tewari,

who has been a pillar of strength and constant source of encouragement throughout my

graduate school journey. He was always present to brainstorm and discuss new ideas and

cheerfully responded to the trivial questions. He stood by me as I navigated through the

difficult path of getting papers accepted at competitive peer reviewed machine learning

conferences, which is truly a test of patience and perseverance. Lastly, I truly appreciate

his continuous three years of financial support through research grants, which helped me

focus on research and avoid other distractions.

I would like to thank XuanLong Nguyen, Clay Scott and Jake Abernethy, for agreeing to

be on my defense committee. Specifically, XuanLong’s Stats 601 course and Clay’s EECS

598 course motivated me to pursue a dissertation in the field of supervised machine learn-

ing. I have greatly enjoyed reading some of Jake’s papers on topics in online learning,

which got me interested in the direction of online learning to rank. I would like to thank

Georgios Theocharous and Mohammad Ghavamzadeh for their excellent mentorship dur-

ing my internship at Adobe labs. I would like to thank all the faculty members who taught

me in graduate school and helped me develop a broad perspective on statistics and machine

learning. I would also like to thank all my friends in the department who I have come to

know over the past five years and who have taken the graduate school journey with me.

Lastly, a big thank you to my parents, Siddhartha and Manjula Chaudhuri and my wife,

Twisha Chatterjee. Without you guys, I would not have been where I am now. Thank you

for being with me throughout the journey.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . vii

LIST OF APPENDICES . viii

ABSTRACT . ix

CHAPTER

I. Introduction . 1

1.1 Learning to Rank for Information Retrieval 2
1.2 Open Directions of Research in Learning to Rank 3
1.3 Contributions of the Thesis . 5
1.4 Papers and Preprints . 6

II. Perceptron-like Algorithms for Online Learning to Rank 8

2.1 Introduction . 8
2.2 Problem Definition . 11
2.3 Perceptron for Classification . 12
2.4 A Novel Family of Listwise Surrogates 15

2.4.1 Weight Vectors Parameterizing the SLAM Family 15
2.4.2 Properties of SLAM Family and Upper Bounds 17

2.5 Perceptron-like Algorithms . 19
2.5.1 Bound on Cumulative Loss 21

2.6 Minimax Bound on Cumulative NDCG/AP Induced Loss 28
2.6.1 Lower Bound . 28
2.6.2 Algorithm Achieving Lower Bound 30

2.7 Related Work in Perceptron for Ranking 33
2.8 Experiments . 34

iii

2.9 Conclusion . 37

III. Online Learning to Rank with Feedback on Top Ranked Items 41

3.1 Introduction . 41
3.2 Online Ranking with Restricted Feedback- Non Contextual Setting 47

3.2.1 Notation and Preliminaries 48
3.2.2 Ranking Measures . 49
3.2.3 Summary of Results 51
3.2.4 Relevant Definitions from Partial Monitoring 51
3.2.5 Minimax Regret for SumLoss 53
3.2.6 Minimax Regret Bound 56
3.2.7 Algorithm for Obtaining Minimax Regret under Sum-

Loss with Top k Feedback 58
3.2.8 Regret Bounds for PairwiseLoss, DCG and Precision@n 62
3.2.9 Non-Existence of Sublinear Regret Bounds for NDCG,

AP and AUC . 64
3.3 Online Ranking with Restricted Feedback- Contextual Setting . . . 64

3.3.1 Notation and Preliminaries 65
3.3.2 Problem Setting and Learning to Rank Algorithm 66
3.3.3 Unbiased Estimators of Gradients of Surrogates 68
3.3.4 Computational Complexity of Algorithm 5 73
3.3.5 Regret Bounds . 73
3.3.6 Impossibility of Sublinear Regret for NDCG Calibrated

Surrogates . 76
3.4 Empirical Results . 77

3.4.1 Non Contextual Setting 77
3.4.2 Contextual Setting . 80

3.5 Conclusion and Open Questions 85

IV. Generalization Error Bounds for Learning to Rank: Does the Length
of Document Lists Matter? . 88

4.1 Introduction . 88
4.2 Preliminaries . 90
4.3 Application to Specific Losses . 92

4.3.1 Application to ListNet 93
4.3.2 Application to Smoothed DCG@1 94
4.3.3 Application to RankSVM 95

4.4 Does The Length of Document Lists Matter? 95
4.4.1 Permutation invariance removes m dependence in di-

mensionality of linear scoring functions 96
4.5 Online to Batch Conversion . 97
4.6 Stochastic Convex Optimization 99
4.7 Bounds for Non-convex Losses 99

iv

4.8 Extensions . 103
4.8.1 High-dimensional features 103
4.8.2 Smooth losses . 105
4.8.3 Online regret bounds under smoothness 105
4.8.4 Generalization error bounds under smoothness 107

4.9 Conclusion . 108

V. Personalized Advertisement Recommendation: A Ranking Approach
to Address the Ubiquitous Click Sparsity Problem 110

5.1 Introduction . 110
5.2 Contextual Bandit (CB) Approach to PAR 112
5.3 Practical Issues with CB Policy Space 114

5.3.1 Binary Classifier Based Policies 114
5.3.2 Cost Sensitive Multi-Class Classifier Based Policies . . 116

5.4 AUC Optimized Ranker . 116
5.4.1 Optimization Procedure 117
5.4.2 Constructing Policy from Rankers 118

5.5 Competing Policies and Evaluation Techniques 119
5.5.1 Evaluation on Full Information Classification Data . . . 120
5.5.2 Evaluation on Bandit Information Data 120

5.6 Empirical Results . 122
5.6.1 Comparison of Deterministic Policies 122
5.6.2 Comparison of Stochastic Policies 123

APPENDICES . 127

BIBLIOGRAPHY . 164

v

LIST OF FIGURES

Figure

2.1 Time averaged NDCG10 for Algorithm 2, Algorithm 3 and ListNet, for
separable dataset. The two perceptron-like algorithms have imperceptible
difference. 36

2.2 Time averaged NDCG10 for Algorithm 2, Algorithm 3 and ListNet for 3
commercial datasets. While Algorithm 2 has competitive performance to
ListNet, Algorithm 3 performs quite poorly on Yahoo and Yandex datasets. 40

3.1 Average regret under DCG, with feedback on top ranked object, for vary-
ing block size, where block size is dT/Ke. 80

3.2 Average regret under DCG, where K = 200, for varying amount of feed-
back. 81

3.3 Comparison of average regret over time, for DCG, between top-1 feed-
back and full relevance vector feedback. 82

3.4 Average NDCG10 values of different algorithms, for Yahoo dataset. List-
Net (in cyan) algorithm operates on full feedback and Random (in red)
algorithm does not receive any feedback. 83

3.5 Average NDCG10 values of different algorithms, for Yahoo dataset. List-
Net (in cyan) algorithm operates on full feedback and Random (in red)
algorithm does not receive any feedback. 84

5.1 Comparison of classification accuracy of various policies for different
datasets, Top- without under-sampling and Bottom- with under-sampling. 124

5.2 Importance weighted CTR and lower confidence bounds for policies.
Ranking based approach gains 15-25 % in importance weighted CTR
over RF based approach on data with extreme click sparsity. Classifiers
were trained after class balancing. 126

vi

LIST OF TABLES

Table

3.1 Loss matrix L for m = 3 . 52
3.2 Feedback matrix H for m = 3 . 53
4.1 A comparison of three bounds given in this chapter for Lipschitz loss

functions. Criteria for comparison: algorithm bound applies to (OGD =
Online Gradient Descent, [R]ERM = [Regularized] Empirical Risk Mini-
mization), whether it applies to general (possibly non-convex) losses, and
whether the constants involved are tight. 89

5.1 All datasets were obtained from UCI repository (https://archive.ics.uci.edu/ml/).
Five different datasets were selected. In the table, size represents the
number of examples in the complete dataset. Features indicate the di-
mension of the instances. Avg. % positive gives the number of positive
instances per class, divided by the total number of instances for that class,
in the bandit training set, averaged over all classes. The lower the value,
the more is the imbalance per class during training. 122

5.2 Information about the training sets . 125
B.1 Relevance and probability vectors. 152

vii

LIST OF APPENDICES

Appendix

A. Proof(s) of Chapter II . 128

B. Proof(s) of Chapter III . 131

C. Proof(s) of Chapter IV . 153

viii

ABSTRACT

Learning to Rank: Online Learning, Statistical Theory and Applications

by

Sougata Chaudhuri

Chair: Ambuj Tewari

Learning to rank is a supervised machine learning problem, where the output space is the

special structured space of permutations. Learning to rank has diverse application areas,

spanning information retrieval, recommendation systems, computational biology and oth-

ers.

In this dissertation, we make contributions to some of the exciting directions of research

in learning to rank. In the first part, we extend the classic, online perceptron algorithm for

classification to learning to rank, giving a loss bound which is reminiscent of Novikoff’s

famous convergence theorem for classification. In the second part, we give strategies for

learning ranking functions in an online setting, with a novel, feedback model, where feed-

back is restricted to labels of top ranked items. The second part of our work is divided

into two sub-parts; one without side information and one with side information. In the

third part, we provide novel generalization error bounds for algorithms applied to various

Lipschitz and/or smooth ranking surrogates. In the last part, we apply ranking losses to

learn policies for personalized advertisement recommendations, partially overcoming the

problem of click sparsity. We conduct experiments on various simulated and commercial

datasets, comparing our strategies with baseline strategies for online learning to rank and

ix

personalized advertisement recommendation.

x

CHAPTER I

Introduction

A central problem in machine learning is: how to use empirical data to learn a functional

dependence between “inputs” and “outputs”? Classical statistics and machine learning

problems such as classification and regression correspond to cases where the set of possible

outputs is simple: {−1,+1} in the classification setting, and an interval on the real line in

the regression setting. Modern machine learning has advanced well beyond such simple

output spaces and moved to complex, structured output spaces. For instance, the outputs

could be trees, graphs, or strings on a finite alphabet. The problems dealing with structured

out spaces encompass important areas such as natural language processing and computer

vision.

An interesting structured output space is the space of rankings or permutations of a

set of objects. Naturally, researchers have worked on adapting general algorithms for

structured output spaces to space of rankings (Chapelle et al., 2007; Yue et al., 2007;

Chakrabarti et al., 2008). However, the set of full or partial rankings of a set of objects

has a very nice structure that calls for approaches that exploit that particular structure. In

fact, the growing importance of problems where the output space is specifically the space

of rankings has led to the development of an entire field of research titled learning to

rank. Problems in learning to rank arise in diverse fields like search and information re-

trieval (Liu, 2011), computational biology (Henneges et al., 2011) and recommendation

1

systems (Karatzoglou et al., 2013). In fact, an excellent discourse on the application of

learning to rank in recommendation systems can be found in the following “Netflix Blog”

(http://technocalifornia.blogspot.com/2013/07/recommendations-as-personalized.html). The

importance of learning to rank can also be gauged from the fact that modern machine learn-

ing texts tend to devote entire chapters to it (Mohri et al., 2012; Schapire and Freund, 2012).

1.1 Learning to Rank for Information Retrieval

In a learning to rank problem that frequently arises in information retrieval, the objec-

tive is to rank documents associated with a query, in order of relevance of the documents

to the given query. Web search engine research teams create training datasets in which a

number of queries, each with their associated documents and relevance levels, are given. A

ranking function is learnt by using the training data in a batch setting, with the hope that

it will accurately order documents for a test query, according to their true relevance levels

for the query. We provide a concrete example: assume that the search query is “Learning

to Rank”. The four candidate documents retrieved for the query are: a wikipedia entry on

learning to rank, a journal article explaining ongoing research in learning to rank, a web-

page which includes some learning to rank algorithms’ codes and a webpage which just

has the word “ranking” somewhere in the text. The relevances of the documents to the

query, on a three point scale, are 2, 2, 1 and 0 respectively, according to expert judgement.

The value 2 indicates that a document is highly relevant, 1 indicates that a document is

somewhat relevant and 0 indicates that the document is not at all relevant. Ideally, a ranker

should rank the documents in a way such that the first two documents are placed in top two

positions (in any order), the third document is placed in third position and fourth document

is placed in last position.

In order to measure the accuracy of a ranked list, in comparison to the ground truth in

the form of relevance levels, various performance measures have been introduced. Some

of the popular ones are: (Normalized) Discounted Cumulative Gain (NDCG) (Järvelin

2

http://technocalifornia.blogspot.com/2013/07/recommendations-as-personalized.html

and Kekäläinen, 2002), Average Precision (AP) (Baeza-Yates and Ribeiro-Neto, 1999),

Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) and others. The measures are

described in details at various points in the later chapters. Informally, the measures take in

a ranking and relevance vector of m items and produce a real value. The higher (lower) the

gain (loss) value, the more accurate is the ranked list.

Traditionally, ranking functions are represented as scoring functions with rankings ob-

tained by sorting objects according to their scores. All the major performance measures

are non-convex and discontinuous (and hence non-smooth), in the scores. Therefore, op-

timizing them during the training phase is a computationally intractable problem. For this

reason, several existing ranking methods are based on minimizing surrogate losses. The

surrogates losses are designed by balancing the conflicting requirements of remaining faith-

ful to the original ranking measures while, at the same time, being easy to optimize (e.g.

by being convex).

Ranking methods can be broadly categorized into three categories. In the pointwise

approach, the problem is formulated as regression or classification problem, with the ob-

jective of predicting the true relevance level of individual documents (Cossock and Zhang,

2006a). In the pairwise approach, document pairs are taken as instances, and the problem

is reduced to binary classification (which document in a pair is more relevant?) (Herbrich

et al., 1999; Freund et al., 2003; Burges et al., 2005). In the listwise approach, the entire

list of documents associated with a query is taken as an instance, and listwise loss functions

are minimized during training (Cao et al., 2007a; Xu and Li, 2007).

1.2 Open Directions of Research in Learning to Rank

A non-exhaustive list of the plethora of existing ranking methods can be found in Liu

(2011). In fact, the space of traditional ranking methods, where ranking functions are learnt

from training data in a batch setting, has seen enormous development (Chapelle and Chang,

2011b). On the other hand, there are now a number of open, exciting directions of research

3

in learning to rank; some of which we will partially address in this thesis.

Online learning to rank : One direction of research involves developing algorithms

for online learning of ranking functions. Instead of learning from labeled training data in

a batch setting, online learning strategies continuously learn from streaming data. There

are multiple advantages of learning from streaming data. A ranking function learnt from

batch data might not be able to satisfy continuously changing user needs and preferences

(Radlinski et al., 2009). Learning strategies from streaming data can also balance between

relevance and freshness of information (Dong et al., 2010). Moreover, collecting reliable,

supervised training data might be expensive and in some cases implausible. Of course,

online learning also avoids difficulties associated with storing and processing large amounts

of training data.

Theory of learning to rank: Learning to rank methods are compared by their em-

pirical performance on benchmark datasets. However, benchmark datasets are not always

reliable and often too small to truly capture the nuances of the methods. Learning theoretic

guarantees are needed to predict performance on unseen test data. These guarantees are

captured via generalization error bounds (does minimizing the surrogate on finite training

data imply small expected surrogate loss on infinite unseen data?) and calibration (does

small expected surrogate loss on infinite unseen data imply small target loss on infinite

unseen data?) (Ravikumar et al., 2011).

Application of ranking techniques to online advertisements: Traditional online ad-

vertisement selection algorithms fall under the umbrella of contextual bandits (Langford

and Zhang, 2008). One practical issue that the algorithms face is extreme low rate of clicks

on ads, which creates learning difficulty. Ranking methods can be applied to partially ad-

dress this issue; either by modifying the policy space of contextual bandit algorithms with

rankers or directly ranking the advertisements according to click probability.

4

1.3 Contributions of the Thesis

Our contributions in this thesis are divided into the following four chapters.

In Chapter II, we provide a novel extension of the online perceptron algorithm for clas-

sification to the learning to rank problem. We propose a novel family of listwise, large

margin ranking surrogates, which are adaptable to NDCG and AP measures and derive

a perceptron-like algorithm using these surrogates. We show that, if there exists a per-

fect oracle ranker which can correctly rank, with some margin, each instance in an online

sequence, the cumulative NDCG (or AP) induced loss of perceptron algorithm on that se-

quence is bounded by a constant, irrespective of the length of the sequence. This result

is a learning to rank analogue of Novikoff’s convergence theorem for the classification

perceptron. Moreover, we prove a lower bound on the cumulative loss achievable by any

deterministic algorithm. Experiments on simulated datasets corroborate our theoretical re-

sults and demonstrate competitive performance on large industrial benchmark datasets.

In Chapter III, we consider two settings of online learning to rank with restricted feed-

back, cast as an online game between learner and adversary. In both settings, the learners

objective is to present a ranked list of items to users (adversary). The learner’s performance

is judged on the entire ranked list and relevances of the items to the users. The learner re-

ceives highly restricted feedback at end of each round, in form of relevances of only the top

k ranked items, where k � m. The first setting is non-contextual, where the list of items

to be ranked is fixed and objective is to satisfy users with diverse preferences for the same

set of items. The second setting is contextual, where items are defined by context and vary

from user to user , in form of traditional query-document lists. We provide efficient ranking

strategies for both the settings. The strategies achieveO(T 2/3) regret, where regret is based

on popular ranking measures in the first setting and ranking surrogates in the second set-

ting. We also provide impossibility results for certain ranking measures and a certain class

of surrogates, when feedback is restricted to top ranked item, i.e. k = 1. We empirically

demonstrate the performance of our algorithms on simulated and real world datasets.

5

In Chapter IV, we investigate generalization error bounds in learning to rank. We show

that for many Lipschitz surrogates, there is no degradation in generalization error bounds

as document lists associated with queries become longer, which is an improvement over

existing bounds. We also provide, for the first time in the learning to rank setting, general-

ization error bounds under `1 regularization and faster convergence rates if the loss function

is smooth.

In Chapter V, we study the problem of personalized advertisement recommendation

(PAR), which consist of a user visiting a system (website) and the system displaying one of

K ads to the user. PAR problem is usually tackled by scalable contextual bandit algorithms,

where the policies are generally based on classifiers. A practical problem in PAR is extreme

click sparsity, due to very few users actually clicking on ads. We systematically study the

drawback of using contextual bandit algorithms based on classifier-based policies, in face

of extreme click sparsity. We then suggest an alternate policy, based on rankers, learnt by

optimizing the Area Under the Curve (AUC) ranking loss, which can significantly alleviate

the problem of click sparsity. We conduct extensive experiments on public datasets, as well

as three industry proprietary datasets, to illustrate the improvement in click-through-rate

(CTR) obtained by using the ranker-based policy over classifier-based policies.

1.4 Papers and Preprints

Every chapter in the thesis is a paper/preprint which has been published or is under

review (at the time of writing). We list the publication information:

• Perceptron-like Algorithms for Online Learning to Rank- Under review for Journal

of Artificial Intelligence Research (JAIR).

• Online Learning to Rank with Feedback on Top Ranked Items- Under review for

Journal of Machine Learning Research (JMLR). The preprint is a combination of the

following two published papers, with additional work.

6

– Online Ranking with Top-1 Feedback- Appeared at 18th International Confer-

ence in Artificial Intelligence and Statistics (AISTATS), 2015 (Honorable Men-

tion, Best Student Paper Award).

– Online Learning to Rank with Feedback at the Top- Appeared at 19th Interna-

tional Conference in Artificial Intelligence and Statistics (AISTATS), 2016.

• Generalization Error Bounds for Learning to Rank: Does the Length of Documents

Lists Matter?- Appeared at 32nd International Conference on Machine Learning

(ICML), 2015.

• Personalized Advertisement Recommendation: A Ranking Approach to Address the

Ubiquitous Click Sparsity Problem- Under review for International Conference on

Information and Knowledge Management (CIKM), 2016.

7

CHAPTER II

Perceptron-like Algorithms for Online Learning to Rank

2.1 Introduction

The historical importance of the perceptron algorithm in the classification literature is

immense (Rosenblatt, 1958; Freund and Schapire, 1999). Vapnik (1999) says, “In 1962

Novikoff proved the first theorem about the perceptron (Novikoff, 1962). This theorem

actually started learning theory”. Classically the perceptron algorithm was not linked to

surrogate minimization but the modern perspective on perceptron is to interpret it as on-

line gradient descent (OGD), during mistake rounds, on the hinge loss function (Shalev-

Shwartz, 2011). The hinge loss has special properties that allow one to establish bounds on

the cumulative zero-one loss (viz., the total number of mistakes) in classification, without

making any statistical assumptions on the data generating mechanism. Novikoff’s cele-

brated result about the perceptron says that, if there is a perfect linear classification function

which can correctly classify, with some margin, every instance in an online sequence, then

the total number of mistakes made by perceptron, on that sequence, is bounded.

Our work provides a novel extension of the perceptron algorithm to the learning to rank

setting with a focus on two listwise ranking measures, NDCG and AP. Listwise measures

are so named because the quality of ranking function is judged on an entire list of doc-

ument, associated with a query, usually with an emphasis to avoid errors near top of the

ranked list. Akin to the cumulative 0-1 loss (or, equivalently, the total number of mistakes)

8

bound of perceptron in classification, we develop bounds on cumulative losses induced by

NDCG and AP. We prove that if there exists a perfect linear ranking function, which can

correctly rank, with some margin, every instance in an online sequence, the cumulative loss

of our perceptron is bounded, independent of the number of instances. The bound achieved,

however, is sub-optimal, since it is dependent on number of documents per query. We prove

a lower bound, on the cumulative loss achievable by any deterministic algorithm, which is

independent of number of documents per query. We then propose a second perceptron type

algorithm, which achieves the theoretical lower bound under a separability assumption, but

has worse performance on real data where separability rarely holds.

We make the following contributions in this work.

• We develop a family of listwise large margin ranking surrogates. The family consists

of Lipschitz functions and is parameterized by a set of weight vectors that makes the

surrogates adaptable to losses induced by performance measures NDCG and AP. The

family of surrogates is an extension of the hinge surrogate in classification that upper

bounds the 0-1 loss. The family of surrogates has a special self-bounding property:

the norm of the gradient of a surrogate can be bounded by the surrogate loss itself.

• We exploit the self bounding property of the surrogates to develop an online perceptron-

like algorithm for learning to rank (Algorithm 2). We provide bounds on the cumu-

lative NDCG and AP induced losses (Theorem 6). We prove that, if there is a perfect

linear ranking function which can rank correctly, with some margin, every instance

in an online sequence, our perceptron-like algorithm perfectly ranks all but a finite

number of instances (Corollary 7). This implies that the cumulative loss induced by

NDCG or AP is bounded by a constant, and our result can be seen as an extension

of the classification perceptron mistake bound (Theorem 1). Our perceptron bound,

however, depends linearly on the number of documents per query. In practice, during

evaluation, NDCG is often cut off at a point which is much smaller than number of

documents per query. In that scenario, we prove that the cumulative NDCG loss of

9

our perceptron is upper bounded by a constant which is dependent only on the cut-off

point. (Theorem 8).

• We prove a lower bound, on the cumulative loss induced by NDCG or AP, that can

be achieved by any deterministic online algorithm (Theorem 9) under a separability

assumption. The lower bound is independent of the number of documents per query.

We also prove that our lower bound is tight by proposing another perceptron-like al-

gorithm which achieves the bound (Algorithm 3 and Theorem 10). However, the sur-

rogate on which the perceptron type algorithm operates is not listwise in nature and

does not adapt to different performance measures. Thus, its empirical performance

on real data is significantly worse than the first perceptron algorithm (Algorithm 2).

• We provide empirical results on simulated as well as large scale benchmark datasets

and compare the performance of our perceptron algorithm with the online version of

the widely used ListNet learning to rank algorithm (Cao et al., 2007a).

The rest of the chapter is organized as follows. Section 2.2 provides formal definitions

and notations related to the problem setting. Section 2.3 provides a review of perceptron for

classification, including algorithm and theoretical analysis. Section 2.4 introduces the fam-

ily of listwise large margin ranking surrogates, and contrasts our surrogates with a number

of existing large margin ranking surrogates in literature. Section 2.5 introduces the percep-

tron algorithm for learning to rank, and discusses various aspects of the algorithm and the

associated theoretical guarantee. Section 2.6 establishes a minimax bound on NDCG/AP

induced cumulative loss under the assumption that there is a perfect ranker with a margin.

Section 2.7 compares our work with existing perceptron algorithms for ranking. Section 3.4

provides empirical results on simulated and large scale benchmark datasets. All missing

proofs and discussions are provided in Appendix A.

10

2.2 Problem Definition

In learning to rank, we formally denote the input space as X ⊆ Rm×d. Each input

consists of m rows of document-query features represented as d dimensional vectors. Each

input corresponds to a single query and, therefore, the m rows have features extracted

from the same query but m different documents. In practice m changes from one input

instance to another but we treat m as a constant for ease of presentation. For X ∈ X , X =

(x1, . . . , xm)>, where xi ∈ Rd is the feature extracted from a query and the ith document

associated with that query. The supervision space is Y ⊆ {0, 1, . . . , n}m, representing

relevance score vectors. If n = 1, the relevance vector is binary graded. For n > 1,

relevance vector is multi-graded. Thus, for R ∈ Y , R = (R1, . . . , Rm)>, where Ri denotes

relevance of ith document to a given query. Hence, R represents a vector and Ri, a scalar,

denotes ith component of vector. Also, relevance vector generated at time t is denoted Rt

with ith component denoted Rt,i.

The objective is to learn a ranking function which ranks the documents associated with

a query in such a way that more relevant documents are placed ahead of less relevant ones.

The prevalent technique is to learn a scoring function and obtain a ranking by sorting the

score vector in descending order. ForX ∈ X , a linear scoring function is fw(X) = X ·w =

sw ∈ Rm, where w ∈ Rd. The quality of the learnt ranking function is evaluated on a test

query using various performance measures. We use two of the most popular performance

measures in our chapter, viz. NDCG and AP.

NDCG, cut off at k ≤ m for a query with m documents, with relevance vector R and

score vector s induced by a ranking function, is defined as follows:

NDCGk(s,R) =
1

Zk(R)

k∑
i=1

G(Rπs(i))D(i). (2.1)

Shorthand representation of NDCGk(s, R) is NDCGk. Here, G(r) = 2r − 1, D(i) =

1
log2 (i+1)

, Zk(R) = max
π∈Sm

∑k
i=1G(Rπ(i))D(i). Further, Sm represents the set of permuta-

tions over m objects. πs = argsort(s) is the permutation induced by sorting score vector

11

s in descending order (we use πs and argsort(s) interchangeably). A permutation π gives

a mapping from ranks to documents and π−1 gives a mapping from documents to ranks.

Thus, π(i) = j means document j is placed at position i while π−1(i) = j means docu-

ment i is placed at position j. For k = m, we denote NDCGm(s, R) as NDCG(s, R). The

popular performance measure, Average Precision (AP), is defined only for binary relevance

vector, i.e., each component can only take values in {0, 1}:

AP(s,R) =
1

r

∑
j:Rπs(j)=1

∑
i≤j 1[Rπs(i) = 1]

j
(2.2)

where r = ‖R‖1 is the total number of relevant documents.

All ranking performances measures are actually gains. When we say “NDCG induced

loss”, we mean a loss function that simply subtracts NDCG from its maximum possible

value, which is 1 (same for AP).

2.3 Perceptron for Classification

We will first briefly review the perceptron algorithm for classification, highlighting the

modern viewpoint that it executes online gradient descent (OGD) (Zinkevich, 2003) on

hinge loss during mistake rounds and achieves a bound on total number of mistakes. This

will allow us to directly compare and contrast our extension of perceptron to the learning to

rank setting. For more details, we refer the reader to the survey written by Shalev-Shwartz

(2011, Section 3.3).

In classification, an instance is of the form x ∈ Rd and corresponding supervision

(label) is y ∈ {−1, 1}. A linear classifier is a scoring function gw(·), parameterized by

w ∈ Rd, producing score gw(x) = x · w = s ∈ R. Classification of x is obtained by

using “sign” predictor on s, i.e., sign(s) ∈ {−1, 1}. The loss is of the form: `(w, (x, y)) =

1[sign(x · w) 6= y]. The hinge loss is defined as: φ(w, (x, y)) = [1 − y(x · w)]+, where

[a]+ = max{0, a}.

The perceptron algorithm operates on the loss ft(w), defined on a sequence of data

12

{xt, yt}t≥1, produced by an adaptive adversary as follows:

ft(w) =

 [1− yt(xt · w)]+ if `(wt, (xt, yt)) = 1

0 if `(wt, (xt, yt)) = 0
(2.3)

It is important to understand the concept of the loss ft(·) and adaptive adversary here. An

adaptive adversary is allowed to choose ft at round t based on the moves of the perceptron

algorithm (Algorithm 1) in previous rounds. Once the learner fixes its choice wt at the end

of step t− 1, the adversary decides which function to play. It is either [1− yt(xt · w)]+ or

0, depending on whether `(wt, (xt, yt)) is 1 or 0 respectively. Notice that ft(w) is convex

in both cases.

The perceptron updates a classifier gwt(·) (effectively updates wt), in an online fashion.

The update occurs by application of OGD on the sequence of functions ft(w) in the fol-

lowing way: perceptron initializes w1 = ~0 and uses update rule wt+1 = wt − ηzt, where

zt ∈ ∂ft(wt) (zt is a subgradient) and η is the learning rate. If `(wt, (xt, yt)) = 0, then

ft(wt) = 0; hence zt = ~0. Otherwise, zt = −ytxt ∈ ∂ft(wt). Thus,

wt+1 =

 wt if `(wt, (xt, yt)) = 0

wt + ηytxt if `(wt, (xt, yt)) = 1.
(2.4)

The perceptron algorithm for classification is described below:

Theorem 1. Suppose that the perceptron for classification algorithm runs on an online

sequence of data {(x1, y1), . . . , (xT , yT)} and let Rx = maxt ‖xt‖2. Let ft(·) be defined as

in Eq. 2.3. For all u ∈ Rd, the perceptron mistake bound is:

T∑
t=1

`(wt, (xt, yt)) ≤
T∑
t=1

ft(u) +Rx‖u‖2

√√√√ T∑
t=1

ft(u) +R2
x‖u‖2

2. (2.5)

13

Algorithm 1 Perceptron Algorithm for Classification
Learning rate η > 0, w1 = 0 ∈ Rd.
For t = 1 to T

Receive xt.
Predict pt = sign(xt · wt).
Receive yt
If `(wt, (xt, yt)) 6= 0
wt+1 = wt + ηytxt

else
wt+1 = wt

End For

In the special case where there exists u s.t. ft(u) = 0, ∀ t, we have

∀ T,
T∑
t=1

`(wt, (xt, yt)) ≤ R2
x‖u‖2

2. (2.6)

As can be clearly seen from Eq. 2.5, the cumulative loss bound (i.e., total number of

mistakes over T rounds) is upper bounded in terms of the cumulative sum of the functions

ft(·). In the special case where there exists a perfect linear classifier with margin, Eq. 2.6

shows that the total number of mistakes is bounded, regardless of the number of instances.

One drawback of the bound in Eq. 2.6 is that the concept of margin is not explicit, i.e.,

it is hidden in the norm of the parameter of the perfect classifier (‖u‖2). Let us assume that

there is a linear classifier parameterized by a unit norm vector u?, such that all instances xt

are not only correctly classified, but correctly classified with a margin γ, defined as:

yt(xt · u?) ≥ γ, ∀ T (2.7)

It is easy to see that the scaled vector u = u?/γ, whose norm is 1/γ2, will satisfy ft(u) = 0

for all t. Therefore, we have following corollary.

Corollary 2. If the margin condition (2.7) holds, then total number of mistakes is upper

bounded by
R2
x

γ2
, a bound independent of the number of instances in the online sequence.

14

2.4 A Novel Family of Listwise Surrogates

We define the novel SLAM family of loss functions: these are Surrogate, Large margin,

Listwise and Lipschitz losses, Adaptable to multiple performance measures, and can handle

Multiple graded relevance. For score vector s ∈ Rm, and relevance vector R ∈ Y , the

family of convex loss functions is defined as:

φvSLAM(s, R) = min
δ∈Rm

m∑
i=1

viδi

s.t. δi ≥ 0, ∀ i, si + δi ≥ ∆ + sj, if Ri > Rj, ∀ i, j.

(2.8)

The constant ∆ denotes margin and v = (v1, . . . , vm) is an element-wise non-negative

weight vector. Different vectors v, to be defined later, yield different members of the SLAM

family. Though ∆ can be varied for empirical purposes, we fix ∆ = 1 for our analysis.

The intuition behind the loss setting is that scores associated with more relevant documents

should be higher, with a margin, than scores associated with less relevant documents. The

weights decide how much weight to put on the errors.

The following reformulation of φvSLAM(s, R) will be useful in later derivations.

m∑
i=1

vi max(0, max
j=1,...,m

{1(Ri > Rj)(1 + sj − si)}) . (2.9)

Lemma 3. For any relevance vector R, the function φvSLAM(·, R) is convex.

Proof. Claim is obvious from the representation given in Eq. 2.9.

2.4.1 Weight Vectors Parameterizing the SLAM Family

As we stated after Eq. 2.8, different weight vectors lead to different members of the

SLAM family. The weight vectors play a crucial role in the subsequent theoretical analysis.

We will provide two weight vectors, vAP and vNDCG, that result in upper bounds for AP and

15

NDCG induced losses respectively. Later, we will discuss the necessity of choosing such

weight vectors.

Since the losses in SLAM family is calculated with the knowledge of the relevance

vector R, for ease of subsequent derivations, we can assume, without loss of generality,

that documents are sorted according to their relevance levels. Thus, we assume that R1 ≥

R2 ≥ . . . ≥ Rm, where Ri is the relevance of document i. Note that both vAP and vNDCG

depend on the relevance vector R but we hide that dependence in the notation to reduce

clutter.

Weight vector for AP loss: Let R ∈ Rm be a binary relevance vector. Let r be the

number of relevant documents (thus, R1 = R2 = . . . = Rr = 1 and Rr+1 = . . . = Rm =

0). We define vector vAP ∈ Rm as

vAP
i =

1
r

if i = 1, 2, . . . , r

0 if i = r + 1, . . . ,m.
(2.10)

Weight vector for NDCG loss: For a given relevance vectorR ∈ Rm, we define vector

vNDCG ∈ Rm as

vNDCG
i =

G(Ri)D(i)

Z(R)
, i = 1, . . . ,m. (2.11)

Note: Both weights ensure that v1 ≥ v2 ≥ . . . ≥ vm (since R1 ≥ R2 ≥ . . . ≥ Rm). Using

the weight vectors, we have the following upper bounds.

Theorem 4. Let vAP ∈ Rm and vNDCG ∈ Rm be the weight vectors as defined in Eq. (2.10)

and Eq. (2.11) respectively. Let AP(s, R) and NDCG(s, R) be the AP value and NDCG

value determined by relevance vector R ∈ Rm and score vector s ∈ Rm. Then, the

16

following inequalities hold, ∀ s, ∀ R

φv
AP

SLAM(s, R) ≥ 1− AP(s, R)

φv
NDCG

SLAM (s, R) ≥ 1− NDCG(s, R) .

(2.12)

2.4.2 Properties of SLAM Family and Upper Bounds

Listwise Nature of SLAM Family: The critical property for a surrogate to be con-

sidered listwise is that the loss must be calculated over the entire list of documents as

a whole, with errors at the top penalized more than errors at the bottom. Since perfect

ranking places the most relevant documents at top, errors corresponding to most relevant

documents should be penalized more in SLAM in order to be considered a listwise family.

Both vNDCG and vAP has the property that the more relevant documents get more weight.

Upper Bounds on NDCG and AP: By Theorem 4, the weight vectors make losses in

SLAM family upper bounds on NDCG and AP induced losses. The SLAM loss family is

analogous to the hinge loss in classification. Similar to hinge loss, the surrogate losses of

SLAM family are 0 when the predicted scores respect the relevance labels (with some mar-

gin). The upper bound property will be crucial in deriving guarantees for a perceptron-like

algorithm in learning to rank. Like hinge loss, the upper bounds can possibly be loose in

some cases, but, as we show next, the upper bounding weights make SLAM family Lip-

schitz continuous with a small Lipschitz constant. This naturally restricts SLAM losses

from growing too quickly. Empirically, we will show that the perceptron developed based

on the SLAM family produce competitive performance on large scale industrial datasets.

Along with the theory, the empirical performance supports the fact that upper bounds are

quite meaningful.

Lipschitz Continuity of SLAM: Lipschitz continuity of an arbitrary loss, `(s, R) w.r.t. s

in `2 norm, means that there is a constant L2 such that |`(s1, R)−`(s2, R)| ≤ L2‖s1−s2‖2,

for all s1, s2 ∈ Rm. By duality, it follows that L2 ≥ sup
s
‖∇s`(s, R)‖2. We calculate L2 as

17

follows:

Let bij = {1(Ri > Rj)(1 + sj − si)}. The gradient of φvSLAM , w.r.t. to s, from Eq. (2.9),

is: ∇sφ
v
SLAM(s, R) =

∑m
i=1 vi a

i, where

ai =

0 ∈ Rm if max

j=1,...,m
bij ≤ 0

ek − ei ∈ Rm otherwise

k = argmax
j=1,...,m

bij

(2.13)

and ei is a standard basis vector along coordinate i.

Since ‖ai‖1 ≤ 2, it is easy to see that ‖∇sφ
v
SLAM(s, R)‖1 ≤ 2

∑m
i=1 vi. Since `1 norm

dominates `2 norm, φvSLAM(s, R) is Lipschitz continuous in `2 norm whenever we can

bound
∑m

i=1 vi. It is easy to check that
∑m

i=1 v
AP
i = 1 and

∑m
i=1 v

NDCG
i = 1. Hence, vNDCG

and vAP induce Lipschitz continuous surrogates, with Lipschitz constant at most 2.

