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ABSTRACT

High dimensional data analysis has become increasingly frequent and important in diverse
fields of sciences, engineering, genomics, and machine learning (ML), and it has quite evi-
dently spawned new complexities concerning modern problems ranging from variable selec-
tion, distributed learning, and computational efficiency, data privacy, and online decision-
making. To address these modern emerging statistical problems in data science, my research
focuses on the intersection of high-dimensional statistics and the above modern ML problems.

The first chapter studies the problem of exact support recovery for high-dimensional sparse
linear regression when the signals are weak, rare, and possibly heterogeneous. Specifically,
we broaden the theoretical understanding of model selection accuracy of best subset selec-
tion (BSS) and marginal screening (MS) under independent Gaussian design. Furthermore,
to overcome the computational bottleneck of BSS, we also propose an efficient two-stage
algorithm called “Estimate Then Screen” (ETS) which shares exactly the same asymptotic
optimality in terms of exact recovery as BSS.

The second chapter follows up on the work of the first chapter by considering correlated
features. In this chapter, we also study the model selection accuracy of BSS. We show that
apart from the separation margin between the true and noise variables, the complexity of
residualized signals and projections of spurious features also play intricate roles in character-
izing the model consistency of BSS. In this chapter, we demonstrate the interplay between
the margin separation and the two complexities through a simple margin condition which
further helps to understand the theoretical properties of BSS.

In the third chapter, we propose a differentially private algorithm for model selection
under the high-dimensional sparse regression setup. We adopt the well-known exponential
mechanism for designing a sampling scheme that can identify the true set of features under
desirable conditions on the signal. In fact, under low privacy regime, we show that the min-
imum signal strength requirement exactly matches the requirement under the non-private
setting. Moreover, to achieve computational expediency over the intractable exponential
mechanism, we design a Metropolis-Hastings chain that quickly mixes to the target distri-
bution to generate private estimates of the model.

In the final chapter, we propose a novel Thompson sampling algorithm for the high-

xi



dimensional sparse linear contextual bandit. We specifically use a sparsity-inducing prior
for Thompson sampling that exploits the low dimensional structure of the problem, and
we theoretically show that our algorithm enjoys desirable regret bound. Furthermore, for
computational speed-up, we adopt a variational inference framework and demonstrate the
superior performance of our algorithm over its competitors both for simulated and real data.

xii



CHAPTER 1

Introduction

High-dimensional data has become increasingly abundant in contemporary machine learning
(ML) problems across diverse fields of science including genomics, engineering, and computer
vision. However, the rapid growth of data and modern artificial intelligence (AI) technologies
have also presented new challenges related to data privacy, computational scalability, and
reliable decision-making. To resolve these important problems through the advancement of
responsible AI research and open science (Vicente-Saez and Martinez-Fuentes, 2018), two
key aspects of modern data science, my research has primarily focused on the intersection of
high-dimensional statistics and emerging ML problems in the areas of computation, model
selection, differential privacy, and online decision-making.

X1

X2

X3

Y

Variable selection

Computation

Online decision Fairness

Data privacy

Explainable AI

Data explosion

Figure 1.1: Modern problems in high-
dimension.

Over the last decade, differential privacy, on-
line learning, and algorithmic fairness have been
at the forefront of ML research. However, statis-
tically principled investigations of these frame-
works for high-dimensional data are still rela-
tively rare. In the era of big data, this is par-
ticularly concerning as it questions the reliability
of existing ML frameworks that are being used in
our everyday lives, thereby hindering the devel-
opment of open science that advocates the shar-
ing of scientific discoveries to all classes of com-
munity.

In my dissertation, I have made contributions to particularly address the issues related
to responsible ML research and open science by developing novel methodologies along with
theoretical justifications. Therefore, my dissertation paves the way to underpin modern AI
applications ranging from genetics and healthcare to computer vision and engineering. My
thesis touches upon the following important topics:
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• Chapter 2: Scalable feature selection with optimal performance.

• Chapter 3: New theoretical insights on best subset selection (BSS).

• Chapter 4: Privacy protection in model selection.

• Chapter 5: Efficient Thompson sampling for high-dimensional bandits.

One recurrent theme in all of the above chapters is understanding the sparsity structure of the
underlying model. This is an important component of almost all high-dimensional learning
to battle the curse of dimensionality. In particular, it is imperative to avoid the polynomial
dependence of the ambient dimension in the learning rate, and there have been different
strategies to achieve this goal based on the different methodologies. Now, we will discuss
some of the strategies that have been used to induce sparsity in the learning mechanisms.

1.1 Sparsity inducing techniques

1.1.1 Frequentist methods

Over the past few decades, statisticians have developed a plethora of sparsity-inducing tech-
niques including LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and adaptive LASSO
(Huang et al., 2008). Essentially all these methods try to achieve a sparse estimate of the
parameter of interest by inducing a penalization term in the objective. For example, the
well-known LASSO method uses ℓ1-penalty with the objective function to produce sparse
solutions. To be precise, in the case of high-dimensional linear regression, LASSO minimizes
the following loss function:

L(θ) := ∥y −Xθ∥22 + λ ∥θ∥1 ,

where X and y are the design matrix and response vector respectively.
However, all these approaches were developed as computational surrogates to the ℓ0-

constrained problems where one solves the following optimization problem:

min
θ:∥θ∥0≤ŝ

∥y −Xθ∥22 , (1.1)

where ŝ is the sparsity budget. This is known as the best subset selection (BSS) prob-
lem. However, in general, the BSS problem is NP-hard, which is one of the reasons that
statisticians have been reluctant to use BSS. However, recent computational advancements
in Bertsimas et al. (2016); Bertsimas and Parys (2020) have rekindled the interest in ℓ0

2



constrained problems both from practical and theoretical perspectives. In these works, the
authors developed a mixed-integer-optimization (MIO) framework for solving problem (1.1)
using commercial MIO solvers like GUROBI, CPLEX, and MOSEK. However, these meth-
ods do not scale very well with the ambient dimension. Therefore, significant effort has
been given to propose methods that have better performance with the scaling of the ambient
dimension. See Chapter 2 for more detailed discussion on this. However, there is another
family of first-order methods that also enjoys good performance under high-dimensional re-
gression settings. The well-known iterative hard thresholding (IHT) (Jain et al., 2014; Liu
and Foygel Barber, 2020) falls under this category which is essentially a projected gradient
descent method. Typically, such methods are way faster than the MIO solvers in high-
dimensional regimes.

1.1.2 Bayesian methods

In the Bayesian setting, the most important component of the learning method is to choose a
proper prior over the parameter space. If there is prior knowledge about the structure of the
parameter, then one can choose an appropriate prior on the parameter space to invoke that
structure. In the sparse regression case, one has to consider sparsity-inducing prior. Popular
choices are slab-and-spike prior (George and McCulloch, 1993a; Mitchell and Beauchamp,
1988) and horseshoe prior (Carvalho et al., 2010a; Piironen and Vehtari, 2017).

In the slab-and-spike prior approach, estimating the p-dimensional sparse parameter β

begins with placing independent slab-and-spike prior on each component βj for j ∈ [p]. A
particularly appealing spike-and-slab prior has been

π(βj | γj, λ) = (1− γj)δ0 + γjψ(βj | λ), γj ∈ [0, 1] (1.2)

where δ0 is the Dirac distribution at zero and ψ(· | λ) is an absolutely continuous distribution
with hyperparameter λ. If γj’s are small, then prior (1.2) will induce more sparsity in the
model. Such prior structure can be alternatively viewed as placing prior on the space of
models and then placing prior ψ(· | λ) on the components of the selected model. Therefore,
posterior computation in such models leads to numerical bottlenecks as it takes account of
an exponentially large number of model candidates.

On the other hand, the horseshoe prior (Carvalho et al., 2010b), which is a continuous
shrinkage prior, takes a different approach: instead of placing prior directly on the model, it
models directly the posterior inclusion probability P(βj ̸= 0 | D), where D is the observed
data. To illustrate this point, consider the normal means model: yi | θi ∼ N(θi, σ

2). If the
vector θ = (θ1, . . . , θn) is known to be sparse then one can construct the following prior on

3



θ:
θi | (λi, τ) ∼ N(0, λ2i τ

2), λ2i ∼ Half-Cauchy(0, 1), i = 1, . . . , n.

Here the parameter τ plays the role of the global shrinkage parameter. Under this model, the
posterior mean of θi turns out to be E(θi | yi) = {1− E(κi | yi)}yi where κi = 1/(1 + λ2i τ

2).
Therefore, κi ≈ 0 yields virtually no shrinkage on θi. On the contrary κi ≈ 1 indicates high
shrinkage over θi.

1.2 Minimum signal strength condition

A very important concept that will be revisited again and again throughout this thesis is
the minimum signal strength condition. Consider the linear model y = x⊤β + ε, where ε
is random noise. Also, assume that β is sparse. Under such a model. it is well known
that each non-zero component of β needs to be large in absolute value to be identified by a
statistical procedure. In other words βmin := minj:βj ̸=0

∣∣βj∣∣ needs to be large enough so that
a suitable method can distinguish them from zero. Otherwise, it is possible that no method
can recover the non-zero support of β. For the past few decades, there has been ample
research in this direction (Rad, 2011; Wainwright, 2009a,b; Fletcher et al., 2009; Genovese
et al., 2012; Ndaoud and Tsybakov, 2020). There is also a long line of works that shows
certain phase transition phenomena on βmin under the sparse regression setting. A detailed
discussion on this can be found in Ndaoud and Tsybakov (2020) and Chapter 2.

1.3 Thesis organization

Next, I provide brief descriptions of the individual chapters.

Chapter 2: Scalable feature selection with optimal performance. Feature selec-
tion is an important component of feature engineering in modern AI applications that aims
to find better representations of predictors (i.e., features) to improve the predictive perfor-
mance of ML models. In addition, feature selection is often used as a dimension reduction
scheme in various scientific fields ranging from genetics (Ang et al., 2015; Liu et al., 2018)
to signal processing (Lu et al., 2016; Alotaiby et al., 2015), which leads to more efficient
and explainable statistical models compared to other complicated neural network models.
However, the BSS approach (Miller, 2002), a classical feature selection method, has eluded
ML community for a long time mainly due to its computational inefficiency despite some
of the recent computational advancements (Bertsimas et al., 2016) and promising empirical
findings (Hastie et al., 2020). In our work Roy et al. (2022), we theoretically justify the
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superior performance of BSS through a novel analytical framework, thereby broadening the
current understanding of BSS. Moreover, we propose a new computationally efficient feature
selection method that enjoys the same optimal performance as BSS in practice. Therefore,
our proposed algorithm can be used as a more reliable and efficient dimension reduction
scheme for much larger datasets, contributing to the promotion of responsible AI and open
science in contemporary data science practices.

Chapter 3: New theoretical insights on best subset selection. Over the past
decades, the BSS approach has received considerable attention due to its wide applicability
and intuitive nature. For example, in genetics research, BSS approaches have become the
“gold standard” for feature screening processes (Guo et al., 2023; Kong et al., 2023; Mat-
sumoto et al., 2023) to achieve more interpretable and transparent predictions. However, this
necessitates the need for awareness about the possible pitfalls of BSS in the ML community
from a safe and responsible ML research point of view. In our work Roy et al. (2023), we are
the earliest to theoretically explore and point out the intricate influence of feature correlation
on the performance of BSS using a novel topological argument. Through our research, we ex-
plicitly identify two fundamental geometric quantities that relate to the correlation structure
of the underlying feature space and help us understand the quality of the selected features
via BSS. As a consequence, our theoretical findings can be used in practice to qualitatively
assess the outcome of the BSS approach using the correlation structure of the design, even
before its deployment. Therefore, our research takes the initiative to raise awareness about
the possible drawbacks of BSS and pave the way towards safe ML research.

Chapter 4: Privacy protection in model selection. The rapid growth of AI and the
abundance of data collection from edge devices like cell phones, personal computers, and
smartwatches, have put the privacy of personal data at risk. Therefore, differential privacy
(DP) Dwork (2006), a mathematical framework that guarantees data privacy protection
by ensuring similar output irrespective of the presence or absence of an individual in the
database, has emerged as one of the leading research areas in the landscape of modern
AI (Dwork, 2008; Steil et al., 2019; Wei et al., 2020; Kim et al., 2019). Although, DP
algorithms have been used in several ML problems including risk minimization (Jain and
Thakurta, 2014; Kasiviswanathan and Jin, 2016; Wang et al., 2017), density estimation
(Wasserman and Zhou, 2010), and hypothesis testing (Dwork et al., 2015c), theoretical
investigation of model selection under the DP framework remained somewhat scarce for high-
dimensional data. This is concerning as model selection methods are heavily used in high-
dimensional genetic data containing sensitive information that may compromise patient’s
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privacy, thereby hindering data sharing and delaying scientific advancements. In our work
Roy and Tewari (2023), we propose a computationally efficient DP algorithm for model
selection that enjoys superior utility compared to the existing benchmarks. In particular,
we adopt the well-known Metropolis-Hastings algorithm that generates a private estimate of
the model (set of influential features) within polynomial time in the problem parameters.
Therefore, our research provides the first private algorithm for model selection that provably
achieves high utility along with computational efficiency, allowing efficient sharing of scientific
discoveries to a broader community to practice open science.

Chapter 4: Efficient Thompson sampling for high-dimensional bandits. Contex-
tual multi-armed bandit (MAB) has been one of the most active areas of interest in diverse
fields of research ranging from clinical trials (Villar et al., 2015), personalized healthcare
(Tewari and Murphy, 2017) to the autonomous driving (Ferdowsi et al., 2019). In such

Figure 1.2: A schematic diagram of bandit.

applications, the learner sequentially takes actions based on their past rewards and high-
dimensional features (See Figure 1.2) to gradually improve the decision-making process.
However, quick and accurate decision-making is of utmost importance in such applications
due to safety concerns. Thompson sampling (TS), a widely used heuristics, is a more effective
algorithmic framework than greedy MAB algorithms in many such applications (Chapelle
and Li, 2011; Kaufmann et al., 2012) under low-dimensional settings. However, a similar
TS framework was lacking for high-dimensional bandit problems. In our work (Chakraborty
et al., 2023), we provide the first TS algorithm for high-dimensional sparse linear bandit that
uses a novel sparsity inducing prior distribution to achieve an almost dimension-free regret
bound guarantee including minimax optimal performance in many practical regimes. In addi-
tion, we design an efficient Variational Bayes framework that achieves computational expedi-
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ency under the high-dimensional setting. Our algorithm achieves superior performance than
previously existing benchmark algorithms, which we demonstrate by an online cancer identi-
fication task on the well-known Gravier’s breast cancer data (Gravier et al., 2010). Therefore,
our proposed algorithm enjoys quicker and more accurate decision-making, thereby advanc-
ing trustworthy AI research.
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CHAPTER 2

High-Dimensional Variable Selection with
Heterogeneous Signals: A Precise Asymptotic

Perspective

In this chapter, we study the problem of exact support recovery for high-dimensional sparse
linear regression under independent Gaussian design when the signals are weak, rare, and
possibly heterogeneous. Under a suitable scaling of the sample size and signal sparsity, we
fix the minimum signal magnitude at the information-theoretic optimal rate and investigate
the asymptotic selection accuracy of best subset selection (BSS) and marginal screening
(MS) procedures. We show that despite the ideal setup, somewhat surprisingly, marginal
screening can fail to achieve exact recovery with probability converging to one in the presence
of heterogeneous signals, whereas BSS enjoys model consistency whenever the minimum
signal strength is above the information-theoretic threshold. To mitigate the computational
intractability of BSS, we also propose an efficient two-stage algorithmic framework called ETS
(Estimate Then Screen) comprised of an estimation step and gradient coordinate screening
step, and under the same scaling assumption on sample size and sparsity, we show that
ETS achieves model consistency under the same information-theoretic optimal requirement
on the minimum signal strength as BSS. Finally, we present a simulation study comparing
ETS with LASSO and marginal screening. The numerical results agree with our asymptotic
theory even for realistic values of the sample size, dimension, and sparsity.
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2.1 Introduction

Consider n independent observations (xi, yi)i∈[n] of a random pair (x, y) drawn from the
following linear regression model:

(x, w) ∼ Px × Pw,

y = x⊤β + w,
(2.1)

where Px is the p-dimensional isotropic Gaussian distribution Np(0, Ip), and Pw is the stan-
dard Gaussian distribution on R. In matrix notation, the observations can be represented
as

y = Xβ +w,

where y = (y1, y2, . . . , yn)
⊤,X = [x1,x2, . . . ,xn]

⊤ and w = (w1, w2, . . . , wn)
⊤. We consider

the standard high-dimensional setup where n < p, and possibly n ≪ p, and the vector
β is unknown but sparse in the sense that ∥β∥0 :=

∑p
j=1 1(βj ̸= 0) = s, which is much

smaller than p. We denote by Pβ0
(·) and Eβ0

(·) the probability measure and the expectation
with β = β0 respectively. In this chapter, we focus on the variable selection problem, i.e.,
identifying the active set Sβ := {j : βj ̸= 0}. We primarily use the 0-1 loss, i.e., Pβ(Ŝ ≠ Sβ),
to assess the quality of a model estimator Ŝ.

The isotropic Gaussian design has been widely used to conduct precise analysis of variable
selection procedures (Fletcher et al., 2009; Genovese et al., 2012; Ndaoud and Tsybakov,
2020; Su et al., 2017; Kowshik and Polyanskiy, 2021). Specifically, these works either derive
the necessary and sufficient condition for exact model recovery (Fletcher et al., 2009; Aeron
et al., 2010; Rad, 2011; Jin et al., 2011; Akçakaya and Tarokh, 2009), or establish tight
asymptotic bounds of model selection error (Genovese et al., 2012; Ji et al., 2012; Su et al.,
2017). The isotropic Gaussian design is also used in compressed sensing to generate a
measurement matrix (Candès et al., 2006; Candes and Tao, 2006; Donoho, 2006) so that
one can sense the sparse signals with few measurements of the high-dimensional signal.
Scarlett and Cevher (2016); Wang et al. (2010) considered the variable selection problem
and studied the information-theoretic limit of support recovery under non-Gaussian setup.
It is worth emphasizing that these works also assumed that the entries of X are independent
and identically distributed, which is also the setup of this chapter.

weak and rare signals: Recently there has been growing interest in the variable selec-
tion problem in the presence of weak and rare signal regimes (Genovese et al., 2012; Ji
et al., 2012) where the active signals are highly sparse with very low magnitude of the or-
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der O(
√

(log p)/n), which is known to be the information-theoretic optimal rate necessary
to achieve model consistency. This regime is ubiquitous in modern data analytics such as
those in Genome-Wide Association Study (GWAS). There the genes that exhibit detectable
association with the trait of interest can be extremely few with weak effects (Consortium
et al., 2007; Marttinen et al., 2013). Moreover, the number of subjects n typically ranges in
thousands, while the number of features p can range from tens of thousands to hundreds of
thousands. Such a high dimension further adds to the difficulty of identifying weak signals.
Weak and rare signals also arise in multi-user detection problems (Arias-Castro et al., 2011)
where one typically uses linear model of the form (2.1). The signal received from user j is
βjXj. Thus βj = 0 means that jth user is not sending any signal. It is a common practice
to model the mixing matrix X as random with i.i.d. entries. Under the presence of strong
noise, one might be interested in knowing whether information is being transmitted or not.
Typically, in some applications, it is reasonable to assume that a very few numbers of users
are sending signals. Also, due to strong noise environment, the signals become quite weak,
making them harder to detect. Therefore, from an application point of view, understanding
variable selection in weak and rare signal regimes is crucial. Despite its importance, typi-
cally most of the popular methods such as LASSO (Tibshirani, 1996), SCAD (Fan and Li,
2001), adaptive LASSO (Huang et al., 2008) have been extensively analyzed in terms of 0-1
loss when the signals are uniformly strong (Zhao and Yu, 2006; Guo et al., 2015; Zhang and
Huang, 2008; Huang et al., 2008; Zheng et al., 2014) in the sense that

a := min
j:βj ̸=0

|βj| ≫
(
log p

n

)1/2

.

However, Wainwright (2009b) established a sharp phase transition for LASSO in terms of
exact recovery under a general combination of (n, p, s). Under some regularity conditions on
the design matrix, the author shows that a ≳ {(log p)/n}1/2 is necessary and sufficient for the
model consistency of LASSO in terms of 0-1 loss. Zhang and Huang (2008) proposed MC+
method based on minimax concave penalty, which also achieves model consistency under the
optimal rate for a. Therefore, these works can accommodate weak and rare signal regimes,
and it is important to emphasize that the analyses presented in them are non-asymptotic.
Other works on weak and rare signal regimes include Genovese et al. (2012); Ji et al. (2012),
and Jin et al. (2014) that establish sharp asymptotic requirement on the signal strength.

Signal heterogeneity and marginal screening: Besides the weakness and rarity of
signals, heterogeneity in the signal strength is another important feature of modern data
applications that has not yet received sufficient attention. Roughly, heterogeneity in the
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signal allows the magnitude of the active βj’s to differ in an arbitrary fashion, whereas
homogeneity restricts the magnitude of the active signals to be in the same order. One
limitation of the existing literature on variable selection in the weak and rare signals regime
is that it typically assumes that the true signals are homogeneous (Genovese et al., 2012;
Ji et al., 2012; Jin et al., 2014). Ji et al. (2012) refer to this setup as the Asymptotically
Rare and Weak (ARW) signal regime. Many popular approaches have been shown to enjoy
satisfactory variable selection properties under the ARW regime. For instance, Genovese
et al. (2012) showed that both LASSO and marginal screening enjoy model consistency in
terms of Hamming loss under independent random design. Ji et al. (2012) and Jin et al.
(2014) investigated the same problem under sparsely correlated design. They proposed two-
stage screen and clean algorithms that also exhibit model consistency in terms of Hamming
loss. However, their theory heavily relies on homogeneous signals and does not extend to
the heterogeneous case that is of interest to us. In reality, the ARW setup seldom occurs:
the signals almost always have different strengths (Li et al., 2019).

To underscore the contrasting effects of homogeneous and heterogeneous signals in terms
of exact model recovery, we study the variable selection property of marginal screening (see
Section 2.3). We show that under the presence of strong heterogeneity in the signal, marginal
screening fails to recover the exact model with probability converging to 1, whereas under
homogeneous signal it can recover the exact model asymptotically (Genovese et al., 2012).
It turns out that due to heterogeneity, the spurious correlations become large and create
impediment to selecting the exact model. In correlated design, a different problem known
as unfaithfulness (Wasserman and Roeder, 2009; Robins et al., 2003) prevents marginal
screening from achieving model consistency. Specifically, due to “correlation cancellation”,
the marginal correlation between y and Xj becomes negligible even when βj is large and this
ultimately leads to false negatives. In this chapter, we study an independent random design
model in which correlation cancellation does not occur. Instead, we identify a different source
of the problem under the presence of signal heterogeneity that affects the exact variable
selection performance of marginal screening. Varying effect of signal heterogeneity in variable
selection was also identified in the case of LASSO by Su et al. (2017) and Wang et al. (2022b)
for i.i.d. Gaussian design under a special asymptotic setting. In particular, Su et al. (2017)
studied the tradeoff between power and type-I error of LASSO and showed that strong
heterogeneity in the signal helps to reduce the false discovery in the LASSO path. The
same effect was also analyzed in more detail in Wang et al. (2022b). These works use
approximate message passing (AMP) theory to obtain the exact asymptotic behavior of the
LASSO estimator in terms of variable selection and show that it is unable to achieve model
consistency under linear sparsity regime.
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Computational advancements: On the computational side, modern methods like
LASSO, SCAD, MC+ were initially motivated as alternatives to Best Subset Selection
(BSS). BSS is in general an NP-hard optimization problem and was believed to be prac-
tically intractable even for p as small as 30. Thanks to recent advancements in algorithms
and hardware, the optimal solution to the BSS problem can now be computed, sometimes
with approximations, for some practical settings. Jain et al. (2014) showed that a wide
family of iterative hard thresholding (IHT) algorithms can approximately solve the BSS
problem, in the sense that they can achieve similar goodness of fit with the best subset with
slight violation of the sparsity constraint. Liu and Foygel Barber (2020) studied the optimal
thresholding operator for such iterative thresholding algorithms, which manages to exploit
fewer variables than IHT to achieve the same goodness fit as BSS. Bertsimas et al. (2016)
viewed the BSS problem through the lens of mixed integer optimization (MIO) and showed
that for n in 100s and p in 1000s, the MIO algorithm can obtain a near optimal solution
reasonably fast. Bertsimas and Parys (2020) developed a new cutting plane method that
solves to provable optimality the Tikhonov-regularized (Tikhonov, 1943) BSS problem for n
and p in the 100,000s. Xie and Deng (2020) considered solving the Tikhonov-regularized BSS
via mixed integer second-order cone formulation and the largest problem instance they con-
sidered has p ∼ 103. Most recently, Hazimeh et al. (2022) developed a Branch-and-Bound
method that solves the ℓ0/ℓ2-regularized BSS problem for p ∼ 107. A recent work (Zhu
et al., 2020) proposed an iterative splicing method called Adaptive Best Subset Selection
(ABESS) to solve the BSS problem. They also showed that ABESS enjoys both statistical
accuracy and polynomial computational complexity when the design matrix satisfies sparse
Reisz condition and minimum signal strength is of order Ω{(s log p log log n/n)1/2}.

Given these recent advances in solving BSS, there has been growing acknowledgment that
BSS enjoys significant statistical superiority over the aforementioned alternative methods.
Bertsimas et al. (2016) and Bertsimas and Parys (2020) numerically demonstrated higher
predictive power and lower false discovery rate (FDR) respectively of the BSS solution com-
pared to LASSO. Guo et al. (2020) and Zhu and Wu (2021) reported that the approximate
BSS solutions provided by IHT have much fewer false discoveries than LASSO, SCAD, and
SIS, especially in the presence of highly correlated design. They also theoretically showed
that the model selection behavior of BSS does not explicitly depend on the restricted eigen-
value condition for the design (Bickel et al., 2009; Van De Geer and Bühlmann, 2009), a
condition which appears unavoidable (assuming a standard computational complexity con-
jecture) for any polynomial-time method (Zhang et al., 2014). This suggests that BSS is
robust against design collinearity in terms of model selection.
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Main contribution: In this chapter, we mainly focus on the precise asymptotic bound,
i.e., the bound with the optimal constant for the minimum signal strength that allows BSS
to achieve model consistency. Under a specific asymptotic setup, we show that BSS achieves
asymptotic exact recovery of the true model once the minimum signal strength parameter
is above the information-theoretic lower bound, meaning that BSS is optimal in terms of
the requirement on the signal strength. In contrast, previous works such as Aeron et al.
(2010); Wainwright (2009a); Rad (2011) analyze BSS from a sample complexity point of
view: they show that BSS can achieve model consistency under the optimal rate of the
sample complexity and different asymptotic regimes. Later Ndaoud and Tsybakov (2020)
showed the existence of a polynomial-time method that achieves model consistency under
the same sufficient condition on n as BSS for i.i.d. Gaussian design. For general Gaussian
design, Wainwright (2009a) showed a similar result for BSS. However, the analyses of all these
works are non-asymptotic, and thus cannot yield the optimal constant in the minimum signal
strength. Next, we summarize the main contributions of in this chapter below:

1. Under suitable asymptotic scaling of the sample size and signal sparsity, we present
a sharp and novel asymptotic analysis of BSS that leverages results from Fan et al.
(2018) and achieves the optimal constant in minimum signal strength required for
model consistency of BSS (Theorem 2.4.1).

2. To establish the sharpness of Theorem 2.4.1, we first present a novel impossibility result
of BSS (Theorem 2.4.3) at the information-theoretic boundary which also relies on
asymptotic analysis of BSS. This result together with the impossibility result in Wang
et al. (2010), establishes the sharp optimality of the constant obtained in Theorem
2.4.1.

3. To achieve computational expediency, we propose a computationally tractable two-
stage algorithmic framework that also enjoys model consistency under the same con-
dition on the minimum signal strength as BSS (Theorem 2.5.2).

The rest of the chapter is organized as follows. Section 2.2 introduces the Asymptotically
Ultra-Rare and Weak Minimum signal (AURWM) regime that accommodates heterogeneous
signal strengths. In Section 2.3, we point out a potential adverse effect of signal heterogene-
ity on model selection under AURWM regime. For demonstration, we present an illustrative
example of marginal screening to substantiate our claim. In Section 2.4, we derive an im-
possibility result for BSS under the AURWM regime and show that BSS is optimal in terms
of the requirement on the minimum signal strength. In Section 2.5, we propose the afore-
mentioned two-stage algorithmic framework and establish its optimality property in terms
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of the constant in minimum signal strength. Finally, in Section 2.6, we carry out simulation
studies and numerically demonstrate the superiority of our method over other competing
methods.

2.2 Ultra rare and weak minimum signal regime

In this section, we focus on a specific asymptotic setup that allows heterogeneity among the
sparse signals in high dimension. Throughout our paper, we consider the following signal
class:

Ma
s := {β ∈ Rp : ∥β∥0 = s, min

j:βj ̸=0
|βj| ≥ a}.

Here a denotes the minimum signal strength of β. Note that the signal classMa
s only imposes

a lower bound for the minimum signal strength and thus allows arbitrarily large magnitudes
across the true signals. This implicitly accommodates heterogeneity in the signal, which is
in sharp contrast with the homogeneous signal setup considered by Genovese et al. (2012).

Now we are in a position to introduce the Asymptotically Ultra Rare and Weak Minimum
signal regime (AURWM), in which we mainly consider the signal class above with

a =

(
2r log p

n

)1/2

and s = O(log p), (2.2)

where the parameter r controls the magnitude of the minimum signal strength. As we will
see in Section 2.4, the model consistency of BSS will depend on the value of r. Besides, we
set the sample size n as

n =
⌊
pk
⌋
, 0 < k < 1.

The condition s ≲ log p characterizes the ultra-rarity of the signals, which is common in
genetic studies such as GWAS (Yang et al., 2020). Unless stated otherwise, from now on our
statistical analysis follows the scalings of n, p, s, a in this AURWM regime. We say a support
estimator Ŝ achieves asymptotic consistent recovery in the AURWM regime if

lim
p→∞

sup
β∈Ma

s

Pβ(Ŝ ≠ Sβ) = 0. (2.3)

This paper mainly focuses on the criterion (2.3) to measure the quality of exact recovery
performance for an estimator Ŝ.

It is also worth mentioning that a relevant but different asymptotic setup is studied by
Genovese et al. (2012) and Ji et al. (2012). There the authors assumed a Bayesian model
such that all the signals are independent and identically distributed and that the sparsity
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s ∼ p1−ϑ for some ϑ ∈ (0, 1). Under such a setup they obtained asymptotically tight phase
transition boundaries with respect to Bayesian Hamming risk, which partitions the r-ϑ plane
into three regions: (a) Region of exact recovery, (b) Region of almost recovery, (c) Region of
no recovery. We skip the details of these results for brevity. The major differences between
their setup and ours are twofold: (1) They essentially assume homogeneous signals; (2) They
assume s to grow in a polynomial fashion with respect to p.

2.3 Marginal screening under heterogeneous signal

Marginal screening (MS) is one of the most widely used variable selection methods in prac-
tice. It selects the variables with the top absolute marginal correlation with the response.
Formally, for any j ∈ [p], write µj := X⊤

j y/n. Given any possibly data-driven threshold
τ(X,y), define the marginal screening estimator as follows:

Ŝτ := {j ∈ [p] : |µj| ≥ τ(X,y)}. (2.4)

Note that µj is essentially equivalent to the marginal correlation between Xj and y because
of the isotropic nature of X. Marginal screening has been applied in various fields for feature
selection and dimension reduction, including biomedicine (Huang et al., 2019; Lu, 2005;
Leisenring et al., 1997), survival data analysis (Hong et al., 2018; Li et al., 2016), economics
and econometrics (Wang et al., 2022a; Huang et al., 2014).

Besides the broad applications, marginal screening has been shown to enjoy some desirable
statistical properties. Fan and Lv (2008) established the sure screening property of marginal
screening under an ultra-high dimensional setup, which serves as a theoretical justification for
MS to be used for dimension reduction in many applications. Later, Genovese et al. (2012)
showed that MS enjoys the minimax optimal rate under Hamming loss with homogeneous
signals. Nevertheless, as mentioned in Section 2.1, precise asymptotic characterization of the
0-1 loss of MS remains fairly underexplored under high dimension, especially in the presence
of heterogeneity in signal strength.

2.3.1 Failure of MS in the AURWM regime

In this section, we study the 0-1 risk of the MS estimator. Define T := {Ŝτ | τ : Rn×p×Rn →
R+}, which is the class of all possible marginal screening estimators. Under the AURWM
regime, we show that MS fails to achieve exact model recovery in the minimax sense.
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Theorem 2.3.1. Under the AURWM regime with n =
⌊
pk
⌋

for some k ∈ (0, 1), none of the
MS estimators of the form (2.4) can achieve asymptotic exact recovery, i.e.,

lim
p→∞

inf
Ŝτ∈T

sup
β∈Ma

s

Pβ(Ŝτ ̸= Sβ) = 1.

To understand the main message of this theorem, it is instructive to compare it with the
parallel result in Genovese et al. (2012) with homogeneous signal. Specifically, Genovese
et al. (2012) considers a Bayesian setup where all the signal coefficients are independent
and identically distributed Bernoulli random variables (up to a universal constant). Under
the AURWM regime, s = O(log p), which implies that ϑ = 1 in Theorem 10 of Genovese
et al. (2012). Then Theorem 10 in Genovese et al. (2012) says that when r > 1, MS enjoys
consistency in terms of Hamming risk and thus 0-1 risk too. In contrast, when we broaden the
signal class toMa

s that embraces possibly heterogeneous signals, the same model consistency
fails to hold anymore for MS as shown in Theorem 2.3.1. This comparison clearly reveals
the curse of signal heterogeneity on MS. However, the above impossibility result does not
contradict Theorem 2 in Fletcher et al. (2009). The result therein states that asymptotically
r > (1 + ∥β∥22) is sufficient for the model consistency of MS. However, in the AURWM
regime, r can be smaller than 1 + ∥β∥22, which would violate the previous condition. In
fact, the proof of the above theorem essentially relies on constructing a sequence of signal
patterns that violates the condition r > (1+∥β∥22) asymptotically. Thus, in a way, the proof
techniques of Theorem 2.3.1 show that r > (1 + ∥β∥22) is also necessary for MS to achieve
model consistency in the AURWM regime. Hence, this establishes the sharpness of Theorem
2 of Fletcher et al. (2009), at least in AURWM regime.

To see how signal heterogeneity hurts MS, for any j ∈ [p], write µj as

µj = (βj/n) ∥Xj∥22 +X⊤
j (
∑
ℓ ̸=j

Xℓβℓ +w)/n =: µ
(1)
j + µ

(2)
j . (2.5)

Here µ(1)
j = n−1βj ∥Xj∥22 represents the marginal contribution from βj to µj, and µ(2)

j repre-
sents the random error of µj due to the cross covariance between Xj and the other signals
and noise. Suppose there are spiky signals among {βℓ}ℓ̸=j. Though E(µ(2)

j ) = 0 regardless of
the magnitude of βj, the spiky signals may incur large variance of µ(2)

j and overwhelm the
magnitude of µ(1)

j , which is the essential indicator of the significance of βj. Consequently,
for weak signals, one cannot tell if βj is a true variable based on only µj in the presence of
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spiky signals. For further understanding of this phenomenon, it is instructive to note that

µj | Xj ∼ N

(
1

n
∥Xj∥22 βj,

1

n2
∥Xj∥22

(
1 +

∑
ℓ̸=j

β2
ℓ

))
.

If the non-zero components of β are arbitrarily large, then the variance of the above Gaussian
distribution becomes extremely large. Therefore, even if βj = 0, there is a high probability
that the correlation µj will take larger values. Hence, there is a chance that the true variables
associated with weak signals would lose to a noise variable, thereby ultimately leading to false
discovery. To rigorously show these claims, we construct a specific example as mentioned
before and we study the asymptotic limits of maxj /∈Sβ

µ
(2)
j and µj0 , where j0 denotes the

index of a weak signal. While the asymptotic analysis of µj0 is rather straightforward, we
borrow some non-trivial results from Fan et al. (2018) to obtain the asymptotic properties of
maxj /∈Sβ

µ
(2)
j . Details of the proof can be found in Section A of the supplementary material.

In contrast, the AMP line of works on LASSO in Su et al. (2017) and Wang et al. (2022b)
show that under a certain asymptotic regime, signal heterogeneity helps LASSO in terms
of variable selection. Specifically, under i.i.d. Gaussian design and linear sparsity regime
(i.e. s/p → α for some constant α ∈ (0, 1)), Wang et al. (2022b) show that higher signal
heterogeneity delays the inclusion of false variables in the LASSO solution path whereas,
under signal homogeneity, false discovery occurs in a much earlier stage in the solution path.
The effect is somewhat opposite to what we discussed for MS. The reason perhaps lies in the
fact that LASSO tries to select the features that are highly correlated with the shrinkage
noise (see Su et al. (2017)), whereas, MS tries to select the features that have a higher
correlation with the response. In the case of LASSO, higher signal heterogeneity makes the
magnitudes of the correlations between features and shrinkage noise more distinguishable
compared to a homogeneous signal pattern, thus preventing early false discovery in the first
case. In the case of MS, higher signal heterogeneity increases the variance of µ(2)

j , which
essentially dwarfs the influence of weak signals and leads to false discovery. However, these
two phenomena are not directly comparable as the asymptotic settings are different for the
two cases. In fact, when s = O(log p), the effect of shrinkage noise is much smaller (see
Section 3.2 in Su et al. (2017)) and such phenomenon does not occur for LASSO.

2.4 Best subset selection

Now we shift our focus to BSS, one of the most classical variable selection approaches. With
the oracle knowledge of true sparsity s, BSS solves for
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β̂best ∈ argminb∈Rp,∥b∥0=sn
−1 ∥y −Xb∥22 .

Define PD := XD(X
⊤
DXD)

−1X⊤
D, which is the orthogonal projection operator onto the column

space of XD. The BSS above can be alternatively viewed as solving for

Ŝbest := argminD⊆[p]:|D|=sn
−1y⊤(In −PD)y = argmaxD⊆[p]:|D|=sn

−1y⊤PDy. (2.6)

Using a union bound as in Wainwright (2009a) or Guo et al. (2020), one can show that there
exists a universal positive constant φ (approximately equal to 0.618) such that whenever
r > 4/(1− φ), BSS achieves model consistency, i.e.,

lim
p→∞

sup
β∈Ma

s

Pβ(Ŝbest ̸= Sβ) = 0.

We emphasize that the requirement on r here is more stringent than needed: we will show
that BSS achieves model consistency whenever r > 1. Moreover, a direct application of
Theorem 1 of Wang et al. (2010) tells us that r ≥ 1 is necessary for model consistency in
AURWM regime. Therefore, our result (Theorem 2.4.1) essentially resolves the gap between
the existing necessary (r ≥ 1) and sufficient (r > 4/(1− φ)) conditions on the parameter r
by showing that r > 1 is sufficient.

2.4.1 Exact support recovery of BSS

In the following theorem, we show that r > 1 is sufficient for BSS to achieve asymptotic
exact recovery. Recall that n =

⌊
pk
⌋

with 0 < k < 1.

Theorem 2.4.1. Let r > 1 and write δ = r − 1. Then there exists a universal positive
constant C0 such that whenever

s < C0min

{
2k,

δ2

{(1 + 0.75δ)1/2 + (1 + 0.5δ)1/2}2

}
log p,

we have
lim
p→∞

sup
β∈Ma

s

Pβ(Ŝbest ̸= Sβ) = 0.

In order for BSS to achieve model consistency, we need to ensure that the maximum
spurious correlation, i.e., the correlation between the spurious variables and the response, is
well controlled so that the best subset does not involve any false discovery. One important
ingredient of our analysis is the asymptotic distribution of the maximum spurious correlation
due to Fan et al. (2018), based on which we can derive the sharp constant in the minimum
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signal strength for BSS to be model-consistent. It is worth emphasizing that pursuing the
exact asymptotic distributions is crucial to obtain constant-sharp results; typically, standard
non-asymptotic analysis can only yield optimal rates rather than optimal constants. Detailed
proof can be found in Section B.1 of the supplementary material.

Note also that Theorem 2.4.1 requires s to grow slowly. Given that we have at least
(
p−s
s

)
spurious models and that this number increases with respect to s when s is small, a larger s
implies a higher maximum spurious correlation due to randomness and thus a thinner chance
for the best subset to remain the true model.

Remark 2.4.2. The result of Theorem 2.4.1 can be extended to the sub-Gaussian case. In
particular, if the coordinates of x follow i.i.d. distribution with mean-zero and unite variance,
and w is also distributed as a mean-zero sub-Gaussian distribution with unit variance and
independently from x, then BSS is model consistent under a similar condition on sparsity s.
Details can be found in Section A.1.2 of the supplementary material.

In the next section, we show that r > 1 is the weakest possible requirement on the
minimum signal strength for BSS to achieve asymptotic model consistency.

2.4.2 Necessary condition for model consistency of BSS

In this section, we establish that under the AURWM regime, it is impossible for BSS to
achieve model consistency if r ≤ 1, i.e., r > 1 is necessary for BSS to exactly recover the
true support of β. To begin with, Theorem 1 of Fletcher et al. (2009) in our setting yields
that whenever r < 1, i.e., r < 1− δ0 for some δ0 ∈ (0, 1), the 0-1 loss of BSS approaches to
1 as p grows to infinity. This immediately shows that if r < 1, BSS is not model consistent.
However, to the best of our knowledge, there is no existing research that has explored the
compatibility of the condition r = 1 with the model consistency of BSS. In the following
theorem, we answer this question negatively.

Theorem 2.4.3. Under AURWM regime (2.2) with r = 1 and n =
⌊
pk
⌋

for some k ∈ (0, 1),
BSS is unable to achieve model consistency, i.e.,

lim
p→∞

sup
β∈Ma

s

P(Ŝbest ̸= Sβ) >
1

10
.

The above theorem together with Theorem 1 of Fletcher et al. (2009) shows that r > 1

is necessary for model consistency of BSS which is an improvement over the prior existing
necessary condition r ≥ 1. Therefore, These results along with Theorem 2.4.1, provide a
complete characterization of model consistency of BSS in terms of the magnitude of r and
resolve the existing theoretical gap at r = 1.
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It is worth mentioning that a more general information-theoretic impossibility result is
true for the regime r < 1. In other words, if r < 1, all methods (including BSS) fail to
achieve model consistency. This claim is a direct consequence of Theorem 1 of Wang et al.
(2010) that states that the minimax 0-1 loss is bounded away from 0 as p diverges to infinity,
i.e.,

lim
p→∞

inf
Ŝ

sup
β∈Ma

s

Pβ(Ŝ ≠ Sβ) ≥ c,

where c > 0 is a universal constant and the infimum is taken over the class of all possible
measurable functions Ŝ : (X, Y )→ {D ⊆ [p] : |D| = s}. The above inequality suggests that
r ≥ 1 is a necessary condition for exact support recovery. Combining this with Theorem
2.4.1 and Theorem 2.4.3, we can see that BSS is almost optimal in terms of the requirement
on the constant r in minimum signal strength to achieve model consistency. More discussion
on this can be found in Section A.1.3 and Section A.1.4 of the supplementary material.

Next, we briefly discuss the intuition behind the Theorem 2.4.3. In the regime r = 1,
the main difficulty for BSS arises from the fact that it gets confused between Sβ and its
closest competitors. To be precise, let j0 denote the index of a weak signal, i.e., βj0 =

{(2r log p)/n}1/2 with r = 1. Due to the weak magnitude of βj0 , it becomes indistinguishable
from 0 and as a result, BSS confuses Sβ with other candidate models {D ⊂ [p] : Sβ \ D =

{j0}, |D| = s} of size s that differ only at j0 with non-negligible probability. To prove
Theorem 2.4.3, we also analyze the asymptotic distribution of an appropriate maximum
spurious correlation statistics using results from Fan et al. (2018). We point the readers to
Section A.1.3 of the supplementary material for further details of the proof.

Comparison with previous literature: As pointed out before, there is a sharp contrast
between the above results and the results in the previous works like Wainwright (2009a); Rad
(2011); Aeron et al. (2010), where the authors study the necessary and sufficient conditions
for model consistency of BSS in terms of sample complexity under different asymptotic
regimes. For example, under strong-noise regime, Aeron et al. (2010) showed that the
necessary and sufficient conditions for model consistency in terms of 0-1 loss are given by
n = Ω(s log(p/s)) and a2 = Ω(log(p − s)), and BSS is optimal in the sense that it achieves
exact recovery under these conditions. For the fixed noise-variance regime, the results are
different. Firstly, Wang et al. (2010) showed that the following condition is necessary for
any method to achieve exact recovery:

n = Ω

(
s log(p/s)

log(1 + sa2)
∨ log(p− s)
log(1 + a2)

)
, (2.7)
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where u ∨ v := max{u, v}. Under the restriction that a = O(1) and a = Ω(1/
√
s),

which represents strong-signal regime, Rad (2011) showed that BSS achieves model con-
sistency under the necessary condition (2.7). In the general case, that is with no as-
sumption on the joint behavior of (n, p, s, a), Wainwright (2009a) established that n =

Ω(max{s log(p/s), a−2 log(p − s)}) is a sufficient condition for model consistency of BSS.
One can check that the previous condition matches with the condition in (2.7) under the
weak signal regime a = O(1/

√
s). This indicates that BSS is also optimal in this regime in

terms of sample complexity. It is interesting to note that the AURWM regime (2.2) also falls
under this regime as a = O(

√
(log p)/n)≪ 1/

√
s, and n ≍ pk. However, all of these results

fail to capture the precise dependence on a in terms of sharp requirement on the constant r.

2.5 Achieving information-theoretic optimality with

computational efficiency

Despite the optimality of BSS in terms of model selection, its NP-hardness seriously restricts
its practical applicability. To address the computational issue, we propose a two-stage algo-
rithm framework called ETS (Estimate then Screen) that combines an estimation step with
a follow-up coordinate screening step. Under this framework, one has the flexibility to use
any sensible algorithm in the first stage that outputs an estimate with a good estimation
guarantee for β. For example, one choice could be the well-known iterative hard thresh-
olding (IHT) algorithm (Blumensath and Davies, 2009) which is a computational surrogate
for BSS and enjoys a desirable estimation guarantee (Jain et al., 2014). Other choices may
include algorithms like pathwise calibrated sparse shooting algorithm (PICASSO) or prox-
gradient homotopy (PGH) method that are known to produce good approximate solutions
for LASSO (see Zhao et al. (2018); Xiao and Zhang (2013)) in high-dimensional setup. We
show that in the AURWM regime, ETS enjoys the same selection optimality as BSS in terms
of the requirement on the minimum signal strength, i.e., ETS asymptotically achieves model
consistency whenever r is greater than the information-theoretic threshold 1, which is also
the the optimal requirement for BSS to achieve exact recovery.

The above framework is similar to the methodology introduced in Ndaoud and Tsybakov
(2020). In that paper, the authors used the square-root SLOPE estimator (Bogdan et al.,
2015) for the estimation step, and under i.i.d. Gaussian design they showed that their
algorithm achieves model consistency under the same sample complexity as BSS. However,
they do not study optimal dependence on r, which is the main focus of this chapter.
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2.5.1 The ETS algorithm

In this section, we introduce our ETS algorithm (Algorithm 1) in detail. Given a partition
parameter 0 < γ < 1, ETS first splits the full sample (xi, yi)i∈[n] into two subsamples D1, D2

of respective sizes n1 = ⌊γn⌋ and n2 = n− n1. Then ETS performs two main steps on these
two sub-samples respectively:

1. Given an objective function fn1(·;D1) and a constraint set C ⊆ Rp, in the estimation
step, ETS procures a close approximation to β by solving for an approximate solution
to the optimization problem

minimizeθ∈Cfn1(θ;D1) (2.8)

via a suitable iterative algorithm A(·, ·) that takes the objective function fn1(·;D1) and
a set of tuning parameters TA as inputs. In particular, in this step, ETS outputs an
estimator β̂ := A(fn1(·;D1), TA) of the true signal vector β.

2. In the second step, ETS performs a coordinatewise screening based on D2 and β̂ to
select the true variables.

Algorithm 1: ETS
Input: Data D = {(xi, yi)}ni=1, objective function fn1(·;D1), partition parameter γ ,
threshold parameter ς;

1. Randomly partition the whole dataset D into two disjoint subsets
D1 = (X(1),y(1)) and D2 = (X(2),y(2)) ;

2.Apply the algorithm A to compute an approximate solution β̂ of the optimization
problem (2.8) ;

3. Construct the statistics {∆i}pi=1 and thresholds {κς(X(2)
i )}pi=1 using (2.9)-(2.10);

4. Finally compute the selector η̂(X,y);
Output: The selector η̂(X,y).

To elaborate more on the method, for ℓ ∈ {1, 2}, let X(ℓ) ∈ Rnℓ×p and y(ℓ) ∈ Rnℓ denote
the design matrix and the response vector of the ℓth sub-sample respectively. ETS computes
β̂ based on the first sub-sample D1 := (X(1),y(1)) by finding an approximate solution the
optimization problem (2.8) via algorithm A. In practice, there could be several choices
for both the objective function fn1(·;D1) and the algorithm A. For example, one of the
most common choices is to consider the ℓ0-constrained squared-error loss, i.e., fn1(θ;D1) =

n−1
1 ∥y(1) − X(1)θ∥22 with C = {θ ∈ Rp : ∥θ∥0 ≤ s}. In this case, a natural choice for A is

the IHT algorithm which is basically a projected gradient descent method. Another popular
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choice for the objective function is the well-known ℓ1-regularized LASSO objective function
fn1(θ;λ,D1) = n−1

1 ∥y(1)−X(1)θ∥22+λ ∥θ∥1 with C = Rp and one can choose either PICASSO,
PGH or the composite gradient method proposed in Agarwal et al. (2012) as the algorithm
A. Besides these, another choice could be to solve the square-root LASSO problem (Bogdan
et al., 2015) via proximal-gradient descent algorithm proposed in Li et al. (2020).

Next comes the screening step of ETS. For each i ∈ [p], define

∆i :=
X

(2)⊤
i

(
y(2) −

∑
j ̸=iX

(2)
j β̂j

)
∥X(2)

i ∥2
(2.9)

and
κς(u) :=

a ∥u∥2
2

+
ς2 log p

a ∥u∥2
, ∀u ∈ Rn2 , (2.10)

where ς > 0 is specified later. ETS selects the ith variable if and only if |∆i| > κς(X
(2)
i ). To

see why we can screen variables based on {∆i}i∈[p], note that

∆i = βi∥X(2)
i ∥2 +

X
(2)⊤
i

(∑
j ̸=iX

(2)
j (βj − β̂j) +w

)
∥X(2)

i ∥2
. (2.11)

A straightforward argument shows that conditioned on D1 and X
(2)
i , ∆i is distributed as:

∆i

∣∣ (D1,X
(2)
i

) d
= βi

∥∥X(2)
i

∥∥
2
+

{
1 +

∑
j ̸=i

(βj − β̂j)2
}1/2

gi,

where gi ∼ N(0, 1) and is independent of X(2)
i . If estimation method performs well in the

sense that ∥β̂−β∥2 is small, then for all i ∈ Sβ, βi∥X(2)
i ∥2 becomes the dominant term in ∆i.

In contrast, for all i /∈ Sβ, βi∥X(2)
i ∥2 = 0 and we thus expect ∆i to be small. This suggests

the existence of a threshold t(·) on (∆i)i∈[p] that distinguishes the true support Sβ from
the irrelevant variables. We follow Ndaoud and Tsybakov (2020) to choose the threshold
function in (2.10), which is shown to be a reasonable choice to identify the true variables.

For each i ∈ [p], define η̂i(X,y) := 1{|∆i| > κς(X
(2)
i )} and write

η̂(X,y) := (η̂1(X,y), . . . , η̂p(X,y))
⊤.

The selector η̂(X,y) is the final estimate of the support Sβ produced by the ETS algorithm.
Algorithm 1 shows the detailed steps of the ETS algorithm.
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2.5.1.1 Model consistency of ETS

In this section, we establish theoretical guarantees for ETS-IHT. First, we introduce a tech-
nical assumption that concerns how fast algorithm A can generate a good approximation of
the true signal β.

Assumption 2.5.1. The following holds with a probability converging to 1 as p diverges to
infinity:
For any given tolerance level ϵ > 0, there exists a suitable set of deterministic tuning pa-

rameters TA such that the algorithm A requires no more than T (ϵ, p,β) iterations to produce
a solution β̂ := A(fn1(·;D1), TA) such that ∥β̂ − β∥22 ≤ ϵ.

