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Abstract

The sense of smell evolved for animals to find food and mates as well as detect dangers.
For the human experience, the sense of smell is fundamental to appreciating good food and
avoiding eating rotten food. It is also critical in detecting dangers such as natural gas leaks
(mercaptan is added to natural gas to give an otherwise odorless gas a characteristic odor).
Uncovering the relationship between odor percepts and molecular structures can increase our
knowledge of our surrounding environments as well as give us insights into the neuroscience
of the human olfactory system at a low cost. However, the mismatch between the structural
similarity of molecules and odor similarity complicates the olfaction problem: two molecules with
similar structures can smell very different and vice versa. This study primarily exploited two
psychophysical datasets in which pre-trained (Dravnieks [7]) and novice human subjects (Keller
[15]) reported their subjective ratings towards a selection of odor descriptors respectively. We
compared the performance of classical machine learning regression methods on pre-computed
physicochemical descriptors with that of Graph Neural Networks (GNN) on raw molecular
graphs. We found that GNN demonstrated a greater competency in learning psycho-chemical
data obtained from trained panelists, while conventional machine learning techniques are more
suitable in learning descriptor applicability generalized from untrained participants. We also
implemented transfer learning and found that Dravnieks data that includes higher olfaction
experience levels can improve the prediction of odor percepts of ordinary humans with little
sensory training. Such capability of GNN to learn complicated general odor percepts by subjects
across domain knowledge levels offers a new perspective on more efficient data utilization in the
olfaction field.

1 Introduction

The olfactory sense, colloquially the sense of smell, is an indispensable part of human life. It plays an
important role in health-related issues, such as affecting human appetite, food hygiene assessment,
and identification of safety issues. Beyond survival problems, it is also associated with quality-of-life,
by collaborating with taste sensation to produce flavors that enhance the consuming experience of
foods and drinks. It also helps us appreciate fragrance and floral smell [39]. With odorous molecules
encoded by a large family of odor receptors and synthesized to smell sensation in a “combinato-
rial” approach, in theory, humans are able to discriminate more than a million odorants even in
minuscule quantities [32]. However, the synthetic nature of odor percepts and the fact that odorants
are often parts of a mixture in practical life make it difficult to associate odorants with a specific
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odor percept. For example, in coffee aroma, 2-furfurylthiol, methanethiol, and 3-mercapto-3-methyl
butyl formate are three among the many volatile chemical components of coffee, whose descriptors
in isolation are “roasted coffee”, “rotten cabbage”, and “catty”, respectively [1]. Hence, to obtain
a more precise picture of odorants’ smell, a higher concentration mixed with odorless inert gases is
preferred. On the other side, it’s noteworthy that some volatile chemicals are toxic to inhale at a
relatively high concentration, such as benzene from incomplete hydrocarbon combustion may cause
headaches upon the smell [2]. As a consequence, it’s inappropriate to neglect the potential harm of
directly gathering odor descriptors from odorants. If the odor percepts for a chemical can be learned
without needing to survey every existing volatile chemical through real-life experiments, there would
be significant advancements in perfumery and human understanding of the surrounding environment.

A molecule is the smallest unit that preserves chemical properties [3]. The excitement mechanism of
odor receptors by odor molecules [39] implies a potential relationship between odor and molecular
structures. In the field of chemistry, a molecule consists of two or more atoms held together by
chemical bonds. The choices of atom types, chemical bonds, and molecular chirality contribute to a
massive and diverse set of existing molecules. Though it has been revealed that the presence of some
functional groups could indicate the odor, such as ester is often associated with a fruity odor [26],
exceptions are not rare in this field. In particular, small variations in the existence and positions
of certain atom or function groups could exert a great influence on a molecule’s perceived smell.
On the other hand, molecules with significantly different molecular compositions or structures may
generate a similar odor profile [29]. This further complicates the task of understanding human odor
perception of certain molecules.