Comparison with Surrogates Derived from Structured Prediction Framework: We

briefly highlight the difference between SLAM and listwise surrogates obtained from the

structured prediction framework (Chapelle et al., 2007; Yue et al., 2007; Chakrabarti et al.,

2008). Structured prediction for ranking models assume that the supervision space is the

space of full rankings of a document list. Usually a large number of full rankings are

compatible with a relevance vector, in which case the relevance vector is arbitrarily mapped

to a full ranking. In fact, here is a quote from one of the relevant papers (Chapelle et al.,

2007), “It is often the case that this yq is not unique and we simply take of one of them at

random” (yq refers to a correct full ranking pertaining to query q). Thus, all but one correct

full ranking will yield a loss. In contrast, in SLAM, documents with same relevance level

are essentially exchangeable (see Eq. (2.9)). Thus, our assumption that documents are

sorted according to relevance during design of weight vectors is without arbitrariness, and

there will be no change in the amount of loss when documents within same relevance class

are compared.

18

2.5 Perceptron-like Algorithms

We present a perceptron-like algorithm for learning a ranking function in an online

setting, using the SLAM family. Since our proposed perceptron like algorithm works for

both NDCG and AP induced losses, for derivation purposes, we denote a performance

measure induced loss as RankingMeasureLoss (RML). Thus, RML can be NDCG induced

loss or AP induced loss.

Informal Definition: The algorithm works as follows. At time t, the learner maintains

a linear ranking function, parameterized by wt. The learner receives Xt, which is the

document list retrieved for query qt and ranks it. Then the ground truth relevance vector Rt

is received and ranking function updated according to the perceptron rule.

Let bij = {1(Ri > Rj)(1 + sj − si)}. For subsequent ease of derivations, we write

SLAM loss from Eq. (2.9) as: φvSLAM(sw, R) =
∑m

i=1 vi ci,, where

ci =

0 if max

j=1,...,m
bij ≤ 0

1 + swk − swi ∈ R otherwise

k = argmax
j=1,...,m

bij.

(2.14)

and sw = Xw ∈ Rm.

Like classification perceptron, our perceptron-like algorithm operates on the loss ft(w),

defined on a sequence of data {Xt, Rt}t≥1, produced by an adaptive adversary (i.e., an

adversary who can see the learner’s move before making its move) as follows:

ft(w) =

 φvtSLAM(swt , Rt) if RML(swtt , Rt) 6= 0

0 if RML(swtt , Rt) = 0
(2.15)

Here, swt = Xtw and vt = vNDCG
t or vAP

t depending on whether RML is NDCG or AP

induced loss. Since weight vector v depends on relevance vector R (Eq. (2.10), (2.11)), the

subscript t in vt denotes the dependence on Rt. Moreover, wt is the parameter produced

19

by our perceptron (Algorithm 2) at the end of step t− 1, with the adaptive adversary being

influenced by the move of perceptron (recall Eq. 2.3 and discussion thereafter).

It is clear from Theorem. 4 and Eq. (2.15) that ft(wt) ≥ RML(swtt , Rt). It should also

be noted that that ft(·) is convex in either of the two cases. Thus, we can run the online

gradient descent (OGD) algorithm (Zinkevich, 2003) to learn the sequence of parameters

wt, starting with w1 = 0. The OGD update rule, wt+1 = wt − ηzt, for some zt ∈ ∂ft(wt)

and step size η, requires a subgradient zt that, in our case, is computed as follows. When

RML(swtt , Rt) = 0, we have zt = 0 ∈ Rd. When RML(swtt , Rt) 6= 0, we have

zt = X>t (
m∑
i=1

vt,i at,i) ∈ Rd,

at,i =

 0 ∈ Rm if cti = 0

ek − ei ∈ Rm if cti 6= 0

(2.16)

where ek is the standard basis vector along coordinate k and cti ∈ R is as defined in

Eq. (2.14) (with sw = swtt = Xtwt).

We now obtain a perceptron-like algorithm for the learning to rank problem.

Algorithm 2 Perceptron Algorithm for Learning to Rank
Learning rate η > 0, w1 = 0 ∈ Rd.
For t = 1 to T

Receive Xt (document list for query qt).
Set swtt = Xtwt , predicted ranking output= argsort(swtt).
Receive Rt

If RML(swtt , Rt) 6= 0 // Note: RML(swtt , Rt) = RML(argsort(swtt), Rt)
wt+1 = wt − ηzt // zt is defined in Eq. (2.16)

else
wt+1 = wt

End For

20

2.5.1 Bound on Cumulative Loss

We provide a theoretical bound on the cumulative loss (as measured by RML) of per-

ceptron for the learning to rank problem. The technique uses regret analysis of online

convex optimization algorithms. We state the standard OGD bound used to get our main

theorem (Zinkevich, 2003). An important thing to remember is that OGD guarantee holds

for convex functions played by an adaptive adversary, which is important for OGD based

perceptron Algorithm

Proposition (OGD regret). Let ft be a sequence of convex functions. The update rule of

function parameter is wt+1 = wt − ηzt, where zt ∈ ∂ft(wt). Then for any w ∈ Rd, the

following regret bound holds after T rounds,

T∑
t=1

ft(wt) −
T∑
t=1

ft(w) ≤ ‖w‖
2
2

2η
+
η

2

T∑
t=1

‖zt‖2
2. (2.17)

We first control the norm of the subgradient zt, defined in Eq. (2.16). To do this, we

will need to use the p→ q norm of matrix.

Definition (p→ q norm). Let A ∈ Rm×n be a matrix. The p→ q norm of A is:

‖A‖p→q = max
v 6=0

‖Av‖q
‖v‖p

Lemma 5. Let RX be the bound on the maximum `2 norm of the feature vectors represent-

ing the documents. Let vt,max = max
i,j
{ vt,i
vt,j
}, ∀ i, j with vt,i > 0, vt,j > 0, and m be bound

on number of documents per query. Then we have the following `2 norm bound,

∀ t, ‖zt‖2
2 ≤ 4 m R2

X vt,max ft(wt) . (2.18)

Proof. For a mistake round t, we have zt = X>t (
∑m

i=1 vt,iat,i) from Eq. (2.16) .

21

1st bound for zt:

‖X>t (
m∑
i=1

vt,i at,i)‖2 ≤ ‖X>t ‖1→2‖
∑

vt,i at,i‖1 ≤ 2RX

∑
vt,i ≤ 2RX .

The first inequality uses the 1→ 2 norm and last inequality holds because
∑m

i=1 v
NDCG
i =

1 and
∑m

i=1 v
AP
i = 1.

2nd bound for zt (exploiting self-bounding property of SLAM):

We note that in a mistake round, RML(swtt , Rt) 6= 0. Thus, ∃ i′, k′ s.t. Rt,i′ > Rt,k′ but

swtt,i′ < swtt,k′ (i.e., there is at least 1 pair of documents whose ranks are inconsistent with

their relevance levels). Now, φvtSLAM(swtt , Rt) =
∑
vt,i c

t
i (Eq. (2.14)). For (i′, k′), we

have cti′ ≥ 1 + swtt,k′ − s
wt
t,i′ > 1.

Since Rt,i′ > Rt,k′ , document i′ has strictly greater than minimum possible relevance,

i.e., Rt,i′ > 0. By our calculations of weight vector v for both NDCG and AP, we have

vt,i′ > 0. Thus, by definition, vt,max ≥ 1 (since vt,i′ > 0 and vt,i′

vt,i′
= 1 and vt,max =

max
i,j
{ vt,i
vt,j
}, ∀ i, j with vt,i > 0, vt,j > 0). Then, ∀ i, vt,i ≤ vt,max ·vt,i′ ≤ vt,max ·vt,i′ ·cti′ .

Thus, we have:

m∑
i=1

vt,i ≤ m vt,max vt,i′ c
t
i′ ≤ m vt,max(

m∑
i=1

vt,i c
t
i) = m vt,max φ

vt
SLAM(swtt , Rt).

Thus, ‖zt‖2 ≤ 2RX

∑
i vt,i ≤ 2RX m vt,max φ

vt
SLAM(swtt , Rt).

Combining 1st and 2nd bound for zt, we get ‖zt‖2
2 ≤ 4R2

Xm vt,max φ
vt
SLAM(swtt , Rt), for

mistake rounds.

Since, for non-mistake rounds, we have zt = 0 and ft(wt) = 0, we get the final inequality.

22

Taking
T

max
t=1

vt,max ≤ vmax, we have the following theorem, which uses the norm bound

on zt:

Theorem 6. Suppose Algorithm 2 receives a sequence of instances (X1, R1), . . . , (XT , RT)

and let RX be the bound on the maximum `2 norm of the feature vectors representing the

documents. Then the following inequality holds, after optimizing over learning rate η,

∀ w ∈ Rd:

T∑
t=1

RML(swtt , Rt) ≤
T∑
t=1

ft(w) +
√

4‖w‖22mR2
X

√√√√ T∑
t=1

ft(w) + 4‖w‖22mR2
Xvmax . (2.19)

In the special case where there exists w s.t. ft(w) = 0, ∀ t, we have

T∑
t=1

RML(swtt , Rt) ≤ 4‖w‖2
2mR

2
Xvmax. (2.20)

Proof. The proof follows by plugging in expression for ‖zt‖2
2 (Lemma 5) in OGD equation

(Prop. OGD Regret), optimizing over η, using the algebraic trick: x − b
√
x − c ≤ 0 =⇒

x ≤ b2 + c+ b
√
c and then using the inequality ft(wt) ≥ RML(swtt , Rt).

Note: The perceptron bound, in Eq. 2.19, is a loss bound, i.e., the left hand side is

cumulative NDCG/AP induced loss while right side is function of cumulative surrogate

loss. We discuss in details the significance of this bound later.

Like perceptron for binary classification, the constant in Eq. 2.19 needs to be expressed

in terms of a “margin”. A natural definition of margin in case of ranking data is as follows:

let us assume that there is a linear scoring function parameterized by a unit norm vector

w?, such that all documents for all queries are ranked not only correctly, but correctly with

a margin γ:
T

min
t=1

min
i,j:Rt,i>Rt,j

w>? Xt,i − w>? Xt,j ≥ γ. (2.21)

Corollary 7. If the margin condition (2.21) holds, then total loss, for both NDCG and

AP induced loss, is upper bounded by 4mR2
Xvmax
γ2

, a bound independent of the number of

instances in the online sequence.

23

Proof. Fix a t and the example (Xt, Rt). Set w = w?/γ. For this w, we have

min
i,j:Rt,i>Rt,j

w>Xt,i − w>Xt,j > 1,

which means that

min
i,j:Rt,i>Rt,j

swt,i − swt,j > 1

This immediately implies that 1(Rt,i > Rt,j)(1 + swt,j − swt,i) ≤ 0, ∀ i, j . Therefore,

φvtSLAM(swt , Rt) = 0 and hence ft(w) = 0. Since this holds for all t, we have
∑T

t=1 ft(w) =

0.

2.5.1.1 Perceptron Bound-General Discussion

We remind once again that RML(swtt , Rt) is either 1−NDCG(swtt , Rt) or 1−AP(swtt , Rt),

depending on measure of interest.

Dependence of perceptron bound on number of documents per query: The percep-

tron bound in Eq. 2.19 is meaningful only if vmax is a finite quantity.

For AP, it can be seen from the definition of vAP in Eq. 2.10 that vmax = 1. Thus, for

AP induced loss, the constant in the perceptron bound is: 4mR2
X

γ2
.

For NDCG, vmax depends on maximum relevance level. Assuming maximum rele-

vance level is finite (in practice, maximum relevance level is usually below 5), vmax =

O(log(m)). Thus, for NDCG induced loss, the constant in the perceptron bound is: 4m log(m)R2
X

γ2
.

Significance of perceptron bound: The main perceptron bound is given in Eq. 2.19,

with the special case being captured in Corollary 7. At first glance, the bound might seem

non-informative because the left side is the cumulative NDCG/AP induced loss bound,

while the right side is a function of the cumulative surrogate loss.

24

The first thing to note is that the perceptron bound is derived from the regret bound in

Eq. 2.17, which is the well-known regret bound of the OGD algorithm applied to an arbi-

trary convex, Lipschitz surrogate. So, even ignoring the bound in Eq. 2.19, the perceptron

algorithm is a valid online algorithm, applied to the sequence of convex functions ft(·), to

learn ranking function wt, with a meaningful regret bound. Second, as we had mentioned

in the introduction, our perceptron bound is the extension of perceptron bound in classifi-

cation, to the cumulative NDCG/AP induced losses in the learning to rank setting. This can

be observed by noticing the similarity between Eq. 2.19 and Eq. 2.5. In both cases, the the

cumulative target loss on the left is bounded by a function of the cumulative surrogate loss

on the right, where the surrogate is the hinge (and hinge like SLAM) loss.

The interesting aspects of perceptron loss bound becomes apparent on close investi-

gation of the cumulative surrogate loss term
∑T

t=1 ft(w) and comparing with the regret

bound. It is well known that when OGD is run on any convex, Lipschitz surrogate, the

guarantee on the regret scales at the rate O(
√
T). So, if we only ran OGD on an arbi-

trary convex, Lipschitz surrogate, then, even with the assumption of existence of a perfect

ranker, the upper bound on the cumulative loss would have scaled as O(
√
T). However, in

the perceptron loss bound, if
∑T

t=1 ft(w) = o(Tα), then the upper bound on the cumulative

loss would scale as O(Tα), which can be much better than O(T 1/2) for α < 1/2. In the

best case of
∑T

t=1 ft(w) = 0, the total cumulative loss would be bounded, irrespective of

the number of instances.

Comparison and contrast with perceptron for classification: The perceptron for

learning to rank is an extension of the perceptron for classification, both in terms of the

algorithm and the loss bound. To obtain the perceptron loss bounds in the learning to rank

setting, we had to address multiple non-trivial issues, which do not arise in the classification

setting. Among them, perhaps, the most challenging was that, unlike in classification, the

NDCG/AP losses are not {0, 1}-valued. The analysis is trivial in classification perceptron

since on a mistake round, the absolute value of gradient of hinge loss is 1, which is same as

25

the loss itself. In our setting, Lemma 5 is crucial, where we exploit the structure of SLAM

surrogate to bound the square of gradient by the surrogate loss.

2.5.1.2 Perceptron Bound Dependent On NDCG Cut-Off Point

The bound on the cumulative loss in Eq. (2.19) is dependent on m, the maximum num-

ber of documents per query. It is often the case in learning to rank that though a list has m

documents, the focus is on the top k documents (k � m) in the order sorted by score. The

measure used for top-k documents is NDCGk (Eq. 2.1) (there does not exist an equivalent

definition for AP).

We consider a modified set of weights vNDCGk s.t. φv
NDCGk
SLAM(s, R) ≥ 1 − NDCGk(s, R)

holds ∀ s, for every R. We provide the definition of vNDCGk later in the proof of Theorem8 .

Overloading notation with vt = vNDCGk
t , let vt,max = max

i,j
{vt,i
vt,j
} with vt,i >0, vt,j >0

and vmax ≥ maxTt=1 vt,max.

Theorem 8. Suppose the perceptron algorithm receives a sequence of instances (X1, R1), . . . , (XT , RT).

Let k be the cut-off point of NDCG. Also, for any w ∈ Rd, let ft(w) be as defined in

Eq. (2.15), but with φvtSLAM(swt , Rt) = φ
v

NDCGk
t
SLAM(swt , Rt). Then, the following inequality

holds, after optimizing over learning rate η,

T∑
t=1

(1− NDCGk(s
wt
t , Rt)) ≤

T∑
t=1

ft(w) +
√

4‖w‖2
2kR

2
Xvmax

√√√√ T∑
t=1

ft(w) + 4‖w‖2
2kR

2
Xvmax.

(2.22)

In the special case where there exists w s.t. ft(w) = 0, ∀ t, we have

T∑
t=1

(1− NDCGk(s
wt
t , Rt)) ≤ 4‖w‖2

2kR
2
Xvmax. (2.23)

Discussion: Assuming maximum relevance level is finite, we have vmax = O(log(k))

(using definition of vNDCGk). Thus, the constant term in the perceptron bound for NDCGk

induced loss is: 4‖u‖2k log(k)R2
X . This is a significant improvement from original error

26

term, even though the perceptron algorithm is running on queries withm documents, which

can be very large. Margin dependent bound can be defined in same way as before.

Proof. We remind again that ranking performance measures only depend on the permu-

tation of documents and individual relevance level. They do not depend on the identity

of the documents. Documents with same relevance level can be considered to be inter-

changeable, i.e., relevance levels create equivalence classes. Thus, w.l.o.g., we assume that

R1 ≥ R2 ≥ . . . ≥ Rm and documents with same relevance level are sorted according to

score. Also, π−1(i) means position of document i in permutation π.

We define vNDCGk as

vNDCGk
i =

G(Ri)D(i)
Zk(R)

if i = 1, 2, . . . , k

0 if i = k + 1, . . . ,m.
(2.24)

We now prove the upper bound property that φv
NDCGk
SLAM(s, R) ≥ 1− NDCGk(s, R) holds

∀ s, for every R. We have the following equations:

∑m
i=1 G(Ri)D(i)1(i ≤ k)

Zk(R)
= 1 and NDCGk(s, R) =

∑m
i=1G(Ri)D(π−1

s (i))1(π−1
s (i) ≤ k)

Zk(R)
.

=⇒ 1− NDCGk(s, R) =

∑m
i=1G(Ri)

(
D(i)1(i ≤ k)−D(π−1

s (i))1(π−1
s (i) ≤ k)

)
Zk(R)

.

For i > k: D(i)1(i ≤ k) = 0 and since D(π−1
s (i)) is non-negative, every term in

1− NDCGk(s, R) is non-positive for i > k.

For i ≤ k, there are four possible cases:

1. i ≥ π−1
s (i) and π−1

s (i) > k. This is infeasible since i ≤ k.

2. i ≥ π−1
s (i) and π−1

s (i) ≤ k. In this case, the numerator in 1−NDCGk isG(Ri)(D(i)−

D(π−1
s (i))). Now, since D(·) is a decreasing function, the contribution of the doc-

ument i to NDCG induced loss is non-positive and can be ignored (since SLAM by

27

definition is sum of positive weighted indicator functions).

3. i < π−1
s (i) and π−1

s (i) > k. In this case, the numerator in 1−NDCGk is G(Ri)D(i).

Since i < π−1
s (i), that means document i was outscored by a document j, where

i < j (otherwise, document i would have been put in a position same or above

what it is at currently, by πs, i.e, i ≥ π−1
s (i).) Moreover, Ri > Rj (because of the

assumption that within same relevance class, scores are sorted). Hence the indicator

of SLAM at i would have come on and vNDCGk
i = G(Ri)(D(i)

Zk(R)
.

4. i < π−1
s (i) and π−1

s (i) ≤ k. In this case, the numerator in 1−NDCGk isG(Ri)(D(i)−

D(π−1
s (i))). By same reason as c.), the indicator of SLAM at i would have come on

and vNDCGk
i >

G(Ri)(D(i)−D(π−1
s (i)))

Zk(R)
by definition of vNDCGk and the fact that

D(i) > D(i)−D(π−1
s (i)).

Hence, the upper bound property holds.

The proof of Theorem 8 now follows directly following the argument in the proof of

Lemma 5, by noting a few things:

a)
∑k

i=1 v
NDCGk
i = 1. b) φv

NDCGk
SLAM(s, R) has same structure as φvNDCG

SLAM(s, R) but with

different weights. Hence structure of zt remains same but with weights of vNDCGk .

Hence, 1st bound on gradient of zt in proof of Lemma 5 remains same. For the 2nd

bound on gradient of zt, the crucial thing that changes is that
∑m

i=1 v
t
i ≤ kvt,maxvt,i′c

t
i′ , with

the new definitions of vt,max according to vNDCGk . This implies 2RX

∑
vt,i ≤ 2RX k vt,max φ

vt(swtt , Rt).

2.6 Minimax Bound on Cumulative NDCG/AP Induced Loss

2.6.1 Lower Bound

The following theorem gives a lower bound on the cumulative NDCG/AP induced loss,

achievable by any deterministic online algorithm

28

Theorem 9. Suppose the number of documents per query is restricted to two and relevance

vectors are restricted to being binary graded. Let X = {X ∈ R2×d| ‖Xj:‖2 ≤ RX} and
R2
X

γ2
≤ d. Then, for any deterministic online algorithm, there exists a ranking dataset which

is separable by margin γ (Eq. 2.21), on which the algorithm suffers Ω(bR
2
X

γ2
c) cumulative

NDCG/AP induced loss.

Proof. Let T = bR
2
X

γ2
c. Since R2

X

γ2
≤ d, hence T ≤ d and Tγ2 ≤ R2

X . Let a ranking

dataset consist of the following T document matrices: document feature matrix Xi =

[RX · ei;−RX · ei]>, where ei is the unit vector of length d with 1 in ith coordinate and 0

in others.

Given an algorithm A, let the relevance vectors for the dataset be as following: for

matrix Xi, ifA ranks 1st document above 2nd, then Ri,1 = 1, Ri,2 = 0, else, the relevances

are reversed.

For the above dataset, A will make a ranking mistake in each round and NDCG/AP

induced loss per round will be Ω(1). Therefore, the cumulative NDCG/AP induced loss

will be Ω(T) = Ω(bR
2
X

γ2
c).

Now, it remains to be shown that the dataset is actually separable with margin γ by a

ranking function with unit norm parameter.

Let a ranking function parameter w ∈ Rd be defined as follows: ∀ i ∈ [T], the i th

component of w is

wi =

γ

2·RX
if Ri,1 > Ri,2

−γ
2·RX

otherwise

For i /∈ [T] but i ∈ [d], wi = 0.

The unit norm condition holds because ‖w‖2
2 = Tγ2

4·R2
X
≤ 1.

Let Xi,j: indicate jth row of matrix Xi. The margin condition holds as follows: ∀ i ∈

[T], if Ri,1 > Ri,2, then Xi,1: · w − Xi,2: · w = γ
2
− −γ

2
= γ, else if Ri,1 < Ri,2, then

Xi,2: · w −Xi,1: · w = γ
2
− −γ

2
= γ.

29

2.6.2 Algorithm Achieving Lower Bound

We will show that the lower bound established in the previous section is actually the

minimax bound, achievable by another perceptron type algorithm. Thus, Algorithm 2 is

sub-optimal in terms of the bound achieved, since it has a dependence on number of docu-

ments per query.

Our algorithm is inspired by the work of Crammer and Singer (2002). Following their

work, we define a new surrogate via a constrained optimization problem for ranking as

follows:

φC(s, R) = min δ

s.t. δ ≥ 0, si + δ ≥ ∆ + sj, if Ri > Rj, ∀ i, j.
(2.25)

The above constrained optimization problem can be recast as a hinge-like convex sur-

rogate:

φC(s, R) = max
i∈[m]

max
j∈[m]

1 [R(i) > R(j)] (1 + sj − si)+ . (2.26)

The key difference between the above surrogate and the previously proposed SLAM

family of surrogates is that the above surrogate does not adapt to different ranking mea-

sures. It also does not exhibit the listwise property since it treats an incorrectly ranked pair

in a uniform way independent of where they are placed by the ranking induced by s.

Similar to Algorithm 2, we define a sequence of losses ft(w), defined on a sequence of

data {Xt, Rt}t≥1,as follows:

ft(w) =

 φC(swt , Rt) if RML(swtt , Rt) 6= 0

0 if RML(swtt , Rt) = 0
(2.27)

Here, swt = Xtw and wt is the parameter produced by Algorithm 3 at time t, with the adap-

tive adversary being influenced by the move of perceptron. Note that ft(wt) ≥ RML(swtt , Rt),

30

since, ft(w) is always non-negative and if RML(swtt , Rt) > 0, there is at least one pair of

documents whose scores do not agree with their relevances. At that point, the surrogate

value becomes greater than 1.

During a mistake round, the gradient z is calculated as follows: let i∗, j∗ be any pair of

indices that achieve the max in Eq. 2.26. Then,

z = ∇wφC(sw, R) = X>{(−ei∗ + ej∗)1 [R(i∗) > R(j∗)]1 [1 + sj∗ − si∗ ≥ 0]}. (2.28)

Note that if there are multiple index pairs achieving the max, then an arbitrary subgra-

dient can be written as a convex combination of subgradients computed using each of the

pairs.

Algorithm 3 New Perceptron Algorithm Achieving Lower Bound
Learning rate η > 0, w1 = 0 ∈ Rd.
For t = 1 to T

Receive Xt (document list for query qt).
Set swtt = Xtwt , predicted ranking output= argsort(swtt).
Receive Rt

If RML(swtt , Rt) 6= 0 // Note: RML(swtt , Rt) = RML(argsort(swtt), Rt)
wt+1 = wt − ηzt // zt is defined in Eq. (2.28)

else
wt+1 = wt

End For

We have the following loss bound for Algorithm 3.

Theorem 10. Suppose Algorithm 3 receives a sequence of instances (X1, R1), . . . , (XT , RT).

Let RX be the bound on the maximum `2 norm of the feature vectors representing the doc-

uments and ft(w) be as defined in Eq. 2.27. Then the following inequality holds, after

optimizing over learning rate η, ∀ w ∈ Rd:

T∑
t=1

RML(swtt , Rt) ≤
T∑
t=1

ft(w) + 2‖w‖2RX

√√√√ T∑
t=1

ft(w) + 4‖w‖22R2
X . (2.29)

31

In the special case where there exists w s.t. ft(w) = 0, ∀ t, we have

T∑
t=1

RML(swtt , Rt) ≤ 4‖w‖2
2R

2
X . (2.30)

Proof. We first bound the `2 norm of the gradient. From Eq. 2.28, we have:

1st bound for zt:

‖zt‖2 ≤‖X>t ‖1→2‖{(−ei∗ + ej∗)1 [R(i∗) > R(j∗)]1 [1 + sj∗ − si∗ ≥ 0]}‖1 ≤ 2RX .

2nd bound for zt:

On a mistake round, since there exists at least 1 pair of documents, whose scores

and relevance levels are discordant. Hence, φC(sw, R) > 1. Hence, ‖zt‖2 ≤ 2RX ≤

2RXφC(swtt , Rt).

Thus, ‖zt‖2
2 ≤ 4R2

XφC(swtt , Rt). Since ‖zt‖2 = 0 on non-mistake round, we finally

have:

‖zt‖2
2 ≤ 4R2

Xft(wt), ∀ t.

The proof then follows as previous: by plugging in expression for ‖zt‖2 in OGD equa-

tion (Prop. OGD Regret), optimizing over η, using the algebraic trick: x − b
√
x − c ≤

0 =⇒ x ≤ b2 + c+ b
√
c and then using the inequality ft(wt) ≥ RML(swtt , Rt).

As before, we can immediately derive a margin based bound.

Corollary 11. If the margin condition (2.21) holds, then total loss, for both NDCG and AP

induced loss, is upper bounded by 4R2
X

γ2
, a bound independent of the number of instances in

the online sequence.

Proof. Proof is similar to that of Corollary 7.

Comparison of Algorithm 2 and Algorithm 3: Both of our proposed perceptron-like

algorithms can be thought of analogues of the classic perceptron in the learning to rank

32

setting. Algorithm 3 achieves the minimax optimal bound on separable datasets, unlike

Algorithm 2, whose bound scales with number of documents per query. However, Algo-

rithm 3 operates on a surrogate (Eq 2.26) which is not listwise in nature, even though it

forms an upper bound on the listwise ranking measures. To emphasize, the surrogate does

not differentially weigh between errors at different points of the ranked list, which is an

important property of popular surrogates in learning to rank. As our empirical results show

(Sec. 3.4), on commercial datasets which are not separable, Algorithm 3 has significantly

worse performance than Algorithm 2.

2.7 Related Work in Perceptron for Ranking

There exist a number of papers in the literature dealing with perceptron in the context

of ranking. We will compare and contrast our work with existing work, paying special

attention to the papers whose setting come closest to ours.

First, we would like to point out that, to the best of our knowledge, there is no work that

establishes a number of documents independent bound for NDCG, cut-off at the top k po-

sition (Theorem 8). Moreover, we believe our work, for the first time, formally establishes

minimax bound, achievable by any deterministic online algorithm, in the learning to rank

setting, under the assumption of separability.

Crammer and Singer (2001) were one of the first to introduce perceptron in ranking.

The setting as well as results of their perceptron are quite different from ours. Their paper

assumes there is a fixed set of ranks {1, 2, . . . , k}. An instance is a vector of the form

x ∈ Rd and the supervision is one of the k ranks. The perceptron has to learn the correct

ranking of x, with the loss being 1 if correct rank is not predicted. The paper does not deal

with query-documents list and does not consider learning to rank measures like NDCG/AP.

The results of Wang et al. (2015) have some similarity to ours. Their paper introduces

algorithms for online learning to rank, but does not claim to have any “perceptron type” re-

sults. However, their main theorem (Theorem 2) has a perceptron bound flavor to it, where

33

the cumulative NDCG/AP losses are upper bounded by cumulative surrogate loss and a

constant. The major differences with our results are these: Wang et al. (2015) consider a

different instance/supervision setting and consequently have a different surrogate loss. It

is assumed that for each query q, only a pair of documents (xi, xj) are received at each

online round, with the supervision being {+1,−1}, depending on whether xi is more/less

relevant than xj . The surrogate loss is defined at pair of documents level, and not at a

query-document matrix level. Moreover, there is no equivalent result to our Theorem 8,

neither is any kind of minimax bound established.

The recent work of Jain et al. (2015) also contains results similar to ours. One the one

hand their predtron algorithm is more general. But on the other hand, the bound achieved

by predtron, applied to the ranking case, has a scaling factor O(m5), significantly worse

than our linear scaling. Moreover, it does not have the NDCGk bounds scaling as a function

of k proved anywhere.

There are other, less related papers; all of which deal with perceptron in ranking, in

some form or the other. Ni and Huang (2008) introduce the concept of margin in a particu-

lar setting, with corresponding perceptron bounds. However, their paper does not deal with

query-document matrices, nor NDCG/AP induced losses. The works of Elsas et al. (2008)

and Harrington (2003) introduce online perceptron based ranking algorithms, but do not

establish theoretical results. Shen and Joshi (2005) give a perceptron type algorithm with a

theoretical guarantee, but in their paper, the supervision is in form of full rankings (instead

of relevance vectors).

2.8 Experiments

We conducted experiments on a simulated dataset and three large scale industrial bench-

mark datasets. Our results demonstrate the following:

• We simulated a margin γ separable dataset. On that dataset, the two algorithms

34

(Algorithm 2 and Algorithm 3) ranks all but a finite number of instances correctly,

which agrees with our theoretical prediction.

• On three commercial datasets, which are not separable, Algorithm 2 shows competi-

tive performance with a strong baseline algorithm, indicating its practical usefulness.

Algorithm 3 performs quite poorly on two of the datasets, indicating that despite

minimax optimality under margin separability, it has limited practical usefulness.

Baseline Algorithm: We compared our algorithms with the online version of the pop-

ular ListNet ranking algorithm (Cao et al., 2007a). ListNet is not only one of the most

cited ranking algorithms (over 800 citations according to Google Scholar), but also one

of the most validated algorithms (Tax et al., 2015). We conducted online gradient descent

on the cross-entropy convex surrogate of ListNet to learn a ranking algorithm in an online

manner. While there exists ranking algorithms which have demonstrated better empirical

performance than ListNet, they are generally based on non-convex surrogates with non-

linear ranking functions. These algorithms cannot be converted in a straight forward way

(or not at all) into online algorithms which learn from streaming data. We also did not

compare our algorithms with other perceptron algorithms since they do not usually have

similar setting to ours and would require modifications. We emphasize that our objective is

not simply to add one more ranking algorithms to the huge variety that already exists. Our

experiments on real data are to show that Algorithm 2 has competitive performance and

has a major advantage over Algorithm 3, due to the difference in the nature of surrogates

being used for the two algorithms.

Experimental Setting: For all datasets, we report average NDCG10 over a time hori-

zon. Average NDCG10 at iteration t is the cumulative NDCG10 up to iteration t, divided by

t. We remind that at each iteration t, a document matrix is ranked by the algorithm, with

the performance (according to NDCG10) measured against the true relevance vector corre-

sponding to the document matrix. For all the algorithms, the corresponding best learning

rate η was fixed after conducting experiments with multiple different rates and observing

35

the best time averaged NDCG10 over a fixed time interval. We did not conduct any experi-

ments with AP since the real datasets have multi-graded relevance and NDCG is a suitable

measure for such datasets.

Simulated Dataset: We simulated a margin separable dataset (Eq. (2.21)). Each query

had m = 20 documents, each document represented by 20 dimensional feature vector, and

five different relevance level {4, 3, 2, 1, 0}, with relevances distributed uniformly over the

documents. The feature vectors of equivalent documents (i.e., documents with same rele-

vance level) were generated from a Gaussian distribution, with documents of different rel-

evance levels generated from different Gaussian distribution. A 20 dimensional unit norm

ranker was generated from a Gaussian distribution, which induced separability with mar-

gin. Fig. 5.1 compares performance of Algorithm 2, Algorithm 3 and online ListNet. The

NDCG10 values of the perceptron type algorithms rapidly converge to 1, validating their fi-

nite cumulative loss property. To re-iterate, since for separable datasets, cumulative NDCG

induced loss is bounded by constant, hence, the time averaged NDCG should rapidly con-

verge to 1. The OGD algorithm for ListNet has only a regret guarantee ofO(
√
t); hence the

time averaged regret converges at rate O(1√
t
), i.e., its convergence is significantly slower

than the perceptron-like algorithms.

Figure 2.1:
Time averaged NDCG10 for Algorithm 2, Algorithm 3 and ListNet, for separa-
ble dataset. The two perceptron-like algorithms have imperceptible difference.

36

Commercial Datasets: We chose three large scale ranking datasets released by the in-

dustry to analyze the performance of our algorithms. MSLR-WEB10K (Liu et al., 2007a) is

the dataset published by Microsoft’s Bing team, consisting of 10, 000 unique queries, with

feature dimension of size 245 and 5 distinct relevance levels. Yahoo Learning to Rank Chal-

lenge dataset (Chapelle and Chang, 2011a) consists of 19,944 unique queries, with feature

dimension of size 700 and 5 distinct relevance levels. Yandex, Russia’s biggest search

engine, published a dataset (link to the dataset given in the work of Chapelle and Chang

(2011a)) consisting of 9124 queries, with feature dimension of size 245 and 5 distinct rel-

evance levels. Algorithm 2 performs slightly better than ListNet on MSLR-WEB dataset

(average NDCG@10 over last ten iterations= 0.25 vs 0.22), performs slightly worse on Ya-

hoo dataset (average NDCG@10 over last ten iterations= 0.75 vs 0.74) and has overlapping

performance on Yandex dataset. The experiments validate that our proposed perceptron

type algorithm (Algorithm 2) has competitive performance compared to online ListNet on

real ranking datasets, even though it does not achieve the theoretical lower bound. Algo-

rithm 3 performs quite poorly on both Yandex and Yahoo datasets. One possible reason for

the poor performance is that the underlying surrogate (Eq 2.26) is not listwise in nature.

It does not put more emphasis on errors at the top and hence, is not very suitable for a

listwise ranking measure like NDCG, even though it achieves the theoretical lower bound

on separable datasets.

2.9 Conclusion

We proposed two perceptron-like algorithms for learning to rank, as analogues of the

perceptron for classification algorithm. We showed how, under assumption of separability

(i.e., existence of a perfect ranker), the cumulative NDCG/AP induced loss is bounded by

a constant. The first algorithm operates on a listwise, large margin family of surrogates,

which are adaptable to NDCG and AP. The second algorithm is based on another large

margin surrogate, which does not have the listwise property. We also proved a lower bound

37

on cumulative NDCG/AP loss under a separability condition and showed that it is the min-

imax bound, since our second algorithm achieves the bound. We conducted experiments

on simulated and commercial datasets to corroborate our theoretical results.

An important aspect of perceptron type algorithms is that the ranking function is up-

dated only on a mistake round. Since non-linear ranking functions are generally have

better performance than linear ranking functions, an online algorithm learning a flexible

non-linear kernel ranking function would be very useful in practice. We highlight how

perceptron’s “update only on mistake round” aspect can prove to be powerful when learn-

ing a non-linear kernel ranking function. Since the score of each document is obtained

via inner product of ranking parameter w and feature representation of document x, this

can be easily kernelized to learn a range of non-linear ranking functions. However, the

inherent difficulty of applying OGD to a convex ranking surrogate with kernel function

is that at each update step, the document list (X matrix) will need to be stored in mem-

ory. For moderately large dataset, this soon becomes a practical impossibility. One way

of bypassing the problem is to approximately represent the kernel function via an explicit

feature projection (Rahimi and Recht, 2007; Le et al., 2013). However, even for moderate

length features (like 136 for MSWEB10K), the projection dimension becomes too high for

efficient computation. Another technique is to have a finite budget for storing document

matrices and discard carefully chosen members from the budget when budget capacity is

exceeded. This budget extension has been studied for perceptron in classification (Dekel

et al., 2008; Cavallanti et al., 2007). The fact that perceptron updates are only on mistake

rounds leads to strong theoretical bounds on target loss. For OGD on general convex sur-

rogates, the fact that function update happens on every round leads to inherent difficulties

when using their kernelized versions (Zhao et al., 2012) (the theoretical guarantees on the

target loss are not as strong as in the kernelized perceptron on a budget case). The results

presented in this chapter open up a fruitful direction for further research: namely, to extend

the perceptron algorithm to non-linear ranking functions by using kernels and establishing

38

theoretical performance bounds in the presence of a memory budget.

39

(a) MSLR-WEB10K

(b) Yahoo

(c) Yandex

Figure 2.2:
Time averaged NDCG10 for Algorithm 2, Algorithm 3 and ListNet for 3 com-
mercial datasets. While Algorithm 2 has competitive performance to ListNet,
Algorithm 3 performs quite poorly on Yahoo and Yandex datasets.

40

CHAPTER III

Online Learning to Rank with Feedback on Top Ranked

Items

3.1 Introduction

Learning to rank (Liu, 2011) is a supervised machine learning problem, where the out-

put space consists of rankings of objects. Most learning to rank methods are based on

supervised batch learning, i.e., rankers are trained on batch data in an offline setting. The

accuracy of a ranked list, in comparison to the actual relevance of the documents, is mea-

sured by various ranking measures, such as Discounted Cumulative Gain (DCG) (Järvelin

and Kekäläinen, 2000), Average Precision (AP) (Baeza-Yates and Ribeiro-Neto, 1999) and

others.