The above assumption essentially tells that the T (ϵ, p,β)th iterate of algorithm A is
already ϵ-close to β in squared ℓ2-distance with high probability for large enough p. If ϵ
is small, then β̂ is a good estimate of β and we can use it in the screening step to select
the variables. Typically, as ϵ decreases towards 0, the iteration counts T (ϵ, p,β) increases
to infinity as higher accuracy generally demands more computation. However, in many
examples, as we will see in Section 2.5.1.2, T (ϵ, p,β) depends only poly-logarithmically on
ϵ−1, which alleviates the computational cost.

Next, we define the binary decoder of the true support Sβ as ηβ := (1{β1 ̸= 0}, . . . ,1{βp ̸=
0})⊤. The following theorem shows that ETS can achieve exact recovery under suitable
choices of tuning parameters.

Theorem 2.5.2. Assume the condition in Assumption 2.5.1 hold and the sample size n =⌊
pk
⌋

for some k ∈ (0, 1). Let r > 1 and write δ = r−1. Then, under AURWM regime (2.2),
there exist universal positive constants A1, A2 such that with overall iteration count no more
than T (A1δ, p,β) for algorithm A, γ ∈ (0, δ/(8 + 8δ)) and ς = (1 + A2δ)

1/2, we have that
limp→∞ supβ∈Ms

a
Pβ(η̂ ̸= ηβ) = 0.

Note that as the signal strength parameter r approaches the information-theoretic bound-
ary, i.e., as δ approaches 0, ETS may require more iterations to achieve model consistency
as T (A1δ, p,β) generally increases as δ decreases to 0. This is not surprising: intuitively,
weaker signals are harder to identify than strong ones.

Besides, ETS does not require the knowledge of the true sparsity s, but requires the
knowledge of a in the second stage for accurate screening. If the true sparsity s is known,
then we can enforce ETS to select exactly s features as follows: Let |∆|(m) denote the mth
largest value of {|∆i|}i∈[p]. For each i ∈ [p], define

η̂i(X,y; s) = 1{|∆i| ≥ |∆|(s)}. (2.12)
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Hence η̂(s) := (η̂1(s), . . . , η̂p(s))
⊤ selects exactly s features and the knowledge of a is not

required in this case. The following corollary shows that under the same conditions of
Theorem 2.5.2, η̂(s) achieves model consistency.

Corollary 2.5.3. Assume the condition in Assumption 2.5.1 holds and the sample size
n =

⌊
pk
⌋

for some k ∈ (0, 1). Let A1 be the same universal constant as in Theorem 2.5.2,
r > 1 and write δ = r − 1. Then, under AURWM regime (2.2), with overall iteration
count no more than T (A1δ, p,β) for algorithm A and γ ∈ (0, δ/(8 + 8δ)) , we have that
limp→∞ supβ∈Ma

s
Pβ(η̂(s) ̸= ηβ) = 0.

Remark 2.5.4. The algorithm can be made adaptive to a in some certain regime of r. In
particular, if there exists a known positive constant δ∗ such that r > 1 + δ∗, then a threshold
as in (2.10) can be constructed without the knowledge of a or r so that ETS still enjoys model
consistency. In this case, δ∗ can be arbitrarily small and as long as δ∗ is known, an adaptive
choice of threshold exists.

Detailed proofs of Theorem 2.5.2, Corollary 2.5.3 and Remark 2.5.4 can be found in
Section A.2 of the supplementary materials. Next, we will discuss some concrete examples
of ETS methods that enjoy model consistency.

2.5.1.2 Examples of ETS methods

In this section, will present a few examples of ETS methods. In particular, we will consider
the ETS methods with different choices for the base algorithm A: (1) the IHT algorithm
which solves the ℓ0-constrained optimization problem, (2) the PICASSO and PGH algorithm
which solves the ℓ1-regularized optimization problem. We will show that Assumption 2.5.1
is met in all these cases and we will explicitly derive the dependence of T (ϵ, p,β) on (ϵ, p,β).
Hence, this will automatically establish the model consistency of these three variants of the
ETS method due to the result in Theorem 2.5.2. For clarity, depending on the algorithm
used in the estimation step, we will refer to these methods as ETS-IHT, ETS-PICASSO, and
ETS-PGH. To be self-contained, we describe the steps of IHT in Algorithm 2. However, we
do not add the description of PICASSO and PGH as those are too involved to add in this
paper. Detailed description of PICASSO and PGH can be found in Zhao et al. (2018) and
Xiao and Zhang (2013) respectively. We remind the readers that throughout the discussion in
this section, we will consider the AURWM regime defined in (2.2) with sample size n =

⌊
pk
⌋

for some k ∈ (0, 1). More details and proofs related to the examples can be found in Section
A.2.4 of the supplementary material.
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Solving ℓ0-constrained problem: As discussed in Section 2.5.1, In this case, the opti-
mization problem (2.8) takes the form

minimizeθ:∥θ∥0≤sn
−1
1

∥∥y(1) −X(1)θ
∥∥2
2
. (2.13)

We consider the ETS-IHT in this case which uses IHT (Algorithm 2) to obtain an ap-
proximate solution to the above optimization problem. In this case TA = {ŝ, h}, where
ŝ is the sparsity level and h is the gradient step-size. Following the discussion of Sec-
tion 4 in Jain et al. (2014), in particular, using Theorem 3 of that paper we have that
the final output β̂ of IHT satisfies ∥β̂ − β∥22 ≤ ϵ with probability converging to 1, when
ŝ = 2592s, h ≤ 8/27 and T (ϵ, p,β) = O(log p + log((1 + ∥β∥∞)/ϵ)). Hence, the condi-
tions in Assumption 2.5.1 hold. Moreover, Theorem 3 of Jain et al. (2014) suggests that if
fn1(β̂;D1)−minθ:∥θ∥0≤s fn1(θ;D1) ≤ (ϵ/16), then for large values of p, we have ∥β̂−β∥22 ≤ ϵ.
Hence, it is enough to output an estimator β̂ which incurs a sub-optimality gap of the order
O(ϵ).

Algorithm 2: IHT
Input: Objective function f , sparsity level ŝ, step size h ;
β(0) = 0;
t = 0 ;
while not converged do

β(t+1) = P 0
ŝ (β

(t) − h∇θf(βt)), where P 0
ŝ (v) = argminz:∥z∥0=ŝ ∥v − z∥2;

t← t+ 1
end
Output: β̂ = β(t).

Solving ℓ1-regularized problem: In this case, the objective function is

fn1(θ;λ,D1) = n−1
1

∥∥y(1) −X(1)θ
∥∥2
2
+ λ ∥θ∥1 ,

and C = Rp. For brevity of discussion, we only consider PICASSO and PGH as the candidate
methods for solving the above optimization problem. We omit the details of the tuning
parameters for these algorithms in this paper, but details of those can be found in Zhao
et al. (2018) and Xiao and Zhang (2013) respectively.

• ETS-PICASSO: For ETS-PICASSO, Theorem 3.12 of Zhao et al. (2018) yields that
with T (ϵ, p,β) ≲ (log p)3(log p+ log ∥β∥∞)(log log p+ log(ϵ−1 ∨C1))

2 and the regular-
ization parameter λ = C2{(log p)/n1}1/2 for appropriate absolute constants C1, C2 > 0,
the approximate solution β̂ has the property fn1(β̂;λ,D1)−fn1(β̂L;λ,D1) = O(ϵ) with
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probability converging to 1, where

β̂L := argminθfn1(θ;λ,D1).

Then, the strong convexity property of the Gram matrix X(1)⊤X(1)/n1, and the good
estimation property of β̂L yields that ∥β̂ − β∥22 ≤ ϵ.

• (ETS-PGH): For ETS-PGH, Theorem 3.2 of Xiao and Zhang (2013) yields that with
T (ϵ, p,β) = O((log p + log ∥β∥∞) log log p + log(ϵ−1 ∨ C̃1)) and λ = C̃2{(log p)/n1}1/2

for appropriate absolute constants C̃1, C̃2 > 0, the approximate solution β̂ satisfies
fn1(β̂;λ,D1) − fn1(β̂L;λ,D1) = O(ϵ) with probability converging to 1. Then, again
by the strong convexity property of the Gram matrix X(1)⊤X(1)/n1, and the good
estimation property of β̂L, it follows that ∥β̂ − β∥22 ≤ ϵ.

It is worth mentioning that the choice of PICASSO or PGH is not special for solving the
ℓ1-regularized problem. As long as the base algorithm A outputs β̂ which enjoys a sub-
optimality gap of the order O(ϵ) in the functional value, it follows that ∥β̂ − β∥22 ≤ ϵ. We
formalize this result in the next proposition.

Proposition 2.5.5. Consider the AURWM regime in (2.2) and let the sample size n =
⌊
pk
⌋

for some k ∈ (0, 1). Then, there exists a positive universal constant C3 such that for all
ϵ ∈ (0, C3), the following holds with probability at least 1 − 3p−0.5 for large enough p and
λ = 8{(log p)/n1}1/2:

fn1(β̂;λ,D1)− fn1(β̂L;λ,D1) ≤ ϵ/C3 implies ∥β̂ − β∥22 ≤ ϵ.

The proof of the above result is deferred to Section A.2.4 of the supplementary material.
The above proposition basically shows that in the case of solving the LASSO problem, if
β̂ can be produced efficiently, then an optimality-gap of C−1

3 ϵ in the functional value is
enough to guarantee that β̂ falls inside the ϵ1/2 neighborhood of the true parameter β, i.e.,
the conditions in Assumption 2.5.1 hold with probability at least 1 − O(p−0.5). Hence, this
provides us the flexibility to use any sensible algorithm for the ℓ1-regularized problem such
as the composite gradient method proposed in Agarwal et al. (2012).

2.5.2 Discussion on information-theoretic optimality, statistical ac-

curacy and computational efficiency

In the previous section, we have shown that ETS achieves the model consistency under the
same information-theoretic optimal requirement on r with computational expediency. How-

27



ever, the computational efficiency of ETS heavily depends on the magnitude of r. Theorem
2.5.2 suggests that as r approaches the information-theoretic boundary 1, the demand on the
number of iterations in the estimation step increases. It could be possible that the compu-
tational load of ETS surpasses the computational load of BSS when r is extremely close to 1
for a fixed ambient dimension. Hence, even though ETS is able to recover the weak signals
asymptotically (as n approaches infinity) under the optimal requirement on r, it may suffer
from high computational costs. Moreover, as r approaches 1, it turns out that the decaying
rate of the error probability worsens. This fact can be verified from the rates obtained in
the proof of Theorem 2.5.2 in the supplementary material and we do not include those in
the main theorem for conciseness. This suggests that weak signals also hurt the statistical
power or accuracy of the ETS methods. Hence, both statistical accuracy and computational
efficiency suffer as the signals get weaker.

2.6 Numerical experiments

In this section, we first numerically investigate the probability for MS to achieve exact re-
covery of the true model with growing ambient dimension p under both homogeneous and
heterogeneous signal setups. Our results show that while MS exhibits model consistency
under the homogeneous signal regime, it completely fails to do so under the heterogeneous
signal regime, which is consistent with Theorem 2.3.1. We then conduct simulation exper-
iments to demonstrate the superiority of ETS methods over competing methods including
LASSO and MS as signal strength grows or signal heterogeneity grows. For ETS methods, we
only include ETS-IHT and ETS-PICASSO methods. For ETS-PICASSO, we used picasso

package in R which uses the PICASSO method for solving the LASSO problem. To this end,
we mention that we do not numerically compare exact BSS in this section mainly due to
computational issues. In most of our simulation setups, we consider p in thousands and exact
BSS suffers from high computational costs in such regimes, which is also a limitation of the
commercial solver Gurobi (Hastie et al., 2020). Bertsimas and Parys (2020); Hazimeh et al.
(2022); Xie and Deng (2020) have made efforts to overcome this computational bottleneck
by considering different methods for solving approximate versions of BSS. In particular, they
all consider different regularized versions of BSS which is beyond the scope of this paper, and
hence we do not include those in the numerical experiments. Instead, we focus on LASSO
and ETS, both of which are two different computational surrogates of the BSS problem.

28



2.6.1 Exact recovery performance of MS

In Figure 2.1, we demonstrate the asymptotics of MS under both homogeneous and heteroge-
neous signal patterns. We consider p ∈ {1000, 2000, . . . , 8000} and signal strength parameter
r ∈ {2, 3, 4, 5, 6}. We set s = ⌊2 log p⌋ and n = ⌊p0.9⌋. We let τ(X, Y ) in (2.4) be equal to
the sth largest value of {|µ1| , . . . , |µp|}, so that MS always chooses a model of size s. For
the homogeneous signal setup, we consider β with ∥β∥0 = s and βj = a for all j ∈ Sβ,
where a is defined in (2.2). This implies that the SNR varies between 0.19 and 2.15 across
different choices of (r, p). For the heterogeneous signal setup, we consider β with (s − 1)

active coordinates equal to a and one “spiky” coordinate equal to {10− (s− 1)a2}1/2. This
ensures that the SNR is fixed at 10 for all choices of r, p.

Figure 2.1(a) shows that under homogeneous signal MS is able to recover the exact model
with probability converging to 1 as p grows. In contrast, Figure 2.1(b) shows that under
heterogeneous signal MS never achieves exact model recovery: plots for all values of r are at
level 0. Such a contrast corroborates Theorem 2.3.1: signal spikes can give rise to substantial
spurious correlation and jeopardize the accuracy of MS.
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(a) Proportion of exact recovery under weak
homogeneous signal. (0.19 ≤ SNR ≤ 2.15)
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geneous signal. (SNR = 10)

Figure 2.1: Asymptotics of MS with growing dimension p.

2.6.2 Effect of growing signal strength

Here we numerically compare the probability of exact support recovery of ETS with those
of LASSO and MS as signal strength parameter r grows. We investigate both homogeneous
and heterogeneous signal patterns. We set p = 2000, s ∈ {13, 52} and n = ⌊p0.9⌋ = 935.
We set signal strength parameter r ∈ {1.5, 2, 2.5, . . . , 9} in (2.2). The support S is chosen
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uniformly over all the size-s subsets of [p], and each support coordinate of β is chosen as
follows:

βj = (1− bj)(1 + Z2
j /n)

1/2a+ bjr
1/2 ∀j ∈ S,

where (Zj)j∈S
i.i.d.∼ N(0, 1), and where (bj)j∈S

i.i.d.∼ Ber(π) with π ∈ {0, 0.2}. π = 0 corresponds
to the homogeneous signal pattern, and π = 0.2 corresponds to the heterogeneous signal
pattern, where spiky signals are present with probability 0.2. Each entry xij of the design
matrix X is generated independently from N(0, 1).

In this experiment, we grant all the approaches with the knowledge of s, so that the
comparison is fair. Using this oracle knowledge, we only look at the solutions of the afore-
mentioned three methods with sparsity exactly equal to s. Specifically, for LASSO, we look
at the solution path and select the model of size exactly equal to s. For MS, we just select
the top s variables corresponding to the largest absolute values of µ’s. For ETS, we do
not split data for estimation and screening separately; instead, we use the full data in both
steps. Specifically, we replace X(1) and y(1) with X and y respectively in (2.13) and replace
X(2) and y(2) with X and y respectively in (2.9). We set gradient step size h = 0.5 in IHT.
We choose projection size ŝ by cross-validation in terms of mean squared prediction error.
Lastly, for selecting exactly s features we use (2.12) in the screening stage of ETS. It is
worthwhile to mention that from an application point of view, incorporating data splitting
in ETS is not necessary as we are only interested in identifying the active signals, which is
akin to point estimation. Also, given the fact that n≪ p in high dimensional regime, using
full sample in both the estimation and screening step delivers greater sample efficiency and
provides better inference.

Next, for each choice of r, we run LASSO, MS, and ETS over 200 independent Monte
Carlo experiments to compute the empirical probability of exact recovery. Figure 2.2 presents
the results. We make the following important observations:

1. All three methods enjoy a higher chance of exact support recovery as the signal strength
grows.

2. MS completely fails to achieve exact support recovery when s becomes large (compare
panels (a) and (c)) or the signal becomes heterogeneous (compare panels (a) and (b)).

3. LASSO and ETS algorithms are insensitive to the heterogeneity of the signal. However,
LASSO suffers from larger sparsity, while ETS algorithms are much more robust against
it.

4. Overall, ETS is the best among all the three methods in terms of exact support recov-
ery. However, ETS-IHT is somewhat better than ETS-PICASSO, and the difference
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(a) Homogeneous signal pattern (π = 0, s =
13)
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(b) Heterogeneous signal pattern (π =
0.2, s = 13)
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(c) Homogeneous signal pattern (π = 0, s =
52)
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(d) Heterogeneous signal pattern (π =
0.2, s = 52)

Figure 2.2: Plot of the proportion of exact recovery for varying r. (Gaussian case)

between their performance is more prominent when s is large.

Remark 2.6.1. Genovese et al. (2012) established model consistency of LASSO under rare
and weak signal regime for i.i.d. Gaussian design under a different asymptotic setting and the
scaling s = O(log p) is a special case of their setting. However, they assume a homogeneous
signal, and our simulation results in Figure 2.2(a) concur with their theoretical findings.
However, the performance of LASSO degrades significantly for larger sparsity, even under
homogeneous signal (see Figure 2.2(b)), which perhaps shows the limitations of the results in
Genovese et al. (2012) for realistic values of p and s. In contrast, Wainwright (2009b) obtains
the sharpest possible results for model consistency of LASSO under a very general setting.
To be precise, under i.i.d. Gaussian design and for general combination of (n, p, s), the paper
shows that LASSO achieves model consistency for a = Ω(λ), where λ is the regularization
parameter and λ ≳ {(log p)/n}1/2. Hence, it is also valid for rare and weak signal regimes and
also accommodates heterogeneity in the signal when λ ≍ {(log p)/n}1/2. However, those are
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tight only up to multiplicative constants. Moreover, as pointed out in Section B of Wainwright
(2009b), the model consistency of LASSO depends on whether or not the following is achieved:

n > s log(p− s) + λ−2 log(p− s).

The above condition is harder to satisfy if s becomes large keeping other parameters fixed,
which could be a possible explanation for the phenomenon observed in the third point of the
prior observations.
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(c) Homogeneous signal pattern (π = 0, s =
52)
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(d) Heterogeneous signal pattern (π = 0.2, s =
52)

Figure 2.3: Plot of the proportion of exact recovery for varying r. (non-Gaussian case)

To demonstrate the effectiveness of the ETS framework beyond Gaussian design, we also
evaluate the performance of ETS-IHT and ETS-PICASSO under the case where the entries
of X are generated from Unif(−

√
3,
√
3) in an i.i.d. fashion with the same choices of (n, p, s)

as in the Gaussian example. Based on Figure 2.3, in this case, ETS also enjoys superior per-
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formance than LASSO and MS. Moreover, we observe a similar effect of signal heterogeneity
and sparsity on the model recovery rate of the methods. This provides empirical evidence
in favor of the good model selection performance of ETS under sub-Gaussian design.

2.6.3 Effect of growing heterogeneity

In this numerical experiment, we study the effect of growing heterogeneity on ETS-IHT,
LASSO and MS. We set p = 2000, s = 13, n = ⌊p0.9⌋ = 935 and r ∈ {2, 6} in (2.2). Next,
we introduce nspike, the number of “spiky” signals in S. We vary nspike in {0} ∪ [6]. The case
nspike = 0 corresponds to the homogeneous signal setup where the true signals are set as a
uniformly. For nspike > 0, we randomly set (s− nspike) signals in S to be equal to a and the
remaining signals to be equal to aspike, which is defined as

aspike :=

{
(2− sa2)
nspike

+ a2
}1/2

.

Such a choice of aspike ensures that the SNR always equals 2 whenever nspike > 0. We perform
ETS-IHT, LASSO, and MS over 200 Monte Carlo simulations for each choice of r and nspike

to obtain the empirical probability of exact support recovery. Similarly to the previous
sections, we assume that the true sparsity s is known and we apply the three methods in the
same fashion as before.

Figure 2.4 shows again the detrimental effect of heterogeneity on MS in terms of exact
recovery. In both panels we see a significant drop in the proportion of exact recovery for MS
when nspike changes from 0 to 1. This is consistent with the theory in Section 2.3. However,
in Figure 2.4(b) we see that the proportion of exact recovery is slowly increasing as nspike

grows from 1 to 6. This is because as nspike increases, aspike monotonically decreases, so that
the signals become more homogeneous. MS is then able to recover the exact model more
frequently. We do not see a similar phenomenon in Figure 2.4(a) because aspike is too large.
Another important observation is that while ETS-IHT and LASSO are both performing
nearly perfectly when r = 6, ETS-IHT significantly outperforms both LASSO and MS when
r = 2. Therefore, ETS-IHT is again the overall winner.

2.7 Conclusion

In this chapter, we studied the exact support recovery in high-dimensional sparse linear
regression with independent Gaussian design. We focus on the AURWM regime that not only
accommodates rare and weak signals as the ARW regime does but also allows heterogeneity
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Figure 2.4: Plot of proportion of exact recovery with varying nspike.

in the signal strength. Our first theoretical result (Theorem 2.3.1) shows that marginal
screening fails to achieve exact support recovery under the AURWM regime. The main
reason is that the presence of “spiky” signals increases the maximum spurious marginal
correlation, thereby blinding the marginal screening procedure to weak signals. Therefore,
one needs to be cautious with usage of marginal screening for variable selection in practice.

In contrast, we show that BSS is robust to signal spikes and is able to achieve model
consistency under the AURWM regime with the optimal requirement on signal strength
(Theorem 2.4.1, 2.4.3). The primary reason behind this is that unlike MS, BSS takes into
account multiple features simultaneously and thus selects variables based on their capability
of fitting the residualized responses given the other variables rather than the responses
themselves. Therefore, spiky signals do not affect BSS: They are very likely to be in plausible
candidate models in the first place and their effect on the response has been removed in the
residualization procedure. Given the recent computational advancements in solving BSS,
our positive result on BSS makes it more appealing from an application point of view.

However, it is worth mentioning that even with modern advances in optimization, BSS
suffers from high computational costs when the ambient dimension is extremely high. To ad-
dress this issue, we propose a computationally tractable two-stage method ETS that delivers
essentially the same optimal exact recovery performance as BSS (Theorem 2.5.2). Similar to
BSS, ETS seeks for the features that exhibit high explanation power for the residuals from
the model that excludes these features themselves (see (2.9)). Therefore, ETS is robust to
spiky signals. This fact together with the slowly growing sparsity condition in (2.2) yields
the optimal exact recovery accuracy of ETS.

Our work naturally raises several important questions for future research. One question
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is whether similar optimality results hold for BSS and ETS when the sparsity s grows faster
than log p. The same question can also be asked for correlated random design. Another
direction of our interest is studying the problem of exact recovery in a distributed setting
where data are stored at different places and communication between them is restricted.
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CHAPTER 3

Understanding Best Subset Selection: A Tale of
Two C(omplex)ities

In the previous chapter, we extensively studied the properties of marginal screening and BSS
when entries of the design matrix are generated from i.i.d. Gaussian distribution. However,
in reality, it is often the case that the features are highly correlated with each other. For
example, in GWAS studies, the features carrying genetic information are highly correlated
with other genetic features. In such cases, multi-collinearity adds a further layer of difficulty
on top of high dimensionality of the data. However, recent simulation studies in Hastie et al.
(2020) shows that BSS achieves superior performance in terms of model selection compared
to its computational surrogates like LASSO, SCAD, and MCP. Recently, Guo et al. (2020)
theoretically validated this fact by showing that the model selection performance of BSS
depends on a certain identifiability margin that is robust to the design dependence, unlike
its computational surrogates such as LASSO, SCAD, MCP, etc.

To this end, in this chapter, we consider the problem of best subset selection under a
high-dimensional sparse linear regression model and add a new geometric perspective to
the BSS problem that unravels a deeper understanding of the model selection problem. In
particular, we show that the topological properties of the feature space are fundamental to
understanding the model selection property of BSS, i.e., the complexities of the residualized
signals and spurious projections (see Section 3.3.4) play fundamental roles in characterizing
the margin condition for model consistency of BSS. Furthermore, we establish both necessary
and sufficient margin conditions depending only on the identifiability margin and the two
complexity measures. We also partially extend our sufficiency result to the case of high-
dimensional sparse generalized linear models (GLMs).
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3.1 Introduction

Similar to the previous chapter, we consider n observations {(xi, yi)}ni=1 following the linear
model:

yi = x⊤
i β + wi, i ∈ {1, . . . , n}, (3.1)

where {xi}i∈[n] are fixed p-dimensional feature vectors, {wi}i∈[n] are i.i.d. mean-zero σ-sub-
Gaussian noise, i.e., E exp(λwi) ≤ exp(λ2σ2/2) for all λ ∈ R and i ∈ [n], and the signal
vector β ∈ Rp is unknown but is assumed to have a sparse support. In matrix notation, the
observations can be represented as

y = Xβ +w,

where y = (y1, . . . , yn)
⊤, X = [x1, . . . ,xn]

⊤, and w = (w1, . . . , wn)
⊤. We consider the

standard high-dimensional sparse setup where n < p, and possibly n ≪ p, and the vector
β is sparse in the sense that ∥β∥0 :=

∑p
j=1 1(βj ̸= 0) = s, which is much smaller than p.

We focus on the variable selection problem, i.e., identifying the active set S := {j : βj ̸= 0}
under the 0-1 loss.

One of the well-studied methods for variable selection in high-dimensional sparse re-
gression is to penalize the empirical risk by model complexity, thereby encouraging sparse
solutions. Specifically, consider

β̂
pen

:= argminβ∈Rp L(β) + penλ(β),

were L(β) is a loss function and penλ(β) is the penalization term that controls the model
complexity. Classical methods such as AIC (Akaike, 1974, 1998), BIC (Schwarz, 1978),
Mallow’s Cp (Mallows, 2000) use model complexity as penalty term, i.e., ℓ0-norm of the
regression coefficient, to penalize the negative log-likelihood. Although these methods enjoy
nice sampling properties (Barron et al., 1999; Zhang and Zhang, 2012), such ℓ0 regularized
methods are known to suffer from huge computational bottleneck (Foster et al., 2015). This
motivated a whole generation of statisticians to develop alternative penalization methods
such as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), MC+ (Zhang, 2010), and
many others that have both strong statistical guarantees and computational expediency.

However, as discussed in Chapter 2, after recent computational advancements in solving
BSS (Bertsimas et al., 2016; Bertsimas and Parys, 2020; Zhu et al., 2020), there has been
growing acknowledgment that BSS enjoys significant statistical superiority over its com-
putational surrogates and has inevitably motivated statisticians to investigate the variable
selection properties of BSS. For example, through extensive simulations, Hastie et al. (2020)
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shows that BSS performs better than LASSO in a high signal-to-noise ratio regime in terms
of the prediction risk. On the theoretical side, Guo et al. (2020) showed that the model
selection behavior of BSS does not explicitly depend on the restricted eigenvalue condition
for the design (Bickel et al., 2009; Van De Geer and Bühlmann, 2009), a condition which
appears unavoidable (assuming a standard computational complexity conjecture) for any
polynomial-time method (Zhang et al., 2014). Specifically, they show that BSS is robust
to design collinearity. Under a particular asymptotic regime and independent design, Roy
et al. (2022) further established information-theoretic optimality of BSS in terms of precise
constants for the signal strength parameter under weak and heterogeneous signal regimes.

Main contribution: In this chapter, we also study the variable selection property of BSS
and identify novel quantities that are fundamental to understanding the model consistency
of BSS. Specifically, we take the geometric alignment of the feature vectors {Xj}j∈[p] into
consideration to produce a more refined analysis of BSS, and show that on top of a cer-
tain identifiability margin (Guo et al., 2020), the following two geometric quantities also
control the model selection performance of BSS: (a) Geometric complexity of the space of
residualized signals, and (b) Geometric complexity of spurious projections. We show the
explicit dependence of these two complexity measures in our main results and demonstrate
the interplay between the margin condition and the underlying geometric structure of the
features through some illustrative examples. In the process, we also point out the existence
of a design that is more favorable to BSS than the orthogonal design, which is commonly
believed to be the easiest case for model selection. To the best of our knowledge, this is
the first work that identifies the underlying geometric complexity of the feature space as a
governing force behind the performance of BSS.

The rest of the chapter is organized as follows. In Section 4.3 we discuss the preliminaries
of BSS. Section 3.3 is devoted to the discussion of the key quantities, i.e., identifiability
margin and the two complexities. In particular, Section 3.3.1-3.3.3 carefully introduce the
notion of identifiability margin discussed in Guo et al. (2020) and the two novel complexity
measures. In Section 3.3.4, we build intuition for understanding the effect of these two
complexities with varying correlation. In Section 3.4, we present both sufficient (Section
3.4.1) and necessary (Section 3.4.3) conditions for model consistency of BSS. We also partially
extend our result to GLMs and present a similar sufficiency result for model consistency in
Section S2 of the supplementary material.
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3.2 Best subset selection

We briefly review the preliminaries of best subset selection (BSS), one of the most classical
variable selection approaches. For a given sparsity level ŝ, BSS solves for

β̂best(ŝ) := argminβ∈Rp,∥β∥0≤ŝ ∥y −Xβ∥22 .

For model selection purposes, we can choose the best fitting model to be Ŝbest(ŝ) := {j :

[β̂best(ŝ)]j ̸= 0}. For a subset D ⊆ [p], define the matrix XD := (Xj; j ∈ D). Let PD :=

XD(X
⊤
DXD)

−1X⊤
D be orthogonal projection operator onto the column space of XD. Also,

define the corresponding residual sum of squares (RSS) for model D as

RD := y⊤(In −PD)y.

With this notation, the Ŝbest(ŝ) can be alternatively written as

Ŝbest(ŝ) := argminD⊆[p]:|D|≤ŝRD. (3.2)

Given any candidate model D ⊂ [p], we can rewrite the model (3.1) as

y = XSβS +w = PDXSβS + (In −PD)XS\DβS\D +w.

The term (In − PD)XS\DβS\D is the residual part of the signal that can not be linearly
explained by XD. We refer to this part as the residualized signals. We can thus measure
the discrimination between the true model S and a different candidate model D through the
quantity n−1

∥∥(In −PD)XS\DβS\D
∥∥2
2
.

Let Σ̂ := n−1X⊤X be the sample covariance matrix and for any two sets D1,D2 ⊂ [p],
Σ̂D1,D2 denotes the submatrix of Σ with row indices in D1 and column indices in D2. Next,
we define the collection Aŝ := {D ⊂ [p] : D ≠ S, |D| = ŝ}, and for D ∈ Aŝ write

Γ(D) = Σ̂S\D,S\D − Σ̂S\D,DΣ̂
−1

D,DΣ̂D,S\D.

Then, it follows that n−1
∥∥(In −PD)XS\DβS\D

∥∥2
2

= β⊤
S\DΓ(D)βS\D. Intuitively, if

β⊤
S\DΓ(D)βS\D is very close to zero, then there exists b ∈ R|D| such that XSβS ≈ XDb.

Hence, S and D have similar linear explanatory power, and the true model S becomes prac-
tically indistinguishable from D. In fact, the following lemma shows that β⊤

S\DΓ(D)βS\D

needs to be at least bounded away from 0 for all D ∈ Aŝ to make S identifiable.

Lemma 3.2.1. If there exists a D ∈ Aŝ such that β⊤
S\DΓ(D)βS\D = 0, then there exists
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b ∈ Rŝ such that XSβS = XDb. Hence, both XSβS and XDb generates the same probability
distribution for y, and S becomes non-identifiable.

Now we are ready to introduce the identifiability margin that characterizes the model
discriminative power of BSS and the two complexity measures.

3.3 Identifiability margin and two complexities

3.3.1 Identifiability margin

The discussion in Section 4.3 motivates us to define the following identifiability margin:

τ∗(ŝ) := min
D∈Aŝ

β⊤
S\DΓ(D)βS\D

|D \ S|
. (3.3)

If we define Aŝ,k := {D ∈ Aŝ : |D \ S| = k}, then the above can be rewritten as

τ∗(ŝ) = min
k∈[ŝ]

min
D∈Aŝ,k

β⊤
S\DΓ(D)βS\D

k
.

As mentioned earlier, the quantity τ∗(ŝ) captures the model discriminative power of BSS.
To add more perspective, note that if the features are highly correlated among themselves
then it is expected that τ∗(ŝ) is very close to 0. Hence, any candidate model D is practi-
cally indistinguishable from the actual model S which in turn makes the problem of exact
model recovery harder. On the contrary, if the features are uncorrelated then τ∗(ŝ) becomes
bounded away from 0 making the true model S easily recoverable. For example, Guo et al.
(2020) showed that under the condition

τ∗(s) ≳ σ2 log p

n
, (3.4)

BSS is able to achieve model consistency. In general, Condition (4.6) is less restrictive than
the well known β-min condition which demands

a := min
j∈S
|βj| ≳ σ

(
log p

n

)1/2

.

To see this, let λ̂m := minD∈As λmin (Γ(D)), and note that τ∗(s) ≥ λ̂ma
2. Thus a sufficient

condition for (4.6) to hold is a ≳ σ{log p/(nλ̂m)}1/2. In comparison, Zhang and Zhang (2012)
showed that the ℓ0-regularized least square estimator is able to achieve model consistency
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when a ≳ σ{log p/(nκ−)}1/2, where κ− := minD:|D|≤s,D⊂[p] λmin(Σ̂D). The latter condition is
very sensitive to the feature correlation as κ− can vary drastically depending on the degree of
correlation between the features. In contrast, λ̂m is robust against design dependence; rather,
it reflects how spurious variables can approximate the true model, which implies much less
restriction than that induced by κ−. For more details on the identifiability margin, we point
the readers to Section 2.1 of Guo et al. (2020). From now on, unless otherwise mentioned,
we will assume that τ∗(ŝ) > 0 to avoid the non-identifiability issue as pointed out in Lemma
3.2.1.

Next, we will shift focus on the underlying geometric structures of two spaces that govern
the difficulty of the BSS problem (4.4). We essentially identify the complexities of two types
of sets that control the hardness of BSS: (i) the set of residualized signals, and (ii) the set
of spurious projections. We discuss these two sets and the associated complexities in detail
below.

3.3.2 Complexity of residualized signals

We start with the definition of the residualized signal. For a candidate model D ∈ Aŝ, define

γD := n−1/2(In −PD)XS\DβS\D,

and the corresponding unit vector γ̂D := γD/ ∥γD∥2. Note that γ̂D is well-defined as ∥γD∥
2
2 ≥

τ∗(ŝ) > 0. As mentioned before, γD represents the part of the signal that can not be linearly
explained by the features in model D. Note that the margin condition (4.6) essentially tells
that the vectors γD are well bounded away from the origin. However, this property does not
quite capture the degree of their radial spread in Rn. It may happen that despite being well
bounded away from the origin, the vectors are clustered along one common unit direction.
To capture this notion of separation within the vectors {γD}D∈Aŝ

, we also need to capture
the spatial alignment of their corresponding unit vectors {γ̂D}D∈Aŝ

. This motivates us to
consider the geometric complexities of this set of unit vectors. Specifically, for a set I ⊂ S,
we define

T (ŝ)
I := {γ̂D : D ∈ Aŝ,S ∩ D = I} ⊆ Rn,

which is the set of all the normalized forms of the residualized signals corresponding to the
models D ∈ Aŝ with I as the common part with true model S. To capture the complexity
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of these spaces, we look at the scaled entropy integral

ET (ŝ)
I

:=

∫∞
0

√
logN (T (ŝ)

I , ∥·∥2 , ε) dε√
log |T (ŝ)

I |
.

The numerator in the above display is commonly known as entropy integral which captures
the topological complexity of T (ŝ)

I . In literature, this quantity has a connection to the well-
known Talagrand’s complexity (Talagrand, 2005), which often comes up in controlling the
expectation of the supremum of Gaussian processes (Krahmer et al., 2014; Lifshits, 1995;
Adler et al., 2007). In this chapter, we look at the above scaled version of the entropy integral
which allows us to compare the quantity with the diameter and minimum pairwise distance
between the elements of the set T (ŝ)

I . To elaborate on this point, define the diameter and
minimum pairwise distance of T (ŝ)

I as follows:

DT (ŝ)
I

:= max
u,v∈T (ŝ)

I

∥u− v∥2 , and dT (ŝ)
I

:= min
u,v∈T (ŝ)

I

∥u− v∥2 .

Now notice the following two simple facts:

logN (T (ŝ)
I , ∥·∥2 ,DTI) = 0, logN (T (ŝ)

I , ∥·∥2 , dTI) = log
∣∣∣T (ŝ)

I

∣∣∣ .
Noting that logN (T (ŝ)

I , ∥·∥2 , δ) is a decreasing function over δ, we finally get

dT (ŝ)
I
≤ ET (ŝ)

I
≤ DT (ŝ)

I
.

This shows that the quantity ET (ŝ)
I

roughly captures the average separation of the set T (ŝ)
I .

In our subsequent discussion, we will show that ET (ŝ)
I

heavily influences the margin condition
for exact recovery. This is indeed an important observation, as the complexity of the set of
residualized signals depends heavily on the association between the features. For example,
they can differ vastly for highly correlated designs compared to almost uncorrelated designs.
Hence, the effect of ET (ŝ)

I
on the exact model recovery also varies significantly across different

classes of distributions and leads to sharper margin conditions for exact model recovery.

3.3.3 Complexity of spurious projections

In this section, we will introduce the space of projection operators that also controls the
level of difficulty of the true model recovery. Similar to the previous section, for a fixed set
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I ⊂ S, we consider the set

G(ŝ)I := {PD −PI : D ∈ Aŝ,S ∩ D = I} ⊆ Rn×n.

It is a well-known fact that every projection operator of the form PD − PI ∈ G(ŝ)I has a
one-to-one correspondence with the subspace col(XD)∩col(XI)

⊥. Thus, G(ŝ)I can be thought
of as the collection of all linear subspaces of the form col(XD)∩col(XI)

⊥, which is essentially
the set of spurious features that can not be linearly explained by the set of features in model
I ⊂ S. To capture the proper measure of complexity of the set G(ŝ)I , it is crucial to induce the
space of projection operators with a proper metric. It turns out that Grassmannian distance
is the correct distance to consider in this context. Specifically, for two linear subspaces L1, L2

we look at their maximum sin-theta distance:

d(L1, L2) := ∥ΠL1 −ΠL2∥op ,

where ΠL1 ,ΠL2 are the orthogonal projection operators of L1, L2 respectively. It turns out
that d(L1, L2) evaluates the trigonometric sine function at the maximum principal angle
between the subspaces L1 and L2. We point the readers to Ye and Lim (2016) for a more
detailed discussion on this topic.

Under this distance, we define the scaled entropy integral as

EG(ŝ)
I

:=

∫∞
0

√
logN (G(ŝ)I , ∥·∥op , ε) dε√

log |G(ŝ)I |
.

Note that, unlike ET (ŝ)
I

, the complexity measure EG(ŝ)
I

has no dependence on β or the resid-
ualized signal. Thus, EG(ŝ)

I
roughly captures the geometric complexity of only the spuri-

ous features. In fact, via a similar argument as in Section 3.3.2, it can be shown that
dG(ŝ)

I
≤ EG(ŝ)

I
≤ DG(ŝ)

I
, where

dG(ŝ)
I

:= min
U,V∈G(ŝ)

I

∥U−V∥op , DG(ŝ)
I

:= max
U,V∈G(ŝ)

I

∥U−V∥op .

Thus, EG(s)
I

only captures the separability in the set of subspaces generated by the spurious
features. The main motivation behind considering such quantity is to capture the influence
of the effective size of the set {G(ŝ)I }I⊂S in the analysis of BSS. A naive union bound only
uses

∣∣∣G(ŝ)I

∣∣∣ = (
p−ŝ
ŝ−|I|

)
as a measure of complexity of the set G(ŝ)I . This is rather loose, as

the effective complexity of the set is much smaller if EG(ŝ)
I

is small. Thus, taking EG(ŝ)
I

into
account unravels a broader picture of the effect incurred by the underlying geometry of the
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feature space.

3.3.4 Correlation and complexities

From the discussion on the two complexities, it is quite evident that both of the complexity
measures heavily rely on the alignment of the feature vectors {Xj : j ∈ [p]}, which directly
depends on the correlation structure among the features in the model. Below, we discuss
how these two types of complexities may vary with correlation among the features.

Correlation and spurious projection operators: We first focus on the set G(ŝ)I , as it is
relatively easy to understand its behavior across different correlation structures. Recall that
for a fixed choice of I, the set G(ŝ)I is the collection of all the projection operators of the form
PD − PI for all D ∈ Aŝ, which can be thought of as the collection of different subspaces
generated by the spurious features. If the spurious features are highly correlated then it
is expected that these subspaces are essentially indistinguishable from each other, i.e., the
mutual distance between the projection operators {PD − PI}D∈Aŝ

is significantly smaller
compared to the case when they are weakly correlated. As an example, let us consider the
equi-correlated Gaussian design, i.e., the row vectors {xi}i∈[n] of X in (3.1) follows i.i.d.
mean-zero Gaussian distribution with covariance matrix

Σ = (1− r)Ip + r1p1
⊤
p .

For the sake of simplicity, we also assume that the true model is a singleton set. In particular,
we consider S = {1} and set ŝ = 1. Also, note that in this case Aŝ = {j ∈ [p] : j ̸= 1} and
I = ∅. Under this setup, we have G(1)∅ = {XjX

⊤
j / ∥Xj∥22 : j /∈ S} and n−1 ∥Xj −Xk∥22 ≈

2(1 − r), for all j, k ̸= 1. If r is very close to 1 in the above display, then it follows that
the vectors {Xj/

√
n}j ̸=1 are extremely clustered towards each other, and as a result, the

spurious projection operators are also very close to each other in operator norm. Due to
this, the complexity measure EG(1)

∅
becomes extremely small and the subspaces become almost

indistinguishable. In contrast, when the features are approximately uncorrelated, i.e., r ≈ 0,
the scaled features {Xj/

√
n}j ̸=1 are roughly orthogonal. In that case the

n−1 ∥Xj −Xk∥22 ≈ 2, for all j, k ̸= 1.

This suggests that the linear spans generated by each of the set of features {n−1/2Xj}j ̸=1 are
well separated and EG(1)

∅
is well bounded away from zero. Thus, it follows that the features

are well spread out in Rn. This phenomenon indicates that a higher correlation may aid the
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model recovery chance for BSS by reducing the search space over the features. As we will
see in our subsequent discussion in Section 3.4.2, the correlation between noise variables can
significantly help BSS to identify the correct model. Specifically, we construct an example
where the true variables are uncorrelated with the noise variables and show that a high
correlation among noise variables helps BSS to identify the correct model. The intuition is
that under the presence of correlation, the diversity of the elements in G(ŝ)I gets reduced as
EG(ŝ)

I
becomes small. Thus, BSS needs to search on a comparatively smaller feature space

rather than searching over all possible
(
p−ŝ
ŝ−|I|

)
models, which in turn aids the probability of

finding the correct model out of the other candidate ones. Thus, the smaller complexity of
G(ŝ)I counteracts the adverse effect of correlation to some degree, and it may improve the
model recovery performance of BSS.

Correlation and residualized signals: Now we shift our focus to understanding the
behavior of the set of normalized residualized signals denoted by T (ŝ)

I . Recall that for a fixed
I, the set T (ŝ)

I denotes the collection of all the unit vectors γ̂D (defined in Section 3.3.2)
such that D ∩ S = I. Similar to G(ŝ)I , the complexity of the set T (ŝ)

I also depends on the
correlation structure among the features. To elaborate more on this, we revisit the example
of equi-correlated Gaussian design with correlation parameter r and S = {1}. We denote by
Pj the orthogonal projection operator onto the span of Xj, i.e., Pj = XjX

⊤
j / ∥Xj∥22 . Similar

to the previous section, in this case also the set T (1)
∅ consists of the scaled residualized signals

that take the following form for large n with high probability:

γ̂j =
(In −Pj)X1

∥(In −Pj)X1∥2
≈ X1 − rXj

∥X1 − rXj∥2
, for all j ̸= 1.

Also, note that

γ̂⊤j γ̂k ≈
1− 2r2 + r3

1− r2
=: f(r).

Since, f(r) is a strictly decreasing function on [0, 1), and
∥∥γ̂j − γ̂k

∥∥2
2
= 2(1 − γ̂⊤

j γ̂k), it
follows that dT∅ ≥ 1/2 when r is very close to 1. On the contrary, when r ≈ 0, the above
display suggests that DT (1)

∅
≈ 0, i.e., for uncorrelated design, the complexity ET (1)

∅
of the set

T (1)
∅ is smaller compared to the highly correlated case which is in sharp contrast with the

behavior of EG(1)
∅

.
However, it is worth pointing out that the above property of ET (1)

∅
is very specific to the

above considered model. There may exist a correlated structure where higher correlation
among noise variables does not increase ET (1)

∅
(see Section 3.4.2), and improves the chance

of identifying the correct model via BSS. However, understanding such a phenomenon for a
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more general design could be significantly more challenging.

3.4 Theoretical properties of BSS

3.4.1 Model selection consistency of BSS under known sparsity

This section illustrates the interaction between the identifiability margin (4.5) and the two
complexities that characterize the sufficient condition for the exact model recovery. From
here on, we assume that the true sparsity is known, i.e., we set ŝ = s in (4.4), and BSS
searches the best model out of all possible models of size s. We now introduce a technical
assumption that essentially prevents the noisy features from becoming highly correlated with
the true features:

Assumption 3.4.1. The design matrix X enjoys the following property:

min
I⊂S

EG(s)
I
> {log(ep)}−1/2.

The above assumption ensures that the noisy features are distinguishable enough from the
active features in order for BSS to identify the active features. To see this, consider the case
when the noise variables are highly correlated with the true features {Xj}j∈S . In this case,
the projection operator PD −PI can be written as (In −PI)PD for all D ∈ G(s)I , whenever
I ≠ ∅. As the features in {Xj : j ∈ D \ S} are highly correlated with XI , it follows that
∥PD −PI∥op ≈ 0 and by triangle inequality it follows that ∥PD −PD′∥op ≈ 0 for any two
candidate models D and D′ such that D ∩ S = D′ ∩ S = I. Thus, Assumption 3.4.1 gets
rid of such cases by indirectly controlling the correlation between the active features and
noisy features. Secondly, the assumption also enforces diversity among the noise variables
in the following sense: If the features {Xj : j /∈ Sc} are too similar to each other, then also
EG(s)

I
shrinks towards 0. Thus, Assumption 3.4.1 prevents the noise variables from becoming

extremely correlated with each other.
Assumptions with similar spirits are fairly common in the literature on high-dimensional

statistics. For example, the well-known Sparse Riesz Condition (SRC) Zhang and Huang
(2008) assumes that there exist positive numbers κ−, κ+ and Ψ ≥ 1 such that

κ− ≤
∥Xv∥22
n

≤ κ+, for all v ∈ {u ∈ Rp : ∥u∥2 = 1, ∥u∥0 ≤ Ψs}. (3.5)

The above SRC condition controls the maximum and minimum eigenvalues of all the models
of size s, which essentially prevents the features from becoming extremely correlated with

46



each other. In comparison, Assumption 3.4.1 is much weaker than SRC condition in two
aspects. First, unlike the SRC, Assumption 3.4.1 imposes conditions only over (2s − 2)

models, whereas SRC imposes conditions on Ω((p/s)⌊Ψs⌋) many models. Second, the lower
bound requirement in Assumption 3.4.1 is rather weak as the bound decays with increasing
ambient dimension and allows a higher degree of correlation among the features. In other
words, SRC condition (3.5) implies the condition in Assumption 3.4.1, and we formalize this
claim in the following proposition.

Proposition 3.4.2. Let the columns of X be normalized, i.e., ∥Xj∥2 =
√
n. Also, assume

that there exist positive constants κ−, κ+ such that the SRC condition (3.5) holds with Ψ = 2.
Then the condition in Assumption 3.4.1 also holds for large enough p, i.e., minI⊂S EG(s)

I
≥

κ−/κ+ ≫ {log(ep)}−1/2. Furthermore, the implication in the other direction is not true in
general.

Now we are ready to state our main sufficiency result.

Theorem 3.4.3 (Sufficiency). Under Assumption 3.4.1, there exists a positive universal
constant C0 such that for any 0 ≤ η < 1, whenever the identifiability margin τ∗(s) satisfies

τ∗(s)

σ2
≥

C0

(1− η)2

[
max

{
max
I⊂S

E 2

T (s)
I
,max
I⊂S

E 2

G(s)
I

}
+

√
log(es) ∨ log log(ep)

log(ep)

]
log(ep)

n
,

(3.6)

we have {
Ŝ : |Ŝ| = s, RŜ ≤ min

D∈As

RD + nητ∗(s)

}
= {S},

with probability at least 1 − O({s ∨ log p}−1). In particular, setting η = 0, we have S =

argminD∈As
RD with high probability.

The proof of the above theorem is present in Section B.1.3 of the supplementary material.
The above theorem gives a sufficient condition for BSS to achieve model consistency.

Moreover, note that the margin condition (3.6) involves the identifiability margin τ∗(s) and
the two complexities associated with the sets of residualized signals and spurious projection
operators. This condition reveals an interesting interplay between the identifiability margin
and the two complexities. To highlight this phenomenon, it is instructive to consider the
case when the true model S = {1} and X1 is orthogonal to the spurious features {Xj}j ̸=1

but the spurious features may be extremely correlated to each other. As mentioned in the
independent block design example in Section 3.4.2, in this case, both of the two complexities
are small for higher correlation among the spurious features, whereas τ∗(s) remains roughly
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unaffected by the strength of correlation. Thus, the margin condition (3.6) becomes less
stringent with increasing strength of correlation, and the performance of BSS should improve.
To illustrate this phenomenon, we consider a simulation setup with p = 2000, n = 500,
and s = 1. We generate X from independent Gaussian block design mentioned in Section
3.4.2 with the cross-correlation c = 0, and r ∈ [0, 1) being the correlation within the noise
variables. Thus, r = 0 corresponds to the independent Gaussian design. We set β =

(0.1, 0, . . . , 0)⊤ ∈ Rp, and the errors {wi}i∈[n] are generated in i.i.d. fashion from N(0, 1).
Finally, the response y is generated according to model (3.1). Assuming s is known, we
use ABESS (Zhu et al., 2020) as a fast computational surrogate for BSS. The left panel
of Figure 3.1 shows that the mean model recovery rate of ABESS (across 20 independent
runs) increases as the correlation between the noise variables increases to 1, which validates
the findings in Theorem 3.4.3. The right panel of Figure 3.1 also shows that a similar
phenomenon is true even for s > 1.
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Figure 3.1: Model recovery rate of ABESS under independent block design.

On the other hand, as mentioned in Remark 3.4.6, under equicorrelated model with
S = {1} and high correlation, ET (1)

∅
remains strictly bounded away from 0 and it dominates

EG(1)
∅

. However, the identifiability margin τ∗(s) becomes very small due to the high correlation
between the true and noise variables. Hence, the margin condition (3.6) becomes harder to
satisfy with increasing correlation. In the case of independent design, it turns out EG(1)

∅
is

the dominating complexity measure. This is not surprising as under independent design, the
features are more spread out in the feature space compared to correlated design, whereas
the residualized signals are more concentrated towards a single unit direction, making ET (1)

∅

smaller compared to EG(1)
∅

.
The above discussion shows that apart from the quantity τ∗(s), the complexity of residu-

alized signals and the complexity of spurious projection operators also play a decisive role in
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the margin condition of the best subset selection problem. Specifically, the set with higher
complexity characterizes the margin condition in Theorem 3.4.3.

We can further represent the condition (3.6) in terms of the diameter of the sets T (s)
I and

G(s)I . To see this, recall that ET (s)
I
≤ DT (s)

I
and EG(s)

I
≤ DG(s)

I
for all I ⊂ S. Under the light of

this fact, we have the following corollary:

Corollary 3.4.4. Let the condition in Assumption 3.4.1 hold. Then there exists a positive
universal constant C0 such that for any 0 ≤ η < 1, whenever the identifiability margin τ∗(s)

satisfies

τ∗(s)

σ2
≥

C0

(1− η)2

[
max

{
max
I⊂S

D2

T (s)
I
,max
I⊂S

D2

G(s)
I

}
+

√
log(es) ∨ log log(ep)

log(ep)

]
log(ep)

n
,

(3.7)

we have {
Ŝ : |Ŝ| = s, RŜ ≤ min

D∈As

RD + nητ∗(s)

}
= {S},

with probability at least 1 − O({s ∨ log p}−1). In particular, setting η = 0, we have S =

argminD∈As
RD with high probability.