Anosmia, also known as partial or full loss of smell, has attracted increasing attention as its often
reported in conjunction with symptoms of COVID-19 [12]. The surge of publications and citations
after the year 2020 (Figure 1) reflects climbing research attention in studying olfaction through
quantitative learning methods, where I included “Machine” to take into account that machine learn-
ing is one of the widely used and powerful tools for quantitative odor-structure research. The sense
of smell can be expressed and communicated in multiple ways. Human-generated odor labels to
characterize odor percept help simplify the olfaction prediction problem into a multi-label classifica-
tion task, often combined with natural language processing [29, 10, 30]. To avoid the potential bias
introduced by differences in participants’ vocabulary and cultural backgrounds, physiological signals
sometimes are considered a more objective representation of odor percepts. For example, calcium
imaging recordings that indicate neural activities were used to model participants’ odor percepts
[27]. Another direct approach is through odor receptor response modeling is investigated in species
for which receptor responses are easily accessible, such as Drosophila [8]. However, due to the fact
that only around 10% of human odorant receptors have a published matching ligand [20], human
odor receptor responses have largely remained unexplored. Other proposed measurements of odor
percepts include pairwise perceptual similarity for odorants [34].

In this study, we focus on extending the broad machine learning efforts from the multi-label clas-
sification of odor labels to predicting the numerical descriptor applicability of odorants. Two psy-
chophysical odor perception datasets [15, 7] that reflect different olfaction experience levels are
targeted. I first modeled descriptor applicability from molecular representation with the help of
machine learning regression methods and Graph Neural Networks for two prediction tasks. Then,
we infer how informative the Graph Neural Network (GNN)-learned embeddings are by investigating
their performance when feeding into classical machine learning models (Support Vector Machine,
K-Nearest Neighbors, Random Forest, and Gradient Boosting). In the end, I carried out transfer
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Figure 1: Publication and Citation Trend for ”machine AND (olfaction OR smell)” in recent 30
years. Note that the data for the year 2023 is removed since only partial data is available.

learnings across two prediction tasks, in hope of providing a perspective into whether odor percepts
data reflects higher olfaction experience levels can improve understanding of layman odor percepts
and increase models predicting power.

2 Methods and Materials

2.1 Data overview

With the advancement in modeling techniques, there increases a demand for reliable benchmark psy-
chophysical data to enhance the predictive ability and robustness of olfaction [9]. The high-quality
human olfactory database is hard to establish as a result of the costly and laborious odorant prepa-
ration and participant recruitment. The conjecture that human odor perception space possesses
more than thousands of dimensions [11] makes the olfaction modeling intimidating. In addition,
data integration from multiple sources requires proper coordination among various experimental
protocols and procedures, which even further complicates the situation. A current effort by pyrfume
project [5] maintains an archive for cleaned human and animal olfactory perception data from many
recently published research is one among all attempts to put available olfaction data for easier access.

Domain experience makes a difference in human smelling behavior [35], as a higher level of olfaction
training tends to lead to a more accurate odor profile characterization. This study aims to under-
stand how domain knowledge level affects modeling behavior towards odor descriptor applicability
(section 2.1.1) and how could modeling techniques transfer olfaction knowledge across datasets to
aid in understanding lay people’s odor percepts. Specifically, there are two datasets of interest: Atlas
of odor profiles by Dravnieks [7] (Dravniek dataset) from trained panelists, and the olfactory per-
ception dataset for chemically diverse molecules collected by Keller’s team [15] (Keller dataset)from
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healthy untrained subjects. They all adopted a continuous representation of odor percepts for a fixed
selection of odor descriptors. A non-zero score suggests the perceived applicability of a descriptor
for an odorant, while its numerical value reflects the percentage of applicability, which contains level
information regarding how much the perceived applicability is. Such a representation also tries to
embody the high-dimension nature of hypothetical olfactory space to the best of current knowledge.

2.1.1 Odor Descriptor Applicability

The study of Dravnieks [7] defined the calculation of odor descriptor applicability (also known as
percentage applicability, or PA) as an odor percept measurement that balances across raw individual
ratings (Equation 1-3). The PA is specified by a descriptor d of interest for a particular chemical
C. As Keller’s research team publicly documented the first-hand subjective ratings for intensity,
pleasantness, and a selection of 20 odor descriptors, we calculated descriptors’ PA using the same
formula for each chemical in the interest of consistency with Dravnieks’ data. It is noteworthy
that odorants were tested at two concentration levels in Keller’s study. In order to differentiate odor
profiles of different chemicals, I obtained PA from odor responses collected at a higher concentration.

