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ABSTRACT

Settling the Minimax Regret in Online Learning to Rank with Top-k Feedback

by

Mingyuan Zhang

Online learning to rank is a supervised machine learning problem where the

rankers are trained on streaming data. Chaudhuri and Tewari (2017) developed

a model for online learning to rank with highly limited feedback (top-k feedback),

in both contextual setting and non-contextual setting.

In this thesis, we go deeper into non-contextual online learning to rank with top-k

feedback, addressing some open problems posed by Chaudhuri and Tewari (2017).

We provide a full characterization of minimax regret rates with the top k feedback

model for all k for ranking measures Pairwise Loss, Discounted Cumulative Gain

and Precision@n Gain. In addition, we give an efficient algorithm that achieves

the minimax regret rate for Precision@n.
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CHAPTER 1

Introduction

Learning to rank (Liu, 2011) is a supervised machine learning problem where we want

to learn mappings that map a set of objects to a ranking. According, the output space in

learning to rank problems consists of permutations of objects. Given true relevance scores

of the objects, the accuracy of a ranked list is judged using ranking measures, such as

Pairwise Loss (PL), Discounted Cumulative Gain (DCG), Precision@n Gain (P@n), and

others. Most learning to rank algorithms are offline, i.e., they are designed to operate on the

entire data in a single batch. However, interest in online algorithms, i.e., those that process

the data incrementally, is rising due to a number of reasons. First, online algorithms often

require less computation and storage. Second, many applications, especially on the web,

produce ongoing streams of data making them excellent candidates for applying online

algorithms. Third, basic online algorithms, such as the ones developed in this thesis, make

excellent starting points for developing more sophisticated online algorithms that can deal

with non-stationarity. Non-stationarity is a major problem on learning to rank settings

since user preferences can easily change over time. Therefore, online learning to rank is a

promising direction of research, in which rankers are updated on the fly as new data arrive.

The basic full feedback supervised learning setting assumes that the labeler, typically

a human, provides the correct output for each example in the training dataset. Since the

output in learning to rank problems is a permutation, it becomes practically impossible to

get a fully specified permutation as a label from human labelers. Therefore, researchers
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have looked into weak supervision or partial feedback settings where the correct permu-

tation label is only partially revealed to the learning algorithm. For example, Chaudhuri

and Tewari (2017) developed a model for online learning to rank with a particular case of

partial feedback called top-k feedback. In this model, the online learning to rank problem is

cast as an online partial-monitoring game (some other problems that can be cast as partial

monitoring games are multi-armed bandits (Auer et al., 2003), and dynamic pricing (Klein-

berg and Leighton, 2003)) between a learner and an oblivious adversary (who generates a

sequence of outcomes before the game begins), played over T rounds. At each round, the

learner outputs a ranking of objects whose quality with respect to the true relevance scores

of the objects, is judged by some ranking measure. However, the learner receives highly

limited feedback at the end of each round: only the relevance scores of the top k ranked

objects are revealed to the learner. Here, k ≤ m and m is the number of objects.

The goal of the learner is to minimize its regret. The goal of regret analysis is to

compute upper bounds on regret of explicit algorithms. If lower bounds on regret that match

the upper bounds up to constants can be derived, then the minimax regret is identified,

again up to constants. Previous work considered two settings: non-contextual (objects

to be ranked are fixed) and contextual (objects to be ranked vary and get encoded as a

context, typically in the form of a feature vector). In non-contextual setting, six ranking

measures have been studied: PL, DCG, P@n, and their normalized versions Area Under

Curve (AUC), Normalized Discounted Cumulative Gain (NDCG) and Average Precision

(AP). Chaudhuri and Tewari (2017) showed that the minimax regret rates with the top k

feedback model for PL, DCG and P@n are upper bounded by O(T 2/3) for all 1 ≤ k ≤ m.

In particular, for k = 1, the minimax regret rates for PL and DCG are Θ(T 2/3). Moreover,

for k = 1, the minimax regret rates for AUC, NDCG and AP are Θ(T ). One of the open

questions, as described in Chaudhuri and Tewari (2017), is to find the minimax regret rates

for k > 1 for the six ranking measures.