Collecting reliable training data can be expensive and time consuming. In certain appli-

cations, such as deploying a new web app or developing a custom search engine, collecting

large amount of high quality labeled data might be infeasible (Sanderson, 2010). Moreover,

a ranker trained from batch data might not be able to satisfy rapidly changing user needs

and preferences. Thus, a promising direction of research is development of online ranking

systems, where a ranker is updated on the fly. One type of online ranking models learn

from implicit feedback inferred from user clicks on ranked lists (Hofmann et al., 2013).

However, there are some potential drawbacks in learning from user clicks. It is possible

41

that the system is designed such that it doest not even allow for clicks. Moreover, a clicked

item might not actually be relevant to the user and there is also the problem of bias towards

top ranked items in inferring feedback from user clicks (Joachims, 2002).

We develop models for online learning of ranking systems, from explicit but highly re-

stricted feedback. At a high level, we consider a ranking system which interacts with users

over a time horizon, in a sequential manner. At each round, the system presents a ranked

list of m items to the user, with the quality of the ranked list judged on the relevance of the

items to the user. The relevance of the items, reflecting varying user preferences, can be

considered encoded as relevance vectors. The system’s objective is to learn from the feed-

back it receives and update its ranker over time, to satisfy majority of the users. However,

the feedback that the system receives at end of each round is not the full relevance vector,

but relevance of only the top k ranked items, where k << m (typically, k = 1 or 2). We

consider two problem settings under the general framework: non-contextual and contex-

tual. In the first setting, we assume that the set of items to be ranked are fixed (i.e., there

are no context on items), with the relevance vectors varying according to users’ preferences.

In the second setting, we assume that set of items vary, as traditional query-document lists.

We highlight two motivating examples for such feedback model, encompassing economic

and user-burden constraints and privacy concerns.

Privacy Concerns: Assume that a medical company wants to build an app to suggest

activities (take a walk, meditate, watch relaxing videos, etc.) that can lead to reduction of

stress in a certain highly stressed segment of the population. The activities do not have

contextual representation and are fixed over time. Not all activities are likely to be equally

suitable for everyone under all conditions since the effects of the activities vary depending

on the user attributes like age & gender and on the context such as time of day & day of

week. The user has liberty to browse through all the suggested activities, and the company

would like the user to rate every activity (may be on an 1−5 scale), reflecting the relevances,

so that it can keep refining its ranking strategy. However, in practice, though the user can

42

scan through all suggested activities and have a rough idea about how relevant each one is

to her; she is unlikely to give feedback on the usefulness (relevance) of every activity due

to privacy concerns and cognitive burden. Hence, in exchange of the user using the app,

the company only asks for careful rating of the top 1 or 2 ranked suggestions. The apps

performance would still be based on the full ranked list, compared to the implicit relevance

vector that the user generates, but it gets feedback on the relevances of only top 1 or 2

ranked suggestions.

Economic Constraints: Assume that a small retail company wants to build an app that

produces a ranked list of suggestions to a user query, for categories of a certain product. The

app develops features representing the categories, and thus, the interaction with the users

happen in a traditional query-documents lists framework (user query and retrieved activities

are jointly represented through a feature matrix). Different categories are likely to have

varying relevance to different users, depending on user characteristics such as age, gender,

etc. Like in the first example, the user has liberty to browse through all the suggestions

but she will likely feel too burdened to give carefully considered rating on each suggestion,

unless the company provides some economic incentives to do so. Though the company

needs high quality feedback on each suggestion to keep refining the ranking strategy, it

cannot afford to give incentives due to budget constraints. Similar to the first example, the

company only asks, and possibly pays, for rating on the top 1 or 2 ranked activities, in lieu

of using the app, but its performance is judged on the full ranked list and implicit relevance

vector.

We cast the online learning to rank problem as an online game between a learner and

an adversary, played over time horizon T . Throughout our work, we do not make any

stochastic assumption on the relevance vector generation process or the feature generation

process (in the second problem setting). Thus, our work is in purely adversarial setting,

with the adversary considered to be oblivious to the learner’s strategies. We discuss the two

problem settings in greater details, separately.

43

Non-contextual setting: Existing work loosely related to ranking of a fixed set of

items to satisfy diverse user preferences (Radlinski et al., 2008, 2009; Agrawal et al., 2009;

Wen et al., 2014) has focused on learning an optimal ranking of a subset of items, to be

presented to an user, with performance judged by a simple 0-1 loss. The loss in a round is

0 if among the top k (out of m) items presented to a user, the user finds at least one relevant

item. All of the work falls under the framework of online bandit learning. In contrast,

our model focuses on optimal ranking of the entire list of items, where the performance

of the system is judged by practical ranking measures like DCG and AP. The challenge

is to decide when and how efficient learning is possible with highly restricted feedback.

Theoretically, the top k feedback model is neither full-feedback nor bandit-feedback since

not even the loss (quantified by some ranking measure) at each round is revealed to the

learner. The appropriate framework to study the problem is that of partial monitoring

(Cesa-Bianchi, 2006). A very recent paper shows another practical application of partial

monitoring in the stochastic setting (Lin et al., 2014). Recent advances in the classification

of partial monitoring games tell us that the minimax regret, in an adversarial setting, is

governed by a property of the loss and feedback functions called observability (Bartok

et al., 2014; Foster and Rakhlin, 2012). Observability is of two kinds: local and global. We

instantiate these general observability notions for our problem with top 1 (k = 1) feedback.

We prove that, for some ranking measures, namely PairwiseLoss (Duchi et al., 2010), DCG

and Precision@n (Liu et al., 2007a), global observability holds. This immediately shows

that the upper bound on regret scales as O(T 2/3). Specifically for PairwiseLoss and DCG,

we further prove that local observability fails, when restricted to the top 1 feedback case,

illustrating that their minimax regret scales as Θ(T 2/3). However, the generic algorithm

that enjoys O(T 2/3) regret for globally observable games necessarily maintains explicit

weights on each action in learner’s action set. It is thus impractical in our case since the

learner’s action set is the exponentially large set ofm! rankings overm objects. We propose

a generic algorithm for learning with top k feedback, which uses blocking and a black-box

44

full information algorithm. Specifically, we instantiate the black box algorithm with Follow

The Perturbed Leader (FTPL) strategy, which leads to an efficient algorithm achieving

O(T 2/3) regret bound for PairwiseLoss, DCG and Precision@n, with O(m logm) time

spent per step. Moreover, the regret of our efficient algorithm has a logarithmic dependence

on number of learner’s actions (i.e., polynomial dependence on m), whereas the generic

algorithm has a linear dependence on number of actions (i.e., exponential dependence on

m).

For several measures, their normalized versions are also considered. For example, the

normalized versions of PairwiseLoss, DCG and Precision@n are called AUC (Cortes and

Mohri, 2004a), NDCG (Järvelin and Kekäläinen, 2002) and AP respectively. We show

an unexpected result for the normalized versions: they do not admit sub-linear regret al-

gorithms under top-1 feedback. This is despite the fact that the opposite is true for their

unnormalized counterparts! Intuitively, the normalization makes it hard to construct an un-

biased estimator of the (unobserved) relevance vector. Surprisingly, we are able to translate

this intuitive hurdle into a provable impossibility.

We also present some preliminary experiments on simulated datasets to explore the

performance of our efficient algorithm and compare its regret to its full information coun-

terpart.

Contextual Setting: The requirement of having a fixed set of items to rank, in the

first part of our work, somewhat limits practical applicability. In fact, in the bandit prob-

lem, while non-contextual multi-armed bandit has received a lot of attention, the authors

in (Langford and Zhang, 2008) mention that “settings with no context information are rare

in practice”. The second part of our work introduces context, by combining query-level

ranking, in an online manner, with explicit but restricted feedback. At each round, the ad-

versary generates a document list of length m, pertaining to a query. The learner sees the

list and produces a real valued score vector to rank the documents. We assume that the

ranking is generated by sorting the score vector in descending order of its entries. The ad-

45

versary then generates a relevance vector but, like in the non-contextual setting, the learner

gets to see the relevance of only the top-k items of the ranked list. The learner’s loss

in each round, based on the learner’s score vector and the full relevance vector, is mea-

sured by some continuous ranking surrogates. We focus on continuous surrogates, e.g., the

cross entropy surrogate in ListNet (Cao et al., 2007b) and hinge surrogate in RankSVM

(Joachims, 2002), instead of discontinuous ranking measures like DCG, or AP, because the

latter lead to intractable optimization problems in the query-documents setting. Just like in

the non-contextual setting, we note that the top-k feedback model is neither full feedback

nor bandit feedback models. The problem is an instance of partial monitoring, extended

to a setting with side information (documents list) and an infinite set of learner’s moves

(all real valued score vectors). For such an extension of partial monitoring there exists no

generic theoretical or algorithmic framework to the best of our knowledge.

In this setting, first, we propose a general, efficient algorithm for online learning to

rank with top-k feedback and show that it works in conjunction with a number of ranking

surrogates. We characterize the minimum feedback required, i.e., the value of k, for the

algorithm to work with a particular surrogate by formally relating the feedback mecha-

nism with the structure of the surrogates. We then apply our general techniques to three

convex ranking surrogates and one non-convex surrogate. The convex surrogates consid-

ered are from three major learning to ranking methods: squared loss from a pointwise

method (Cossock and Zhang, 2008), hinge loss used in the pairwise RankSVM (Joachims,

2002) method, and (modified) cross-entropy surrogate used in the listwise ListNet (Cao

et al., 2007b) method. The non-convex surrogate considered is the SmoothDCG surrogate

(Chapelle and Wu, 2010). For the three convex surrogates, we establish an O(T 2/3) regret

bound.

The convex surrogates we mentioned above are widely used but are known to fail to be

calibrated with respect to NDCG (Ravikumar et al., 2011). Our second contribution is to

show that for the entire class of NDCG calibrated surrogates, no online algorithm can have

46

sub-linear (in T) regret with top 1 feedback, i.e., the minimax regret of an online game for

any NDCG calibrated surrogate is Ω(T). The proof for this result relies on exploiting a

connection between the construction of optimal adversary strategies for hopeless finite ac-

tion partial monitoring games (Piccolboni and Schindelhauer, 2001b) and the structure of

NDCG calibrated surrogates. We only focus on NDCG calibrated surrogates for the impos-

sibility results since no (convex) surrogate can be calibrated for AP and ERR (Calauzenes

et al., 2012). This impossibility result is the first of its kind for a natural partial monitoring

problem with side information when the learner’s action space is infinite. Note, however,

that there does exist work on partial monitoring problems with continuous learner actions,

but without side information (Kleinberg and Leighton, 2003; Cesa-Bianchi, 2006), and vice

versa (Bartók and Szepesvári, 2012; Gentile and Orabona, 2014).

We apply our algorithms on benchmark ranking datasets, demonstrating the ability to

efficiently learn a ranking function in an online fashion, from highly restricted feedback.

We divide the rest of the paper into two parts. Sec.3.2 and its sub-sections detail the

notations, definitions and technicalities associated with online ranking with restricted feed-

back in the non-contextual setting. Sec.3.3 and its subsections detail the notations, defini-

tions and technicalities associated with online ranking with restricted feedback in the con-

textual setting. Sec.3.4 demonstrates the performance of our algorithms on simulated and

commercial datasets. Sec.3.5 discusses open questions and future directions of research.

3.2 Online Ranking with Restricted Feedback- Non Contextual Set-

ting

This section will detail the first part of our work and will be self contained. All proofs

not in main text are in the appendix.

47

3.2.1 Notation and Preliminaries

The fixed m items to be ranked are numbered {1, 2, . . . ,m}. A permutation σ gives

a mapping from ranks to items and its inverse σ−1 gives a mapping from items to ranks.

Thus, σ−1(i) = j means item i is placed at position j while σ(i) = j means item j is

placed at position i. The supervision is in form of a relevance vector R = {0, 1, . . . , n}m,

representing relevance of each document to the query. If n = 1, the relevance vector is

binary graded. For n > 1, relevance vector is multi-graded. R(i) denotes ith component of

R. The subscript t is exclusively used to denote time t. We denote {1, . . . , n} by [n]. The

learner can choose from m! actions (permutations) whereas nature/adversary can choose

from 2m outcomes (when relevance levels are restricted to binary) or from nm outcomes

(when there are n relevance levels, n > 2). We sometimes refer to the learner’s ith action

(in some fixed ordering of m! available actions) as σi (resp. adversary’s ith action as Ri).

Note that σ−1
i simply means that we are viewing permutation σi as mapping from items to

ranks. Also, a vector can be row or column vector depending on context.

At round t, the learner outputs a permutation (ranking) σt of the objects (possibly us-

ing some internal randomization, based on feedback history so far), and simultaneously,

adversary generates relevance vector Rt. The quality of σt is judged against Rt by some

ranking measure RL. Crucially, only the relevance of the top ranked object, i.e., Rt(σt(1)),

is revealed to the learner at end of round t. Thus, the learner gets to know neither Rt (full

information problem) nor RL(σt, Rt) (bandit problem). The objective of the learner is to

minimize the expected regret with respect to best permutation in hindsight:

Eσ1,...,σT

[
T∑
t=1

RL(σt, Rt)

]
−min

σ

T∑
t=1

RL(σ,Rt). (3.1)

When RL is a gain, not loss, we need to negate the quantity above. The worst-case regret

of a learner strategy is its maximal regret over all possible choices of R1, . . . , RT . The

minimax regret is the minimal worst-case regret over all learner strategies.

48

3.2.2 Ranking Measures

We consider ranking measures which can be expressed in the form f(σ) ·R, where the

function f : Rm → Rm is composed of m copies of a univariate, monotonic, scalar valued

function. Thus, f(σ) = [f s(σ−1(1)), f s(σ−1(2)), . . . , f s(σ−1(m))], where f s : R → R.

Monotonic (increasing) means f s(σ−1(i)) ≥ f s(σ−1(j)), whenever σ−1(i) > σ−1(j).

Monotonic (decreasing) is defined similarly. The following popular ranking measures can

be expressed in the form f(σ) · r.

PairwiseLoss & SumLoss: PairwiseLoss is restricted to binary relevance vectors and

defined as:

PL(σ,R) =
m∑
i=1

m∑
j=1

1(σ−1(i) < σ−1(j))1(R(i) < R(j))

PairwiseLoss cannot be directly expressed in the form of f(σ) · R. Instead, we consider

SumLoss, defined as:

SumLoss(σ,R) =
m∑
i=1

σ−1(i) R(i)

SumLoss has the form f(σ) · R, where f(σ) = σ−1. It has been shown by Ailon (2014)

that regret under the two measures are equal:

T∑
t=1

PL(σt, Rt)−
T∑
t=1

PL(σ,Rt) =
T∑
t=1

SumLoss(σt, Rt)−
T∑
t=1

SumLoss(σ,Rt). (3.2)

Discounted Cumulative Gain: DCG is a gain function which admits non-binary rele-

vance vectors and is defined as:

DCG(σ,R) =
m∑
i=1

2R(i) − 1

log2(1 + σ−1(i))

and becomes
∑m

i=1
R(i)

log2(1+σ−1(i))
forR(i) ∈ {0, 1}. Thus, for binary relevance,DCG(σ,R)

has the form f(σ) ·R, where f(σ) = [1
log2(1+σ−1(1))

, 1
log2(1+σ−1(2))

, . . . , 1
log2(1+σ−1(m))

].

49

Precision@n Gain: Precision@n is a gain function restricted to binary relevance and

is defined as

Precision@n(σ,R) =
m∑
i=1

1(σ−1(i) ≤ n) R(i)

Precision@n can be written as f(σ) · R where f(σ) = [1(σ−1(1) < n), . . . ,1(σ−1(m) <

n)]. It should be noted that for n = k (i.e., when feedback is on top n items), feedback is

actually the same as full information feedback, for which efficient algorithms already exist.

Normalized measures are not of the form f(σ) ·R: PairwiseLoss, DCG and Precision@n

are unnormalized versions of popular ranking measures, namely, Area Under Curve (AUC),

Normalized Discounted Cumulative Gain (NDCG) and Average Precision (AP) respec-

tively. None of these can be expressed in the form f(σ) ·R.

NDCG: NDCG is a gain function, admits non-binary relevance and is defined as:

NDCG(σ,R) =
1

Z(R)

m∑
i=1

2R(i) − 1

log2(1 + σ−1(i))

and becomes 1
Z(R)

∑m
i=1

R(i)
log2(1+σ−1(i))

forR(i) ∈ {0, 1}. HereZ(R) = max
σ

∑m
i=1

2R(i)−1
log2(1+σ−1(i))

is the normalizing factor (Z(R) = max
σ

∑m
i=1

R(i)
log2(1+σ−1(i))

for binary relevance). It can

be clearly seen that NDCG(σ,R) = f(σ) · g(R), where f(σ) is same as in DCG but

g(R) = R
Z(R)

is non-linear in R.

AP: AP is a gain function, restricted to binary relevance and is defined as:

AP (σ,R) =
1

‖R‖1

m∑
i=1

∑
j≤i

1(R(σ(j)) = 1)

i
1(R(σ(i) = 1)

It can be clearly seen that AP cannot be expressed in the form f(σ) ·R.

AUC: AUC is a loss function, restricted to binary relevance and is defined as:

AUC(σ,R) =
1

N(R)

m∑
i=1

m∑
j=1

1(σ−1(i) < σ−1(j))1(R(i) < R(j))

50

where N(R) = (
∑m

i=1 1(R(i) = 1)) · (m−
∑m

i=1 1(R(i) = 1)). It can be clearly seen that

AUC cannot be expressed in the form f(σ) ·R.

Note: We will develop our subsequent theory and algorithms for binary valued rele-

vance vectors, and show how they can be extended to multi-graded vectors when ranking

measure is DCG/NDCG.

3.2.3 Summary of Results

We summarize our main results here before delving into technical details. Result 1:

The minimax regret under DCG and PairwiseLoss (and hence SumLoss), restricted to top 1

(k = 1) feedback, is Θ(T 2/3). The minimax regret under Precision@n, for top k feedback,

with 1 ≤ k < n, is unknown.

Result 2: We propose a generic algorithm which achieves regret of O(T 2/3), with top

k feedback (k ≥ 1) under DCG, PairwiseLoss and Precision@n. The generic algorithm

uses a reduction to a full information algorithm. We instantiate a particular full information

algorithm, to get an efficient algorithm, which has a running time O(m logm) and regret

O(poly(m)T 2/3).

Result 3: The minimax regret for any of the normalized versions – NDCG, AP and

AUC – , restricted to top 1 feedback, is Θ(T). Thus, there is no algorithm that guarantees

sub-linear regret for the normalized measures.

Result 4: The regret rates, as a function of T , both for DCG and NDCG, does not

change when we consider non-binary, multi-graded relevance vectors.

3.2.4 Relevant Definitions from Partial Monitoring

We develop all results in context of SumLoss, with binary relevance vector. We then

extend the results to other ranking measures. Our main results on regret bounds build

on some of the theory for abstract partial monitoring games developed by Bartok et al.

(2014) and Foster and Rakhlin (2012). For ease of understanding, we reproduce the relevant

51

Table 3.1: Loss matrix L for m = 3
Objects R1 R2 R3 R4 R5 R6 R7 R8

123 000 001 010 011 100 101 110 111
σ1 = 123 0 3 2 5 1 4 3 6
σ2 = 132 0 2 3 5 1 3 4 6
σ3 = 213 0 3 1 4 2 5 3 6
σ4 = 231 0 1 3 4 2 3 5 6
σ5 = 312 0 2 1 3 3 5 4 6
σ6 = 321 0 1 2 3 3 4 5 6

notations and definitions in context of SumLoss. We will specifically mention when we

derive results for top k feedback, with general k, and when we restrict to top 1 feedback.

Loss and Feedback Matrices: The online learning game with the SumLoss measure

and top 1 feedback can be expressed in form of a pair of loss matrix and feedback matrix.

The loss matrix L is an m! × 2m dimensional matrix, with rows indicating the learner’s

actions (permutations) and columns representing adversary’s actions (relevance vectors).

The entry in cell (i, j) of L indicates loss suffered when learner plays action i (i.e., σi) and

adversary plays action j (i.e., Rj), that is, Li,j = σ−1
i · Rj =

∑m
k=1 σ

−1
i (k)Rj(k). The

feedback matrix H has same dimension as loss matrix, with (i, j) entry being the relevance

of top ranked object, i.e., Hi,j = Rj(σi(1)). When the learner plays action σi and adversary

plays action Rj , the true loss is Li,j , while the feedback received is Hi,j .

Table 3.1 and 3.2 illustrate the matrices, with number of objects m = 3. In both

the tables, the permutations indicate rank of each object and relevance vector indicates

relevance of each object. For example, σ5 = 312 means object 1 is ranked 3, object 2 is

ranked 1 and object 3 is ranked 2. R5 = 100 means object 1 has relevance level 1 and

other two objects have relevance level 0. Also, L3,4 = σ3 · R4 =
∑3

i=1 σ
−1
3 (i)R4(i) =

2 · 0 + 1 · 1 + 3 · 1 = 4; H3,4 = R4(σ3(1)) = R4(2) = 1. Other entries are computed

similarly.

Let `i ∈ R2m denote row i of L. Let ∆ be the probability simplex in R2m , i.e., ∆ =

{p ∈ R2m : ∀ 1 ≤ i ≤ 2m, pi ≥ 0,
∑
pi = 1}. The following definitions, given for

52

Table 3.2: Feedback matrix H for m = 3
Objects R1 R2 R3 R4 R5 R6 R7 R8

123 000 001 010 011 100 101 110 111
σ1 = 123 0 0 0 0 1 1 1 1
σ2 = 132 0 0 0 0 1 1 1 1
σ3 = 213 0 0 1 1 0 0 1 1
σ4 = 231 0 1 0 1 0 1 0 1
σ5 = 312 0 0 1 1 0 0 1 1
σ6 = 321 0 1 0 1 0 1 0 1

abstract problems by Bartok et al. (2014), has been refined to fit our problem context.

Definition 1: Learner action i is called optimal under distribution p ∈ ∆, if `i ·p ≤ `j ·p,

for all other learner actions 1 ≤ j ≤ m!, j 6= i. For every action i ∈ [m!], probability

cell of i is defined as Ci = {p ∈ ∆ : action i is optimal under p}. If a non-empty cell Ci

is 2m − 1 dimensional (i.e, elements in Ci are defined by only 1 equality constraint), then

associated action i is called Pareto-optimal.

Note that since entries in H are relevance levels of objects, there can be maximum of 2

distinct elements in each row of H , i.e., 0 or 1 (assuming binary relevance).

Definition 2: The signal matrix Si, associated with learner’s action σi, is a matrix with

2 rows and 2m columns, with each entry 0 or 1, i.e., Si ∈ {0, 1}2×2m . The entries of `th

column of Si are respectively: (Si)1,` = 1(Hi,` = 0) and (Si)2,` = 1(Hi,` = 1).

Note that by definitions of signal and feedback matrices, the 2nd row of Si (2nd column

of S>i)) is precisely the ith row ofH . The 1st row of Si (1st column of S>i)) is the (boolean)

complement of ith row of H .

3.2.5 Minimax Regret for SumLoss

The minimax regret for SumLoss, restricted to top 1 feedback, will be established by

showing that: a) SumLoss satisfies global observability, and b) it does not satisfy local

observability.

53

3.2.5.1 Global Observability

Definition 3: The condition of global observability holds, w.r.t. loss matrix L and

feedback matrix H , if for every pair of learner’s actions {σi, σj}, it is true that `i − `j ∈

⊕k∈[m!]Col(S
>
k) (where Col refers to column space).

The global observability condition states that the (vector) loss difference between any

pair of learner’s actions has to belong to the vector space spanned by columns of (trans-

posed) signal matrices corresponding to all possible learner’s actions. We derive the fol-

lowing theorem on global observability for SumLoss.

Theorem 12. The global observability condition, as per Definition 3, holds w.r.t. loss

matrix L and feedback matrix H defined for SumLoss, for any m ≥ 1.

Proof. For any σa (learner’s action) and Rb (adversary’s action), we have

La,b = σ−1
a ·Rb =

m∑
i=1

σ−1
a (i)Rb(i)

1
=

m∑
j=1

j Rb(σa(j))
2
=

m∑
j=1

j Rb(σ̃j(a)(1))
3
=

m∑
j=1

j (S>σ̃j(a))Rb,2.

Thus, we have

`a = [La,1, La,2, . . . , La,2m] =

[
m∑
j=1

j (S>σ̃j(a))R1,2,
m∑
j=1

j (S>σ̃j(a))R2,2, ..,
m∑
j=1

j (S>σ̃j(a))R2m ,2]
4
=

m∑
j=1

j (S>σ̃j(a)):,2.

Equality 4 shows that `a is in the column span of m of the m! possible (transposed)

signal matrices, specifically in the span of the 2nd columns of those (transposed) m ma-

trices. Hence, for all actions σa, it is holds that `a ∈ ⊕k∈[m!]Col(S
>
k). This implies that

`a − `b ∈ ⊕k∈[m!]Col(S
>
k), ∀ σa, σb.

1. Equality 1 holds because σ−1
a (i) = j ⇒ i = σa(j).

2. Equality 2 holds because of the following reason. For any permutation σa and for

every j ∈ [m], ∃ a permutation σ̃j(a), s.t. the object which is assigned rank j by σa is the

54

same object assigned rank 1 by σ̃j(a), i.e., σa(j) = σ̃j(a)(1).

3. In Equality 3, (S>
σ̃−1
j(a)

)Rb,2 indicates theRbth row and 2nd column of (transposed) sig-

nal matrix Sσ̃j(a) , corresponding to learner action σ̃j(a). Equality 3 holds becauseRb(σ̃j(a)(1))

is the entry in the row corresponding to action σ̃j(a) and column corresponding to action Rb

of H (see Definition 2).

4. Equality 4 holds from the observation that for a particular j, the 2nd column of

(S>σ̃j(a)), i.e., (S>σ̃j(a)):,2 is [(S>σ̃j(a))R1,2, (S
>
σ̃j(a)

)R2,2, . . . , (S
>
σ̃j(a)

)R2m ,2]

3.2.5.2 Local Observability

Definition 4: Two Pareto-optimal (learner’s) actions i and j are called neighboring

actions if Ci∩Cj is a (2m−2) dimensional polytope (where Ci is probability cell of action

σi). The neighborhood action set of two neighboring (learner’s) actions i and j is defined

as N+
i,j = {k ∈ [m!] : Ci ∩ Cj ⊆ Ck}.

Definition 5: A pair of neighboring (learner’s) actions i and j is said to be locally

observable if `i− `j ∈ ⊕k∈N+
i,j
Col(S>k). The condition of local observability holds if every

pair of neighboring (learner’s) actions is locally observable.

We now show that local observability condition fails for L,H under SumLoss. First, we

present the following two lemmas characterizing Pareto-optimal actions and neighboring

actions for SumLoss.

Lemma 13. For SumLoss, each of learner’s action σi is Pareto-optimal, where Pareto-

optimality has been defined in Definition 1.

Proof. For any p ∈ ∆, we have `i · p =
∑2m

j=1 pj (σ−1
i · Rj) = σ−1

i · (
∑2m

j=1 pjRj) =

σ−1
i · E[R], where the expectation is taken w.r.t. p. By dot product rule between 2 vectors,

li ·p is minimized when ranking of objects according to σi and expected relevance of objects

are in opposite order. That is, the object with highest expected relevance is ranked 1 and so

on. Formally, li · p is minimized when E[R(σi(1))] ≥ E[R(σi(2))] ≥ . . . ≥ E[R(σi(m))].

55

Thus, for action σi, probability cell is defined asCi = {p ∈ ∆ :
∑2m

j=1 pj = 1, E[R(σi(1))] ≥

E[R(σi(2))] ≥ . . . ≥ E[R(σi(m))]}. Note that, p ∈ Ci iff action i is optimal w.r.t. p. Since

Ci is obviously non-empty and it has only 1 equality constraint (hence 2m−1 dimensional),

action i is Pareto optimal.

The above holds true for all learner’s actions σi.

Lemma 14. A pair of learner’s actions {σi, σj} is a neighboring actions pair, if there is

exactly one pair of objects, numbered {a, b}, whose positions differ in σi and σj . Moreover,

a needs to be placed just before b in σi and b needs to placed just before a in σj .

Proof. From Lemma 13, we know that every one of learner’s actions is Pareto-optimal and

Ci, associated with action σi, has structure Ci = {p ∈ ∆ :
∑2m

j=1 pj = 1, E[R(σi(1))] ≥

E[R(σi(2))] ≥ . . . ≥ E[R(σi(m))]}.

Let σi(k) = a, σi(k + 1) = b. Let it also be true that σj(k) = b, σj(k + 1) = a and

σi(n) = σj(n), ∀n 6= {k, k + 1}. Thus, objects in {σi, σj} are same in all places except

in a pair of consecutive places where the objects are interchanged.

Then, Ci ∩ Cj = {p ∈ ∆ :
∑2m

j=1 pj = 1, E[R(σi(1)] ≥ . . . ≥ E[R(σi(k)] =

E[R(σi(k + 1)] ≥ . . . ≥ E[R(σi(m)]}. Hence, there are two equalities in the non-empty

set Ci ∩ Cj and it is an (2m − 2) dimensional polytope. Hence condition of Definition 4

holds true and {σi, σj} are neighboring actions pair.

Lemma 13 and 14 lead to following result.

Theorem 15. The local observability condition, as per Definition 5, fails w.r.t. loss matrix

L and feedback matrix H defined for SumLoss, already at m = 3.

3.2.6 Minimax Regret Bound

We establish the minimax regret for SumLoss by combining results on global and local

observability. First, we get a lower bound by combining our Theorem 15 with Theorem 4

56

of Bartok et al. (2014).

Corollary 16. Consider the online game for SumLoss with top-1 feedback and m = 3.

Then, for every learner’s algorithm, there is an adversary strategy generating relevance

vectors, such that the expected regret of the learner is Ω(T 2/3).

The fact that the game is globally observable (Theorem 12), combined with Theorem

3.1 in Cesa-Bianchi (2006), gives an algorithm (inspired by the algorithm originally given

in Piccolboni and Schindelhauer (2001a)) obtaining O(T 2/3) regret.

Corollary 17. The algorithm in Figure 1 of Cesa-Bianchi (2006) achieves O(T 2/3) regret

bound for SumLoss.

However, the algorithm in Cesa-Bianchi (2006) is intractable in our setting since the

algorithm necessarily enumerates all the actions of the learner in each round, which is ex-

ponential in m in our case (m! to be exact). Moreover, the regret bound of the algorithm

also has a linear dependence on the number of actions, which renders the result useless.

Discussion: The results above establish that the minimax regret for SumLoss, restricted

to top-1 feedback, is Θ(T 2/3). Theorem 4 of Bartok et al. (2014) says the following: A

partial monitoring game which is both globally and locally observable has minimax regret

Θ(T 1/2), while a game which is globally observable but not locally observable has minimax

regret Θ(T 2/3). In Theorem 12, we proved global observability, when feedback is restricted

to relevance of top ranked item. The global observability result automatically extends to

feedback on top k items, for k > 1. This is because for top k feedback, with k > 1, the

learner receives strictly greater information at end of each round than top 1 feedback. It

makes the game at least as easy as with top 1 feedback (for example, the learner can just

throw away relevance feedback on items ranked 2nd onwards). So, with top k feedback,

with general k, the game will remain at least globally observable. In fact, our algorithm

in the next section will achieve O(T 2/3) regret bound for SumLoss with top k feedback,

57

k ≥ 1. However, the same is not true for failure of local observability. Feedback on more

than top ranked item can make the game strictly easier for the learner and may make local

observability condition hold, for some k > 1. In fact, for k = m (full feedback), the game

will be a simple bandit game (disregarding computational complexity), which has regret

rate of O(T 1/2) and hence locally observable.

3.2.7 Algorithm for Obtaining Minimax Regret under SumLoss with Top k Feed-

back

We first provide a general algorithmic framework for getting an O(T 2/3) regret bound

for SumLoss, with feedback on top k ranked items per round, for k ≥ 1. We then instantiate

a specific algorithm, which spends O(m logm) time per round (thus, highly efficient) and

obtains a regret of rate O(poly(m) T 2/3).

3.2.7.1 General Algorithmic Framework

Our algorithm combines blocking with a randomized full information algorithm. We

first divide time horizon T into blocks (referred to as blocking). Within each block, we allot

a small number of rounds for pure exploration, which allows us to estimate the average of

the full relevance vectors generated by the adversary in that block. The estimated average

vector is cumulated over blocks and then fed to a full information algorithm for the next

block. The randomized full information algorithm exploits the information received at the

beginning of the block to maintain distribution over permutations (learner’s actions). In

each round in the new block, actions are chosen according to the distribution and presented

to the user.

The key property of the randomized full information algorithm is this: for any online

game in an adversarial setting played over T rounds, if the loss of each action is known at

end of each round (full information), the algorithm should have an expected regret rate of

O(T 1/2), where the regret is the difference between cumulative loss of the algorithm and

58

cumulative loss of best action in hindsight. For the generic full information algorithm, we

ignore computational complexity and dependence on parameters, other than T , in the regret

rate.

Our algorithm is motivated by the reduction from bandit-feedback to full feedback

scheme given in Blum and Mansour (2007). However, the reduction cannot be directly

applied to our problem, because we are not in the bandit setting and hence do not know

loss of any action. Further, the algorithm of Blum and Mansour (2007) necessarily spends

N rounds per block to try out each of the N available actions — this is impractical in our

setting since N = m!.

Algorithm 4 describes our approach. A key aspect is the formation of estimate of

average relevance vector of a block (line 16), for which we have the following lemma:

Lemma 18. Let the average of (full) relevance vectors over the time period {1, 2, . . . , t}

be denoted as Ravg
1:t , that is, Ravg

1:t =
∑t

n=1

Rn

t
∈ Rm. Let {i1, i2, . . . , idm/ke} be dm/ke

arbitrary time points, chosen uniformly at random, without replacement, from {1, . . . , t}.

At time point ij , only k distinct components of relevance vector Rij , i.e., {Rij(k ∗ (j −

1) + 1), Rij(k ∗ (j − 1) + 2), . . . , Rij(k ∗ j)}, becomes known, ∀j ∈ {1, . . . , dm/ke} (for

j = dm/ke, there might be less than k components available). Then the vector formed from

them revealed components, i.e. R̂t = [Rij(k∗(j−1)+1), Rij(k∗(j−1)+2), . . . , Rij(k∗

j)]{j=1,2,...,dm/ke} is an unbiased estimator of Ravg
1:t .

Proof. We can write R̂t =
∑dm/ke

j=1

∑k
`=1 Rij(k ∗ (j − 1) + `)ek∗(j−1)+`, where ei is the m

dimensional standard basis vector along coordinate j. Then, taking expectation over the

randomly chosen time points, we have: Ei1,...,idm/ke(R̂t) =
∑dm/ke

j=1 Eij [
∑k

`=1Rij(k ∗ (j −

1) + `)ek∗(j−1)+`] =
∑m

j=1

∑k
`=1

∑t
n=1

Rn(k ∗ (j − 1) + `)ek∗(j−1)+`

t
= Ravg

1:t .

We have the following regret bound, obtained from application of Algrotihm 4 on Sum-

Loss with top k feedback.

59

Theorem 19. The expected regret under SumLoss, obtained by applying Algorithm 4, with

relevance feedback on top k ranked items per round (k ≥ 1), and the expectation being

taken over randomized learner’s actions σt, is

E

[
T∑
t=1

SumLoss(σt, Rt)

]
−min

σ

T∑
t=1

SumLoss(σt, Rt) ≤ CIdm/keK + C
T√
K

(3.3)

Optimizing over block size K, we get K = CII T 2/3

dm/ke2/3
and final regret bound as:

E

[
T∑
t=1

SumLoss(σt, Rt)

]
−min

σ

T∑
t=1

SumLoss(σt, Rt) ≤ CIIIdm/ke1/3T 2/3 (3.4)

where C,CI , CII and CIII are parameters (independent of T) depending on the specific

full information algorithm used.

Algorithm 4 RankingwithTop-kFeedback(RTop-kF)- Non Contextual
1: T = Time horizon, K = No. of (equal sized) blocks, FI= randomized full information algorithm.
2: Time horizon divided into equal sized blocks {B1, . . . , BK}, where Bi = {(i− 1)(T/K) + 1, . . . , i(T/K)}.
3: Initialize ŝ0 = 0 ∈ Rm. Initialize any other parameter specific to FI.
4: For i = 1, . . . ,K
5: Select dm/ke time points {i1, . . . , idm/ke} from block Bi, uniformly at random, without replacement.
6: Divide the m items into dm/ke cells, with k distinct items in each cell. 1

7: For t ∈ Bi
8: If t = ij ∈ {i1, . . . , idm/ke}
9: Exploration round:
10: Output any permutation σt which places items of jth cell in top k positions (in any order).
11: Receive feedback as relevance of top k items of σt (i.e., items of jth cell).
12: Else
13: Exploitation round:
14: Feed ŝi−1 to the randomized full information algorithm FI and output σt according to FI.
15: end for
16: Set R̂i ∈ Rm as vector of relevances of the m items collected during exploration rounds.
17: Update ŝi = ŝi−1 + R̂i.
18: end for

1For e.g., assume m = 7 and k = 2. Then place items (1, 2) in cell 1, items (3, 4) in cell 2, items (5, 6)
in cell 3 and item 7 in cell 4.

60

3.2.7.2 Computationally Efficient Algorithm with FTPL

We instantiate our general algorithm with Follow The Perturbed Leader (FTPL) full

information algorithm (Kalai and Vempala, 2005). The following modifications are needed

in Algorithm 4 to implement FTPL as the full information algorithm:

Initialization of parameters: In line 3 of the algorithm, the parameter specific to FTPL

is randomization parameter ε ∈ R.

Exploitation round: σt, during exploitation, is sampled by FTPL as follows: sample

pt ∈ [0, 1/ε]m from the product of uniform distribution in each dimension. Output permu-

tation σt = M(ŝi−1 + pt) where M(y) = argmin
σ

σ−1 · y.