Corollary 3.4.4 essentially conveys the same message as Theorem 3.4.3, only under a
slightly stronger margin condition (3.7). However, in some cases, it could be comparatively
easier to give theoretical guarantees on the diameters DT (s)

I
,DG(s)

I
rather than their corre-

sponding complexity measures ET (s)
I
,EG(s)

I
respectively. Now in the next section, we will

discuss a few illustrative examples to further elaborate on the effects of two complexities.

3.4.2 Illustrative examples

In this section, we will discuss a few illustrative examples to highlight the effect complexities
of the two spaces described in Section 3.3.2 and Section 3.3.3.

Block design with a single active feature

Consider the model (3.1) where the rows of X are independently generated from p-
dimensional multivariate Gaussian distribution with mean-zero and variance-covariance ma-
trix

Σ =

(
1 c1⊤

p−1

c1p−1 (1− r)Ip−1 + r1p−11
⊤
p−1

)
,
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where c ∈ [0, 0.997], r ∈ [0, 1). We need to further impose a restriction

c2 < r +
1− r
p− 1

to ensure positive definiteness of Σ. In this case, we also set the true model S = {1} and the
noise variance σ = 1. Recall that in this case the sets of residualized signals and spurious
projection operators are denoted by T (1)

∅ and G(1)∅ respectively. Under this setup, we have
the following lemma:

Lemma 3.4.5. Assume that log p = o(n). Then under the above setup, there exist universal
positive constants C,L,M such that the followings are true with εn,p = C{(log p)/n}1/2:

(a) For large enough n, p we have

P
[{

1 + εn,p −
(c− εn,p)2

1 + εn,p

}
≥ τ∗(1)

β2
1

≥
{
1− εn,p −

(c+ εn,p)
2

1− εn,p

}]
= 1 + o(1/p).

(b) For large enough n, p we have

P
[
max

{
2c2(1− r)
1− c2

− Lεn,p, 0
}
≤ d2

T (1)
∅
≤ D2

T (1)
∅
≤ 2c2(1− r)

1− c2
+ Lεn,p

]
= 1 + o(1/p).

(c) For large enough n, p we have

P
[
max

{
(1− r2)−Mεn,p, 0

}
≤ d2

G(1)
∅
≤ D2

G(
∅1)
≤ (1− r2) +Mεn,p

]
= 1 + o(1/p).

From part (b) and (c) of the above lemma, it follows that the complexity ET (1)
∅
≈ 0 when

c = 0. For any fixed c > 0 and r ∈ [0, 1), we have

E 2

T (1)
∅
∼ 2c2(1− r)

1− c2
, and E 2

G(1)
∅
∼ (1− r2) for large n, p. (3.8)

A detailed derivation of the result is present in Section B.1.5 of the supplementary material.
Left panel of Figure 3.2 shows the partition of c-r plane based on the dominating complexity.
It is worthwhile to note that a high value r, i.e., a high correlation among the noise variables
results in a smaller value of the complexity terms in (3.6). However, Lemma 3.4.5(a) suggest
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Figure 3.2: (left) Partition of c-r plane showing dominating regions for the two complexities.
The color gradient indicates the value of ET (1)

∅
− EG(1)

∅
. (right) The plot of two complexities

for varying r under equicorrelated design.

that τ∗(1)/β2
1 ∼ (1 − c2), i.e., higher correlation between true and noise variables shrinks

the margin quantity τ∗(1) towards 0. This suggests that a smaller value of c and a higher
value r is more favorable to BSS than other possible choices of (r, c). We now discuss these
phenomena through some selected examples.

Independent design: In this case c = r = 0. In this case (3.8) suggest that E 2

G(1)
∅
≈ 1.

On the other hand, we see that E 2

T (1)
∅
≈ 0. Thus, the complexity of spurious projections

is dominant in this case. Also, in this case, τ∗(1) ≈ β2
1 which suggests that higher signal

strength results in a better performance in terms of model selection.

Independent block design: In this case, we set c = 0 and we vary r in (0, 1). Note that
(3.8) tells that E 2

T (1)
∅
≈ 0, and E 2

G(1)
∅

has a decreasing trend with r ∈ (0, 1). This suggests that
the independent block design with a high value of r is more favorable for BSS to identify
the true model compared to the independent random design model in the previous example.
Finally, noting the fact that τ∗(1) ≈ β2

1 , we can conclude that for high values of r, the
sufficient condition in Theorem 3.4.3 becomes less stringent.

Equicorrelated design: Here we set c = r and vary r in the interval [0, 1). Let r0 be the
unique positive solution to the following equation:

2r2

1 + r
− (1− r2) = 0.
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Calculation shows that r0 ≈ 0.675. Using (3.8), it follows that for r ∈ [0, r0) the complexity
of spurious projection operators is dominating, i.e., E 2

G(1)
∅
> E 2

T (1)
∅
. In contrast, for r ∈ (r0, 1),

we have the complexity of the residualized signals to be dominating, i.e., E 2

T (1)
∅

> E 2

G(1)
∅
. Right

panel of Figure 3.2 indicates the phase transition between the two complexities. Since the
identifiability margin τ∗(1) roughly behaves like β2

1(1 − r2), the margin quantity becomes
very small for a high value of r. Hence, for model consistency, we need a high value for β2

1 .

Remark 3.4.6. In the example of equi-correlated design with S = {1}, the effect of correla-
tion parameter r on the complexities ET (1)

∅
and EG(1)

∅
are complementary to each other. In the

case of the set of residualized signals, increasing correlation among the features increases the
overall complexity of the set T (1)

∅ and vice versa. In contrast, higher correlation decreases
the complexity EG(1)

∅
, thus shrinking the effective size of G(1)∅ . Thus, in this case, the two

complexities act as two opposing forces in the margin condition (3.6).

3.4.3 Necessary condition

One question that arises from the preceding discussion is whether the margin condition in
Theorem 3.4.3 is necessary for model consistency or not. Specifically, it is natural to ask
whether the complexities of residualized signals and spurious projections also characterize
the necessary margin condition. In this section, we show that a condition very similar to
(3.6) is essential for model consistency of BSS, which is also governed by a similar margin
quantity and complexity measures.

For j0 ∈ S, we define the set Cj0 := {D : S \ D = {j0}, |D| = s} ⊂ As,1. We consider the
maximum leave-one-out identifiability margin for j0 ∈ S as

τ̂(s) := max
j0∈S

max
D∈Cj0

β⊤
S\DΓ(D)βS\D

|D \ S|
= max

j0∈S
max
D∈Cj0

Γ(D)β2
j0
. (3.9)

Consider the set I0 := S \ {j0} for a fixed index j0 ∈ S. We capture the complexity of T (s)
I0

through the following quantity:

E ∗
T (s)
I0

:=
supδ>0

δ
2

√
logM(δ, {γ̂I0∪{j}}j∈Sc , ∥·∥2)√

log |T (s)
I0 |

. (3.10)

The above display immediately shows that E ∗
TI0
≥ dT (s)

I0
/2. Also, from the property of packing

and covering number, it follows that

M(δ, {γ̂I0∪{j}}j∈Sc , ∥·∥2) ≤ N (δ/2, {γ̂I0∪{j}}j∈Sc , ∥·∥2).
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As N (δ/2, {γ̂I0∪{j}}j∈Sc , ∥·∥2) is a decreasing function over δ ∈ (0,∞), we have the follwing
inequality:

sup
δ>0

δ

2

√
logN (δ/2, {γ̂I0∪{j}}j∈Sc , ∥·∥2) ≤

∫ ∞

0

√
logN (ε, {γ̂I0∪{j}}j∈Sc , ∥·∥2) dε.

The above inequality further shows that E ∗
T (s)
I0

≤ ET (s)
I0
≤ DT (s)

I0
. Hence, similar to ET (s)

I0
,

the alternative complexity measure E ∗
T (s)
I0

also captures the average separation among the

elements in T (s)
I0 .

Next, we focus on the set G(s)I0 which is the collection of all the spurious projection operators
of the form PD−PI0 for all D ∈ Cj0 . If D = I0∪{j} for some j ∈ Sc, then the corresponding
spurious projection operator takes the form

PD −PI0 = ûjû
⊤
j , (3.11)

where ûj denotes the unit vector along the residualized feature vector uj := (In − PI0)Xj.

Thus, the above display basically shows that the PD − PI0 is the orthogonal projection
operator onto the linear span generated by the residualized feature uj. Similar to (3.10), we
define the complexity measure of G(s)I0 as

E ∗
G(s)
I0

:=
supδ>0

δ
2

√
logM(δ,G(s)I0 , ∥·∥op)√
log |G(s)I0 |

. (3.12)

By a similar argument, it also follows that dG(s)
I0
/2 ≤ E ∗

G(s)
I0

≤ DG(s)
I0
. Hence, combining the

above observation with (3.11), it also follows that E ∗
G(s)
I0

captures the angular separation

among the elusive features {uj}j∈Sc .
Next, we introduce some technical assumptions that are crucial for our theoretical analysis

of the necessity result.

Assumption 3.4.7. The complexities of the G(s)I0 and T (s)
I0 are not too small, i.e.,

E ∗2
G(s)
I0
> 16{log(ep)}−1, and E ∗2

T (s)
I0

> 16{log(ep)}−1

for all I0 ⊂ S and |I0| = s− 1.

Assumption 3.4.7 combined with the observation (3.11) essentially tells that the set of
elusive features {ûj}j∈Sc and the scaled spurious signals {γ̂D}D∈Cj0

are not too identical with
each other, as E ∗

G(s)
I0

and E ∗
T (s)
I0

would be typically small otherwise. Thus, Assumption 3.4.7

53



induces diversity in T (s)
I0 and G(s)I0 .

Condition 3.4.8. There exists a constant α ∈ (0, 1) such that E ∗
T (s)
I0
/ET (s)

I0
∈ (α, 1).

The condition essentially tells that the set T (s)
I0 has a somewhat regular geometric shape in

the sense that both the lower and upper complexity are of the same order. This essentially
implies that minimal separation and maximal separation of the set T (s)

I0 are of the same
order.

Now we present our theorem on the necessary condition for model consistency of BSS.

Theorem 3.4.9 (Necessity). Assume w ∼ N(0, σ2In), p > 16e3 and s < p/2. Also, let the
Assumption 3.4.7 hold and write J = {I ⊂ S : |I| = s− 1}. Then the following are true:

(a) If E ∗
G(s)
I0

/∈ (E ∗
T (s)
I0
,ET (s)

I0
) for all I0 ∈ J , then there exists a universal constant C1 > 0

such that

τ̂(s) ≤ C1max

{
max
I0∈J

E ∗2
T (s)
I0
,max
I0∈J

E ∗2
G(s)
I0

}
σ2 log(ep)

n

implies that

P(Ŝbest(s) ̸= S) ≥
1

10
.

(b) If there exists I# ∈ J such that E ∗
G(s)
I#
∈ (E ∗

T (s)
I#
,ET (s)

I#
), then under Condition 3.4.8,

there exists a constant Cα depending on α, such that

τ̂(s) ≤ Cαmax

{
max
I0∈J

E ∗2
T (s)
I0
,max
I0∈J

E ∗2
G(s)
I0

}
σ2 log(ep)

n

implies that

P(Ŝbest(s) ̸= S) ≥
1

10
.

The detailed proof can be found in Section 3.4.3 of the supplementary material. The above
theorem essentially says that if the maximum leave-one-out margin τ̂(s) ≲ σ2(log p)/n then
the BSS fails to achieve model consistency with positive probability. However, the interesting
part of the above theorem is to understand the effect of the term involving complexity
measures. Similar to Theorem 3.4.3, here also, we see that the dominating complexity
characterizes the necessary condition for model consistency. However, we reiterate a few
major differences between the above theorem and Theorem 3.4.3. First, Theorem 3.4.3
needs τ∗(s) to be lower bounded, which is much stronger than the required condition on τ̂(s)
in Theorem 3.4.9. Second, Theorem 3.4.9 involves the alternative complexity measures E ∗

T (s)
I0
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and E ∗
G(s)
I0

, which are typically smaller than the complexity measures used in Theorem 3.4.3.
Third, the resulting complexity in Theorem 3.4.3 involves the maximum over all possible
subsets of S, whereas Theorem 3.4.9 involves the maximum only over the subsets of S of size
s−1. These three facts are the main reasons that the requirement in Theorem 3.4.9 is weaker
compared to the margin condition (3.6). Nonetheless, Theorem 3.4.9 is still interesting as it
shows that the two types of complexities are indeed important quantities to understand the
model selection performance of BSS.

Theorem 3.4.9 can also be stated in terms of the diameter and minimum separability of
the sets T (s)

I0 and G(s)I0 . Recall that E ∗
T (s)
I0

≳ dT (s)
I0

and E ∗
G(s)
I0

≳ dG(s)
I0

. Hence, it follows that
under the same conditions in Theorem 3.4.9, the margin condition

τ̂(s) ≳ max

{
max
I0∈J

d2
T (s)
I0

,max
I0∈J

d2
G(s)
I0

}
σ2 log(ep)

n

is necessary for model consistency of BSS.

3.5 Extension to GLM

In this section, we will focus on the best subset selection problem under generalized linear
models (GLM). Similar to the linear regression setup, we will also adopt the fixed design
setup in this case. In particular, given the data matrix X := (x1, . . . ,xn)

⊤ ∈ Rn×p we observe
the responses y := (y1, . . . , yn)

⊤ coming from the distribution

fx,β∗(y) := h(y) exp

{
y(x⊤β∗)− b(x⊤β∗)

ϕ

}
= h(y) exp

{
yη − b(η)

ϕ

}
. (3.13)

Here η = x⊤β∗ is linear predictor and β∗ is true parameter with ∥β∗∥0 = s and support S.
The functions b : R → R and h : R → R are known and specific to modeling assumptions.
Examples include several well-known models such as

1. Linear regression: Consider the linear regression model y = x⊤β∗ + w, where w ∼
N(0, σ2). In this case h(y) = exp{−y2/(2σ2)} and b(u) = u2/2.

2. Logistic regression: In this model y ∼ Ber(1/(1+exp(−x⊤β∗))). Standard calculations
show that h(y) = 1 and b(u) = log(1 + eu).

For the purpose of model selection, we choose the loss function to be the scaled negative
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log-likelihood function

L(β; {(xi, yi)}i∈[n]) =
2

n

∑
i∈[n]

ℓ(β; (xi, yi)),

where ℓ(β; (x, y)) = −y(x⊤β) + b(x⊤β). Furthermore, for a candidate model D ∈ As

and β̃ ∈ Rs, define the restricted version of the scaled negative log-likelihood function as
LD(β̃; {(xi,D, yi)}i∈[n]) := (n/2)−1

∑
i∈[n] ℓD(β̃; (xi,D, yi)) with ℓD(β̃; (xD, y)) := −y(x⊤

Dβ̃) +

b(x⊤
Dβ̃). Let β̂D be the unique minimizer of LD(β̃; {(xi,D, yi)}i∈[n]). Under the oracle knowl-

edge of sparsity s, BSS solves for

Ŝbest = n−1argminD:|D|=sLD(β̂D; {(xi,D, yi)}i∈[n]).

Next, we will introduce the quantities that capture the degree of separation between the true
model S and a candidate model D ∈ As and characterize the identifiability margin for model
selection consistency. Let PD,β̃ be probability measure corresponding to the joint density∏

i∈[n] fxi,D,β̃
(yi) and define

∆kl(D) :=
2ϕ

n
min
β̃∈Rs

KL
(
PS,β∗

S

∥∥ PD,β̃
)

=
2

n

n∑
i=1

{
(x⊤

i,Sβ
∗
S)b

′(x⊤
i,Sβ

∗
S)− b(x⊤

i,Sβ
∗
S)
}
−max

β̃∈Rs

2

n

n∑
i=1

{
(x⊤

i,Dβ̃)b
′(x⊤

i,Sβ
∗
S)− b(x⊤

i,Dβ̃)
}
.

The above quantity can be thought of as the degree of model separation as it measures the
minimum KL-distance between the likelihood generated by the data under (S,β∗

S) and the
likelihood generated by D and all possible choices of β ∈ Rp with the support in D. Let β̄D

be the minimizer of the optimization problem in the above display, i.e.,

β̄D := argminβ̃∈RsKL
(
PS,β∗

S

∥∥ PD,β̃
)
.

By definition it follows that β̄S = β∗
S . Also, note that for PD,β̄D

, the natural parameter
of the density function is XDβ̄D. Thus, one can also measure the separation between two
models through the mutual distance between the corresponding natural parameters. This
motivates the definition of the second measure of separability between the true model S and
candidate model D:

∆par(D) :=
∥∥XSβ

∗
S −XDβ̄D

∥∥2
2

n
.

Note that, under the linear regression model with isotropic Gaussian error, both ∆kl(D)
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and ∆par(D) becomes equal to the quantity β⊤
S\DΓ(D)βS\D. To see this, recall that

for linear regression model b(u) = u2/2 and the KL-divergence KL(PS,β∗
S

∥∥ PD,β̄D
) =∥∥XSβ

∗
S −XDβ̄D

∥∥2
2
/(2σ2). Thus, from the definition of β̄D, it immediately follows that

XDβ̄D = PDXSβ
∗
S . Later, we will see that these two notions of distances are equivalent

under certain regularity conditions on the link function b(·).

3.5.1 Identifiability margin and two complexities

In this section we will introduce the identifiability margin and the two complexities similar
the case of linear model. We consider the following identifiability margin:

τ̃∗(s) := min
D∈As

∆kl(D)
|D \ S|

.

We assume that τ̃∗(s) > 0 to avoid non-identifiability issue. Next, we consider the trans-
formed features as follows:

X̃D = Λ
1/2
D XD,

where ΛD = diag(b′′(x⊤
1,Dβ̄D), . . . , b

′′(x⊤
n,Dβ̄D)). Let P̃D be orthogonal projection matrices

onto the columnspace of X̃D. Let P̃I|D be the orthogonal projector onto the columnspace of
[X̃D]I . Now we define the following sets of residualized signals and spurious projections:

T̃ (s)
I =

{
XDβ̄D −XSβ

∗
S∥∥XDβ̄D −XSβ
∗
S
∥∥
2

: D ∈ AI

}
,

G̃(s)I =
{
P̃D − P̃I|D : D ∈ AI

}
.

The complexity measures for these two sets are ET̃ (s)
I

and EG̃I(s)
respectively, which are defined

in the same way as the complexity measures in Section 3.3.

3.5.2 Main results

In this section, we will state the main result analogous to the Theorem 3.4.3. We begin with
some standard assumptions necessary for the theoretical analysis of GLM models.

Assumption 3.5.1 (Features and parameters). We assume the following conditions:

(a) There exists positive constants x0 and R0 such that maxi∈[n] ∥xi∥∞ ≤ x0 and ∥β∗∥1 ≤
R0.
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(b) There exists a constant κ0 > 0 such that

min
D⊂[p]:|D|=s

λmin

(
X⊤

DXD/n
)
≥ κ0.

(c) There exists constant M > 0 such that

max
D⊂[p]:|D|=s

∥∥∥∥∥∥ 1n
∑
i∈[n]

xi,D ⊗ xi,D ⊗ xi,D

∥∥∥∥∥∥
op

≤M.

(d) There exists a constant R > 0 such that maxD∈As maxi∈[n]
∣∣x⊤

i,Dβ̄D
∣∣ ≤ x0R.

(e) The design matrix X enjoys the following property:

min
I⊂S

E 2

G̃(s)
I
> {log(ep)}−1.

Assumption 3.5.1(a) is very common in high-dimensional literature. Assumption 3.5.1(b)
basically tells that the sparse-eigenvalues of X are strictly bounded away from 0. Assump-
tion3.5.1(c) tells that the third order empirical moment of XD is bounded. A stronger
version of Assumption 3.5.1(d) is present in Pijyan et al. (2020); Zheng et al. (2020), where
the authors assume that

∥∥β̄D
∥∥
1

is bounded uniformly over all D ∈ As. Finally, Assumption
3.5.1(e) allows diversity among the spurious features. Next, we will assume some technical
assumptions on the link function b(·).

Assumption 3.5.2 (b(·) function). We assume the following conditions on b(·) function:

(a) There exists a function ψ : R+ → R+ such that for any η ∈ R and any ω > 0,
b′′(η) ≥ ψ(ω) whenever |η| ≤ ω.

(b) There exists constants B > 0 and B̃ ≥ 0 such that ∥b′′∥∞ ≤ B and ∥b′′′∥∞ ≤ B̃.

These assumptions on the link function are pretty common in analyzing high-dimensional
generalized models. Assumption 3.5.2(a) basically assumes that b(·) is strongly convex within
a compact neighborhood of 0. It is straightforward to check that this assumption is satisfied
by standard GLM setups like linear regression and logisitc regression. In particular, one can
choose ψ(ω) = 1 for linear regression, and ψ(ω) = (3+eω)−1 in the case of logistic regression.
Furthermore, from (3.13) it follows that E(y) = b′(x⊤β∗) and var(y) = ϕb′′(x⊤β∗) ≥ ϕψ(ω),
whenever

∣∣x⊤β∗∣∣ ≤ ω.
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Finally, Assumption 3.5.2(b) tells that the second and third derivatives of b(·) are
bounded. This guarantees the first convergence rates of the maximum likelihood estima-
tor. Moreover, this assumption guarantees sub-Gaussianity of y as

E(exp{t(y − b′(η)})

= e−tb
′(η)

∫ ∞

−∞
h(y) exp

{
(η + ϕt)y − b(η)

ϕ

}
dy

= exp

(
b(η + ϕt)− b(η)− tϕb′(η)

ϕ

)∫ ∞

−∞
h(y) exp

{
(η + ϕt)y − b(η + ϕt)

ϕ

}
dy

= exp[ϕ−1{b(η + ϕt)− b(η)− tϕb′(η)}] ≤ exp

(
ϕBt2

2

)
.

(3.14)

Under Assumption 3.5.2, we can compare between the margin quantities ∆kl(D) and
∆par(D). To see this, we first focus on ∆kl(D) . Recall that

∆kl(D) =
2

n

n∑
i=1

{
(x⊤

i,Sβ
∗
S)b

′(x⊤
i,Sβ

∗
S)− b(x⊤

i,Sβ
∗
S)
}
− 2

n

n∑
i=1

{
(x⊤

i,Dβ̄D)b
′(x⊤

i,Sβ
∗
S)− b(x⊤

i,Dβ̄D)
}

=
2

n

n∑
i=1

{
b(x⊤

i,Dβ̄D)− b(x⊤
i,Sβ

∗
S)− (x⊤

i,Dβ̄D − x⊤
i,Sβ

∗
S)b

′(x⊤
i,Sβ

∗
S)
}

=
1

n

n∑
i=1

b′′
(
x⊤
i,Sβ

∗
S + t(x⊤

i,Dβ̄D − x⊤
i,Sβ

∗
S)
)
{x⊤

i,Dβ̄D − x⊤
i,Sβ

∗
S}2,

where t ∈ (0, 1). Due to Assumption 3.5.1(a) and Assumption 3.5.1(d), we get

∣∣x⊤
i,Sβ

∗
S + t(x⊤

i,Dβ̄D − x⊤
i,Sβ

∗
S)
∣∣ ≤ x0(R0 +R).

Finally, strong convexity and smoothness of b(·) (Assumption 3.5.2(a), 3.5.2(b)), we have

B∆par(D) ≥ ∆kl(D) ≥ ψ(x0R0 + x0R)∆par(D). (3.15)

This established the equivalence between ∆kl(D) and ∆par(D). Now, we present the main
below.

Theorem 3.5.3 (Sufficiency). Under Assumption 1, there exists a positive constant C de-
pending on ϕ,B, B̃, x0, R,R0, κ0,M and the function ψ(·) such that for any 0 ≤ η < 1,
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whenever the identifiability margin τ̃∗(s) satisfies

τ̃∗(s)

ϕB
≥

C

(1− η)2

[
max

{
max
I⊂S

E 2

T̃ (s)
I
,max
I⊂S

E 2

G̃(s)
I

}
+

√
log(es) ∨ log log(ep)

log(ep)
, t(1)s,n,p, t

(2)
s,n,p

]
log(ep)

n

(3.16)

for a specified t(1)s,n,p = O(s{log s ∨ log log p}/ log p) and t(2)s,n,p = O( s
2(logn)2

n log p
+ s3/2(logn)3/2√

n log p
), we

have {
Ŝ : |Ŝ| = s, min

S∈As

LŜ(β̂Ŝ) ≤ LS(β̂S) + nητ̃∗(s)

}
= {S},

with probability at least 1 − O({s ∨ log p}−1 + n−7s log p). In particular, setting η = 0, we
have S = argminŜ∈As

LŜ(β̂Ŝ) with high probability.

The proof of the above theorem is deferred to Section B.2. The above theorem is the
generalization of Theorem 1, and (3.16) also involves the two complexities related to the
sets of residualized signals and spurious projection operators. However, condition (3.16) also
involves two extra terms t(1)s,n,p and t

(2)
s,n,p, the exact forms of which can be found in Section

B.2. It can be shown that both of these terms are exactly 0 for linear models as ψ ≡ 1, B = 1

and B̃ = 0.

Remark 3.5.4. If p = Ω(ec0n) for some universal constant c0 > 0 and s(log n)/n → 0 as
n → ∞, then both t(1)s,n,p and t(2)s,n,p are negligible compared to the complexity term in (3.16).
Hence, in this case, we witness roughly a similar phenomenon involving the two complexities
as in the linear model.

3.6 Conclusion

In this paper, we establish the sufficient and (nearly) necessary conditions for BSS to achieve
model consistency in a high-dimensional linear regression setup. Apart from the identifiabil-
ity margin, we show that the geometric complexity of the residualized signals and spurious
projections based on the entropy number and packing numbers also play a crucial role in
characterizing the margin condition for model consistency of BSS. In particular, we establish
that the dominating complexity among the two plays a decisive role in the margin condi-
tion. We also highlight the variation in these complexity measures under different correlation
strengths between the features through some simple illustrative examples. Moreover, in the
supplementary material, we extend the results in Theorem 3.4.3 to the high-dimensional
sparse generalized linear models. To be precise, we identified that a margin quantity based
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on the KL distance between the true distribution and a candidate distribution governs the
model selection performance of BSS. Moreover, we showed that in the GLM case, two com-
plexity measures of the transformed feature space are fundamental to understanding the
quality of model selection od BSS. However, it is an open problem to find the analogs of the
two complexities in more general settings, e.g., the low-rank matrix regression problem or
multi-tasking regression problem.
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CHAPTER 4

On the Computational Complexity of Private
High-dimensional Model Selection

The rapid development of AI technologies has pushed the frontiers of data processing power.
Large amount data are constantly being collected and processed in various ML domains
ranging from engineering, computer vision to genetics and neuroimaging. This poses serious
concerns related to privacy protection of sensitive user data. That is why data-privacy has
emerged as one of the important aspects in the landscape of modern AI applications, and
differential privacy (DP) has become a popular mathematical framework to analyze privacy
loss in modern ML tasks.

In this chapter, we consider the problem of model selection in a high-dimensional sparse
linear regression model under privacy constraints. We propose a differentially private best
subset selection method with strong utility properties by adopting the well-known exponen-
tial mechanism for selecting the best model. We propose an efficient Metropolis-Hastings
algorithm and establish that it enjoys polynomial mixing time to its stationary distribution.
Furthermore, we also establish approximate differential privacy for the estimates of the mixed
Metropolis-Hastings chain. Finally, we perform some illustrative experiments that show the
strong utility of our algorithm.

4.1 Introduction

In this chapter, we consider the problem of private model selection in high-dimensional
sparse regression. Once again, to clarify the mathematical model, we consider n observations
{(xi, yi)}ni=1 ⊆ X × Y following the linear model:

yi = x⊤
i β + wi, i ∈ {1, . . . , n}, (4.1)
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where {xi}i∈[n] are fixed p-dimensional feature vectors, {wi}i∈[n] are i.i.d. mean-zero σ-sub-
Gaussian noise, i.e., E exp(λwi) ≤ exp(λ2σ2/2) for all λ ∈ R and i ∈ [n], and the signal
vector β ∈ Rp is unknown but is assumed to have a sparse support. In matrix notation, the
observations can be represented as

y = Xβ +w,

where y = (y1, . . . , yn)
⊤, X = (x1, . . . ,xn)

⊤, and w = (w1, . . . , wn)
⊤. The main goal, in this

case, is to identify the support γ∗ := {j : βj ̸= 0} without violating the user’s privacy.
Despite these theoretical and computational advancements related to BSS (see Chapter

2 and Chapter 3), to the best of our knowledge, there is no computationally efficient private
algorithmic framework for BSS for high-dimensional sparse regression setup (4.1). This
is especially surprising as the private model selection is important in many contemporary
applications involving sensitive data including genetics (He and Lin, 2011), neuroimaging
(Mwangi et al., 2014), and computer vision Zhang et al. (2018). One major reason for this
could be the lack of DP mechanisms for MIO problems which restricts us from exploiting
the MIO formulation of BSS introduced in Bertsimas et al. (2016). Secondly, the apparent
computational burden stemming from the requirement of exponentially large numbers of
search queries in private BSS has eluded the majority of the machine learning and statistics
community.

Main contribution: In this chapter, we address the latter issue by mainly focusing on
the utility and computational complexity of BSS under privacy constraints. To be specific,
we make the following contributions listed below:

1. We adopt the exponential mechanism (McSherry and Talwar, 2007) to design a DP BSS
algorithm, and we establish its good statistical or utility guarantee under high-privacy
regime whenever βmin := minj∈γ∗ |βj| ≳ σ{(s log p)/n}1/2.

2. Under the low-privacy regime, we show that accurate model recovery is possible when-
ever βmin ≳ σ{(log p)/n}1/2, which is the minimax optimal βmin requirement for model
recovery under non-private setting. Therefore, this paper points out an inflection phe-
nomenon in the signal strength requirement for the model consistency across different
privacy regimes.

3. In addition, we design an MCMC chain that converges to its stationary distribution
that matches the sampling distribution in the exponential mechanism. As a con-
sequence, the model estimator generated by the MCMC also enjoys (approximate)
DP. Furthermore, under certain regularity conditions on the design, we show that the
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MCMC chain enjoys a polynomial mixing time in (n, p, s) to the stationary distribution
with a good utility guarantee.

In summary, this chapter proposes a DP version of BSS that generates a private model
estimator of γ∗ with strong model recovery property within polynomial time in the problem
parameters n, p, s. In the next section, we will discuss some prior related works on DP model
selection and discuss some of their limitations.

4.1.1 Related Works

In the past decades, there has been a considerable amount of work studying differentially pri-
vate sparse regression problems. However, most of these works focus either on empirical risk
minimization (Jain and Thakurta, 2014; Talwar et al., 2015; Kasiviswanathan and Jin, 2016;
Wang et al., 2017) or establishing ℓ2-consistency rate (Wang and Xu, 2019; Cai et al., 2021)
which are not directly related to the task of model selection. To the best of our knowledge,
there are only three works considering the problem of variable selection in sparse regression
problems under the DP framework: Kifer et al. (2012), Thakurta and Smith (2013), and
Lei et al. (2018). Table 4.1 shows a clear comparison between this work and all of the prior
works. Kifer et al. (2012) proposed two algorithms under sparse regression setting. One of
them is based on the exponential mechanism, which is known to be computationally inef-
ficient. However, they do not analyze the algorithm under the model selection framework.
Moreover, for the privacy analysis, they assume that the loss functions are bounded over the
space of sparse vectors, which is generally not true for model (4.1). In comparison, our paper
provides a solid model recovery guarantee (Theorem 4.3.5) for a similar exponential mech-
anism without using the bounded loss assumption. Furthermore, under a slightly stronger
assumption, we design a computationally efficient MCMC algorithm that also enjoys de-
sirable utility similar to the exponential mechanism (Theorem 4.4.3) under DP framework.
The other algorithm in Kifer et al. (2012) is based on the resample-and-aggregate frame-
work (Nissim et al., 2007; Smith, 2011). Although computationally efficient, this method
requires sub-optimal βmin condition compared to Theorem 4.3.5. In Thakurta and Smith
(2013), the authors introduced two concepts of stability for LASSO and proposed two PTR-
based (propose-test-release) algorithms for variable selection. However, these methods have
nontrivial probabilities of outputting the null (no result), which is undesirable in practice.
Also, the support recovery probabilities for these methods do not approach 1 with a growing
sample size which could be problematic. In Lei et al. (2018), the authors proposed to use the
Akaike information criterion or Bayesian information criterion coupled with the exponential
mechanism to choose the proper model. However, the runtime of this algorithm is exponen-
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tial and also requires stronger βmin condition. As mentioned earlier, in this paper, we show
that our proposed MCMC algorithm is both computationally efficient and produces approx-
imate DP estimates of γ∗ with a strong utility guarantee under a better βmin condition.

Table 4.1: Comparison of DP model selection methods.

Paper Method βmin cond. failure prob. → 0 runtime

Kifer et al. (2012)
Exp-Mech NA NA exp

Lasso + Samp-Agg Ω(
√

s log p

n1/2 ) yes poly

Thakurta and Smith (2013)
Lasso + Sub-samp. stability Ω(

√
s log p
nε

) no poly

Lasso + Pert. stability Ω(max{
√

s log p
n

, εs
3/2

n
}) no poly

Lei et al. (2018) Exp-Mech Ω(
√

max{1, s
ε
} s logn

n
) yes exp

This paper
Exp-Mech Ω(

√
max{1, s

ε
} log p

n
) yes exp

Approx. Exp-Mech via MCMC Ω(
√

max{1, s
ε
} log p

n
) yes poly

4.1.2 Chapter Organization and Notations

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the
notion of differential privacy and briefly discuss some standard DP mechanisms. Section
4.3 is devoted to a brief discussion on BSS and the development of the differentially private
BSS algorithm. In particular, Section 3.3.1 discusses the notion of identifiability margin
introduced in Guo et al. (2015), and Section 4.3.1 presents the exponential mechanism along
with its utility guarantee (Theorem 4.3.5). Next, in Section 4.4, we provide some background
on MCMC and mixing time followed by the main mixing time result (Theorem 4.4.3) and
the result of the approximate DP property of MCMC samples (Corollary 4.4.4). Finally, in
Section 4.5, we perform some numerical experiments on synthetic data to demonstrate the
usefulness of our proposed algorithm. The concluding remarks are provided in Section 4.6.
The proofs of the main results are relegated to the appendix sections.

4.2 Differential Privacy

Differential privacy requires the output of a randomized procedure to be robust with respect
to a small perturbation in the input dataset, i.e., an attacker can hardly recover the presence
or absence of a particular individual in the dataset based on the output only. It is important
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to note that differential privacy is a property of the randomized procedure, rather than the
output obtained.

4.2.1 Preliminaries

In this section, we will formalize the notion of differential privacy. Consider a dataset D :=

{z1, . . . , zn} ∈ Zn consisting of n datapoints in the sample space Z. A randomized algorithm
A maps the dataset D to A(D) ∈ O, an output space. Thus, A(D) is a random variable on
the output space O.

For any two datasets D and D′, we say they are neighbors if |D∆D′| = 1. We can now
formally introduce the definition of differential privacy.

Definition 4.2.1 ((ε, δ)-DP, Dwork (2006)). Given the privacy parameters (ε, δ) ∈ R+×R+,
a randomized algorithm A(·) is said to satisfy the (ε, δ)-DP property if

P(A(D) ∈ K) ≤ eεP(A(D′) ∈ K) + δ (4.2)

for any measurable event K ∈ range(A) and for any pair of neighboring datasets D and D′.

In the above definition, the probability is only with respect to the randomness of the
algorithm A(·), and it does not impose any condition on the distribution of D or D′. If
both ε and δ are small, then Definition 4.2.1 essentially entails that distribution of A(D)

and A(D′) are essentially indistinguishable from each other for any choices of neighboring
datasets D and D′. This guarantees strong privacy against an attacker by masking the
presence or absence of a particular individual in the dataset. As a special case, when δ = 0,
the notion of DP in Definition 4.2.1 is known as the pure differential privacy.

4.2.2 Privacy Mechanisms

For any DP procedure, a specific randomized procedure A must be designed that takes a
database D ∈ Zn as input and returns an element of the output space O while satisfying
the condition in (4.2). Several approaches exist that are generic enough to be adaptable
to different tasks, and which often serve as building blocks for more complex ones. A few
popular examples include the Laplace mechanism (Dwork et al., 2006b), Gaussian mechanism
(Dwork et al., 2006a), and Exponential mechanism (McSherry and Talwar, 2007). We discuss
each of them in detail below.

Laplace mechanism: Let f : Zn → R be a non-private mechanism. Laplace mechanism
preserves privacy by perturbing the output f(D) with noise generated from the Laplace dis-
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tribution Lap(λ), whose density is (2λ)−1 exp(− |x| /λ). The scale λ > 0 should be calibrated
to the sensitivity of the statistic f , defined as follows:

∆f := sup
D,D′:D,D′ are neighbors

|f(D)− f(D′)| .

In particular, for any non-private mechanism f with global sensitivity ∆f <∞, we have the
following result:

Lemma 4.2.2 ((Dwork et al., 2006b)). Laplace mechanism AL(D) that outputs

AL(D) = f(D) + Z

preserves (ε, 0)-differential privacy, where Z ∼ Lap(∆f/ε).

Intuitively, sensitivity quantifies the effect of any individual in the dataset on the outcome
of the analysis. In this mechanism, Laplace noise with a magnitude proportional to the
sensitivity has the effect of masking the characteristics of any individual, thereby preserving
privacy.

Gaussian mechanism: Let f : Zn → Rd be a non-private mapping that takes a dataset D
of size n as input and outputs a vector. Gaussian mechanism preserves privacy by perturbing
the output f(D) with noise generated from the Gaussian distribution N(0, σ2Id). The noise
scale σ > 0 should be calibrated to the ℓ2-sensitivity of the statistic f , defined as follows:

∆2(f) := sup
D,D′:D,D′ are neighbors

∥f(D)− f(D′)∥2 .

In particular, for any deterministic mapping f with global sensitivity ∆2(f) < ∞, we have
the following result:

Lemma 4.2.3 (Dwork et al. (2014)). Gaussian mechanism AG(D) that outputs

AG(D) = f(D) + Z

preserves (ε, δ)-differential privacy, where Z ∼ N(0, σ2Id) with σ =
√

2 log(1.25/δ)∆2(f)/ε.

Exponential mechanism: The exponential mechanism is designed for discrete output
space, Suppose S = {αi : i ∈ I} for some index set I, and let u : S × Zn → R be score
function that measures the quality of α ∈ S . Denote by ∆u the global sensitivity of the
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score function u, i.e.

∆u := max
α∈S

max
D,D′ are neighbors

|u(α,D)− u(α,D′)| .

The score function u(·, ·) is called data monotone if the addition of a data record can either
increase (decrease) or remain the same with any outcome, e.g., u(α,D) ≤ u(α,D ∪ {z}).
Next, we have the following result.

Lemma 4.2.4 ((Durfee and Rogers, 2019)). Exponential mechanism AE(D) that outputs
samples from the probability distribution

P(AE(D) = α) ∝ exp

{
εu(α,D)

∆u

}
(4.3)

preserves (2ε, 0)-differential privacy. If u(·, ·) is data monotone, then we have (ε, 0)-
differential privacy.

In general, if the S is too large the sampling from the distribution could be computa-
tionally inefficient. However, in the prequel, we show that the special structure of the linear
model (4.1) allows us to design an MCMC chain that can generate approximate samples
efficiently from an appropriate distribution similar to (4.3) for privately solving BSS.

4.3 Best Subset Selection

We briefly review the preliminaries of BSS, one of the most classical variable se-
lection approaches. For a given sparsity level ŝ, BSS solves for β̂best(ŝ) :=

argminθ∈Rp,∥θ∥0≤ŝ ∥y −Xθ∥22 . For model selection purposes, we can choose the best fitting
model to be γ̂best(ŝ) := {j : [β̂best(ŝ)]j ̸= 0}. For a subset γ ⊆ [p], define the matrix
Xγ := (Xj; j ∈ γ). Let Φγ := Xγ(X

⊤
γXγ)

−1X⊤
γ be orthogonal projection operator onto the

column space of Xγ. Also, define the corresponding residual sum of squares (RSS) for model
γ as Lγ(y,X) := y⊤(In−Φγ)y. With this notation, the γ̂best(ŝ) can be alternatively written
as

γ̂best(ŝ) := argminγ⊆[p]:|γ|≤ŝ Lγ(y,X). (4.4)

Let Xγ be the matrix comprised of only the columns of X with indices in γ, and Φγ

denotes the orthogonal projection matrix onto the column space of Xγ. In addition,
let Σ̂ := n−1X⊤X be the sample covariance matrix and for any two sets γ1, γ2 ⊂ [p],
Σ̂γ1,γ2 denotes the submatrix of Σ with row indices in γ1 and column indices in γ2. Fi-
nally, define the collection Aŝ := {γ ⊂ [p] : γ ̸= γ∗, |γ| = ŝ}, and for γ ∈ Aŝ write
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Γ(γ) = Σ̂γ∗\γ,γ∗\γ − Σ̂γ∗\γ,γΣ̂
−1

γ,γΣ̂γ,γ∗\γ. Then, it follows that β⊤
γ∗\γΓ(γ)βγ∗\γ is equal to the

residualized signal strength n−1∥(In −Φγ)Xγ∗\γβγ∗\γ∥22. Therefore, β⊤
γ∗\γΓ(γ)βγ∗\γ quanti-

fies the separation between γ and the true model γ∗. Ideally, a larger value of the quantity
will help BSS to discriminate between γ∗ and any other candidate model γ. More details
on this can be found in Roy et al. (2023). Now we are ready to introduce the identifiability
margin that characterizes the model discriminative power of BSS. We recall the identifiablity
margin:

m∗(ŝ) := min
γ∈Aŝ

β⊤
γ∗\γΓ(γ)βγ∗\γ

|γ \ γ∗|
. (4.5)

As mentioned in Chapter 3, the quantity m∗(ŝ) captures the degree of separation between
the true model γ∗ and any candidate model γ ̸= γ∗. It turns out m∗(ŝ) is a pivotal quantity
to understand the model recovery quality of BSS. For example, Guo et al. (2020) showed
that under the knowledge of true sparsity, i.e., when ŝ = s, the condition

m∗(s) ≳ σ2 log p

n
, (4.6)

is sufficient for BSS to achieve model consistency. If we define λ∗ = minγ∈As λmin(Γ(γ)),
then it suffices to have minj∈γ∗ |βi| ≳ σ{(log p)/(nλ∗)}1/2 in order to satisfy condition (4.6).

4.3.1 Differentially Private BSS and Utility Analysis

In order to privatize the optimization problem in (4.4), we will adopt the exponential mech-
anism discussed in Section 4.2.2. In particular, for K > 0, we consider the score function

uK(γ;X,y) := − min
θ∈Rs:∥θ∥1≤K

∥y −Xγθ∥22

, and for a given privacy budget ε > 0, we sample γ ∈ Aŝ from the distribution

π(γ) ∝ exp

{
εuK(γ;X,y)

∆uK

}
1(γ ∈ Aŝ ∪ {γ∗}). (4.7)

As we are concerned with the exact recovery γ∗, we assume ŝ = s. The above algorithm is
essentially the same as Algorithm 4 in Kifer et al. (2012); however, they do not introduce
the extra ℓ1 constraint on the parameter space. Instead, their algorithm needs the loss-term
(y − x⊤

γ θ)
2 to be bounded by a constant for every possible choice of x, y, γ and θ. This

assumption is not true in general for the squared error loss, and to remedy this issue, we
introduce the extra ℓ1 constraint in the score function. This is a common truncation strategy
that is used to guarantee worst-case sensitivity bound and similar methods also have been
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adopted in Lei et al. (2018) and Cai et al. (2021) to construct private estimators. Next,
we present the following lemma that shows the data-monotonicity of the proposed score
function.

Lemma 4.3.1. The score function uK(γ; ·) in (4.7) is data monotone.

Therefore, Lemma 4.2.4 automatically guarantees that the above procedure is (ε, 0)-DP.
However, in practice, we need an explicit form for ∆uK to carry out the sampling method,
and it is also needed to analyze the utility guarantee of the exponential mechanism. To
provide a concrete upper bound on the global sensitivity of uK(·; ·), we make the following
boundedness assumption on the database:

Assumption 4.3.2. There exists positive constants r, xmax such that supy∈Y |y| ≤
r, supx∈X ∥x∥∞ ≤ xmax.

Under this assumption, the following lemma provides an upper bound on the global
sensitivity of the score function.

Lemma 4.3.3 (Sensitivity bound and DP). Under Assumption 4.3.2, the global sensitivity
∆uK is bounded by ∆K := (r + xmaxK)2. Therefore, the exponential mechanism (4.7) with
∆uK replaced by ∆K satisfies (ε, 0)-DP.

The above lemma provides an upper bound on the global sensitivity of the score function
rather than finding the exact value of it. Therefore, to guarantee (ε, 0)-DP property of
exponential mechanism, it suffices to use the upper bound of ∆uK in (4.7). Now we will
shift towards the utility analysis of the proposed exponential mechanism. First, we require
some technical assumptions.

Assumption 4.3.4. We assume the following hold:

(a) There exists positive constants r, xmax and bmax such that supy∈Y |y| ≤ r, supx∈X ∥x∥∞ ≤
xmax and ∥β∥1 ≤ bmax.

(b) There exists positive constants κ,κ+ such that

κ− ≤ λmin

(
X⊤
γXγ/n

)
≤ λmax

(
X⊤
γXγ/n

)
≤ κ+, (4.8)

for all γ ∈ As ∪ {γ∗}.

(c) The true sparsity level s follows the inequality s ≤ n
log p

.
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Assumption 4.3.4(a) tells that the true parameter β lies inside a ℓ1-ball. Similar bound-
edness assumptions are fairly standard in privacy literature (Wang, 2018; Lei et al., 2018;
Cai et al., 2021). Assumption 4.3.4(b) is a well-known assumption in the high-dimensional
literature (Zhang and Huang, 2008; Huang et al., 2018; Meinshausen and Yu, 2009) which
is known as the Sparse Riesz Condition (SRC). Finally, Assumption 4.3.4(c) essentially as-
sumes that the s = o(n), i.e., sparsity grows with a sufficiently small rate compared to the
sample size n.

Theorem 4.3.5 (Utility gurantee). Let the conditions in Assumption 4.3.2 and Assumption
4.3.4 hold. Set K ≥ {(κ+/κ−)bmax + (8xmax/κ−)σ}

√
s. Then, under the data generative

model (4.1), there exist universal positive constants c1, C1 such that whenever

m∗(s) ≥ C1σ
2max

{
1,

∆K

εσ2

}
log p

n
, (4.9)

with probability at least 1− c1p−2 we have π(γ∗) ≥ 1− p−2.

Theorem 4.3.5 essentially says that whenever the identifiability margin is large enough,
the exponential mechanism outputs the true model γ∗ with high probability. Note that
∆K/σ

2 = Ω(s). In the low privacy regime, i.e., for ε > ∆K/σ
2 we only require m∗(s) ≳

σ2(log p)/n to achieve model consistency and this matches with the optimal rate for model
consistency of non-private BSS. In contrast, in a high privacy regime, i.e., for ε < ∆K/σ

2,
Condition (4.9) essentially demands m∗(s) ≳ σ2(s log p)/(nε) to achieve model consistency.
Thus, in a high privacy regime, we pay an extra factor of (s/ε) in the margin requirement.

Remark 4.3.6. The failure probability in Theorem 4.3.5 can be improved to O(p−M) for any
arbitrary integer M > 2. However, we have to pay a cost in the universal constant C1 in
terms of a multiplicative constant larger than 1.

Remark 4.3.7. Under Assumption 4.3.4(b), it follows that λ∗ ≥ κ−. Therefore, it suffices
to have minj∈γ∗ β

2
j ≥

(
C1σ2

κ−

)
max {1,∆K/(εσ

2)} log p
n

in order to hold condition (4.9). There-

fore, in high-privacy regime, our method requires minj∈γ∗ |βj| ≳ σ{(s log p)/(nεκ−)}1/2. In
contrast, under the low-privacy regime, we retrieve the optimal requirement minj∈γ∗ |βj| ≳
σ{(log p)/(nκ−)}1/2.

4.4 Efficient Sampling through MCMC

In this section, we will propose an efficient sampling method to generate approximate samples
from the distribution (4.7). One of the challenges of sampling methods in high-dimension is
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their high computational complexity. For example, the distribution in (4.7) places mass on
all
(
p
s

)
subsets of [p], and it is practically infeasible to sample γ from the distribution as we

have to essentially explore over an exponentially large space. This motivates us to resort to
sampling techniques based on MCMC, through which we aim to obtain approximate samples
from the distribution in (4.7). Past works on MCMC algorithms for Bayesian variable
selection can be divided into two main classes – Gibbs sampler (George and McCulloch,
1993b; Ishwaran and Rao, 2005; Narisetty et al., 2018) and Metropolis-Hastings (Hans et al.,
2007; Lamnisos et al., 2013). In this chapter, we focus on a particular form of Metropolis-
Hastings updates.

In general terms, Metropolis-Hastings random walk is an iterative and local-move based
method involving three steps:

1. Given the current state γ, construct a neighborhood N (γ) of proposal states.

2. Choose a new state γ′ ∈ N (γ) according to some proposal distribution F(γ, ·) over the
neighborhood N (γ).

3. Move to the new state γ′ with probability R(γ, γ′), and stay in the original state γ
with probability 1−R(γ, γ′), where the acceptance probability is given by

R(γ, γ′) = min

{
1,
π(γ′)F(γ′, γ)

π(γ)F(γ, γ′)

}
,

where π(·) is same as in Equation (4.7).

This procedure generates a Markov chain for any choice of the neighborhood structure N (γ)

with the following transition probability:

PMH(γ, γ
′) =


F(γ, γ′)R(γ, γ′), if γ′ ∈ N (γ),

1−
∑

γ′ ̸=γ PMH(γ, γ
′), if γ′ = γ,

0, otherwise.

The specific form of Metropolis-Hastings update analyzed in this chapter is obtained by
following the double swap update scheme to update γ.

Double swap update: Let γ ∈ As ∪ {γ∗} be the initial state. Choose an index pair
(k, ℓ) ∈ γ×γc uniformly at random. Construct the new state γ′ by setting γ′ = γ∪{ℓ}\{k}.

The above scheme can be viewed as a general Metropolis-Hastings update scheme when
N (γ) is the collection of all models γ′ which can be obtained by swapping two distinct
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coordinates of γ and γc respectively. Thus, letting dH(γ, γ′) = |γ \ γ′| + |γ′ \ γ| denote the
Hamming distance between γ and γ′, the neighborhood is given by N (γ) = {γ′ | dH(γ, γ′) =
2,∃ (k, ℓ) ∈ γ × γc such that γ′ = γ ∪ {ℓ} \ {k}}.

With the above definition, the transition matrix of the previously described Metropolis-
Hastings scheme can be written as follows:

PMH(γ, γ
′) =


1

|γ||γc| min{1, π(γ
′)

π(γ)
}, if γ′ ∈ N (γ),

1−
∑

γ′ ̸=γ PMH(γ, γ
′), if γ′ = γ,

0, otherwise.

(4.10)

4.4.1 Mixing Time and Approximate DP

Let C be a Markov chain on the discrete space S with a transition probability matrix
P ∈ R|S |×|S | with stationary distribution ν. Throughout our discussion, we assume that
C is reversible, i.e., it satisfies the balanced condition ν(γ)P(γ, γ′) = ν(γ′)P(γ′, γ) for all
γ, γ′ ∈ S . Note that the previously described transition matrix PMH in (4.10) satisfies
the reversibility condition. It is convenient to identify a reversible chain with a weighted
undirected graph G on the vertex set S , where two vertices γ and γ′ are connected if and
only if the edge weight Q(γ, γ′) := ν(γ)P(γ, γ′) is strictly positive. For γ ∈ S and any
subset S ⊆ S , we write P(γ, S) =

∑
γ′∈S P(γ, γ′). If γ is the initial state of the chain, then

the total variation distance to the stationary distribution after t iterations is

∆γ(t) =
∥∥Pt(γ, ·)− ν(·)

∥∥
TV

:= max
S⊂S

∣∣Pt(γ, S)− ν(S)
∣∣ .

The η-mixing time is given by

τη := max
γ∈S

min{t ∈ N | ∆γ(t
′) ≤ η for all t′ ≥ t}, (4.11)

which measures the number of iterations needed for the chain to be within distance η ∈ (0, 1)

of the stationary distribution.