PU
(d)
C =

∑N
i=1 1{siC(d) > 0}

N
. . . Percentage of Usage (1)

Score level
(d)
C =

∑N
i=1 s

i
C(d)

S ·N
(2)

PA
(d)
C =

√
PU

(d)
C · Score level

(d)
C . . .Percentage of Applicability (3)

Note: S is the full potential score of an odor descriptor to describe any chemical C. siC(d) is the
score given by individual i to indicate to how much extent the odor descriptor d is applicable to
describe the chemical C (0 ≤ siC(d) ≤ S). N is the number of people who participated in describing
the odor of C in the experiment.

2.2 Odor Descriptors Choice

The research team of Dravnieks and Keller adopted different sets and different numbers of odor
descriptors (Figure 2). With conventional machine learning techniques requiring the agreement in
the format and meaning of target values between training and testing data, our purpose of cross-
implement trained models calls for the need of matching odor descriptor pairs between two datasets.

Multiple pairs of odor descriptors share a common descriptive word instead of exactly forming a one-
to-one mapping relationship. For example, appropriate synthesization rules need to be developed
before we can generalize descriptor applicability for "OAK WOOD, COGNAC", "WOODY, RESINOUS",

"CEDARWOOD" from Dravnieks dataset into a single surrogate for "WOOD" used Keller’s dataset. Con-
sidering that odor perception between trained and naive subjects is correlated to a certain degree
[13], we computed the correlation of PA across descriptors used in two studies on 61 overlapped
chemicals (Figure S1). I thresholded the overlapping odor descriptor pairs by 0.5 and obtained
a highly-correlated one-to-one matching odor descriptor lists, as suggested in Table 1. Note that
BAKERY (FRESHBREAD)-BAKERY pair was left out as a result of its negligible standard deviation in
the Dravnieks dataset. In our final selection of descriptor pairs, the distribution of their descrip-
tor Applicability(PA) (Figure S2) varies as a consequence of raters’ domain knowledge as well as a
different sampling of chemicals.
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Figure 2: Wordcloud of odor descriptors used in Keller (left) and Dravnieks (right) tasks

Descriptors (Keller) Descriptors (Dravnieks) Correlation
BAKERY BAKERY (FRESH BREAD) 0.6781
SWEET SWEET 0.8291
GARLIC GARLIC, ONION 0.6788
SWEATY SWEATY 0.7317
DECAYED PUTRID, FOUL, DECAYED 0.7818
GRASS HERBAL, GREEN,CUTGRASS 0.5265

Table 1: Matching descriptor pairs with high correlation scores rounded into 4 digits. The final
descriptor pairs are marked in the form of italics

2.3 Molecular Representation

Encoding irregular-shaped molecules into a machine-readable format is one of the cores of quantita-
tive property-structure relationships for olfactory percepts [38]. Feature-based and computer-learned
representations as two widely used molecular representations that will be adopted in this study.

2.3.1 Mordred descriptors

Mordred [24] is a free descriptor-calculation software application that computes more than 1826
molecular descriptors, including those implemented in RDKit and those describing chemicals’ topo-
logical/geometrical indices. Since [42] has demonstrated the feasibility of feature-based methods
combined with a survey of conventional machine learning classifiers in learning human ”musk” odor
percept on a limited size of molecules, we explored regression tasks for descriptor applicability(PA)
through feature-based olfaction learning.

In Mordred molecular descriptors computation, missing value occurs when some molecular descrip-
tors are incompatible with characterizing certain chemicals. We retained molecular descriptors with
≤ 10% NA rate across all participating chemicals, which resulted in a set of 1128 descriptors. With
the intention of improving models’ predictive performance and avoiding overfit issues, we removed
redundant information in Mordred descriptors. We first filtered out those molecular descriptors
with exact 0 variances, that is, those features whose values are constant across all molecules within
a dataset. Then, by thresholding colinearity to below 0.5, we obtained a final feature set consisting
of 54 meaningful and weakly correlated features (Figure 3).
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Figure 3: Feature selection process diagram

2.3.2 Computer-learned Representations

Representing chemicals’ physicochemical attributes by a set of pre-computed molecular descriptors
could potentially be either incomprehensive or biased. Hence, a majority part of this study is to
investigate computers’ capacity of learning odor percepts from raw molecular graph representations
and their implication for addressing the limited data issues in olfaction fields.