Discussion: The key reason for using FTPL as the full information algorithm is that the

structure of our problem allows the permutation σt to be chosen during exploitation round

via a simple sorting operation on m objects. This leads to an easily implementable algo-

rithm which spends only O(m logm) time per round (sorting is in fact the most expensive

step in the algorithm). The reason that the simple sorting operation does the trick is the

following: FTPL only implicitly maintains a distribution over m! actions (permutations) at

beginning of each round. Instead of having an explicit probability distribution over each

action and sampling from it, FTPL mimics sampling from a distribution over actions by

randomly perturbing the information vector received so far (say ŝi−1 in block Bi) and then

sorting the items by perturbed score. The random perturbation puts an implicit weight on

each of the m! actions and sorting is basically sampling according to the weights. This is

an advantage over general full information algorithms based on exponential weights, which

maintain explicit weight on actions and samples from it.

We have the following corollary:

Corollary 20. The expected regret of SumLoss, obtained by applying Algorithm 4, with

FTPL full information algorithm and feedback on top k ranked items at end of each round

61

(k ≥ 1), and K = O

(
m1/3T 2/3

dm/ke2/3

)
, ε = O(1√

mK
), is:

E

[
T∑
t=1

SumLoss(σt, Rt)

]
−min

σ

T∑
t=1

SumLoss(σt, Rt) ≤ O(m7/3dm/ke1/3T 2/3). (3.5)

Assuming that dm/ke ∼ m/k, the regret rate is O
(
m8/3T 2/3

k1/3

)

3.2.8 Regret Bounds for PairwiseLoss, DCG and Precision@n

PairwiseLoss: As we saw in Eq. 3.2, the regret of SumLoss is same as regret of Pair-

wiseLoss. Thus, SumLoss in Corollary 20 can be replaced by PairwiseLoss to get exactly

same result.

DCG: All the results of SumLoss can be extended to DCG (see appendix). Moreover,

the results can be extended even for multi-graded relevance vectors. Thus, the minimax

regret under DCG, restricted to feedback on top ranked item, even when the adversary can

play multi-graded relevance vectors, is Θ(T 2/3).

The main differences between SumLoss and DCG are the following. The former is a

loss function; the latter is a gain function. Also, for DCG, f(σ) 6= σ−1 (see definition

in Sec.3.2.2) and when relevance is multi-graded, DCG cannot be expressed as f(σ) · R,

as clear from definition. Nevertheless, DCG can be expressed as f(σ) · g(R), , where

g(R) = [gs(R(1)), gs(R(2)), . . . , gs(R(m))], gs(i) = 2i − 1 is constructed from univari-

ate, monotonic, scalar valued functions (g(R) = R for binary graded relevance vectors).

Thus, Algorithm 4 can be applied (with slight variation), with FTPL full information algo-

rithm and top k feedback, to achieve regret of O(T 2/3). The slight variation is that during

exploration rounds, when relevance feedback is collected to form the estimator at end of

the block, the relevances should be transformed by function gs(·). The estimate is then con-

structed in the transformed space and fed to the full information algorithm. In the exploita-

62

tion round, the selection of σt remains exactly same as in SumLoss, i.e., σt = M(ŝi−1 +pt)

where M(y) = argmin
σ

σ−1 · y. This is because argmax
σ

f(σ) · y = argmin
σ

σ−1 · y, by

definition of f(σ) in DCG.

Let relevance vectors chosen by adversary have n+ 1 grades, i.e., R ∈ {0, 1, . . . , n}m.

In practice, n is almost always less than 5. We have the following corollary:

Corollary 21. The expected regret of DCG, obtained by applying Algorithm 4, with FTPL

full information algorithm and feedback on top k ranked items at end of each round (k ≥ 1),

and K = O

(
m1/3T 2/3

dm/ke2/3

)
, ε = O(1

(2n−1)2
√
mK

), is:

max
σ

T∑
t=1

DCG(σt, Rt)−E

[
T∑
t=1

DCG(σt, Rt)

]
≤ O((2n−1)m4/3dm/ke1/3T 2/3). (3.6)

Assuming that dm/ke ∼ m/k, the regret rate is O
(

(2n − 1)m5/3T 2/3

k1/3

)
.

Precision@n: Since Precision@n = f(σ) · R, the global observability property of

SumLoss can be easily extended to it and Algorithm 4 can be applied, with FTPL full

information algorithm and top k feedback, to achieve regret of O(T 2/3). In the exploitation

round, the selection of σt remains exactly same as in SumLoss, i.e., σt = M(ŝi−1 + pt)

where M(y) = argmin
σ

σ−1 · y.

However, the local observability property of SumLoss does not extend to Precision@n.

The reason is that while f(·) of SumLoss is strictly monotonic, f(·) of Precision@n is

monotonic but not strict. Precision@n depends only on the objects in the top n positions

of the ranked list, irrespective of the order. A careful review shows that Lemma 14 fails

to extend to the case of Precision@n, due to lack of strict monotonicity. Thus, we cannot

define the neighboring action set of the Pareto optimal action pairs, and hence cannot prove

or disprove local observability.

We have the following corollary:

63

Corollary 22. The expected regret of Precision@n, obtained by applying Algorithm 4, with

FTPL full information algorithm and feedback on top k ranked items at end of each round

(k ≥ 1), and K = O

(
m1/3T 2/3

dm/ke2/3

)
, ε = O(1√

mK
), is:

max
σ

T∑
t=1

Precision@n(σt, Rt)−E

[
T∑
t=1

Precision@n(σt, Rt)

]
≤ O(nm1/3dm/ke1/3T 2/3).

(3.7)

Assuming that dm/ke ∼ m/k, the regret rate is O
(
n m2/3T 2/3

k1/3

)
.

3.2.9 Non-Existence of Sublinear Regret Bounds for NDCG, AP and AUC

As stated in Sec. 3.2.2, NDCG, AP and AUC are normalized versions of measures DCG,

Precision@n and PairwiseLoss. We have the following lemma for all these normalized

ranking measures.

Lemma 23. The global observability condition, as per Definition 1, fails for NDCG, AP

and AUC, when feedback is restricted to top ranked item.

Combining the above lemma with Theorem 2 of Bartok et al. (2014), we conclude

that there cannot exist any algorithm which has sub-linear regret for any of the following

measures: NDCG, AP or AUC, when restricted to top 1 feedback.

Theorem 24. There exists an online game, for NDCG with top-1 feedback, such that for

every learner’s algorithm, there is an adversary strategy generating relevance vectors, such

that the expected regret of the learner is Ω(T). Furthermore, the same lower bound holds

if NDCG is replaced by AP or AUC.

3.3 Online Ranking with Restricted Feedback- Contextual Setting

This section will detail the second part of our work and will be self contained. All

proofs not in the main text are in the appendix.

64

3.3.1 Notation and Preliminaries

We introduce notations, which are in addition to the those we introduced in Sec.3.2.1. In

the contextual setting, each query and associated items (documents) are represented jointly

as a feature matrix. Each feature matrix,X ∈ Rm×d, consists of a list ofm documents, each

represented as a feature vector in Rd. The feature matrices are considered side-information

(context) and represents varying items, as opposed to the fixed set of items in the first part

of our work. Xi: denotes ith row of X . We assume feature vectors representing documents

are bounded by RD in `2 norm. The relevance vectors are same as before.

As per traditional learning to rank setting with query-document matrices, documents are

ranked by a ranking function. The prevalent technique is to represent a ranking function as

a scoring function and get ranking by sorting scores in descending order. A linear scoring

function produces score vector as fw(X) = Xw = sw ∈ Rm, with w ∈ Rd. Here, sw(i)

represents score of ith document (sw points to score s being generated by using parameter

w). We assume that ranking parameter space is bounded in `2 norm, i.e, ‖w‖2 ≤ U , ∀ w.

πs = argsort(s) is the permutation induced by sorting score vector s in descending order.

As a reminder, a permutation π gives a mapping from ranks to documents and π−1 gives a

mapping from documents to ranks.

Performance of ranking functions are judged, based on the rankings obtained from

score vectors, by ranking measures like DCG, AP and others. However, the measures

themselves are discontinuous in the score vector produced by the ranking function, lead-

ing to intractable optimization problems. Thus, most learning to rank methods are based

on minimizing surrogate losses, which can be optimized efficiently. A surrogate φ takes

in a score vector s and relevance vector R and produces a real number, i.e., φ : Rm ×

{0, 1, . . . , n}m 7→ R. φ(·, ·) is said to be convex if it is convex in its first argument, for

any value of the second argument. Ranking surrogates are designed in such a way that the

ranking function learnt by optimizing the surrogates has good performance with respect to

ranking measures.

65

3.3.2 Problem Setting and Learning to Rank Algorithm

Formal problem setting: We formalize the problem as a game being played between a

learner and an oblivious adversary over T rounds (i.e., an adversary who generates moves

without knowledge of the learner’s algorithm). The learner’s action set is the uncountably

infinite set of score vectors in Rm and the adversary’s action set is all possible relevance

vectors, i.e., (n + 1)m possible vectors. At round t, the adversary generates a list of doc-

uments, represented by a matrix Xt ∈ Rm×d, pertaining to a query (the document list is

considered as side information). The learner receives Xt, produces a score vector s̃t ∈ Rm

and ranks the documents by sorting according to score vector. The adversary then gener-

ates a relevance vector Rt but only reveals the relevances of top k ranked documents to

the learner. The learner uses the feedback to choose its action for the next round (updates

an internal scoring function). The learner suffers a loss as measured in terms of a surro-

gate φ, i.e, φ(s̃t, Rt). As is standard in online learning setting, the learner’s performance is

measured in terms of its expected regret:

E

[
T∑
t=1

φ(s̃t, Rt)

]
− min
‖w‖2≤U

T∑
t=1

φ(Xtw,Rt),

where the expectation is taken w.r.t. to randomization of learner’s strategy and Xtw = swt

is the score produced by the linear function parameterized by w.

Relation between feedback and structure of surrogates: Algorithm 5 is our general

algorithm for learning a ranking function, online, from partial feedback. The key step

in Algorithm 5 is the construction of the unbiased estimator z̃t of the surrogate gradient

∇w=wtφ(Xtw,Rt). The information present for the construction process, at end of round

t, is the random score vector s̃t (and associated permutation σ̃t) and relevance of top-k

items of σ̃t, i.e., {Rt(σ̃t(1)), . . . , Rt(σ̃t(k)}. Let Et [·] be the expectation operator w.r.t. to

randomization at round t, conditioned on (w1, . . . , wt). Then z̃t being an unbiased estimator

of gradient of surrogate, w.r.t wt, means the following: Et [z̃t] = ∇w=wtφ(Xtw,Rt). We

66

Algorithm 5 Ranking with Top-k Feedback (RTop-kF)- Contextual
1: Exploration parameter γ ∈ (0, 1

2
), learning parameter η > 0, ranking parameter w1 = 0 ∈ Rd

2: For t = 1 to T
3: Receive Xt (document list pertaining to query qt)
4: Construct score vector swtt = Xtwt and get permutation σt = argsort(swtt)
5: Qt(s) = (1− γ)δ(s− swtt) + γUniform([0, 1]m) (δ is the Dirac Delta function).
6: Sample s̃t ∼ Qt and output the ranked list σ̃t = argsort(s̃t)

(Effectively, it means σ̃t is drawn from Pt(σ) = (1− γ)1(σ = σt) + γ
m!

)
7: Receive relevance feedback on top-k items, i.e., (Rt(σ̃t(1)), . . . , Rt(σ̃t(k)))
8: Suffer loss φ(s̃t, Rt) (Neither loss nor Rt revealed to learner)
9: Construct z̃t, an unbiased estimator of gradient∇w=wtφ(Xtw,Rt), from top-k feedback.
10: Update w = wt − ηz̃t
11: wt+1 = min{1, U

‖w‖2}w (Projection onto Euclidean ball of radius U).
12: End For

note that conditioned on the past, the score vector swtt = Xtwt is deterministic. We start

with a general result relating feedback to the construction of unbiased estimator of a vector

valued function. Let P denote a probability distribution on Sm, i.e,
∑

σ∈Sm P(σ) = 1. For

a distinct set of indices (j1, j2, . . . , jk) ⊆ [m], we denote p(ji, j2, . . . , jk) as the the sum

of probability of permutations whose first k objects match objects (j1, . . . , jk), in order.

Formally,

p(j1, . . . , jk) =
∑
π∈Sm

P(π)1(π(1) = j1, . . . , π(k) = jk). (3.8)

We have the following lemma relating feedback and structure of surrogates:

Lemma 25. Let F : Rm 7→ Ra be a vector valued function, where m ≥ 1, a ≥ 1. For

a fixed x ∈ Rm, let k entries of x be observed at random. That is, for a fixed probability

distribution P and some random σ ∼ P(Sm), observed tuple is {σ, xσ(1), . . . , xσ(k)}. A

necessary condition for existence of an unbiased estimator of F (x), that can be constructed

from {σ, xσ(1), . . . , xσ(k)}, is that it should be possible to decompose F (x) over k (or less)

67

coordinates of x at a time. That is, F (x) should have the structure:

F (x) =
∑

(i1,i2,...,i`)∈ mP`

hi1,i2,...,i`(xi1 , xi2 , . . . , xi`) (3.9)

where ` ≤ k, mP` is ` permutations of m and h : R` 7→ Ra (the subscripts in h are used to

denote possibly different functions in the decomposition structure). Moreover, when F (x)

can be written in form of Eq 3.9 , with ` = k, an unbiased estimator of F (x), based on

{σ, xσ(1), . . . , xσ(k)}, is,

g(σ,xσ(1), . . . , xσ(k)) =∑
(j1,j2,...,jk)∈Sk

hσ(j1),...,σ(jk)(xσ(j1), . . . , xσ(jk))∑
(j1,...,jk)∈Sk

p(σ(j1), . . . , σ(jk))

(3.10)

where Sk is the set of k! permutations of [k] and p(σ(1), . . . , σ(k)) is as in Eq 3.8 .

Illustrative Examples: We provide simple examples to concretely illustrate the ab-

stract functions in Lemma 25. Let F (·) be the identity function, and x ∈ Rm. Thus, F (x) =

x and the function decomposes over k = 1 coordinate of x as follows: F (x) =
∑m

i=1 xiei,

where ei ∈ Rm is the standard basis vector along coordinate i. Hence, hi(xi) = xiei. Based

on top-1 feedback, following is an unbiased estimator of F (x): g(σ, xσ(1)) =
xσ(1)eσ(1)

p(σ(1))
,

where p(σ(1)) =
∑
π∈Sm

P(π)1(π(1) = σ(1)). In another example, let F : R3 7→ R2 and

x ∈ R3. Let F (x) = [x1 + x2;x2 + x3]>. Then the function decomposes over k = 1 coor-

dinate of x as F (x) = x1e1 + x2(e1 + e2) + x3e2, where ei ∈ R2. Hence, h1(x1) = x1e1,

h2(x2) = x2(e1 + e2) and h3(x3) = x3e2. An unbiased estimator based on top-1 feedback

is: g(σ, xσ(1)) =
hσ(1)(xσ(1))

p(σ(1))
.

3.3.3 Unbiased Estimators of Gradients of Surrogates

Algorithm 5 can be implemented for any ranking surrogate as long as an unbiased esti-

mator of the gradient can be constructed from the random feedback. We will use techniques

68

from online convex optimization to obtain formal regret guarantees. We will thus construct

the unbiased estimator of four major ranking surrogates. Three of them are popular con-

vex surrogates, one each from the three major learning to rank methods, i.e., pointwise,

pairwise and listwise methods. The fourth one is a popular non-convex surrogate.

Shorthand notations: We note that by chain rule,∇w=wtφ(Xtw,Rt)=X>t ∇s
wt
t
φ(swtt , Rt),

where swtt = Xtwt. Since Xt is deterministic in our setting, we focus on unbiased estima-

tors of ∇s
wt
t
φ(swtt , Rt) and take a matrix-vector product with Xt. To reduce notational

clutter in our derivations, we drop w from sw and the subscript t throughout. Thus, in our

derivations, z̃ = z̃t, X = Xt, s = swtt (and not s̃t), σ = σ̃t (and not σt), R = Rt, ei is

standard basis vector in Rm along coordinate i and p(·) as in Eq. 3.8 with P = Pt where Pt

is the distribution in round t in Algorithm 5.

3.3.3.1 Convex Surrogates

Pointwise Method: We will construct the unbiased estimator of the gradient of squared

loss (Cossock and Zhang, 2006b): φsq(s, R) = ‖s − R‖2
2. The gradient ∇sφsq(s, R) is

2(s−R) ∈ Rm. As we have already demonstrated in the example following Lemma 25, we

can construct unbiased estimator ofR from top-1 feedback ({σ,R(σ(1))}). Concretely,

the unbiased estimator is:

z̃ = X>
(

2

(
s−

R(σ(1))eσ(1)

p(σ(1))

))
.

Pairwise Method: We will construct the unbiased estimator of the gradient of hinge-

like surrogate in RankSVM (Joachims, 2002): φsvm(s, R) =
∑

i 6=j=1 1(R(i) > R(j)) max(0, 1+

s(j) − s(i)). The gradient is given by ∇sφsvm(s, R) =
∑m

i 6=j=1 1(R(i) > R(j))1(1 +

s(j) > s(i))(ej−ei) ∈ Rm. Since s is a known quantity, from Lemma 25, we can construct

F (R) as follows: F (R) = Fs(R) =
∑m

i 6=j=1 hs,i,j(R(i), R(j)), where hs,i,j(R(i), R(j)) =

1(R(i) > R(j))1(1 + s(j) > s(i))(ej − ei). Since Fs(R) is decomposable over 2 coor-

69

dinates of R at a time, we can construct an unbiased estimator from top-2 feedback

({σ,R(σ(1)), R(σ(2))}). The unbiased estimator is:

z̃ = X>
(
hs,σ(1),σ(2)(R(σ(1)), R(σ(2))) + hs,σ(2),σ(1)(R(σ(2)), R(σ(1)))

p(σ(1), σ(2)) + p(σ(2), σ(1))

)
.

We note that the unbiased estimator was constructed from top-2 feedback. The follow-

ing lemma, in conjunction with the necessary condition of Lemma 25 shows that it is the

minimum information required to construct the unbiased estimator.

Lemma 26. The gradient of RankSVM surrogate, i.e., φsvm(s, R) cannot be decomposed

over 1 coordinate of R at a time.

Listwise Method: Convex surrogates developed for listwise methods of learning to

rank are defined over the entire score vector and relevance vector. Gradients of such sur-

rogates cannot usually be decomposed over coordinates of the relevance vector. We will

focus on the cross-entropy surrogate used in the highly cited ListNet (Cao et al., 2007b)

ranking algorithm and show how a very natural modification to the surrogate makes its

gradient estimable in our partial feedback setting.

The authors of the ListNet method use a cross-entropy surrogate on two probability

distributions on permutations, induced by score and relevance vector respectively. More

formally, the surrogate is defined as follows2. Define m maps from Rm to R as: Pj(v) =

exp(v(j))/
∑m

j=1 exp(v(j)) for j ∈ [m]. Then, for score vector s and relevance vector R,

φLN(s, R) = −
∑m

i=1 Pi(R) logPi(s) and∇sφLN(s, R) =
∑m

i=1

(
− exp(R(i))∑m

j=1 exp(R(j))
+ exp(s(i))∑m

j=1 exp(s(j))

)
ei.

We have the following lemma about the gradient of φLN .

Lemma 27. The gradient of ListNet surrogate φLN(s, R) cannot be decomposed over k,

for k = 1, 2, coordinates of R at a time.

2The ListNet paper actually defines a family of losses based on probability models for top r documents,
with r ≤ m. We use r = 1 in our definition since that is the version implemented in their experimental
results.

70

In fact, an examination of the proof of the above lemma reveals that decomposability

at any k < m does not hold for the gradient of LisNet surrogate, though we only prove it

for k = 1, 2 (since feedback for top k items with k > 2 does not seem practical). Due to

Lemma 25, this means that if we want to run Alg. 5 under top-k feedback, a modification

of ListNet is needed. We now make such a modification.

We first note that the cross-entropy surrogate of ListNet can be easily obtained from a

standard divergence, viz. Kullback-Liebler divergence. Let p, q ∈ Rm be 2 probability dis-

tributions (
∑m

i=1 pi =
∑m

i=1 qi = 1). ThenKL(p, q) =
∑m

i=1 pi log(pi)−
∑m

i=1 pi log(qi)−∑m
i=1 pi+

∑m
i=1 qi. Taking pi = Pi(R) and qi = Pi(s), ∀ i ∈ [m] (where Pi(v) is as defined

in φLN) and noting that φLN(s, R) needs to be minimized w.r.t. s (thus we can ignore the∑m
i=1 pi log(pi) term in KL(p, q)), we get the cross entropy surrogate from KL.

Our natural modification now easily follows by considering KL divergence for un-

normalized vectors (it should be noted that KL divergence is an instance of a Bregman

divergence). Define m maps from Rm to R as: P ′j(v) = exp(v(j)) for j ∈ [m]. Now define

pi = P ′i (R) and qi = P ′i (s). Then, the modified surrogate φKL(s, R) is:

m∑
i=1

eR(i) log(eR(i))−
m∑
i=1

eR(i) log(es(i))−
m∑
i=1

eR(i) +
m∑
i=1

es(i),

and
m∑
i=1

(exp(s(i))− exp(R(i))) ei is its gradient w.r.t. s. Note that φKL(s, R) is non-

negative and convex in s. Equating gradient to 0 ∈ Rm, at the minimum point, s(i) =

R(i), ∀ i ∈ [m]. Thus, the sorted order of optimal score vector agrees with sorted order of

relevance vector and it is a valid ranking surrogate.

Now, from Lemma 25, we can constructF (R) as follows: F (R) = Fs(R) =
∑m

i=1 hs,i(R(i)),

where hs,i(R(i)) = (exp(s(i))− exp(R(i))) ei. Since Fs(R) is decomposable over 1 co-

ordinate of R at a time, we can construct an unbiased estimator from top-1 feedback

71

({σ,R(σ(1))}). The unbiased estimator is:

z̃ = X>
(

(exp(s(σ(1)))− exp(R(σ(1))))eσ(1)

p(σ(1))

)

Other Listwise Methods: As we mentioned before, most listwise convex surrogates

will not be suitable for Algorithm 5 with top-k feedback. For example, the class of popu-

lar listwise surrogates that are developed from structured prediction perspective (Chapelle

et al., 2007; Yue et al., 2007) cannot have unbiased estimator of gradients from top-k feed-

back since they are based on maps from full relevance vectors to full rankings and thus

cannot be decomposed over k = 1 or 2 coordinates of R. It does not appear they have any

natural modification to make them amenable to our approach.

3.3.3.2 Non-convex Surrogate

We provide an example of a non-convex surrogate for which Alg. 5 is applicable (how-

ever it will not have any regret guarantees due to non-convexity). We choose the SmoothDCG

surrogate given in (Chapelle and Wu, 2010), which has been shown to have very compet-

itive empirical performance. SmoothDCG, like ListNet, defines a family of surrogates,

based on the cut-off point of DCG (see original paper (Chapelle and Wu, 2010) for de-

tails). We consider SmoothDCG@1, which is the smooth version of DCG@1 (i.e., DCG

which focuses just on the top-ranked document). The surrogate is defined as: φSD(s, R) =

1∑m
j=1 exp(s(j)/ε)

∑m
i=1 G(R(i)) exp(s(i)/ε), where ε is a (known) smoothing parameter and

G(a) = 2a − 1. The gradient of the surrogate is:

[∇sφSD(s, R)] =
m∑
i=1

hs,i(R(i)),

hs,i(R(i)) = G(Ri)

(
m∑
j=1

1

ε
[

exp(s(i)/ε)∑
j′ exp(s(j′)/ε)

1(i=j) −
exp((s(i) + s(j))/ε)

(
∑

j′ exp(s(j′)/ε))2
]ej

)

72

Using Lemma 25, we can write F (R) = Fs(R) =
∑m

i=1 hs,i(R(i)) where hs,i(R(i)) is

defined above. Since Fs(R) is decomposable over 1 coordinate of R at a time, we can

construct an unbiased estimator from top-1 feedback ({σ,R(σ(1))}), with unbiased

estimator being:

s(σ(1))z̃ = X>

(
G(R(σ(1)))

p(σ(1))

m∑
j=1

1

ε
[

exp(s(σ(1))/ε)∑
j′ exp(s(j′)/ε)

1(σ(1)=j) −
exp((s(σ(1)) + s(j))/ε)

(
∑

j′ exp(s(j′)/ε))2
]ej

)

3.3.4 Computational Complexity of Algorithm 5

Three of the four key steps governing the complexity of Algorithm 5, i.e., construction

of s̃t, σ̃t and sorting can all be done in O(m log(m)) time.The only bottleneck could have

been calculations of p(σ̃t(1)) in squared loss, (modified) ListNet loss and SmoothDCG loss,

and p(σ̃t(1), σ̃t(2)) in RankSVM loss, since they involve sum over permutations. However,

they have a compact representation, i.e., p(σ̃t(1)) = (1 − γ + γ
m

)1(σ̃t(1) = σt(1)) +

γ
m
1(σ̃t(1) 6= σt(1)) and p(σ̃t(1), σ̃t(2)) = (1 − γ + γ

m(m−1)
)1(σ̃t(1) = σt(1), σ̃t(2) =

σt(2)) + γ
m(m−1)

[∼ 1(σ̃t(1) = σt(1), σ̃t(2) = σt(2))]. The calculations follow easily due

to the nature of Pt (step-6 in algorithm) which put equal weights on all permutations other

than σt.

3.3.5 Regret Bounds

The underlying deterministic part of our algorithm is online gradient descent (OGD)

(Zinkevich, 2003). The regret of OGD, run with unbiased estimator of gradient of a convex

function, as given in Theorem 3.1 of (Flaxman et al., 2005), in our problem setting is:

E

[
T∑
t=1

φ(Xtwt, Rt)

]
≤ min

w:‖w‖2≤U

T∑
t=1

φ(Xtw,Rt) +
U2

2η
+
η

2
E

[
T∑
t=1

‖z̃t‖2
2

]
(3.11)

where z̃t is unbiased estimator of ∇w=wtφ(Xtw,Rt), conditioned on past events, η is the

learning rate and the expectation is taken over all randomness in the algorithm.

73

However, from the perspective of the loss φ(s̃t, Rt) incurred by Algorithm 5, at each

round t, the RHS above is not a valid upper bound. The algorithms plays the score vector

suggested by OGD (s̃t = Xtwt) with probability 1− γ (exploitation) and plays a randomly

selected score vector (i.e., a draw from the uniform distribution on [0, 1]m), with probability

γ (exploration). Thus, the expected number of rounds in which the algorithm does not

follow the score suggested by OGD is γT , leading to an extra regret of order γT . Thus, we

have 3

E

[
T∑
t=1

φ(s̃t, Rt)

]
≤ E

[
T∑
t=1

φ(Xtwt, Rt)

]
+O (γT) (3.12)

We first control Et‖z̃t‖2
2, for all convex surrogates considered in our problem (we re-

mind that z̃t is the estimator of a gradient of a surrogate, calculated at time t. In Sec 3.3.3.1

, we omitted showing w in sw and index t). To get bound on Et‖z̃t‖2
2, we used the fol-

lowing norm relation that holds for any matrix X (Bhaskara and Vijayaraghavan, 2011):

‖X‖p→q = sup
v 6=0

‖Xv‖q
‖v‖p , where q is the dual exponent of p (i.e., 1

q
+ 1

p
= 1), and the following

lemma derived from it:

Lemma 28. For any 1 ≤ p ≤ ∞, ‖X>‖1→p = ‖X‖q→∞ = maxmj=1 ‖Xj:‖p, where Xj:

denotes jth row of X and m is the number of rows of matrix.

We have the following result:

Lemma 29. For parameter γ in Algorithm 5 ,RD being the bound on `2 norm of the feature

vectors (rows of document matrix X), m being the upper bound on number of documents

per query, U being the radius of the Euclidean ball denoting the space of ranking param-

eters and Rmax being the maximum possible relevance value (in practice always ≤ 5), let

Cφ ∈ {Csq, Csvm, CKL} be polynomial functions of RD,m, U,Rmax, where the degrees

of the polynomials depend on the surrogate (φsq, φsvm, φKL), with no degree ever greater

3The instantaneous loss suffered at each of the exploration round can be maximum of O(1), as long
as φ(s,R) is bounded, ∀ s and ∀ R. This is true because the score space is `2 norm bounded, maximum
relevance grade is finite in practice and we consider Lipschitz, convex surrogates.

74

than four. Then we have,

Et
[
‖z̃t‖2

2

]
≤ Cφ

γ
(3.13)

Plugging Eq. 3.13 and Eq. 3.12 in Eq. 3.11, and optimizing over η and γ, (which gives

η = O(T−2/3) and γ = O(T−1/3)), we get the final regret bound:

Theorem 30. For any sequence of instances and labels (Xt, Rt){t∈[T]}, applying Algo-

rithm 5 with top-1 feedback for φsq and φKL and top-2 feedback for φsvm, will produce the

following bound:

E

[
T∑
t=1

φ(s̃t, Rt)

]
− min

w:‖w‖2≤U

T∑
t=1

φ(Xtw,Rt) ≤ CφO
(
T 2/3

)
(3.14)

where Cφ is a surrogate dependent function, as described in Lemma 29 , and expectation

is taken over underlying randomness of the algorithm, over T rounds.

Discussion: It is known that online bandit games are special instances of partial mon-

itoring games. For bandit online convex optimization problems with Lipschitz, convex

surrogates, the best regret rate known so far, that can be achieved by an efficient algorithm,

is O(T 3/4) (however, see the work of Bubeck and Eldan (2015) for a non-constructive

O(log4(T)
√
T) bound). Surprisingly, Alg. 5, when applied in a partial monitoring setting

to the Lipschitz, convex surrogates that we have listed, achieves a better regret rate than

what is known in the bandit setting. Moreover, as we show subsequently, for an entire class

of Lipschitz convex surrogates (subclass of NDCG calibrated surrogates), sub-linear (in T)

regret is not even achievable. Thus, our work indicates that even within the class of Lips-

chitz, convex surrogates, regret rate achievable is dependent on the structure of surrogates;

something that does not arise in bandit convex optimization.

75

3.3.6 Impossibility of Sublinear Regret for NDCG Calibrated Surrogates

Learning to rank methods optimize surrogates to learn a ranking function, even though

performance is measured by target measures like NDCG. This is done because direct opti-

mization of the measures lead to NP-hard optimization problems. One of the most desirable

properties of any surrogate is calibration, i.e., the surrogate should be calibrated w.r.t the

target (Bartlett et al., 2006). Intuitively, it means that a function with small expected surro-

gate loss on unseen data should have small expect target loss on unseen data. We focus on

NDCG calibrated surrogates (both convex and non-convex) that have been characterized

by Ravikumar et al. (2011). We first state the necessary and sufficient condition for a sur-

rogate to be calibrated w.r.t NDCG. For any score vector s and distribution η on relevance

space Y , let φ̄(s, η) = ER∼ηφ(s, R). Moreover, we defineG(R) = (G(R1), . . . , G(Rm))>.

Z(R) is defined in Sec 3.2.2.

Theorem 31. (Ravikumar et al., 2011, Thm. 6) A surrogate φ is NDCG calibrated iff for

any distribution η on relevance space Y , there exists an invertible, order preserving map

g : Rm 7→ Rm s.t. the unique minimizer s∗φ(η) can be written as

s∗φ(η) = g

(
ER∼η

[
G(R)

Z(R)

])
. (3.15)

Informally, Eq. 3.15 states that argsort(s∗φ(η)) ⊆ argsort(ER∼η
[
G(R)
Z(R)

]
) Ravikumar

et al. (2011) give concrete examples of NDCG calibrated surrogates, including how some

of the popular surrogates can be converted into NDCG calibrated ones: e.g., the NDCG

calibrated version of squared loss is ‖s− G(R)
Z(R)
‖2

2.

We now state the impossibility result for the class of NDCG calibrated surrogates when

feedback is restricted to top ranked item.

Theorem 32. Fix the online learning to rank game with top 1 feedback and any NDCG cal-

ibrated surrogate. Then, for every learner’s algorithm, there exists an adversary strategy

such that the learner’s expected regret is Ω(T).

76

Note that our result is for top 1 feedback. Minimax regret for the problem setting with

top k feedback, with k ≥ 2 remains an open question.

Proof. (Sketch) The proof builds on the proof of hopeless finite action partial monitoring

games given by Piccolboni and Schindelhauer (2001b). An examination of their proof of

Theorem. 3 indicates that for hopeless games, there have to exist two probability distri-

butions (over adversary’s actions), which are indistinguishable in terms of feedback but

the optimal learner’s actions for the distributions are different. We first provide a mathe-

matical explanation as to why such existence lead to hopeless games. Then, we provide a

characterization of indistinguishable probability distributions in our problem setting, and

then exploit the characterization of optimal actions for NDCG calibrated surrogates (The-

orem 31) to explicitly construct two such probability distributions. This proves the result.

Full proof is provided in the appendix.

We note that the proof of Theorem. 3 of Piccolboni and Schindelhauer (2001b) cannot

be directly extended to prove the impossibility result because it relies on constructing a

connected graph on vertices defined by neighboring actions of learner. In our case, due to

the continuous nature of learner’s actions, the graph will be an empty graph and proof will

break down.

3.4 Empirical Results

We conducted experiments on simulated and commercial datasets to demonstrate the

performance of our algorithms.

3.4.1 Non Contextual Setting

Objectives: We had the following objectives while conducting experiments in the non-

contextual, online ranking with partial feedback setting:

77

• Investigate how performance of Algorithm 4 is affected by size of blocks during

blocking.

• Investigate how performance of the algorithm is affected by amount of feedback

received (i.e., generalizing k in top k feedback).

• Demonstrate the difference between regret rate of our algorithm, which operates in

partial feedback setting, with regret rate of a full information algorithm which re-

ceives full relevance vector feedback at end of each round.

We applied Algorithm 4 in conjunction with Follow-The-Perturbed-Leader (FTPL) full in-

formation algorithm, as described in Sec. 3.2.7. We note that since our work is first of

its kind in the literature, we had no comparable baselines. The generic partial monitoring

algorithms that do exist cannot be applied due to computational inefficiency (Sec. 3.2.6).

Experimental Setting: All our experiments were conducted with respect to the DCG

measure, which is quite popular in practice, and binary graded relevance vectors. Our

experiments were conducted on the following simulated dataset. We fixed number of items

to 20(m = 20). We then fixed a “true” relevance vector which had 5 items with relevance

level 1 and 15 items with relevance level 0. We then created a total of T=10000 relevance

vectors by corrupting the true relevance vector. The corrupted copies were created by in-

dependently flipping each relevance level (0 to 1 and vice-versa) with a small probability.

The reason for creating adversarial relevance vectors in such a way was to reflect diversity

of preferences in practice. In reality, it is likely that most users will have certain similarity

in preferences, with small deviations on certain items and certain users. That is, some items

are likely to be relevance in general, with most items not relevant to majority of users, with

slight deviation from user to user. Moreover, the comparator term in our regret bound (i.e.,

cumulative loss/gain of the true best ranking in hindsight) only makes sense if there is a

ranking which satisfies most users.

78

Results: We plotted average regret over time under DCG. Average regret over time means

cumulative regret up to time t, divided by t, for 1 ≤ t ≤ T . Figure 5.1 demonstrates the

effect of block size on the regret rate under DCG. We fixed feedback to relevance of top

ranked item (k = 1). As can be seen in Corollary 21, the optimal regret rate is achieved

by optimizing over number of blocks (hence block size), which requires prior knowledge

of time horizon T . We wanted to demonstrate how the regret rate (and hence the perfor-

mance of the algorithm) differs with different block sizes. The optimal number of blocks

in our setting is K ∼ 200, with corresponding block size being dT/Ke = 50. As can be

clearly seen, with optimal block size, the regret drops fastest and becomes steady after a

point. K = 10 means that block size is 1000. This means over the time horizon, number

of exploitation rounds greatly dominates number of exploration rounds, leading to regret

dropping at a slower rate initially than than the case with optimal block size. However, the

regret drops of pretty sharply later on. This is because the relevance vectors are slightly

corrupted copies of a “true” relevance vector and the algorithm gets a good estimate of the

true relevance vector quickly and then more exploitation helps. When K = 400 (i.e, block

size is 25), most of the time, the algorithm is exploring, leading to a substantially worse

regret and poor performance.

Figure 3.2 demonstrates the effect of amount of feedback on the regret rate under DCG.

We fixed K = 200, and varied feedback as relevance of top k ranked items per round,

where k = 1, 5, 10. Validating our regret bound, we see that as k increases, the regret

decreases.

Figure 5.2(a) compares regret of our algorithm, working with top 1 feedback and FTPL

full information algorithm, working with full relevance vector feedback at end of each

round. We fixed K = 200 and the comparison was done from 1000 iterations onwards, i.e.,

roughly after the initial learning phase. FTPL full information algorithm has regret rate of

O(T 1/2) (ignoring other parameters). So, as expected, FTPL with full information feedback

79

outperforms our algorithm with highly restricted feedback; yet, we have demonstrated, both

theoretically and empirically, that it is possible to have a good ranking strategy with highly

restricted feedback.

Figure 3.1:
Average regret under DCG, with feedback on top ranked object, for varying
block size, where block size is dT/Ke.

3.4.2 Contextual Setting

Objective: Since our contextual, online learning to rank with restricted feedback set-

ting involves query-document matrices, we could conduct experiments on commercial,

publicly available ranking datasets.Our objective was to demonstrate that it is possible to

learn a good ranking function, even with highly restricted feedback, when standard online

learning to rank algorithms would require full feedback at end of each round. As stated

before, though our algorithm is designed to minimize surrogate based regret, the surrogate

loss is only of interest. The users only care about the ranking presented to them, and indeed

the algorithm interacts with users by presenting ranked lists and getting feedback on top

ranked item(s). We tested the quality of the ranked lists, and hence the performance of the

evolving ranking functions, against the full relevance vectors, via ranking measure NDCG,

80

Figure 3.2: Average regret under DCG, where K = 200, for varying amount of feedback.

cutoff at the 10th item. NDCG, cutoff at a point n, is defined as follows:

NDCGn(σ,R) =
1

Zn(R)

n∑
i=1

2R(σ(i)) − 1

log2(1 + i)

where Zn(R) = max
σ∈Sm

∑n
i=1

2R(σ(i))−1
log2(1+i)

. We want to emphasize that the algorithm was in no

way affected by the fact that we were measuring its performance with respect to NDCG

cutoff at 10. In fact, the cutoff point can be varied, but usually, researchers report perfor-

mance under NDCG cutoff at 5 or 10.