Privacy of MCMC estimator: Now, we will show that once the MH chain in (4.10) has
mixed with its stationary distribution π(·) defined in (4.7), the model estimators at each
iteration will enjoy approximate DP. To fix the notation, let γt be the tth iteration of the
MH chain in (4.10). Then, we have the following useful lemma:

Lemma 4.4.1. The model estimator γτη is (ε, δ)-DP with δ = η(1 + eε).
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The above lemma shows that smaller η entails a better privacy guarantee for a fixed level
ε as δ decreases with η. Therefore, allowing more mixing of the chain will provide better
privacy protection. However, this raises a concern about how long a practitioner must wait
until the chain archives η-mixing. In particular, it is important to understand how τη scales
in the difficulty parameters of the problem, for example, the dimension of the parameter
space and sample size. In our case, we are interested in the covariate dimension p, sample
size n, sparsity s, and the privacy parameter ε. In the next section, we will show that the
chain with transition matrix (4.10) enjoys rapid mixing, meaning that the mixing time τη
grows at most at a polynomial rate in p, s and the sample size n.

4.4.2 Rapid Mixing of MCMC and Approximate DP

We now turn to develop sufficient conditions for Metropolis-Hastings scheme (4.10) to be
rapidly mixing. To this end, we make a technical assumption on the design matrix. Essen-
tially, the following assumption controls the amount of correlation between active features
and spurious features.

Assumption 4.4.2. For every γ′ ∈ As \ {γ∗}, there exists k /∈ γ∗ ∪ γ′ such that

max
j∈γ∗\γ′

∣∣X⊤
j (In −Φγ′)Xk

∣∣
∥(In −Φγ′)Xk∥2

≤ b−1
max

√
(κ−C1σ2/2) log p,

where C1 is the same universal positive constant as in Theorem 4.3.5.

First, note that Assumption 4.4.2 basically controls the length of the projection of the
feature Xj on the unit vector uk := (In − Φγ′)Xk/ ∥(In −Φγ′)Xk∥2. Therefore, the above
inequality restricts the correlation between an active feature Xjβγ∗ and the spurious scaled
feature uk from being too large. To this end, we emphasize that stronger assumptions on
model correlation (on top of the SRC condition) are common in literature for establishing the
computational efficiency of Bayesian variable selection methods involving MH algorithm. For
example, to show the computational efficiency MH algorithm under Zellner’s g-prior, Yang
et al. (2016) assumes

max
γ:|γ|≤s0

∥∥(X⊤
γXγ)

−1X⊤
γXγ∗\γ

∥∥2
op

= O

(
n

s log p

)
, (4.12)

where s0 (larger than s) is a specific tuning parameter of their algorithm that controls the
model size. The assumption in the above display is akin to the well-known irrepresentability
condition Zhao and Yu (2006) which is a very strong assumption on the design. On a high
level, at any given current state γ, Assumption 4.4.2 or Condition (4.12) helps to identify
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a good local move towards the true model γ∗ in the MH algorithm via deletion of the least
influential covariate in γ. Now, we present our main result for the mixing time of MCMC.

Theorem 4.4.3 (Rapid mixing time). Let the conditions in Assumption 4.3.2, Assumption
4.3.4 and Assumption 4.4.2 hold. Then, under the data generative model (4.1), there exists
a universal constant C ′

1 > 0 such that under the margin condition

m∗(s) ≥ C ′
1σ

2max

{
1,

∆K

(κ− ∧ 1)εσ2

}
log p

n
, (4.13)

there exist universal positive constants c2, C2 such that the mixing time τη of the MCMC
chain (4.10) enjoys the following with probability at least 1− c2p−2:

τη ≤ C2ps
2
{
nεΨ−1κ+b

2
max + log(1/η)

}
, (4.14)

where Ψ = {r + (κ+/κ−)bmaxxmax + (σ/κ−)x
2
max}

2.

First note that the margin condition (4.13) is slightly stronger than the margin condition
in Theorem 4.3.5. Under that condition, the above theorem shows that the η-mixing time of
the MCMC algorithm designed for approximate sampling from the distribution (4.7) grows
at a polynomial rate in (n, p, s). Recall that according to the previous definition (4.11) of the
mixing time, Theorem 4.4.3 characterizes the worst-case mixing time, meaning the number
of iterations when starting from the worst possible initialization. If we start with a good
initial state — for example, the true model γ∗ would be an ideal though impractical choice -
then we can remove the n term in the upper bound in (4.14). Therefore, the bound in (4.14)
can be thought of as the worst-case number of iterations required in the burn-in period of
the MCMC algorithm. Furthermore, it is important to point out that Assumption 4.4.2 is
only needed to ensure the “quick” mixing time of the MCMC chain. It is possible to relax
this assumption, however, in that case, the MCMC chain is not guaranteed to mix under
polynomial time. Nonetheless, given enough iterations, the chain will indeed converge to the
distribution (4.7) as MH algorithm always generates an ergodic chain that eventually mixes
to its stationary distribution.

It is interesting to note that Theorem 4.4.3 suggests that in a large ε regime, the chain
mixes slower compared to the small ε regime. The main reason for this is that Theorem 4.4.3
only relies on worst-case analysis. The intuition is the following: When ε is very large, then
the target distribution is essentially fully concentrated on γ∗ (assuming the score for γ∗ is
highest). Now, the current analysis of Theorem 4.4.3 does not assume any condition on the
initial state of the MCMC chain. It treats the initial state γ0 as if it is chosen in a completely
random manner, i.e., it is the worst case. From this point of view, it is hard for a completely
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uninformative distribution to converge to a target distribution that is concentrated on a
single subset (very informative), and resulting in a longer mixing time. Finally, Theorem
4.4.3 leads to the following corollary:

Corollary 4.4.4. Let πt denote the distribution of the tth iterate γt of the MCMC
scheme (4.10). Then, under the conditions of Theorem 4.3.5 and Theorem 4.4.3, there
exists a universal constant c3 > 0 such that for any fixed iteration t such that t ≥
C2ps

2 {nεΨ−1κ+b
2
max + log(1/η)} , we have πt(γ

∗) ≥ 1 − η − p−2 with probability at least
1− c3p−2.

The above corollary is useful in the sense that it provides a quantitative choice of η that
yields high utility of the estimator γt. For example, if we set η = p−2 and ε = O(1), then for
any t ≳ ps2(nε+ log p) the resulting sample γt will match γ∗ with probability 1− c3p−2.

Remark 4.4.5. Similar to Remark 4.3.6, the failure probability in Theorem 4.4.3 and Corol-
lary 4.4.4 can be improved to O(p−M) for arbitrary large M > 2, but at the cost of paying
higher values for the absolute constants C ′

1 and C2.

4.5 Numerical experiments

In this section, we will conduct some illustrative simulations1. To compare the quality of
the DP model estimator, we compare F-score (Hastie et al., 2020) of the estimated model
with that of the true model γ∗ and the BSS estimator. As the actual BSS is computationally
infeasible, we use the adaptive best subset selection (ABESS) algorithm (Zhu et al., 2022) as
a computational surrogate to BSS. Throughout this section, we assume that the true sparsity
s is known, i.e., we provide the knowledge of s to the algorithm.

We consider a random design matrix, formed by choosing each entry from the distribution
Uniform(−1, 1) in i.i.d. fashion. In detail, we set n = 900, p = 2000, and the sparsity level
s = 4. we generate the entries of the noise w independently from Uniform(−0.1, 0.1), and
consider the liner model (4.1). We choose the design vector β with true sparsity s = 4 and
the support set γ∗ = {j : 1 ≤ j ≤ 4}. We set all the signal strength to be equal, taking
the following two forms: (i) Strong signal: βj = 2{(s log p)/n}1/2, and (ii) Weak signal:
βj = 2{(log p)/n}1/2 for all j ∈ γ∗.

Under these setups, we consider the privacy parameter ε ∈ {0.5, 1, 3, 5, 10} which are
acceptable choices of ε (Near and Darais, 2022). Moreover, similar (or larger) choices of
ε are common in various applications including US census study (Garfinkel, 2022), socio-
economic study (Rogers et al., 2020), and industrial applications (Apple, 2017; Young et al.,

1Codes are available online: Github link.
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Table 4.2: Comparison of mean F-score’s across chains for K = 2. (∗) denotes that the
chain has mixed reasonably.

Privacy
F-score

Strong signal Weak signal

ε = 0.5 0.025 0.00
ε = 1 0.15 0.05
ε = 3 1.00* 0.15
ε = 5 1.00* 0.40
ε = 10 1.00* 1.00*

Non-private 1.00 1.00

2020). For the Metropolis-Hastings random walk, we vary K ∈ {0.5, 2, 3, 3.5} and initialize
10 independent Markov chains from random initializations and record the F-score of the
last iteration. We also track the qualities of the model through its explanatory power for
convergence diagnostics. In particular, we calculate the scale factor Rγ := y⊤Φγy/ ∥y∥22 for
each model update along the random walk and compare those with Rγ̂best to heuristically
gauge the quality of mixing. More details and a set of comprehensive plots can be found in
Appendix C.1 where we also discuss more about the effect of ε and K on the utility. For
K = 2, Table 4.2 shows that F-score increases as ε increases both in the cases of strong
and weak signals. In fact, for ε ≥ 3, the performance of the algorithm is on par with the
non-private BSS. This is consistent with the inflection phenomenon pointed out in Theorem
4.3.5 and Corollary 4.4.4. Furthermore, as expected, we see that for a fixed ε, the F-score

is generally higher in the strong signal case.

4.6 Conclusion

In this paper, we study the variable selection performance of BSS under the differential pri-
vacy constraint. In order to achieve (pure) differential privacy, we adopt the exponential
mechanism and establish its high utility guarantee in terms of exact model recovery. Fur-
thermore, to overcome the computational bottleneck of the sampling step in the exponential
mechanism, we design a Metropolis-Hastings random walk that provably mixes with the sta-
tionary distribution within a mixing time of the polynomial order in (n, p, s). We also show
that the samples from the Metropolis-Hastings random walk also enjoy approximate DP with
a high utility guarantee. Finally, we carry out a few illustrative simulation experiments to
demonstrate the good performance of our algorithm. In summary, as discussed in Section
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4.1.1, we establish both high utility and efficient computational guarantee for our model
selection algorithm under privacy constraints, which is in sharp contrast with the previous
works in DP model selection literature.

To this end, we also point out some of the open problems and future directions that
naturally arise from this research. One limitation, of our main result Theorem 4.3.5 is that
it required the condition minj∈γ∗ |βj| = Ω(

√
(s log p)/n) in high-privacy regime. It is still an

open question whether the extra
√
s factor is necessary for model selection. Future research

along this line could focus on solving BSS through DP mixed integer optimization (MIO).
This would mean an important contribution in this field as commercial solvers like GUROBI
or MOSEK would be capable of solving the BSS problem with high computational efficiency
using a general DP framework via objective perturbation.
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CHAPTER 5

Thompson Sampling for High-Dimensional
Sparse Linear Contextual Bandits

Online learning has emerged as one of the important fields of research in machine learn-
ing, with applications ranging from recommendation systems and robotics to personalized
medicine and clinical trials. In such applications, the learner needs to take quick and accurate
actions. However, in the modern era of big data, both processing of the data and learning
tasks have become increasingly difficult due to the curse of dimensionality. One special case
of the online learning problem is the contextual linear bandit problem where each action is
associated with a context that carries information about the users. For example, it could
be the user’s search history, and based on this context information the bandit learner (the
browser) can recommend the next set of actions that will maximize the reward (the clicks)
for the learner. This problem has been studied extensively both in low and high-dimensional
settings. However, exploration of the Thompson sampling algorithm in high-dimensional
settings remained somewhat limited.

In this chapter 1, we consider the stochastic linear contextual bandit problem with high-
dimensional features. We analyze the Thompson sampling algorithm using special classes of
sparsity-inducing priors (e.g., spike-and-slab) to model the unknown parameter and provide
a nearly optimal upper bound on the expected cumulative regret. To the best of our knowl-
edge, this is the first work that provides theoretical guarantees of Thompson sampling in
high-dimensional and sparse contextual bandits. For faster computation, we use variational
inference instead of Markov Chain Monte Carlo (MCMC) to approximate the posterior dis-
tribution. Extensive simulations demonstrate the improved performance of our proposed
algorithm over existing ones.

1First authorship of the paper is shared between Saptarshi Roy and Sunrit Chakraborty.
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5.1 Introduction

Sequential decision-making, including bandits problems and reinforcement learning, has been
one of the most active areas of research in machine learning. It formalizes the idea of selecting
actions based on current knowledge to optimize some long-term reward over sequentially
collected data. On the other hand, the abundance of personalized information allows the
learner to make decisions while incorporating this contextual information, a setup that is
mathematically formalized as contextual bandits. Moreover, in the big data era, the personal
information used as contexts often has a much larger size, which can be modeled by viewing
the contexts as high-dimensional vectors. Examples of such models cover internet marketing
and treatment assignments in personalized medicine, among many others.

A particularly interesting special case of the contextual bandit problem is the linear
contextual bandit problem, where the expected reward is a linear function of the features
(Abe et al., 2003; Auer, 2002). Under this setting, Dani et al. (2008), Chu et al. (2011)
and Abbasi-Yadkori et al. (2011) showed polynomial dependence of the cumulative regret on
ambient dimension d and time horizon T in low dimensional case. Specifically, Dani et al.
(2008) and Abbasi-Yadkori et al. (2011) proved a regret upper bound scaling as O(d

√
T ),

while Chu et al. (2011) showed a regret upper bound of the order O(
√
dT ). It is worthwhile

to mention that all of the aforementioned algorithms fall under a certain class of algorithms
known as upper confidence bound (UCB) type algorithms that rely on the construction of
a specific confidence set for the unknown parameter. In contrast, Thompson Sampling (TS)
maintains uncertainty about the unknown parameter in the form of a posterior distribution.
The first TS algorithm under this setting was proposed by Agrawal and Goyal (2013) where
they established a regret bound of the order O(d2δ−1

√
T 1+δ) for any δ ∈ (0, 1).

There is also a large body of work present in high-dimensional sparse linear contextual
bandit setup, where the reward only depends on a small subset of features of the observed
contexts. This area has recently attracted considerable attention due to its abundance in
modern reinforcement learning applications (e.g, clinical trials, personalized recommendation
systems, etc.) and has quite naturally spawned theoretical research in this direction. Some
of the important references include Bastani and Bayati (2020); Wang et al. (2018); Hao et al.
(2020); Chen et al. (2022); Ariu et al. (2022); Kim and Paik (2019); Li et al. (2022); Oh et al.
(2021); Li et al. (2021) among others. A more detailed discussion on existing literature in
the high dimensional bandit field is provided in Section 5.3.3. However, there has been very
limited work dedicated to analyzing TS algorithms in high-dimensional sparse bandit setups.
Hao et al. (2021) proposed a sparse information-directed sampling (IDS) algorithm which
under a special case reduces to a TS algorithm based on a spike-and-slab Gaussian-Laplace
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prior. However, the regret bound of IDS scales polynomially in d, which is sub-optimal in the
high-dimensional regime. In related work, Gilton and Willett (2017) proposed a linear TS
algorithm based on a relevance vector machine (RVM) which again suffers from sub-optimal
dependence on d.

In this chapter, we specifically focus on the high-dimensional sparse linear contextual ban-
dit (SLCB) setup and propose a TS algorithm based on a sparsity-inducing prior that enjoys
almost dimension-independent regret bound. While TS algorithms have been known to em-
pirically perform better than optimism-based algorithms (Chapelle and Li, 2011; Kaufmann
et al., 2012), theoretical understanding of these is challenging due to the complex dependence
structure of the bandit environment. Moreover, posterior sampling in high-dimensional re-
gression (which is the crucial step for TS in high-dimensional SLCB), using MCMC, generally
suffers from computational bottleneck. Our work overcomes all these challenges and makes
the following contributions:

1. We use the sparsity inducing prior proposed in Castillo et al. (2015) for posterior
sampling and establish posterior contraction result for non-i.i.d. observations coming
from bandit environment and for a wide class of noise distributions.

2. Using the posterior contraction result, we establish an almost dimension free regret
bound for our proposed TS algorithm under different arm-separation regimes param-
eterized by ω. The algorithm enjoys minimax optimal performance for ω ∈ [0, 1). To
the best of our knowledge, this is the first work that proposes a novel TS algorithm
with desirable regret guarantees in high-dimensional and sparse SLCB setup.

3. Our algorithm does not need the knowledge of model sparsity level, unlike other algo-
rithms such as LASSO-bandit, MCP-bandit, ESTC, etc.

4. Finally, the prior allows us to design a computationally efficient TS algorithm based
on Variational Bayes.

The rest of the chapter is organized as follows. In Section 5.2, we introduce the problem
formally and discuss the assumptions and prior distribution. In Section 5.3, we present the
crucial posterior contraction result and the main regret bound for our proposed algorithm.
In Section 5.4, we discuss the challenges of drawing samples from the posterior in such
problems and present a faster alternative relying on variational inference. In Section 5.5,
we present simulation studies under different setups comparing our proposed method with
existing algorithms. Detailed proofs of results and technical lemmas are deferred to the
appendix.
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5.2 Problem Formulation

We consider a linear stochastic contextual bandit with K arms. At time t ∈ [T ], context
vectors {xi(t)}i∈[K] are revealed for every arm i. We assume xi(t) ∈ Rd for all i ∈ [K], t ∈ [T ]

and for every i, {xi(t)}t∈[T ] are i.i.d. from some distribution Pi. At every time step t, an
action at ∈ [K] is chosen by the learner and a reward r(t) is generated according to the
following linear model:

r(t) = xat(t)
⊤β∗ + ϵ(t) (5.1)

where β∗ ∈ Rd is the unknown true signal and {ϵ(t)}t∈[T ] are independent sub-Gaussian
random noise, also independent of all the other processes. We assume that the true parameter
β∗ is s∗–sparse, i.e., ∥β∗∥0 = s∗. We denote by S∗ the true support of β∗, i.e., S∗ = {j : β∗

j ̸=
0}.

The goal is to design a sequential decision-making policy π that maximizes the expected
cumulative reward over the time horizon. To formalize the notion, we define the history Ht

up to time t as follows:

Ht :=
{
(aτ , r(τ), {xi(τ)}i∈[K]) : τ ∈ [t]

}
,

and an admissible policy π generates a sequence of random variables a1, a2, . . . taking val-
ues in [K] such that at is measurable with respect to the σ-algebra generated by the pre-
vious feature vectors from each arm, observed rewards of the chosen arms till the previ-
ous round and the current feature vectors, i.e., measurable with respect to the filtration
Ft := σ (xaτ (τ), r(τ), xi(t); τ ∈ [t− 1], i ∈ [K]) .

Thus, an algorithm for contextual bandits is a policy π, which at every round t, chooses
an action (arm) at based on history Ht−1 and current contexts. We note that although
contexts of the previous round corresponding to arms that were not chosen are in Ft, however,
they do not provide useful information on the parameter, since we do not observe rewards
corresponding to them under the bandit feedback, and hence are not included in the history
Ht. To measure the quality of performance, we compare it with the oracle policy π∗ which
uses the knowledge of the true β∗ to choose the optimal action a∗t := argmaxi∈[K]xi(t)

⊤β∗.
Define ∆i(t) to be the difference between the mean rewards of the optimal arm and ith arm
at time t, i.e., ∆i(t) = xa∗t (t)

⊤β∗−xi(t)⊤β∗. Note that under the random-design assumption,
a∗t is also random. Then the regret at time t is defined as regret(t) = ∆at(t) and the objective
of the learner is to minimize the total regret till time T , defined as R(T ) =

∑
t∈[T ] regret(t).

We also define the matrix Xt := (xa1(1), . . . , xat(t))
⊤. The time horizon T is finite but
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possibly unknown, but much smaller compared to the ambient dimension of the parameter,
i.e. d≫ T . Hao et al. (2021) refers to this regime as “data-poor" regime; such a regime adds
an extra layer of hardness on top of the difficulty incurred by the sparse structure of β. We
also assume that K is fixed and much smaller compared to both d and T .

5.2.1 Assumptions

In this section, we discuss the assumptions of our model.

Definition 5.2.1 (Sparse Riesz Condition (SRC)). Let M be a d× d positive semi-definite
matrix. The maximum and minimum sparse eigenvalues of M with parameter s ∈ [d] are
defined as follows:

ϕmin(s;M) := inf
δ:δ ̸=0,∥δ∥0≤s

δ⊤Mδ

∥δ∥22
,

ϕmax(s;M) := sup
δ:δ ̸=0,∥δ∥0≤s

δ⊤Mδ

∥δ∥22
.

We say M satisfies the SRC if 0 < ϕmin(s,M) ≤ ϕmax(s;M) <∞.

Now we are ready to state the assumptions on the context distributions, which are as
follows:

Assumption 5.2.2 (Assumptions on Context Distributions). We assume that

(a) For some constant xmax ∈ R+, we have that for all i ∈ [K], Pi(∥x∥∞ ≤ xmax) = 1.

(b) For all arms i ∈ [K], the distribution Pi is sub-Gaussian, i.e., there exists a constant
ϑ > 0 such that maxi∈[K] ∥xi(t)∥ψ2

≤ ϑ for all t ∈ [T ].

(c) There exists a constant ξ ∈ R+ such that for each u ∈ Sd−1 ∩ {v ∈ Rd : ∥v∥0 ≤ Cs∗}
and h ∈ R+ Pi(⟨x, u⟩2 ≤ h) ≤ ξh, for all i ∈ [K], ,where C ∈ (2,∞).

(d) The matrix Σi := Ex∼Pi
[xx⊤] has bounded maximum sparse eigenvalue, i.e.,

ϕmax(Cs
∗,Σi) ≤ ϕu < ∞, for all i ∈ [K], where C is the same constant as in part

(c).

Assumption 5.2.2(a) basically tells that the contexts are bounded; such assumptions are
standard in the bandit literature to obtain results on regret bound that are independent
of the scaling of the contexts (or parameter). Assumption 5.2.2(b) says that all the arm-
contexts are generated from sub-Gaussian distributions with a common bound of the order
O(ϑ2) on the proxy-variance, for all time point t. This is indeed a very mild assumption
on the context distribution and a broad class of distributions enjoys such property. For
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example, truncated multivariate normal distribution with covariance matrix Id, where the
truncation is over the set {u ∈ Rd : ∥u∥∞ ≤ 1} is a valid distribution for the contexts.
In comparison, most of the previous literature such as Kim and Paik (2019); Oh et al.
(2021); Li et al. (2022) assume that ∥xi(t)∥2 ≤ L, for some constant L > 0. This condition
automatically implies that Assumption 5.2.2(b) holds with ϑ = (L/ log 2)1/2. As a result, the
theory in Kim and Paik (2019); Oh et al. (2021); Li et al. (2022) can not accommodate the
aforementioned truncated multivariate normal distribution as in this case ∥xi(t)∥2 = Θ(

√
d)

and their analysis yields O(
√
d) dependence in the regret bound. Assumption 5.2.2(c) talks

about anti-concentration condition that plays a critical role in controlling the estimation
accuracy of β∗. This condition is also assumed by Li et al. (2021) and a variant (diverse
covariates) of this condition is assumed in Ren and Zhou (2020). Intuitively, this condition
prohibits the context features to fall along a singular direction. When u is not constrained
to be sparse, this condition implies that the distribution of the contexts is not supported on
a lower dimensional sub-space, allowing diversity and in the contexts and leading to inherent
exploration. Assumption 5.2.2(c) captures this notion using the weaker condition where u is
only sparse. Existing works like Oh et al. (2021); Kim and Paik (2019) try to capture this
notion via compatibility/RE condition which is a somewhat stronger assumption and cannot
be easily checked in practice. Assumption 5.2.2(c) is more interpretable - under the mere
existence of bounded density for u⊤xi(t) (for all sparse u ), the condition holds. Moreover,
The entire Assumption 5.2.2 does not need any existence of pdf, whereas Oh et al. (2021);
Ariu et al. (2022) need the relaxed symmetry assumption which requires the existence of pdf.
Lastly, from the discussion in Section 2.3 of Ren and Zhou (2020), it follows that minimum
sparse eigenvalue assumption and relaxed symmetry assumption (both used in Ariu et al.
(2022)) implies diverse covariate property when K = 2. This suggests that Assumption
5.2.2(b) is very mild. Lastly, Assumption 5.2.2(d) imposes an upper bound on the maximum
sparse eigenvalue of Σi which is a common assumption in high-dimensional literature (Zhang
and Huang, 2008; Zhang, 2010).

Next, we come to the assumptions on the true parameter β∗

Assumption 5.2.3 (Assumptions on the true parameter). We assume the followings:

(a) Sparsity and Soft-sparsity: There exist positive constants s∗ ∈ N and bmax ∈ R+ such
that ∥β∗∥0 = s∗ and ∥β∗∥1 ≤ bmax.

(b) Margin condition: There exists positive constants ∆∗, A and ω ∈ [0,∞], such that for
h ∈

[
A
√

log(d)/T ,∆∗

]
and for all t ∈ [T ],

P
(
xa∗t (t)

⊤β∗ ≤ max
i ̸=a∗t

xi(t)
⊤β∗ + h

)
≤
(
h

∆∗

)ω
.
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The first part of the assumption requires boundedness of the true parameter β∗ to make
the final regret bound scale free. Such an assumption is also standard in bandit literature
(Bastani and Bayati, 2020; Abbasi-Yadkori et al., 2011).

The second part of the assumption imposes a margin condition on the arm distribu-
tions. Essentially, this assumption controls the probability of the optimal arm falling into
h-neighborhood of the sub-optimal arms. As ω increases, the margin condition becomes
stronger as the sub-optimal arms are less likely to fall close to the optimal arms. As a result,
it becomes easier for any bandit policy to distinguish the optimal arm. As an illustration,
consider the two extreme cases ω = ∞ and ω = 0. The ω = ∞ case tells that there is a
deterministic gap between rewards corresponding to the optimal arm and sub-optimal arms.
This is the same as the “gap assumption” in Abbasi-Yadkori et al. (2011). Thus, quite ev-
idently it is easy for any bandit policy to recognize the optimal arm. This phenomenon is
reflected in the regret bound of Theorem 5 in Abbasi-Yadkori et al. (2011), where the regret
depends on the time horizon T only though poly-logarithmic terms. In contrast, ω = 0

corresponds to the case when there is no apriori information about the separation between
the arms, and as a consequence, we pay the price in regret bound by a

√
T term (Hao et al.,

2021; Agrawal and Goyal, 2013; Chu et al., 2011).
The margin condition with ω = 1 has been assumed in Goldenshluger and Zeevi (2013);

Bastani and Bayati (2020); Wang et al. (2018) and will be satisfied when the density of
xi(t)

⊤β∗ is uniformly bounded for all i ∈ [K]. Li et al. (2021) also discusses an example
where the margin condition holds for different values of ω.

The final assumption is on the noise variables:

Assumption 5.2.4 (Assumption on Noise). We assume that the random variables {ϵ(t)}t∈[T ]
are independent and also independent of the other processes and each one is σ−Sub-Gaussian,
i.e., E[eaϵ(t)] ≤ eσ

2a2/2 for all t ∈ [T ] and a ∈ R.

Various families of distribution satisfy such a requirement, including normal distribution
and bounded distributions, which are commonly chosen noise distributions. Note that such
a requirement automatically implies that for every t ∈ [T ], E[ϵ(t)] = 0 and Var[ϵ(t)] ≤ σ2.

5.2.2 Thompson Sampling and Prior

We discuss the basics of Thompson sampling and introduce the specific structure of the prior
that we use and analyze. Typically, we place a prior Π on the unknown parameter (β in our
case) along with a specified likelihood model on the data, and do the following: while taking
action, we draw a sample from the posterior distribution of the parameter given the data
and use that as the proxy for the unknown parameter value, hence in our case at time t,

85



we draw a sample β̂t ∼ Π(β|Ht−1) and choose at = argmaxi xi(t)
⊤β̂t as the action. While

simple enough to describe, Thompson sampling has been difficult to analyze theoretically,
particularly because of the complex dependence between the observations due to the bandit
structure. The choice of prior plays a crucial role, as we shall see, in providing the correct
exploration-exploitation trade-off. In the high-dimensional sparse case that we are dealing
with, this choice is specifically important since we do not wish to have a linear dependence
on the dimension d in our regret bound - which would be incurred if we use the normal
prior-likelihood setup of Agrawal and Goyal (2013), which analyzes Thompson sampling in
contextual bandits.

While there is a rich literature on Bayesian priors for high dimensional regression, includ-
ing horseshoe priors and slab-and-spike priors among others, we shall be using the complexity
prior introduced in Castillo et al. (2015). Specifically, we consider a prior Π on β that first
selects a dimension s from a prior πd on the set [d], next a random subset S ⊂ [d] of size
|S| = s and finally, given S, a set of nonzero values βS := {βi : i ∈ S} from a prior density
gS on RS. Formally, the prior on (S, β) can be written as

(S, β) 7→ πd(|S|)
1(
d
|S|

)gS(βS)δ0(βSc), (5.2)

where the term δ0(βSc) refers to coordinates βSc being set to 0. Moreover, we choose gS as a
product of Laplace densities on R with parameter λ/σ, i.e., βi 7→ (2σ)−1λ exp (−λ|βi|/σ) for
all i ∈ S. Note that, here we assume that the noise level σ is known. In practice, one can
add another level of hierarchy by setting a prior on σ but in this chapter we do not pursue
that direction.

The prior πd plays the role of expressing the sparsity of the parameter. This is in contrast
to other priors like product of independent Laplace densities over the coordinates (typically
known as Bayesian LASSO), where the Laplace parameter plays the role of shrinking the
coefficients towards 0. However, in our case, the scale parameter λ of the Laplace does not
have this role and we assume that during the tth round we use λ ∈ [(5/3)λt, 2λt], where
λt ≍

√
t log d, which is the usual order of the regularization parameter used in the LASSO.

The choice of the prior πd is very critical; it should downweight big models, but at the
same time give enough mass to the true model. Following Castillo et al. (2015), we assume
that there are constants A1, A2, A3, A4 > 0 such that ∀ s ∈ [d]

A1d
−A3πd(s− 1) ≤ πd(s) ≤ A2d

−A4πd(s− 1). (5.3)

Complexity priors of the form πd(s) ∝ c−sd−as for constants a, c satisfy the above require-
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ment. Moreover, slab and spike priors of the form (1− r)δ0 + rLap(λ/σ) independently over
the coordinates satisfy the requirement with hyperprior on r being Beta(1, du).

Finally, we specify the data likelihood that is crucial for the TS algorithm. At each time
point t ∈ [T ], given the observations coming from model (5.1), we model the {ϵ(τ)}τ≤t as
i.i.d. N(0, σ2). We emphasize that this Gaussian assumption is only required for likelihood
modeling and our main results hold under any true error distribution satisfying Assumption
5.2.4. The same strategy is also used in Agrawal and Goyal (2013) for the LinTS algorithm
in low-dimensional setting.

5.3 Main Results

5.3.1 Posterior contraction

Now, we present an informal version of the main posterior contraction result for the estima-
tion of β. A more detailed version of the result with exact rates, along with the measure
theoretic details, is in Appendix D.3.

Theorem 5.3.1 (Informal). Write rt = (r(1), . . . , r(t))⊤, and let the Assumption 5.2.2–
5.2.4 hold with C = Θ(ϕuϑ

2ξK logK), and K ≥ 2, d ≥ T . With λ ≍ xmax(t log d)
1/2 and

εt,d,s = s∗{(log d+ log t)/t}}1/2, the following holds as t→∞:

ErtΠ

(
∥β − β∗∥1 ≳ σεt,d,s

∣∣∣∣ rt, Xt

)
a.s.→ 0.

The above result is similar to Theorem 3 in Castillo et al. (2015) under classical linear
regression setup with i.i.d. observations and Gaussian noise. However, we generalize their
result under bandit setup and sub-Gaussian noise by carefully controlling the correlation
between noise and observed contexts, which is crucial for our regret analysis.

5.3.2 Algorithm and regret bound

In this section, we introduce the Thomson sampling algorithm for high-dimensional con-
textual bandit, a pseudo-code for which is provided below in Algorithm 3. Similar to the
Thompson sampling algorithm in Agrawal and Goyal (2013), in the tth round Algorithm 3
sets the a specific prior on β and updates it sequentially based on the observed rewards and
contexts. In particular, it chooses the prior described in (5.2) with an appropriate choice
of round-specific prior scaling λt and updates the posterior using the observed rewards and
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contexts until (t − 1)th round. Then a sample is generated from the posterior and an arm
at is chosen greedily based on the generated sample.

Now, we show that the Thompson sampling algorithm achieves desirable regret upper
bound.

In this section we introduce the Thomson sampling algorithm for high-dimensional con-
textual bandit, a pseudo-code for which is provided below in Algorithm 3. Similar to the
Thompson sampling algorithm in Agrawal and Goyal (2013), in the tth round Algorithm 3
sets the a specific prior on β and updates it sequentially based on the observed rewards and
contexts. In particular, it chooses the prior described in (5.2) with an appropriate choice
of round-specific prior scaling λt and updates the posterior using the observed rewards and
contexts until (t − 1)th round. Then a sample is generated from the posterior and an arm
at is chosen greedily based on the generated sample.

Now, we show that the Thompson sampling algorithm achieves desirable regret upper
bound.

Theorem 5.3.2. Let the Assumption 5.2.2–5.2.4 hold with C = Θ(ϕuϑ
2ξK logK), and

K ≥ 2, d ≥ T . Define the quantity κ(ξ, ϑ,K) := min{(4c3Kξϑ2)−1, 1/2} where c3 is a
universal positive constant. Also, set the prior scaling λt as follows:

(5/3)λt ≤ λt ≤ 2λt, λt = xmax

√
2t(log d+ log t).

Then there exists a universal constant C0 > 0 such that we have the following regret bound
for Algorithm 3:

E{R(T )} ≲ Ib + Iω,

where,

Ib =

{
bmaxxmaxϕuϑ

2ξ(K logK)

min {κ2(ξ, ϑ,K), logK}

}
s∗ log(Kd),

Iω =



Φ1+ω

(
s∗1+ω(log d)

1+ω
2 T

1−ω
2

∆ω
∗

)
, for ω ∈ [0, 1),

Φ2
(
s∗2[log d+log T ] log T

∆∗

)
, for ω = 1,

Φ2

(ω−1)

(
s∗2[log d+log T ]

∆∗

)
, for ω ∈ (1,∞)

Φ2
(
s∗2[log d+log T ]

∆∗

)
, for ω =∞,

and Φ = σx2maxξK
(
2 + 40A−1

4 + C0Kξx
2
maxA

−1
4

)
.
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Discussion on the above result: The regret bound provided by Theorem 5.3.2
shows that the regret of the algorithm grows poly-logarithmically in d, i.e., E{R(T )} =

O((log d)
1+ω
2 ), when ω ∈ [0, 1); logarithmically in d, i.e., O(log d) when ω ∈ [1,∞]. Mean-

while, the expected cumulative regret depends polynomially in T , i.e., E{R(T )} = O(T
1−ω
2 )

when ω ∈ [0, 1); ploy-logarithmically in T ; i.e., E{R(T )} = O((log T )2), when ω = 1. In
ω ∈ (1,∞] regime, the expected cumulative regret depends poly-logarithmically in both the
time horizon T and ambient dimension d. As T ≪ d, the expected regret ultimately scales as
O(log d). Comparing our upper bound result with minimax regret lower bound established
in Theorem 1 of Li et al. (2021), it follows that our algorithm enjoys optimal dependence on
both ambient dimension d and time-horizon T when ω ∈ [0, 1). In ω = 1 region, the regret
upper bound in the above theorem is optimal up to a O(log T ) term. To the best of our
knowledge, there does not exist any result on minimax lower bound in the regime ω > 1 in
the high-dimensional linear contextual bandit literature. It is worth mentioning that this is
an upper bound on the expected (frequentist) regret, as compared to Bayesian regret which
is often considered for Thompson sampling based algorithms.

Algorithm 3: TS algorithm
H0 = ∅.
for t = 1, · · · , T do

if t ≤ 1 then
Choose action at uniformly over [K].

end if
if t > 1 then

Set λt = xmax

√
2t(log d+ log t) and choose λt ∈ (5λt/3, 2λt).

Generate sample β̃t ∼ Π(· | Ht−1) with prior Π in (5.2)-(5.3), λ = λt and Gaussian
likelihood.
Play arm: at = argmaxi∈[K] xi(t)

⊤β̃t.
end if
Observe reward r(t).
Update Ht ← Ht−1 ∪{(at, rat(t), xat(t))}.

end for

Intuitively, the initial term Ib in regret upper bound in Theorem 5.3.2 describes the regret
caused by the “burn-in” period of exploring the space of contexts and it does not contribute
to the asymptotic regret growth. Note that we consider running Thompson sampling from
the very beginning, without an explicit random exploration phase, in contrast to most of
the existing algorithms; the distinction between the burn-in phase and the subsequent phase
is only a construct of our theoretical analysis. Furthermore, the constant ∆∗ plays the role
of gap parameter which commonly appears in a problem-dependent regret bound (Abbasi-
Yadkori et al., 2011). Note that, for ω = 0, we get a problem-independent regret bound of
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the order O(s∗
√
T log d). The appearance of the

√
T , term is not surprising, as the condition

ω = 0 poses no prior knowledge on the arm-separability, Thus, in the worst case, the context
vectors may fall into each other, making the bandit environment harder to learn. In contrast,
as ω increases the optimal arm becomes more distinguishable than the sub-optimal arms and
the bandit environment becomes easier to learn. As a result, the effect of the time horizon
becomes less and less severe as ω increases. In particular, when ω ∈ [1,∞], the time horizon
does not affect the asymptotic growth of the regret bound. Finally, as we mainly focus on
the case when the number of arms is very small, the quantity Φ roughly has an inflating
effect of O(1) on the regret bound.

Sketch of the proof of Theorem 5.3.2: While a self-contained and detailed proof of
the above result is given in the Appendix, here we go through the main steps and ideas of
the proof. The proof is broadly divided into 3 parts for clarity:

(i) In Section D.2.1 we will first show that the estimated covariance matrix Σ̂t := X⊤
t Xt/t

enjoys SRC condition with high probability for sufficiently large t. In our analysis, we
carefully decouple this complex dependent structure and exploit the special temporal
dependence structure of the bandit environment to establish SRC property of Σ̂t.

(ii) Next, in Section D.2.2 we will establish a compatibility condition for the matrix Σ̂t. We
use a Transfer Lemma (Lemma D.2.9) which essentially translates the uniform lower
bound on ϕmin(Cs

∗, Σ̂t) to a certain compatibility number.

(iii) Finally, in Section D.2.3, under the compatibility condition we use the posterior con-
traction result in Theorem 5.3.1 to give bound on the per round regret ∆at(t).

5.3.3 Comparison with existing literature

Over the past few years, the problem of high dimensional stochastic linear contextual bandit
has attracted significant attention and has quite evidently generated a large body of work in
this field under different problem settings. However, there are mainly two types of settings
that have been considered in high-dimensional linear bandit literature: (S1) Each arm has
different parameters β∗

i for i ∈ [K] and only one context vector x(t) is generated at every
time point t, (S2) K different contexts xi(t) are generated for each arm i ∈ [K] at every
time point t and all of the arms have one common parameter β∗, which is also the setting of
this chapter.

There has been an ample amount of work in both of these settings. To mention a few,
Wang et al. (2018); Bastani and Bayati (2015); Wang and Cheng (2020) consider the setting
in (S1), whereas Kim and Paik (2019); Li et al. (2021); Oh et al. (2021) consider the setting
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Table 5.1: This table compares the regret bounds and working assumptions of this chap-
ter with existing works under different SLCB settings. We focus four most important as-
sumptions: (1) ‘Margin’ - similar to Assumption 5.2.2(b) with ω ∈ {0, 1}, (2)‘Comp/RE’-
Compatibility or RE condition, (3) ‘ℓ2-bound’- boundedness of contexts in ℓ2-norm, (4) ‘Pdf
exst’- existence of pdf. ✓ symbol indicates that the corresponding condition is assumed in
the chapter. ✓(⋆) symbol indicates that Chen et al. (2022) assumes that the coordinates of
the contexts are i.i.d and the second moments are lower bounded, which is typically much
stronger than compatibility or RE condition.

Set-
ting

Paper Regret Bound Margin
Comp/RE

ℓ2-bound Pdf
exists

(S1)

Bastani and Bayati
(2015)

O(s∗2[log d+ log T ]2) ✓ ✓

Wang et al. (2018) O(s∗2[log d+
log T ] log T )

✓ ✓

Wang and Cheng
(2020)

O(s∗2[log d+ log T ]2) ✓ ✓

(S2)

Kim and Paik (2019) O(s∗
√
T log(dT )) ✓ ✓

Oh et al. (2021) O(
√
s∗T log(dT )) ✓ ✓ ✓

Li et al. (2021)
{

O(s∗
√
T log d)

O(s∗2[log d+
log T ] log T )

✓

Li et al. (2022) O(s∗1/3T 2/3
√
log(dT )) ✓ ✓

Ariu et al. (2022)
{

O(s∗2 log d+
√
s∗T ) ✓ ✓

O(s∗2 log d+ s∗ log T ) ✓ ✓ ✓

Chen et al. (2022) O(s∗
√
T log2(Td)) ✓(⋆)

This chapter
{

O(s∗
√
T log d)

O(s∗2[log d+
log T ] log T )

✓

in (S2). It is worth mentioning that most of these works assume very strong compatibility
or restricted eigenvalue (RE) conditions on the feature distribution, which is in general hard
to check in real-world applications. Instead, in this chapter we show that TS algorithm
enjoys desirable regret bound under much weaker and easily interpretable assumptions on
the feature distribution. There is also a parallel line of work that considers the set of features
or contexts to be infinite but fixed (Hao et al., 2020, 2021; Jang et al., 2022), which is in sharp
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contrast to the setting considered in this chapter. Moreover, in the setup of these works, the
optimal arm remains the same for every round. On the other hand, in our setting, due to
the randomness of the observed contexts, the optimal arm does not necessarily remain the
same in every round. Lastly, Hao et al. (2021) and Hao et al. (2022) study the properties of
information-directed sampling and provide a guarantee for Bayesian regret, which is much
weaker than the result in Theorem 5.3.2.

Now we compare the results and assumptions of this chapter with existing literature in
SLCB setting. Table 5.1 shows the comparison of regret bound and working assumptions
of different papers under both (S1) and (S2) settings. Under the setup of (S1), Bastani
and Bayati (2015) and Wang et al. (2018) proposed the LASSO-bandit algorithm and MCP
bandit algorithm respectively, and under the margin condition ω = 1, they established a
regret bound of the order Õ((s∗ log T )2)2. However, Theorem 5.3.2 accommodates a broader
range of ω and our method does not need the knowledge of ω, but enjoys the same regret
upper bound for ω = 1. Moreover, unlike LASSO-bandit or MCP-bandit, our method does
not require forced sampling which could be expensive in certain marketing applications.

Under the setting in (S2), Kim and Paik (2019) and Ariu et al. (2022) proposed Doubly-
robust LASSO and Threshold LASSO bandit algorithms respectively. Under strong com-
patibility or RE condition they established Õ(

√
T ) regret bound. With margin condition

ω = 1, Ariu et al. (2022) improved their bound to Õ(log T ). Li et al. (2022) proposed “Ex-
plore Structure then Commit” framework and established regret bound of the order Õ(T 2/3).
However, all of these algorithms require the knowledge of true sparsity s∗, and as mentioned
before, also need some type of compatibility/RE conditions or some other strong conditions
on the covariance structure and density functions of the contexts. In comparison, our theory
does not assume any strong compatibility/RE condition on the context distribution and the
TS algorithm also does not require the knowledge of true sparsity but still enjoys better
or comparable regret bound. In some recent works, Oh et al. (2021); Li et al. (2021) also
proposed LASSO-based algorithms which do not require the knowledge of true sparsity s∗.
It is worth mentioning that under a similar set of assumptions as in this chapter, Li et al.
(2021) showed that the LASSO-L1 confidence ball algorithm enjoys similar regret bounds as
in Theorem 5.3.2 for different values of ω. However, the Sparsity Agnostic LASSO algorithm
proposed in Oh et al. (2021) needs strong RE and balanced covariance assumptions. Lastly,
Chen et al. (2022) recently proposed Sparse LinUCB and SupLinUCB algorithm which relies
on best subset selection and showed that it enjoys Õ(

√
T ) regret bound. However, they as-

sume that the contexts are sub-Gaussian with independent coordinates, which is far stronger
than the compatibility condition and even unrealistic in most real-world applications.

2Õ(·) hides the logarithmic dependence on d or T .
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5.4 Computation

In this section, we discuss the computational challenges and how these are overcome by
using Variational Bayes (VB). While priors as (5.2) have been shown to perform well, both
empirically and in theory, the discrete model selection component of the prior makes it
challenging to allow computation and inference on the posterior. For β ∈ Rd, inference using
the slab and spike prior requires a combinatorial search over 2d possible models, which in
the case of high dimension is computationally infeasible. Fast algorithms are known only in
the special diagonal design case and traditional Markov Chain Monte Carlo methods have
very slow mixing in such high dimensional cases. Thus, following Ray and Szabó (2021)
we use Variational Bayes to make computations faster. Specifically, in the sampling step of
Algorithm 3, we consider the VB approximation of the posterior Π(· | Ht−1) arising from
slab and spike prior with Lap(λ/σ) slab in the mean-field family{

d⊗
j=1

[γjN(µj, σ
2
j ) + (1− γj)δ0] : (µj, σj, γj) ∈ R

}
,

where R = R × R+ × [0, 1]. We use the sparsevb package (Clara et al., 2021) in R to use
the Coordinate Ascent Variational Inference (CAVI) algorithm proposed in Ray and Szabó
(2021) to obtain the VB posterior. This makes the Thompson sampling algorithm much
faster as one can efficiently obtain samples from the VB posterior due to its structure. The
details of the algorithm for the Variational Bayes Thompson Sampling (VBTS)3 are in the
appendix (see Section D.5).

5.5 Numerical Experiments

In both simulations and real data experiments, we present results corresponding to λt = 1

for all t ∈ [T ]. Recall that Theorem 5.3.2 suggests that in tth round λt ≍
√
t log d is a

reasonable choice for the exact Thompson sampling algorithm. However, in practice, we
noticed that such choices of λt lead to numerical instability. Some recent findings in Ray
and Szabó (2021) suggest that λt in the order of O(

√
t log d/s∗) should be an appropriate

choice, which is smaller than the predicted order of λt in our main theorem. Motivated by
this, we also present the simulation results for synthetic data experiments with λt = λ∗

√
t

for λ∗ ∈ {0.2, 0.3, 0.4, 0.5} in Section 5.5.3. We found the performance of VBTS to be robust
with respect to the choice of the tuning parameter λt.

3Codes are available online: Github link.
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5.5.1 Synthetic data

In this section, we illustrate the performance of the VBTS algorithm on a simulated data
set. As a benchmark, we consider, DR-LASSO (Kim and Paik, 2019), LASSO-L1 confidence
ball algorithm (Li et al., 2021), ESTC (Li et al., 2022), sparsity agnostic (SA) LASSO (Oh
et al., 2021), thresholded (TH) LASSO (Ariu et al., 2022), and TS algorithm based on
Bayesian LASSO (Park and Casella, 2008) (BLASSO TS) to compare the performance of
VBTS (Algorithm ??). In this section, we only include the methods that are designed for the
high-dimensional linear contextual bandit. Simulation results for LinUCB (Abbasi-Yadkori
et al., 2011) and LinTS (Agrawal and Goyal, 2013) can be found in Appendix D.1.

Equicorrelated (EC) structure

We set the number of arms K = 10 and we generate the context vectors {xi(t)}Ki=1 from
multivariate d-dimensional Gaussian distribution Nd(0,Σ), where Σij = ρ|i−j|∧1 and ρ = 0.3.
We consider d = 1000 and the sparsity s∗ = 5. We choose the set of active indices S∗

uniformly over all the subsets of [d] of size s∗. Next, for each choice of d, we consider two
types generating scheme for β:

• Setup 1: {Ui}i∈S∗
i.i.d.∼ Uniform(0.3, 1) and set βj = Uj(

∑
ℓ∈S∗ U2

ℓ )
−1/2

1(j ∈ S∗).

• Setup 2: {Zi}i∈S∗
i.i.d.∼ N(0, 1) and set βj = Zj(

∑
ℓ∈S∗ Z2

ℓ )
−1/2

1(j ∈ S∗).

We run 40 independent simulations and plot the mean cumulative regret with 95% con-
fidence band in Figure 5.1a-5.1b. In all the setups, we see that VBTS outperforms its
competitors by a wide margin.

Autoregressive (AR) structure

We consider the same setups as in the EC structure above, with the exception of the context
distribution. Here we generate the context vectors {xi(t)}Ki=1 from Nd(0,Σ) where Σij = ϕ|i−j|

and ϕ = 0.3. VBTS also enjoys superior empirical performance under this setup (see Figure
5.1c-5.1d). Table 5.2 shows the mean execution time (across Setup 1 and 2) of all TS
algorithms for both EC and AR structure simulations. Among the class of TS algorithms,
VBTS outperforms its other competing algorithms.

5.5.2 Real data - gravier Breast Carcinoma Data

We consider breast cancer data gravier (microarray package in R) for 168 patients to
predict metastasis of breast carcinoma based on 2905 gene expressions (bacterial artificial
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Figure 5.1: Cumulative regret of competing algorithms.

chromosome or BAC array). (Gravier et al., 2010) considered small, invasive ductal carci-
nomas without axillary lymph node involvement (T1T2N0) to predict metastasis of small
node-negative breast carcinoma. Using comparative genomic hybridization arrays, they ex-
amined 168 patients over a five-year period. The 111 patients with no event after diagnosis
were labeled good (class 0), and the 57 patients with early metastasis were labeled poor
(class 1). The 2905 gene expression levels were normalized with a log2 transformation.

Similar to Kuzborskij et al. (2019); Chen et al. (2021), in our experimental setup we
convert the breast cancer classification problem into 2-armed contextual bandit problem as
follows: Given the gravier data set with 2 classes, we first set Class 1 as the target class. In
each round, the environment randomly draws one sample from each class and composes a set
of contexts of 2 samples. The learner chooses one sample and observes the reward following
a logit model. In particular, we model the reward as

r(t) := log

{
P(Selected class = 1)
P(Selected class = 0)

}
= x⊤atβ

∗ + ϵ(t),
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Table 5.2: Time comparison among the competing algorithms.

Type Algorithm
Mean time of execution (seconds)

Equicorrelated Auto-regressive

TS

LinTS 1344.39 1346.46

BLASSO TS 1511.68 1455.53

VBTS 29.33 27.65

where at ∈ {1, 2} is the selected arm at round t. Thus, small cumulative regret insinuates
that the learner is able to differentiate the positive patients eventually. Such concepts can
be used for constructing online classifiers to differentiate carcinoma metastasis from healthy
patients based on gene expression data. However, in practice, we can not measure the regret
defined in (5.2), unless we have the knowledge of β∗. To resolve this issue, we first fit a
logit model on the whole gravier data set and consider the estimated β̂ as the ground truth
and report the expected regret with respect to the estimated β. As reported in Gravier
et al. (2010), 24 (out of 2905) BACs showed statistically significant difference (comparing
Cy3/Cy5 values) between the two groups, motivating the use of a sparse logit model in our
case. The estimated β∗ in our sparse logistic model on the dataset had a sparsity of 18 using
the dataset. In addition to this, we also treat the estimated noise variance from the fitted
logit model as the true noise variance of the error induced by the environment in each round.
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Figure 5.2: Cumulative regret plot for breast cancer data set.
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Table 5.3: Classification accuracy of competing algorithms.