A graph-based representation of molecules regards atoms as vertices and chemical bonds as edges
that connect vertices. Atom-level features, edge indices, and edge attributes are encoded that
help reconstruct the graph structure and store necessary structural information, including atom
composition, aromatic, and hybridization information. An example of how Thioglycolic Acid’s
graph representation and structural formula are connected is illustrated in Figure 4 and 5. Once the
training of neural network based on graphs is onset, GNN layers will learn embeddings from nodes
and edges through optimization and message passing mechanism between parts of the graph. The
intermediate embeddings are extracted as computer-learned molecular representations and serve as
inputs to prediction networks. Further details about the GNN architecture will be discussed in
section 2.4.2.

Figure 4: The structural
formula of Thioglycolic Acid

Figure 5: The computer-based representation of Thioglycolic
Acid

2.4 Models

2.4.1 Machine Learning Regression Methods

Built upon the preprocessed Mordred features, we employed simple linear regression, support vector
machine (SVM), random forest regression method (RF), gradient boosting (XGB) regression method,
and k-neighbors for regression (KNN). Hyperparameters are determined by grid-search in a five-
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fold cross-validation(Supplemental materials). Each selected learning method represents a specific
category of statistical learning method.

2.4.2 Graph Neural Networks

The GNN has proven to handle graph data well in fields including quantitative structure-odor
relationship [33], especially for odor label classification tasks. I proposed using a GNN (Table
S2, Figure 6) that adopted Plain Generalized Graph Networks (GEN) [18] for graph convolution
that updates using features both from nodes and edges at each layer. Messages of neighboring
nodes and edges are aggregated in a permutation invariant manner, achieved by a differentiable and
learnable Softmax message aggregation method. Furthermore, the aggregation effect is enhanced
and improved through the implementation of a message normalization method, which combines
messages with other features during the normalization. All learned representations from graph
convolution will be downsampled in global-add-pooling and the reduced-size embeddings are used
for classification or regression tasks through a final 2-layer fully connected neural network.

2.4.3 Adjust hyperparameters to prevent overfit

Both two aforementioned datasets maintain only hundreds of molecules, which is not traditionally
considered a sufficient amount for model fitting. We tried to avoid the potential overfitting problem
by adjusting machine learning regression methods’ hyper-parameters, such as scaling down the
number of trees trained in Random Forest and Gradient Boosting models. And for perceivably
complex neural networks, I increase the dropout rate at each layer in prediction neural networks to
0.47 in an attempt to prevent overfitting. Additionally, previous work [42] on classifying ”musk”
label and ligand-receptor matching demonstrated the feasibility of machine learning models to learn
on a relatively small sample (47 samples) on molecular fingerprints while still achieving satisfactory
accuracy (≥ 98%) on a larger size of unseen test data (224 odorants). This empirical evidence points
to a promising potential for implementing machine learning for the human sense of smell even with
very limited psychophysical data and becomes one of the important starting points of this project.

2.5 Measurement of fit

As a measurement for model performance, we are mostly interested in explained variance, ab-
breviated as EV, complemented by root mean squared error (RMSE) and correlation with
ground-truth value. EV calculates the ratio of explained variance by the model to the total variance
in the target values. It has a similar formula as the coefficients of determination (R2 score), while
EV forces the score to take finite numbers below 1. An EV closer to 1 implies a better fit of the
model, and smaller EVs are worse. RMSE estimates the closeness of predictions to their real value
and correlation implies to what extent the relationship between predictions and true values can be
generalized as a linear relationship.

2.6 Transfer Learning

Transfer learning brings solutions to a particular problem to solve a different but related problem
[36]. In ideal scenarios, knowledge transfer occurs during the transfer learning, which consequently
improves machine learning processes or grows the learning more robust. The transfer learning process
and requirement for the task are dependent on the model architecture choice. As briefly mentioned
in section 2.2, simple machine learning models take the same feature inputs and regress towards the
same hard-coded target, that is, our matched odor descriptor pairs. For GNNs, however, they can
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Figure 6: Graph Neural Network’s schematic [30]. Each molecule is first transformed into a graph
representation. The convolution layer extracts features from vertices and edges to form a graph
vector, which is then used for regression through fully-connected neural networks. Embeddings were
extracted before the implementation of the prediction network, as learned meaningful molecular
representation for olfaction studies

be fine-tuned to regress towards entirely different target sets by operating on the molecular graph
of the same representation structures.