Baselines: We applied Algorithm 5, with top 1 feedback, on Squared, KL (un-normalized

ListNet) and SmoothDCG surrogates, and with top 2 feedback, on the RankSVM surro-

gate. Based on the objective of our work, we selected two different ranking algorithms

as baselines. The first one is the online version of ListNet ranking algorithm (which is

essentially OGD on cross-entropy function), with full relevance vector revealed at end of

every round. ListNet is not only one of the most cited ranking algorithms (over 700 ci-

tations according to Google Scholar), but also one of the most validated algorithms (Tax

81

Figure 3.3:
Comparison of average regret over time, for DCG, between top-1 feedback and
full relevance vector feedback.

et al., 2015). We emphasize that some of the ranking algorithms in literature, which have

shown better empirical performance than ListNet, are based on non-convex surrogates with

complex, non-linear ranking functions. These algorithms cannot usually be converted into

online algorithms which learn from streaming data. Our second algorithm is a simple, fully

random algorithm , which outputs completely random ranking of documents at each round.

This algorithm, in effect, receives no feedback at end of each round. Thus, we are com-

paring Algorithm 5, which learns from highly restricted feedback, with an algorithm which

learns from full feedback and an algorithm which receives no feedback and learns nothing.

Datasets: We compared the various ranking functions on two large scale commercial

datasets. They were Yahoo’s Learning to Rank Challenge dataset (Chapelle and Chang,

2011b) and a dataset published by Russian search engine Yandex (IM-2009). The Yahoo

dataset has 19944 unique queries with 5 distinct relevance levels, while Yandex has 9126

unique queries with 5 distinct relevance levels.

82

Figure 3.4:
Average NDCG10 values of different algorithms, for Yahoo dataset. ListNet (in
cyan) algorithm operates on full feedback and Random (in red) algorithm does
not receive any feedback.

Experimental Setting: We selected time horizon T = 200, 000 (Yahoo) and T = 100, 000

(Yandex) iterations for our experiments (thus, each algorithm went over each dataset multi-

ple times). The reason for choosing different time horizons is that there are roughly double

the number of queries in Yahoo dataset as compared to Yandex dataset. All the online algo-

rithms, other than the fully random one, involve learning rate η and exploration parameter γ

(full information ListNet does not involve γ and SmoothDCG has an additional smoothing

parameter ε). While obtaining our regret guarantees, we had established that η = O(T−2/3)

and γ = O(T−1/3). In our experiments, for each instance of Algorithm 5, we selected a

time varying η = 0.01
t2/3

and γ = 0.1
t1/3

, for round t . We fixed ε = 0.01. For ListNet, we

selected η = 0.01
t1/2

, since regret guarantee in OGD is established with η = O(T−1/2). We

plotted average NDCG10 against time, where average NDCG10 at time t is the cumulative

NDCG10 up to time t, divided by t. We made an important observation while comparing the

performance plots of the algorithms. As we have shown, construction of the unbiased es-

timators involve division by a probability value (Eq 3.10). The particular probability value

can be γ
m

, which is very small since γ goes to 0, when the top ranked item of the randomly

83

Figure 3.5:
Average NDCG10 values of different algorithms, for Yahoo dataset. ListNet (in
cyan) algorithm operates on full feedback and Random (in red) algorithm does
not receive any feedback.

drawn permutation does not match the top ranked item of the permutation given by the

deterministic score vector (Sec 3.3.4). The mismatch happens with very low probability

(since the random permutation is actually the deterministic permutation with high prob-

ability). While theoretically useful, in practice, dividing by such small value negatively

affected the gradient estimation and hence the performance of our algorithm. So, when the

mismatch happened, we scaled up γ on the mismatch round by a constant, to remove the

negative effect.

Results: Figure 5.2(b) and Figure 5.2(c) show that ListNet, with full information feedback

at end of each round, has highest average NDCG value throughout, as expected. However,

Algorithm 5, with the convex surrogates, produce competitive performance. In fact, in the

Yahoo dataset, our algorithm, with RankSVM and KL, are very close to the performance

of ListNet. RanSVM based algorithm does better than the others, since the estimator of

RankSVM gradient is constructed from top 2 feedback, leading to lower variance of the es-

timator. KL based algorithm does much better than Squared loss based algorithm on Yahoo

84

and equally as well on Yandex dataset. Crucially, our algorithm, based on all three convex

surrogates, perform significantly better than the purely random algorithm, and are much

closer to ListNet in performance, despite being much closer to the purely random algorithm

in terms of feedback. Our algorithm, with SmoothDCG, on the other hand, produce poor

performance. We believe the reason is the non-convexity of the surrogate, which leads

to the optimization procedure possibly getting stuck at a local minima. In batch setting,

such problem is avoided by an annealing technique that successively reduces ε. We are

not aware of an analogue in an online setting. Possible algorithms optimizing non-convex

surrogates in an online manner, which require gradient of the surrogate, may be adapted to

this partial feedback setting. The main purpose for including SmoothDCG in our work was

to show that unbiased estimation of gradient, from restricted feedback, is possible even for

non-convex surrogates.

3.5 Conclusion and Open Questions

We studied the problem of online learning to rank with a novel, restricted feedback

model. The work is divided into two parts: in the first part, the set of items to be ranked is

fixed, with varying user preferences, and in the second part, the items vary, as traditional

query-documents matrices. The parts are tied by the feedback model; where the user gives

feedback only on top k ranked items at end of each round, though the performance of

the learner’s ranking strategy is judged against full, implicit relevance vectors. In the first

part, we gave comprehensive results on learnability with respect to a number of practically

important ranking measures. We also gave a generic algorithm, along with an efficient

instantiation, which achieves sub-linear regret rate for certain ranking measures. In the

second part, we gave an efficient algorithm, which works on a number of popular ranking

surrogates, to achieve sub-linear regret rate. We also gave an impossibility result for an

entire class of ranking surrogates. Finally, we conducted experiments on simulated and

commercial ranking datasets to demonstrate the performance of our algorithms.

85

We highlight some of the open questions of interest:

• What are the minimax regret rates with top k feedback model, for k > 1, for the

ranking measures DCG, PairwiseLoss, Precision@n and their normalized versions

NDCG, AUC and AP? Specifically, NDCG and AP are very popular in the learning

to rank community. We showed that with top 1 feedback model, no algorithm can

achieve sub-linear regret for NDCG and AP. Is it possible to get sub-linear regret

with 1 < k < m?

• We used FTPL as the sub-routine in Algorithm 4 to get an efficient algorithm. It

might be possible to use other full information algorithms as sub-routine, retaining

the efficiency, but getting tighter rates in terms of parameters (other than T) and

better empirical performance.

• We applied Algorithm 5 on three convex surrogates and one non-convex surrogates.

It would be interesting to investigate what other surrogates the algorithm can be ap-

plied on, guided by Lemma 25, and test its empirical performance. Since the algo-

rithm learns a ranking function in the traditional query-documents setting, the ques-

tion is more of practical interest.

• We saw that Algorithm 5, when applied to SmoothDCG, does not produce com-

petitive empirical performance. It has been shown that a ranking function, learnt

by optimizing SmoothDCG in the batch setting, has extremely competitive empirical

performance (Qin and Liu, 2006). In the batch setting, simulated annealing is used to

prevent the optimization procedure getting stuck in local minima. Any algorithm that

optimizes non-convex surrogates in an online manner, by accessing its gradient, can

replace the online gradient descent part in our algorithm and tested on SmoothDCG

for empirical performance.

• We proved an impossibility result for NDCG calibrated surrogates with top 1 feed-

86

back. What is the minimax regret for NDCG calibrated surrogates, with top k feed-

back, for k > 1?

87

CHAPTER IV

Generalization Error Bounds for Learning to Rank: Does

the Length of Document Lists Matter?

4.1 Introduction

Training data in learning to rank consists of queries along with associated documents,

where documents are represented as feature vectors. For each query, the documents are

labeled with human relevance judgements. The goal at training time is to learn a rank-

ing function that can, for a future query, rank its associated documents in order of their

relevance to the query. The performance of ranking functions on test sets is evaluated us-

ing a variety of performance measures such as NDCG (Järvelin and Kekäläinen, 2002),

ERR (Chapelle et al., 2009) or Average Precision (Yue et al., 2007).

The performance measures used for testing ranking methods cannot be directly op-

timized during training time as they lead to discontinuous optimization problems. As a

result, researchers often minimize surrogate loss functions that are easier to optimize. For

example, one might consider smoothed versions of, or convex upper bounds on, the tar-

get performance measure. However, as soon as one optimizes a surrogate loss, one has to

deal with two questions (Chapelle et al., 2011). First, does minimizing the surrogate on

finite training data imply small expected surrogate loss on infinite unseen data? Second,

does small expected surrogate loss on infinite unseen data imply small target loss on infi-

88

Table 4.1:
A comparison of three bounds given in this chapter for Lipschitz loss functions.
Criteria for comparison: algorithm bound applies to (OGD = Online Gradient
Descent, [R]ERM = [Regularized] Empirical Risk Minimization), whether it
applies to general (possibly non-convex) losses, and whether the constants in-
volved are tight.

Bound Applies to Handles Nonconvex Loss “Constant” hidden in O(·) notation
Theorem 35 OGD No Smallest
Theorem 36 RERM No Small
Theorem 38 ERM Yes Hides several logarithmic factors

nite unseen data? The first issue is one of generalization error bounds for empirical risk

minimization (ERM) algorithms that minimize surrogate loss on training data. The second

issue is one of calibration: does consistency in the surrogate loss imply consistency in the

target loss?

This chapter deals with the former issue, viz. that of generalization error bounds for

surrogate loss minimization. In pioneering works, Lan et al. (2008, 2009) gave general-

ization error bounds for learning to rank algorithms. However, while the former paper was

restricted to analysis of pairwise approach to learning to rank, the later paper was limited

to results on just three surrogates: ListMLE, ListNet and RankCosine. To the best of our

knowledge, the most generally applicable bound on the generalization error of query-level

learning to rank algorithms has been obtained by Chapelle and Wu (2010).

The bound of Chapelle and Wu (2010), while generally applicable, does have an explicit

dependence on the length of the document list associated with a query. Our investigations

begin with this simple question: is an explicit dependence on the length of document lists

unavoidable in generalization error bounds for query-level learning to rank algorithms? We

focus on the prevalent technique in literature where learning to rank algorithms learn lin-

ear scoring functions and obtain ranking by sorting scores in descending order. Our first

contribution (Theorem 33) is to show that dimension of linear scoring functions that are

permutation invariant (a necessary condition for being valid scoring functions for learn-

ing to rank) has no dependence on the length of document lists. Our second contribution

89

(Theorems 35, 36, 38) is to show that as long as one uses the “right” norm in defining

the Lipschitz constant of the surrogate loss, we can derive generalization error bounds that

have no explicit dependence on the length of document lists. The reason that the second

contribution involves three bounds is that they all have different strengths and scopes of

application (See Table 4.1 for a comparison). Our final contribution is to provide novel

generalization error bounds for learning to rank in two previously unexplored settings:

almost dimension independent bounds when using high dimensional features with `1 reg-

ularization (Theorem 40) and “optimistic” rates (that can be as fast as O(1/n)) when the

loss function is smooth (Theorem 44). We also apply our results on popular convex and

non-convex surrogates. All omitted proofs can be found in the appendix.

4.2 Preliminaries

In learning to rank (also called subset ranking to distinguish it from other related prob-

lems, e.g., bipartite ranking), a training example is of the form ((q, d1, . . . , dm), y). Here q

is a search query and d1, . . . , dm are m documents with varying degrees of relevance to the

query. Human labelers provide the relevance vector y ∈ Rm where the entries in y contain

the relevance labels for the m individual documents. Typically, y has integer-valued entries

in the range {0, . . . , Ymax} where Ymax is often less than 5. For our theoretical analysis,

we get rid of some of these details by assuming that some feature map Ψ exists to map a

query document pair (q, d) to Rd. As a result, the training example ((q, d1, . . . , dm), y) gets

converted into (X, y) where X = [Ψ(q, d1), . . . ,Ψ(q, dm)]> is an m × d matrix with the

m query-document feature vector as rows. With this abstraction, we have an input space

X ⊆ Rm×d and a label space Y ⊆ Rm.

A training set consists of iid examples (X(1), y(1)), . . . , (X(n), y(n)) drawn from some

underlying distribution D. To rank the documents in an instance X ∈ X , often a score

vector s ∈ Rm is computed. A ranking of the documents can then be obtained from s by

sorting its entries in decreasing order. A common choice for the scoring function is to make

90

it linear in the input X and consider the following class of vector-valued functions:

Flin = {X 7→ Xw : X ∈ Rm×d, w ∈ Rd}. (4.1)

Depending upon the regularization, we also consider the following two subclasses of Flin :

F2 := {X 7→ Xw : X ∈ Rm×d, w ∈ Rd, ‖w‖2 ≤ W2},

F1 := {X 7→ Xw : X ∈ Rm×d, w ∈ Rd, ‖w‖1 ≤ W1}.

In the input space X , it is natural for the rows of X to have a bound on the appropriate dual

norm. Accordingly, whenever we use F2, the input space is set to X = {X ∈ Rm×d : ∀j ∈

[m], ‖Xj‖2 ≤ RX} where Xj denotes jth row of X and [m] := {1, . . . ,m}. Similarly,

when we use F1, we set X = {X ∈ Rm×d : ∀j ∈ [m], ‖Xj‖∞ ≤ R̄X}. These are

natural counterparts to the following function classes studied in binary classification and

regression:

G2 := {x 7→ 〈x,w〉 : ‖x‖2 ≤ RX , w ∈ Rd, ‖w‖2 ≤W2},

G1 := {x 7→ 〈x,w〉 : ‖x‖∞ ≤ R̄X , w ∈ Rd, ‖w‖1 ≤W1}.

A key ingredient in the basic setup of the learning to rank problem is a loss function

φ : Rm × Y → R+ where R+ denotes the set of non-negative real numbers. Given a

class F of vector-valued functions, a loss φ yields a natural loss class: namely the class of

real-valued functions that one gets by composing φ with functions in F :

φ ◦ F := {(X, y) 7→ φ(f(X), y) : X ∈ Rm×d, f ∈ F}.

For vector valued scores, the Lipschitz constant of φ depends on the norm ||| · ||| that we

91

decide to use in the score space (||| · |||? is dual of ||| · |||):

∀y ∈ Y , s, s′ ∈ Rm, |φ(s1, y)− φ(s2, y)| ≤ Gφ|||s1 − s2|||.

If φ is differentiable, this is equivalent to: ∀y ∈ Y , s ∈ Rm, |||∇sφ(s, y)|||? ≤ Gφ.

Similarly, the smoothness constant Hφ of φ defined as: ∀y ∈ Y , s, s′ ∈ Rm,

|||∇sφ(s1, y)−∇sφ(s2, y)|||? ≤ Hφ|||s1 − s2|||.

also depends on the norm used in the score space. If φ is twice differentiable, the above

inequality is equivalent to

∀y ∈ Y , s ∈ Rm, |||∇2
sφ(s, y)|||op ≤ Hφ

where ||| · |||op is the operator norm induced by the pair ||| · |||, ||| · |||? and defined as

|||M |||op := supv 6=0
|||Mv|||?
|||v||| .Define the expected loss ofw under the distributionDLφ(w) :=

E(X,y)∼D [φ(Xw, y)] and its empirical loss on the sample as L̂φ(w) := 1
n

∑n
i=1 φ(X(i)w, y(i)).

The minimizer of Lφ(w) (resp. L̂φ(w)) over some function class (parameterized by w) will

be denoted by w? (resp. ŵ). We may refer to expectations w.r.t. the sample using Ê [·]. To

reduce notational clutter, we often refer to (X, y) jointly by Z andX×Y byZ . For vectors,

〈u, v〉 denotes the standard inner product
∑

i uivi and for matrices U, V of the same shape,

〈U, V 〉means Tr(U>V) =
∑

ij UijVij . The set ofm! permutation π of degreem is denoted

by Sm. A vector of ones is denoted by 1.

4.3 Application to Specific Losses

To whet the reader’s appetite for the technical presentation that follows, we will con-

sider two loss functions, one convex and one non-convex, to illustrate the concrete im-

provements offered by our new generalization bounds. A generalization bound is of the

92

form: Lφ(ŵ) ≤ Lφ(w?)+“complexity term”. It should be noted that w? is not available

to the learning algorithm as it needs knowledge of underlying distribution of the data. The

complexity term of Chapelle and Wu (2010) is O(GCW
φ W2RX

√
m/n). The constant GCW

φ

is the Lipschitz constant of the surrogate φ (viewed as a function of the score vector s)

w.r.t. `2 norm. Our bounds will instead be of the form O(GφW2RX

√
1/n), where Gφ is

the Lipschitz constant of φ w.r.t. `∞ norm. Note that our bounds are free of any explicit m

dependence. Also, by definition, Gφ ≤ GCW
φ

√
m but the former can be much smaller as

the two examples below illustrate. In benchmark datasets (Liu et al., 2007b), m can easily

be in the 100-1000 range.

4.3.1 Application to ListNet

The ListNet ranking method (Cao et al., 2007a) uses a convex surrogate, that is defined

in the following way1. Define m maps from Rm to R as: Pj(v) = exp(vj)/
∑m

i=1 exp(vi)

for j ∈ [m]. Then, we have, for s ∈ Rm and y ∈ Rm,

φLN(s, y) = −
m∑
j=1

Pj(y) logPj(s).

An easy calculation shows that the Lipschitz (as well as smoothness) constant of φLN is m

independent.

Proposition 1. The Lipschitz (resp. smoothness) constant of φLN w.r.t. ‖ · ‖∞ satisfies

GφLN
≤ 2 (resp. HφLN

≤ 2) for any m ≥ 1.

Since the bounds above are independent of m, so the generalization bounds resulting

from their use in Theorem 38 and Theorem 44 will also be independent of m (up to log-

arithmic factors). We are not aware of prior generalization bounds for ListNet that do not

scale with m. In particular, the results of Lan et al. (2009) have an m! dependence since

1The ListNet paper actually defines a family of losses based on probability models for top k documents.
We use k = 1 in our definition since that is the version implemented in their experimental results.

93

they consider the top-m version of ListNet. However, even if the top-1 variant above is

considered, their proof technique will result in at least a linear dependence on m and does

not result in as tight a bound as we get from our general results. It is also easy to see

that the Lipschitz constant GCW
φLN

of ListNet loss w.r.t. `2 norm is also 2 and hence the

bound of Chapelle and Wu (2010) necessarily has a
√
m dependence in it. Moreover, gen-

eralization error bounds for ListNet exploiting its smoothness will interpolate between the

pessimistic 1/
√
n and optimistic 1/n rates. These have never been provided before.

4.3.2 Application to Smoothed DCG@1

This example is from the work of Chapelle and Wu (2010). Smoothed DCG@1, a

non-convex surrogate, is defined as:

φSD(s, y) = D(1)
m∑
i=1

G(yi)
exp(si/σ)∑
j exp(sj/σ)

,

where D(i) = 1/ log2(1 + i) is the “discount” function and G(i) = 2i − 1 is the “gain”

function. The amount of smoothing is controlled by the parameter σ > 0 and the smoothed

version approaches DCG@1 as σ → 0 (DCG stands for Discounted Cumulative Gain

Järvelin and Kekäläinen (2002)).

Proposition 2. The Lipschitz constant of φSD w.r.t. ‖·‖∞ satisfiesGφSD ≤ 2D(1)G(Ymax)/σ

for any m ≥ 1. Here Ymax is maximum possible relevance score of a document (usually

less than 5).

As in the ListNet loss case we previously considered, the generalization bound resulting

from Theorem 38 will be independent of m. This is intuitively satisfying: DCG@1, whose

smoothing we are considering, only depends on the document that is put in the top position

by the score vector s (and not on the entire sorted order of s). Our generalization bound

does not deteriorate as the total list size m grows. In contrast, the bound of Chapelle and

Wu (2010) will necessarily deteriorate as
√
m since the constant GCW

φSD
is the same as GφSD .

94

Moreover, it should be noted that even in the original SmoothedDCG paper, σ is present

in the denominator of GCW
φSD

, so our results are directly comparable. Also note that this

example can easily be extended to consider DCG@k for case when document list length

m� k (a very common scenario in practice).

4.3.3 Application to RankSVM

RankSVM (Joachims, 2002) is another well established ranking method, which min-

imizes a convex surrogate based on pairwise comparisons of documents. A number of

studies have shown that ListNet has better empirical performance than RankSVM. One

possible reason for the better performance of ListNet over RankSVM is that the Lipschitz

constant of RankSVM surrogate w.r.t ‖ · ‖∞ doe scale with document list size as O(m2).

Due to lack of space, we give the details in the supplement.

4.4 Does The Length of Document Lists Matter?

Our work is directly motivated by a very interesting generalization bound for learning to

rank due to Chapelle and Wu (2010, Theorem 1). They considered a Lipschitz continuous

loss φ with Lipschitz constant GCW
φ w.r.t. the `2 norm. They show that, with probability at

least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + 3GCW
φ W2RX

√
m

n
+

√
8 log(1/δ)

n
.

The dominant term on the right is O(GCW
φ W2RX

√
m/n). In the next three sections, we

will derive improved bounds of the form Õ(GφW2RX

√
1/n) where Gφ ≤ GCW

φ

√
m but

can be much smaller. Before we do that, let us examine the dimensionality reduction in

linear scoring function that is caused by a natural permutation invariance requirement.

95

4.4.1 Permutation invariance removes m dependence in dimensionality of linear

scoring functions

As stated in Section 4.2, a ranking is obtained by sorting a score vector obtained via a

linear scoring function f . Consider the space of linear scoring function that consists of all

linear maps f that map Rm×d to Rm:

Ffull :=
{
X 7→ [〈X,W1〉 , . . . , 〈X,Wm〉]> : Wi ∈ Rm×d

}
.

These linear maps are fully parameterized by matrices W1, . . . ,Wm. Thus, a full parame-

terization of the linear scoring function is of dimension m2d. Note that the popularly used

class of linear scoring functions Flin defined in Eq. 4.1 is actually a low d-dimensional

subspace of the full m2d dimensional space of all linear maps. It is important to note that

the dimension of Flin is independent of m.

In learning theory, one of the factors influencing the generalization error bound is the

richness of the class of hypothesis functions. Since the linear function class Flin has di-

mension independent of m, we intuitively expect that, at least under some conditions, al-

gorithms that minimize ranking losses using linear scoring functions should have an m in-

dependent complexity term in the generalization bound. The reader might wonder whether

the dimension reduction from m2d to d in going from Ffull to Flin is arbitrary. To dispel

this doubt, we prove the lower dimensional class Flin is the only sensible choice of linear

scoring functions in the learning to rank setting. This is because scoring functions should

satisfy a permutation invariance property. That is, if we apply a permutation π ∈ Sm to the

rows of X to get a matrix πX then the scores should also simply get permuted by π. That

is, we should only consider scoring functions in the following class:

Fperminv = {f : ∀π ∈ Sm,∀X ∈ Rm×d, πf(X) = f(πX)}.

The permutation invariance requirement, in turn, forces a reduction from dimension m2d

96

to just 2d (which has no dependence on m).

Theorem 33. The intersection of the function classesFfull andFperminv is the 2d-dimensional

class:

F ′lin = {X 7→ Xw + (1>Xv)1 : w, v ∈ Rd}. (4.2)

Note that the extra degree of freedom provided by the v parameter in Eq. 4.2 is useless

for ranking purposes since adding a constant vector (i.e., a multiple of 1) to a score vector

has no effect on the sorted order. This is why we said that Flin is the only sensible choice

of linear scoring functions.

4.5 Online to Batch Conversion

In this section, we build some intuition as to why it is natural to use ‖ · ‖∞ in defining

the Lipschitz constant of the loss φ. To this end, consider the following well known online

gradient descent (OGD) regret guarantee. Recall that OGD refers to the simple online

algorithm that makes the update wi+1 ← wi − η∇wifi(wi) at time i. If we run OGD to

generate wi’s, we have, for all ‖w‖2 ≤ W2:

n∑
i=1

fi(wi)−
n∑
i=1

fi(w) ≤ W 2
2

2η
+ ηG2n

where G is a bound on the maximum `2-norm of the gradients ∇wifi(wi) and fi’s have to

be convex. If (X(1), y(1)), . . . , (X(n), y(n)) are iid then by setting fi(w) = φ(X(i)w, y(i)),

1 ≤ i ≤ n we can do an “online to batch conversion”. That is, we optimize over η, take

expectations and use Jensen’s inequality to get the following excess risk bound:

∀‖w‖2 ≤ W2, ELφ(ŵOGD)− Lφ(w) ≤ W2G

√
2

n

97

where ŵOGD = 1
n

∑n
i=1wi and G has to satisfy (noting that s = X(i)wi)

G ≥ ‖∇wifi(wi)‖2 = ‖(X(i))>∇sφ(X(i)wi, y
(i))‖2

where we use the chain rule to express∇w in terms of∇s. Finally, we can upper bound

‖(X(i))>∇sφ(X(i)wi, y
(i))‖2

≤ ‖(X(i))>‖1→2 · ‖∇sφ(X(i)wi, y
(i))‖1

≤ RX‖∇sφ(X(i)wi, y
(i))‖1

as RX ≥ maxmj=1 ‖Xj‖2 and because of the following lemma.

Lemma 34. For any 1 ≤ p ≤ ∞,

‖X‖p→q = sup
v 6=0

‖Xv‖q
‖v‖p

‖X>‖1→p = ‖X‖q→∞ =
m

max
j=1
‖Xj‖p ,

where q is the dual exponent of p (i.e., 1
q

+ 1
p

= 1).

Thus, we have shown the following result.

Theorem 35. Let φ be convex and have Lipschitz constant Gφ w.r.t. ‖ · ‖∞. Suppose we

run online gradient descent (with appropriate step size η) on fi(w) = φ(X(i)w, y(i)) and

return ŵOGD = 1
T

∑n
i=1wi. Then we have,

∀‖w‖2 ≤ W2, ELφ(ŵOGD)− Lφ(w) ≤ GφW2RX

√
2

n
.

The above excess risk bound has no explicit m dependence. This is encouraging but

there are two deficiencies of this approach based on online regret bounds. First, the result

applies to the output of a specific algorithm that may not be the method of choice for

98

practitioners. For example, the above argument does not yield uniform convergence bounds

that could lead to excess risk bounds for ERM (or regularized versions of it). Second, there

is no way to generalize the result to Lipschitz, but non-convex loss functions. It may noted

here that the original motivation for Chapelle and Wu (2010) to prove their generalization

bound was to consider the non-convex loss used in their SmoothRank method. We will

address these issues in the next two sections.

4.6 Stochastic Convex Optimization

We first define the regularized empirical risk minimizer:

ŵλ = argmin
‖w‖2≤W2

λ

2
‖w‖2

2 + L̂φ(w). (4.3)

We now state the main result of this section.

Theorem 36. Let the loss function φ be convex and have Lipschitz constantGφ w.r.t. ‖·‖∞.

Then, for an appropriate choice of λ = O(1/
√
n), we have

ELφ(ŵλ) ≤ Lφ(w?) + 2GφRXW2

(
8

n
+

√
2

n

)
.

This result applies to a batch algorithm (regularized ERM) but unfortunately requires

the regularization parameter λ to be set in a particular way. Also, it does not apply to non-

convex losses and does not yield uniform convergence bounds. In the next section, we will

address these deficiencies. However, we will incur some extra logarithmic factors that are

absent in the clean bound above.

4.7 Bounds for Non-convex Losses

The above discussion suggests that we have a possibility of deriving tighter, possiblym-

independent, generalization error bounds by assuming that φ is Lipschitz continuous w.r.t.

99

‖ · ‖∞. The standard approach in binary classification is to appeal to the Ledoux-Talagrand

contraction principle for establishing Rademacher complexity (Bartlett and Mendelson,

2003). It gets rid of the loss function and incurs a factor equal to the Lipschitz constant

of the loss in the Rademacher complexity bound. Since the loss function takes scalar ar-

gument, the Lipschitz constant is defined for only one norm, i.e., the absolute value norm.

It is not immediately clear how such an approach would work when the loss takes vector

valued arguments and is Lipschitz w.r.t. ‖ · ‖∞. We are not aware of an appropriate ex-

tension of the Ledoux-Talagrand contraction principle. Note that Lipschitz continuity w.r.t.

the Euclidean norm ‖ · ‖2 does not pose a significant challenge since Slepian’s lemma can

be applied to get rid of the loss. Several authors have already exploited Slepian’s lemma

in this context (Bartlett and Mendelson, 2003; Chapelle and Wu, 2010). We take a route

involving covering numbers and define the data-dependent (pseudo-)metric:

dZ
(1:n)

∞ (w,w′) :=
n

max
i=1

∣∣φ(X(i)w, y(i))− φ(X(i)w′, y(i))
∣∣

Let N∞(ε, φ ◦ F , Z(1:n)) be the covering number at scale ε of the composite class φ ◦ F =

φ ◦ F1 or φ ◦ F2 w.r.t. the above metric. Also define

N∞(ε, φ ◦ F , n) := max
Z(1:n)

N∞(ε, φ ◦ F , Z(1:n)).

With these definitions in place, we can state our first result on covering numbers.

Proposition 3. Let the loss φ be Lipschitz w.r.t. ‖ · ‖∞ with constant Gφ. Then following

covering number bound holds:

log2N∞(ε, φ ◦ F2, n) ≤
⌈
G2
φW

2
2 R

2
X

ε2

⌉
log2(2mn+ 1).

100

Proof. Note that

n
max
i=1

∣∣φ(X(i)w, y(i))− φ(X(i)w′, y(i))
∣∣

≤ Gφ ·
n

max
i=1

m
max
j=1

∣∣∣〈X(i)
j , w

〉
−
〈
X

(i)
j , w′

〉∣∣∣ .
This immediately implies that if we have a cover of the class G2 (Sec.4.2) at scale ε/Gφ

w.r.t. the metric
n

max
i=1

m
max
j=1

∣∣∣〈X(i)
j , w

〉
−
〈
X

(i)
j , w′

〉∣∣∣
then it is also a cover of φ ◦ F2 w.r.t. dZ(1:n)

∞ , at scale ε. Now comes a simple, but crucial

observation: from the point of view of the scalar valued function class G2, the vectors

(X
(i)
j)i=1:n

j=1:m constitute a data set of size mn. Therefore,

N∞(ε, φ ◦ F2, n) ≤ N∞(ε/Gφ,G2,mn). (4.4)

Now we appeal to the following bound due to Zhang (2002, Corollary 3) (and plug the

result into (4.4)):

log2N∞(ε/Gφ,G2,mn) ≤
⌈
G2
φW

2
2 R

2
X

ε2

⌉
log2(2mn+ 1)

Covering number N2(ε, φ ◦ F , Z(1:n)) uses pseudo-metric:

dZ
(1:n)

2 (w,w′) :=

(
n∑
i=1

1

n

(
φ(X(i)w, y(i))− φ(X(i)w′, y(i))

)2
)1/2

It is well known that a control on N2(ε, φ ◦ F , Z(1:n)) provides control on the empirical

Rademacher complexity and that N2 covering numbers are smaller than N∞ ones. For us,

it will be convenient to use a more refined version2 due to Mendelson (2002). Let H be a
2We use a further refinement due to Srebro and Sridharan available at http://ttic.uchicago.

101

http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf

class of functions, with H : Z 7→ R, uniformly bounded by B. Then, we have following

bound on empirical Rademacher complexity

R̂n (H)

≤ inf
α>0

4α+ 10

suph∈H

√
Ê[h2]∫

α

√
log2N2(ε,H, Z(1:n))

n
dε

 (4.5)

≤ inf
α>0

4α+ 10

B∫
α

√
log2N2(ε,H, Z(1:n))

n
dε

 . (4.6)

Here R̂n (H) is the empirical Rademacher complexity of the classH defined as

R̂n (H) := Eσ1:n

[
sup
h∈H

1

n

n∑
i=1

σih(Zi)

]
,

where σ1:n = (σ1, . . . , σn) are iid Rademacher (symmetric Bernoulli) random variables.

Corollary 37. Let φ be Lipschitz w.r.t. ‖ · ‖∞ and uniformly bounded3 by B for w ∈ F2.

Then the empirical Rademacher complexities of the class φ ◦ F2 is bounded as

R̂n (φ ◦ F2) ≤ 10GφW2RX

√
log2(3mn)

n

× log 6B
√
n

5GφW2RX
√

log2(3mn)
.

Proof. This follows by simply plugging in estimates from Proposition 3 into (4.6) and

choosing α optimally.

Control on the Rademacher complexity immediately leads to uniform convergence

bounds and generalization error bounds for ERM. The informal Õ notation hides factors

logarithmic in m,n,B,Gφ, RX ,W1. Note that all hidden factors are small and computable

edu/˜karthik/dudley.pdf
3A uniform bound on the loss easily follows under the (very reasonable) assumption that

∀y,∃sy s.t. φ(sy, y) = 0. Then φ(Xw, y) ≤ Gφ‖Xw − sy‖∞ ≤ Gφ(W2RX + maxy∈Y ‖sy‖∞) ≤
Gφ(2W2RX).

102

http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf

from the results above.

Theorem 38. Suppose φ is Lipschitz w.r.t. ‖·‖∞ with constantGφ and is uniformly bounded

by B as w varies over F2. With probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + Õ

(
GφW2RX

√
1

n
+B

√
log(1/δ)

n

)

and therefore with probability at least 1− 2δ,

Lφ(ŵ) ≤ Lφ(w?) + Õ

(
GφW2RX

√
1

n
+B

√
log(1/δ)

n

)
.

where ŵ is an empirical risk minimizer over F2.

Proof. Follows from standard bounds using Rademacher complexity. See, for example,

Bartlett and Mendelson (2003).

As we said before, ignoring logarithmic factors, the bound for F2 is an improvement

over the bound of Chapelle and Wu (2010).

4.8 Extensions

We extend the generalization bounds above to two settings: a) high dimensional fea-

tures and b) smooth losses.

4.8.1 High-dimensional features

In learning to rank situations involving high dimensional features, it may not be appro-

priate to use the class F2 of `2 bounded predictors. Instead, we would like to consider the

class F1 of `1 bounded predictors. In this case, it is natural to measure size of the input ma-

trix X in terms of a bound R̄X on the maximum `∞ norm of each of its row. The following

analogue of Proposition 3 can be shown.

103

Proposition 4. Let the loss φ be Lipschitz w.r.t. ‖·‖∞ with constantGφ. Then the following

covering number bound holds:

log2N∞(ε, φ ◦ F1, n) ≤

⌈
288G2

φW
2
1 R̄

2
X (2 + log d)

ε2

⌉
× log2

(
2

⌈
8GφW1R̄X

ε

⌉
mn+ 1

)
.

Using the above result to control the Rademacher complexity of φ ◦ F1 gives the fol-

lowing bound.

Corollary 39. Let φ be Lipschitz w.r.t. ‖ · ‖∞ and uniformly bounded by B for w ∈ F1.

Then the empirical Rademacher complexities of the class φ ◦ F1 is bounded as

R̂n (φ ◦ F1) ≤ 120
√

2GφW1R̄X

√
log(d) log2(24mnGφW1R̄X)

n

× log2 B+24mnGφW1R̄X

40
√

2GφW1R̄X
√

log(d) log2(24mnGφW1R̄X)
.

As in the previous section, control of Rademacher complexity immediately yields uni-

form convergence and ERM generalization error bounds.

Theorem 40. Suppose φ is Lipschitz w.r.t. ‖·‖∞ with constantGφ and is uniformly bounded

by B as w varies over F1. With probability at least 1− δ,

∀w ∈ F1, Lφ(w) ≤ L̂φ(w) + Õ

(
GφW1R̄X

√
log d

n
+B

√
log(1/δ)

n

)

and therefore with probability at least 1− 2δ,

Lφ(ŵ) ≤ Lφ(w?) + Õ

(
GφW1R̄X

√
log d

n
+B

√
log(1/δ)

n

)

where ŵ is an empirical risk minimizer over F1.

As can be easily seen from Theorem. 40, the generalization bound is almost indepen-

dent of the dimension of the document feature vectors. We are not aware of existence of

such a result in learning to rank literature.

104

4.8.2 Smooth losses

We will again use online regret bounds to explain why we should expect “optimistic”

rates for smooth losses before giving more general results for smooth but possibly non-

convex losses.

4.8.3 Online regret bounds under smoothness

Let us go back to OGD guarantee, this time presented in a slightly more refined version.

If we run OGD with learning rate η then, for all ‖w‖2 ≤ W2:

n∑
i=1

fi(wi)−
n∑
i=1

fi(w) ≤ W 2
2

2η
+ η

n∑
i=1

‖gi‖2
2

where gi = ∇wifi(wi) (if fi is not differentiable at wi then we can set gi to be an arbitrary

subgradient of fi atwi). Now assume that all fi’s are non-negative functions and are smooth

w.r.t. ‖ · ‖2 with constant H . Lemma 3.1 of Srebro et al. (2010) tells us that any non-

negative, smooth function f(w) enjoy an important self-bounding property for the gradient:

‖∇wfi(w)‖2 ≤
√

4Hfi(w)

which bounds the magnitude of the gradient of f at a point in terms of the value of the

function itself at that point. This means that ‖gi‖2
2 ≤ 4Hfi(wi) which, when plugged into

the OGD guarantee, gives:

n∑
i=1

fi(wi)−
n∑
i=1

fi(w) ≤ W 2
2

2η
+ 4ηH

n∑
i=1

fi(wi)

Again, setting fi(w) = φ(X(i)w, y(i)), 1 ≤ t ≤ n, and using the online to batch conversion

technique, we can arrive at the bound: for all ‖w‖2 ≤ W2:

ELφ(ŵ) ≤ Lφ(w)

(1− 4ηH)
+

W 2
2

2η(1− 4ηH)n

105

At this stage, we can fix w = w?, the optimal `2-norm bounded predictor and get optimal η

as:

η =
W2

4HW2 + 2
√

4H2W 2
2 + 2HLφ(w?)n

. (4.7)

After plugging this value of η in the bound above and some algebra (see Section C), we get

the upper bound

ELφ(ŵ) ≤ Lφ(w?) + 2

√
2HW 2

2Lφ(w?)

n
+

8HW 2
2

n
. (4.8)

Such a rate interpolates between a 1/
√
n rate in the “pessimistic” case (Lφ(w?) > 0) and

the 1/n rate in the “optimistic” case (Lφ(w?) = 0) (this terminology is due to Panchenko

(2002)).