Algorithm DR-LASSO LASSO-L1 ESTC VBTS

Accuracy(%) 65.63 81.20 73.32 81.88

5.5.3 Siumlation for different choices of λ

As discussed in the first paragraph of Section 5.5, for each of these simulation settings,
we tried a few choices for the tuning parameter λt. In addition to the default choice of
λt = 1 (for all time points t), we also explored the performance of the algorithm under
growing λ, as required by our theoretical results. In particular, we tried λt = λ∗

√
t for

λ∗ ∈ {0.2, 0.3, 0.4, 0.5}. For comparison, we only kept the faster optimism based methods
DRLasso, Lasso-L1 and ESTC. We found the results to be roughly robust to the choice
of this tuning parameter. The results are summarized in Figure 5.3 and Figure 5.4 below.
However, we found that larger values of λ∗ lead to numerical issues, we conjecture that
this is an artifact of the variational Bayes approximation, rather than the prior itself. For
our simulation settings, the choice

√
t log d/s∗ ≈ 0.5

√
t and hence by the findings in Ray

and Szabó (2021), values of λ∗ higher than this may yield inaccurate Variational Bayes
estimation.
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Figure 5.3: Regret bound for equi-correlated design for different tuning parameter choices
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Figure 5.4: Regret bound for auto-regressive design for different tuning parameter choices

5.6 Conclusion

In this chapter, we consider the stochastic linear contextual bandit problem with high-
dimensional sparse features and a fixed number of arms. We propose a Thompson sampling
algorithm for this problem by placing a suitable sparsity-inducing prior on the unknown
parameter to induce sparsity. We also develop a crucial posterior contraction result for
non-i.i.d. data that allows us to obtain an almost dimension independent regret bound for
our proposed algorithm. We explicitly point out the dependences on d and T for different
arm-separation regimes parameterized by ω, which is also minimax optimal for ω ∈ [0, 1).
Moreover, the choice of prior allows us to devise a Variational Bayes algorithm that enjoys
computational expediency over traditional MCMC. We demonstrate the superior perfor-
mance of our algorithm through extensive simulation studies. We finally perform an exper-
iment on the gravier dataset, for which our method performs better compared to other
existing algorithms.

Now we point the readers toward some of the natural research directions that we plan to
cover in our future works. The regret analysis, similar to most of the recent works in high
dimensional contextual bandits, relies on upper bounding the regret through estimation of
the parameter, i.e., we rely on the estimation of β∗ to be able to provide meaningful regret
bound. However, this should not be required - as an example, consider the case where the first
coordinate of xi(t) is 0 for all i ∈ [K], t ∈ [T ]. Then the first coordinate of β∗ is not estimable,
however, this does not pose any problem to designing a sensible policy since this coordinate
does not appear in the regret. Unfortunately, Assumption 5.2.2(c) is not satisfied for such
degeneracy in the contexts and as a result, it would require a modified analysis of the regret
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bound. Secondly, we underscore the fact that in our setup we adopt the Variational Bayes
framework only to sidestep the computational hurdles of MCMC arising from a myriad of
challenges such as slow mixing times of the chains, lack of easy implementation, etc. However,
in high-dimensional regression setup Yang et al. (2016) has proposed Metropolis-Hastings
algorithms based on truncated sparsity priors that do not meet the above roadblocks. It
could be very well possible that some other prior structure will allow us to design more
efficient MCMC algorithms with faster mixing times in the high-dimensional SLCB setup
along with theoretical guarantees.
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CHAPTER 6

Summary and Future Works

In this thesis, we address the modern emerging problems at the intersection of contemporary
ML and high-dimensional statistics. In particular, we studied the problem of feature selection
both from statistical and computational perspectives. In fact, we propose computationally
efficient methods that enjoy the same statistical properties as BSS under the weak signal
regime. Moreover, we provide a novel theoretical perspective on the model selection property
of BSS that unravels the effect of the intrinsic topological structure of the design. In addition,
we theoretically study the model selection performance of BSS under the setting of differential
privacy. More importantly, we proposed a computationally efficient Metropolis-Hastings
method that enjoys polynomial mixing time to its stationary distribution and produces a
DP model estimator with a high utility guarantee. Therefore, our algorithm enjoys the
best of three worlds: privacy, utility, and computation. Finally, we also propose a novel
Thompson sampling algorithm for high-dimensional sparse linear contextual bandit that has
regret scaling poly-logarithmically with the ambient dimension.

Future research vision and goals

As a researcher in the big-data era, my long-term vision is to promote the practice of “open
science” (Vicente-Saez and Martinez-Fuentes, 2018) across diverse fields of ML and make
reproducible scientific findings accessible to broader communities through relevant research.
However, there are several pressing challenges: (i) the recent data explosion has necessi-
tated statistical learning under distributed frameworks where large-scale data are distributed
across several or even a large number of sites, restricting seamless communication between
data sites, (ii) the paucity of scalable algorithms in various ML domains that can process and
analyze complex data to produce reproducible results without excessive time and resource
consumption, and (iii) alongside the escalation in data scale, there is a continuous accumu-
lation of sensitive information in diverse formats, which also restricts data sharing across
different studies. Hence, the need to construct scalable and privacy-preserving algorithmic
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frameworks has become imperative to encourage data sharing in the landscape of modern
AI and domain science applications. To address these emerging concerns, I plan to focus my
future research at the juncture of the following areas:

Objective 1: Private mixed integer programming and large scale data sharing
Integer programming (IP) and mixed integer programming (MIP) are mathematical opti-
mization problems where all or some of the decision variables are restricted to be integers.
IPs and MIPs are critical for solving discrete and combinatorial optimization problems in
various applications, including production planning, scheduling, and vehicle routing (Pochet
and Wolsey, 2006; Malandraki and Daskin, 1992). In many of these applications, the pri-
vacy protection of the user is of utmost interest (Atmaca et al., 2021; Tong et al., 2017).
However, currently, there does not exist any user-friendly private algorithmic framework that
can leverage the computational power of commercial MIP solvers such as GUROBI, CPLEX,
and MOSEK. This is a huge bottleneck in industrial-level applications where efficient and
accurate algorithms are important requirements. To address this issue, I plan to do research
related to developing DP frameworks that would provide seamless integration of modern MIP
solvers to facilitate efficient and high-quality solutions to modern problems. For example,
an immediate relevant statistical application could be to obtain an approximate DP solution
to the BSS problem using the MIP formulation introduced in Bertsimas et al. (2016). This
methodology could be used in statistical genetics to make quick and meaningful discoveries
that can be shared with other studies to advance the scientific understanding of the field
while maintaining user privacy.

Objective 2: Designing robust algorithm for reproducible results
Modern AI algorithms hold considerable promise in various ML domains encompassing
healthcare, computer vision, and engineering. However, their dissemination and adoption
have been slow, owing partially to unpredictable AI model performance once deployed in
real-world applications such as digital healthcare, that involve extremely high-dimensional
data. A recent study in Berisha et al. (2021) points out the “dataset blind spot”, a phe-
nomenon due to the curse of dimensionality, as the potential reason behind the failure of
the AI algorithms - algorithms that achieve high performance in their training phases suf-
fers much higher error rates when deployed for use. Similar issues regarding false discoveries
have been pointed out in Dwork et al. (2015a,b), and the authors propose a robust algorithm
based on perturbation that leverages the idea of DP to learn about the training data as a
whole, i.e., the data distribution instead of individual entries. I plan to propose a similar
approach for general high-dimensional analysis that will facilitate a robust and scalable algo-
rithmic framework. In particular, I plan to use the privatized version of the low-dimensional
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sufficient statistics for the training phase which needs relatively less amount of noise. This
will allow us to produce reproducible and reliable results in a computationally efficient way
which is an important requirement in open science.

Objective 3: Distributed learning in neuroimaging using summary statistics
Neuroimaging data are often complex and high-dimensional, and they are typically dis-
tributed across different sites or hospitals. Therefore, neuroimaging analysis require advanced
ML methods to enhance precision, facilitating detection of subtle brain changes critical for
understanding neurological disorders. However, there are two conflicting challenges: on the
one hand, increasing sample size is necessary for neuroimaging research because its effect
size is known to be small (Marek et al., 2022), and it is becoming more common to inte-
grate neuroimaging studies from multiple sites; and on the other hand, there are privacy
related challenges (White et al., 2022) that need to be addressed before such an integration,
which causes unwanted delays in research and hinders reproducibility of scientific studies.
Therefore, it is important to build AI-assisted statistical framework for promoting “open
science” in neuroimaging research, enabling the integration of multimodal data and foster-
ing a more comprehensive understanding of the brain. To achieve this goal, I intend to
put forth summary-statistics methodologies rooted in high-dimensional ML techniques that
inherently safeguard data privacy, as third parties are not granted access to sensitive neu-
roimaging data. Consequently, this approach will facilitate the aggregation of multiple sum-
mary statistics within the distributed framework, thereby amplifying the statistical power
of the methodology for detecting subtle changes in the brain structure with better sample
efficiency under more economic budget constraints. In particular, I will propose summary
statistics akin to polygenic risk scores, as seen in the field of statistical genetics, that can
be aggregated under the distributed framework to accurately forecast the likelihood of brain
disorders using high-dimensional multivariate ML methodologies.
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APPENDIX A

Appendix for Chapter 2

A.1 Proof of Theorem 2.3.1

Consider a MS procedure Ŝτ ∈ T . Now, there are mainly two steps of the proof:

1. Upper bound the probability of recovery in terms of the probability of an event de-
pending only on maxj∈Sc |µj| and minj∈S |µj|.

2. Find the asymptotic limits of the above random variables and find the limiting prob-
ability of the aforementioned event.

To start with note that

Pβ(Ŝτ = Sβ) = Pβ

(
max
j∈Sc
|µj| < τ(X,y) ≤ min

j∈S
|µj|
)
≤ P

(
max
j∈Sc
|µj| < min

j∈S
|µj|
)
.

Recall that for for j ∈ [p] we have

µj =

βj ∥Xj∥22 /n+ ωj ∥Xj∥2 gj/n if j ∈ Sβ

ωj ∥Xj∥2 gj/n if j /∈ Sβ,

where ω2
j = 1+

∑
k ̸=j β

2
k and gj = X⊤

j (
∑

k ̸=j Xkβk+w)/(ωj ∥Xj∥2) ∼ N(0, 1). Thus we have

Pβ(Ŝτ = S) ≤ Pβ

(
max
j∈Sc

ωj ∥Xj∥2 |gj|/(2n log p)
1/2 < min

j∈S
|βj ∥Xj∥22 + ωj ∥Xj∥2 gj|/(2n log p)

1/2

)
.

(A.1)
The right-hand side of Equation (A.1) does not depend on Ŝτ hence the above inequality

is valid uniformly over the class T . Now choose a sequence {cp}∞p=1 such that limp→∞ c2p/r ≥ 1

. Next construct a sequence of β(p) in the following manner:

• Consider the set S0 = {1, . . . , s} ⊆ [p] with s = O(log p).
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• Set β(p)
1 = cp. For all other i ∈ S0 \{1} set β(p)

i = a = (2r(log p)/n)1/2.

• Set β(p)
i = 0 if i /∈ S0.

In this setup we have ωj ∼ (1+ c2p)
1/2 for all j ̸= 1. Now fix k0 ∈ S0 \{1} (say k0 = 2). From

Equation (A.1) it can be concluded that

sup
Ŝτ∈T

Pβ(p)(Ŝτ = S0)

≤ Pβ(p)

(
max
j∈Sc

ωj ∥Xj∥2 |gj|/(2n log p)
1/2 < |βk0 ∥Xk0∥

2
2 + ωk0 ∥Xk0∥2 gk0|/(2n log p)

1/2

)
.

Also note that ωj > (1 + c2p)
1/2 for all j ∈ Sc0. Using these facts, we get

1

(1 + c2p)
1/2

max
j∈Sc

0

ωj
∥Xj∥2 |gj|
(2n log p)1/2

≥ min
j∈Sc

0

∥Xj∥2
n1/2

max
j∈Sc

0

|gj|
(2 log p)1/2

.

Now, note that for j ∈ Sc0, we have all ω2
j = 1 + ∥β∥22 and

gj =
X⊤
j z

∥Xj∥2
,

where z = (
∑

k∈S0
Xkβk + w)/ωj ∼ Nn(0, In) and it is independent of {Xj}j∈Sc

0
. Thus,

g2j = ∥Pjz∥22, where Pj is the orthogonal projection operator onto the subspace span{Xj}.
This shows that the random quantity maxj∈Sc

0
g2j is the scaled version of maximum spurious

correlation (defined in Section 7.2 of Fan et al. (2018)) between {Xj}j∈Sc
0

and the noise z

with sparsity level 1, i.e., maxj∈Sc
0
g2j = nR̂2

n(1, p− s), where

R̂n(1, p− s) := sup
α:∥α∥2=1,∥α∥0=1

1

n

n∑
i=1

α⊤(zixi,Sc
0
)

(α⊤Σ̂n,Sc
0
α)1/2

,

with Σ̂n,Sc
0
= n−1

∑n
i=1 xi,Sc

0
x⊤
i,Sc

0
. Thus, following the arguments of Fan et al. (2018), in

particular, using Theorem 3.1 and Remark 3.3 of Fan et al. (2018) we have,

max
j∈Sc

0

|gj|
(2 log p)1/2

p→ 1.

Using the above fact and Lemma 3 from Fletcher et al. (2009), we get

1

(1 + c2p)
1/2

max
j∈Sc

0

ωj
∥Xj∥2 |gj|
(2n log p)1/2

≥ min
j∈Sc

0

∥Xj∥2
n1/2

max
j∈Sc

0

|gj|
(2 log p)1/2

p→ 1.
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Now, recall that βk0 = {2r(log p)/n}
1/2 and and define ur := 1

2
(1+ r1/2√

1+r
) < 1 .Thus we have

the following:

P(|βk0 ∥Xk0∥
2
2 + ωk0 ∥Xk0∥2 gk0|/{(1 + c2p)(2n log p)}1/2 < ur)→ 1.

This tells that,

lim
p→∞

sup
Ŝτ∈T

inf
β∈Ma

s

Pβ(Ŝτ = Sβ) ≤ lim
p→∞

sup
Ŝτ∈T

Pβ(p)(Ŝτ = S0) = 0.

This finishes the proof.

A.1.1 Proof of Theorem 2.4.1

In this proof, we reparametrize δ by 8δ0 for algebraic convenience. The main result can be
salvaged by back substituting 8δ0 by δ in all the main equations in this section. Also, for
brevity of notation, in this proof we use Ŝ and S to denote that oracle BSS estimator and
Sβ respectively. We highlight the three main steps of the proof:

1. Convert the BSS problem in the problem of selecting the model with maximum spurious
correlation.

2. Use results from Fan et al. (2018) to find the asymptotic distribution of the maximum
spurious correlation statistics.

3. Use the asymptotic distribution along with non-asymptotic concentration inequalities
to upper bound the error probability.

Recall that BSS is defined as

Ŝ = argmaxD,|D|=s ∥PDY ∥22 = argminD:|D|=s ∥(In −PD)Y ∥22 .

Thus from the above definition we have the following equality:

P(Ŝ ≠ S) = P
(
∥PSy∥22 < max

D≠S
∥PDy∥22

)
.

Now we will try to understand how the quantity ∥PSy∥22 behaves asymptotically. First
it is easy to see that PSy =

∑
j∈S Xjβj + PSw. Note that

∑
j∈S Xjβj = ∥β∥2 ε̃ where

105



ε̃ ∼ Nn(0, In) and independent of the noise z. Hence we up with the following:

∥PSy∥22 =
∥∥∥∑
j∈S

Xjβj

∥∥∥2
2
+ 2w⊤PS

(∑
j∈S

Xjβj

)
+w⊤PSw

=
∥∥∥∑
j∈S

Xjβj

∥∥∥2
2
+ 2w⊤

(∑
j∈S

Xjβj

)
+w⊤PSw

= ∥β∥22 ∥ε̃∥
2
2 + 2 ∥β∥2w

⊤ε̃+w⊤PSw.

Recall that
∣∣βj∣∣ ≥ {2r(log p)/n}1/2 for all j ∈ S. This is presumably the hardest setup as

increasing signal strength can only decrease the error probability. Then ∥β∥22 ≥ (2rs log p)/n.
also note that w⊤PSw ∼ χ2

s. Hence we have,

∥PSy∥22
s log p

≥ 2r
∥ε̃∥22
n

+ 2

(
2r

s log p

)1/2
ε̃⊤w

n1/2
+

w⊤PSw

s log p

p−→ 2r.

Thus limp→∞ P(Ŝ ̸= S) ≤ P
(
2r ≤ lim supp→∞maxD≠S ∥PDy∥22 /(s log p)

)
. The limiting be-

havior of the obtained maximal process turns out to be very challenging to analyze and hence
we do not directly study this maximal process. Instead we focus on a related maximal process
(will be defined shortly) derived from the earlier one and we use the results from Fan et al.
(2018) to study its asymptotic behaviour. Now let us denote the set S ∩D by I0 and D \S
by I1, i.e., D = I0 ∪I1. Next define the class J I0 = {I1 ⊆ [p] : I1 ∩S = ∅, |I1 ∪I0| = s}
for each I0 ⊂ S. Note that 0 ≤ |I0| ≤ s− 1 from the construction (if |I0| = s then D = S).
The random variable of interest can be rewritten as follows:

max
D≠S

∥PDy∥22
s log p

= max
I0:I0⊂S

max
I1:I1∈J I0

∥PI0 ∪I1y∥
2
2

s log p
.

Using union bound we get,

P(Ŝ ≠ S) ≤
∑
I0⊂S

P

(
max

I1:I1∈J I0

∥PI0 ∪I1y∥
2
2

s log p
>
∥PSy∥22
s log p

)
. (A.2)

Now fix a subset I0 of the true support S. Similar to previous section define ỹ = y−XI0βI0

and this independent of the features in I0 ∪I1. Also we have

∥PI0 ∪I1y∥
2
2 = ∥PI0 ∪I1ỹ∥

2
2 +

∥∥XI0βI0

∥∥2
2
+ 2β⊤

I0
X⊤

I0
ỹ,

∥PSy∥22 = ∥PS ỹ∥22 +
∥∥XI0βI0

∥∥2
2
+ 2β⊤

I0
X⊤

I0
ỹ.
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Thus the summands in the right hand side of (A.2) can be written as the probabil-
ity of the event {maxI1:I1∈J I0

∥PI0 ∪I1g∥
2
2 /(s log p) > ∥PSg∥22 /(s log p)}, where g :=

(1 +
∥∥βS \ I0

∥∥2
2
)−1/2ỹ. Note that g ∼ Nn(0, In) and is independent of the features in D.

Now fix a specific I0. In the analysis we encounter the maximal process

max
I1:I1∈J I0

∥PI0 ∪I1g∥
2
2

s log p
,

Now consider the set of indices FI0 = ({1, · · · , p} \ S) ∪ I0. Hence it is easy to see that
p̃ := |FI0| = p − s + |I0|. Without loss of generality, let FI0 = {1, . . . , p̃}. Also define
s̃ := s− |I0|. Let the set VI0 = {α ∈ Rp : ∥α∥0 = s, ∥α∥2 = 1, I0 ⊆ S(α),αF c

I0
= 0}. Here

αJ denotes the sub-vector of α corresponding to the indices in J ⊆ [p]. Next we will focus
on the random variable,

L̂n := L̂n(s̃, p̃) = sup
α∈VI0

1

n1/2

n∑
i=1

α⊤(gixi)

(α⊤Σ̂nα)1/2
, (A.3)

here Σ̂n = 1
n

∑n
i=1 xix

⊤
i . Now recall that D = I0 ∪I1 for all D ≠ S with |D| = s. To see the

connection, first note that the above optimization problem can be viewed as the following:

L̂n = max
I1∈J I0

max
α∈VI0 ∪I1

α⊤
D(
∑n

i=1 gixi,D/n
1/2)

{α⊤
D(Σ̂n,DD)αD}1/2

= max
I1∈J I0

{
(
n∑
i=1

gixi,D/n
1/2)⊤Σ̂

−1

n,DD(
n∑
i=1

gixi,D/n
1/2)

}1/2

= max
I1∈J I0

{g⊤XD(X
⊤
DXD)

−1X⊤
Dg}1/2

= max
I1∈J I0

∥PI0 ∪I1g∥2 .

Thus it is essential to study the asymptotic property of L̂n. Now we define the standardized
version of L̂n as follows

Ln := Ln(s̃, p̃) = sup
α∈VI0

1

n1/2

n∑
i=1

α⊤(gixi).

Let Z = (Z1, · · · , Zp̃) be p̃−variate Gaussian random variable with covariance matrix Ip̃ and
define the random variable T ∗ := T ∗(s̃, p̃) = supα∈VI0

α⊤
FI0

Z.
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Lemma A.1.1. There exists universal constants K0, K1 such that for any δ1 ∈ (0, K0K1],

|Ln − T ∗| ≲ n−1c1/2n (s̃, p̃) +K0K1n
−3/2c2n(s̃, p̃) + δ1 (A.4)

holds with probability at least 1− C∆n(s, p̃; δ1) where cn(s, p̃) = s log(ep̃/s) ∨ log n and

∆n(s̃, p̃; δ1) = (K0K1)
3{s̃bn(s̃, p̃)}2

δ31n
1/2

+ (K0K1)
4{s̃bn(s̃, p̃)}5

δ41n

with bn(s̃, p̃) = log(p̃/s̃) ∨ log n.

Lemma A.1.2. Assume that the sample size satisfies n ≥ C1(K0 ∨K1)
4cn(s̃, p̃). then with

probability at least 1− C2n
−1/2c

1/2
n (s̃, p̃),∣∣∣L̂n − Ln∣∣∣ ≲ (K0 ∨K1)

2K0K1n
−1/2cn(s̃, p̃), (A.5)

where cn(s̃, p̃) = s̃ log(ep̃/s̃) ∨ log n.

Proof of the above two lemmas are omitted as it is in the same line of the proofs of Fan
et al. (2018). Now applying Lemma A.1.1 and A.1.2 with

δ1 = δ1(s, p̃) = (K0K1)
3/4min[1, n−1/8{s̃bn(s̃, p̃)3/8}]

yields that with probability at least 1− C(K0K1)
3/4n−1/8{sbn(s, p̃)}7/8,∣∣∣L̂n − T ∗

∣∣∣ ≲ (K0K1)
3/4n−1/8{s̃bn(s̃, p̃)}3/8.

Together with Lemma 2.3 from Chernozhukov et al. (2014) we can conclude that

sup
t∈R

∣∣∣P(L̂n ≤ t)− P(T ∗ ≤ t)
∣∣∣ ≲ C(K0K1)

3/4n−1/8{s̃bn(s̃, p̃)}7/8. (A.6)

Next by the definition of T ∗ it follows that

T ∗2 = max
I1∈J I0

∥ZI0 ∪I1∥
2
2 =

∑
j∈I0

Z2
j + max

I1∈J I0

∑
k∈I1

Z2
k .

Let W ∼ N(p−s)(0, I(p−s)) be a Gaussian vector independent of Z. Thus it follows that

T ∗2 d
=
∑
j∈I0

Z2
j +

p−s∑
k=p−2s+|I0|+1

W 2
(k:p−s) ≤

∑
j∈I0

Z2
j + (s− |I0|)W 2

(p−s:p−s).
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From Equation (A.6) it also follows that

sup
t≥0

∣∣∣P(L̂2
n ≤ t)− P(T ∗2 ≤ t)

∣∣∣ ≲ C(K0K1)
3/4n−1/8{s̃bn(s̃, p̃)}7/8. (A.7)

Now from the assumption, we have r = 1 + 8δ0. Assume that

s ≤ 0.5min{δ0,
2δ20

{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2
} log p. (A.8)

Hence |I0| ≤ s− 1 ≤ 0.5δ0 log p < δ0 log p. Thus we have,

P(T ∗2 > 2(1 + 4δ0)(s− |I0|) log p)

= P(
∑
j∈I0

Z2
j + (s− |I0|)W 2

(p−s:p−s) > 2(1 + 4δ0)(s− |I0|) log p)

≤ P

(∑
j∈I0

Z2
j > 4δ0(s− |I0|) log p

)
+ P

(
(s− |I0|)W 2

(p−s:p−s) > 2(1 + 2δ0)(s− |I0|) log p
)

(a)

≤ P

(∑
j∈I0

Z2
j − |I0|
|I0|

> (4δ0 log p− |I0|)/ |I0|

)
+ P

(
W 2

(p−s:p−s) > 2(1 + 2δ0) log p
)

(b)

≤ P

(∑
j∈I0

Z2
j − |I0|
|I0|

> (3δ0 log p)/ |I0|

)
+ P

(
W 2

(p−s:p−s) > 2(1 + 2δ0) log p
)

≲ exp(−0.75δ0 log p) + (p− s)P
(
W 2

1 > 2(1 + 2δ0) log p
)

≲ p−0.75δ0 + C
p−2δ0

√
log p

.

Inequality (a) uses s− |I0| ≥ 1 and inequality (b) uses |I0| < s < δ0 log p (Condition (A.8)).
Also, the first probability bound in (b) follows from Equation (56) in Wainwright (2009a)
and the fact that (3δ0 log p)/ |I0| ≥ 6 > 4. The last inequality in (b) follows from tail
bound of standard Gaussian distribution. Now define the event EI0 := {∥PSg∥22 /(s log p) >
2(1 + 4δ0)RI0} where RI0 := (s− |I0|)/s. Recall that

∥PSg∥22
s log p

≥

∥∥∥∑
j∈S \I0

Xjβj+PSw

(1+∥βS \ I0
∥22)1/2

∥∥∥2
2

s log p

≥

{
∥∑j∈S \I0

Xjβj∥2
(1+∥βS \ I0

∥22)1/2
− ∥PSw∥2

(1+∥βS \ I0
∥22)1/2

}2

s log p
= (T

1/2
1 − T 1/2

2 )2.

(A.9)
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where

T1 :=

∥∥∥∑j∈S \I0
Xjβj

∥∥∥2
2

(1 +
∥∥βS \ I0

∥∥2
2
)s log p

≥ 2rRI0

1 + 2r(s− |I0|)(log p)/n
Vn
n
,

and Vn :=
∥
∑

j∈S \I0
Xjβj∥22

∥βS \ I0
∥22

is an χ2
n random variable. Also we have

T2 :=
∥PSw∥22

(1 +
∥∥βS \ I0

∥∥2
2
)s log p

≤ Vs/(s log p)

where Vs := ∥PSw∥22 is an χ2
s random variable independent of XS. Next, we state the

following simple algebraic relationship:

(1 + 6δ0)
1/2 − δ0

(1 + 6δ0)1/2 + (1 + 4δ0)1/2
≥ (1 + 4δ0)

1/2.

In light of Equation (A.9) and using the above algebraic inequality we have the following:

EcI0
⊆ {T1 ≤ 2(1 + 6δ0)RI0}

⋃
{T2 ≥ 2δ20{(1 + 6δ0)

1/2 + (1 + 4δ0)
1/2}−2RI0}

Next, we have

P(T1 ≤ 2(1 + 6δ0)RI0) ≤ P
(
Vn
n
≤ 1 + 6δ0

1 + 8δ0
(1 + 2rs log p/n)

)
.

Now choose large n such that (1 + 6δ0)(1 + 2rs log p/n)) < (1 + 7δ0). Then for large n we
have,

P(T1 ≤ 2(1 + 6δ0)RI0) ≤ P
(
|Vn/n− 1| ≥ δ0

1 + 8δ0

)
≲ exp

{
−C∗ δ20

(1 + 8δ0)2
n

}
,

where C∗ is a universal constant. Now we analyze the quantity T2. We have the following
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inequalities:

P(T2 ≥
2δ20

{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2
RI0)

≤ P(Vs/s ≥
2δ20

{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2
RI0 log p)

≤ P(Vs ≥
2δ20

{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2
log p)

≤ P(|Vs/s− 1| ≥ 0.5
2δ20

{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2
(log p)/s)

≤ exp(−C ′ 2δ20
{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2

log p) (Using Condition (A.8))

= p
−C′ 2δ20

{(1+6δ0)
1/2+(1+4δ0)

1/2}2 (C ′ > 0 is universal constant).

Ultimately it shows that P(EcI0
) ≲ exp

{
−C∗ δ20

(1+8δ0)2
n
}
+ p

−C′ 2δ20

{(1+6δ0)
1/2+(1+4δ0)

1/2}2 . Now we
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are ready to show that the error probability goes to 0.

Pβ(Ŝ ≠ S) ≤
∑
I0⊂S

Pβ

(
max

I1:I1∈J I0

∥PI0 ∪I1y∥
2
2

s log p
>
∥PSy∥22
s log p

)

≤
s−1∑
k=0

∑
I0:|I0|=k

Pβ

(
max

I1:I1∈J I0

∥PI0 ∪I1y∥
2
2

s log p
>
∥PSy∥22
s log p

)

≤
s−1∑
k=0

∑
I0:|I0|=k

Pβ

(
max

I1:I1∈J I0

∥PI0 ∪I1y∥
2
2

s log p
>
∥PSy∥22
s log p

, EI0

)
+ P(EcI0

)

≤
s−1∑
k=0

∑
I0:|I0|=k

Pβ

(
max

I1:I1∈J I0

∥PI0 ∪I1g∥
2
2

s log p
>
∥PSg∥22
s log p

, EI0

)
+ P(EcI0

)

≤
s−1∑
k=0

∑
I0:|I0|=k

Pβ

(
max

I1:I1∈J I0

∥PI0 ∪I1g∥
2
2

s log p
> 2(1 + 4δ0)RI0

)
+ P(EcI0

)

(a)

≲
s−1∑
k=0

∑
I0:|I0|=k

[
P
(
T ∗2 > 2(1 + 4δ0)sRI0 log p

)
+ P(EcI0

) + C(K0K1)
3/4n−1/8{sbn(s, p)}7/8

]
≲

s−1∑
k=0

∑
I0:|I0|=k

p−0.75δ0 + C
p−2δ0

√
log p

+ exp

{
−C∗ δ20

(1 + 8δ0)2
n

}
+ p

−C′ 2δ20

{(1+6δ0)
1/2+(1+4δ0)

1/2}2

+ n−1/8{sbn(s, p)}7/8

≲
s−1∑
k=0

(
s

k

)[
p−0.75δ0 + exp

{
−C∗ δ20

(1 + 8δ0)2
n

}
+ p

−C′ 2δ20

{(1+6δ0)
1/2+(1+4δ0)

1/2}2 + n−1/8{sbn(s, p)}7/8
]

≲ 2s

[
p−0.75δ0 + exp

{
−C∗ δ20

(1 + 8δ0)2
n

}
+ p

−C′ 2δ20

{(1+6δ0)
1/2+(1+4δ0)

1/2}2 + n−1/8{sbn(s, p)}7/8
]
.

Inequality (a) uses s̃bn(s̃, p̃) ≤ sbn(s, p) for large p. Thus if

s ≲

(
δ0 ∧

2δ20
{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2

∧ k

16

)
log p

=

(
2δ20

{(1 + 6δ0)1/2 + (1 + 4δ0)1/2}2
∧ k

16

)
log p,

then error probability goes to 0 uniformly over β ∈Ma
s .

A.1.2 Model consistency of BSS for sub-Gaussian model

In this section, we will show that Theorem 4.1 also holds beyond the Gaussian model. We
assume that the entries of the design matrix X are i.i.d. mean-zero and sub-Gaussian with
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unit variance. We also assume that the entries of w are also i.i.d. mean-zero and sub-
Gaussian with unit variance and independent of X.

In this setup, the results of Theorem 3.1 in Fan et al. (2018) are also valid and the proof
steps follow exactly the same steps as the proof of Theorem 4.1 until the introduction of the
random variables Vn and Vs.

We note that Gaussianity was only used to characterize the distributions of Vn and Vs.
In particular, due to Gaussianity, we have Vn ∼ χ2

n and Vs ∼ χ2
s. However, under the

sub-Gaussian case, Vn is the sum of n independent sub-Exponential random variables with
unit-mean. Hence, the probability bound for T1 shown in the original proof is also valid.

Next, for Vs, we can use Theorem 1.1 of Rudelson and Vershynin (2013). Note that, there
exists a constant Kψ2 > 1 such that ∥ε∥ψ2

≤ Kψ2 , where ∥ε∥ψ2
:= inft>0{t : E exp(ε2/t2) ≤

2}. By Theorem 1.1 of Rudelson and Vershynin (2013), we can obtain the same probability
bound for T2 if s ≤ (0.5/K2

ψ2
)min{δ0, 2δ20

{(1+6δ0)1/2+(1+4δ0)1/2}2
} log p. Hence, the rest of the proof

is verbatim to the proof in the Gaussian case.

A.1.3 Proof of Theorem 2.4.3

In this section, we will show that BSS fails to recover the exact support when r = 1. We
highlight three main steps of the proof:

1. Convert the BSS problem in the problem of selecting the model with maximum spurious
correlation.

2. Use results from Fan et al. (2018) to find the asymptotic distribution of the maximum
spurious correlation statistics.

3. Use the exact form of the asymptotic distribution along with scaling and centering
parameters to approximate the recovery probability.

Recall the linear model y = Xβ + w with S := Sβ as the set of active features and s =

|S| = O(log p). As r = 1, there exists j0 ∈ S such that βj0 = {(2 log p)/n}1/2. WLOG , let
us assume that j0 = 1 and define I0 = S \{1}. In order for BSS to recover the exact support
S, it is necessary that

max
j /∈S

∥∥PI0∪{j}y
∥∥2
2
< ∥PSy∥22

⇔ max
j /∈S

∥∥PI0∪{j}ỹ
∥∥2
2
< ∥PS ỹ∥22 (where ỹ = X1β1 +w)

⇔ max
j /∈S

∥∥∥P†
jỹ
∥∥∥2
2
<
∥∥∥P†

1ỹ
∥∥∥2
2
,
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where P†
j is the orthogonal projection operator onto the sub-space span{X̃j} for all j ∈

Sc ∪ {1}, where X̃j = (In −PI0)Xj. Due to Gaussianity, it follows that
∥∥∥X̃j

∥∥∥2
2
∼ χ2

n−s+1.
Now, note that∥∥∥P†

1Ỹ
∥∥∥2
2
= β2

1

∥∥∥X̃1

∥∥∥2
2
+ 2β1X̃

⊤
1 w +

∥∥∥P†
1w
∥∥∥2
2

= (2 log p)

∥∥∥X̃1

∥∥∥2
2

n
+ 2(2 log p)1/2

X̃⊤
1 w√
n

+
∥∥∥P†

1w
∥∥∥2
2
.

Next, define the events

E1 :=


∣∣∣∣∣∣∣
∥∥∥X̃1

∥∥∥2
2

n− s+ 1
− 1

∣∣∣∣∣∣∣ ≤ 1/
√

log p

 , E2 :=

 X̃⊤
1 w∥∥∥X̃1

∥∥∥
2

≤ −1

 , E3 :=
{∥∥∥P†

1w
∥∥∥2
2
≤ 16

}
.

When p > 4, by Bernstein’s inequality, we have P(Ec1) ≤ e−c1
n

log p , where c1 > 0 is a universal
constant. Recall that n ≍ pk, which tells that limp→∞ P(Ec1) = 0. Next, note that X̃⊤

1 E

∥X̃1∥
2

∼
N(0, 1). Next, we introduce a useful lemma.

Lemma A.1.3 (Gordon (1941)). Let Φ(·) denote the cumulative distribution function of
standard Gaussian distribution. Then for all x ≥ 0, the following inequalities are true:(

x

1 + x2

)
e−x

2/2

√
2π
≤ 1− Φ(x) ≤

(
1

x

)
e−x

2/2

√
2π

.

By the above lemma we can conclude P(Ec2) ≤ 1 − e−1/2

2
√
2π

. Finally, as
∥∥∥P†

1w
∥∥∥2
2
∼ χ2

1, we
have P(Ec3) ≤ 2e−8. Since n+ 4 > 4s for large p, we have the following under E1 ∩ E2:

X̃⊤
1 w√
n

=
X̃⊤

1 w∥∥∥X̃1

∥∥∥
2

×

∥∥∥X̃1

∥∥∥
2√

n− s+ 1
×
√
n− s+ 1

n
≤ −
√
3{1− (log p)−1/2}

2
.

Here we used the fact that
√

1− (log p)−1/2 > 1 − (log p)−1/2. We define the event E :=
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∩3i=1Ei. Then, we have

P(Ŝbest = S) ≤ P
(
max
j /∈S

∥∥∥P†
jỹ
∥∥∥2
2
<
∥∥∥P†

1ỹ
∥∥∥2
2

)
≤ P

(
max
j /∈S

∥∥∥P†
jỹ
∥∥∥2
2
<
∥∥∥P†

1ỹ
∥∥∥2
2
, E
)
+ P(Ec)

≤ P
{
max
j /∈S

∥∥∥P†
jỹ
∥∥∥2
2
< 2 log p

(
1 +

1√
log p

)
− (6 log p)1/2

(
1− 1√

log p

)
+ 16

}
+ P(Ec).

We further note that g := ỹ/(1+β2
1)

1/2 follows a standard isotropic Gaussian distribution.
Using Theorem 3.1 of Fan et al. (2018) and the fact that 1 + β2

1 > 1, we get

P(Ŝbest = S)

≤ P
{
Z2

(p−s:p−s) ≤ 2 log p

(
1 +

1√
log p

)
− (6 log p)1/2

(
1− 1√

log p

)
+ 16

}
+ P(Ec) + o(1)

≤ P

Z2
(p−s:p−s) − 2 log(p− s) + log log(p− s) ≤ −

(√
6− 2

)
(log p)1/2 + log log p+O(1)︸ ︷︷ ︸

:=tp


+ P(Ec) + o(1).

where Z2
(p−s:p−s) is the maximum order statistics of {Z2

j }j∈[p−s] with {Zj}j∈[p−s] being i.i.d.
standard Gaussian. Finally from Remark 3.3 of Fan et al. (2018), we know

Z2
(p−s:p−s) − 2 log(p− s) + log log(p− s) d→ Λ,

where P(Λ ≤ t) = exp(−π−1/2 exp(−t/2)). As tp → −∞, we have

lim
p→∞

P(Ŝbest = S) ≤ 1− e−1/2

2
√
2π

+ 2e−8 + lim
p→∞

P(Ec1) < 0.9.

In other words, when r = 1, i.e., a = {2× 1× (log p)/n}1/2, we have

lim
p→∞

sup
β∈Ma

s

P(Ŝbest ̸= S) >
1

10
.

A.1.4 Minimax 0-1 loss under AURWM regime

We first present a result form Wang et al. (2010) which gives us the necessary condition for
asymptotic exact recovery.

Theorem A.1.4 (Wang et al. (2010)). Consider the model 2.1 with the design matrix X ∈
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Rn×p be drawn with i.i.d elements from any distribution with zero mean and unit variance.
Let a := minj∈Sβ

|βj|, i.e., it denote the minimum signal strength of β. Define the function

fm(p, s, a) :=
log
(
p−s+m
m

)
− 1

1
2
log
(
1 +ma2(1− m

p−s+m)
) , 1 ≤ m ≤ s.

Then n ≥ max{f1(p, s, a), . . . , fs(p, s, a), s} is necessary for asymptotic exact recovery.

In the light of Theorem A.1.4 the proof of Proposition 4.4 follows immediately. To see
this note that if r < 1 then there exists α ∈ (0, 1) such that r = 1 − α. Also recall that
a = {2r(log p)/n}1/2, s = O(log p) and n =

⌊
pk
⌋
. Note that f1(p, s, a)/n ∼ 1

1−α . This shows
that asymptotically the necessary condition in the above theorem is violated and hence r ≥ 1

is necessary.

A.2 Results related to ETS

A.2.1 Proof of Theorem 2.5.2

We first briefly describe the main steps of the proof:

1. We first establish the ℓ2-error bound of β̂, i.e., we show that ∥β̂ − β∥2 ≤ ϵ1/2.

2. Next, we upper bound the 0-1 loss Pβ(η̂ ̸= η) by decomposing it across the coordinates.

3. We analyze each of the terms separately and use ℓ2-error bound along with Gaussian
tail inequalities to establish model consistency.

Now we are ready for the main proof. Due to Assumption 5.1, there exists a sequence
{αp}p≥1 ⊆ [0,∞) converging to 0 such that with probability 1− αp the following is true: A
requires no more than T (ϵ, p,β) iterations to output β̂ that satisfies ∥β̂ − β∥2 ≤ ϵ1/2.

For notational brevity, we write η instead of ηβ. Define the event H =
{
∥β̂ − β∥2 ≤ ϵ1/2

}
and we have P(Hc) ≤ αp. Note that β̂ is based on the subsample D1.

Next, for algebraic convenience we again reparametrize δ as 8δ0 and set ϵ = 6δ0, ς =

(1 + ϵ)1/2. Now note that for any β ∈Ms
a, we have

Pβ(η̂ ̸= η| D1) ≤
∑
j:βj=0

P(η̂j = 1,H |D1) +
∑
j:βj ̸=0

Pβ(η̂j ̸= 1,H |D1) + P(Hc | D1)

=
∑
j:βj=0

Pβ(|∆j| > κς(X
(2)
j ),H |D1) +

∑
j:βj ̸=0

Pβ(|∆j| ≤ κς(X
(2)
j ),H |D1) + P(Hc | D1),
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Using the fact that conditionally on β̂ and Xj, the random variable ∆j has the same
distribution as the random variable in (11) in the main paper, we conclude that for all
j /∈ S(β),

P(ηj = 1,H |D1) ≤ P

(1 + ϵ)1/2 |gj| >
a
∥∥∥X(2)

j

∥∥∥
2

2
+

(1 + ϵ) log p

a
∥∥∥X(2)

j

∥∥∥
2

,H
∣∣D1


= 2E

Φ

 a
∥∥∥X(2)

j

∥∥∥
2

2(1 + ϵ)1/2
+

(1 + ϵ)1/2 log p

a
∥∥∥X(2)

j

∥∥∥
2

 .

Here Φ(·) denotes the survival function of the standard Gaussian random variable. Now note

that for each j we have
∥∥∥X(2)

j

∥∥∥2
2

d
= Vn2 , where Vn2 is a chi-squared random variable with n2

degrees of freedom. Thus we have

P(ηj = 1,H |D1) ≤ 2E

{
Φ

(
aV

1/2
n2

2(1 + ϵ)1/2
+

(1 + ϵ)1/2 log p

aV
1/2
n2

)}
.

Analogous argument and the fact that |βj| ≥ a for all βj ̸= 0, leads to the fact that for
all j ∈ Sβ,

P(ηj ̸= 1,H |D1) ≤ 2E

{
Φ

(
max

{
aV

1/2
n2

2(1 + ϵ)1/2
− (1 + ϵ)1/2 log p

aV
1/2
n2

, 0

})}
.

Now recall that ϵ = 6δ0 and γ ∈ (0, δ0
1+8δ0

). With this choice of tuning parameters, it is
easy to see that r(1− γ)/(1 + ϵ) ≥ 1+7δ0

1+6δ0
> 1 and hence as p→∞ we have

Wn2 :=
1

(log p)1/2

(
aV

1/2
n2

2(1 + ϵ)1/2
− (1 + ϵ)1/2 log p

aV
1/2
n2

)
p−→ 1

(2r)1/2

{
r

(
1− γ
1 + ϵ

)1/2

−
(
1 + ϵ

1− γ

)1/2
}
> 0.

The above display uses the fact that n2/n → 1 − γ and Vn2/n2
p→ 1 as p → ∞. Next let is

define the following quantity q:

q := q(ϵ, δ0, γ) =
1

{2(1 + 8δ0)}1/2

{
(1 + 8δ0)

(
1− γ
1 + ϵ

)1/2

−
(
1 + ϵ

1− γ

)1/2
}
.
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Due to the choice of ϵ and γ it is easy to show q > 0. Now define the event Gn2 := {Wn2 >

q/2}. Before we proceed it is useful to note the following:

Wn2 =
1

(2r)1/2

(
r{Vn2/(n(1− γ))}1/2(1− γ)1/2

(1 + ϵ)1/2
− (1 + ϵ)1/2

{Vn2/(n(1− γ))}1/2(1− γ)1/2

)
.

Next, define the function

H(u) :=
1

(2 + 16δ0)1/2

{
u(1 + 8δ0)

(
1− γ
1 + ϵ

)1/2

− 1

u

(
1 + ϵ

1− γ

)1/2
}
, u > 0.

As r = 1 + 8δ0 we have Wn2 = H({Vn2/(n(1 − γ))}1/2). It is also easy to see that H(·) is
strictly increasing function on (0,∞) and H(1) = q. Hence λδ0 := H−1(q/2) ∈ (0, 1). Now
Gc
n2

= {Wn2 ≤ q/2} ⊆ {H({Vn2/(n(1− γ))}1/2) ≤ q/2}. Thus a straightforward calculation
shows that

P(Gc
n2
) ≤ P

(
Vn2

n2

≤ n(1− γ)
n2

λ2δ0

)
.

Choose p large enough such that n2/n > λδ0(1− γ) and hence we have,

P(Gc
n2
) ≤ P

(
Vn2

n2

≤ λδ0

)
≲ exp(−Kδ0n2),

where Kδ0 = (1− λδ0)2/8. Note that Φ(t) ≤ e−t
2/2 for all t > 0. Using this fact we have the

following:

P(ηj = 1,H |D1) ≤ E
[
exp

{
−
(
1 +

W 2
n2

2

)
log p

}
1Gn2

]
+P(Gc

n2
) ≲ p−(1+q2/8)+exp(−Kδ0n2),

for all j /∈ Sβ. Similarly,

P(ηj ̸= 1,H |D1) ≲ p−q
2/8 + exp(−Kδ0n2), ∀j ∈ S(β).

Remark A.2.1. Note that q2 = Ω(
δ20

1+δ20
) and it shows that the upper bound in the above

display deteriorates as δ0 → 0. Also, as δ0 approaches 0, the term Kδ0 also approaches 0.
Hence, the rate of decay worsens as δ0 → 0, and ETS continues to lose statistical power.

118



A.2.2 Proof of Corollary 2.5.3

Similar to previous proofs, we reparametrize δ by 8δ0 and set ϵ = 6δ0, ς = (1 + ϵ)1/2. Now
note that it is enough to prove the following:

lim
p→∞

inf
β∈Ma

s

Pβ

(
max
j /∈Sβ

|∆j| < min
j∈Sβ

|∆j|
)
→ 1

as p→∞. To this end first define the following quantity:

tp :=

(
2rn2 log p

n

)1/2
2

+
ς2 log p(

2rn2 log p
n

)1/2 .
We will show that limp→∞ infβ∈Ma

s
Pβ

(
minj∈Sβ

|∆j| > tp,maxj /∈Sβ
|∆j| ≤ tp

)
→ 1 as p →

∞. For convenience let us define the events Gmin := {minj∈Sβ
|∆j| > tp} and Gmax :=

{maxj /∈Sβ
|∆j| ≤ tp}. Let H be the event as defined in Section A.2.1. First we will analyze

Pβ(G
c
min). Note that Pβ(G

c
min) ≤ Pβ(G

c
min ∩ H) + Pβ(Hc). Now the second term goes to 0

uniformly over β ∈Ma
s . Also using Equation (11) under the event H we get

sup
β∈Ma

s

Pβ(G
c
min ∩H)

≤ sup
β∈Ma

s

Pβ

(
min
j∈Sβ

∣∣∣βj∥X(2)
j ∥2 + (1 + ϵ)1/2gj

∣∣∣ ≤ tp

)
≤ sup

β∈Ma
s

Pβ

(
max
j∈Sβ

|gj|
(log p)1/2

≥ 1

(1 + ϵ)1/2(log p)1/2

{
amin
j∈Sβ

∥X(2)
j ∥2 − tp

})
≤ sup

β∈Ma
s

Pβ

(
max
j∈Sβ

|gj|
(log p)1/2

≥ 1

(1 + ϵ)1/2(log p)1/2

{
amin
j∈[p]
∥X(2)

j ∥2 − tp
})

where {gj}j∈Sβ
are non i.i.d. standard Gaussian. Note that |Sβ| = O(log p). Hence

max
j∈Sβ

|gj| = OP(log log p),

which tells that
max
j∈Sβ

|gj|
(log p)1/2

p→ 0.

Also using lemma 3 from Fletcher et al. (2009) we have

1

(1 + ϵ)1/2(log p)1/2

(
amin
j∈[p]
∥X(2)

j ∥2 − tp
)

p→ 1

(2r)1/2

{
r

(
1− γ
1 + ϵ

)1/2

−
(
1 + ϵ

1− γ

)1/2
}
.
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The right-hand side of the above display is at least q(ϵ, δ0, γ) (defined in Section A.2.1) which
is strictly positive. Again for compactness we use q instead of q(ϵ, δ0, γ). The above display
motivates us to define the following event:

Ep =
{

1

(1 + ϵ)1/2(log p)1/2

(
amin
j∈[p]
∥X(2)

j ∥2 − tp
)
≥ q/2

}
,

and it follows that P(Ecp)→ 0 as p→∞. This leads to the following inequality:

sup
β∈Ma

s

Pβ(G
c
min ∩H) ≤ sup

β∈Ma
s

Pβ

(
max
j∈Sβ

|gj|
(log p)1/2

≥ q/2

)
+ P(Ecp)

≲ p−q
2/8 log p+ P(Ecp)→ 0.

Thus we have supβ∈Ma
s
Pβ(G

c
min) → 0. Similarly it can be shown that

supβ∈Ma
s
Pβ(G

c
max)→ 0 as p→∞. These two claims together complete the proof.

A.2.3 Discussion on Remark 2.5.4

As r > 1 + δ∗, by reparameterizing δ∗ by 8δ̃, we have r > 1 + 8δ̃. Now we are basically back
to the setting of the proof of Theorem 5.1 and all of the proof steps are exactly the same as
that of Theorem 5.1 with δ̃ in place of δ0. This allows us to choose the threshold using the
knowledge of δ∗, and we do not need the knowledge of a. In particular, one can construct
the threshold κς(X

(2)
i ) with ς = (1 + A2δ∗)

1/2, where A2 is the same universal constant as
described in Theorem 5.2

A.2.4 Discussion on examples of ETS

Solving ℓ0-regularized problem:

Proofs for ETS-IHT:

We first introduce some standard assumptions for analyzing ETS-IHT.

Definition A.2.2 (RSC property). A differentiable function F : Rp → R is said to satisfy
restricted strong convexity (RSC) at sparsity level s = s1+s2 with strong convexity constraint
ℓs if the following holds for all θ1,θ2 s.t. ∥θ1∥0 ≤ s1 and ∥θ2∥0 ≤ s2:

F (θ1)− F (θ2) ≥ ⟨θ1 − θ2,∇θF (θ2)⟩+
ℓs
2
∥θ1 − θ2∥22 .
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Definition A.2.3 (RSS property). A differentiable function F : Rp → R is said to satisfy
restricted strong smoothness (RSS) at sparsity level s = s1 + s2 with strong smoothness
constraint Ls if the following holds for all θ1,θ2 s.t. ∥θ1∥0 ≤ s1 and ∥θ2∥0 ≤ s2:

F (θ1)− F (θ2) ≤ ⟨θ1 − θ2,∇θF (θ2)⟩+
Ls
2
∥θ1 − θ2∥22 .

Now we quote an important theorem from Jain et al. (2014) which quantifies the sub-
optimality gap of Algorithm 2.

Theorem A.2.4 (Jain et al. (2014)). Let F has RSC and RSS parameters given by
ℓ2ŝ+s(F ) = α and L2ŝ+π̂(F ) = L respectively. Call Algorithm 2 with ŝ ≥ 32L2ℓ−2s and
h = 2/(3L). Also let β̂ = argminθ,∥θ∥0≤sF (θ). Then tth iterate of Algorithm 2 for
t = O(Lℓ−1 log(F (β(0))/ϵ)) satisfies:

F (β(t))− F (β̂) ≤ ϵ.

In our setup, the observations {xi}ni=1 are coming from i.i.d. mean zero isotropic Gaussian
distribution. Thus, lemma 6 from Agarwal et al. (2012) immediately tells that RSC and
RSS at any sparsity level m hold for fn1(·) with probability at least 1 − exp(−c0n1) with
ℓm = 1

2
− c1(m log p)/n1 and Lm = 2 + c1(m log p)/n1, where c0, c1 are universal constants.

Now set m = 2ŝ + s and recall that n1 ∼ γpk. If n1 > 4c1(2ŝ + s) log p then we have
ℓm ≥ 1/4 and Lm ≤ 9/4, which means that Lm/(9ℓm) ≤ 1. Thus to apply Theorem
A.2.4 it is enough to choose ŝ = 2592s. Also by the assumption on n for large p we
have n1 > 4c1(2ŝ + s) log p. Let fn1(θ) := n−1

1 ∥y(1) − X(1)θ∥22 for θ ∈ Rp. Note that
fn1(0) = n−1

1 ∥y(1)∥22
d
= (1 + ∥β∥22)Vn1/n1, where Vn1 is chi-square random variable with n1

degrees of freedom. Also by Bernstein’s type inequality it follows that |(Vn1/n1)− 1| ≤
1/2 with probability at least 1 − exp(−c4n1), where c4 is a universal positive constant.
Thus if t = O(Lmℓ

−1
m log((1 + ∥β∥22)/ϵ0)) = O(log p + log((1 + ∥β∥∞)/ϵ0)), then we have

fn1(β
(t)) − fn1(β̂) ≤ ϵ0. Thus by Theorem 3 of Jain et al. (2014) it follows that with

probability at lest 1− exp(−c0n1)− exp(−c4n1)− c2p−c3 (c2, c3 are universal constants) we
have

∥β(t) − β∥2 ≤ C

(
s log p

n1

)1/2

+ (8ϵ0)
1/2 ≤ (9ϵ0)

1/2, for large p.