It is worth noting that the top k feedback model is neither full feedback (where the
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outcome is uniquely determined by the feedback) nor bandit feedback (where the loss is

determined by the feedback); the model falls under the framework of so-called partial

monitoring (Cesa-Bianchi et al., 2006). Recent advances in classification of finite partial-

monitoring games have shown that the minimax regret of any such game is 0, Θ(T 1/2),

Θ(T 2/3), or Θ(T ) up to a logarithmic factor, and is governed by two important properties:

global observability and local observability (Bartók et al., 2014). In particular, Bartók

et al. (2014) gave an almost complete classification of all finite partial-monitoring games

by identifying four regimes: trivial, easy, hard and hopeless games, which correspond

to the four minimax regret rates mentioned before, respectively. What was left from the

classification is the set of games in oblivious adversarial setting with degenerate actions

which are never optimal themselves, but can provide useful information. Lattimore and

Szepesvari (2018) finished the characterization.

Our contributions: In this thesis, we focus on the non-contextual setting of the top k

feedback model and we assume that the adversary is oblivious. We establish the minimax

regret rates for all 1 ≤ k ≤ m for ranking measures PL, DCG, and P@n, by showing global

observability and local observability properties. In addition, we provide an algorithm based

on the NEIGHBORHOODWATCH2 algorithm of Lattimore and Szepesvari (2018). Our al-

gorithm achieves the minimax rate for P@n and has per-round time complexity polynomial

in m (for any fixed n).
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CHAPTER 2

Preliminaries

We use the problem formulation by Chaudhuri and Tewari (2017), Bartók et al. (2014) and

Lattimore and Szepesvari (2018).

2.1 Notation and Problem Setup

Let {ei} denote the standard basis. Let 1 denote the vector of all ones.

The fixed m objects to be ranked are [m] := {1, ...,m}. The permutation σ maps from

ranks to objects, and its inverse σ−1 maps from objects to ranks. Specifically, σ(i) = j

means that object j is ranked i and σ−1(i) = j means that object i is ranked j. The relevance

vector R ∈ {0, 1, ..., n}m represents relevance for each object. R(i), i-th component of R,

is the relevance for object i. For n = 1, R is binary-graded. For n > 1, R is multi-graded.

In this thesis, we only study binary relevance, i.e., n = 1.

The learner can choose from m! actions {σ|σ : [m] → [m] is bijective} while the

adversary can choose from (n+ 1)m outcomes {R|R ∈ {0, 1, ..., n}m}. We use subscript t

exclusively to denote time t, so σt is the action the learner chooses at round t and Rt is the

outcome the adversary chooses at round t.

In a game G, the learner and the adversary play over T rounds. We will consider

an oblivious adversary who chooses all the relevance vectors Rt ahead of the game (but

they are not revealed to the learner at that point). In each round t, the learner predicts a

permutation (ranking) σt according to a (possibly randomized) strategy π. The performance
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of σt is judged against Rt by some ranking (loss) measure RL. At the end of round t, only

the relevance scores of the top k ranked objects (Rt(σt(1)), ..., Rt(σt(k))) are revealed to

the learner. Therefore, the learner knows neither Rt (as in the full information game) nor

RL(σt, Rt) (as in the bandit game). The goal of the learner is to minimize the expected

regret (where the expectation is over any randomness in learner’s moves σt) defined as the

difference in the realized loss and the loss of the best fixed action in hindsight:

RT (π,R1, ...RT ) := Eσ1,...,σT
[ T∑
t=1

RL(σt, Rt)
]
−min

σ

T∑
t=1

RL(σ,Rt) (2.1)

When the ranking measure is a gain, we can always negate the gain function so that

it becomes a loss function. The worse-case regret of a learner’s strategy is its maximum

regret over all choices ofR1, ..., RT . The minimax regret is the minimum worse-case regret

over all strategies of the learner:

R∗T (G) = inf
π

max
R1,...,RT

RT (π,R1, ...RT ) (2.2)

where π is the learner’s strategy to generate σ1, ..., σT .