3 Related Work

Deciding how algorithms see and process molecular information is the first step for statistical studies
that use molecules as inputs. Physicochemical descriptors have been widely employed to represent
molecules in machine learning studies. They are generated by computational software such as Dragon
or Mordred, which encompass a wide range of topics, such as topological, geometrical, charges, edge
adjacency indices, and so on [14, 8, 31, 29, 6]. Existing efforts from data scientists have demonstrated
its power in odor percepts predicting tasks with an appropriate choice of algorithms [14]. Finger-
prints calculated through RDKit python library are also treated as a valuable source for gathering
molecular information for statistical learning [42, 43, 33, 29]. It is widely used as the baseline feature
extraction method in olfaction research in comparison to computer-learned features, [30, 21, 41] and
it collaborates well with neural networks [33]. On the other hand, given the extraordinary capa-
bilities of deep neural networks for extracting features from massive and noisy data, increasingly
more researchers started considering learning molecular features from raw molecular graphs [19, 28].
Other molecular representation methods within the machine have also been attempted, such as 2D
images of odor molecules generated from structure diagrams [4, 33] and sensor signals from electronic
nose [40, 37, 25].

What underlies the learning method choice is the pre-assumption of quantitative relationships be-

8



tween molecular structure and odor properties (QSOR) and the level of complexity for this task.
Though differing in purposes, machine-learning approaches have been extensively experimented with
to understand odor percepts from pre-computed physicochemical descriptors. SVM [31, 16, 23] and
tree-based methods are two main widely-explored approaches in classifying human-generated odor
descriptors [17, 29, 16], not only because of their desirable model performance but also for their
proper level complexity.

Deep learning has been recently put forward as a powerful technique to decode QSOR. [33] proposed
two pipelines using deep neural networks from molecular fingerprints and convolution neural net-
works based on images of chemicals for classifying human-generated odor labels. A similar task for
classification was attempted in [30] by adopting Graph Neural Networks. With a focus on proposing
novel architecture, it also tested the feasibility of transfer learning on a dataset for DREAM olfaction
data challenge[14], where the winning model for individual odor percept prediction was fitted using
random forest on Dragon physicochemical descriptors [22]. Other deep learning approaches obtain
molecular representation through feeding odorous gases to stimulate electronic sensors [40, 37].

4 Results and Discussion

4.1 Descriptor applicability modeling

Figure 7: Model performance for each odor descriptor, as measured by explained variance and root
mean squared error on the test set
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Figure 8: Proportion of odor descriptor-wise best-performing models measured by EV

Conventional machine learning on physicochemical descriptors has exhibited remarkable learning
ability in modeling individuals’ and population odor responses in DREAM Olfaction challenge [14]
that uses Keller dataset [15]. We compared learning descriptors applicability (PA) directly from
molecular graphs using GNN with conventional approaches based on Mordred descriptors. Figure
7 and 8 provide an overview of individual model behaviors on two prediction tasks among which
the main difference is the subjects’ prior olfactory training. Note that linear regression as the most
preliminary method was attempted, but the all-negative testing explained variance indicated that
a simple linear relationship has poor generalizability in this scenario. Therefore, it is omitted in all
the following visualization. The criteria for hyper-parameter search for all models are based on the
weighted explained variance (EV) as criteria across all odor descriptors. Best-performing GNN for
two prediction tasks was selected to achieve high but comparable weighted EV for comparison of
model architecture in different prediction tasks.

With limited samples and unprocessed molecular structure information, GNN achieved an overall
better performance both predicting values and explaining variance in Dravnieks predicting task
(Figure 7-8). However, machine learning approaches especially random forest and gradient boosting
model predominantly outperformed all other models in Keller prediction tasks. This indicates that
the complex neural network structure potentially has advantages in decoding quantitative odor-
structure relationship (QSOR) for trained people, while pre-computed physicochemical features team
better with simple machine learning with appropriate complexity level in the quantifying lay people’s
sense of smell.

4.2 Embeddings as meaningful feature inputs for machine learning

The graph convolution layers of GNN generalize a representation associated with human population
odor percept for each molecule. We extract the output of the pooling layers as learned embeddings,
which are sequentially used as input for prediction neural networks in the whole GNN architecture.
Considering Mordred descriptors have pre-fixed descriptor lists and sometimes suffer from missing
values and colinearity among features, I hypothesize that GNN-learned embeddings can be used as
more informative and comprehensive molecular features for simple machine learning techniques to
learn on.
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Figure 9: EV and RMSE on the same test set. Every point in the plot represents the metric-
of-interest of an odor label for the prediction task (row name) under the model (column name).
On each subplot, the x-coordinate is the odor descriptor-specific test metric of the model learned
from Mordred features, and the y-coordinate is the test metric of the model fitted on the learned
embeddings. On the diagonal dash line, odor descriptor-specific machine learning models perform
equally well for a certain metric-of-interest.