C is a positive universal constant in the above inequality. If we set ϵ = 9ϵ0, then Assumption
5.1 holds with αp equal to exp(−c0n1) + exp(−c4n1) + c2p

−c3 and T (ϵ, p,β) = O(log p +
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log((1 + ∥β∥∞)/ϵ))).

Solving ℓ1-regularized problem:

We start by recalling the definition of the loss function fn1,λ(θ) = n−1
1 ∥y(1)−X(1)θ∥22+λ ∥θ∥1 ,

and define the minimizer of the loss function β̂L := argminθfn1,λ(θ). First, we will prove
Proposition 5.5.

Proof of Proposition 2.5.5:

Let us assume
fn1,λ(β̂)− fn1,λ(β̂L) ≤ ϵ0 < 1.

Now, we will establish the ℓ2-error rate between β̂ and β. We write b̂ = β̂ − β. Since,
β̂L is optimal, we have

fn1,λ(β̂) ≤ fn1,λ(β̂L) + ϵ0 ≤ fn1,λ(β) + ϵ0.

Rearrangement of the above inequality yields

0 ≤ 1

n1

∥X(1)b̂∥22 ≤
2w⊤X(1)b̂

n1

+ λ(∥β∥1 − ∥β̂∥1) + ϵ0. (A.10)

Since, ∥X(1)
j ∥22 ∼ χ2

n1
, we have

P

max
j∈[p]

n
−1/2
1

∥∥∥X(1)
j

∥∥∥
2
<
√

4/3︸ ︷︷ ︸
:=E

 ≥ 1− 2p−2, for large p.

Using Gaussianity of X(1)⊤
j w/∥X(1)

j ∥2, we have

P

(
1

n1

∥∥X(1)⊤w
∥∥
∞ > 2

√
log p

n1

)
≤ P

max
j∈[p]

∣∣∣∣∣∣X
(1)⊤
j w∥∥∥X(1)
j

∥∥∥
2

∣∣∣∣∣∣ >√3 log p

+ P(Ec)

≤ 2p−0.5 + 2p−2.

Setting λ = 8{(log p)/n1}1/2, we have λ ≥ 2
∥∥X(1)⊤w

∥∥
∞ /n1 with probability at least 1 −

2p−0.5 − 2p−2. Now, since β is s-sparse with support on S, we have

∥β∥1 − ∥β̂∥1 = ∥βS∥1 −
∥∥∥βS + b̂S

∥∥∥
1
−
∥∥∥b̂Sc

∥∥∥ ≤ ∥∥∥b̂S

∥∥∥
1
−
∥∥∥b̂Sc

∥∥∥
1
.
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Substituting this in the basic inequality (A.10) and using λ ≥ 2
∥∥X(1)⊤w

∥∥
∞ /n1, we get

0 ≤ 1

n1

∥∥∥X(1)b̂
∥∥∥2
2
≤ 2

∥∥∥∥E⊤X(1)

n1

∥∥∥∥
∞

∥∥∥b̂∥∥∥
1
+ λ(

∥∥∥b̂S

∥∥∥
1
−
∥∥∥b̂Sc

∥∥∥
1
) + ϵ0

≤ (λ/2)
∥∥∥b̂∥∥∥

1
+ λ(

∥∥∥b̂S

∥∥∥
1
−
∥∥∥b̂Sc

∥∥∥
1
) + ϵ0

≤ (λ/2){3
∥∥∥b̂S

∥∥∥
1
−
∥∥∥b̂Sc

∥∥∥
1
}+ ϵ0.

(A.11)

Hence, we have∥∥∥b̂∥∥∥2
1
= (
∥∥∥b̂S

∥∥∥
1
+
∥∥∥b̂Sc

∥∥∥
1
)2 ≤ (4

∥∥∥b̂S

∥∥∥
1
+ (2ϵ0/λ))

2 ≤ 32
∥∥∥b̂S

∥∥∥2
1
+

8ϵ20
λ2
.

Now by Theorem 7.16 of Wainwright (2019), we have the following with probability at least
1− 2 exp(−n1/32):∥∥X(1)θ

∥∥2
2

n1

≥ c1 ∥θ∥22 − c2
log p

n1

∥θ∥21 for every θ ∈ Rp,

where c1, c2 > 0 are universal constants. Using the above fact we have∥∥∥X(1)b̂
∥∥∥2
2

n1

≥ c1

∥∥∥b̂∥∥∥2
2
− 32c2

s log p

n1

∥∥∥b̂∥∥∥2
2
− 8c2

log p

n1λ2
ϵ20 ≥

c1
2

∥∥∥b̂∥∥∥2
2
− ϵ20,

when 32c2s log p/(n1) < c1/2 and 8c2 log p/(n1λ
2) < 1. This is possible for large enough

values of p and λ.

Case 1: If (c1/4)
∥∥∥b̂∥∥∥2

2
> ϵ20, then using (A.11), we get

c1
4

∥∥∥b̂∥∥∥2
2
≤ 3λ

√
s

2

∥∥∥b̂∥∥∥
2
+ ϵ0.

This bound involves a quadratic form of
∥∥∥b̂∥∥∥

2
; computing the roots of the quadratic form

we get the following bound:

∥b∥2 ≤
6λ
√
s

c1︸ ︷︷ ︸
=O(
√

(s log p)/n1)

+
2
√
ϵ0√
c1
.

Case 2: If (c1/4)
∥∥∥b̂∥∥∥2

2
≤ ϵ20, then

∥∥∥b̂∥∥∥
2
≤ 2ϵ0/

√
c1 < 2

√
ϵ0/c1. The last inequality uses

the fact that ϵ0 < 1.
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Combining the bounds obtained in Case 1 and Case 2 and with probability at least 1 −
2p−0.5−2p−2−e−n1/32(which is ≥ 1− 3p−0.5 for large p), we finally have ∥β̂−β∥2 ≤ (C3ϵ0)

1/2

for large enough p and C3 being an absolute constant. Now, using the reparameterization
ϵ = C3ϵ0, we have ϵ < C3, and the initial sub-optimality gap turns out to be ϵ/C3. This
finishes the proof.

Proof for ETS-PICASSO:

First, we will show that the estimator generated by the PICASSO algorithm is a good
estimate of β. Let β̂

picasso
be the estimator obtained by applying PICASSO for minimizing

fn1(θ;λ,D1). Now define the largest and smallest s0-sparse eigenvalues of G := X(1)⊤X(1)/n1

as:

ρ+(s0) := max
v:∥v∥0≤s

v⊤Gv

∥v∥22
; and ρ−(s0) := min

v:∥v∥0≤s

v⊤Gv

∥v∥22
.

Let s̃ψ = (484ψ2 + 100ψ)s, where ψ > 0 is constant. An application of union bound and
Equation 4.22 in Vershynin (2018a) yields that

P

 max
D:|D|≤s+2s̃2

∥∥∥∥∥X(1)⊤
D X

(1)
D

n1

− Ip

∥∥∥∥∥
op

≲
log p

pk/2

 ≥ 1− 2p−2, (A.12)

for large values of p. This ensures that for large values of p, we have

0.99 ≤ ρ−(s+ 2s̃2) ≤ ρ+(s+ 2s̃2) ≤ 1.1. (A.13)

Defining κ := ρ+(s+ 2s̃2)/ρ−(s+ 2s̃2), we have κ < 2. Thus, Assumption 3.5 of Zhao et al.
(2018) holds with s̃ = s̃2 > s̃κ. Also, (A.12) shows that for large p

P

max
j∈[p]

n
−1/2
1

∥∥∥X(1)
j

∥∥∥
2
<
√

4/3︸ ︷︷ ︸
:=E

 ≥ 1− 2p−2.

Hence, we have

P

(
1

n1

∥∥X(1)⊤w
∥∥
∞ > 2

√
log p

n1

)
≤ P

max
j∈[p]

∣∣∣∣∣∣X
(1)⊤
j w∥∥∥X(1)
j

∥∥∥
2

∣∣∣∣∣∣ >√3 log p

+ P(Ec)

≤ 2p−0.5 + 2p−2.

124



Hence, Assumption 3.1 of Zhao et al. (2018) holds with high probability when λN = λ ≥
8{log p/n1}1/2, where N denotes the final iteration count of the outermost loop of PICASSO
and λK denotes the regularization parameter at the Kth iteration of the outer loop. Also,
in this case, N = O(log(∥X(1)⊤y(1)/n1∥∞

√
n1/ log p)) which follows from the description of

PICASSO (see Algorithm 3 in Zhao et al. (2018)). From triangle inequality, it follows that∥∥∥∥X(1)⊤y(1)

n1

∥∥∥∥
∞
≤ ∥Gβ∥∞ +

∥∥X(1)⊤w/n1

∥∥
∞ ,

and ∥Gβ∥∞ ≤ ∥G∥∞,∞ ∥β∥∞ ≤
√
p ∥G∥op ∥β∥∞. Note that

∥G∥op =
p

n1

∥∥∥∥X(1)X(1)⊤

p

∥∥∥∥
op

.

Thus, applying Equation (4.22) in Vershynin (2018a), we get ∥Gβ∥∞ ≲ (p1.5/n) ∥β∥∞ with
probability at least 2 exp(−n1). Hence, we have N = O(log p) with probability at least
1− 2p−0.5 − 2p−2 − exp(n1).

Now we will make sure that Assumption 3.7 of Zhao et al. (2018) also holds. Before,
going any further let us clarify some notations. At Kth outer iteration of PICASSO, Zhao
et al. (2018) denotes the inner and middle loop precision parameters as τK and δK , and the
active set initialization parameter is φ. To be consistent with our notation we set ϵ0 = δK

for every K. Also, we choose the parameters in such a way so that

ϵ0 ≤ min{1/8, C3}, τK ≤
ϵ0

ρ+(s+ 2s̃)

√
ρ−(1)

ρ+(1)(s+ 2s̃)
, φ ≤ 1/8, (A.14)

C3 is the same constant ad in Proposition 5.5. Using (A.13), one can set τK = O(ϵ0/
√
log p)

which will be less than 1 for large p. So, under the above conditions, Assumption 3.7 in
Zhao et al. (2018) holds. Hence, part (iii) of Theorem 3.12 in Zhao et al. (2018) tells that

fn1(β̂
picasso

;λ,D1)− fn1(β̂L;λ,D1) ≤ ϵ0
500λ2s

11
.

If λ = 8
√

(log p)/n1, then for large p

fn1(β̂
picasso

;λ,D1)− fn1(β̂L;λ,D1) ≤ ϵ0/C3,

Hence, due to Proposition 5.5, we have ∥β̂
picasso

− β∥22 ≤ ϵ0. Also, using Theorem 3.12 and
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Lemma 3.13 of Zhao et al. (2018), we get that PICASSO needs no more than

T (ϵ0,β, p) = O

(
(log p+ log ∥β∥∞)(log p)3{log log p+ log(ϵ−1

0 )}
)
.

But the above facts are true when ϵ0 ≤ min{1/8, C3}. In order to extend the above results
to a bigger range of ϵ0 we first define Cϵ := min{1/8, C3}/2. If ϵ ≤ Cϵ, then one can
get the same result by setting δK and τK appropriately as prescribed in (A.14). If ϵ >
Cϵ, then setting ϵ0 = Cϵ and using (A.14), we again get ∥β̂

picasso
− β∥22 ≤ ϵ0 < ϵ within

O((log p+log ∥β∥∞)(log p)3{log log p+log(C−1
ϵ )) iterations. Thus, conditions in Assumption

5.1 is met with

T (ϵ, p,β) = O

(
(log p+ log ∥β∥∞)(log p)3{log log p+ log(ϵ−1 ∨ C−1

ϵ )

)
,

and with probability at least 1−O(p−0.5).

Proof for ETS-PGH:

Let β̂
pgh

be the solution obtained by minimizing fn1(θ;λ,D1) via PGH method. For the
proof of this part we will use Theorem 3.2 of Xiao and Zhang (2013). To apply that theorem
we need to make sure that Assumption 3.2 of Xiao and Zhang (2013) is satisfied. To avoid
notational confusion, we use γ̃ and δ̃ to denote the parameters γ, δ′ considered in Xiao and
Zhang (2013) respectively. Let δ̃ = 0.1 and γ̃ = 2. By a similar argument as before, it can
be shown that with probability at least 1− 2p2

κ(G, s0) :=
ρ+(s0)

ρ−(s0)
≤ 1 + ν

1− ν
,

where s0 = ⌊46(1 + γ̃)s⌋ , ν = 0.1 and p is sufficiently large. Also, we choose

λ = 8max{2, γ̃ + 1

γ̃(1− δ̃)− (1 + δ̃)
}{log p/n1}1/2 ≥ 4max{2, γ̃ + 1

γ̃(1− δ̃ − (1 + δ̃))
}
∥∥∥X(1)⊤w/n1

∥∥∥
∞
.

(A.15)
The last inequality of the above display shows that λ ≥ 8∥w⊤X(1)/n1∥∞ and it happens
with the probability at least 1 − O(p−0.5). Hence, following the arguments of the second
bullet point on page 10 of Xiao and Zhang (2013), we can conclude that the Assumption
3.2 of Xiao and Zhang (2013) holds with s̃ = ⌊22(1 + γ̃)s⌋, γinc = 1.2 (see Xiao and Zhang
(2013)), Lmin = 1.32 and λ. Using part 3 of Theorem 3.2 in Xiao and Zhang (2013), for a
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given precision level ϵ0, we have

fn1(β̂
pgh

;λ,D1)− fn1(β̂L;λ,D1) ≤ O(ϵ0s
√
(log p)/n1) < ϵ0/C3, for large p.

C3 is the same universal constant as in Proposition 5.5. If ϵ0 = min{1, C3}/2 =: C4, then
∥β̂

pgh
− β∥22 ≤ ϵ0, and the total iteration complexity is

O
(
log p log log p+ logmax{1, (λ2/ϵ20) log p}

)
,

which for large value of of p, the the form O((log p + log ∥β∥∞) log log p +

logmax{1, (1/ϵ20) log p}) (as λ < 1). If ϵ0 ≤ C4, then the order becomes

O((log p+ log ∥β∥∞) log log p+ log(1/ϵ0)).

Otherwise, i.e., if ϵ0 > C4 one can set the tolerance level at ϵ = C4 and the overall order
in that case is O((log p + log ∥β∥∞) log log p + log(1/C4)). Thus, for a given tolerance level
ϵ, the total iteration complexity is O((log p + log ∥β∥∞) log log p + log(ϵ−1 ∨ C−1

4 )). Thus,
Assumption 5.1 holds with probability at least 1 − O(p−0.5) and T (ϵ, p,β) = O((log p +

log ∥β∥∞) log log p+ log(ϵ−1 ∨ C−1
4 )).
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APPENDIX B

Appendix for Chapter 3

B.1 Proof of main results under linear model

B.1.1 Proof of Lemma 3.2.1

First note that β⊤
S\DΓ(D)βS\D = 0⇔ (In−PD)XS\DβS\D = 0. This shows that XS\DβS\D ∈

col(XD). Thus, we have XSβS = XS\DβS\D+XS∩DβS∩D ∈ col(XD). This finishes the proof.

B.1.2 Proof of Proposition 3.4.2

In this section, we will show that the SRC condition (4.7) is strictly stronger than the
condition in Assumption 1. Recall that the features are normalized, i.e., ∥Xj∥2 =

√
n for all

j ∈ [p]. Now, we will prove the proposition.

Proof. SRC implies Assumption 3.4.1:

For a set I ⊂ S, define AI := {D ∈ As : S ∩ D = I}. Now recall that EG(s)
I

≳ dG(s)
I

for large
p. Thus, it suffices to show that dG(s)

I
is large for all choices of I ⊂ S. Let D1,D2 ∈ AI and

writeM = D1∩D2. Let m = |M| and consider the two subspaces L1 = col(XD1)∩col(XM)⊥

and L2 = col(XD2) ∩ col(XM)⊥. Let {ξj}mj=1 be an orthonormal basis of M. Let {αj}s−mj=1

be an orthonormal basis of L1 and {δj}s−mj=1 be the orthonormal basis of L2 such that

θj := ∠(αj, δj), j ∈ [k],

are the principal angles between L1 and L2 in decreasing order. Now, we construct the
matrix Z in the following way:

Z =
[
XD1\D2 | XM | XD2\D1

]
.
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There exists matrix u,v ∈ Rs−m and w1,w2 ∈ Rm such that

α1 = XD1\D2u+XMw1 and δ1 = XD2\D1v +XMw2.

As α1 ⊥ col(XM), we have

1 = α⊤
1 α1 = α⊤

1 XD1\D2u ≤
√
nκ+ ∥u∥2 ⇒ ∥u∥

2
2 ≥ 1/(nκ+).

By a similar argument, we have ∥v∥22 ≥ 1/(nκ+). Define the vectors η := (u⊤, (w1 −
w2)

⊤,v⊤)⊤. Hence, ∥η∥22 ≥ ∥u∥
2
2 + ∥v∥

2
2 ≥ 2/(nκ+). Due to SRC condition (4.7), we have

∥Zη∥22 ≥ n ∥η∥22 κ− ≥ 2(κ−/κ+). (B.1)

∥Zη∥22 = ∥α1 − δ1∥22
= 2(1−

√
1− sin2 θ1)

≤ 2 sin θ1,

(B.2)

where the last inequality follows from the fact that 1 − x ≤
√
1− x2 for all x ∈ [0, 1].

Combining (B.1) and (B.2), we have

∥PD1 −PD2∥op ≥
κ−
κ+
.

The above display shows that dG(s)
I

≳ (κ−/κ+) ≫ {log(ep)}−1/2 for all I ⊂ S. Hence, the
claim follows.

Assumption 3.4.1 does not imply SRC:

In this case, assume S = {1} and ej be the jth canonical basis in Rp. Under this setup,
Assumption 1 becomes

EG(1)
∅
> {log(ep)}−1/2. (B.3)

Now assume that

2

log(ep)
≤
∥Xj −Xj′∥22

n
≤ 3

log(ep)
, for all j, j′ ∈ [p].

Then, for large p, the condition in (B.3) holds but SRC fails with the choice of v = (ej −
ej′)/
√
2.
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B.1.3 Proof of Theorem 1

Recall that µ = XSβS , γD = n−1/2(In −PD)µ and

Γ(D) = Σ̂S\D,S\D − Σ̂S\D,DΣ̂
−1

D,DΣ̂D,S\D. (B.4)

Note that for D ∈ As,k and 0 ≤ η < 1 we have the following:

n−1(RD −RS) = n−1{y⊤(In −PD)y − y⊤(In −PS)y}

= n−1
{
(XS\DβS\D +w)⊤(In −PD)(XS\DβS\D +w)−w⊤(In −PS)w

}
= ηβ⊤

S\DΓ(D)βS\D ++2−1(1− η)β⊤
S\DΓ(D)βS\D − 2

{
n−1(In −PD)XS\DβS\D

}⊤
(−w)

+ 2−1(1− η)β⊤
S\DΓ(D)βS\D − n−1w⊤(PD −PS)w.

(B.5)
Also, let w̃ := (−w). Now, E be an event under which the following happens:{

Ŝ : |Ŝ| = s, min
S∈As

RŜ ≤ RS + nητ∗(s)

}
= {S}.

Define the set AI := {D ∈ As : S ∩ D = I}. We also set |I| = s − k for k ∈ [s]. Then we
have AI ⊂ As,k. By union bound we have the following:

P(Ec) ≤
s∑

k=1

∑
I⊂S:|I|=s−k

P
{
min
D∈AI

n−1(RD −RS) < ητ∗(s)

}
. (B.6)

Thus, under the light of equation (B.5) it is sufficient to show the following with high
probability:

max
D∈AI

γ̂⊤
Dw̃ <

n1/2(1− η)
4

min
D∈AI

∥γD∥2 , (B.7)

max
D∈AI

n−1
{
w⊤(PD −PS)w

}
<

1− η
2

min
D∈AI

∥γD∥
2
2 , (B.8)

for every k ∈ [s]. We will analyze the above events separately. We recall the two important
sets below:

T (s)
I := {γ̂D : D ∈ As,D ∩ S = I}, and G(s)I := {PD −PI : D ∈ As,D ∩ S = I}.

To reduce notational cluttering, we will drop the s in the superscript, and use TI and GI
to denote the above sets.
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Linear term: Let fD := γ̂⊤
Dw̃ and ∥f∥ := maxD∈AI fD. Since DTI ≤

√
2, Theorem 5.36 of

Wainwright (2019)tells that there exists a constant A1 > 0 such that

P
{
∥f∥ ≥ A1σ(ETI

√
k log(ep) + u)

}
≤ 3 exp

(
−u

2

2

)
, (B.9)

for all u > 0. Setting u = 2cT
√
k log(ep) in Equation (B.9) we get

P(∥f∥ ≥ A1σETI

√
k log(ep) + 2A1cT σ

√
k log(ep)) ≤ 3(ep)−2c2T k. (B.10)

Writing A1 as c1, we get

P
{
max
D∈AI

γ̂⊤
Dw̃ ≥ c1(ETI + 2cT )σ

√
k log(ep)

}
≤ 3(ep)−2c2T k. (B.11)

Quadratic term: Here we study the quadratic supremum process in Equation (B.8). First,
define the two projection operators PD|I = PD −PI and PS|I := PS −PI . For any number
cG ∈ ({log(ep)}−1, 1), by union bound we have,

P
{
n−1 max

D∈AI
w⊤(PD −PS)w > σ2u+ σ2cGu0

}
P
{
n−1 max

D∈AI
w⊤(PD|I −PS|I)w > σ2u+ σ2cGu0

}
≤ P

{
n−1(kσ2 −w⊤PS|Iw) > σ2u0cG

}
+ P

{
n−1 max

D∈AI
(w⊤PD|Iw − kσ2) > σ2u

}
.

(B.12)

Also, note that E(w⊤PD|Iw) ≤ kσ2 and recall that EGI > {log(ep)}−1/2 for all I ⊂ S. This
shows that

√
k ≤ EGI

√
k log(ep). Furthermore, by the properties of projection matrices,

we have dop(GI) = 1 and dF (GI) =
√
k (defined in Section B.3). Also, it follows that the

quantities M,V and U (defined in Theorem B.3.2) have the following properties:

M ≤ 2E 2
GI
k log(ep), V ≤ 2

√
k log(ep), and U = 1.

Using these facts and Theorem B.3.2, we get that there exists a universal positive constants
A2, A3, such that for t = A3cGk log(ep), we get

P
{
max
D∈AI

w⊤PD|Iw ≥ A2σ
2(E 2

GI
+ cG)k log(ep)

}
≤ (ep)−2c2Gk. (B.13)
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Due to Theorem 1.1 of Rudelson and Vershynin (2013), setting u0 = k log(ep)/(2n) we can
show that there exists an absolute constant A4 > 0 such that

P
{
n−1

∣∣w⊤PS|Iw − kσ2
∣∣ > cGσ

2k log(ep)

2n

}
≤ 2 exp {−A4cGk log(ep)}

= 2(ep)−A4cGk,

(B.14)

Combining Equation (B.12), (B.13) and Equation (B.14) yields

P
{
n−1 max

D∈AI
w⊤(PD −PS)w > c2(E

2
GI

+ cG)σ
2k log(ep)

n

}
≤ (ep)−2c2Gk+2(ep)−A4cGk, (B.15)

where c2 is a universal constant. Now, if we have

τ∗(s) ≜ min
D≠S

β⊤
S\DΓ(D)βS\D

|D \ S|

≥ 64

(1− η)2
max

{
c1max

I⊂S
(ETI + 2cT )

2, c2max
I⊂S

(E 2
GI

+ cG)

}
σ2 log(ep)

n
,

(B.16)

it will ensure that (B.7) and (B.8) hold with high probability. Finally, using (B.11) and
(B.15), we have

P(Ec)

≤
s∑

k=1

∑
I⊂S:|I|=s−k

P
{
min
D∈AI

n−1(RD −RS) < ητ∗(s)

}

≲
s∑

k=1

∑
I⊂S:|I|=s−k

{
(ep)−2c2T k + (ep)−2c2Gk + (ep)−A4cGk

}
≲

s∑
k=1

(
s

k

){
(ep)−2c2T k + (ep)−2c2Gk + (ep)−A4cGk

}
≲

s∑
k=1

(es)k
{
(ep)−2c2T k + (ep)−2c2Gk + (ep)−A4cGk

}
≲

s∑
k=1

exp
[
−k{2c2T log(ep)− log(es)}

]
+ exp[−k{2c2G log(ep)− log(es)}]

+ exp [−k{A4cG log(ep)− log(es)}] .

Now, setting cT =
√
{log(es) ∨ log log(ep)}/ log(ep) and cG = (2 ∨ A−1

4 )cT in the above
display, and using the identity (a + b)2 ≤ 2(a2 + b2) we can conclude that the following is
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sufficient to hold (B.16):

τ∗(s) ≥
64

(1− η)2
max{8c1, c2(2 ∨ A−1

4 )}
[
max

{
max
I⊂S

E 2
TI ,max

I⊂S
E 2
GI

}
+ cT

]
log(ep)

n
.

and renaming the absolute constant 64max{8c1, c2(2 ∨ A−1
4 )} as C0.

B.1.4 Proof of Theorem 2

Proof. First, we will show that ∥γD∥2 has to be well bounded away from 0 for every D ∈
∪j0∈SCj0 . Again, to reduce notational cluttering, we drop the s in the superscript and use TI0
and GI0 to denote the sets of scaled residualized signals and spurious projections respectively.

Ruling out the case minD∈∪j0∈SCj0
∥γD∥2 ≤ σ/

√
n :

Let minD∈∪j0∈SCj0
∥γD∥2 ≤ σ/

√
n, i.e, there exists D ∈ Cj0 for some j0 ∈ S such that

∥γD∥2 ≤ σ/
√
n.

Recall that y ∼ N(XSβ
∗
S , σ

2In) and define w := y −XSβ
∗
S . Hence, we have

P (RD −RS < 0) = P
(
∥y −PDXSβ

∗
S∥

2
2 < ∥y −XSβ

∗
S∥

2
2

)
= P

(∥∥w + n1/2γD
∥∥2
2
< ∥w∥22

)
≥ 1

2

e−0.5

√
2π

> 0.1 (By Lemma B.4.2),

i.e., P
(
S /∈ argminD:|D|=sRD

)
is strictly bounded away from 0. Hence, BSS can not recover

the true model. Hence, we rule out this case.

Under the case minD∈∪j0∈SCj0
∥γD∥2 > σ/

√
n :

We fix a j0 ∈ S.
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First decomposition:

min
D∈Cj0

n−1(RD −RS) ≤ min
D∈Cj0

{β⊤
S\DΓ(D)βS\D − 2n−1/2γ⊤

Dw̃ − n−1w⊤(PD −PS)w}

≤ min
D∈Cj0

[
∥γD∥2

{
∥γD∥2 − 2n−1/2γ̂⊤

Dw̃
}
− n−1w⊤(PD −PI0)w

]
+ n−1w⊤(PS −PI0)w

≤ min
D∈Cj0

[
∥γD∥2

{
∥γD∥2 − 2n−1/2γ̂⊤

Dw̃
}]

+ n−1w⊤(PS −PI0)w

(B.17)
We start with the quadratic term in the right hand side of the above display. First note

that w⊤(PS − PI0)w/σ
2 = (û⊤

j0
w)2/σ2 follows a chi-squared distribution with degrees of

freedom 1. Hence, Markov’s inequality shows that

P
{
n−1w⊤(PS −PI0)w >

2σ2

n

}
≤ 1

2
. (B.18)

Recall that
∥γD∥2 ≥

σ√
n
, for all D ∈ Cj0 .

Next, by Sudakov’s lower bound, we have

E
(
max
D∈Cj0

γ̂⊤
Dw̃

)
≥ σE ∗

TI0

√
log(p− s) ≥

E ∗
TI0√
2

√
log(ep).

The last inequality uses the fact that s < p/2 and p > 16e3. Again, an application of
Borell-TIS inequality yields

P
{
max
D∈Cj0

γ̂⊤
Dw̃ ≥ σE ∗

TI0

√
log(ep)− cT σ

√
log(ep)

}
≥ 1− (ep)−c

2
T /2, (B.19)

for any cT > 0. Choosing cT = E ∗
TI0 (2

−1/2 − 2−1), and using the fact that E ∗2
TI0
≥

16{log(ep)}−1, we get

P
{
max
D∈Cj0

γ̂⊤
Dw̃ ≥ σE ∗

TI0

√
log(ep)/2

}
≥ 1− e−1. (B.20)

Let us define τ̂j0 = maxD∈Cj0
∆(D)β2

j0
., and by construction we have τ̂(s) = maxj0∈S τ̂j0 . If

τ̂
1/2
j0
≤ σE ∗

TI0

√
log(ep)/(2n1/2), then we have

min
D∈Cj0

[
∥γD∥2

{
∥γD∥2 − 2n−1/2γ̂⊤

Dw̃
}]
≤ −

σ2E ∗
TI0

√
log(ep)

2n
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Thus, using (B.18) and the above display we have

P(S /∈ argminD:|D|=sRD) = P
(
min
D∈Cj0

n−1(RD −RS) < 0

)
≥ 1− 1

e
− 1

2
≥ 1

10
,

as we have E ∗
TI0

√
log(ep) > 4 (Assumption 2). Thus the necessary condition turns out to

be

τ̂j0 ≥
E ∗2

TI0
4

σ2 log(ep)

n
. (B.21)

Second decomposition:

We again start with the difference of RSS between a candidate model D ∈ As,k and the true
model S:

n−1(RD −RS)

= n−1{y⊤(In −PD)y − y⊤(In −PS)y}

= n−1
{
(XS\DβS\D +w)⊤(In −PD)(XS\DβS\D +w)−w⊤(In −PS)w

}
= β⊤

S\DΓ(D)βS\D − 2
{
n−1(In −PD)XS\DβS\D

}⊤
w̃ − n−1w⊤(PD −PS)w.

(B.22)

First of all, in order achieve model consistency, the following is necessary for any k ∈ [s]:

min
D∈Cj0

n−1(RD −RS) > 0. (B.23)

Recall that τ̂j0 = maxD∈Cj0
Γ(D)β2

j0
. Next we note that

min
D∈Dj0

n−1(RD −RS) ≤ min
D∈Cj0

{β⊤
S\DΓ(D)βS\D − 2n−1/2γ⊤

Dw̃ − n−1w⊤(PD −PS)w}

≤ τ̂j0 + 2n−1/2 max
D∈Cj0

∣∣γ⊤
Dw̃
∣∣− n−1 max

D∈Cj0

w⊤(PD −PS)w

≤ τ̂j0 + 2(τ̂j0/n)
1/2 max

D∈Cj0

∣∣∣γ̂⊤
Dw̃
∣∣∣− n−1 max

D∈Cj0

w⊤(PD −PS)w.

(B.24)

Similar to the proof of Theorem 1, we define fD := γ̂⊤
Dw̃ and ∥f∥ := maxD∈Cj0

fD. Hence,
we have

max
D∈Cj0

∣∣∣γ̂⊤
Dw̃
∣∣∣ = max

D∈Cj0

fD ∨ (−fD) (B.25)

By Borell-TIS inequality (Adler et al., 2007, Theorem 2.1.1), we have

P {∥f∥ − E(∥f∥) ≥ σu} ≤ exp

(
−u

2

2

)
,
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for all u > 0. Setting u = cT
√

log(ep) we get

P
{
∥f∥ − E(∥f∥) ≥ cT σ

√
log(ep)

}
≤ (ep)−c

2
T /2.

E(∥f∥) ≤ 4
√
2ETI0σ

√
log(ep),

which ultimately yields

P
{
∥f∥ ≥ (4

√
2ETI0 + cT )σ

√
log(ep)

}
≤ (ep)−c

2
T /2.

Finally. using (B.25) we have the following for any cT > 0:

P
{
max
D∈Cj0

∣∣∣γ̂⊤
Dw̃
∣∣∣ ≥ (4

√
2ETI0 + cT )σ

√
log(ep)

}
≤ 2(ep)−c

2
T /2. (B.26)

Next, we will lower bound the quadratic term in Equation (B.24) with high probability.
similar to the proof of Theorem 1, we consider the decomposition

max
D∈Cj0

n−1w⊤(PD −PS)w = max
j /∈S

n−1w⊤(ûjû
⊤
j − ûj0û

⊤
j0
)w.

For the maximal process we will use Theorem 2.10 of Adamczak (2015). We begin with
the definition of concentration property.

Definition B.1.1 (Adamczak (2015)). Let Z be random vector in Rn. We say that Z has
concentration property with constant K if for every 1-Lipschitz function φ : Rn → R, we
have E |φ(Z)| <∞ and for every u > 0,

P (|φ(Z)− E(φ(Z))| ≥ u) ≤ 2 exp(−u2/K2).

Note that the Gaussian vector w/σ enjoys concentration property with K =
√
2

(Boucheron et al., 2013, Theorem 5.6). Let Q1 := maxj /∈S w
⊤(ûjû

⊤
j −ûj0û⊤

j0
)w. By Theorem

2.10 of Adamczak (2015) we conclude that

P
{
n−1 |Q1 − E(Q1)| ≥ tσ2

}
≤ 2 exp

{
−1

2
min

(
n2t2

16
,
nt

2

)}
.

Setting t = 2δ log(ep)/n in the above equation we get

P
{
n−1 |Q1 − E(Q1)| ≥ 2δσ2 log(ep)/n

}
≤ 2(ep)−

δ
2 . (B.27)
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Next, we will lower bound the expected value of Q1. First, note the following:

E(Q1) = E
{
max
j /∈S

w⊤(ûjû
⊤
j − ûj0û

⊤
j0
)w

}
= E

{
max
j /∈S

(û⊤
j w)2

}
− σ2

≥
{
Emax

j∈Sc
(û⊤

j w) ∨ (−û⊤
j w)

}2

− σ2

(B.28)

Define the set
Usym := {ûj : j ∈ Sc} ∪ {−ûj : j ∈ Sc}.

We denote by ũj a generic element of Usym. Thus for any two elements ũj, ũk, we have

∥ũj − ũk∥2 ≥ min
{
∥ûj − ûk∥2 , ∥ûj + ûk∥2

}
≥
∥∥ûjû⊤

j − ûkû
⊤
k

∥∥
op
.

By Sudakov’s lower bound, we have

Emax
j∈Sc

(û⊤
j w) ∨ (−û⊤

j w) ≥ sup
δ>0

σδ

2

√
logM(δ,Usym, ∥·∥2)

≥ sup
δ>0

σδ

2

√
logM(δ, {ûjû⊤

j }j∈Sc , ∥·∥op)

≥ σ
E ∗

GI0√
4/3

√
log(ep).

The last inequality uses the fact that p > 16e3. Finally, (B.28) yields

E(Q1) ≥
σ2E ∗2

GI0
log(ep)

4/3
− σ2.

Thus, combined with (B.27) we finally get

P
[
Q1 ≥ (3/4)σ2E ∗2

GI0
log(ep)− σ2 − 2δσ2 log(ep)

]
≥ 1− 2(ep)−δ/2.

Setting δ =
E ∗2

GI0
8

, we get

P

[
Q1 ≥

σ2E ∗2
GI0

2
log(ep)− σ2

]
≥ 1− 2(ep)−

E∗2
GI0
16 .
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Thus, finally combining the above with (B.24) and (B.26) we get

min
D∈Cj0

n−1(RD −RS)

≤ τ̂j0 + 2τ̂
1/2
j0

(4
√
2ETI0 + cT )σ

√
log(ep)

n
− n−1

(
σ2E ∗2

GI0

2
log(ep)− σ2

) (B.29)

with probability at least 1− 2(ep)−c
2
T /2 − 2(ep)−

E∗2
GI0
16 . Thus, for large p we have

min
D∈Cj0

n−1(RD −RD)

≤ τ̂j0 + 2τ̂
1/2
j0

(4
√
2ETI0 + cT )σ

√
log(ep)

n
−
σ2E ∗2

GI0

4

log(ep)

n

with probability at least 1− 2(ep)c
2
T /2 − 2(ep)−

E∗2
GI0
16 . Now choose cT = 4/

√
log(ep) and use

Assumption 2 to get

min
D∈Cj0

n−1(RD −RD)

≤ τ̂j0 + 2τ̂
1/2
j0

(
4
√
2ETI0 +

4√
log(ep)

)
σ

√
log(ep)

n
−
σ2E ∗2

GI0

4

log(ep)

n

≤ τ̂j0 + 8
√
2τ̂

1/2
j0

(
ETI0 +

1√
2 log(ep)

)
σ

√
log(ep)

n
−
σ2E ∗2

GI0

4

log(ep)

n

≤ τ̂j0 + 10
√
2τ̂

1/2
j0

ETI0σ

√
log(ep)

n
−
σ2E ∗2

GI0

4

log(ep)

n

with probability at least 1/5. Thus, in light of (B.23), the following is necessary:

τ̂j0 ≥


√

200E 2
TI0

+ E ∗2
GI0
− 10
√
2ETI0

2


2

σ2 log(ep)

n
. (B.30)

Case 1: If ETI0 ≤ E ∗
GI0

, then the right hand side of (B.30) is lower bounded by

E ∗2
GI0

(
√
201 + 10

√
2)2

σ2 log(ep)

n
.
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Thus (B.30) yields the necessary condition

τ̂j0 ≥
E ∗2

GI0

(
√
201 + 10

√
2)2

σ2 log(ep)

n
.

Combining this with (B.21) we have the necessary condition to be

τ̂j0 ≥ C̃1max{E ∗2
TI0
,E ∗2

GI0
}σ

2 log(ep)

n
,

for a universal constant C̃1.

Case 2: If E ∗
GI0
≤ E ∗

TI0 , then using the inequality
√
1 + t−

√
t < 1 for all t > 0, we can

conclude that the right hand side of (B.30) is always smaller than

E ∗2
GI0

4

σ2 log(ep)

n
,

which is further smaller than
E ∗2

TI0
4

σ2 log(ep)

n
.

Thus, combining this with (B.21) we have the necessary condition to be

τ̂j0 ≥
E ∗2

TI0
4

σ2 log(ep)

n
= max{E ∗2

TI0
,E ∗2

GI0
}σ

2 log(ep)

4n
.

Combining all these cases we finally have the following necessary condition for consistent
model selection with C1, C2 > 0 being some absolute constants:

τ̂j0 ≥ C1max{E ∗2
TI0
,E ∗2

GI0
}σ

2 log(ep)

n
, if E ∗

GI0
/∈ (E ∗

TI0 ,ETI0 ), (B.31)

or,

τ̂j0 ≥ C2max

{
E ∗2

TI0
,
(√

200E 2
TI0

+ E ∗2
GI0
− 10
√
2ETI0

)2} σ2 log(ep)

n
,

if E ∗
GI0
∈ (E ∗

TI0 ,ETI0 ).
If there exists I0 ∈ J such that E ∗

TI0/ETI0 ∈ (α, 1), then in the preceding case it follows
that the last display can be simplified in the following form:

τ̂j0 ≥ C2max
{

E ∗2
TI0
, AαE

∗2
GI0

} σ2 log(ep)

n
, if E ∗

GI0
∈ (E ∗

TI0 ,ETI0 ),
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where

Aα =

(√
200

α2
+ 1 +

10
√
2

α

)−1

.

Thus, using the fact that Aα < 1 and combining the previous three displays we have the
necessary condition to be

τ̂j0 ≥ C2Aαmax
{

E ∗2
TI0
,E ∗2

GI0

} σ2 log(ep)

n
. (B.32)

Since, (B.31) and (B.32) hold for all choices of j0 and I0 depending on whether the E ∗
GI0
∈

(E ∗
TI0 ,ETI0 ) is satisfied or not, the claim follows.

B.1.5 Correlated random feature model example

Consider the model (1). We assume that the rows of X are independently generated from
p-dimensional multivariate Gaussian distribution with mean-zero and variance-covariance
matrix

Σ =

 1 c1⊤
p−1

c1p−1 (1− r)Ip−1 + r1p−11
⊤
p−1

 ,

where c ∈ [0, 0.997], r ∈ [0, 1) and true model is S = {1}. We need to further impose the
restriction

c2 < r +
1− r
p− 1

to ensure positive-definiteness of Σ. In this case

τ̂ = β2
1 min
j ̸=1

{
∥X1∥22
n
− (X⊤

1 Xj/n)
2

∥Xj∥2 /n

}
=
β2
1 ∥X1∥22
n

− β2
1 max
j ̸=1

(X⊤
1 Xj/n)

2

∥Xj∥22 /n
.

We start with providing an upper bound on the margin quantity τ̂ . Using Equation (B.53)
and (B.54), for any εn,p ∈ (0, 1) we get

P

(
∥Xj∥22
n
≥ 1 + εn,p

)
≤ exp(−nε2n,p/16), ∀j ∈ [p]. (B.33)

P

(
∥Xj∥22
n
≤ 1− εn,p

)
≤ exp(−nε2n,p/4), ∀j ∈ [p]. (B.34)
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Using Equation (B.33) and Equation (B.34), we also get the following:

P

(
max
j ̸=1

∣∣∣∣∣∥Xj∥22
n
− 1

∣∣∣∣∣ ≥ εn,p

)
≤ 2p exp(−nε2n,p/16). (B.35)

Let Xj = (x1,j, . . . , xn,j)
⊤ for all j ∈ [p]. Now note that ∥xu,1xu,j∥ψ1

≤ ∥xu,1∥ψ2
∥xu,2∥ψ2

≤
4. Thus, by Berstein’s inequality, we have

P
(∣∣∣∣X⊤

1 Xj

n
− c
∣∣∣∣ > εn,p

)
≤ exp

(
−Cnmin{εn,p, ε2n,p}

)
,

where C > 0 is a universal constant. Thus, we have

P
(
max
j ̸=1

∣∣∣∣X⊤
1 Xj

n
− c
∣∣∣∣ > εn,p

)
≤ p exp(−Cnmin{εn,p, ε2n,p}). (B.36)

Combining (B.34), (B.35) and (B.36) we have

P
[{

1 + εn,p −
(c− εn,p)2

1 + εn,p

}
≥ τ̂

β2
1

≥
{
1− εn,p −

(c+ εn,p)
2

1− εn,p

}]
≥ 1− exp(−nε2n,p/16)− 2p exp(−nε2n,p/4)− p exp(−Cε2n,pn)

= 1 + o(1/p),

(B.37)

if εn,p ≍ {(log p)/n}1/2 and (log p)/n is small enough. Similarly, due to Bernstein’s inequality,
it can also be shown that

P
(
max
j,k ̸=1

∣∣∣∣X⊤
kXj

n
− r
∣∣∣∣ ≤ εn,p

)
≥ 1− p2 exp(−Cnε2n,p) = 1 + o(1/p), (B.38)

where r ∈ [0, 1) and with the same conditions on εn,p.
Next, we will analyze the geometric quantities. In this case, we have

γ̂j =
X1 −

X⊤
j X1

∥Xj∥2
.Xj√

∥X1∥2 − (X⊤
1 Xj)2

∥Xj∥2

.

Note that

∥∥γ̂j − γ̂k
∥∥2
2
= 2(1− γ̂⊤

j γ̂k)
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and

γ̂⊤
j γ̂k =

∥X1∥2 /n−
(X⊤

j X1/n)2

∥Xj∥2/n
− (X⊤

k X1/n)2

∥Xk∥2/n
+

(X⊤
j X1/n)(X⊤

k X1/n)(X⊤
j Xk/n)

(∥Xj∥2/n)(∥Xk∥2/n)√
∥X1∥2 /n− (X⊤

1 Xj/n)2

∥Xj∥2/n

√
∥X1∥2 /n− (X⊤

1 Xk/n)2

∥Xk∥2/n

.

Next, we consider the event

Gn :=

{
max
j∈[p]

∣∣∣∣∣∥Xj∥22
n
− 1

∣∣∣∣∣ ≤ εn,p,max
j ̸=1

∣∣∣∣X⊤
1 Xj

n
− c
∣∣∣∣ ≤ εn,p,max

j,k ̸=1

∣∣∣∣X⊤
kXj

n
− r
∣∣∣∣ ≤ εn,p

}
.

Due to (B.33), (B.34), (B.36) and (B.38) we have P(Gn) = 1+o(1/p). Also, for large n, p, the
value of εn,p can be chosen such that εn,p < 0.001 so that c+εn,p < 0.998 for all c ∈ [0, 0.997].

Complexity of unexplained signals: Let u := (u1, u2, u3) ∈ R3 and t := (t1, t2, t2) ∈ R3.
Define the function

Φ(u, t) :=
u1 − (t21/u2)− (t22/u3) + (t1t2t3)/(u2u3)√

u1 − t21/u2
√
u1 − t22/u3

,

where

(u1, u2, u3, t1, t2, t3) ∈ [0.999, 1.001]× [0.999, 1.001]× [0.999, 1.001]× [0, 0.998]× [0, 0.998]× [0, 1]︸ ︷︷ ︸
:=K

.

It is easy to see that the function Φ is continuously differentiable on the compact set K.
Hence, there exists a universal constant L > 0 such that

|Φ(u, t)− Φ(u′, t′)| ≤ L(∥u− u′∥1 + ∥t− t′∥1).

Noting the fact that

γ̂⊤
j γk = Φ

(
∥X1∥22
n

,
∥Xj∥22
n

,
∥XK∥22
n

,
X⊤

1 Xj

n
,
X⊤

1 Xk

n
,
X⊤
j Xk

n

)
,
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it follows that on the event Gn, the following holds for all j, k ∈ [p] \ {1} :∣∣∣∣∥∥γ̂j − γ̂k
∥∥2
2
− 2c2(1− r)

1− c2

∣∣∣∣ ≤ 12Lεn,p,

⇒

√
max

{
2c2(1− r)
1− c2

− 12Lεn,p, 0

}
≤
∥∥γ̂j − γ̂k

∥∥
2
≤
√

2c2(1− r)
1− c2

+ 12Lεn,p.

Hence we have

ET∅

= {log(ep)}−1/2
[ ∫ √(

2c2(1−r)

1−c2
−12Lεn,p

)
∨0

0

√
logN (ε, T∅, ∥·∥2) dε

+

∫ √
2c2(1−r)

1−c2
+12Lεn,p√(

2c2(1−r)

1−c2
−12Lεn,p

)
∨0

√
logN (ε, T∅, ∥·∥2) dε

]
.

Applying Lemma B.4.4 on the second integral, it follows that

ωn,p

√
log p

log(ep)
≤ ET∅ ≤

(
ωn,p +

√
24Lεn,p

)√ log p

log(ep)
,

where ωn,p =
√(

2c2(1−r)
1−c2 − 12Lεn,p

)
∨ 0. Thus, for c = 0 we have 0 ≤ ET∅ ≤

√
24Lεn,p. For

any fixed c > 0 and r ∈ [0, 1) we have

ET∅ ∼
{
2c2(1− r)
1− c2

}1/2

for large n, p. (B.39)

Complexity of spurious projections: For j, k ̸= 1, let θj,k denote the angle between Xj

and Xk.

∥Pj −Pk∥op = sin(θj,k) =
√
1− cos2(θj,k) =

√√√√1−

(
X⊤
j Xk

∥Xj∥2 ∥Xk∥2

)2

.

By a similar argument as above, we can conclude that there exists a universal constant
M > 0 such that on the event Gn we have,∣∣∣∥Pj −Pk∥2op − (1− r2)

∣∣∣ ≤Mεn,p, for all j, k ∈ [p] \ {1}.
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Thus, for any fixed r ∈ [0, 1) we have

EG∅ ∼ (1− r2)1/2. (B.40)

B.2 Proof of main results under GLM model

Let D ∈ As such that S ∩ D = I.

Strong convexity

We will start by showing the strong convexity of LD(β̃; {xi, yi}i∈[n]). For ease of presentation
we will just write LD(β̃) instead of LD(β̃; {xi, yi}i∈[n]). Given any r ∈ (0, R0 ∧ R] and
∆ ∈ B1(0, r) define the function

δLD(β̄D +∆; β̄D) := LD(β̄D +∆)− LD(β̄D)−∇LD(β̄D)
⊤∆

=
1

2
∆⊤∇2LD(β̄D + t∆)∆ (for some t ∈ (0, 1))

=
1

n

n∑
i=1

b′′(x⊤
i,D(β̄D + t∆))(x⊤

i,D∆)2

≥ ψ(x0R + x0r)κ0 ∥∆∥22 (Using Assumption 3.5.1(a), 3.5.1(b), 3.5.1(d))

≥ ψ(x0R + x0R0)κ0 ∥∆∥22

Rate of convergence

Construct an intermediate estimator β̂D,α = β̄D + α(β̂D − β̄D) where

α = min

{
1,

r

∥β̂D − β̄D∥2

}
,

where r will be chosen later.
Write β̂D,α − β̄D as ∆α and note that

ψ(x0R + x0R0) ∥∆α∥22 ≤ δLD(β̂D,α, β̄D) ≤ −∇LD(β̄D)
⊤∆α ≤

∥∥∇LD(β̄D)
∥∥
2
∥∆α∥2 .

Hence we have

∥∆α∥2 ≤
∥∥∇LD(β̄D)

∥∥
2

ψ(x0R + x0R0)
≤
√
s
∥∥∇LD(β̄D)

∥∥
∞

ψ(x0R + x0R0)
. (B.41)
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Now, note that

∇LD(β̄D) := −
2

n

∑
i∈[n]

{yi − b′(x⊤
i,Dβ̄D)}xi,D

= − 2

n

∑
i∈[n]

{yi − b′(x⊤
i,Sβ

∗
S)}xi,D −

2

n

∑
i∈[n]

{b′(x⊤
i,Sβ

∗
S)− b′(x⊤

i,Dβ̄D)}xi,D︸ ︷︷ ︸
=0

= −2(ϕB)1/2

n

∑
i∈[n]

{yi − b′(x⊤
i,Sβ

∗
S)}

(ϕB)1/2︸ ︷︷ ︸
:=ϵi

xi,D

Note that E{exp(λϵi[xi,D]j) ≤ exp(λ2x20/2)}, i.e., ϵi[xi,D]j is sub-Gaussian with parameter
x0. Hence, by an application of union bound and Hoeffding’s inequality we have

P
(∥∥∇LD(β̄D)

∥∥
∞ ≥ 2tx0(ϕB)1/2

)
≤ 2s exp

(
−nt

2

2

)
. (B.42)

Setting t = 4(log n/n)1/2 in (B.42) we get

P

(∥∥∇LD(β̄D)
∥∥
∞ ≥ 8x0(ϕB)1/2

√
log n

n

)
≤ 2

n7
. (B.43)

Using the above fact and (B.41) we finally get that with probability at least 1 − 2n−7 the
following holds:

∥∆α∥2 ≤
8x0(ϕB)1/2

ψ(x0R + x0R0)

√
s log n

n
.