Now, assuming φ to be twice differentiable, we need H such that

H ≥ ‖∇2
wφ(X(i)w, y(i))‖2→2 = ‖X>∇2

sφ(X(i)w, y(i))X‖2→2

where we used the chain rule to express ∇2
w in terms of ∇2

s. Note that, for OGD, we

need smoothness in w w.r.t. ‖ · ‖2 which is why the matrix norm above is the operator

norm corresponding to the pair ‖ · ‖2, ‖ · ‖2. In fact, when we say “operator norm” without

mentioning the pair of norms involved, it is this norm that is usually meant. It is well known

that this norm is equal to the largest singular value of the matrix. But, just as before, we

can bound this in terms of the smoothness constant of φ w.r.t. ‖ · ‖∞ (see Section C in the

appendix):

‖(X(i))>∇2
sφ(X(i)w, y(i))X(i)‖2→2

≤ R2
X‖∇2

sφ(X(i)w, y(i))‖∞→1.

where we used Lemma 34 once again. This result using online regret bounds is great for

building intuition but suffers from the two defects we mentioned at the end of Section 4.5.

106

In the smoothness case, it additionally suffers from a more serious defect: the correct choice

of the learning rate η requires knowledge of Lφ(w?) which is seldom available.

4.8.4 Generalization error bounds under smoothness

Once again, to prove a general result for possibly non-convex smooth losses, we will

adopt an approach based on covering numbers. To begin, we will need a useful lemma from

Srebro et al. (2010, Lemma A.1 in the Supplementary Material). Note that, for functions

over real valued predictions, we do not need to talk about the norm when dealing with

smoothness since essentially the only norm available is the absolute value.

Lemma 41. For any h-smooth non-negative function f : R → R+ and any t, r ∈ R we

have

(f(t)− f(r))2 ≤ 6h(f(t) + f(r))(t− r)2.

We first provide an extension of this lemma to the vector case.

Lemma 42. If φ : Rm → R+ is a non-negative function with smoothness constantHφ w.r.t.

a norm ||| · ||| then for any s1, s2 ∈ Rm we have

(φ(s1)− φ(s2))2 ≤ 6Hφ · (φ(s1) + φ(s2)) · |||s1 − s2|||2.

Using the basic idea behind local Rademacher complexity analysis, we define the fol-

lowing loss class:

Fφ,2(r) := {(X, y) 7→ φ(Xw, y) : ‖w‖2 ≤ W2, L̂φ(w) ≤ r}.

Note that this is a random subclass of functions since L̂φ(w) is a random variable.

Proposition 5. Let φ be smooth w.r.t. ‖ · ‖∞ with constant Hφ. The covering numbers of

107

Fφ,2(r) in the dZ
(1:n)

2 metric defined above are bounded as follows:

log2N2(ε,Fφ,2(r), Z(1:n)) ≤
⌈

12HφW
2
2 R

2
X r

ε2

⌉
log2(2mn+ 1).

Control of covering numbers easily gives a control on the Rademacher complexity of

the random subclass Fφ,2(r).

Corollary 43. Let φ be smooth w.r.t. ‖ · ‖∞ with constant Hφ and uniformly bounded by B

for w ∈ F2. Then the empirical Rademacher complexity of the class Fφ,2(r) is bounded as

R̂n (Fφ,2(r)) ≤ 4
√
rC log

3
√
B

C

where C = 5
√

3W2RX

√
Hφ log2(3mn)

n
.

With the above corollary in place we can now prove our second key result.

Theorem 44. Suppose φ is smooth w.r.t. ‖ · ‖∞ with constant Hφ and is uniformly bounded

by B over F2. With probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + Õ

(√
Lφ(w)D0

n
+
D0

n

)

where D0 = B log(1/δ) +W 2
2R

2
XHφ. Moreover, with probability at least 1− 2δ,

Lφ(ŵ) ≤ Lφ(w?) + Õ

(√
Lφ(w?)D0

n
+
D0

n

)

where ŵ, w? are minimizers of L̂φ(w) and Lφ(w) respectively (over w ∈ F2).

4.9 Conclusion

We showed that it is not necessary for generalization error bounds for query-level learn-

ing to rank algorithms to deteriorate with increasing length of document lists associated

108

with queries. The key idea behind our improved bounds was defining Lipschitz constants

w.r.t. `∞ norm instead of the “standard” `2 norm. As a result, we were able to derive much

tighter guarantees for popular loss functions such as ListNet and Smoothed DCG@1 than

previously available.

Our generalization analysis of learning to rank algorithms paves the way for further

interesting work. One possibility is to use these bounds to design active learning algo-

rithms for learning to rank with formal label complexity guarantees. Another interesting

possibility is to consider other problems, such as multi-label learning, where functions with

vector-valued outputs are learned by optimizing a joint function of those outputs.

109

CHAPTER V

Personalized Advertisement Recommendation: A Ranking

Approach to Address the Ubiquitous Click Sparsity

Problem

5.1 Introduction

Personalized advertisement recommendation (PAR) system is intrinsic to many major

tech companies like Google, Yahoo, Facebook and others. The particular PAR setting

we study here consists of a policy that displays one of the K possible ads/offers, when a

user visits the system. The user’s profile is represented as a context vector, consisting of

relevant information like demographics, geo-location, frequency of visits, etc. Depending

on whether user clicks on the ad, the system gets a reward of value 1, which in practice

translates to dollar revenue. The policy is (continuously) updated from historical data,

which consist of tuples of the form {user context, displayed ad, reward}. We will, in this

chapter, concern ourselves with PAR systems that are geared towards maximizing total

number of clicks.

The plethora of papers written on the PAR problem makes it impossible to provide an

exhaustive list. Interested readers may refer to a recent paper by a team of researchers in

Google (McMahan et al., 2013) and references therein. While the techniques in different

papers differ in their details, the majority of them can be be analyzed under the umbrella

110

framework of contextual bandits (Langford and Zhang, 2008). The term bandit refers to

the fact that the system only gets to see the user’s feedback on the ad that was displayed,

and not on any other ad. Bandit information leads to difficulty in estimating the expected

reward of a new or a relatively unexplored ad (the cold start problem). Thus, contextual

bandit algorithms, during prediction, usually balance between exploitation and exploration.

Exploitation consists of predicting according to the current recommendation policy, which

usually selects the ad with the maximum estimated reward, and exploration consists of

systematically choosing some other ad to display, to gather more information about it.

Most contextual bandit algorithms aim to learn a policy that is essentially some form

of multi-class classifier. For example, one important class of contextual bandit algorithms

learn a classifier per ad from the batch of data (Richardson et al., 2007; McMahan et al.,

2013; He et al., 2014) and convert it into a policy, that displays the ad with the high-

est classifier score to the user (exploitation). Some exploration techniques, like explicit

ε-greedy (Koh and Gupta, 2014; Theocharous et al., 2015) or implicit Bayesian type sam-

pling from the posterior distribution maintained on classifier parameters (Chapelle and Li,

2011) are sometimes combined with this exploitation strategy. Other, more theoretically

sophisticated online bandit algorithms, essentially learn a cost-sensitive multi-class classi-

fier by updating after every round of user-system interaction (Dudik et al., 2011; Agarwal

et al., 2014).

Despite the fact that PAR has always been mentioned as one of the main applications

of CB algorithms, there has not been much investigation into the practical issues raised in

using classifier-based policies for PAR. The potential difficulty in using such policies in

PAR stems from the problem of click sparsity, i.e., very few users actually ever click on

online ads and this lack of positive feedback makes it difficult to learn good classifiers. Our

main objective here is to study this important practical issue and we list our contributions:

• We detail the framework of contextual bandit algorithms and discuss the problem

associated with click sparsity.

111

• We suggest a simple ranker-based policy to overcome the click sparsity problem.

The rankers are learnt by optimizing the Area Under Curve (AUC) ranking loss via

stochastic gradient descent (SGD) (Shamir and Zhang, 2013), leading to a highly

scalable algorithm. The rankers are then combined to create a recommendation pol-

icy.

• We conduct extensive experiments to illustrate the improvement provided by our sug-

gested method over both linear and ensemble classifier-based policies for the PAR

problem. Our first set of experiments compare deterministic policies on publicly

available classification datasets, that are converted to bandit datasets following stan-

dard techniques. Our second set of experiments compare stochastic policies on three

proprietary bandit datasets, for which we employ a high confidence offline contextual

bandit evaluation technique.

5.2 Contextual Bandit (CB) Approach to PAR

The main contextual bandit algorithms can be largely divided into two classes: those

that make specific parametric assumption about the reward generation process and those

that simply assume that context and rewards are generated i.i.d. from some distribution.

The two major algorithms in the first domain are LinUCB (Chu et al., 2011) and Thompson

sampling (Agrawal and Goyal, 2013). Both algorithms assume that the reward of each ad

(arm) is a continuous linear function of some unknown parameter, which is not a suitable

assumption for click-based binary reward in PAR. Moreover, both algorithms assume that

there is context information available for each ad, while we assume availability of only user

context in our setting. Thus, from now on, we focus on the second class of the contextual

bandit algorithms. We provide a formal description of the framework of contextual bandits

suited to the PAR setting, and then discuss the problem that arises due to click sparsity.

Let X ⊆ Rd and [K] = {1, 2, . . . , K} denote the user context space and K different

112

ads/arms. At each round, it is assumed that a pair (x, r) is drawn i.i.d. from some unknown

joint distribution D over X × {0, 1}K . Here, x ∈ X and r ∈ {0, 1}K represent the user

context vector and the full reward vector, i.e., the user’s true preference for all the ads (the

full reward vector is unknown to the algorithm). Π is the space of policies such that for any

π ∈ Π, π : X 7→ [K]. Contextual bandit algorithms have the following steps:

• At each round t, the context vector xt is revealed, i.e., a user visits the system.

• The system selects ad at according to the current policy πt ∈ Π (exploitation strat-

egy). Optionally, an exploration strategy is sometimes added, creating a distribution

pt(·) over the ads and at is drawn from pt(·). Policy πt and distribution pt are some-

times used synonymously by considering πt to be a stochastic policy.

• Reward rt,at is revealed and the new policy πt+1 ∈ Π is computed, using information

{xt, at, rt,at}. We emphasize that the system does not get to know rt,a′ , ∀ a′ 6= at.

Assuming the user-system interaction happens over T rounds, the objective of the system

is to maximize its cumulative reward, i.e.,
∑T

t=1 rt,at . Note that since rewards are assumed

to be binary,
∑T

t=1 rt,at is precisely the total number of clicks and
∑T
t=1 rt,at
T

is the overall

CTR of the recommendation algorithm. Theoretically, performance of a bandit algorithm

is analyzed via the concept of regret, i.e.,

Regret(T) =
T∑
t=1

rt,π∗(xt)︸ ︷︷ ︸
optimal policy’s cumulative reward

−
T∑
t=1

rt,at︸ ︷︷ ︸
algorithm’s cumulative reward

where π∗ = argmax
π∈Π

∑T
t=1 rt,π(xt). The desired property of any contextual bandit algorithm

is to have a sublinear (in T) bound on Regret(T) (in expectation or high probability),

i.e., Regret(T) ≤ o(T). This guarantees that, at least, the algorithm converges to the

optimal policy π∗ asymptotically.

113

5.3 Practical Issues with CB Policy Space

Policy space Π considered for major contextual bandit algorithms are based on classi-

fiers. They can be tuples of binary classifiers, with one classifier per ad, or global cost-

sensitive multi-class classifier, depending on the nature of the bandit algorithm. Since

clicks on the ads are rare and small improvement in click-through rate can lead to signifi-

cant reward, it is vital for the policy space to have good policies that can identify the correct

ads for the rare users who are highly likely to click on them. Extreme click sparsity makes

it very practically challenging to design a classifier-based policy space, where policies can

identify the correct ads for rare users. Crucially, contextual bandit algorithms are only

concerned with converging as fast as possible to the best policy π∗ in the policy space Π

and do not take into account the nature of the policies. Hence, if the optimal policy in the

policy space does a poor job in identifying correct ads, then the bandit algorithm will have

very low cumulative reward, regardless of its sophistication. We discuss how click sparsity

hinders in the design of different types of classifier-based policies.

5.3.1 Binary Classifier Based Policies

Contextual bandit algorithms are traditionally presented as online algorithms, with con-

tinuous update of policies. Usually, in industrial PAR systems, it is highly impractical to

update policies continuously, due to thousands of users visiting a system in a small time

frame. Thus, policy update happens, i.e. new policy is learnt, after intervals of time, using

the bandit data produced from the interaction between the current policy and users, col-

lected in batch. It is convenient to learn a binary classifier per ad in such a setting. To

explain the process concisely, we note that the bandit data consists of tuples of the form

{x, a, ra}. For each ad a, the users who had not clicked on the ad (ra=0) would be con-

sidered as negative examples and the users who had clicked on the ad (ra=1) would be

considered as positive examples, creating a binary training set for ad a. The K binary clas-

sifiers are converted into a recommendation policy using a “one-vs-all” method (Rifkin and

114

Klautau, 2004). Thus, each policy in policy space Π can be considered to be a tuple of K

binary classifiers.

A number of research publications show that researchers consider binary linear classifiers,

that are learnt by optimizing the logistic loss (Richardson et al., 2007), while ensemble

classifiers, like random forests, are also becoming popular (Koh and Gupta, 2014). We

note that the majority of the papers that learn a logistic linear classifier focus on feature

selection (He et al., 2014), novel regularizations to tackle high-dimensional context vec-

tors (McMahan et al., 2013), or propose clever combinations of logistic classifiers (Agarwal

et al., 2009).

Click sparsity poses difficulty in design of accurate binary classifiers in the following way:

for an ad a, there will be very few clicks on the ad as compared to the number of users who

did not click on the ad. A binary classifier learnt in such setting will almost always predict

that its corresponding ad will not be clicked by a user, failing to identify the rare, but very

important, users who are likely to click on the ad. This is colloquially referred to as “class

imbalance problem” in binary classification (Japkowicz and Stephen, 2002). Due to the

extreme nature of the imbalance problem, tricks like under-sampling of negative examples

or oversampling of positive examples (Chawla et al., 2004) are not very useful. More so-

phisticated techniques like cost-sensitive svms require prior knowledge about importance

of each class, which is not generally available in the PAR setting.

Note- Some of the referenced papers do not have explicit mention of CBs because the fo-

cus in those papers is on the issues related to classifier learning process, involving type of

regularization, overcoming curse of dimensionality, scalability etc. The important issue of

extreme class imbalance has not received sufficient attention (Sec 6.2, (He et al., 2014)).

When the classifiers are used to predict ads, the technique is a particular CB algorithm (the

exact exploration+ exploitation mix is often not revealed).

115

5.3.2 Cost Sensitive Multi-Class Classifier Based Policies

Another type of policy space consist of cost-sensitive multi-class classifiers (Langford

and Zhang, 2008; Dudik et al., 2011; Agarwal et al., 2014). They can be cost-sensitive

multi-class svms (Cao et al., 2013), multi-class logistic classifiers or filter trees (Beygelz-

imer et al., 2007). Click sparsity poses slightly different kind of problem in practically

designing a policy space of such classifiers.

Cost sensitive multi-class classifier works as follows: assume a context-reward vector pair

(x,r) is generated as described in the PAR setting. The classifier will try to select a class (ad)

a such that the reward ra is maximum among all choices of ra′ , ∀ a′ ∈ [K] (we consider

reward maximizing classifiers, instead of cost minimizing classifiers). Unlike in traditional

multi-class classification, where one entry of r is 1 and all other entries are 0; in cost sensi-

tive classification, r can have any combination of 1 and 0. Now consider the reward vectors

rts generated over T rounds. A poor quality classifier πp, which fails to identify the correct

ad for most users xt, will have very low average reward, i.e.,
∑T
t=1 rt,πp(xt)

T
∼ O(ε), with

ε ∼ 0. From the model perspective, extreme click sparsity translates to almost all reward

vectors rt being ~0. Thus, even a very good classifier πg, which can identify the correct ad

at for almost all users, will have very low average reward, i.e.,
∑T
t=1 rt,πg(xt)

T
∼ O(ε). From

a practical perspective, it is difficult to distinguish between the performance of a good and

poor classifier, in face of extreme sparsity, and thus, cost sensitive multi-class classifiers

are not ideal policies for contextual bandits addressing the PAR problem.

5.4 AUC Optimized Ranker

We propose a ranking-based alternative to learning a classifier per ad, in the offline set-

ting, that is capable of overcoming the click sparsity problem. We learn a ranker per ad by

optimizing the Area Under the Curve (AUC) loss, and use a ranking score normalization

technique to create a policy mapping context to ad. We note that AUC is a popular measure

116

used to evaluate a classifier on an imbalanced dataset. However, our objective is to explic-

itly use the loss to learn a ranker that overcomes the imbalance problem and then create a

context to ad mapping policy.

Ranker Learning Technique: For an ad a, let S+ = {x : ra = 1} and S− = {x : ra = 0}

be the set of positive and negative instances, respectively. Let fw be a linear ranking func-

tion parameterized byw ∈ Rd, i.e., fw(x) = w ·x (inner product). AUC-based loss (AUCL)

is a ranking loss that is minimized when positive instances get higher scores than negative

instances, i.e., the positive instances are ranked higher than the negatives when instances

are sorted in descending order of their scores (Cortes and Mohri, 2004b). Formally, we

define empirical AUCL for function fw(·)

AUCL =
1

|S+||S−|
∑
x+∈S+

∑
x−∈S−

1(fw(x+)− fw(x−)︸ ︷︷ ︸
t

< 0).

Direct optimization of AUCL is a NP-hard problem, since AUCL is sum of discontinuous

indicator functions. To make the objective function computationally tractable, the indicator

functions are replaced by a continuous, convex surrogate `(t). Examples include hinge

`(t) = [1 − t]+ and logistic `(t) = log(1 + exp(−t)) surrogates. Thus, the final objective

function to optimize is

L(w) =
1

|S+||S−|
∑

x+∈S+

∑
x−∈S−

`(fw(x+)− fw(x−)︸ ︷︷ ︸
t

). (5.1)

Note: Since AUCL is a ranking loss, the concept of class imbalance ceases to be a problem.

Irrespective of the number of positive and negative instances in the training set, the position

of a positive instance w.r.t to a negative instance in the final ranked list is the only matter

of concern in AUCL calculation.

5.4.1 Optimization Procedure

The objective function (5.1) is a convex function and can be efficiently optimized by

stochastic gradient descent (SGD) procedure (Shamir and Zhang, 2013). One computa-

117

tional issue associated with AUCL is that it pairs every positive and negative instance,

effectively squaring the training set size.The SGD procedure easily overcomes this com-

putational issue. At every step of SGD, a positive and a negative instance are randomly

selected from the training set, followed by a gradient descent step. This makes the training

procedure memory-efficient and mimics full gradient descent optimization on the entire

loss. We also note that the rankers for the ads can be trained in parallel and any regularizer

like ‖w‖1 and ‖w‖2 can be added to (5.1), to introduce sparsity or avoid overfitting. Lastly,

powerful non-linear kernel ranking functions can be learnt in place of linear ranking func-

tions, but at the cost of memory efficiency, and the rankers can even be learnt online, from

streaming data (Zhao et al., 2011).

5.4.2 Constructing Policy from Rankers

Similar to learning a classifier per ad, a separate ranking function fwa(·) is learnt for

each ad a from the bandit batch data. Then the following technique is used to convert the

K separate ranking functions into a recommendation policy. First, a threshold score sa is

learnt for each action a ∈ [K] separately (see the details below), and then for a new user x,

the combined policy π works as follows:

π(x) = argmax
a∈[K]

(fwa(x)− sa). (5.2)

Thus, π maps x to ad a with maximum “normalized score”. This normalization negates the

inherent scoring bias that might exist for each ranking function. That is, a ranking function

for an action a ∈ [K] might learn to score all instances (both positive and negative) higher

than a ranking function for an action b ∈ [K]. Therefore, for a new instance x, ranking

function for a will always give a higher score than the ranking function for b, leading to

possible incorrect predictions.

118

Learning Threshold Score sa: After learning the ranking function fwa(·) from the

training data, the threshold score sa is learnt by maximizing some classification measure

like precision, recall, or F-score on the same training set. That is, score of each (positive

or negative) instance in the training set is calculated and the classification measure cor-

responding to different thresholds are compared. The threshold that gives the maximum

measure value is assigned to sa.

5.5 Competing Policies and Evaluation Techniques

To support our hypothesis that ranker based policies address the click-sparsity problem

better than classifier based policies, we set up two sets of experiments. We a) compared de-

terministic policies (only “exploitation”) on full information (classification) datasets and b)

compared stochastic policies (“exploitation + exploration”) on bandit datasets, with a spe-

cific offline evaluation technique. Both of our experiments were designed for batch learning

setting, with policies constructed from separate classifiers/rankers per ad. The classifiers

considered were linear and ensemble RandomForest classifiers and ranker considered

was the AUC optimized ranker.

Deterministic Policies: Policies from the trained classifiers were constructed using the

“one-vs-all” technique, i.e., for a new user x, the ad with the maximum score according to

the classifiers was predicted. For the policy constructed from rankers, the ad with the max-

imum shifted score according to the rankers was predicted, using Eq. 5.2. Deterministic

policies are “exploit only” policies.

Stochastic Policies: Stochastic policies were constructed from deterministic policies by

adding an ε-greedy exploration technique on top. Briefly, let one of the stochastic policies

be denoted by πe and let ε ∈ [0, 1]. For a context x in the test set, πe(a|x) = 1 − ε, if

a was the offer with the maximum score according to the underlying deterministic policy,

and πe(a|x) = ε
K−1

, otherwise (K is the total number of offers). Thus, πe is a probability

distribution over the offers. Stochastic policies are “exploit+ explore” policies.

119

5.5.1 Evaluation on Full Information Classification Data

Benchmark bandit data are usually hard to obtain in public domains. So, we compared

the deterministic policies on benchmark K-class classification data, converted to K-class

bandit data, using the technique in (Langford et al., 2011). Briefly, the standard conversion

technique is as follows: A K-class dataset is randomly split into training set Xtrain and test

set Xtest (in our experiments, we used 70 − 30 split). Only the labeled training set is con-

verted into bandit data, as per procedure. Let {x, a} be an instance and the corresponding

class in the training set. A class a′ ∈ [K] is selected uniformly at random. If a = a′, a

reward of 1 is assigned to x; otherwise, a reward of 0 is assigned. The new bandit instance

is of the form {x, a′, 1} or {x, a′, 0}, and the true class a is hidden. The bandit data is

then divided into K separate binary class training sets, as detailed in the section “Binary

Classifier based Policies”.

Evaluation Technique: We compared the deterministic policies by calculating the CTR of

each policy. For a policy π, CTR on a test set of cardinality n is measured as:

1

n

∑
(x,a)∈test set

1(π(x) = a) (5.3)

Note that we can calculate the true CTR of a policy π because the correct class a for an

instance x is known in the test set.

5.5.2 Evaluation on Bandit Information Data

Bandit datasets have both training and test sets in bandit form, and datasets we use are

industry proprietary in nature.

Evaluation Technique: We compared the stochastic policies on bandit datasets. Com-

parison of policies on bandit test set comes with the following unique challenge: for a

stochastic policy π, the expected reward is ρ(π) = Ea∼π(·|x)ra =
∑
a

raπ(a|x), for a test

context x (with the true CTR of π being average of expected reward over entire test set).

120

Since the bandit form of test data does not give any information about rewards for offers

which were not displayed, it is not possible to calculate the expected reward!

We evaluated the policies using a particular offline contextual bandit policy evaluation

technique. There exist various such evaluation techniques in the literature, with adequate

discussion about the process (Li et al., 2011). We used one of the importance weighted

techniques as described in (Theocharous et al., 2015). The reason was that we could give

high confidence lower bound on the performance of the policies. We provide the mathe-

matical details of the technique.

The bandit test data was logged from the interaction between users and a fully random

policy πu, over an interaction window. The random policy produced the following distri-

bution over offers: πu(a|x) = 1
K

, ∀ a ∈ [K]. For an instance {x, a′, ra′} in the test set,

the importance weighted reward of evaluation policy π is computed as ρ̂(π) = ra′
π(a′|x)

πu(a′|x)
.

The importance weighted reward is an unbiased estimator of the true expected reward of π,

i.e., Ea′∼πu(·|x)ρ̂(π) = ρ(π).

Let the cardinality of the test set be n. The importance weighted CTR of π is defined

as
1

n

n∑
i=1

rai
π(ai|xi)
πu(ai|xi)

(5.4)

Since (x, r) are assumed to be generated i.i.d., the importance weighted CTR is an unbi-

ased estimator of the true CTR of π. Moreover, it is possible to construct a t-test based

lower confidence bound on the expected reward, using the unbiased estimator, as fol-

lows: let Xi = rai
π(ai|xi)
πu(ai|xi)

, X̂ =
1

n

n∑
i=1

Xi, and σ =

√
1

n− 1

n∑
i=1

(Xi − X̂)2. Then,

X̂ = importance weighted CTR and

X̂ − σ√
n
t1−δ,n−1 (5.5)

is a 1 − δ lower confidence bound on the true CTR. Thus, during evaluation, we plotted

the importance weighted CTR and lower confidence bounds for the competing policies.

121

Table 5.1:
All datasets were obtained from UCI repository (https://archive.ics.uci.edu/ml/).
Five different datasets were selected. In the table, size represents the number
of examples in the complete dataset. Features indicate the dimension of the
instances. Avg. % positive gives the number of positive instances per class,
divided by the total number of instances for that class, in the bandit training set,
averaged over all classes. The lower the value, the more is the imbalance per
class during training.

OptDigits Isolet Letter PenDigits Movementlibras
Size 5620 7797 20000 10992 360

Features 64 617 16 16 91
Classes 10 26 26 10 15

Avg. % positive 10 4 4 10 7

5.6 Empirical Results

We detail the parameters and results of our experiments.

Linear Classifiers and Ranker: For each ad a, a linear classifier was learnt by optimizing

the logistic surrogate, while a linear ranker was learnt by optimizing the objective func-

tion (5.1), with `(·) being the logistic surrogate. Since we did not have the problem of

sparse high-dimensional features in our datasets, we added an `2 regularizer instead of `1

regularizer. We applied SGD with1 million iterations; varied the parameter λ of the `2 reg-

ularizer in the set {0.01, 0.1, 1, 10} and recorded the best result.

Ensemble Classifiers: We learnt a RandomForest classifier for each ad a. The Random-

Forests were composed of 200 trees, both for computational feasibility and for the more

theoretical reason outlined in (Koh and Gupta, 2014).

5.6.1 Comparison of Deterministic Policies

Datasets: The multi-class datasets are detailed in Table 5.1.

Evaluation: To compare the deterministic policies , we conducted two sets of experi-

ments; one without under-sampling of negative classes during training (i.e., no class balanc-

ing) and another with heavy under-sampling of negative classes (artificial class balancing).

122

Training and testing were repeated 10 times for each dataset to account for the randomness

introduced during conversion of classification training data to bandit training data, and the

average accuracy over the runs are reported. Figure 5.1 top and bottom show performance

of various policies learnt without and with under-sampling during training, respectively.

Under-sampling was done to make positive:negative ratio as 1:2 for every class (this ba-

sically means that Avg % positive was 33%). The ratio of 1:2 generally gave the best

results.

Observations: a) With heavy under-sampling, the performance of classifier-based poli-

cies improve significantly during training. Ranker-based policy is not affected, validat-

ing that class imbalance does not affect ranking loss, b) The linear ranker-based policy

performs uniformly better than the linear classifier-based policy, with or without under-

sampling. This shows that restricting to same class of functions (linear), rankers handles

class-imbalance much better than classifiers c) The linear ranker-based policy does better

than more complex RandomForest (RF) based policy, when no under-sampling is done dur-

ing training, and is competitive when under-sampling is done, and d) Complex classifiers

like RFs are relatively robust to moderate class imbalance. However, as we will see in real

datasets, when class imbalance is extreme, gain from using a ranker-based policy becomes

prominent. Moreover, growing big forests may be infeasible due to memory constraints,

5.6.2 Comparison of Stochastic Policies

Our next set of experiments were conducted on three different datasets that are property

of a major technology company.

Datasets: Two of the datasets were collected from campaigns run by two major banks

and another from campaign run by a major hotel chain. When a user visited the campaign

website, she was either assigned to a targeted policy or a purely random policy. The tar-

geted policy was some specific ad serving policy, particular to the campaign. The data was

collected in the form {x, a, ra}, where x denotes the user context, a denotes the offer dis-

123

(a) Hotel- moderate click sparsity

(b) Bank 1- extreme click sparsity

Figure 5.1:
Comparison of classification accuracy of various policies for different datasets,
Top- without under-sampling and Bottom- with under-sampling.

played, and ra ∈ {0, 1} denotes the reward received. We trained our competing policies on

data collected from the targeted policy and testing was done on the data collected from the

random policy. We focused on the top-5 offers by number of impressions in the training

set. Table 5.2 provides information about the training sets collected from the hotel and one

of the bank’s campaigns. The second bank’s campaign has similar training set as the first

one. As can be clearly observed, each offer in the bank’s campaign suffers from extreme

click sparsity.

124

Table 5.2: Information about the training sets
Domain Offer Impressions Avg. % Positive

(Clicks/Impressions)
Hotel

1 36164 8.1
2 37944 8.2
3 30871 7.8
4 32765 7.7
5 20719 5.5

Bank 1
1 37750 0.17
2 38254 0.40
3 182191 0.45
4 168789 0.30
5 17291 0.23

Feature Selection: We used a feature selection strategy to select around 20% of the

users’ features, as some of the features were of poor quality and led to difficulty in learning.

We used the information gain criteria to select features (Cheng et al., 2012).

Results: Figures 5.2(a), 5.2(b), and 5.2(c) show the results of our experiments. We used

heavy under-sampling of negative examples, at the ratio 1:1 for positive:negative examples

per offer, while training the classifiers. During evaluation, ε = 0.2 was used as exploration

parameter. Taking ε < 0.2, meaning more exploitation, did not yield better results.

Observations: a) The ranker-based policy generally performed better than the classifier-

based policies. b) For the bank campaigns, where the click sparsity problem is extremely

severe, it can be stated with high confidence that the ranker-based policy performed sig-

nificantly better than classifier based policies. This shows that the ranker-based policy can

handle class imbalance better than the classifier policies.

125

(a) Hotel- moderate click sparsity

(b) Bank 1- extreme click sparsity

(c) Bank 2- extreme click sparsity

Figure 5.2:
Importance weighted CTR and lower confidence bounds for policies. Ranking
based approach gains 15-25 % in importance weighted CTR over RF based
approach on data with extreme click sparsity. Classifiers were trained after
class balancing.

126

APPENDICES

127

APPENDIX A

Proof(s) of Chapter II

Proof of Theorem.4

Proof for AP: As stated previously, documents pertaining to every query are sorted ac-

cording to relevance labels. We point out another critical property of AP (for that matter any

ranking measure). AP is only affected when scores of 2 documents, which have different

relevance levels, are not consistent with the relevance levels, as long as ranking is obtained

by sorting scores in descending order. That is, if Ri = Rj , then it does not matter whether

si > sj or si < sj . So, without loss of generality, we can always assume that within same

relevance class, the documents are sorted according to scores. That is, if Ri = Rj with

i < j, then si ≥ sj . The without loss of generality holds because SLAM is calculated

with knowledge of relevance and score vector. Thus, within same relevance class, we can

sort the documents according to their scores (effectively exchanging document identities),

without affecting SLAM loss.

Let R ∈ Rm be an arbitrary binary relevance vector, with r relevant documents and

m−r irrelevant documents in a list. AP loss is only incurred if at least 1 irrelevant document

is placed above at least 1 relevant document. With reference to φvSLAM in Eq. (2.9), for any

i ≥ r + 1 and ∀ j > i, we have 1(Ri > Rj) = 0, since Ri = Rj = 0. For any i ≥ r + 1

and ∀ j < i, 1(Ri > Rj) = 0 since documents are sorted according to relevance labels and

128

Ri = 0, Rj = 1. Thus, w.l.o.g., we can take vr+1, ..., vm = 0, since indicator in SLAM loss

will never turn on for i ≥ r + 1.

Let a score vector s be such that an irrelevant document j has the highest score among

m documents. Then, φvSLAM = v1(1 + sj − s1) + v2(1 + sj − s2) + ...+ vr(1 + sj − sr).

The maximum possible AP induced loss in case at least one irrelevant document has higher

score than all relevant documents is when all irrelevant documents outscore all relevant

documents. The AP loss in that case is: 1− 1
r
(1
m−r+1

+ 2
m−r+2

+ ..+ r
m−r+r). Since φvSLAM

has to upper bound AP ∀s (for each R) and since sj can be infinitesimally greater than all

other score components (thus, 1 + sj − si ∼ 1, ∀ i = 1, . . . , r), we need the following

equation for upper bound property to hold:

v1 + v2 + ...+ vr ≥ 1− 1
r
(1
m−r+1

+ 2
m−r+2

+ ..+ r
m−r+r).

Similarly, let a score vector s be such that an irrelevant document j has higher score

than all but the 1st relevant document. Then φvSLAM = v2(1 + sj − s2) + v3(1 + sj − s3) +

... + vr(1 + sj − sr). The maximum possible AP induced loss in this case occurs when

all irrelevant documents are placed above all relevant documents except the first relevant

document. The AP loss in that case is: 1− 1
r
(1 + 2

m−r+2
+ 3

m−r+3
+ ..+ r

m−r+r). Following

same line of logic for upper bounding as before, we get

v2 + v3 + ...+ vr ≥ 1− 1
r
(1 + 2

m−r+2
+ 3

m−r+3
+ ..+ r

m−r+r).

Likewise, if we keep repeating the logic, we get sequence of inequalities, with the last

inequality being

vr ≥ 1− 1
r
(r − 1 + r

m−r+r).

Now, it can be easily seen that our definition of vAP satisfies the inequalities.

Proof for NDCG:

We once again remind that π−1(i) means position of document i in permutation π.

Thus, if document i is placed at position j in π, then π−1(i) = j. Moreover, like AP, we

assume that R1 ≥ R2 ≥ . . . ≥ Rm and that within same relevance class, documents are

sorted according to score. We have a modified definition of NDCG, for k = m, which is

129

required for the proof:

NDCG(s, R) =
1

Z(R)

m∑
i=1

G(Ri)D(π−1
s (i)) (A.1)

where G(r) = 2r − 1, D(i) = 1
log2 (i+1)

, Z(R) = max
π

∑m
i=1 G(Ri)D(π−1(i)).

We begin the proof:

1− NDCG(s, R)

=
1

Z(R)

m∑
i=1

G(Ri)D(i)− 1

Z(R)

m∑
i=1

G(Ri)D(π−1
s (i))

=
1

Z(R)

m∑
i=1

G(Ri)
(
D(i)−D(π−1

s (i))
)

Now, D(i) = 1
log2(1+i)

is a decreasing function of i. D(i)−D(π−1
s (i)) is positive only

if i < π−1
s (i). This means that document i in the original list, is placed at position π−1

s (i),

which comes after i, by sorted order of score vector s. By the assumption that indices

of documents within same relevance class are sorted according to their scores, this means

that document i is outscored by another document (say with index k) with lower relevance

level. At that point, the function max(0, max
j=1,...,m

{1(Ri > Rj)(1 + sj − si)}) turns on with

value at least 1 (i.e., (1 + sk − si > 1)) and with weight vector vNDCG
i =

G(Ri)D(i)

Z(R)
. We

can now easily see the upper bound property.

130

APPENDIX B

Proof(s) of Chapter III

Proof of Theorem 15:

Proof. We will explicitly show that local observability condition fails by considering the

case when number of objects is m = 3. Specifically, action pair {σ1, σ2}, in Table 3.1

are neighboring actions, using Lemma 14 . Now every other action {σ3, σ4, σ5, σ6} either

places object 2 at top or object 3 at top. It is obvious that the set of probabilities for which

E[R(1)] ≥ E[R(2)] = E[R(3)] cannot be a subset of any C3, C4, C5, C6. From Def. 4, the

neighborhood action set of actions {σ1, σ2} is precisely σ1 and σ2 and contains no other

actions. By definition of signal matrices Sσ1 , Sσ2 and entries `1, `2 in Table 3.1 and 3.2,

we have,

Sσ1 = Sσ2 =

 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

`1 − `2 =

[
0 1 −1 0 0 1 −1 0

]
.

(B.1)

It is clear that `1 − `2 /∈ Col(S>σ1). Hence, Definition 5 fails to hold.

Proof of Theorem 19:

Proof. Full information feedback: Instead of top k feedback, assume that at end of each

round, after learner reveals its action, the full relevance vector R is revealed to the learner.

131

Since the knowledge of full relevance vector allows the learner to calculate the loss for

every action (SumLoss(σ,R), ∀ σ), the game is in full information setting, and the learner,

using the full information algorithm, will have an O(C
√
T) expected regret for SumLoss

(ignoring computational complexity). Here, C denotes parameter specific to the full infor-

mation algorithm used.

Blocking with full information feedback: We consider a blocked variant of the full

information algorithm. We still assume that full relevance vector is revealed at end of each

round. Let the time horizon T be divided into K blocks, i.e., {B1, . . . , BK}, of equal size.

Here, Bi = {(i− 1)(T/K) + 1, (i− 1)(T/K) + 2, (i− 1)T/K + 3, . . . , i(T/K)}. While

operating in a block, the relevance vectors revealed at end of each round are accumulated,

but not used to generate learner’s actions like in the “without blocking” variant. Assume at

the start of block Bi, there was some vector si−1 ∈ Rm. Then, at each round in the block,

the randomized full information algorithm exploits si−1 and outputs a permutation (basi-

cally maintains a distribution over actions, using si−1, and samples from the distribution).