For Keller’s prediction task, there’s a noticeable improvement in all machine learning regression
models’ ability to explain variances in descriptor applicability when used learned embeddings as
input (Table 2, Figure 9). This implies the enhancement of models’ capability of capturing the
complexity of underlying relationships. However, as suggested by a consistent increase in RMSE for
all odor descriptors, the shifting to learned embeddings leads to an overall worsened performance
in predicting exact descriptor applicability value. Hence, embeddings may complement the model
complexity by incorporating information outside the pre-fixed Mordred descriptor list, while extra

11



Methods EV RMSE

SVM 71.23% 73.29%

KNN 62.33% 69.86%

XGB 36.99% 36.99%

RF 55.48% 48.63%

Methods EV RMSE

SVM 100% 4.76%

KNN 100% 4.76%

XGB 80.95% 0%

RF 52.38% 0%

Table 2: The percentage of all odor descriptors towards which machine learning regression models
from GNN-embeddings outperformed the ones on Mordred descriptors, as measured by each metric
of interest in the column. The comparison is made specific to each prediction task (left: Dravnieks,
right: Keller)

information can risk introducing additional noise in predicting the exact value for lay-human’s odor
percepts.

On the other hand, although the statistics in Table 2 appear to support the superiority of using
XGB with Mordred descriptors, the approximately even layout of odor descriptor-wise metrics in
Figure 9 suggest no observable difference between two feature representation when they collaborate
with machine learning regression model in Dravnieks prediction task. By referring back to the GNN
performance discussed in Section 4.1, one could infer that the complexity added by the two-layer
fully-connected prediction networks is crucial to understanding and predicting odor percepts from
pre-trained people.

To sum up, when it comes to learning lay-people’s olfaction patterns reflected by descriptor appli-
cability, one may benefit from replacing Mordred descriptors with graph convolution layer-learned
embeddings to increase machine learning regression models’ capability. Nevertheless, such a re-
placement can suffer from deviation from accurate predicting values. In addition, it exhibited little
impact when experimented on olfaction responses gathered from trained participants.

4.3 Transfer learning across olfaction experience levels

Despite the emerging efforts in the olfaction field [5], the choice of odor descriptors used, experimen-
tal procedure, and participants’ olfaction knowledge makes data integration difficult and laborious.
On the other hand, by nature of human learning trajectory, we hypothesize that olfactory responses
from experienced panelists can boost understanding of lay people’s odor percepts from molecular
structures. To validate our conjecture, we conducted transfer learning for all previously discussed
models originally trained on the Dravnieks dataset to capture QSOR in the Keller prediction task.
Although the machine learning models require us to focus on odor descriptor matching pairs for
meaningful comparison, we are also able to compare all transfer learning results by GNN with the
original GNN trained for the Keller prediction task.

Among five matching pairs, "SWEET" and "GARLIC" were consistently well-understood as all transfer
learning models, with Gradient Boosting, Random Forest, original GNN, and transfer learning GNN
model from Dravnieks task achieving competing explained variance (Figure 10). For the rest three
descriptor pairs ("SWEATY", "DECAYED", and "GRASS") toward which all simple machine learning
failed to capture an instrumental QSOR, both transfer learning and original GNN uncovered com-
plex QSORs as demonstrated by a strictly positive explained variance.
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Figure 10: Explained Variance of transfer learning on the test set for odor descriptor matching pairs.
The transfer learning result is also compared to the original GNN fully trained and tested on the
Keller prediction task.

Neural networks architecture enables the transfer learning with varying targets through modifying
and tuning final prediction networks. We studied the prediction correlation with ground-truth values
and models’ capacity to explain targeting variance for all odor descriptors adopted by the Keller
dataset. Figure 11 shows no remarkable change in the interquartile range of explained variance
and correlation. For the majority of odor descriptors used in Keller’s task, transfer learning did
not exert an impactful influence on improving model performances. However, the shortening of the
whisker range in boxplots for transfer learning suggested significant improvement in both EV and
correlation for the worst predicted odor descriptors by the original GNN. This complements our
discovery discussed in Figure 10 that the model performance enhancement is dependent on the odor
descriptor of interest. It points to a promising potential of incorporating psychophysical olfaction
data that reflect domain knowledge to advance deep learning-based models in understanding ordinary
people’s odor percept.