Now we set r = 9x0(ϕB)1/2

ψ(x0R)

√
s logn
n

. Hence, we have ∥∆α∥2 < r, i.e., ∥∆∥2 < r. This shows
that

P

(
max
D∈As

∥∥∥β̂D − β̄D

∥∥∥
2
>

9x0(ϕB)1/2

ψ(x0R + x0R0)

√
s log n

n

)
≤ 4s log p

n7
. (B.44)

By a similar argument, it can be shown that

P

(∥∥∥β̂S − β∗
S

∥∥∥
2
>

9x0(ϕB)1/2

ψ(x0R + x0R0)

√
s log n

n

)
≤ 2

n7
. (B.45)
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Expansion of likelihood estimate

Now that we have determined the rate of estimation, we can now write β̂D in terms of β̄D.
To see this, note that

0 = ∇LD(β̂D) = ∇LD(β̄D) +∇2LD(β̄D)(β̂D − β̄D) +RD(β̂D − β̄D)
⊗2,

where RD = (1/2)∇3LD(β̄D + tD(β̂D − β̄D)) for some tD ∈ (0, 1). Thus, we have

β̂D = β̄D − [∇2LD(β̄D)]
−1
(
∇LD(β̄D) +RD(β̂D − β̄D)

⊗2
)

(B.46)

Higher order Taylor’s expansion of loss function

Now we are ready to analyze the loss functions. We do so by expanding the Taylor series of
the loss function. Write β̂D − β̄D ad ∆̂D. Then, using (B.46) we have

LD(β̂D)

= LD(β̄D) +∇LD(β̄D)
⊤∆̂D +

1

2
∆̂

⊤
D∇2LD(β̄D)∆̂D + (1/3)∆̂

⊤
DR̃D(∆̂D ⊗ ∆̂D)

= LD(β̄D)−∇LD(β̄D)
⊤[∇2LD(β̄D)]

−1
(
∇LD(β̄D) + R̃D(β̂D − β̄D)

⊗2
)

+ (1/2)
(
∇LD(β̄D) + R̃D(β̂D − β̄D)

⊗2
)⊤

[∇2LD(β̄D)]
−1
(
∇LD(β̄D) + R̃D(β̂D − β̄D)

⊗2
)

+ (1/3)∆̂
⊤
DR̃D(∆̂D ⊗ ∆̂D)

= LD(β̄D)−
1

2
∇LD(β̄D)

⊤[∇2LD(β̄D)]
−1∇LD(β̄D) +

1

2
(R̃D∆̂

⊗2

D )⊤[∇2LD(β̄D)]
−1(R̃D∆̂

⊗2

D )

+ (1/3)∆̂
⊤
DR̃D(∆̂D ⊗ ∆̂D)

=
2

n

∑
i∈[n]

{−yi(x⊤
i,Dβ̄D) + b(x⊤

i,Dβ̄D)} −
1

n
(y − ρ(XDβ̄D))

⊤XD(X̃
⊤
DX̃D)

−1X⊤
D(y − ρ(XDβ̄D))

+
1

2
(R̃D∆̂

⊗2

D )⊤[∇2LD(β̄D)]
−1(R̃D∆̂

⊗2

D ) + (1/3)∆̂
⊤
DR̃D(∆̂D ⊗ ∆̂D)

= − 2

n
ρ(XSβ

∗
S)

⊤XDβ̄D +
2

n

∑
i∈[n]

b(x⊤
i,Dβ̄D)−

2

n
(y − ρ(XSβ

∗
S))

⊤XDβ̄D

− 1

n
(y − ρ(XSβ

∗
S))

⊤XD(X̃
⊤
DX̃D)

−1X⊤
D(y − ρ(XSβ

∗
S))

+
1

2
(R̃D∆̂

⊗2

D )⊤[∇2LD(β̄D)]
−1(R̃D∆̂

⊗2

D ) + (1/3)∆̂
⊤
DR̃D(∆̂D ⊗ ∆̂D),

where R̃D = (1/2)∇3LD(β̄D + t̃D(β̂D − β̄D)) for some t̃D ∈ (0, 1).
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Thus, we have the following:

LD(β̂D)− LS(β̂S)

= ∆kl(D)−
2

n
(y − ρ(XSβ

∗
S))

⊤(XDβ̄D −XSβ
∗
S)︸ ︷︷ ︸

linear term

− 1

n
(y − ρ(XSβ

∗
S))

⊤
{
XD(X̃

⊤
DX̃D)

−1X⊤
D −XS(X̃

⊤
S X̃S)

−1X⊤
S

}
(y − ρ(XSβ

∗
S))︸ ︷︷ ︸

quadratic term

+
1

2
(R̃D∆̂

⊗2

D )⊤[∇2LD(β̄D)]
−1(R̃D∆̂

⊗2

D ) + (1/3)∆̂
⊤
DR̃D(∆̂D ⊗ ∆̂D)

− 1

2
(R̃S∆̂

⊗2

S )⊤[∇2LS(β
∗
S)]

−1(R̃S∆̂
⊗2

S )− (1/3)∆̂
⊤
DR̃D(∆̂D ⊗ ∆̂D).

Write ψ∗ = min{ψ(x0R), ψ(x0R0)}. By definition of X̃D, we have

X̃⊤
DX̃D = X⊤

DΛDXD ⪰ ψ∗X
⊤
DXD, where ΛD = diag(b′′(x⊤

1,Dβ̄D), . . . , b
′′(x⊤

n,Dβ̄D)).

Hence, we have (X̃⊤
DX̃D)

−1 ⪯ 1
ψ∗
(X⊤

DXD)
−1 ⇒ XD(X̃

⊤
DX̃D)

−1X⊤
D ⪯ 1

ψ∗
PD. Similarly,

XS(X̃
⊤
S X̃S)

−1XS ⪰ 1
B
PS . Also, recall that P̃D = X̃D(X̃

⊤
DX̃D)

−1X̃⊤
D for any D ∈ As ∪ {S}.

Let P̃I|D be the orthogonal projector onto the col([X̃D]I). Using these facts, for any η ∈ [0, 1),
the difference between the two losses can be lower bounded as follows:

LD(β̂D)− LS(β̂S)

≥ η∆kl(D)

+ 2−1(1− η)∆kl(D)−
2

n
(y − ρ(XSβ

∗
S))

⊤(XDβ̄D −XSβ
∗
S)

+ 2−1(1− η)− 1

n
(y − ρ(XSβ

∗
S))

⊤Λ
−1/2
D (P̃D − P̃I|D)Λ

−1/2
D (y − ρ(XSβ

∗
S))

+
1

n
(y − ρ(XSβ

∗
S))

⊤Λ
−1/2
S (P̃S − P̃I|S)Λ

−1/2
S (y − ρ(XSβ

∗
S))︸ ︷︷ ︸

≥0

− 1

n
(y − ρ(XSβ

∗
S))

⊤Λ
−1/2
D P̃I|DΛ

−1/2
D (y − ρ(XSβ

∗
S))

+
1

n
(y − ρ(XSβ

∗
S))

⊤Λ
−1/2
S P̃I|SΛ

−1/2
S (y − ρ(XSβ

∗
S))

− B̃2M2

4κ0ψ∗

∥∥∥∆̂D

∥∥∥4
2
− B̃2M2

4κ0ψ∗

∥∥∥∆̂S

∥∥∥4
2
− B̃M

6

∥∥∥∆̂D

∥∥∥3
2
− B̃M

6

∥∥∥∆̂S

∥∥∥3
2
.

(B.47)
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Now recall that

T̃ (s)
I =

{
XDβ̄D −XSβ

∗
S∥∥XDβ̄D −XSβ
∗
S
∥∥
2

: D ∈ AI

}

G̃(s)I =
{
P̃D − P̃I|D : D ∈ AI

}
Now we will handle the linear and the quadratic terms separately. We assume that

|I| = s− k, where 1 ≤ k ≤ s.

Analysis of likelihood lower bound

Analysis of linear term

To analyze the linear term we will use the deviation bound for the supremum of the sub-
Gaussian process. In particular, we will use Theorem 5.36 of Wainwright (2019). First,
note that diam(T̃ (s)

I ) ≤
√
2 and recall ϵ = (ϵ1, . . . , ϵn)

⊤, where ϵi =
{yi−b′(x⊤

i,Sβ
∗
S)}

(ϕB)1/2
. Due to

1-sub-Gaussianity, we have maxi∈[n] var(ϵi) ≤ σ2
ϵ for some universal constant σϵ > 0. Also,

recall that

r̂D =
XDβ̄D −XSβ

∗
S∥∥XDβ̄D −XSβ
∗
S
∥∥
2

.

Thus, using the aforementioned theorem we get

P
{
max
D∈AI

r̂⊤
Dϵ ≥ A1(ET̃ (s)

I

√
k log(ep) +

√
2k{log(es) ∨ log log(ep)})

}
≤ 3{(es) ∨ log(ep)}−2k,

(B.48)

for some universal constant A1 > 0.

Analysis of quadratic terms

Now, we focus on the quadratic terms. Define the random vector ξD := (ξ1,D, . . . , ξn,D),
where

ξi =
{yi − b′(x⊤

i,Sβ
∗
S)}

(ϕBψ−1
∗ )1/2

√
b′′(x⊤

i,Dβ̄D)
, i ∈ [n].

Note that {ξi,D}i∈[n] are independent 1-sub-Gaussian. We will study the random quantity
QAI := maxD∈AI ξ

⊤
D(P̃D − P̃I|D)ξD. Let us assume that maxi∈[n] var(ξi,D) = σ2

D. First, we
note that P̃D − P̃I|D is a projection matrix of rank k and hence it is idempotent. Also
note that E

{
ξ⊤D(P̃D − P̃I|D)ξD

}
= tr

{
(P̃D − P̃I|D)E(ξDξ⊤D)

}
= kσ2

D ≤ kσ2
0, where σ2

0 is
a universal constant. Now, to bound QAs we will use Theorem B.3.2. By the properties
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of projection matrices, we have dop(G̃(s)I ) = 1 and dF (G̃(s)I ) =
√
k. Hence, equipped with

Assumption 3.5.1(e), the quantities M,V and U (defined in Theorem B.3.2) has the following
properties:

M ≤ 2E 2

G̃(s)
I
k log(ep), V ≤ 2

√
k log(ep), and U = 1.

Due to Theorem B.3.2, there exists a universal positive constant A3, such that for

t = A3k
√
log(ep){log(es) ∨ log log(ep)},

we get

P
(
CAI(ξD) ≥ A2E

2

G̃(s)
I
k log(ep) + A3k

√
log(ep){log(es) ∨ log log(ep)}

)
≤ {(es) ∨ log(ep)}−2k,

for a universal positive constant A2. As maxD∈AI E{ξ
⊤(P̃D − P̃I|D)ξ} ≤ kσ2

0 ≤
kσ2

0E
2

G̃(s)
I

log(ep), we finally have

P
(
QAs ≤ A4E

2

G̃(s)
I
k log(ep) + A3k

√
log(ep){log(es) ∨ log log(ep)}

)
≤ {(es) ∨ log(ep)}−2k,

(B.49)

where A4 is a universal positive constant.
Next, by construction, we have

n−1(y − ρ(XSβ
∗
S))

⊤Λ
−1/2
D P̃I|DΛ

−1/2
D (y − ρ(XSβ

∗
S))

= n−1(y − ρ(XSβ
∗
S))

⊤XI(X̃
⊤
I X̃I)

−1X⊤
I (y − ρ(XSβ

∗
S))

⪯ n−1ψ−1
∗ (y − ρ(XSβ

∗
S))

⊤PI(y − ρ(XSβ
∗
S)).

Similarly,

n−1(y−ρ(XSβ
∗
S))

⊤Λ
−1/2
D P̃I|DΛ

−1/2
D (y−ρ(XSβ

∗
S)) ⪰ n−1B−1(y−ρ(XSβ

∗
S))

⊤PI(y−ρ(XSβ
∗
S)).

By Theorem 1 of Rudelson and Vershynin (2013), there exists a universal constant A5 > 0

such that
P
{∣∣ϵ⊤PIϵ− (s− k)σ2

ϵ

∣∣ ≥ t
}
≤ 2 exp

[
−A5min

{
t2

s− k
, t

}]
.
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For t = 2A−1
5 s{log(es) ∨ log log(ep)} and a universal constant A6 > 0, we get

P
[
ϵ⊤PIϵ ≥ A6smax{log(es), log log(ep)}

]
≤ {log(ep)}−2s for all D ∈ As ∪ {S}. (B.50)

Final 0-1 error bound

Define the event

Ω =

{
max

D∈As∪{S}

∥∥∥β̂D − β̄D

∥∥∥
2
≤ 9x0(ϕB)1/2

ψ(x0R + x0R0)

√
s log n

n

}
.

By (B.44) and (B.45) we have P(Ωc) ≲ (s log p)/n7. Also, let E be an event inside of
which the assertion of the theorem holds. It follows that

P(Ec) = P(Ec ∩ Ω) + P(Ec ∩ Ωc)

≲

 s∑
k=1

∑
I⊂S:|I|=s−k

P
(
min
D∈AI

LD(β̂D)− LS(β̂S) < ητ̃∗(s)

)+
s log p

n7

Now, assume the following

τ̃glm(s) := min
D≠S,|D|=s

min

{
∆2

kl(D)
∆par(D) |D \ S|

,
∆kl(D)
|D \ S|

}
≳

(1 ∨ ψ−1
∗ )

(1− η)2
max

{
Comp1,Comp2, t

(1)
s,n,p, t

(2)
n,s,p

} (ϕB) log(ep)

n
,

where

Comp1 =

(
ET̃ (s)

I
+

√
log(es) ∨ log log(ep)

log(ep)

)2

,

Comp2 =

(
E 2

G̃(s)
I

+

√
log(es) ∨ log log(ep)

log(ep)

)
,

t(1)s,n,p := (ψ−1
∗ −B−1)

s{log(es) ∨ log log(ep)}
log(ep)

,

t(2)s,n,p :=

(
B̃2M2x40ϕ

2B2

κ0ψ∗ψ4
∗∗

)
s2(log n)2

n log p
+

(
B̃Mx30ϕ

3/2B3/2

6

)
s3/2(log n)3/2√

n log p
,

where ψ∗∗ = ψ(x0R + x0R0). Now, recall the property (3.15) of ∆kl(D). Thus, for the
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aforementioned condition to hold for τ̃glm(s), it is sufficient to have

τ̃∗(s) := min
D≠S,|D|=s

∆kl(D)
|D \ S|

≳
(ϕB)(1 ∨ ψ∗)

−1

(ψ∗∗ ∧ 1)(1− η)2
max

{
Comp1,Comp2, t

(1)
s,n,p, t

(2)
n,s,p

} log(ep)

n

Under the above inequality and due to (B.48), (B.49), and (B.50), we can finally conclude

P(Ec) ≲
s∑

k=1

(
s

k

)
{(es) ∨ log(ep)}−2k +

s log p

n7

≲
1

(s ∨ log p)
+
s log p

n7
.

B.3 Quadratic chaos process

Let A be a set of m × n matrices and ξ be a 1-sub-Gaussian random vector. The random
variable of interest is

CA(ξ) := sup
A∈A

∣∣∥Aξ∥22 − E ∥Aξ∥22
∣∣ .

This quantity is studied by Krahmer et al. (2014) and Banerjee et al. (2019). In the literature
of empirical process, this is known as order-2 sub-Gaussian chaos. Before we present the
main result for CA(ξ), we introduce some useful definitions.

Definition B.3.1. For a metric space (T, d), an admissible sequence of T is a collection of
subsets of T , {Tr : r ≥ 0}, such that for every r ≥ 0, |Tr| ≤ 22

r and |T0| = 1. For α ≥ 1,
define the γα functional by

γα(T, d) := inf sup
t∈T

∞∑
r=0

2r/αd(t, Tr).

The γα functional can be bounded in terms of the covering numbers N (ϵ, T, d) by the
well-known Dudley’s integral (See Talagrand (2005)). A more specific formulation for the
γ2 functional of a set of matrices A endowed with the operator norm, the scenario which we
will focus on in this article, is

γ2(A, ∥·∥op) ≤
∫ ∞

0

√
logN (ϵ,A, ∥·∥op) dϵ.

We also define the two quantities dop(A) = supA∈A ∥A∥op and dF (A) := supA∈A
√
tr(A⊤A).
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Now, we present the main deviation bound for CA(ξ).

Theorem B.3.2 (Banerjee et al. (2019)). Let A be a set of m × n matrices and ξ :=

(ξ1, . . . , ξn)
⊤ be a random vector with independent 1-sub-Gaussian entries. Let

M = γ2(A, ∥·∥)op {γ2(A, ∥·∥)op + dF (A)} ,

V = dop(A) {γ2(A, ∥·∥)op + dF (A)} ,

U = dop(A).

Then, for t > 0,

P (CA(ξ) ≥ c1M + t) ≤ 2 exp

(
−c2min

{
t2

V 2
,
t

U

})
,

where c1, c2 are universal positive constants.

B.4 Technical lemmas

Lemma B.4.1 (Gordon (1941)). Let Φ(·) denote the cumulative distribution function of
standard Gaussian distribution. Then for all x ≥ 0, the following inequalities are true:(

x

1 + x2

)
e−x

2/2

√
2π
≤ 1− Φ(x) ≤

(
1

x

)
e−x

2/2

√
2π

.

Lemma B.4.2. Let w ∼ N(0, σ2In) and µ ∈ Rn \ {0} such that ∥µ∥2 ≤ σδ. Then

P(∥w + µ∥22 < ∥w∥
2
2) ≥

δ

1 + δ2
e−δ

2/2

√
2π

.

Proof. By straightforward algebra, it follows that

p0 := P(∥w + µ∥22 < ∥w∥
2
2) = P(µ⊤w + ∥µ∥22 < 0).
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Note that µ⊤w
d
= ∥µ∥2w, where w ∼ N(0, σ2). Hence, due to Lemma B.4.1 we have

p0 = P(w < −∥µ∥2)

= P(w > ∥µ∥2)

≥ P(w > σδ)

≥ δ

1 + δ2
e−δ

2/2

√
2π

.

Lemma B.4.3 (Laurent and Massart (2000)). Let W be chi-squared random variable with
degrees of freedom m. Then, we have the following large-deviation inequalities for all x > 0

P(W −m > 2
√
mx+ 2x) ≤ exp(−x), and (B.51)

P(W −m < −2
√
mx) ≤ exp(−x). (B.52)

If we set x = mu in Equation (B.51) for u > 0, then we get

P
(
W

m
− 1 ≥ 2

√
u+ 2u

)
≤ exp(−mu).

Note that for u < 1, we have 2
√
u + 2u < 4

√
u. Thus, setting u = δ2/16 for any δ < 1, we

get

P
(
W

m
− 1 ≥ δ

)
≤ exp(−mδ2/16). (B.53)

Similarly, setting x = mu and u = δ2/4 in Equation (B.52), we get

P
(
W

m
− 1 ≤ −δ

)
≤ exp(−mδ2/4). (B.54)

Lemma B.4.4. Let δ ∈ (0,∞). Then for any x > 0 the following inequality holds:

0 <
√
x+ δ −

√
(x− δ) ∨ 0 ≤

√
2δ.

Proof. It is obvious that fδ(x) :=
√
x+ δ−

√
(x− δ) ∨ 0 > 0. Now for the other inequality,

we will consider two cases:

Case 1: x ≤ δ In this case fδ(x) =
√
x+ δ ≤

√
2δ.
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Case 2: x > δ In this case we have

f ′
δ(x) =

1

2

(
1√
x+ δ

− 1√
x− δ

)
< 0 for all x > δ.

Hence fδ(x) ≤ fδ(δ) =
√
2δ.
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APPENDIX C

Appendix for Chapter 4

C.1 More simulation details

Under the setup of Section 4.5, we consider the privacy parameter ε ∈ {0.5, 1, , 3, 5, 10}.
For the Metropolis-Hastings random walk, we vary K ∈ {0.5, 2, 3, 3.5} and initialize 10
independent Markov chains from random initializations and record the F-score of the last
iteration. We also track the qualities of the model through its explanatory power. In
particular, we calculate the scale factor Rγ := y⊤Φγy/ ∥y∥22 for each model γ ∈ {γt}t≥1

along the random walks. Typically, a high value of Rγ will indicate the superior quality of
the model γ. Note that −∥y∥22 (1 − Rγ) is proportional to the log of the probability mass
function function of γ. Thus, tracking Rγ is equivalent to tracking the log-likelihood of γ
along the random walks.

Strong signal: Under this setup, note that the model estimate of ABESS exactly matches
the true model. For ε ≥ 3 and K ≥ 2, Figure C.1 shows that all the chains have identified
a reasonably good estimate of the true model γ∗ within 50p iterations. This empirical
phenomenon validates theoretical findings in Theorem 4.4.3. However, for larger values of
K the performance is worse as the noise level is also large. On the other hand, for the case
of K = 0.5, the performance is also worse due to too much shrinkage that results in a bad
estimate of β. The mean F-score’s also suggest the same phenomenon. For smaller values
of ε, the performance is generally bad due to increased noise level. This is expected as higher
privacy usually entails a worse performance in terms of utility.

Weak signal: We perform the same experiments under a weak signal regime. As expected,
both Figure C.2 and Table 4.1 show that the performance of the proposed algorithm is
generally inferior to that in the strong signal regime for K ≥ 2. However, note that our
algorithm enjoys a better utility for K = 0.5. In fact, performance is as good as the non-
private BSS for ε ≥ 3. This is not surprising as K = 0.5 closer to ∥β∥1 ≈ 0.7 in the weak
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Figure C.1: Metropolis-Hastings random walk under different privacy budgets and ℓ1 regu-
larization. (Strong signal)
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signal case and results in better estimation for β. On the contrary, larger values of K inject
more noise into the algorithm and the utility deteriorates.

C.2 Proof of Main results

C.2.1 Proof of Lemma 4.3.1

Recall that uK(γ;X,y) = −Lγ,K(X,y) where Lγ,K(X,y) :=
∑n

i=1(yi − x⊤
i,γβ)

2. Therefore,
it suffices to show that Lγ,K(·, ·) is data monotone. Let D = {(xi, yi)}ni=1 and D′ = D ∪
{xn+1, yn+1}. We define

β̂n,γ := argminβ:∥β∥1≤K

n∑
i=1

(yi − x⊤
i,γβ)

2,

β̂n+1,γ := argminβ:∥β∥1≤K

n+1∑
i=1

(yi − x⊤
i,γβ)

2.

Therefore, we have the following inequalities:

Lγ,K(D
′) =

n+1∑
i=1

(yi − x⊤
i,γβ̂n+1,γ)

2 ≥
n∑
i=1

(yi − x⊤
i,γβ̂n+1,γ)

2 ≥
n∑
i=1

(yi − x⊤
i,γβ̂n,γ)

2 = Lγ,K(D).

The above inequalities conclude the proof.

C.2.2 Proof of Utility Guarantee (Theorem 4.3.5)

Consider the notation in Section C.3.2 and recall the event EK := ∩γ:γ∈As{βγ,K = βγ,ols}.
We will For notational brevity, we use Lγ to denote Lγ(X,y). Now, we restrict ourselves to
the event EK . therefore we have Lγ,K = Lγ for all γ. To establish a lower bound π(γ∗), we
make use of its specific form, thereby obtaining the following inequality:

π(γ∗) =
1

1 +
∑

γ′∈As
exp

{
− ε(Lγ′−Lγ∗ )

∆u

} .
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Figure C.2: Metropolis-Hastings random walk under different privacy budgets and ℓ1 regu-
larization. (Weak signal)
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Now we fix k ∈ [s], and and consider any γ ∈ As,k. For any η ∈ [0, 1], note that

n−1(Lγ − Lγ∗) = n−1{y⊤(In −Φγ)y − y⊤(In −Φγ∗)y}

= n−1
{
(Xγ∗\γβγ∗\γ +w)⊤(In −Φγ)(Xγ∗\γβγ∗\γ +w)−w⊤(In −Φγ∗)w

}
= ηβ⊤

γ∗\γΓ(γ)βγ∗\γ + 2−1(1− η)β⊤
γ∗\γΓ(γ)βγ∗\γ − 2

{
n−1(In −Φγ)Xγ∗\γβγ∗\γ

}⊤
(−w)

+ 2−1(1− η)β⊤
γ∗\γΓ(γ)βγ∗\γ − n−1w⊤(Φγ −Φγ∗)w.

Consider the random variable Following the analysis of Guo et al. (2020), we have

P
[
max
γ∈As,k

∣∣2n−1{(In −Φγ)Xγ∗\γβγ∗\γ}⊤w
∣∣ ≥ 2−1(1− η)β⊤

γ∗\γΓ(γ)βγ∗\γ

]
≤ 2e−6k log p,

and,

P
[
max
γ∈As,k

n−1
∣∣w⊤(Φγ −Φγ∗)w

∣∣ ≥ 2−1(1− η)β⊤
γ∗\γΓ(γ)βγ∗\γ

]
≤ 4e−2k log p,

whenever
minγ∈As,k

β⊤
γ∗\γΓ(γ)βγ∗\γ

k
≥ Cσ2

{
log p

n(1− η)

}
for large enough universal constant C > 0. Setting η = 1/2, we note that whenever m∗(s) ≥
2Cσ2{(log p)/n}, we get

n−1(Lγ − Lγ∗) ≥
1

2
β⊤
γ∗\γΓ(γ)βγ∗\γ ≥

km∗(s)

2
for all γ ∈ As,

with probability at least 1− 2p−6− 4p−2. Also, note that β⊤
γ∗\γΓ(γ)βγ∗\γ ≤ κ+sb

2
max. Hence,

if we have
m∗(s) ≥ max

{
2C,

16∆u

εσ2

}
σ2 log p

n
,

the following are true:

∑
γ′∈As

exp

{
−ε(Lγ

′ − Lγ∗)
∆u

}
≤
∑
γ′∈As

exp

{
−nkεm∗(s)

2∆u

}

≤
s∑

k=1

(
p− s
k

)(
s

k

)
exp

{
−nkεm∗(s)

2∆u

}
≤

s∑
k=1

p2k.p−4k ≤ p−2.
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Therefore, we have

min
γ∈As∪{γ∗}

π(γ) ≥ 1

1 + p−2
≥ 1− p−2

with probability 1− 2p−6 − 4p−2. Now by the discussion in Section C.3.2, we have P(EK) ≥
1− 2p−2 for K ≥

√
s
{
(κ+
κ−

)bmax + ( 8
κ−

)σxmax

}
. This finishes the proof.

C.2.3 Proof of Lemma 4.4.1

For clarity, we first specify some notations. Let γDt denote the model update of MH chain
run over dataset D. Let τDη be the corresponding η-mixing time. Let D and D′ be two
neighboring datasets, and πD and πD

′ be the corresponding probability mass functions for
the exponential mechanism. Then, we have the following:

P(γDτDη = γ) ≤ πD(γ) + η

≤ eεπD
′
(γ) + η

≤ eεP(γD′

τD′
η

= γ) + η(1 + eε).

This finishes the proof.

C.2.4 Proof of Mixing Time (Theorem 4.4.3)

We again restrict ourselves to the event EK with K ≥
√
s
{
(κ+
κ−

)bmax + ( 8
κ−

)σxmax

}
. For

the proof, let P̃ denote the transition matrix of the original Metropolis-Hastings sampler
(4.10). In this case, the state space is S = As ∪ {γ∗}. Now consider the transition matrix
P = P̃/2 + In/2, corresponding to the lazy version of the random walk that stays in its
current position with a probability of at least 1/2. Due to the construction, the smallest
eigenvalue of P is always non-negative, and the mixing time of the chain is completely
determined by the second largest eigenvalue λ2 of P. To this end, we define the spectral gap
Gap(P) = 1 − λ2, and for any lazy Markov chain, we have the following sandwich relation
(Sinclair, 1992; Woodard and Rosenthal, 2013)

1

2

(1− Gap(P))

Gap(P)
log(1/(2η)) ≤ τη ≤

log[1/minγ∈S π(γ)] + log(1/η)

Gap(P)
. (C.1)

Lower Bound on π(·) :

To establish a lower bound on the target distribution in (4.7), we make use of its specific
form, thereby obtaining the following inequality:
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π(γ) = π(γ∗).
π(γ)

π(γ∗)

=
1

1 +
∑

γ′∈As
exp

{
− ε(Lγ′−Lγ∗ )

∆u

} . exp{−ε(Lγ − Lγ∗)
∆u

}
.

Now we fix k ∈ [s], and and consider any γ ∈ As,k.
Similar to the proof of Section C.2.2, we note that whenever m∗(s) ≥ 2Cσ2{(log p)/n} for

a large enough universal constant C > 0, we get

3

2
β⊤
γ∗\γΓ(γ)βγ∗\γ ≥ n−1(Lγ − Lγ∗) ≥

1

2
β⊤
γ∗\γΓ(γ)βγ∗\γ ≥

km∗(s)

2
for all γ ∈ As,

with probability at least 1− 2p−6− 4p−2. Also, note that β⊤
γ∗\γΓ(γ)βγ∗\γ ≤ κ+sb

2
max. Hence,

if we have
m∗(s) ≥ max

{
2C,

16∆u

εσ2

}
σ2 log p

n
,

the following are true:

∑
γ′∈As

exp

{
−ε(Lγ

′ − Lγ∗)
∆u

}
≤
∑
γ′∈As

exp

{
−nkεm∗(s)

2∆u

}

≤
s∑

k=1

(
p− s
k

)(
s

k

)
exp

{
−nkεm∗(s)

2∆u

}
≤

s∑
k=1

p2k.p−4k ≤ p−2,

and,

exp

{
−ε(Lγ − Lγ

∗)

∆u

}
≥ exp

{
−
3nεβ⊤

γ∗\γΓ(γ)βγ∗\γ

2∆u

}

≥ exp

{
−3nsεκ+b

2
max

2∆u

}
Combining these two facts we have

min
γ∈As∪{γ∗}

π(γ) ≥ 1

1 + p−2
exp

{
−3nsεκ+b

2
max

2∆u

}
≥ 1

2
exp

{
−3nsεκ+b

2
max

2∆u

}
(C.2)

with probability 1− 2p−6 − 4p−2.
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Lower Bound on Spectral Gap:

Now it remains to prove a lower bound on the spectral gap Gap(P), and we do so via the
canonical path argument (Sinclair, 1992). We begin by describing the idea of a canonical
path ensemble associated with a Markov chain. Given a Markov chain C with state space S ,
consider the weighted directed graph G(C) = (V,E) with vertex set V = S and the edge set
E in which a ordered pair e = (γ, γ′) is included as an edge with weight Q(e) = Q(γ, γ′) =

π(γ)P(γ, γ′) iff P(γ, γ′) > 0. A canonical path ensemble T corresponding to C is a collection
of paths that contains, for each ordered pair (γ, γ′) of distinct vertices, a unique simple path
Tγ,γ′ connecting γ and γ′. We refer to any path in the ensemble T as a canonical path.

Sinclair (1992) shows that for any reversible Markov chain and nay choice of a canonical
path ensemble T , the spectral gap of P is lower bounded as

Gap(P) ≥ 1

ρ(T )ℓ(T )
, (C.3)

where ℓ(T ) corresponds to the length of the longest path in the ensemble T , and the quantity
ρ(T ) := maxe∈E

1
Q(e)

∑
(γ,γ′):e∈Tγ,γ′

π(γ)π(γ′) is known as the path congestion parameter.
Thus, it boils down to the construction of a suitable canonical path ensemble T . Before

going into further details, we introduce some working notations. For any two given paths T1
and T2:

• Their intersection T1 ∩ T2 denotes the collection of overlapping edges.

• If T2 ⊂ T1, then T1 \T2 denotes the path obtained by removing all the edges of T2 from
T1.

• We use T̄1 to denote the reverse of T1.

• If the endpoint of T1 is same as the starting point of T2, then T1 ∪ T2 denotes the path
obtained by joining T1 and T2 at that point.

We will now shift focus toward the construction of the canonical path ensemble. At a high
level, our construction follows the same scheme as in Yang et al. (2016).

Canonical path ensemble construction:

First, we need to construct the canonical path Tγ,γ∗ from any γ ∈ S to the true model γ∗.
To this end, we introduce the concept of memoryless paths. We call a set TM of canonical
paths memoryless with respect to the central state γ∗ if
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1. for any state γ ∈ S satisfying γ ̸= γ∗, there exists a unique simple path Tγ,γ∗ in TM
connecting γ and γ∗;

2. for any intermediate state γ̃ ∈ S on any path Tγ,γ∗ ∈ TM , the unique path connecting
γ̃ and γ∗ is the sub-path of Tγ,γ∗ starting from γ̃ and ending at γ∗.

Intuitively, this memoryless property tells that for any intermediate step in any canonical
path, the next step towards the central state does not depend on history. Specifically, the
memoryless canonical path ensemble has the property that in order to specify the canonical
path connecting any state γ ∈ S and the central state γ∗, we only need to specify the next
state from γ ∈ S \ {γ∗}, i.e., we need a transition function G : S \ {γ∗} → S that maps
the current state γ to the next state. For simplicity, we define G(γ∗) = γ∗ to make S as the
domain of G. For a more detailed discussion, we point the readers to Section 4 of Yang et al.
(2016). We now state a useful lemma that is pivotal to the construction of the canonical
path ensemble.

Lemma C.2.1 (Yang et al. (2016)). If a function G : S \ {γ∗} → S satisfies the condition
dH(G(γ), γ∗) < dH(γ, γ

∗) for any state γ ∈ S \ {γ∗}, then G is a valid transition map.

Using the above lemma, we will now construct the memoryless set of canonical paths from
any state γ ∈ S to γ∗ by explicitly specifying a transition map G. In particular, we consider
the following transition function:

• If γ ̸= γ∗, we define G(γ) to be γ′, whch is formed by replacing the least influential
covariate in γ with most influential covariate in γ∗ \ γ. In notations, we have γ′j = γj

for all j /∈ {jγ, kγ}, γ′jγ = 1 and γ′kγ = 0, where jγ := argmaxj∈γ∗\γ
∥∥Φγ∪{j}Xγ∗βγ∗

∥∥2
2

and kγ := argmink∈γ\γ∗
∥∥Φγ∪{j}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ∪{j}\{k}Xγ∗βγ∗

∥∥2
2
. Thus, the transition

step involves a double flip which entails that dH(G(γ), γ∗) = dH(γ, γ
∗)− 2.

Due to Lemma C.2.1, it follows that the above transition map G is valid and gives rise to a
unique memoryless set TM of canonical paths connecting any γ ∈ S and γ∗.

Based on this, we are now ready to construct the canonical path ensemble T . Specifically,
due to memoryless property, two simple paths Tγ,γ∗ and Tγ′,γ∗ share an identical subpath
to γ∗ starting from their first common intermediate state. Let Tγ∩γ′ denote the common
sub-path Tγ∩γ∗ ∩ Tγ′∩γ∗, and Tγ\γ′ := Tγ,γ∗ \ Tγ∩γ′ denotes the remaining path of Tγ,γ∗ after
removing the segment Tγ∩γ′ . The path Tγ′\γ is defined in a similar way. Then it follows
that Tγ\γ′ and Tγ′\γ have the same endpoint. Therefore, it is allowed to consider the path
Tγ\γ′ ∪ T̄γ′\γ.
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We call γ a precedent of γ′ if γ′ is on the canonical path Tγ,γ∗ ∈ T , and a pair of states
γ, γ′ are adjacent if the canonical path Tγ,γ′ is eγ,γ′ , the edge connecting γ and γ′. Next, for
γ ∈ S , define

Λ(γ) := {γ̃ | γ ∈ Tγ̃,γ∗} (C.4)

denote the set of all precedents. We denote by |T | the length of the path T . The following
lemma provides some important properties of the previously constructed canonical path
ensemble.

Lemma C.2.2. For any distinct pair (γ, γ′) ∈ S ×S :

(a) We have
|Tγ,γ∗| ≤ dH(γ, γ

∗)/2 ≤ s, and

|Tγ,γ′| ≤
1

2
{dH(γ, γ∗) + dH(γ

′, γ∗)} ≤ 2s.

(b) If γ and γ′ are adjacent and γ is precedent of of γ′, then

{(γ̄, γ̄′) | eγ,γ′ ∈ Tγ̄,γ̄′} ⊂ Λ(γ)×S .

Proof. For the first claim, let us first assume that |Tγ,γ∗| = k, i.e., Gk(γ) = γ∗ for the
appropriate transition map G. Also, recall that |γ| = |γ∗| = s. Hence, due to an elementary
iterative argument, it follows that

2s ≥ dH(γ, γ
∗) = dH(G(γ), γ∗) + 2

= dH(G2(γ), γ∗) + 4

...

= 2k.

Also, note that |Tγ,γ′ | ≤ |Tγ,γ∗ | + |Tγ′,γ∗|. Hence, the claim follows using the previous in-
equality.

For the second claim, note that for any pair (γ̄, γ̄′) such that Tγ̄,γ̄′ ∋ eγ,γ′ , we have two
possible options : (i) eγ,γ′ ∈ Tγ̄\γ̄′ , or (ii) eγ,γ′ ∈ Tγ̄′\γ̄. As γ is precedent of γ′, the only
possibility that we have is eγ,γ′ ∈ Tγ\γ′ . This shows that γ belongs to the path Tγ̄,γ∗ and
γ̄ ∈ Λ(γ).
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According to Lemma C.2.2(b), the path congestion parameter ρ(T ) satisfies

ρ(T ) ≤ max
(γ,γ′)∈Γ∗

1

Q(γ, γ′)

∑
γ̄∈Λ(γ),γ̄′∈S

π(γ̄)π(γ̄′) = max
(γ,γ′)∈Γ∗

π[Λ(γ)]

Q(γ, γ′)
, (C.5)

where the set Γ∗ := {(γ, γ′) ∈ S ×S | Tγ,γ′ = eγ,γ′ , γ ∈ Λ(γ′)}. Here we used the fact that
the weight function Q satisfies the reversibility condition Q(γ, γ′) = Q(γ′, γ) in order to
restrict the range of the maximum to pairs (γ, γ′) where γ ∈ Λ(γ′).

For the lazy form of the Metropolis-Hastings walk (4.10), we have

Q(γ, γ′) = π(γ)P(γ, γ′)

≥ 1

ps
π(γ)min

{
1,
π(γ′)

π(γ)

}
≥ 1

ps
min {π(γ), π(γ′)} .

Substituting this bound in (C.5), we get

ρ(T ) ≤ ps max
(γ,γ′)∈Γ∗

π(Λ(γ))

min{π(γ), π(γ′)}

= ps max
(γ,γ′)∈Γ∗

{
max

{
1,
π(γ)

π(γ′)

}
· π(Λ(γ))

π(γ)

}
.

(C.6)

In order to prove that ρ(T ) = O(ps) with high probability, it is sufficient to prove that the
two terms inside the maximum are O(1). To this end, we introduce two useful lemmas.

Lemma C.2.3. Consider the event

An =

{
max

γ∈S ,ℓ/∈γ
w⊤(Φγ∪{ℓ} −Φγ)w ≤ 12σ2s log p

}
Then we have P(An) ≥ 1− p−2.

Proof. First note that w⊤(Φγ∪{ℓ} − Φγ)w = (h⊤
γ,ℓw)2 for an appropriate unit vector hγ,ℓ

depending only upon Xγ and Xℓ. By Sub-gaussian tail inequality, we have

P
{
(h⊤

γ,ℓw)2 ≥ t
}
≤ 2e−

t
2σ2 .
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Setting t = 12σ2s log p and applying an union bound we get

P
{

max
γ∈S ,ℓ/∈γ

(h⊤
γ,ℓw)2 ≥ 12σ2s log p

}
≤ 2

(
p

s

)
(p− s)p−6s

≤ 2p−3s

≤ p−2.

Lemma C.2.4. Suppose that, in addition to the conditions in Theorem 4.4.3, the event An
holds. Then for all γ ̸= γ∗, we have

π(γ)

π(G(γ))
≤ p−3.

Moreover, for all γ,
π[Λ(γ)]

π(γ)
≤ 2.

Therefore, both Lemma C.2.3 and Lemma C.2.4 give ρ(T ) ≤ 2ps with probability 1−p−2.
Lemma C.2.2(a) suggests that ℓ(T ) ≤ 2s. Therefore, Equation (C.3) shows that Gap(P) ≥
1

4ps2
with probability 1− p−2. Finally, combining (C.2) and (C.1), we get the following with

1− 8p−2

τη ≤ C2ps
2

 nεκ+b
2
max{

r + (κ+
κ−

)bmaxxmax + ( σ
κ−

)x2max

}2 + log(1/η)

 ,

where C2 > 0 is a universal constant. Finally, the proof is concluded by arguing that
P(EcK) ≤ 2p−2.

C.3 Proof of Auxiliary Results

C.3.1 Proof of Sensitivity Bound (Lemma 4.3.3)

Let (X,y) and (X̃, ỹ) be two neighboring datasets with n and n+1 observation respectively.
For a subset γ ∈ As ∪ {γ∗}, consider the OLS estimators as follows:

βγ,K := argminθ:∥θ∥1≤K ∥y −Xγθ∥22 , and β̃γ,K := argminθ:∥θ∥1≤K

∥∥∥ỹ − X̃γθ
∥∥∥2
2
.
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From the definition of the score function u(γ;X,y), we have

u(γ;X,y) = −
n∑
i=1

(yi − x⊤
i,γβγ,K)

2

u(γ; X̃, ỹ) = −
n∑
i=1

(yi − x⊤
i,γβ̃γ,K)

2 − (ỹn+1 − x̃⊤
n+1,γβ̃γ,K)

2.

By the property of the OLS estimators, we have

u(γ;X,y)− u(γ; X̃, ỹ)

=
n∑
i=1

(yi − x⊤
i,γβ̃γ,K)

2 + (ỹn+1 − x̃⊤
n+1,γβ̃γ,K)

2 −
n∑
i=1

(yi − x⊤
i,γβγ,K)

2

≤
n∑
i=1

(yi − x⊤
i,γβγ,K)

2 + (ỹn+1 − x̃⊤
n+1,γβγ,K)

2 −
n∑
i=1

(yi − x⊤
i,γβγ,K)

2

= (ỹn+1 − x̃⊤
n+1,γβγ,K)

2

≤ (r + xmaxK)2.

Similarly, we have u(γ; X̃, ỹ)− u(γ;X,y) ≤ (r + xmaxK)2. Next, the (ε, 0)-DP follows from
Lemma 4.2.4. This finishes the proof.

C.3.2 Constrained problem to unconstrained OLS problem

Now we are ready to bound
∥∥βγ,K∥∥1. Define the OLS estimator corresponding to the model

γ as

βγ,ols = (
X⊤
γXγ

n
)−1

X⊤
γXγ∗βγ∗

n︸ ︷︷ ︸
:=u1

+(
X⊤
γXγ

n
)−1

X⊤
γw

n︸ ︷︷ ︸
:=u2

.

In this section, we will show that there exists a choice for K such that the event
EK := ∩γ:|γ|=s{βγ,ols = βγ,K} holds with high probability. By Holder’s inequality we
have ∥u1∥2 ≤

∥∥(X⊤
γXγ/n)

−1
∥∥
op

∥∥X⊤
γXγ∗/n

∥∥
op

∥∥βγ∗∥∥2 ≤ (κ+
κ−

)bmax. Hence, an application
of Cauchy-Schwarz inequality directly yields that ∥u1∥1 ≤ 2(κ+

κ−
)
√
sbmax. Next, note that

∥u2∥2 ≤

∥∥∥∥∥(X⊤
γXγ

n
)−1

∥∥∥∥∥
2

∥∥∥∥∥X⊤
γw

n

∥∥∥∥∥
2

≤
√
s

∥∥∥∥∥(X⊤
γXγ

n
)−1

∥∥∥∥∥
2

∥∥∥∥∥X⊤
γw

n

∥∥∥∥∥
∞

≤
√
s

∥∥∥∥∥(X⊤
γXγ

n
)−1

∥∥∥∥∥
2

∥∥∥∥X⊤w

n

∥∥∥∥
∞
.

Therefore, we get ∥u2∥1 ≤
s
κ−

∥∥X⊤w/n
∥∥
∞. In order to upper bound the last term in the

previous inequality, we define Di,j = X[i, j]wj for all (i, j) ∈ [s]×[n]. Using the sub-Gaussian
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property of wj, we have E(eλwj) ≤ eλ
2x2maxσ

2/2. Therefore, due to Hoeffding’s inequality, we
have

P

 1

n

∣∣∑
j∈[n]

Di,j

∣∣ ≥ 8σxmax

√
log p

n

 ≤ 2p−4.

Note that
∥∥X⊤w/n

∥∥
∞ = maxi∈[s] n

−1
∣∣∑

j∈[n]Di,j

∣∣. Hence, by simple union-bound argument,
it follows that

P

(
max
γ:|γ|=s

∥∥∥∥∥X⊤
γw

n

∥∥∥∥∥
∞

≥ 8σxmax

√
log p

n

)
≤ 2p−4 ≤ 2p−2.

Thus, Assumption 4.3.4(c) yields that
∥∥βγ,K∥∥21 ≤ s

{
(κ+
κ−

)bmax + ( 8
κ−

)σxmax

}2

. Therefore, if

K ≥
√
s
{
(κ+
κ−

)bmax + ( 8
κ−

)σxmax

}
then P(EK) ≥ 1− 2p−2.

C.3.3 Proof of Corollary 4.4.4

Based on Theorem 4.4.3, we have ∥πt − π∥TV ≤ eta with probability at least 1 − c2p
−2

whenever t is sufficiently large. Also, by Theorem 4.3.5, we know π(γ∗) ≥ 1 − p−2 with
probability 1 − c1p

−2. Therefore, we have πt(γ∗) ≥ 1 − η − p−2 with probability at least
1− (c! + c2)p

−2. This finishes the proof.

C.4 Proof of Lemma C.2.4

part (a):

Let jγ, kγ be the indices defined in the construction of G(γ). The we have γ′ = γ∪{jγ}\{kγ}.
Let v1 = (Φγ∪{jγ} − Φγ)Xγ∗βγ∗ and v2 = (Φγ∪{jγ} − Φγ′)Xγ∗βγ∗ . Then Lemma C.4.1
guarantees that

∥v1∥22 ≥ nκ−m∗(s), and ∥v2∥22 ≤ nκ−m∗(s)/2. (C.7)

By the form in (4.7), we have

π(γ)

π(γ′)
= exp

{
−y⊤(Φγ′ −Φγ)y

(∆u/ε)

}
.

To show that the above ration is O(1), it suffices to show that y⊤(Φγ′ −Φγ)y is large. By
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simple algebra, it follows that

y⊤(Φγ′ −Φγ)y = y⊤(Φγ∪{jγ} −Φγ)y − y⊤(Φγ∪{jγ} −Φγ′)y

= ∥v1∥22 + 2v⊤
1 w +w⊤(Φγ∪{jγ} −Φγ)w −

{
∥v2∥22 + 2v⊤

2 w +w⊤(Φγ∪{jγ} −Φγ′)w
}

= ∥v1∥22 + 2v⊤
1 (Φγ∪{jγ} −Φγ)w +w⊤(Φγ∪{jγ} −Φγ)w

−
{
∥v2∥22 + 2v⊤

2 (Φγ∪{jγ} −Φγ′)w +w⊤(Φγ∪{jγ} −Φγ′)w
}

≥ ∥v1∥2 (∥v1∥2 − 2
∥∥(Φγ∪{jγ} −Φγ)w

∥∥
2
)− ∥v2∥2 (∥v2∥2 + 2

∥∥(Φγ∪{jγ} −Φγ′)w
∥∥
2
)

−
∥∥(Φγ∪{jγ} −Φγ′)w

∥∥2
2
.

(C.8)

Now, we recall the event

An =

{
max

γ∈S ,ℓ/∈γ
w⊤(Φγ∪{ℓ} −Φγ)w ≤ 12σ2s log p

}
.

Let A2 := nκ−m∗(s) ≥ κ−C0σ
2 log p. Then for C0 large enough so that κ−C0 ≥ (128× 12)s,

Equation (C.8) leads to the following inequality under event An:

y⊤(Φγ′ −Φγ)y ≥ A(A− A/4)− (A/
√
2)(A/

√
2 + A/4)− A2/16 ≥ A/8.

This readily yields that
π(γ)

π(γ′)
≤ exp

{
− nκ−m∗(s)
(16∆u/ε)

}
≤ p−3 (C.9)

under the margin condition of Theorem 4.4.3.

Part (b):

From the previous part, the bound (C.9) implies that π(γ)/π(G(γ)) ≤ p−3. For each γ̄ ∈
Λ(γ), we have that γ ∈ Tγ̄,γ ⊂ Tγ̄,γ∗ . Let the path Tγ̄,γ be γ0 → γ1 → . . . → γk, where
k = |Tγ̄,γ| is the length of the path, and γ0 = γ̄ and γk = γ are the two endpoints. Now note
that {γℓ}ℓ≤k−1 ⊂ S , and (C.9) ensures that

π(γ̄)

π(γ)
=

k∏
ℓ=1

π(γℓ−1)

π(γℓ)
≤ p−3k.

Also, by Lemma C.2.2(a) we have k ∈ [s]. Now, we count the total number of sets in Λ(γ)

for each k ∈ [s]. Recall that by the construction of the canonical path, we update the current
state by adding a new influential covariate and deleting one unimportant one. Hence any
state in S has at most sp adjacent precedents, implying that there could be at most skpk
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distinct paths of length k. This entails that

π(Λ(γ))

π(γ)
≤
∑
γ̄∈Λ(γ)

π(γ̄)

π(γ)
≤

s∑
k=1

(ps)kp−3k ≤
s∑

k=1

p−k ≤ 1

1− 1/p
≤ 2.

C.4.1 Supporting lemmas

Recall the definition of jγ and kγ. The first result in the following lemma shows that the gain
in adding jγ to the current model γ is at least nκ−m∗(s). The second result shows that the
loss incurred by removing kγ from the model γ ∪ {jγ} is at most nκ−m∗(s)/2. As a result, it
follows that it is favorable to replace Xkγ with the more influential feature Xjγ in the current
model γ.

Lemma C.4.1. Under Assumption 4.3.4(b) and Assumption 4.4.2, the following hold for
all γ ∈ As:

(a)
∥∥Φγ∪{jγ}Xγ∗βγ∗

∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
≥ nκ−m∗(s), and

(b)
∥∥Φγ∪{jγ}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ∪{jγ}\{k}Xγ∗βγ∗

∥∥2
2
≤ nκ−m∗(s)/2.

Proof. For each ℓ ∈ γ∗ \ γ, we have

∥∥Φγ∪{ℓ}Xγ∗βγ∗
∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
= β⊤

γ∗X
⊤
γ∗(Φγ∪{ℓ} −Φγ)Xγ∗βγ∗

=
β⊤
γ∗X

⊤
γ∗(In −Φγ)XℓX

⊤
ℓ (In −Φγ)Xγ∗βγ∗

X⊤
ℓ (In −Φγ)Xℓ

≥
β⊤
γ∗\γX

⊤
γ∗\γ(In −Φγ)XℓX

⊤
ℓ (In −Φγ)Xγ∗\γβγ∗\γ

n
,

where the second equality simply follows from Gram-Schmidt orthogonal decomposition. By
summing the preceding inequality over ℓ ∈ γ∗ \ γ, we get

∑
ℓ∈γ∗\γ

∥∥Φγ∪{ℓ}Xγ∗βγ∗
∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
≥

β⊤
γ∗\γX

⊤
γ∗\γ(In −Φγ)Xγ∗\γX

⊤
γ∗\γ(In −Φγ)Xγ∗\γβγ∗\γ

n

≥ κ−β
⊤
γ∗\γX

⊤
γ∗\γ(In −Φγ)Xγ∗\γβγ∗\γ

≥ nκ− |γ \ γ∗| m∗(s)

= nκ− |γ∗ \ γ| m∗(s).

The last inequality follows from the fact that |γ| = |γ∗| = s. Since jγ maximizes
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∥∥Φγ∪{ℓ}Xγ∗βγ∗
∥∥2
2

over all ℓ ∈ γ∗ \ γ, the preceding inequality implies that

∥∥Φγ∪{jγ}Xγ∗βγ∗
∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
≥ nκ−m∗(s).

Similarly, to prove the second claim, first note that for any k ∈ γ \ γ∗, we have

∥∥Φγ′∪{k}Xγ∗βγ∗
∥∥2
2
−
∥∥Φγ′Xγ∗βγ∗

∥∥2
2
= β⊤

γ∗\γ′X
⊤
γ∗\γ′(Φγ′∪{k} −Φγ′)Xγ∗\γ′βγ∗\γ′

=
β⊤
γ∗\γ′X

⊤
γ∗\γ′(In −Φγ′)XkX

⊤
k (In −Φγ′)Xγ∗\γ′βγ∗\γ′

X⊤
k (In −Φγ)Xk

=

〈
(In −Φγ′)Xγ∗\γ′βγ∗\γ′ ,

(In −Φγ′)Xk

∥(In −Φγ′)Xk∥2

〉2

≤
∥∥βγ∗\γ∥∥21

∥∥∥∥∥X
⊤
γ∗\γ′(In −Φγ′)Xk

∥(In −Φγ′)Xk∥2

∥∥∥∥∥
2

∞

≤ b2max

∥∥∥∥∥X
⊤
γ∗\γ′(In −Φγ′)Xk

∥(In −Φγ′)Xk∥2

∥∥∥∥∥
2

∞

.

Since kγ minimizes
∥∥Φγ′∪{k}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ′Xγ∗βγ∗

∥∥2
2

over all possible k ∈ γ \ γ∗, by
Assumption 4.4.2 we have

∥∥Φγ∪{jγ}Xγ∗βγ∗
∥∥2
2
−
∥∥Φγ∪{jγ}\{k}Xγ∗βγ∗

∥∥2
2
≤ nκ−m∗(s)/2.
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APPENDIX D

Appendix for Chapter 5

D.1 More simulations

We set the number of arms K = 10 and we generate the context vectors {xi(t)}Ki=1 from
multivariate d-dimensional Gaussian distribution Nd(0,Σ), where Σij = ρ|i−j|∧1 and ρ = 0.3.
We consider d = 1000 and the sparsity s∗ = 5. We choose the set of active indices S∗

uniformly over all the subsets of [d] of size s∗. Next, for each choice of d, we consider two
types generating scheme for β:

• Setup 1: {Ui}i∈S∗
i.i.d.∼ Uniform(0.3, 1) and set βj = Uj(

∑
ℓ∈S∗ U2

ℓ )
−1/2

1(j ∈ S∗).