At the end of a block, the average of the accumulated relevance vectors (Ravg
i) for the block

is used to update, as si−1 + Ravg
i , to get si for the next block. The process is repeated for

each block.

Formally, the full information algorithm creates distribution ρi over the actions, at be-

ginning of block Bi, exploiting information si−1. Thus, ρi ∈ ∆, where ∆ is the probability

simplex over m! actions. Note that ρi is a deterministic function of {Ravg
1 , . . . , Ravg

i−1}.

Since action σt, for t ∈ Bi, is generated according to distribution ρi (we will denote

this as σt ∼ ρi), and in block i, distribution ρi is fixed, we have

Eσt∼ρi [
∑
t∈[Bi]

SumLoss(σt, Rt)] =
∑
t∈Bi

ρi · [SumLoss(σ1, Rt), . . . , SumLoss(σm!, Rt)].

(dot product between 2 vectors of length m!).

132

Thus, the total expected loss of this variant of the full information problem is:

E
T∑
t=1

[SumLoss(σt, Rt)] =
K∑
i=1

Eσt∼ρi [
∑
t∈Bi

SumLoss(σt, Rt)]

=
K∑
i=1

∑
t∈Bi

ρi · [SumLoss(σ1, Rt), . . . , SumLoss(σm!, Rt)]

=
K∑
i=1

∑
t∈Bi

ρi · [σ−1
1 ·Rt, . . . , σ

−1
m! ·Rt)] By defn. of SumLoss

=
T

K

K∑
i=1

ρi · [σ−1
1 ·R

avg
i , . . . , σ−1

m! ·R
avg
i]

=
T

K

K∑
i=1

Eσi∼ρi [SumLoss(σi, R
avg
i)]

=
T

K
Eσ1∼ρ1,...,σK∼ρK

K∑
i=1

SumLoss(σi, R
avg
i) (B.2)

where Ravg
i =

∑
t∈Bi

Rt

T/K
. Note that, at end of every block i ∈ [K], ρi is updated to ρi+1.

By the regret bound of the full information algorithm, for K rounds of full information

problem, we have:

Eσ1∼ρ1,...,σK∼ρK
K∑
i=1

SumLoss(σi, R
avg
i) ≤ min

σ

K∑
i=1

SumLoss(σ,Ravg
i) + C

√
K

= min
σ

K∑
i=1

σ−1 ·Ravg
i + C

√
K

= min
σ

T∑
t=1

σ−1 · Rt

T/K
+ C
√
K

(B.3)

Now, since

min
σ

T∑
t=1

σ−1 · Rt

T/K
= min

σ

1

T/K

T∑
t=1

SumLoss(σ,Rt),

133

combining Eq. B.2 and Eq. B.3, we get:

T∑
t=1

Eσt∈ρi [SumLoss(σt, Rt)] ≤ min
σ

T∑
t=1

SumLoss(σ,Rt) + C
T√
K
. (B.4)

Blocking with top k feedback: However, in our top k feedback model, the learner

does not get to see the full relevance vector at each end of round. Thus, we form the

unbiased estimator R̂i of Ravg
i , using Lemma 25. That is, at start of each block, we choose

dm/ke time points uniformly at random, and at those time points, we output a random

permutation which places k distinct objects on top (refer to Algorithm 4). At the end of

the block, we form the vector R̂i which is the unbiased estimator of Ravg
i . Note that using

random vector R̂i instead of true Ravg
i introduces randomness in the distribution ρi itself

. But significantly, ρi is dependent only on information received up to the beginning of

block i and is independent of the information collected in the block. We show the exclusive

dependence as ρi(R̂1, R̂2, .., R̂i−1). Thus, for block i, we have:

Eσt∼ρi(R̂1,R̂2,..,R̂i−1)

∑
t∈[Bi]

SumLoss(σt, Rt)

=
T

K
Eσi∼ρi(R̂1,R̂2,..,R̂i−1)SumLoss(σi, R

avg
i)

(From Eq. B.2)

=
T

K
Eσi∼ρi(R̂1,R̂2,..,R̂i−1)ER̂iSumLoss(σi, R̂i)

(∵ SumLoss is linear in both arguments and R̂i is unbiased)

=
T

K
ER̂iEσi∼ρi(R̂1,R̂2,..,R̂i−1)SumLoss(σi, R̂i).

In the last step above, we crucially used the fact that, since random distribution ρi is in-

dependent of R̂i, the order of expectations is interchangeable. Taking expectation w.r.t.

134

R̂1, R̂2, .., R̂i−1, we get,

ER̂1,...,R̂i−1
Eσt∼ρi(R̂1,R̂2,..,R̂i−1)

∑
t∈[Bi]

SumLoss(σt, Rt)

=
T

K
ER̂1,...,R̂i−1,R̂i

Eσi∼ρi(R̂1,R̂2,..,R̂i−1)SumLoss(σi, R̂i).

(B.5)

Thus,

E
T∑
t=1

SumLoss(σt, Rt) = E
K∑
i=1

∑
t∈[Bi]

SumLoss(σt, Rt)

=
K∑
i=1

ER̂1,...,R̂i−1
Eσt∼ρi(R̂1,R̂2,..,R̂i−1)

∑
t∈[Bi]

SumLoss(σt, Rt)

=
T

K

K∑
i=1

ER̂1,...,R̂i−1,R̂i
Eσi∼ρi(R̂1,R̂2,..,R̂i−1)SumLoss(σi, R̂i)

(From Eq. B.5)

=
T

K
ER̂1,...,R̂K

Eσi∼ρi(R̂1,R̂2,..,R̂i−1)

K∑
i=1

SumLoss(σi, R̂i)

Now using Eq. B.3, we can upper bound the last term above as

≤ T

K
{ER̂1,...,R̂K

[min
σ

K∑
i=1

σ−1 · R̂i] + C
√
K}

≤ T

K
{min

σ

K∑
i=1

σ−1 ·Ravg
i + C

√
K}

(Jensen’s Inequality)

≤ min
σ

T∑
t=1

σ−1 ·Rt + C
T√
K

= min
σ

T∑
t=1

SumLoss(σ,Rt) + C
T√
K
.

Effect of exploration: Since in each block Bi, dm/ke rounds are reserved for explo-

ration, where we do not draw σt from distribution ρi, we need to account for it in our regret

135

bound. Exploration leads to an extra regret of CIdm/keK, where CI is a constant depend-

ing on the loss under consideration and specific full information algorithm used. The extra

regret is because loss in each of the exploration rounds is at most CI and there are a total

of dm/keK exploration rounds over all K blocks. Thus, overall regret :

E

[
T∑
t=1

SumLoss(σt, Rt)

]
−min

σ

T∑
t=1

SumLoss(σ,Rt) ≤ CIdm/keK + C
T√
K
. (B.6)

Now we optimize over K, to get K = CII T 2/3

dm/ke2/3
, and finally:

E

[
T∑
t=1

SumLoss(σt, Rt)

]
≤ min

σ

T∑
t=1

SumLoss(σ,Rt) + CIIIdm/ke1/3T 2/3 (B.7)

Proof of Corollary 20:

Proof. We only need to instantiate the constants C, CI , CII and CIII , from Theorem 19,

with respect to SumLoss and FTPL. FTPL has the following parameters in its regret bound,

for any online full information linear optimization problem: D is the `1 diameter of learner’s

action set, R is upper bound on difference between losses of 2 actions on same information

vector and A is the `1 diameter of the set of information vectors (adversary’s action set).

For SumLoss, it can be easily calculated that R =
∑m

i=1 σ
−1(i)R(i) = O(m2), D =∑m

i=1 σ
−1(i) = O(m2), and A =

∑m
i=1R(i) = O(m) .

FTPL gets O(
√
T) regret over T rounds when ε =

√
D

RAT
. Then, C = 2

√
DRA,

CI = R,CII =
(DA)1/3

R1/3
, CIII = (DA)1/3R2/3. Substituting the values of D,R,A, we

conclude.

Extension of results from SumLoss to DCG and Precision@n:

DCG: Due to structural differences, there are minor differences in definitions and

proofs of theorems for SumLoss and DCG. We give pointers in the in proving that local

136

observability condition fails to hold for DCG, when restricted to top 1 feedback. We can

skip the explicit proof of global observability, since the application of Algorithm 4 already

establishes that O(T 2/3) regret can be achieved.

With slight abuse of notations, the loss matrix L implicitly means gain matrix, where

entry in cell {i, j} of L is f(σi) ·g(Rj). The columns of feedback matrixH are expanded to

account for greater number of moves available to adversary (due to multi-graded relevance

vectors). In Definition 1, learner action i is optimal if `i · p ≥ `j · p, ∀j 6= i.

In Definition 2, the maximum number of distinct elements that can be in a row of H is

n+1. The signal matrix now becomes Si ∈ {0, 1}(n+1)×2m , where (Si)j,` = 1(Hi,` = j−1).

Local Observability Fails: Since we are trying to establish a lower bound, it is sufficient

to show it for binary relevance vectors, since the adversary can only be more powerful

otherwise.

In Lemma 13, proved for SumLoss, `i · p equates to f(σ) · E[R]. From definition of

DCG, and from the structure and properties of f(·), it is clear that `i · p is maximized under

the same condition, i.e, E[R(σi(1)] ≥ E[R(σi(2)] ≥ . . . ≥ E[R(σi(m)]. Thus, all actions

are Pareto-optimal.

Careful observation of Lemma 14 shows that it is directly applicable to DCG, in light

of extension of Lemma 13 to DCG.

Finally, just like in SumLoss, simple calculations with m = 3 and n = 1, in light of

Lemma 13 and 14, show that local observability condition fails to hold.

We show the calculations:

Sσ1 = Sσ2 =

 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

137

`σ1 =[0, 1/2, 1/ log2 3, 1/2 + 1/ log2 3, 1, 3/2,

1 + 1/ log2 3, 3/2 + 1/ log2 3]

`σ2 =[0, 1/ log2 3, 1/2, 1/2 + 1/ log2 3, 1, 1 + 1/ log2 3,

3/2, 3/2 + 1/ log2 3]

It is clear that `1 − `2 /∈ Col(S>σ1). Hence, Definition 5 fails to hold.

Proof of Corrolary 21

For DCG, the parameters of FTPL are: R =
∑m

i=1 f
s(σ−1(i))gs(R(i)) = O(m(2n −

1)), D =
∑m

i=1 f
s(σ−1(i)) = O(m), A =

∑m
i=1 g

s(R(i)) = O(m(2n − 1)). The proof

follows from substituting the values in CIII (can be followed from proof of Corollary 20).

Precision@n:

Proof of Corrolary 22

For Precision@n, the parameters of FTPL are: D =
∑m

i=1 f
s(σ−1(i)) = O(n), R =∑m

i=1 f
s(σ−1(i))gs(R(i)) = O(n), A =

∑m
i=1 g

s(R(i)) = O(m). The proof follows from

substituting the values in CIII (can be followed from proof of Corollary 20).

Non-existence of Sublinear Regret Bounds for NDCG, AP and AUC

We show via simple calculations that for the casem = 3, global observability condition

fails to hold for NDCG, when feedback is restricted to top ranked item, and relevance vec-

tors are restricted to take binary values. It should be noted that allowing for multi-graded

relevance vectors only makes the adversary more powerful; hence proving for binary rele-

vance vectors is enough.

The intuition behind failure to satisfy global observability condition is that theNDCG(σ,R)

= f(σ) · g(R), where where g(r) = R/Z(R) (see Sec.3.2.2). Thus, g(·) cannot be repre-

sented by univariate, scalar valued functions. This makes it impossible to write the differ-

ence between two rows of the loss matrix as linear combination of columns of (transposed)

138

signal matrices.

Similar intuitions hold for AP and AUC.

Proof of Lemma 23

Proof. We will first consider NDCG and then, AP and AUC.

NDCG:

The first and last row of Table 3.1, when calculated for NDCG, are:

`σ1 = [1, 1/2, 1/ log2 3, (1 + log2 3/2))/(1 + log2 3), 1, 3/(2(1 + 1/ log2 3)), 1, 1]

`σ6 = [1, 1, log2 2/ log2 3, 1, 1/2, 3/(2(1 + 1/ log2 3)), (1 + (log2 3)/2))/(1 + log2 3), 1]

We remind once again that NDCG is a gain function, as opposed to SumLoss.

The difference between the two vectors is:

`σ1 − `σ6 = [0,−1/2, 0,− log2 3/(2(1 + log2 3)), 1/2, 0, log2 3/(2(1 + log2 3)), 0].

The signal matrices are same as SumLoss:

Sσ1 = Sσ2 =

 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

Sσ3 = Sσ5 =

 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

Sσ4 = Sσ6 =

 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

It can now be easily checked that `σ1 − `σ6 does not lie in the (combined) column span

of the (transposed) signal matrices.

139

We show similar calculations for AP and AUC.

AP:

We once again take m = 3. The first and last row of Table 3.1, when calculated for AP,

is:
`σ1 = [1, 1/3, 1/2, 7/12, 1, 5/6, 1, 1]

`σ6 = [1, 1, 1/2, 1, 1/3, 5/6, 7/12, 1]

Like NDCG, AP is also a gain function.

The difference between the two vectors is:

`σ1 − `σ6 = [0,−2/3, 0,−5/12, 2/3, 0, 5/12, 0].

The signal matrices are same as in the SumLoss case:

Sσ1 = Sσ2 =

 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

Sσ3 = Sσ5 =

 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

Sσ4 = Sσ6 =

 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

It can now be easily checked that `σ1 − `σ6 does not lie in the (combined) column span

of the (transposed) signal matrices.

AUC:

For AUC, we will show the calculations form = 4. This is because global observability

does hold with m = 3, as the normalizing factors for all relevance vectors with non-trivial

140

mixture of 0 and 1 are same (i.e, when relevance vector has 1 irrelevant and 2 relevant

objects, and 1 relevant and 2 irrelevant objects, the normalizing factors are same). The

normalizing factor changes from m = 4 onwards; hence global observability fails.

Table 3.1 will be extended since m = 4. Instead of illustrating the full table, we point

out the important facts about the loss matrix table with m = 4 for AUC.

The 24 relevance vectors heading the columns are:

R1 = 0000, R2 = 0001, R3 = 0010, R4 = 0100, R5 = 1000, R6 = 0011, R7 =

0101, R8 = 1001, R9 = 0110, R10 = 1010, R11 = 1100, R12 = 0111, R13 =

1011, R14 = 1101, R15 = 1110, R16 = 1111.

We will calculate the losses of 1st and last (24th) action, where σ1 = 1234 and σ24 =

4321.

`σ1 = [0, 1, 2/3, 1/3, 0, 1, 3/4, 1/2, 1/2, 1/4, 0, 1, 2/3, 1/3, 0, 0]

`σ24 = [0, 0, 1/3, 2/3, 1, 0, 1/4, 1/2, 1/2, 3/4, 1, 0, 1/3, 2/3, 1, 0]

AUC, like SumLoss, is a loss function.

The difference between the two vectors is:

`σ1 − `σ24 = [0, 1, 1/3,−1/3,−1, 1, 1/2, 0, 0,−1/2,−1, 1, 1/3,−1/3,−1, 0].

The signal matrices for AUC with m = 4 will be slightly different. This is because

there are 24 signal matrices, corresponding to 24 actions. However, groups of 6 actions

will share the same signal matrix. For example, all 6 permutations that place object 1 first

will have same signal matrix, all 6 permutations that place object 2 first will have same

signal matrix, and so on. For simplicity, we denote the signal matrices as S1, S2, S3, S4,

where Si corresponds to signal matrix where object i is placed at top. We have:

141

S1 =

 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

S2 =

 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

S3 =

 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

S4 =

 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

It can now be easily checked that `σ1 − `σ24 does not lie in the (combined) column span

of transposes of S1, S2, S3, S4.

Proof of Lemma 25: We restate the lemma before giving the proof, for ease of reading:

Lemma 25: Let F : Rm 7→ Ra be a vector valued function, where m ≥ 1, a ≥ 1. For

a fixed x ∈ Rm, let k entries of x be observed at random. That is, for a fixed probability

distribution P and some random σ ∼ P(Sm), observed tuple is {σ, xσ(1), . . . , xσ(k)}. The

necessary condition for existence of an unbiased estimator of F (x), that can be constructed

from {σ, xσ(1), . . . , xσ(k)}, is that it should be possible to decompose F (x) over k (or less)

coordinates of x at a time. That is, F (x) should have the following structure:

F (x) =
∑

(i1,i2,...,i`)∈ mP`

hi1,i2,...,i`(xi1 , xi2 , . . . , xi`)

where ` ≤ k, mP` is ` permutations of m and h : R` 7→ Ra. Moreover, when F (x)

can be written in form of Eq 3.9 , with ` = k, an unbiased estimator of F (x), based on

142

{σ, xσ(1), . . . , xσ(k)}, is,

g(σ, xσ(1), . . . , xσ(k)) =

∑
(j1,j2,...,jk)∈Sk

hσ(j1),...,σ(jk)(xσ(j1), . . . , xσ(jk))∑
(j1,...,jk)∈Sk

p(σ(j1), . . . , σ(jk))

where Sk is the set of k! permutations of [k] and p(σ(1), . . . , σ(k)) is as in Eq 3.8 .

Proof. For a fixed x ∈ Rm and probability distribution P, let the random permutation be

σ ∼ P(Sm) and the observed tuple be {σ, xσ(1), . . . , xσ(k)}. Let Ĝ = G(σ, xσ(1), . . . , xσ(k))

be an unbiased estimator of F (x) based on the random observed tuple. Taking expectation,

we get:

F (x) = Eσ∼P
[
Ĝ
]

=
∑
π∈Sm

P(π)G(π, xπ(1), . . . , xπ(k))

=
∑

(i1,i2,...,ik)∈ mPk

∑
π∈Sm

P(π)1(π(1) = i1, π(2) = i2, . . . , π(k) = ik)G(π, xi1 , xi2 , . . . , xik)

We note that P(π) ∈ [0, 1] is independent of x for all π ∈ Sm. Then we can use the

following construction of function h(·):

hi1,i2,...,ik(xi1 , . . . , xik) =
∑
π∈Sm

P(π)1(π(1) = i1, π(2) = i2, . . . , π(k) = ik)G(π, xi1 , xi2 , . . . , xik)

and thus,

F (x) =
∑

(i1,i2,...,ik)∈ mPk

hi1,i2,...,ik(xi1 , xi2 , . . . , xi)

Hence, we conclude that for existence of an unbiased estimator based on the random ob-

served tuple, it should be possible to decompose F (x) over k (or less) coordinates of

x at a time. The “less than k” coordinates arguement follows simply by noting that if

F (x) can be decomposed over ` coordinates at a time (` < k) and observation tuple is

{σ, xσ(1), . . . , xσ(k))}, then any k− ` observations can be thrown away and the rest used for

construction of the unbiased estimator.

143

The construction of the unbiased estimator proceeds as follows:

Let F (x) =
∑m

i=1 hi(xi) and feedback is for top-1 item (k = 1). The unbiased estimator

according to Lemma. 25 is:

g(σ, xσ(1)) =
hσ(1)(xσ(1))

p(σ(1))
=

hσ(1)(xσ(1))∑
π P(π)1(π(1) = σ(1))

Taking expectation w.r.t. σ, we get:

Eσ[g(σ, xσ(1))] =
m∑
i=1

hi(xi)(
∑

π P(π)1(π(1) = i))∑
π P(π)1(π(1) = i)

=
m∑
i=1

hi(xi) = F (x)

Now, let F (x) =
m∑

i 6=j=1

hi,j(xi, xj) and the feedback is for top-2 item (k = 2). The

unbiased estimator according to Lemma. 25 is:

g(σ, xσ(1), xσ(2)) =
hσ(1),σ(2)(xσ(1), xσ(2)) + hσ(2),σ(1)(xσ(2), xσ(1))

p(σ(1), σ(2)) + p(σ(2), σ(1))

We will use the fact that for any 2 permutations σ1, σ2, which places the same 2 objects

in top-2 positions but in opposite order, estimators based on σ1 (i.e, g(σ1, xσ1(1), xσ1(2))) and

σ2 (i.e, g(σ2, xσ2(1), xσ2(2))) have same numerator and denominator. For eg., let σ1(1) =

i, σ1(2) = j. Numerator and denominator for g(σ1, xσ1(1), xσ1(2)) are hi,j(xi, xj)+hj,i(xj, xi)

and p(i, j)+p(j, i) respectively. Now let σ2(1) = j, σ2(2) = i. Then numerator and denom-

inator for g(σ2, xσ2(1), xσ2(2)) are hj,i(xj, xi) +hi,j(xi, xj) and p(j, i) + p(i, j) respectively.

Then, taking expectation w.r.t. σ, we get:

Eσg(σ, xσ(1), xσ(2)) =
m∑

i 6=j=1

(hi,j(xi, xj) + hj,i(xj, xi))p(i, j)

p(i, j) + p(j, i)

=
m∑

i>j=1

(hi,j(xi, xj) + hj,i(xj, xi))(p(i, j) + p(j, i))

p(i, j) + p(j, i)

=
m∑

i>j=1

(hi,j(xi, xj) + hj,i(xj, xi)) =
m∑

i 6=j=1

hi,j(xi, xj) = F (x)

144

This chain of logic can be extended for any k ≥ 3. Explicitly, for general k ≤ m, let

S(i1, i2, . . . , ik) denote all permutations of the set {i1, . . . , ik}. Then, taking expectation of

the unbiased estimator will give:

Eσg(σ, xσ(1), . . . , xσ(k))

=
∑

(i1,i2,...,ik)∈ mPk

(∑
(j1,...,jk)∈S(i1,...,ik)

hj1,...,jk(xj1 , . . . , xjk)

)
p(i1, . . . , ik)∑

(j1,...,jk)∈S(i1,...,ik)

p(j1, . . . , jk)

=
m∑

i1>i2>...>ik=1

(∑
(j1,...,jk)∈S(i1,...,ik)

hj1,...,jk(xj1 , . . . , xjk)

)(∑
(j1,...,jk)∈S(i1,...,ik)

p(j1, . . . , jk)

)
∑

(j1,...,jk)∈S(i1,...,ik)

p(j1, . . . , jk)

=
m∑

i1>i2>...>ik=1

 ∑
(j1,...,jk)∈S(i1,...,ik)

hj1,...,jk(xj1 , . . . , xjk)

=

∑
(i1,i2,...,ik)∈ mPk

hi1,i2,...,ik(xi1 , xi2 , . . . , xik) = F (x)

Note: For k = m, i.e., when the full feedback is received, the unbiased estimator is:

g(σ, xσ(1), . . . , xσ(m)) =

∑
(j1,j2,...,jm)∈Sm

hσ(j1),...,σ(jm)(xσ(j1), . . . , xσ(jm))∑
(j1,...,jm)∈Sm

p(σ(j1), . . . , σ(jm))

=

∑
(i1,i2,...,im)∈ mPm

hi1,...,im(xi1 , . . . , xim)

1
= F (x)

Hence, with full information, the unbiased estimator of F (x) is actually F (x) itself,

which is consistent with the theory of unbiased estimator.

Proof of Lemma 29 :

145

Proof. All our unbiased estimators are of the form X>f(s, R, σ). We will actually get a

bound on f(s, R, σ) by using Lemma 28 and p→ q norm relation, to equate out X:

‖z̃‖2 = ‖X>f(s, R, σ)‖2 ≤ ‖X>‖1→2‖f(s, R, σ)‖1 ≤ RD‖f(s, R, σ)‖1

since RD ≥ maxmj=1 ‖Xj:‖2.

Squared Loss: The unbiased estimator of gradient of squared loss, as given in the main

text, is:

z̃ = X>(2(s−
R(σ(1))eσ(1)

p(σ(1))
))

where p(σ(1)) =
∑

π∈Sm P(π)1(π(1) = σ(1)) (P = Pt is the distribution at round t as in

Algorithm 5)

Now we have:

‖s−
R(σ(1))eσ(1)

p(σ(1))
‖1 ≤ mRDU +

Rmax

p(σ(1))
≤ mRDURmax

p(σ(1)

Thus, taking expectation w.r.t σ, we get:

Eσ‖z̃‖2
2 ≤ m2R4

DU
2R2

maxEσ
1

p(σ(1))2
= m2R4

DU
2R2

max

m∑
i=1

p(i)

p2(i)

Now, since p(i) ≥ γ

m
, ∀ i, we get: Eσ‖z̃‖2

2 ≤
Csq

γ
, where Csq = m4R4

DU
2R2

max.

RankSVM Surrogate: The unbiased estimator of gradient of the RankSVM surrogate,

as given in the main text, is:

z̃ = X>
(
hs,σ(1),σ(2)(R(σ(1)), R(σ(2))) + hs,σ(2),σ(1)(R(σ(2)), R(σ(1)))

p(σ(1), σ(2)) + p(σ(2), σ(1))

)

where hs,i,j(R(i), R(j)) = 1(R(i) > R(j))1(1+s(j) > s(i))(ej−ei) and p(σ(1), σ(2)) =∑
π∈Sm

P(π)1(π(1) = σ(1), π(2) = σ(2)) (P = Pt as in Algorithm 5)).

146

Now we have:

‖
hs,σ(1),σ(2)(Rσ(1), Rσ(2)) + hs,σ(2),σ(1)(Rσ(2), Rσ(1))

p(σ(1), σ(2)) + p(σ(2), σ(1))
‖1 ≤

2

p(σ(1), σ(2)) + p(σ(2), σ(1))

Thus, taking expectation w.r.t σ, we get:

Eσ‖z̃‖2
2 ≤ 4R2

DEσ
1

(p(σ(1), σ(2)) + p(σ(2), σ(1)))2
≤ 4R2

D

m∑
i>j

p(i, j) + p(j, i)

(p(i, j) + p(j, i))2

Now, since p(i, j) ≥ γ

m2
, ∀ i, j, we get: Eσ‖z̃‖2

2 ≤
Csvm

γ
, where Csvm = O(m4R2

D).

KL based Surrogate: The unbiased estimator of gradient of the KL based surrogate,

as given in the main text, is:

z̃ = X>
(

(exp(s(σ(1)))− exp(R(σ(1))))eσ(1)

p(σ(1))

)

where p(σ(1)) =
∑

π∈Sm P(π)1(π(1) = σ(1)) (P = Pt as in Alg. 5)).

Now we have:

‖
(exp(s(σ(1)))− exp(R(σ(1))))eσ(1)

p(σ(1))
‖1 ≤

exp(RDU)

p(σ(1))

Thus, taking expectation w.r.t σ, we get:

Eσ‖z̃‖2
2 ≤ R2

D exp(2RDU)Eσ
1

p(σ(1))2

Following the same arguement as in squared loss, we get: Eσ‖z̃‖2
2 ≤

CKL

γ
, where CKL =

m2R2
D exp(2RDU).

Proof of Lemma 26 :

Proof. Let m = 3. Collection of all terms which are functions of 1st coordinate of R,

147

i.e, R(1), in the gradient of RankSVM is: 1(R(1) > R(2))1(1 + s(2) > s(1))(e2 − e1) +

1(R(2) > R(1))1(1+s(1) > s(2))(e1−e2) + 1(R(1) > R(3))1(1+s(3) > s(1))(e3−e1)

+ 1(R(3) > R(1))1(1 + s(1) > s(3))(e1 − e3). Now let s(1) = 1, s(2) = 0, s(3) = 0.

Then the collection becomes: 1(R(2) > R(1))(e1 − e2) + 1(R(3) > R(1))(e1 − e3) =

(1(R(2) > R(1)) + 1(R(3) > R(1)))e1 − 1(R(2) > R(1))e2 − 1(R(3) > R(1))e3.

Now, if the gradient can be decomposed over each coordinate of R, then the collection

of terms associated with R(1) should only and only be a function of R(1). Specifically,

(1(R(2) > R(1)) + 1(R(3) > R(1))) (the non-zero coefficient of e1) should be a function

of only R(1) (similarly for e2 and e3).

Now assume that the (1(R(2) > R(1)) +1(R(3) > R(1))) can be expressed as a func-

tion of R(1) only. Then the difference between the coefficient’s values, for the following

two cases: R(1) = 0, R(2) = 0, R(3) = 0 and R(1) = 1, R(2) = 0, R(3) = 0, would

be same as the difference between the coefficient’s values, for the following two cases:

R(1) = 0, R(2) = 1, R(3) = 1 and R(1) = 1, R(2) = 1, R(3) = 1 (Since the difference

would be affected only by change in R(1) value). It can be clearly seen that the change

in value between the first two cases is: 0 − 0 = 0, while the change in value between the

second two cases is: 2− 0 = 2. Thus, we reach a contradiction.

Proof of Lemma 27 :

Proof. The term associated with the 1st coordinate of R, i.e, R(1), in the gradient of List-

Net is =
∑m

i=1

(
− exp(R(i))∑m
j=1 exp(R(j))

+
exp(s(i))∑m
j=1 exp(s(j))

)
ei (in fact, the same term is associ-

ated with every coordinate of R).

Specifically, f(R) =

(
− exp(R(1))∑m
j=1 exp(R(j))

+
exp(s1)∑m

j=1 exp(s(j))

)
is the non-zero coeffi-

cient of e1, associated with R(1). Now, if f(R) would have only been a function of R(1),

then
∂2f(R)

∂R(1)∂R(j)
, ∀ j 6= 1 would have been zero. It can be clearly seen this is not the case.

Now, the term associated jointly with R(1) and R(2), in the gradient of ListNet is same

as before, i.e,
∑m

i=1

(
− exp(R(i))∑m
j=1 exp(R(j))

+
exp(s(i))∑m
j=1 exp(s(j))

)
ei (since R(1) and R(2) are

148

present in all the summation terms of the gradient).

Specifically, f(R) =

(
− exp(R(i))∑m
j=1 exp(R(j))

+
exp(s(i))∑m
j=1 exp(s(j))

)
is the non-zero coef-

ficient of e1. Now, if f(R) would have only been a function of R(1) and R(2), then
∂3f(R)

∂R(1)∂R(2)∂R(j)
, ∀j 6= 1, j 6= 2 would have been zero. It can be clearly seen this is

not the case.

The same argument can be extended for any k < m.

Proof of Theorem. 32:

Proof. We will first fix the setting of the online game. We consider m = 3 and fixed the

document matrix X ∈ R3×3 to be the identity. At each round of the game, the adversary

generates the fixed X and the learner chooses a score vector s ∈ R3. Making the matrix

X identity makes the distinction between weight vectors w and scores s irrelevant since

s = Xw = w. We note that allowing the adversary to vary X over the rounds only makes

him more powerful, which can only increase the regret. We also restrict the adversary to

choose binary relevance vectors. Once again, allowing adversary to choose multi-graded

relevance vectors only makes it more powerful. Thus, in this setting, the adversary can

now choose among 23 = 8 possible relevance vectors. The learner’s action set is infinite,

i.e., the learner can choose any score vector s = Xw = Rm. The loss function φ(s, R) is

any NDCG calibrated surrogate and feedback is the relevance of top-ranked item at each

round, where ranking is induced by sorted order (descending) of score vector. We will use

p to denote randomized adversary one-short strategies, i.e. distributions over the 8 possible

relevance score vectors. Let s∗p = argmins ER∼pφ(s, R). We note that in the definition of

NDCG calibrated surrogates, Ravikumar et al. (2011) assume that the optimal score vector

for each distribution over relevance vectors is unique and we subscribe to that assumption.

The assumption was taken to avoid some boundary conditions.

It remains to specify the choice of U , a bound on the Euclidean norm of the weight

149

vectors (same as score vectors for us right now) that is used to define the best loss in

hindsight. It never makes sense for the learner to play anything outside the set ∪ps∗p so that

we can set U = max{‖s‖2 : s ∈ ∪ps∗p}.

The paragraph following Lemma 6 of Thm. 3 in Piccolboni and Schindelhauer (2001b)

gives the main intuition behind the argument the authors developed to prove hopelessness

of finite action partial monitoring games. To make our proof self contained, we will explain

the intuition in a rigorous way.

Key insight: Two adversary strategies p, p̃ are said to be indistinguishable from the

learner’s feedback perspective, if for every action of the learner, the probability distribution

over the feedbacks received by learner is the same for p and p̃. Now assume that adversary

always selects actions according to one of the two such indistinguishable strategies. Thus,

the learner will always play one of s∗p and s∗p̃. By uniqueness, s∗p 6= s∗p̃. Then, the learner

incurs a constant (non-zero) regret on any round where adversary plays according to p and

learner plays s∗p̃, or if the adversary plays according to p̃ and learner plays s∗p. We show that

in such a setting, adversary can simply play according to (p + p̃)/2 and the learner suffers

an expected regret of Ω(T).

Assume that the adversary selects {R1, . . . , RT} from product distribution ⊗p. Let

the number of times the learner plays s∗p and s∗p̃ be denoted by random variables Np
1 and

Np
2 respectively, where Np shows the exclusive dependence on p. It is always true that

Np
1 + Np

2 = T . Moreover, let the expected per round regret be εp when learner plays

s∗p̃ , where the expectation is taken over the randomization of adversary. Now, assume that

adversary selects {R1, . . . , RT} from product distribution⊗p̃. The corresponding notations

become N p̃
1 and N p̃

2 and εp̃. Then,

E(R1,...,RT)∼⊗pE(s1,...,sT)[Regret((s1, . . . , sT), (R1, . . . , RT))] = 0 · E[Np
1] + εp · E[Np

2]

150

and

E(R1,...,RT)∼⊗p̃E(s1,...,sT)[Regret((s1, . . . , sT), (R1, . . . , RT))] = εp̃ · E[N p̃
1] + 0 · E[N p̃

2]

Since p and p̃ are indistinguishable from perspective of learner, E[Np
1] = E[N p̃

1] = E[N1]

and E[Np
2] = E[N p̃

2] = E[N2]. That is, the random variable denoting number of times s∗p is

played by learner does not depend on adversary distribution (same for s∗p̃.). Using this fact

and averaging the two expectations, we get:

E(R1,...,RT)∼⊗p+⊗p̃
2

E(s1,...,sT)[Regret((s1, . . . , sT), (R1, . . . , RT))] =
εp̃
2
· E[N1] +

εp
2
· E[N2]

≥ min(
εp
2
,
εp̃
2

) · E[N1 +N2] = ε · T

Since

sup
R1,...,RT

E[Regret((s1, . . . , sT), (R1, . . . , RT))] ≥

E(R1,...,RT)∼⊗p+⊗p̃
2

E(s1,...,sT)[Regret((s1, . . . , sT), (R1, . . . , RT))]

we conclude that for every learner algorithm, adversary has a strategy, s.t. learner suffers

an expected regret of Ω(T).

Now, the thing left to be shown is the existence of two indistinguishable distributions p

and p̃, s.t. s∗p 6= s∗p̃.

Characterization of indistinguishable strategies in our problem setting: Two ad-

versary’s strategies p and p̃ will be indistinguishable, in our problem setting, if for every

score vector s, the relevances of the top-ranked item, according to s, are same for rel-

evance vector drawn from p and p̃. Since relevance vectors are restricted to be binary,

mathematically, it means that ∀s, PR∼p(R(πs(1)) = 1) = PR∼p̃(R(πs(1)) = 1) (actu-

ally, we also need ∀s, PR∼p(R(πs(1)) = 0) = PR∼p̃(R(πs(1)) = 0), but due to the

binary nature, PR∼p(R(πs(1)) = 1) = PR∼p̃(R(πs(1)) = 1) =⇒ PR∼p(R(πs(1)) =

0) = PR∼p̃(R(πs(1)) = 0)). Since the equality has to hold ∀s, this implies ∀j ∈ [m],

151

Table B.1: Relevance and probability vectors.
p 0.0 0.1 0.15 0.05 0.2 0.3 0.2 0.0
p̃ 0.0 0.3 0.0 0.0 0.15 0.15 0.4 0.0

Rel. R1 R2 R3 R4 R5 R6 R7 R8

0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

PR∼p(R(j) = 1) = PR∼p̃(R(j) = 1) (as every item will be ranked at top by some score

vector). Hence, ∀j ∈ [m], ER∼p[R(j)] = ER∼p̃[R(j)] =⇒ ER∼p[R] = ER∼p̃[R]. It can be

seen clearly that the chain of implications can be reversed. Hence, ∀s, PR∼p(R(πs(1)) =

1) = PR∼p̃(R(πs(1)) = 1)⇐⇒ ER∼p[R] = ER∼p̃[R].

Explicit adversary strategies: Following from the discussion so far and Theorem 31, if

we can show existence of two strategies p and p̃ s.t. ER∼p[R] = ER∼p̃[R], but argsort
(
ER∼p

[
G(R)
Z(R)

])
6=

argsort
(
ER∼p̃

[
G(R)
Z(R)

])
, we are done.

The 8 possible relevance vectors (adversary’s actions) are (R1, R2, R3, R4, R5, R6, R7, R8) =

(000, 110, 101, 011, 100, 010, 001, 111). Let the two probability vectors be:

p = (0.0, 0.1, 0.15, 0.05, 0.2, 0.3, 0.2, 0.0)

p̃ = (0.0, 0.3, 0.0, 0.0, 0.15, 0.15, 0.4, 0.0).

The data is provided in table format in Table. B.1.

Under the two distributions, it can be checked that ER∼p[R] = ER∼p̃[R] = (0.45, 0.45, 0.4)>.

However, ER∼p
[
G(R)
Z(R)

]
= (0.3533, 0.3920, 0.3226)>, but ER∼p̃

[
G(R)
Z(R)

]
= (0.3339, 0.3339, 0.4000)>.

Hence, argsort
(
ER∼p

[
G(R)
Z(R)

])
= [2, 1, 3]> but argsort

(
ER∼p̃

[
G(R)
Z(R)

])
∈ {[3, 1, 2]>, [3, 2, 1]>}.

152

APPENDIX C

Proof(s) of Chapter IV

Proof of Proposition 1

Proof. Let ej’s denote standard basis vectors. We have

∇sφLN(s, y) = −
m∑
j=1

Pj(y)ej +
m∑
j=1

exp(sj)∑m
j′=1 exp(sj′)

ej

Therefore,

‖∇sφLN(s, y)‖1 ≤
m∑
j=1

Pj(y)‖ej‖1 +
m∑
j=1

exp(sj)∑m
j′=1 exp(sj′)

‖ej‖1

= 2.