5 Conclusion

In this study, I focus on modeling the odor descriptor applicability gathered from participants at
two olfactory experience levels: the Dravnieks dataset from trained panelists, and the Keller dataset
from untrained volunteers. Conventional machine learning regression models (Gradient Boosting,
Random Forest, K-Neighbors, and Support Vector Machine) based on Mordred physicochemical
molecular descriptors and Graph Neural Networks based on raw molecular graphs are explored on
two prediction tasks. It is unclear and difficult to establish to what extent professionally trained
people’s olfaction experience agrees with ordinary people in the same smelling task. Taking the
advantage of various machine learning techniques in the data science field, I explored their behavior
on the olfactory experience of people with different domain knowledge training. First, I discovered
that complex neural networks-based models demonstrated better capabilities of learning descriptor
applicability from trained people, while less complex model structures such as random forest and
gradient boosting generalize lay people’s odor percepts better. Furthermore, I compared the in-
formativeness of Mordred molecular descriptors with GNN-learned embeddings from raw molecular

13



Figure 11: Performance distribution of explained variance (left) and correlation (right) by Transfer
Learning (TL) model and Graph Neural Networks (GNN) model in Keller prediction task

graphs as feature input for machine-learning models. Compared to descriptor representation, pre-
dictors trained on learned embeddings explain a larger portion of variance in the target values from
Keller’s task but had greater difficulties predicting exact descriptors applicability. In the end, the
whole transfer learning process validated our hypothesis that the incorporation of psychophysical
olfactory data from professionally trained subjects could help build a more predictive deep learning
model for ordinary people’s sense of smell.

The research efforts discussed in this thesis complement current machine learning research for olfac-
tion by integrating human subjects’ domain knowledge level differences to better inform ordinary
people’s sense of smell. In future studies, various algorithm mechanisms could be experimented with
to accommodate QSOR, such as attention mechanism or graph transformer. Moreover, progress
data integration research could generally advance olfaction research, as it paves ways to establish
benchmark datasets with satisfactory sample sizes in pursuit of robustness and predictiveness of
models.
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A Supplemental Materials

A.1 Tables and Figures

AATSC0i ATSC3c NaaS PEOE VSA4 FCSP3

C1SP2 EState VSA4 ATSC7d NssS SaaNH

nAHRing JGI3 nCl Xch-7dv AATSC1v

RPCG SMR VSA6 SaaO AATS1m ATSC5se

JGI8 NdssC JGI6 nBase ATSC3m

nFaHRing n8FHRing IC2 n9FARing NdsCH

n8FRing JGI7 EState VSA3 PEOE VSA10 JGI4

C2SP1 ATSC2dv PEOE VSA2 n10FAHRing PEOE VSA3

ATSC6se NssNH n8FARing SdsN NdCH2

SsssN JGI5 EState VSA6 IC0 BalabanJ

NtN SlogP VSA11 PEOE VSA9 n8FAHRing

Table S1: Final Mordred descriptor sets as feature inputs for conventional machine learning regres-
sion methods, using colinearity criteria

Keller Dravnieks

Deep GCN Layer Plain Generalized Graph Networks: [15, 20, 27] [15, 20, 27, 36]

LayerNorm normalization LayerNorm normalization

ReLU activation ReLU activation

Dropout rate = 0.47 0.47

Pooling Layer Global add pool with dimension 175 175

Regressor Networks Two fully-connected layers at dimension [96,36,N] [96,36,N]

N= 21: number of predicting columns N= 146

Table S2: Hyper-parameter of best-performing GNN model trained for individual prediction task
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Figure S1: Correlation Heatmap for Descriptor Applicability on overlapped 61 chemicals in
Dravnieks’ dataset and Keller’s dataset

Figure S2: Boxplot for matched odor descriptor pairs.

A.2 Data And Code Availability

1. Data Availability: The raw dataset for Dravnieks and Keller’s prediction tasks are archived
by pyrfume project at https://github.com/pyrfume/pyrfume-data.

2. Code Availability: The code used to process data, the experimental code, and visual-
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ization results are provided at https://github.com/rrrrn/ExploringMachineOlfaction. Hyper-
parameter selected for each odor descriptor and models’ test performance can also be found
under the ‘result’ directory.
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