• Setup 2: {Zi}i∈S∗
i.i.d.∼ N(0, 1) and set βj = Zj(

∑
ℓ∈S∗ Z2

ℓ )
−1/2

1(j ∈ S∗).

We run 40 independent simulations and plot the mean cumulative regret with 95% confi-
dence band in Figure D.1. In all the setups, we see that VBTS outperforms its competitors
by a wide margin. VBTS also enjoys superior empirical performance under the autoregressive
(AR) model (see Figure D.2) with an auto-correlation coefficient 0.3.
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Figure D.1: Regret bound for equi-correlated design: (Left) Setup 1, (Right) Setup 2
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Figure D.2: Regret bound for AR(1) design: (Left) Setup 1, (Right) Setup 2

D.2 Proof of Theorem 5.3.2

This section presents the detailed proof of Theorem 5.3.2. First, for clarity of presentation,
we introduce some notations. We use Xt to denote the matrix (xa1(1), . . . , xat(t))

⊤ ∈ Rt×d.
Given this, we denote the covariance matrix Σ̂t = X⊤

t Xt/t. Next, we define the set

Sd−1
0 (s) ≜ Sd−1 ∩ {v : ∥v∥0 ≤ s}.

We also define the following:

Definition D.2.1. For a index set I ⊆ [d] and α ∈ R+, we define the restricted cone as

Cα(I) := {v ∈ Rd : ∥vIc∥1 ≤ α ∥vI∥1 , vI ̸= 0}

.

In high-dimensional literature one typically assumes compatibility condition on the design
matrix X, i.e.,

ϕcomp(S
∗;X) := inf

δ∈C7(S∗)

∥Xδ∥2 |S∗|1/2

t1/2 ∥δ∥1
> 0, (D.1)

where S∗ = {j : β∗
j ̸= 0}. This is mainly to guarantee the estimation accuracy of high-

dimensional estimators like LASSO (Bickel et al., 2009) or to show the posterior consistency
in Bayesian high dimensional literature (Castillo et al., 2015).

As discussed in the main paper, we prove the theorem in three parts, the subsequent
sections deal with each part separately.
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D.2.1 Proof of part (i)

In this section we will show that the matrix Σ̂t enjoys the SRC condition with high proba-
bility. As a warm up, we recall the definition of Orlicz norms:

Definition D.2.2 (Orlicz norms). For random variable Z we have the followings:

(a) The sub-Gaussian norm of a random variable Z, denoted ∥Z∥ψ2
, is defined as

∥Z∥ψ2
:= inf{λ > 0 : E{exp(Z2/λ2)} ≤ 2}.

(b) The sub-Exponential norm of a random variable Z, denoted ∥Z∥ψ1
, is defined as

∥Z∥ψ1
:= inf{λ > 0 : E{exp(|Z| /λ)} ≤ 2}.

The details and related properties can be found in Section 2.5.2 and Section 2.7 in Ver-
shynin (2018b). The following is a relationship between sub-gaussian and sub-exponential
random variables.

Lemma D.2.3 (Sub-Exponential and sub-Gaussian squared). A random variable Z is sub-
Gaussian iff Z2 is sub-Exponential. Moreover,

∥∥Z2
∥∥
ψ1

= ∥Z∥2ψ2
.

Proof. The proof can be found in Lemma 2.7.4 of Vershynin (2018b)

Lemma D.2.4 (Bernstein’s inequality). Let Z1, . . . , ZN be independent mean-zero sub-
exponential random variable. Then for every δ ≥ 0 we have

P

(∣∣∣∣∣ 1N
N∑
i=1

Zi

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

{
−c2min

(
δ2

K2
0

,
δ

K0

)
N

}
,

where K0 = maxi∈[N ] ∥Zi∥ψ1
.

Proof. The proof can be found in Corollary 2.8.3 of Vershynin (2018b).

Proposition D.2.5 (Empirical SRC). Let ε = min{1/4, 1/(c̃ϕuϑ2ξK logK + 3)} for some
universal constant c̃ > 0 and also define the quantity κ(ξ, ϑ,K) ≜ min{(4c3Kξϑ2)−1, 1/2} for
some universal positive constants c3. Then the followings are true for any constant C > 0:

P
(
ϕmax(Cs

∗; Σ̂t) ≥
c9ϑ

2ϕu logK

1− 3ε

)
≤ exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)} ,
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P
(
ϕmin(Cs

∗; Σ̂t) ≤
1

8Kξ

)
≤ 2 exp{−c2κ2(ξ, ϑ,K)t+ Cs∗ logK + Cs∗ log(3d/ε)}

+ exp {−c8 log(K)t+ Cs∗ logK + Cs∗ log(3d/ε)} ,

where all cj’s in the above display are universal positive constants.

Proof. We will first show the SRC condition for a fixed vector v ∈ Sd−1
0 (Cs∗). Then, the

whole argument will be extended via a ε-net argument.
Analysis for a fixed vector v: Let v ∈ Sd−1

0 (Cs∗) be a fixed vector. Now note that
following fact:

v⊤Σ̂tv =
1

t

t∑
τ=1

{v⊤xaτ (τ)}2 ≥
1

t

t∑
τ=1

min
i∈[K]
{v⊤xi(τ)}2.

We define Zτ,v ≜ mini∈[K]{v⊤xi(τ)}2 and note that for a fixed v ∈ Sd−1
0 (Cs∗), the random

variables {Zτ,v}tτ=1 are i.i.d. across the time points. Moreover, due to Assumption 5.2.2(b)
and Lemma D.2.3, we have

∥Zτ,v∥ψ1
=

∥∥∥∥min
i∈[K]

∣∣v⊤xi(τ)∣∣∥∥∥∥2
ψ2

≤ c3ϑ
2.

Thus, {Zτ,v}tτ=1 are i.i.d sub-exponential random variables. First we will show that E(Zτ,v)
is uniformly lower bounded. Due to Assumption 5.2.2(c) we have

P(Zτ,v ≤ h) ≤
K∑
i=1

P{(v⊤xi(τ))2 ≤ h} ≤ Kξh.

Thus we have the following:

E(Zτ,v) =
∫ ∞

0

P(Zτ,v ≥ u) du

≥
∫ h

0

P(Zτ,v ≥ u) du

≥
∫ h

0

(1−Kξu) du

= h(1−Kξh/2).

(D.2)

Setting h = 1/(Kξ) in Equation (D.2) yields E(Zτ,v) ≥ 1
2Kξ

. Now, using Lemma D.2.4, we
have the following for a µ ∈ (0, c1/ ∥Z1,v∥ψ1

) and δ > 0:
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P

(
1

t

t∑
τ=1

{Zτ,v − E(Zτ,v)} ≥ δ

)
≤ 2 exp

{
−c2min

(
δ2

∥Z1,v∥2ψ1

,
δ

∥Z1,v∥ψ1

)
t

}

≤ 2 exp

{
−c2min

(
δ2

c23ϑ
4
,
δ

c3ϑ2

)
t

}
.

Now choose δ = min{(4Kξ)−1, c3ϑ
2/2} to finally get

P

(∣∣∣∣∣1t
t∑

τ=1

{Zτ,v − E(Zτ,v)}

∣∣∣∣∣ ≥ 1

4Kξ

)
≤ 2 exp

{
−c2κ2(ξ, ϑ,K)t

}
, (D.3)

where κ(ξ, ϑ,K) = min{(4c3Kξϑ2)−1, 1/2}. Now recall that E(Zτ,v) ≥ 1/(2Kξ), which
shows that

P

{
1

t

t∑
τ=1

Zτ,v ≥
1

4Kξ

}
≤ 2 exp

{
−c2κ2(ξ, ϑ,K)t

}
, ∀ v ∈ Sd−1

0 (Cs∗). (D.4)

ε-net argument: We consider a ε-net of the space Sd−1
0 (Cs∗) constructed in a specific way

which will be described shortly. We denote it by Nε. Let J ⊆ [d] such that |J | = Cs∗ and
consider the set EJ = Sd−1 ∩ span{ej : j ∈ J}. Here ej denotes the jth canonical basis of
Rd. Thus we have

Sd−1
0 (Cs∗) =

⋃
J :|J |=Cs∗

EJ .

Now we describe the procedure of constructing a net for Sd−1
0 (Cs∗) which is essential for

controlling the parse eigenvalues.
Greedy construction of net:

• Construct a ε-net of EJ for each J of size Cs∗. We denote this net by Nε,J . Note
that |Nε,J | ≤ (3/ε)Cs

∗ (Vershynin, 2018b, Corollary 4.2.13) for ε ∈ (0, 1) as EJ can be
viewed as an unit ball embedded in RCs∗ .

• Then the net Nε is constructed by taking union over all the Nε,J , i.e.,

Nε =
⋃

J :|J |=Cs∗
Nε,J .

Thus, from from the construction we have

|Nε| ≤
(

d

Cs∗

)(
3

ε

)Cs∗
≤ exp{Cs∗ log(3d/ε)}, (D.5)
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whenever ε ∈ (0, 1). Now, we state an useful lemma on evaluating minimum eigenvalue on
ε-net.

Lemma D.2.6. Let A be a m×m symmetric positive-definite matrix and ε ∈ (0, 1). Then,
for ε-net Nε of Sd−1

0 (s) constructed in greedy way, we have

ϕmin(s;A) ≥ min
u∈Nε

u⊤Au− 3εϕmax(s;A).

The proof of the lemma is deferred to Appendix D.4.1. Note that from Equation (D.4)
and an union bound argument we get

P
(
min
u∈Nε

v⊤Σ̂tv ≥
1

4Kξ

)
≥ 1− 2 exp{−c2κ2(ξ, ϑ,K)t+ Cs∗ logK + Cs∗ log(3d/ε)}. (D.6)

If ϕmax(Cs
∗, Σ̂t) is bounded with high probability, then for small ε, then along with Lemma

D.2.6 we will readily have an uniform lower bound on ϕmin(Cs
∗, Σ̂t).

Bounding ϕmax(Cs
∗, Σ̂t): Here we gain start with v ∈ Nε. Similar, to previous discussion

we have

v⊤Σ̂tv =
1

t

t∑
τ=1

{v⊤xaτ (τ)}2 ≤
1

t

t∑
τ=1

max
i∈[K]
{v⊤xi(τ)}2.

We define Wτ,v ≜ maxi∈[K]{v⊤xi(τ)}2 and note that for a fixed v ∈ Sd−1
0 (Cs∗), the random

variables {Wτ,v}tτ=1 are i.i.d. across the time points. Moreover, due to Assumption 5.2.2(b)
and Lemma D.2.3, we have

∥Wτ,v∥ψ1
=

∥∥∥∥max
i∈[K]
{v⊤xi(τ)}2

∥∥∥∥
ψ1

≤ c4Kϑ
2.

Thus, {Wτ,v}tτ=1 are i.i.d sub-exponential random variables. Recall, that ϕmax(Cs
∗,Σi) ≤

ϕu for all i ∈ [K]. The next lemma provides an upper bound on the moment generating
function (MGF) of sub-Exponential random variables.

Lemma D.2.7. (Vershynin, 2018b, Lemma 2.8.1) Let X be a mean-zero, sub-Exponential
random variable. Then there exists positive constants c5, c6, such that for any λ with |λ| ≤
c5/ ∥X∥ψ1

, the following is true:

E{exp(λX)} ≤ exp(c6λ
2 ∥X∥2ψ1

).

Equipped with the above lemma we have the following;
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P

(
1

t

t∑
τ=1

Wτ,v − ϕu ≥ δ

)
= P

(
t∑

τ=1

{Wτ,v − ϕu} ≥ δt

)

= P

(
exp

{
µ

t∑
τ=1

(Wτ,v − ϕu)

}
≥ eµδt

)

≤ e−µδt
t∏

τ=1

E{eµ(Wτ,v−ϕu)}.

(D.7)

For a fixed τ ∈ [t] we note the following;

E{eµ(Wτ,v−ϕu)} ≤
K∑
i=1

E{eµ[(v⊤xi(τ))2−ϕu]}

≤
K∑
i=1

E{eµ[(v⊤xi(τ))2−v⊤Σiv]}.

For brevity let κi ≜
∥∥{v⊤xi(τ)}2∥∥ψ1

. If we choose µ ≤ c5/maxi∈[K] κi, then by Lemma D.2.7
we have

E{eµ(Wτ,v−ϕu)} ≤ exp

(
c6µ

2max
i∈[K]

κ2i + logK

)
.

Using the above inequality in Equation (D.7), it follows that

P

(
1

t

t∑
τ=1

Wτ,v − ϕu ≥ δ

)
≤ exp

(
−µδt+ c6tµ

2max
i∈[K]

κ2i + t logK

)
. (D.8)

The right hand side of Equation (D.8) is minimized at µ = δ/(2c2maxi∈[K] κ
2
i ) with the

minimum value of

exp

(
− δ2t

4c6maxi∈[K] κ
2
i

+ t logK

)
.

If δ/(2c6maxi∈[K] κ
2
i ) > c5/maxi∈[K] κ

2
i , then the right hand side of Equation (D.8) is mini-

mized at µ = c5/maxi∈[K] κ
2
i and we get

P

(
1

t

t∑
τ=1

Wτ,v − ϕu ≥ δ

)
≤ exp

(
− c5δt

maxi κi
+ c6c

2
5t+ t logK

)
.

Using the fact that δ/(2c6maxi∈[K] κ
2
i ) > c5/maxi∈[K] κ

2
i , the right hand side of the above
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display can be upper bounded by

exp

(
− c5δt

2maxi κi
+ t logK

)
.

Thus we have for all δ > 0

P

(
1

t

t∑
τ=1

Wτ,v − ϕu ≥ δ

)
≤ exp

(
−min

{
δ2t

4c6maxi∈[K] κ
2
i

,
c5δt

2maxi κi

}
+ t logK

)
. (D.9)

Next we set δ = c7ϑ
2ϕu logK for sufficiently large c7 > 0. Then Equation (D.9) yields

P

(
1

t

t∑
τ=1

Wτ,v − ϕu ≥ δ

)
≤ exp (−c8t logK) .

Finally taking union bond over all vectors in Nε we get

P
(
∀v ∈ Nε : v⊤Σ̂tv ≥ c9ϑ

2ϕu logK
)
≤ exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)} .

(D.10)
Next, to prove the same for all v ∈ Sd−1

0 (Cs∗) we need the following lemma.

Lemma D.2.8 (maximum sparse eigenvalue on net). Let A be a m×m symmetric positive-
definite matrix and ε ∈ (0, 1/3). Then, for ε-net Nε of Sd−1

0 (s) constructed in greedy way,
we have

max
v∈Nε

v⊤Av ≤ max
v∈Sd−1

0 (Cs∗)
v⊤Av ≤ 1

1− 3ε
max
v∈Nε

v⊤Av.

The proof of the above lemma is deferred to Appendix D.4.2. Now we set some ε ∈
(0, 1/3). In light of the above lemma we immediately have that

P
(
ϕmax(Cs

∗; Σ̂t) ≥
c9ϑ

2ϕu logK

1− 3ε

)
≤ exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)} .

(D.11)
Finally using Equation (D.6), (D.11) and Lemma D.2.6 we have

P
(
ϕmin(Cs

∗; Σ̂t) ≥
1

4Kξ
− 3εc9ϑ

2 logK

1− 3ε
ϕu

)
≥ 1− 2 exp{−c2κ2(ξ, ϑ,K)t+ Cs∗ logK + Cs∗ log(3d/ε)}

− exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)} .

(D.12)

Now the result follows from taking ε = min{1/4, 1/(24ϕuϑ2ξK logK + 3)}.
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D.2.2 Proof of part (ii)

In this section we will show that the matrix Σ̂t enjoys the compatibility condition (D.1) with
high probability. This is equivalent to showing that the quantity

Ψ(S∗; Σ̂t) ≜ inf
δ∈C7(S∗)

(
δ⊤Σ̂tδ

∥δ∥21

)
s∗ = ϕcomp(S

∗;Xt)
2.

is bounded away from 0 with high probability. First we present the Transfer lemma (Oliveira,
2013, Lemma 5) below.

Lemma D.2.9 (Transfer lemma). Suppose Σ̂t and Σ are matrix with non-negative diagonal
entries, and assume η ∈ (0, 1), m ∈ [d] are such that

∀v ∈ Rd with ∥v∥0 ≤ m, v⊤Σ̂tv ≥ (1− η)v⊤Σv. (D.13)

Assume D is a diagonal matrix whose diagonal entries Dj,j are non-negative and satisfy
Dj,j ≥ (Σ̂t)j,j − (1− η)Σj,j. Then

∀x ∈ Rd, x⊤Σ̂tx ≥ (1− η)x⊤Σx−
∥∥D1/2x

∥∥2
1

m− 1
. (D.14)

Condition (D.13) basically demands that Σ̂t enjoys SRC condition with the sparsity pa-
rameter m. Then under the proper choice of diagonal matrix D with sufficiently large
diagonal elements {Dj,j}dj=1, Equation (D.14) will yield the desired compatibility condition
for Σ̂t. We formally state the result in the following lemma:

Proposition D.2.10 (Empirical compatibility condition). Assume the conditions of Propo-
sition D.2.5 hold. Also assume that Assumption 5.2.2(d) holds with C = C0ϕuϑ

2ξK logK

for some sufficiently large universal constant C0 > 0. Then there exists a positive constant
C1 such that the following is true:

P
(
Ψ(S∗; Σ̂t) ≥

1

C1ξK

)
= 1− 2 exp{−c2κ2(ξ, ϑ,K)t+ Cs∗ logK + Cs∗ log(3d/ε)}

− 2 exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)}

with ε = min{1/4, 1/(c̃ϕuϑ2ξK logK + 3)} for the same universal constant c̃ > 0 in Propo-
sition D.2.5 and κ(ξ, ϑ,K) = min{(4c3Kξϑ2)−1, 1/2}.
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Proof. As suggested before we will make use of Lemma D.2.9. Towards this, we set Σ = 1
4Kξ

Id
and D = diag(Σ̂t). Next, we define the following two events:

Gt,1 :=
{
ϕmax(Cs

∗; Σ̂t) ≤
c9ϑ

2ϕu logK

1− 3ε

}
,

Gt,2 :=
{
ϕmin(Cs

∗; Σ̂t) ≥
1

8Kξ

}
,

where the constants ε and c9 are same as in Proposition D.2.5. Under Gt,1 and Gt,2, the
inequality in Equation (D.13) holds with η = 1/2 and m = Cs∗. Also, due construction of
D, we trivially have

Dj,j ≥ (Σ̂t)j,j − (1− η)Σj,j.

Lastly, note that

max
j∈[d]

Dj,j = max
j∈[d]

(Σ̂t)j,j = max
j∈[d]

e⊤j Σ̂tej ≤
c9ϑ

2ϕu logK

1− 3ε
(D.15)

under Gt,1. Equipped with Lemma D.2.9, under Gt,1 and Gt,2, for all x ∈ C7(S
∗) ∩ Sd−1 we

have the following:

x⊤Σ̂tx ≥
1

8Kξ
−
∥∥D1/2x

∥∥2
1

Cs∗ − 1

≥ 1

8Kξ
−

(
c9ϑ2ϕu logK

1−3ε

)
∥x∥21

Cs∗ − 1

≥ 1

8Kξ
−

(
c9ϑ2ϕu logK

1−3ε

)
64s∗

Cs∗ − 1
.

The last inequality follows form the fact that

∥x∥1 = ∥xS∗∥1 +
∥∥x(S∗)c

∥∥
1
≤ 8 ∥xS∗∥1 ≤ 8

√
s∗ ∥xS∗∥2 ≤ 8

√
s∗. (D.16)

Thus, if C ≳ ϕuϑ2ξK logK
1−3ε

+ 1
s∗

then x⊤Σ̂tx ≥ 1/(16Kξ). Also, note that from the choice of
ε in Proposition D.2.5, we have ε < 1/4. This further tells that if C = C0ϕuϑ

2ξK logK for
large enough C0 > 0, then

inf
δ∈C7(S∗)

δ⊤Σ̂tδ

∥δ∥22
≥ 1

16Kξ
.

Then, the result follows from Proposition D.2.5. Using this and Equation (D.16) we also
have
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Ψ(S∗; Σ̂t) ≥
1

64
inf

δ∈C7(S∗)

δ⊤Σ̂tδ

∥δ∥22
≥ 1

C1ξK

where C1 = 1024. Finally, the result follows from conditioning over the events Gt,1 and Gt,2
and using Proposition D.2.5.

D.2.3 Proof of part (iii)

In this section we will establish the desired regret bound in Theorem 5.3.2. The main tools
that has been used to prove the regret bound is the Bayesian contraction in high-dimensional
linear regression problem. In particular, we will use Theorem D.3.1 to control the ℓ1-distance
between β̃t and β∗ at each time point t ∈ [T ].

We recall that Xt = (xa1(1), . . . , xat(t))
⊤. Also, note that the sequence {xaτ (τ)}tτ=1 forms

an adapted sequence of observations, i.e., xaτ (τ) may depend on the history {xau(u), r(u)}τ−1
u=1.

Also, recall that {ϵ(τ)}tτ=1 are mean-zero σ-sub-Gaussian errors.

Lemma D.2.11 (Bernstein Concentration). Let {Dk,Fk}∞k=1 be a martingale difference se-
quence, and suppose that Dk is a σ-sub-Gaussian in adapted sense, i.e., for all α ∈ R,E[eαDk |
Fk−1] ≤ eα

2σ2/2 almost surely. Then, for all t ≥ 0, P
(∣∣∑t

k=1Dk

∣∣ ≥ δ
)
≤ 2 exp{−δ2/(2tσ2)}.

Proof. Proof of Lemma D.2.11 follows from Theorem 2.19 of Wainwright (2019) by setting
αk = 0 and νk = σ for all k.

Lemma D.2.11 is the main tool that is used to control the correlation between ϵt :=

(ϵ(1), . . . , ϵ(t))⊤ and the chosen contexts Xt which is important to control the Bayesian
contraction of the posterior distribution in each round. To elaborate, let X(j)

t be the jth
column for j ∈ [d] and defineDt,j := ϵ(t)xat,j(t). Note that for a fixed j ∈ [d], {Dτ,j}tτ=1 forms
a martingale difference sequence with respect to the filtration {Fτ}t−1

τ=1 with Fτ := σ(Hτ ) is
the σ-algebra generated by Hτ and F1 = ∅. Also note that

E(eαDt,j | Ft−1) ≤ E{eα
2σ2x2at,j

(t)/2} ≤ E{eα2σ2x2max/2}.

Thus, using Lemma D.2.11, we have the following proposition:

Proposition D.2.12 (Lemma EC.2, Bastani and Bayati (2020)). Define the event

Tt(λ0(γ)) :=

max
j∈[d]

∣∣∣ϵ⊤t X(j)
t

∣∣∣
t

≤ λ0(γ)

 ,
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where λ0(γ) = xmaxσ
√

(γ2 + 2 log d)/t. Then we have P {Tt(λ0(γ))} ≥ 1− 2 exp(−γ2/2).

The proof of the above proposition mainly relies on the martingale difference structure and
Lemma D.2.4. It is important to mention that the proof does not depend on any particular
algorithm.

For notational brevity we define ∥Xt∥ := maxj∈[d]
√

(X⊤
t Xt)j,j. Next, we will set γ =

γt :=
√
2 log t. Hence by Proposition D.2.12 we have P {Tt(λ0(γt))} ≥ 1 − 2t−1. Also recall

that, under Gt,1 and Gt,2, we have

1√
8Kξ

≤ ∥Xt∥ /
√
t ≤

√
4c9ϕuϑ2 logK. (D.17)

Also, under Gt,2 ∩ Tt(λ0(γt)) it follows that

max
j∈[d]

∣∣∣ϵ⊤t X(j)
t

∣∣∣
σ

≤ xmax

√
2t(log d+ log t) = λt

(D.18)

Now, we are ready to present the proof of the main regret bound.

Main regret bound

Recall the definition of regret is R(T ) =
∑T

t=1∆at(t), where ∆at(t) = xa∗t (t)
⊤β∗− xat(t)⊤β∗.

Next, we partition the whole time horizon [T ] in to two parts, namely {t : 1 ≤ t ≤ T0} and
{t : T0 ≤ t ≤ T}, where T0 will be chosen later. Thus, the regret can be written as

R(T ) =

T0∑
t=1

∆at(t)︸ ︷︷ ︸
R(T0)

+
T∑

t=T0+1

∆at(t)︸ ︷︷ ︸
R̃(T )

.

All notations for expectation operators and probability measures are given in Appendix D.3.
Now by Assumption 5.2.2(a) and 5.2.3(a) we have the following inequality:

E{R(T0)} ≤ 2xmaxbmaxT0. (D.19)

Next, we focus on the term R̃(T ). First, we define a few quantities below:

ϕt(s) := inf
δ

{
∥Xtδ∥2 |Sδ|

1/2

t1/2 ∥δ∥1
: 0 ̸= |Sδ| ≤ s

}
,

ϕ̃t(s) := inf
δ

{
∥Xtδ∥2
t1/2 ∥δ∥2

: 0 ̸= |Sδ| ≤ s

}
.

(D.20)
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Now set

ψt(S) = ϕ̄t

((
2 +

40

A4

+
128A−1

4 x2max

Ψ(S, Σ̂t)

)
|S|

)
,

ψ̃t(S) = ϕ̃t

((
2 +

40

A4

+
128A−1

4 x2max

Ψ(S, Σ̂t)

)
|S|

)
.

Note that ϕ̄t(s) ≥ ϕ̃t(s), hence ψ̄t(S) ≥ ψ̃t(S).
Recall that

5λt/3 ≤ λt ≤ 2λt, (D.21)

under Gt,1 and Gt,2. Also define the following events:

Et :=

{∥∥∥β̃t+1 − β∗
∥∥∥
1
≤ Q4σxmaxKξ(D∗ + s∗)

√
log d+ log t

t

}
.

where D∗ = {1 + (40/A4) + 128A−1
4 x2max/Ψ(S∗, Σ̂t)}s∗ and Q4 is large enough universal

constant as specified in Theorem D.3.1. Also we have

ψ̄t(S) ≤ ϕ̄t

((
2 +

40

A4

+
64A−1

4 x2max

Ψ(S, Σ̂t)

λ

λ̄

)
|S|

)
, and

ψ̃t(S) ≤ ϕ̃t

((
2 +

40

A4

+
64A−1

4 x2max

Ψ(S, Σ̂t)

λ

λ̄

)
|S|

)
.

Next, by Proposition D.2.10, the event

Gt,3 :=
{
Ψ(S∗; Σ̂t) ≥

1

C1ξK

}
holds with probability of at least 1−2 exp{−c2κ2(ξ, ϑ,K)t+Cs∗ logK+Cs∗ log(3d/ε)} −
2 exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)}. For, notational brevity, we define

C̃ := C1ξK.

Also, define the event

Gt,4 :=
{
ψ̃2
t (S

∗) ≥ 1

8Kξ

}
.

Noting that ψ̃2
t (S

∗) = ϕmin(C̃1s
∗; Σ̂t) with

C̃1 = 2 +
40

A4

+ 128A−1
4 x2maxC̃,
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an argument similar to the proof of Proposition D.2.5 yields

P (Gt,4) ≥ 1− 2 exp{−c2κ2(ξ, ϑ,K)t+ C̃1s
∗ logK + C̃1s

∗ log(3d/ε)}

− exp
{
−c8 log(K)t+ C̃1s

∗ logK + C̃1s
∗ log(3d/ε)

}
.

(D.22)

Finally, Using Proposition D.2.12 with γ = γd and the result of Theorem D.3.1, we have
the following:

P(Ect ) = EXtEXt
(
1Ec

t

)
= EXtEXt,rt

{
ΠX
t (Ect | rt)

}
= EXtEXt,rt

{
ΠX
t (Ect | rt)1Tt(λ0(γt))∩Gt,2

}
+ EXtEXt,rt

{
ΠX
t (Ect | rt)1T c

t (λ0(γt))∪∩Gc
t,2

}
≤ M1

ds∗
+

2

t
+ 2 exp{−c2κ2(ξ, ϑ,K)t+ Cs∗ logK + Cs∗ log(3d/ε)}

+ exp {−c8t logK + Cs∗ logK + Cs∗ log(3d/ε)}
(D.23)

for some large universal constant M1 > 0. Next, let Gt = ∩4i=1Gt,i. Under the event Et ∩ Gt,
we have

D∗ + s∗ ≤
(
2 +

40

A4

+
128C1Kξx

2
max

A4

)
︸ ︷︷ ︸

:=ρ

s∗,

and, ∥∥∥β̃t+1 − β∗
∥∥∥
1
≤M2ρσxmaxξK

{
s∗2(log d+ log t)

t

}1/2

,

where M2 is an universal constant depending on A4. Now we set

δt =M2ρσx
2
maxξK

{
s∗2(log d+ log t)

t

}1/2

.

It follows that under Et−1 ∩ Gt−1, we have the following almost sure inequality:

∆at(t) = x⊤a∗t (t)β
∗ − x⊤at(t)β

∗

= x⊤a∗t (t)β
∗ − x⊤a∗t (t)β̃t + (x⊤a∗t (t)β̃t − x

⊤
at(t)β̃t)︸ ︷︷ ︸

≤0

+x⊤a∗t (t)β̃t − x
⊤
at(t)β

∗

≤
∥∥xa∗t (t)∥∥∞ ∥β̃t − β∗∥1 + ∥xat(t)∥∞ ∥β̃t − β

∗∥1
≤ 2δt−1.
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Finally define the event

Mt :=

{
x⊤a∗tβ

∗ > max
i ̸=a∗t

x⊤atβ
∗ + ht−1

}
.

UnderMt ∩ Et−1 ∩ Gt−1, we have the following for any i ̸= a∗t :

x⊤a∗t (t)β̃t − x
⊤
i (t)β̃t =

〈
xa∗t (t), β̃t − β

∗
〉
+ ⟨xat(t)− xi(t), β∗⟩+

〈
xi(t), β

∗ − β̃t
〉

≥ −δt−1 + ht−1 − δt−1.

Thus, if we set ht−1 = 3δt−1 then x⊤a∗t (t)β̃t−maxi ̸=a∗t x
⊤
i (t)β̃t ≥ δt−1. As a result, in tth round

the regret is 0 almost surely as the optimal arm will be chosen with probability 1. Thus,
finally using Assumption 5.2.3(b), we have

E(∆at(t)) = E{∆at(t)1Mc
t
}

= E{∆at(t)1Mc
t∩Et−1∩Gt−1}+ E{∆at(t)1Mc

t∩(Et−1∩Gt−1)c}

≤ 2δt−1P(Mc
t) + 2xmaxbmaxP(Ect ∪ Gct )

≤ 2δt−1P(Mc
t) +

2M1xmaxbmax

ds∗
+

2xmaxbmax

d

+M3xmaxbmax exp{−c2κ2(ξ, ϑ,K)t+Ds∗ logK +Ds∗ log(3d/ε)}

+M4xmaxbmax exp {−c8 log(K)t+Ds∗ logK +Ds∗ log(3d/ε)} ,

(D.24)

where M3,M4 are large enough universal positive constants and D = max{C, C̃1} =

Θ(ϕuϑ
2ξK logK). Thus, if we set

T0 =M5max

{
1

κ2(ξ, ϑ,K)
,

1

logK

}
(Ds∗ logK +Ds∗ log(3d/ε)), (D.25)

for some large universal constant M5 > 0. Thus, we have

E{R̃(T )} ≤ 2
T∑

t=T0+1

δt−1P(Mc
t)︸ ︷︷ ︸

Iω

+M6xmaxbmax exp {−M7(Ds
∗ logK +Ds∗ log(3d/ε))}+O(log T ).

Recall that

δt =M2ρσx
2
maxξK

{
s∗2(log d+ log t)

t

}1/2

.
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For ω ∈ [0, 1] we have

Iω ≤ 2
T∑

t=T0+1

δt−1

(
3δt−1

∆∗

)ω
≍ {3M2ρσx

2
maxξK}

1+ω
s∗1+ω

∆ω
∗

∫ T

T0

(log d+ log u)
1+ω
2 u−

1+ω
2 du

≲


[3M2ρσx2maxξK]

1+ω
s∗1+ω(log d)

1+ω
2 T

1−ω
2

∆ω
∗

, for ω ∈ [0, 1),

[3M2ρσx2maxξK]
2
s∗2(log d+log T ) log T

∆∗
, for ω = 1.

(D.26)

For ω ∈ (1,∞) we have

Iω ≤ 2
T∑

t=T0+1

δt−1min

{
1,

(
3δt−1

∆∗

)ω}
. (D.27)

Note that

3δt−1

∆∗
≤ 1⇒ t ≥ T1 :=

[
3M2ρσx

2
maxξK

]2 s∗2 log d
∆2

∗
+ 1.

Thus. from Equation (D.27) we have

Iω ≤ 2

T1∑
t=T0+1

δt−1 + 2
T∑

t=T1+1

δt−1

(
3δt−1

∆∗

)ω

≤ 2

∫ T1

T0

M2ρσx
2
maxξK

{
s∗2(log d+ log u)

u

}1/2

du+ 2
T∑

t=T1+1

δt−1

(
3δt−1

∆∗

)ω
≲ 4

[
M2ρσx

2
maxξK

]2{s∗2(log d+ log T )

∆∗

}
+ 2Jω,

where Jω :=
∑T

t=T1+1 δt−1

(
3δt−1

∆∗

)ω
.

Finally, we give bound on the term Jω:
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Jω =
T∑

t=T1+1

δt−1

(
3δt−1

∆∗

)ω

=
T∑
t=2

δt−1

(
3δt−1

∆∗

)ω
1{3δt−1/∆∗ ≤ 1}

≤

(
3

ω
1+ωM2ρσx

2
maxξK

∆
ω

1+ω
∗

)1+ω ∫ T

1

{s∗2(log d+ log u)}
1+ω
2 u−

1+ω
2 1{u ≥ T1} du

≤

(
3

ω
1+ωM2ρσx

2
maxξK

∆
ω

1+ω
∗

)1+ω

{s∗2(log d+ log T )}
1+ω
2

∫ ∞

T1

u−
1+ω
2 du

= 2

(
3

ω
1+ωM2ρσx

2
maxξK

∆
ω

1+ω
∗

)1+ω

{s∗2(log d+ log T )}
1+ω
2
T

−ω−1
2

1

ω − 1

≍

{
6 [M2ρσx

2
maxξK]

2

(ω − 1)

}(
s∗2 log d

∆∗

)
.

(D.28)

Finally, for ω = ∞ it is easy to see that Jω = 0. Hence, the result follows from combing
Equation (D.19), (D.26), (D.27) and (D.28).

D.3 Posterior contraction result

We briefly describe the probability space under which we are working. Given β, the bandit
environment (along with the specific policy π) gives rise to the chosen contexts Xt and
rewards rt. Here we note that the chosen contexts depend not only on the arm-specific
distributions, but also on the sequence of actions taken under π till time t. Let Qt denote
the joint distribution of (β,Xt, rt) under β ∼ Π (prior) and (Xt, rt) | β ∼ SLCBt(β, π,Pϵ)
where the latter indicates the joint distribution of the observed contexts and rewards (till
time t) under the SLCB environment with policy π, true parameter β and Pϵ denotes the
noise distribution. We work under a likelihood misspecified regime, which we now discuss.

We assume that the true parameter is β∗ and the observations (Xt, rt) is generated from
Q∗
t := SLCBt(β

∗, π,P∗
ϵ ), where π is the policy given by the TS and P∗

ϵ is an arbitrary sub-
Gaussian distribution. We denote by Q∗X

t,rt the conditional distribution of rt given Xt arising
from the joint Q∗

t and EXt,rt to be the expectation under Q∗X
t,rt . Furthermore, we denote by

Q∗
Xt

the marginal distribution of Xt under the joint Q∗
t and EXt to be the corresponding

expectation.
For modelling purpose, we place prior Π on β and model the likelihood as (Xt, rt) | β ∼
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SLCBt(β, π,Pϵ), where Pϵ is taken to be N(0, σ2). This gives rise to a joint distribution Qt,
as discussed above. Now, let ΠX

t (· | rt) denote the posterior distribution of β given all others,
i.e. it is the conditional measure of β given Xt, rt arising from the joint Qt.

Thus, given a measurable set B, ΠX
t (B|rt) is a random measure, whose randomness is due

to (Xt, rt). In the following result, we consider EXt,rtΠ
X
t (B|rt), which is the expectation of the

above under Q∗X
t,rt . Thus, this quantity itself is a random variable, whose randomness is due

to Xt. The following result shows that, for B taken as the complement of an appropriate
ball around the true β∗, this random variable is small, almost surely Q∗

Xt
.

Theorem D.3.1. Consider the bandit problem in (5.1) and let Assumption 5.2.2-5.2.4 hold.
Also, assume that the prior on parameter β is modeled as (5.2) with

(5/3)λt ≤ λ ≤ 2λt, λt = xmax

√
2t(log d+ log t)

Then the following is true:

EXt,rt

{
ΠX
t

(
∥β − β∗∥1 ≥ Q4σxmaxKξ(D∗ + s∗)

√
log d+ log t

t

∣∣∣∣ rt
)
1Gt∩Tt(λ0(γt))

}
≲ d−s

∗
,

almost sure Xt, where Q4 is a universal constant and D∗ = D1s
∗ + D2x2maxs

∗

ϕ2comp(S
∗;Xt)

with D1 =

1 + (40/A4) and D2 = 128A−1
4 .

Proof. Without loss of generality we assume that σ = 1 as the bandit reward model can be
viewed as

(rt/σ) = Xt(β
∗/σ) + (ϵt/σ).

In this case λt = xmax

√
2t(log d+ log t) =: λ.

Next, define the event

T0 :=
{
max
j∈[d]

∣∣∣ϵ⊤t X(j)
t

∣∣∣ ≤ λ̄

}
.

By Lemma D.2.12 and condition (D.18), it follows that fro any measurable set B ⊂ Rd,

Et,rtΠX
t (B | rt) ≤

[
Et,rt

{
ΠX
t (B | rt)1T0

}]1/2
+

2

t
.

Recall that the errors ϵt is modeled as isotropic standard Gaussian independent of the fea-
tures. Thus, conditioned on the matrix Xt, model likelihood ration takes the following form:

Lt,β,β∗(rt) := exp

{
−∥Xtβ −Xtβ

∗∥22
2

+ (rt −Xtβ
∗)⊤(Xtβ −Xtβ

∗)

}
.
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Then by Lemma 2 of Castillo et al. (2015) it follows that∫
Lt,β,β∗(rt) dΠ(β) ≥

πd(s
∗)

p2s∗
e−λ∥β

∗∥1e−1,

where Π is given by (5.2). The only change that is needed in their proof to run the argument
in our case is the following upper bound:

∥Xβ∥2 ≤ ∥β∥1 ∥X∥ ≤ c9ϑ
2ϕu logK/(1− 3ε).

The last inequality follows from the fact that we are on the event Gt,1 by assumption. The
rest of the proof follows from the fact that λ ∈ (5λ/3, 2λ).

Thus by Bayes’s formula it follows that

ΠX
t (B | rt) =

∫
B Lt,β,β∗(rt) dΠ(β)∫
Lt,β,β∗(rt) dΠ(β)

≤ ed2s
∗

πd(s∗)
eλ∥β

∗∥1

∫
B
exp

{
−∥Xtβ −Xtβ

∗∥22
2

+ (rt −Xtβ
∗)⊤(Xtβ −Xtβ

∗)

}
dΠ(β).

(D.29)
Using Holder’s inequality, we see that on T0,

(rt −Xtβ
∗)⊤Xt(β − β∗) = ϵ⊤t Xt(β − β∗)

≤
∥∥ϵ⊤t Xt

∥∥
∞ ∥β − β

∗∥1
≤ λ̄ ∥β − β∗∥1 .

(D.30)

Therefore, on the event T0, the expected value under Eβ∗ of the integrand on the right hand
side of (D.29) is bounded above by

e−(1/2)∥Xt(β−β∗)∥22+λ∥β−β∗∥1 .

Thus, we have

ΠX
t (B | rt)1T0 ≤

ep2s
∗

πd(s∗)

∫
B
eλ∥β∥1−(1/2)∥Xt(β−β∗)∥22+λ∥β−β∗∥1 dΠ(β). (D.31)
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Now, by triangle inequality,

λ ∥β∗∥1 + λ ∥β − β∗∥1 = λ ∥β∗
S∗∥1 + λ ∥β − β∗∥1

≤ λ ∥β∗
S∗ − βS∗∥1 + λ ∥βS∗∥1 + λ ∥βS∗ − β∗

S∗∥1 + λ ∥βS∗c∥

= λ ∥βS∗∥1 + λ ∥βS∗c∥1 + (λ+ λ) ∥βS∗ − β∗
S∗∥1

= λ ∥β∥1 + (λ− λ) ∥βS∗c∥1 + (λ+ λ) ∥βS∗ − β∗
S∗∥1 .

(D.32)

Case 1: Suppose 7 ∥βS∗ − β∗
S∗∥1 ≤ ∥βS∗c∥1. Then the following holds:

(λ+ λ) ∥βS∗ − β∗
S∗∥1 = (λ− 3λ/4) ∥βS∗ − β∗

S∗∥1 + (7λ/4) ∥βS∗ − β∗
S∗∥1

≤ (λ− 3λ/4) ∥βS∗ − β∗
S∗∥1 + (λ/4) ∥βS∗c∥1 .

Using the above inequality in (D.32) we get

λ ∥β∗∥1 + λ ∥β − β∗∥1 ≤ λ ∥β∥1 + (λ− 3λ/4) ∥βS∗c∥1 + (λ− 3λ/4) ∥βS∗ − β∗
S∗∥1

= λ ∥β∥1 + (λ− 3λ/4) ∥β − β∗∥1
(D.33)

Case 2: Now assume 7 ∥βS∗ − β∗
S∗∥1 > ∥βS∗c∥1. We again focus on the inequality (D.32),

i.e.,

λ ∥β∗∥1 + λ ∥β − β∗∥1 ≤ λ ∥β∥1 + (λ− λ) ∥βS∗c∥1 + (λ+ λ) ∥βS∗ − β∗
S∗∥1

= λ ∥β∥1 + (λ− λ) ∥βS∗c∥1 + (λ− λ) ∥βS∗ − β∗
S∗∥1

+ 2λ ∥βS∗ − β∗
S∗∥1

= λ ∥β∥1 + (λ− λ) ∥β − β∗∥1 + 2λ ∥βS∗ − β∗
S∗∥1

≤ λ ∥β∥1 + (λ− 3λ/4) ∥β − β∗∥1 + 2λ ∥βS∗ − β∗
S∗∥1 .

(D.34)

Finally, by compatibility condition and Young’s inequality we get

2λ ∥βS∗ − β∗
S∗∥ ≤ 2λ

∥Xt(β − β∗)∥2 s∗1/2

t1/2ϕcomp(S∗;Xt)
≤ ∥Xt(β − β∗)∥22

2
+

2s∗λ2

tϕ2
comp(S

∗;Xt)
.

Using the above inequality in (D.34) we get

λ ∥β∗∥1 + λ ∥β − β∗∥1 ≤ λ ∥β∥1 + (λ− 3λ/4) ∥β − β∗∥1 +
∥Xt(β − β∗)∥22

2
+

2s∗λ2

tϕ2
comp(S

∗;Xt)
.

(D.35)
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Thus combining (D.33) and (D.35) we can conclude

λ ∥β∗∥1 + λ ∥β − β∗∥1 ≤ λ ∥β∥1 + (λ− 3λ/4) ∥β − β∗∥1 +
∥Xt(β − β∗)∥22

2
+

2s∗λ2

tϕ2
comp(S

∗;Xt)
.

(D.36)
Using the above result and recalling that 5λ/3 ≤ λ ≤ 2λ, we see that the right hand side of
(D.31) is bounded by

ΠX
t (B | rt)1T0 ≤

ed2s
∗

πd(s∗)
e

2s∗λ2

tϕ2comp(S
∗;Xt)

∫
B
eλ∥β∥1−(λ/4)∥β−β∗∥1 dΠ(β)

Controlling sparsity: For the set B = {β : |Sβ| > L} and L ≥ s∗, the above integral can
be bounded by

∑
S:s=|S|>L

πd(s)(
d
s

) (λ
2

)s ∫
e−(λ/4)∥βS−β∗

S∥ dβS

≤
∞∑

s=L+1

πd(s)4
s

≤ πd(s
∗)4s

∗
(
4A2

dA4

)L+1−s∗ ∞∑
j=0

(
4A2

dA4

)j
Thus, we have

EXt,rt
{
ΠX
t (B | rt)1T0

}
≲ exp

{
4s∗ log d+

2s∗λ2

tϕ2
comp(S

∗;Xt)
+ s∗ log 4− (A4/4)(L+ 1− s∗) log d

}
≤ exp

{
5s∗ log d+

4s∗λλ

tϕ2
comp(S

∗;Xt)
− (A4/4)(L+ 1− s∗) log d

}

Now recall that λ2 = 2tx2max(log d + log t) ≤ 4tx2max log d. Using this inequality in the
above display we have

EXt,rt
{
ΠX
t (B | rt)1T0

}
≲ exp

{
5s∗ log d+

16s∗(λ/λ)x2max log d

ϕ2
comp(S

∗;Xt)
− (A4/4)(L+ 1− s∗) log d

}
.

Thus, setting L ≥ 40s∗/A4 + s∗ +
64A−1

4 s∗x2max

ϕ2comp(S
∗;Xt)

(λ/λ) then there exists a universal constant
Q1 > 0 such that

EXt,rt
{
ΠX
t (B | rt)1T0

}
≤ Q1d

−s∗ .
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Control on prediction: Recall that λ/λ ≤ 2. Using this and the result in the previous
part, we can conclude that the posterior distribution is asymptotically supported on the even
B1 = {β : |Sβ| ≤ D∗}, where D∗ = D1s

∗ + D2x2maxs
∗

ϕ2comp(S
∗;Xt)

where D1 = 1 + (40/A4) and D2 =

128A−1
4 . By combining (D.29), (D.30) and the inequality λ ∥β∗∥1 ≤ 2λ ∥β − β∗∥1 + λ ∥β∥1

we can conclude that any Borel set B,

ΠX
t (B | rt)1T0 ≤

ed2s
∗

πd(s∗)

∫
B
exp

{
−∥Xtβ −Xtβ

∗∥22
2

+ 3λ ∥β − β∗∥1 + λ ∥β∥1

}
dΠ(β).

By the definition in (D.20) we have,

(4− 1)λ ∥β − β∗∥1 ≤
4λ ∥Xt(β − β∗)∥2 |Sβ−β∗|1/2

t1/2ϕt(|Sβ−β∗|)
− λ ∥β − β∗∥1

≤ 1

4
∥Xt(β − β∗)∥22 +

16λ
2 |Sβ−β∗|

tϕt(|Sβ−β∗ |)2
− λ ∥β − β∗∥1 .

(D.37)

Since |Sβ−β∗| ≤ |Sβ|+ s∗ ≤ D∗ + s∗ on the event B1, it follows that

ΠX
t (B | rt)1T0 ≤

ed2s
∗

πd(s∗)
e16λ

2
(D∗+s∗)/(tψt(S

∗)2)

×
∫
B
e−(1/4)∥Xt(β−β∗)∥22−λ∥β−β∗∥1+λ∥β∥1 dΠ(β).

(D.38)

Now we set B = B2 := {β ∈ B1 : ∥Xt(β − β∗)∥2 > L}, where L will be chosen shortly. Recall
that πd(s∗) ≥ (A1p

−A3)s
∗
πp(0). It follows that for set B, the right hand side of (D.38) is

upper bounded by

ed2s
∗

πd(s∗)
e16λ

2
(D∗+s∗)/(tψt(S

∗)2)e−(1/4)L2

∫
e−λ∥β−β

∗∥1+λ∥β∥1 dΠ(β)

≲ d(2+A3)s∗A−s∗
1 e16λ

2
(D∗+s∗)/(tψt(S

∗)2)e−(1/4)L2
d∑
s=0

πd(s
∗)2s︸ ︷︷ ︸

O(1)

.

Hence by a calculation similar to previous discussion yields that for

1

4
L2 = (3 + A3)s

∗ log d+
16λ

2
(D∗ + s∗)

tψt(S
∗)2

≤ Q2x
2
max(D∗ + s∗)

log d+ log t

ψt(S
∗)2

=: L2
∗,
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where Q2 > 0 is sufficiently large universal constant, then we have

EXt,rt
{
ΠX
t (B2 | rt)1T0

}
≤ 1

ds∗
.

Control on estimation: Similar to (D.37) we have

λ ∥β − β∗∥1 ≤
λ ∥Xt(β − β∗)∥2 |Sβ−β∗|1/2

t1/2ϕt(|Sβ−β∗|)

≤ 1

4
∥Xt(β − β∗)∥22 +

λ
2 |Sβ−β∗ |

tϕt(|Sβ−β∗ |)2
.

On the event B2, we thus have

λ ∥β − β∗∥1 ≤ Q3x
2
max(D∗ + s∗)

log d+ log t

ψt(S
∗)2

.

Finally on the event B2 ∩ Gt we have λ = xmax

√
2t(log d+ log t) and ψt(S∗)2 ≳ (Kξ)−1 and

it follows that

∥β − β∗∥1 ≤ Q4Kξxmax(D∗ + s∗)

√
log d+ log t

t
.

D.4 Technical lemmas

D.4.1 Proof of Lemma D.2.6

As A is symmetric positive definite matrix, by Cholesky decomposition there exists as lower
triangular matrix L such that A = LL⊤. Let v ∈ Sd−1

0 (s). Then there exists a index set J of
size s, such that supp(v) ⊆ J . Hence we have v ∈ EJ . Now consider the net Nε,J and let u
be the nearest point to v in Nε,J . Thus we have ∥v − u∥2 ≤ ε < 1 and ∥v − u∥0 ≤ s. Then
we have the following:

v⊤Av = (v − u)⊤A(v − u) + 2(v − u)⊤Au+ u⊤Au

≥ u⊤Au− 3εϕmax(s;A).
(D.39)

The second inequality follows from the following facts:

∣∣(v − u)⊤A(v − u)∣∣ ≤ ∥v − u∥22 ϕmax(s;A) ≤ εϕmax(s;A),
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∣∣(v − u)⊤Au∣∣ = ∣∣(v − u)⊤LL⊤u
∣∣

≤
√

(v − u)⊤LL⊤(v − u)
√
u⊤LL⊤u

=
√

(v − u)⊤A(v − u)
√
u⊤Au

≤ εϕmax(s;A)

Then the result follows from taking infimum over u and v in both sides.

D.4.2 Proof of Lemma D.2.8

The lower bound result is trivial. Hence, we focus on the upper bound part. As A is sym-
metric positive definite matrix, by Cholesky decomposition there exists as lower triangular
matrix L such that A = LL⊤. Let v ∈ Sd−1

0 (s). Then there exists a index set J of size s,
such that supp(v) ⊆ J . Hence we have v ∈ EJ . Now consider the net Nε,J and let u be the
nearest point to v in Nε,J . Thus we have ∥v − u∥2 ≤ ε < 1/3 and ∥v − u∥0 ≤ s. By a similar
argument as in the proof of Lemma D.2.6, we can conclude that

v⊤Av ≤ 3εϕmax(s;A) + max
u∈Nε

u⊤Au.

Thus by taking supremum over v on the left-hand side of the above display, we get

(1− 3ε)ϕmax(s;A) ≤ max
u∈Nε

u⊤Au⇐⇒ ϕmax(s;A) ≤
1

1− 3ε
max
u∈Nε

u⊤Au.

D.5 Pseudo code of VBTS and other tables

Algorithm 3: Variational Bayes Thompson Sampling
Set H0 = ∅;
for t = 1, · · · , T do

if t ≤ 1 then
Choose action at uniformly over [K];

end
else

Compute VB posterior Π̃t−1 from Π(· | Ht−1) using CAVI ;
Generate sample β̃t ∼ Π̃t−1;
Play arm: at = argmaxi∈[K] xi(t)

⊤β̃t;
end
Observe reward rat(t);
Update Ht ← Ht−1 ∪{(at, rat(t), xat(t))}.

end
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Table D.1: Time comparison among the competing algorithms.

Type Algorithm
Mean time of execution (seconds)

Equicorrelated Auto-regressive

Non-TS

LinUCB 15.41 16.30

DR Lasso 3.12 3.13

Lasso-L1 3.57 3.59

ESTC 1.01 1.05

TS

LinTS 1344.39 1346.46

BLasso TS 1511.68 1455.53

VBTS 29.33 27.65
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