We also have

[∇2
sφLN(s, y)]j,k =

− exp(2sj)

(
∑m
j′=1 exp(sj′))

2 +
exp(sj)∑m

j′=1 exp(sj′)
if j = k

− exp(sj+sk)

(
∑m
j′=1 exp(sj′))

2 if j 6= k .

153

Moreover,

‖∇2
sφLN(s, y)‖∞→1 ≤

m∑
j=1

m∑
k=1

|[∇2
sφLN(s, y)]j,k|

≤
m∑
j=1

m∑
k=1

exp(sj + sk)

(
∑m

j′=1 exp(sj′))2
+

m∑
j=1

exp(sj)∑m
j′=1 exp(sj′)

=
(
∑m

j=1 exp(sj))
2

(
∑m

j′=1 exp(sj′))2
+

∑m
j=1 exp(sj)∑m
j′=1 exp(sj′)

= 2

Proof of Proposition 2

Proof. Let 1(condition) denote an indicator variable. We have

[∇sφSD(s, y)]j = D(1)

(
m∑
i=1

G(ri)

[
1

σ

exp(si/σ)∑
j′ exp(sj′/σ)

1(i=j) −
1

σ

exp((si + sj)/σ)

(
∑

j′ exp(sj′/σ))2

])

Therefore,

‖∇sφSD(s, y)‖1

D(1)G(Ymax)
≤

m∑
j=1

(
m∑
i=1

[
1

σ

exp(si/σ)∑
j′ exp(sj′/σ)

1(i=j) +
1

σ

exp((si + sj)/σ)

(
∑

j′ exp(sj′/σ))2

])

=
1

σ

(∑
j exp(sj/σ)∑
j′ exp(sj′/σ)

+
(
∑

j exp(sj/σ))2

(
∑

j′ exp(sj′/σ))2

)

=
2

σ
.

RankSVM

The RankSVM surrogate is defined as:

φRS(s, y) =
m∑
i=1

m∑
j=1

max(0, 1(yi>yj)(1 + sj − si))

154

It is easy to see that∇sφRS(s, y) =
∑m

i=1

∑m
j=1 max(0, 1(yi>yj)(1 + sj − si))(ej − ei).

Thus, the `1 norm of gradient is O(m2) .

Proof of Theorem 33

Proof. It is straightforward to check that F ′lin is contained in both Ffull as well as Fperminv.

So, we just need to prove that any f that is in both Ffull and Fperminv has to be in F ′lin as

well.

Let Pπ denote the m ×m permutation matrix corresponding to a permutation π. Con-

sider the full linear class Ffull. In matrix notation, the permutation invariance property

means that, for any π,X , we have Pπ[〈X,W1〉 , . . . , 〈X,Wm〉〉]> = [〈PπX,W1〉 , . . . , 〈PπX,Wm〉]>.

Let ρ1 = {Pπ : π(1) = 1}, where π(i) denotes the index of the element in the ith

position according to permutation π. Fix any P ∈ ρ1. Then, for any X , 〈X,W1〉 =

〈PX,W1〉. This implies that, for all X , Tr(W1
>X) = Tr(W1

>PX). Using the fact that

Tr(A>X) = Tr(B>X),∀X implies A = B, we have that W1
> = W1

>P . Because

P> = P−1, this means PW1 = W1. This shows that all rows of W1, other than 1st row,

are the same but perhaps different from 1st row. By considering ρi = {Pπ : π(i) = i} for

i > 1, the same reasoning shows that, for each i, all rows of Wi, other than ith row, are the

same but possibly different from ith row.

Let ρ1↔2 = {Pπ : π(1) = 2, π(2) = 1}. Fix any P ∈ ρ1↔2. Then, for any X ,

〈X,W2〉 = 〈PX,W1〉 and 〈X,W1〉 = 〈PX,W2〉. Thus, we have W>
2 = W>

1 P as well

as W>
1 = W>

2 P which means PW2 = W1, PW1 = W2. This shows that row 1 of W1

and row 2 of W2 are the same. Moreover, row 2 of W1 and row 1 of W2 are the same.

Thus, for some u, u′ ∈ Rd, W1 is of the form [u|u′|u′| . . . |u′]> and W2 is of the form

[u′|u|u′| . . . |u′]>. Repeating this argument by considering ρ1↔i for i > 2 shows that Wi is

of the same form (u in row i and u′ elsewhere).

Therefore, we have proved that any linear map that is permutation invariant has to be

155

of the form:

X 7→

(
u>Xi + (u′)>

∑
j 6=i

Xj

)m

i=1

.

We can reparameterize above using w = u− u′ and v = u′ which proves the result.

Proof of Lemma 34

Proof. The first equality is true because

‖X>‖1→p = sup
v 6=0

‖X>v‖p
‖v‖1

= sup
v 6=0

sup
u6=0

〈
X>v, u

〉
‖v‖1‖u‖q

= sup
u6=0

sup
v 6=0

〈v,Xu〉
‖v‖1‖u‖q

= sup
u6=0

‖Xu‖∞
‖u‖q

= ‖X‖q→∞.

The second is true because

‖X‖q→∞ = sup
u6=0

‖Xu‖∞
‖u‖q

= sup
u6=0

m
max
j=1

| 〈Xj, u〉 |
‖u‖q

=
m

max
j=1

sup
u6=0

| 〈Xj, u〉 |
‖u‖q

=
m

max
j=1
‖Xj‖p.

Proof of Theorem 36 Our theorem is developed from the “expectation version” of

Theorem 6 of Shalev-Shwartz et al. (2009) that was originally given in probabilistic form.

The expected version is as follows.

LetZ be a space endowed with a probability distribution generating iid drawsZ1, . . . , Zn.

LetW ⊆ Rd and f :W ×Z → R be λ-strongly convex1 and G-Lipschitz (w.r.t. ‖ · ‖2) in

w for every z. We define F (w) = Ef(w,Z) and let

w? = argmin
w∈W

F (w),

ŵ = argmin
w∈W

1

n

n∑
i=1

f(w,Zi).

1Recall that a function is called λ-strongly convex (w.r.t. ‖ · ‖2) iff f − λ
2 ‖ · ‖

2
2 is convex.

156

Then EF (ŵ)− F (w?) ≤ 4G2

λn
, where the expectation is taken over the sample. The

above inequality can be proved by carefully going through the proof of Theorem 6 proved

by Shalev-Shwartz et al. (2009).

We now derive the “expectation version” of Theorem 7 of Shalev-Shwartz et al. (2009).

Define the regularized empirical risk minimizer as follows:

ŵλ = argmin
w∈W

λ

2
‖w‖2

2 +
1

n

n∑
i=1

f(w,Zi). (C.1)

The following result gives optimality guarantees for the regularized empirical risk mini-

mizer.

Theorem 45. Let W = {w : ‖w‖2 ≤ W2} and let f(w, z) be convex and G-Lipschitz

(w.r.t. ‖ · ‖2) in w for every z. Let Z1, ..., Zn be iid samples and let λ =

√
4G2

n
W2

2
2

+
4W2

2
n

. Then

for ŵλ and w? as defined above, we have

EF (ŵλ)− F (w?) ≤ 2GW2

(
8

n
+

√
2

n

)
. (C.2)

Proof. Let rλ(w, z) = λ
2
‖w‖2

2 + f(w, z). Then rλ is λ-strongly convex with Lipschitz

constant λW2 + G in ‖ · ‖2. Applying “expectation version” of Theorem 6 of Shalev-

Shwartz et al. (2009) to rλ, we get

E
λ

2
‖ŵλ‖2

2 + F (ŵλ) ≤ min
w∈W

{
λ

2
‖w‖2

2 + F (w)

}
+

4(λW2 +G)2

λn
≤ λ

2
‖w?‖2

2+F (w∗)+
4(λW2 +G)2

λn
.

Thus, we get

EF (ŵλ)− F (w?) ≤ λW 2
2

2
+

4(λW2 +G)2

λn
.

Minimizing the upper bound w.r.t. λ, we get λ =
√

4G2

n

√
1

W2
2
2

+
4W2

2
n

. Plugging this choice

back in the equation above and using the fact that
√
a+ b ≤

√
a+
√
b finishes the proof of

Theorem 45.

157

We now have all ingredients to prove Theorem 36.

Proof of Theorem 36. Let Z = X × Y and f(w, z) = φ(Xw, y) and apply Theorem 45.

Finally note that if φ isGφ-Lipschitz w.r.t. ‖·‖∞ and every row ofX ∈ Rm×d has Euclidean

norm bounded by RX then f(·, z) is GφRX-Lipschitz w.r.t. ‖ · ‖2 in w.

Proof of Theorem 40

Proof. Following exactly the same line of reasoning (reducing a sample of size n, where

each prediction is Rm-valued, to an sample of size mn, where each prediction is real val-

ued) as in the beginning of proof of Proposition 3, we have

N∞(ε, φ ◦ F1, n) ≤ N∞(ε/Gφ,G1,mn). (C.3)

Plugging in the following bound due to Zhang (2002, Corollary 5):

log2N∞(ε/Gφ,G1,mn) ≤

⌈
288G2

φW
2
1 R̄

2
X (2 + ln d)

ε2

⌉

× log2

(
2d8GφW1R̄X/εemn+ 1

)
into (C.3) respectively proves the result.

Calculations involved in deriving Equation (4.8)

Plugging in the value of η from (4.7) into the expression

Lφ(w?)

(1− 4ηH)
+

W 2
2

2η(1− 4ηH)n

yields (using the shorthand L? for Lφ(w?))

L?+
2HW2L

?√
4H2W 2

2 + 2HL?n
+
W2

n

[
4H2W 2

2√
4H2W 2

2 + 2HL?n
+
√

4H2W 2
2 + 2HL?n+ 4HW2

]

158

Denoting HW 2
2 /n by x, this simplifies to

L? +
2
√
xL? + 4x

√
x√

4x+ 2L?
+
√
x
√

4x+ 2L? + 4x.

Using the arithmetic mean-geometric mean inequality to upper bound the middle two terms

gives

L? + 2
√

2xL? + 4x2 + 4x.

Finally, using
√
a+ b ≤

√
a+
√
b, we get our final upper bound

L? + 2
√

2xL? + 8x.

Calculation of smoothness constant

‖(X(i))>∇2
sφ(X(i)w, y(i))X(i)‖2→2 = sup

v 6=0

‖(X(i))>∇2
sφ(X(i)w, y(i))X(i)v‖2

‖v‖2

≤ sup
v 6=0

‖(X(i))>‖1→2‖∇2
sφ(X(i)w, y(i))X(i)v‖1

‖v‖2

≤ sup
v 6=0

‖(X(i))>‖1→2 · ‖∇2
sφ(X(i)w, y(i))‖∞→1 · ‖X(i)v‖∞
‖v‖2

≤ sup
v 6=0

‖(X(i))>‖1→2 · ‖∇2
sφ(X(i)w, y(i))‖∞→1 · ‖X(i)‖2→∞ · ‖v‖2

‖v‖2

≤
(

m
max
j=1
‖X(i)

j ‖
)2

· ‖∇2
sφ(X(i)w, y(i))‖∞→1

≤ R2
X‖∇2

sφ(X(i)w, y(i))‖∞→1.

Proof of Lemma 42

Proof. Consider the function

f(t) = φ((1− t)s1 + ts2).

159

It is clearly non-negative. Moreover

|f ′(t1)− f ′(t2)| = | 〈∇sφ(s1 + t1(s2 − s1))−∇sφ(s1 + t2(s2 − s1)), s2 − s1〉 |

≤ |||∇sφ(s1 + t1(s2 − s1))−∇sφ(s1 + t2(s2 − s1))|||? · |||s2 − s1|||

≤ Hφ |t1 − t2| |||s2 − s1|||2

and therefore it is smooth with constant h = Hφ|||s2− s1|||2. Appealing to Lemma 41 now

gives

(f(1)− f(0))2 ≤ 6Hφ|||s2 − s1|||2(f(1) + f(0))(1− 0)2

which proves the lemma since f(0) = φ(s1) and f(1) = φ(s2).

Proof of Proposition 5

Proof. Let w,w′ ∈ Fφ,2(r). Using Lemma 42

n∑
i=1

1

n

(
φ(X(i)w, y(i))− φ(X(i)w′, y(i))

)2

≤ 6Hφ

n∑
i=1

1

n

(
φ(X(i)w, y(i)) + φ(X(i)w′, y(i))

)
· ‖X(i)w −X(i)w′‖2

∞

≤ 6Hφ ·
n

max
i=1
‖X(i)w −X(i)w′‖2

∞

·
n∑
i=1

1

n

(
φ(X(i)w, y(i)) + φ(X(i)w′, y(i))

)
= 6Hφ ·

n
max
i=1
‖X(i)w −X(i)w′‖2

∞ ·
(
L̂φ(w) + L̂φ(w′)

)
≤ 12Hφr ·

n
max
i=1
‖X(i)w −X(i)w′‖2

∞.

where the last inequality follows because L̂φ(w) + L̂φ(w′) ≤ 2r.

This immediately implies that if we have a cover of the class G2 at scale ε/
√

12Hφr

160

w.r.t. the metric
n

max
i=1

m
max
j=1

∣∣∣〈X(i)
j , w

〉
−
〈
X

(i)
j , w′

〉∣∣∣
then it is also a cover of Fφ,2(r) w.r.t. dZ(1:n)

2 . Therefore, we have

N2(ε,Fφ,2(r), Z(1:n)) ≤ N∞(ε/
√

12Hφr,G2,mn). (C.4)

Appealing once again to a result by Zhang (2002, Corollary 3), we get

log2N∞(ε/
√

12Hφr,G2,mn) ≤
⌈

12HφW
2
2 R

2
X r

ε2

⌉
× log2(2mn+ 1)

which finishes the proof.

Proof of Corollary 43

Proof. We plug in Proposition 5’s estimate into (4.5):

R̂n (Fφ,2(r)) ≤ inf
α>0

4α + 10

√
Br∫

α

√√√√⌈12HφW
2
2 R

2
X r

ε2

⌉
log2(2mn+ 1)

n
dε

≤ inf

α>0

4α + 20
√

3W2RX

√
rHφ log2(3mn)

n

√
Br∫

α

1

ε
dε

 .

Now choosing α = C
√
r where C = 5

√
3W2RX

√
Hφ log2(3mn)

n
gives us the upper bound

R̂n (Fφ,2(r)) ≤ 4
√
rC

(
1 + log

√
B

C

)
≤ 4
√
rC log

3
√
B

C
.

Proof of Theorem 44

161

Proof. We appeal to Theorem 6.1 of Bousquet (2002) that assumes there exists an upper

bound

R̂n (F2,φ(r)) ≤ ψn(r)

where ψn : [0,∞) → R+ is a non-negative, non-decreasing, non-zero function such that

ψn(r)/
√
r is non-increasing. The upper bound in Corollary 43 above satisfies these condi-

tions and therefore we set ψn(r) = 4
√
rC log 3

√
B

C
with C as defined in Corollary 43. From

Bousquet’s result, we know that, with probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + 45r?n +
√

8r?nLφ(w)

+
√

4r0Lφ(w) + 20r0

where r0 = B(log(1/δ) + log log n)/n and r?n is the largest solution to the equation r =

ψn(r). In our case, r?n =
(

4C log 3
√
B

C

)2

. This proves the first inequality.

Now, using the above inequality with w = ŵ, the empirical risk minimizer and noting

that L̂φ(ŵ) ≤ L̂φ(w?), we get

Lφ(ŵ) ≤ L̂φ(w?) + 45r?n +
√

8r?nLφ(ŵ)

+
√

4r0Lφ(ŵ) + 20r0

The second inequality now follows after some elementary calculations detailed below.

Details of some calculations in the proof of Theorem 44 Using Bernstein’s inequality,

we have, with probability at least 1− δ,

L̂φ(w?) ≤ Lφ(w?) +

√
4Var[φ(Xw?, y)] log(1/δ)

n
+

4B log(1/δ)

n

≤ Lφ(w?) +

√
4BLφ(w?) log(1/δ)

n
+

4B log(1/δ)

n

≤ Lφ(w?) +
√

4r0Lφ(w?) + 4r0.

162

Set D0 = 45r?n + 20r0. Putting the two bounds together and using some simple upper

bounds, we have, with probability at least 1− 2δ,

Lφ(ŵ) ≤
√
D0L̂φ(w?) +D0,

L̂φ(w?) ≤
√
D0Lφ(w?) +D0.

which implies that

Lφ(ŵ) ≤
√
D0

√√
D0Lφ(w?) +D0 +D0.

Using
√
ab ≤ (a+ b)/2 to simplify the first term on the right gives us

Lφ(ŵ) ≤ D0

2
+

√
D0Lφ(w?) +D0

2
+D0 =

√
D0Lφ(w?)

2
+ 2D0 .

163

BIBLIOGRAPHY

164

BIBLIOGRAPHY

Agarwal, A., D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire (2014), Taming the
monster: A fast and simple algorithm for contextual bandits, in Proceedings of the Inter-
national Conference on Machine Learning, pp. 1638–1646.

Agarwal, D., E. Gabrilovich, R. Hall, V. Josifovski, and R. Khanna (2009), Translating
relevance scores to probabilities for contextual advertising, in Proceedings of the ACM
conference on Information and knowledge management, pp. 1899–1902, ACM.

Agrawal, R., S. Gollapudi, A. Halverson, and S. Ieong (2009), Diversifying search results,
in Proceedings of the Second ACM International Conference on Web Search and Data
Mining, pp. 5–14, ACM.

Agrawal, S., and N. Goyal (2013), Thompson sampling for contextual bandits with linear
payoffs, in Proceedings of the International Conference on Machine Learning, pp. 127–
135.

Ailon, N. (2014), Improved bounds for online learning over the permutahedron and other
ranking polytopes, in Proceedings of the International Conference on Artificial Intelli-
gence and Statistics, pp. 29–37.

Baeza-Yates, R., and B. Ribeiro-Neto (1999), Modern information retrieval, vol. 463, ACM
Press.

Bartlett, P. L., and S. Mendelson (2003), Rademacher and Gaussian complexities: Risk
bounds and structural results, The Journal of Machine Learning Research, 3, 463–482.

Bartlett, P. L., M. I. Jordan, and J. D. McAuliffe (2006), Convexity, classification, and risk
bounds, Journal of the American Statistical Association, 101(473), 138–156.

Bartók, G., and C. Szepesvári (2012), Partial monitoring with side information, in Algo-
rithmic Learning Theory, pp. 305–319.

Bartok, G., D. P. Foster, D. Pal, A. Rakhlin, and C. Szepesvari (2014), Partial monitor-
ingclassification, regret bounds, and algorithms, Mathematics of Operations Research,
39(4), 967–997.

Beygelzimer, A., J. Langford, and P. Ravikumar (2007), Multiclass classification with filter
trees, Preprint, June, 2.

165

Bhaskara, A., and A. Vijayaraghavan (2011), Approximating matrix p-norms, in Proceed-
ings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pp.
497–511, SIAM.

Blum, A., and Y. Mansour (2007), Learning, regret minimization, and equilibria, in Algo-
rithmic game theory, edited by N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani,
Cambridge University Press.

Bousquet, O. (2002), Concentration inequalities and empirical processes theory applied to
the analysis of learning algorithms, Ph.D. thesis, Ecole Polytechnique.

Bubeck, S., and R. Eldan (2015), Multi-scale exploration of convex functions and bandit
convex optimization, arXiv preprint arXiv:1507.06580.

Burges, C., T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender
(2005), Learning to rank using gradient descent, in Proceedings of International Confer-
ence on Machine Learning, pp. 89–96.

Calauzenes, C., N. Usunier, and P. Gallinari (2012), On the (non-) existence of convex,
calibrated surrogate losses for ranking, in Advances in Neural Information Processing
Systems.

Cao, P., D. Zhao, and O. Zaiane (2013), An optimized cost-sensitive svm for imbalanced
data learning, in Advances in Knowledge Discovery and Data Mining, pp. 280–292,
Springer.

Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li (2007a), Learning to rank: from pair-
wise approach to listwise approach, in Proceedings of the International Conference on
Machine Learning, pp. 129–136.

Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li (2007b), Learning to rank: from pair-
wise approach to listwise approach, in Proceedings of the International Conference on
Machine learning, pp. 129–136, ACM.

Cavallanti, G., N. Cesa-Bianchi, and C. Gentile (2007), Tracking the best hyperplane with
a simple budget perceptron, Machine Learning, 69(2-3), 143–167.

Cesa-Bianchi, N. (2006), Prediction, learning, and games, Cambridge University Press.

Chakrabarti, S., R. Khanna, U. Sawant, and C. Bhattacharyya (2008), Structured learning
for non-smooth ranking losses, in Proceedings of Conference on Knowledge Discovery
and Data Mining, pp. 88–96.

Chapelle, O., and Y. Chang (2011a), Yahoo! learning to rank challenge overview., in Ya-
hoo! Learning to Rank Challenge, pp. 1–24.

Chapelle, O., and Y. Chang (2011b), Yahoo! learning to rank challenge overview., Journal
of Machine Learning Research-Proceedings Track, pp. 1–24.

166

Chapelle, O., and L. Li (2011), An empirical evaluation of thompson sampling, in Advances
in Neural Information Processing Systems, pp. 2249–2257.

Chapelle, O., and M. Wu (2010), Gradient descent optimization of smoothed information
retrieval metrics, Information retrieval, 13(3), 216–235.

Chapelle, O., Q. Le, and A. Smola (2007), Large margin optimization of ranking measures,
in Neural Information Processing Systems Workshop: Machine Learning for Web Search.

Chapelle, O., D. Metlzer, Y. Zhang, and P. Grinspan (2009), Expected reciprocal rank for
graded relevance, in Proceedings of the ACM Conference on Information and Knowledge
Management, pp. 621–630, ACM.

Chapelle, O., Y. Chang, and T.-Y. Liu (2011), Future directions in learning to rank, in
Proceedings of the Yahoo! Learning to Rank Challenge June 25, 2010, Haifa, Israel,
Journal of Machine Learning Research Workshop and Conference Proceedings, pp. 91–
100.

Chawla, N., N. Japkowicz, and A. Kotcz (2004), Editorial: special issue on learning from
imbalanced data sets, ACM SIGKDD Explorations Newsletter, 6(1), 1–6.

Cheng, T., Y. Wang, and S. Bryant (2012), FSelector: a ruby gem for feature selection,
Bioinformatics, 28(21), 2851–2852.

Chu, W., L. Li, L. Reyzin, and R. Schapire (2011), Contextual bandits with linear payoff
functions, in International Conference on Artificial Intelligence and Statistics, pp. 208–
214.

Cortes, C., and M. Mohri (2004a), AUC optimization vs. error rate minimization, Advances
in Neural Information Processing Systems, 16(16), 313–320.

Cortes, C., and M. Mohri (2004b), AUC optimization vs. error rate minimization, Advances
in Neural Information Processing Systems, 16(16), 313–320.

Cossock, D., and T. Zhang (2006a), Subset ranking using regression, in Proceedings of
Conference on Learning Theory, pp. 605–619.

Cossock, D., and T. Zhang (2006b), Subset ranking using regression, in Proceedings of
Conference on Learning Theory, pp. 605–619.

Cossock, D., and T. Zhang (2008), Statistical analysis of bayes optimal subset ranking,
Information Theory, IEEE Transactions on, 54(11), 5140–5154.

Crammer, K., and Y. Singer (2001), Pranking with ranking., in Advances in Neural Infor-
mation Processing Systems, pp. 641–647.

Crammer, K., and Y. Singer (2002), A new family of online algorithms for category rank-
ing, in Proceedings of the 25th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp. 151–158, ACM.

167

Dekel, O., S. Shalev-Shwartz, and Y. Singer (2008), The forgetron: A kernel-based percep-
tron on a budget, SIAM Journal on Computing, 37(5), 1342–1372.

Dong, A., Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner, C. Liao, and
F. Diaz (2010), Towards recency ranking in web search, in Proceedings of the third ACM
international conference on Web search and data mining, pp. 11–20, ACM.

Duchi, J. C., L. W. Mackey, and M. I. Jordan (2010), On the consistency of ranking algo-
rithms, in Proceedings of the International Conference on Machine Learning, pp. 327–
334.

Dudik, M., D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin, and T. Zhang
(2011), Efficient optimal learning for contextual bandits, Proceedings of the 27th Con-
ference on Uncertainty in Artificial Intelligence, 2011.

Elsas, J. L., V. R. Carvalho, and J. G. Carbonell (2008), Fast learning of document ranking
functions with the committee perceptron, in Proceedings of the International Conference
on Web Search and Data Mining, pp. 55–64, ACM.

Flaxman, A. D., A. T. Kalai, and H. B. McMahan (2005), Online convex optimization in
the bandit setting., in Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pp. 385–394.

Foster, D. P., and A. Rakhlin (2012), No internal regret via neighborhood watch, in Inter-
national Conference on Artificial Intelligence and Statistics, pp. 382–390.

Freund, Y., and R. E. Schapire (1999), Large margin classification using the perceptron
algorithm, Machine learning, pp. 277–296.

Freund, Y., R. Iyer, R. E. Schapire, and Y. Singer (2003), An efficient boosting algorithm
for combining preferences, J. Mach. Learn. Res., 4, 933–969.

Gentile, C., and F. Orabona (2014), On multilabel classification and ranking with bandit
feedback, The Journal of Machine Learning Research, 15(1), 2451–2487.

Harrington, E. F. (2003), Online ranking/collaborative filtering using the perceptron algo-
rithm, in Proceedings of International Conference on Machine Learning, vol. 20, pp.
250–257.

He, X., et al. (2014), Practical lessons from predicting clicks on ads at facebook, in Pro-
ceedings of 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 1–9, ACM.

Henneges, C., G. Hinselmann, S. Jung, J. Madlung, W. Schütz, A. Nordheim, and A. Zell
(2011), Ranking methods for the prediction of frequent top scoring peptides from pro-
teomics data, Journal of Proteomics & Bioinformatics, 2009.

Herbrich, R., T. Graepel, and K. Obermayer (1999), Large margin rank boundaries for
ordinal regression, Advances in Neural Information Processing Systems, pp. 115–132.

168

Hofmann, K., S. Whiteson, and M. de Rijke (2013), Balancing exploration and exploitation
in listwise and pairwise online learning to rank., Information Retrieval, 16(1), 63–90.

IM-2009 (2009), http://imat2009.yandex.ru/en/.

Jain, P., N. Natarajan, and A. Tewari (2015), A family of online algorithms for general
prediction problems, in Advances in Neural Information Processing Systems.

Japkowicz, N., and S. Stephen (2002), The class imbalance problem: A systematic study,
Intelligent data analysis, 6(5), 429–449.

Järvelin, K., and J. Kekäläinen (2000), IR evaluation methods for retrieving highly relevant
documents, in Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 41–48, ACM.

Järvelin, K., and J. Kekäläinen (2002), Cumulated gain-based evaluation of IR techniques,
ACM Transactions on Information Systems, 20(4), 422–446.

Joachims, T. (2002), Optimizing search engines using clickthrough data, in Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 133–142, ACM.

Kalai, A., and S. Vempala (2005), Efficient algorithms for online decision problems, Jour-
nal of Computer and System Sciences, pp. 291–307.

Karatzoglou, A., L. Baltrunas, and Y. Shi (2013), Learning to rank for recommender sys-
tems, in Proceedings of the 7th ACM Conference on Recommender systems, pp. 493–494,
ACM.

Kleinberg, R., and T. Leighton (2003), The value of knowing a demand curve: Bounds on
regret for online posted-price auctions, in Foundations of Computer Science, 2003, pp.
594–605.

Koh, E., and N. Gupta (2014), An empirical evaluation of ensemble decision trees to im-
prove personalization on advertisement, in Proceedings of KDD 14 Second Workshop on
User Engagement Optimization.

Lan, Y., T.-Y. Liu, T. Qin, Z. Ma, and H. Li (2008), Query-level stability and generalization
in learning to rank, in Proceedings of the International Conference on Machine Learning,
pp. 512–519, ACM.

Lan, Y., T.-Y. Liu, Z. Ma, and H. Li (2009), Generalization analysis of listwise learning-to-
rank algorithms, in Proceedings of the International Conference on Machine Learning,
pp. 577–584.

Langford, J., and T. Zhang (2008), The epoch-greedy algorithm for multi-armed bandits
with side information, in Advances in Neural Information Processing Systems, pp. 817–
824.

169

http://imat2009.yandex.ru/en/

Langford, J., L. Li, and M. Dudik (2011), Doubly robust policy evaluation and learning, in
Proceedings of the 28th International Conference on Machine Learning, pp. 1097–1104.

Le, Q., T. Sarlós, and A. Smola (2013), Fastfoodapproximating kernel expansions in log-
linear time, in Proceedings of International Conference on Machine Learning.

Li, L., W. Chu, J. Langford, and X. Wang (2011), Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms, in Proceedings of the ACM Inter-
national Conference on Web Search and Data Mining, pp. 297–306, ACM.

Lin, T., B. Abrahao, R. Kleinberg, and J. Lui (2014), Combinatorial partial monitoring
game with linear feedback and its applications, in Proceedings of the International Con-
ference on Machine Learning, pp. 901–909, ACM.

Liu, T.-Y. (2011), Learning to rank for information retrieval, Springer Science & Business
Media.

Liu, T.-Y., J. Xu, T. Qin, W. Xiong, and H. Li (2007a), Letor: Benchmark dataset for
research on learning to rank for information retrieval, in Proceedings of SIGIR 2007
workshop on learning to rank for information retrieval, pp. 3–10.

Liu, T.-y., J. Xu, T. Qin, W. Xiong, and H. Li (2007b), LETOR: Benchmark dataset for
research on learning to rank for information retrieval, in Proceedings of SIGIR 2007
Workshop on Learning to Rank for Information Retrieval, pp. 3–10.

McMahan, H., et al. (2013), Ad click prediction: a view from the trenches, in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 1222–1230, ACM.

Mendelson, S. (2002), Rademacher averages and phase transitions in Glivenko-Cantelli
classes, IEEE Transactions on Information Theory, 48(1), 251–263.

Mohri, M., A. Rostamizadeh, and A. Talwalkar (2012), Foundations of Machine Learning,
MIT Press.

Ni, W., and Y. Huang (2008), Online ranking algorithm based on perceptron with margins,
in Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, pp.
814–819, IEEE.

Panchenko, D. (2002), Some extensions of an inequality of Vapnik and Chervonenkis.,
Electronic Communications in Probability, 7, 55–65.

Piccolboni, A., and C. Schindelhauer (2001a), Discrete prediction games with arbitrary
feedback and loss, in Computational Learning Theory, pp. 208–223, Springer.

Piccolboni, A., and C. Schindelhauer (2001b), Discrete prediction games with arbitrary
feedback and loss, in In Proceedings of Conference on Learning Theory, pp. 208–223,
Springer.

170

Qin, T., and T.-Y. Liu (2006), Microsoft letor website, http://research.
microsoft.com/en-us/um/beijing/projects/letor/.

Radlinski, F., R. Kleinberg, and T. Joachims (2008), Learning diverse rankings with multi-
armed bandits, in Proceedings of the International conference on Machine learning, pp.
784–791, ACM.

Radlinski, F., P. N. Bennett, B. Carterette, and T. Joachims (2009), Redundancy, diversity
and interdependent document relevance, in ACM SIGIR, pp. 46–52, ACM.

Rahimi, A., and B. Recht (2007), Random features for large-scale kernel machines, in
Advances in Neural Information Processing Systems, pp. 1177–1184.

Ravikumar, P., A. Tewari, and E. Yang (2011), On NDCG consistency of listwise ranking
methods, in Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics, pp. 618–626.

Richardson, M., E. Dominowska, and R. Ragno (2007), Predicting clicks: estimating the
click-through rate for new ads, in Proceedings of the 16th international conference on
World Wide Web, pp. 521–530, ACM.

Rifkin, R., and A. Klautau (2004), In defense of one-vs-all classification, The Journal of
Machine Learning Research, 5, 101–141.

Rosenblatt, F. (1958), The perceptron: a probabilistic model for information storage and
organization in the brain., Psychological review, 65(6), 386.

Sanderson, M. (2010), Test collection based evaluation of information retrieval systems,
vol. 13, Now Publishers Inc.

Schapire, R. E., and Y. Freund (2012), Boosting: Foundations and Algorithms, MIT Press
(MA).

Shalev-Shwartz, S. (2011), Online learning and online convex optimization, Foundations
and Trends in Machine Learning, pp. 107–194.

Shalev-Shwartz, S., O. Shamir, N. Srebro, and K. Sridharan (2009), Stochastic convex
optimization, in Proceedings of the 22nd Annual Conference on Learning Theory.

Shamir, O., and T. Zhang (2013), Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes, in Proceedings of the International
Conference on Machine Learning, pp. 71–79.

Shen, L., and A. K. Joshi (2005), Ranking and reranking with perceptron, Machine Learn-
ing, 60(1-3), 73–96.

Srebro, N., K. Sridharan, and A. Tewari (2010), Smoothness, low noise, and fast rates, in
Advances in Neural Information Processing Systems 23, pp. 2199–2207.

171

http://research.microsoft.com/en-us/um/beijing/projects/letor/
http://research.microsoft.com/en-us/um/beijing/projects/letor/

Tax, N., S. Bockting, and D. Hiemstra (2015), A cross-benchmark comparison of 87 learn-
ing to rank methods, Information Processing and Management, pp. 757–772.

Theocharous, G., P. Thomas, and M. Ghavamzadeh (2015), Ad recommendation systems
for life-time value optimization, in Proceedings of the 24th International Conference on
World Wide Web Companion, pp. 1305–1310.

Vapnik, V. N. (1999), The Nature of Statistical Learning Theory, second ed., Springer.

Wang, J., J. Wan, Y. Zhang, and S. C. Hoi (2015), Solar: Scalable online learning algo-
rithms for ranking, in Proceedings of Association for Computational Linguistics.

Wen, Z., B. Kveton, and A. Ashkan (2014), Efficient learning in large-scale combinatorial
semi-bandits, in Proceedings of the International Conference on Machine Learning.

Xu, J., and H. Li (2007), Adarank: a boosting algorithm for information retrieval, in Pro-
ceedings of SIGIR, pp. 391–398.

Yue, Y., T. Finley, F. Radlinski, and T. Joachims (2007), A support vector method for opti-
mizing average precision, in Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 271–278.

Zhang, T. (2002), Covering number bounds of certain regularized linear function classes,
The Journal of Machine Learning Research, 2, 527–550.

Zhao, P., R. Jin, T. Yang, and S. C. Hoi (2011), Online auc maximization, in Proceedings
of the International Conference on Machine Learning, pp. 233–240.

Zhao, P., J. Wang, P. Wu, R. Jin, and S. C. Hoi (2012), Fast bounded online gradient descent
algorithms for scalable kernel-based online learning, arXiv preprint arXiv:1206.4633.

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradient
ascent, in Proceedings of the International Conference on Machine Learning, pp. 928–
936.

172

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Learning to Rank for Information Retrieval
	Open Directions of Research in Learning to Rank
	Contributions of the Thesis
	Papers and Preprints

	Perceptron-like Algorithms for Online Learning to Rank
	Introduction
	Problem Definition
	Perceptron for Classification
	A Novel Family of Listwise Surrogates
	Weight Vectors Parameterizing the SLAM Family
	Properties of SLAM Family and Upper Bounds

	Perceptron-like Algorithms
	Bound on Cumulative Loss
	Perceptron Bound-General Discussion
	Perceptron Bound Dependent On NDCG Cut-Off Point

	Minimax Bound on Cumulative NDCG/AP Induced Loss
	Lower Bound
	Algorithm Achieving Lower Bound

	Related Work in Perceptron for Ranking
	Experiments
	Conclusion

	Online Learning to Rank with Feedback on Top Ranked Items
	Introduction
	Online Ranking with Restricted Feedback- Non Contextual Setting
	Notation and Preliminaries
	Ranking Measures
	Summary of Results
	Relevant Definitions from Partial Monitoring
	Minimax Regret for SumLoss
	Global Observability
	Local Observability

	Minimax Regret Bound
	Algorithm for Obtaining Minimax Regret under SumLoss with Top k Feedback
	General Algorithmic Framework
	Computationally Efficient Algorithm with FTPL

	Regret Bounds for PairwiseLoss, DCG and Precision@n
	Non-Existence of Sublinear Regret Bounds for NDCG, AP and AUC

	Online Ranking with Restricted Feedback- Contextual Setting
	Notation and Preliminaries
	Problem Setting and Learning to Rank Algorithm
	Unbiased Estimators of Gradients of Surrogates
	 Convex Surrogates
	Non-convex Surrogate

	Computational Complexity of Algorithm 5
	Regret Bounds
	Impossibility of Sublinear Regret for NDCG Calibrated Surrogates

	Empirical Results
	Non Contextual Setting
	Contextual Setting

	Conclusion and Open Questions

	Generalization Error Bounds for Learning to Rank: Does the Length of Document Lists Matter?
	Introduction
	Preliminaries
	Application to Specific Losses
	Application to ListNet
	Application to Smoothed DCG@1
	Application to RankSVM

	Does The Length of Document Lists Matter?
	Permutation invariance removes m dependence in dimensionality of linear scoring functions

	Online to Batch Conversion
	Stochastic Convex Optimization
	Bounds for Non-convex Losses
	Extensions
	High-dimensional features
	Smooth losses
	Online regret bounds under smoothness
	Generalization error bounds under smoothness

	Conclusion

	Personalized Advertisement Recommendation: A Ranking Approach to Address the Ubiquitous Click Sparsity Problem
	Introduction
	Contextual Bandit (CB) Approach to PAR
	Practical Issues with CB Policy Space
	Binary Classifier Based Policies
	Cost Sensitive Multi-Class Classifier Based Policies

	AUC Optimized Ranker
	 Optimization Procedure
	Constructing Policy from Rankers

	Competing Policies and Evaluation Techniques
	Evaluation on Full Information Classification Data
	Evaluation on Bandit Information Data

	Empirical Results
	Comparison of Deterministic Policies
	Comparison of Stochastic Policies

	APPENDICES
	BIBLIOGRAPHY