2.2 Ranking Measures

We are interested in ranking measures that can be expressed in the form of f(σ) ·R where

f : Rm → Rm, is composed of m copies of a univariate monotonically non-decreasing

scalar-valued function f s : R → R. We say that f s is monotonically increasing iff

σ−1(i) > σ−1(j) implies f s(σ−1(i)) ≥ f s(σ−1(j)). The monotonic non-increasing is

defined analogously. Then, f(σ) can be written as

f(σ) = [f s(σ−1(1)), ..., f s(σ−1(m))]
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The definitions of ranking measures that we are going to study in this thesis are the

following.

Pairwise Loss (PL) and Sum Loss (SL)

PL(σ,R) =
m∑
i=1

m∑
j=1

1(σ−1(i) < σ−1(j))1(R(i) < R(j)) (2.3)

SL(σ,R) =
m∑
i=1

σ−1(i)R(i) (2.4)

Ailon (2014) has shown that the regrets under PL and SL are equal. Therefore, we can

study SL instead of PL. The minimax regret rate for PL is the same as that for SL.

T∑
t=1

PL(σt, Rt)−
T∑
t=1

PL(σ,Rt) =
T∑
t=1

SL(σt, Rt)−
T∑
t=1

SL(σ,Rt) (2.5)

Although we cannot express PL in the form of f(σ) · R, we can do that for SL with

f(σ) = σ−1 = [σ−1(1), ..., σ−1(m)].

Discounted Cumulative Gain (DCG)

DCG(σ,R) =
m∑
i=1

R(i)

log2(1 + σ−1(i))
(2.6)

DCG can be expressed in the form of f(σ) ·R with

f(σ) = [
1

log2(1 + σ−1(1))
, ...,

1

log2(1 + σ−1(m))
]
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Precision@n Gain (P@n)

P@n(σ,R) =
m∑
i=1

1(σ−1(i) ≤ n)R(i) (2.7)

P@n can also be expressed in the form of f(σ) ·R with

f(σ) = [1(σ−1(1) ≤ n), ...,1(σ−1(m) ≤ n)]

Next, we will see that none of AUC (normalized PL), NDCG (normalized DCG), AP

(normalized P@n) can be expressed in the form of f(σ) ·R.

Area Under Curve (AUC)

AUC(σ,R) =
1

N(R)

m∑
i=1

m∑
j=1

1(σ−1(i) < σ−1(j))1(R(i) < R(j)) (2.8)

where N(R) = (
∑m

i=1 1(R(i) = 1)) · (
∑m

i=1 1(R(i) = 0)).

Normalized Discounted Cumulative Gain (NDCG)

NDCG(σ,R) =
1

Z(R)

m∑
i=1

R(i)

log2(1 + σ−1(i))
(2.9)

where Z(R) = maxσ
∑m

i=1
R(i)

log2(1+σ
−1(i))

.

Average Precision (AP)

AP (σ,R) =
1

‖R‖1

m∑
i=1

∑
j≤i 1(R(σ(j)) = 1)

i
1(R(σ(i)) = 1) (2.10)
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Remark 1. There are reasons why we are interested in this linear (in R) form of ranking

measures. The algorithms that establish upper bound for the minimax regret rates require

construction of unbiased estimator of the difference vector between two loss vectors that

two different actions incur (Bartók et al., 2014; Lattimore and Szepesvari, 2018). The

nonlinear (in R) form of ranking measures makes such a construction extremely hard.

2.3 A Quick Review of Partial Monitoring Games

Our results on minimax regret rates are developed based on the theory for general finite

partial monitoring games developed in papers by Bartók et al. (2014) and Lattimore and

Szepesvari (2018). Before presenting our results, it is necessary to reproduce the relevant

definitions and notations as in Bartók et al. (2014), Chaudhuri and Tewari (2017) and Lat-

timore and Szepesvari (2018). For the sake of easy understanding, we adapt the definitions

and notation to our setting.

Recall that in the top k feedback model, there are m! actions and 2m outcomes (be-

cause we only consider binary relevance). Without loss of generality, we fix an ordering

(σi)1≤i≤m! of all the actions and an ordering (Rj)1≤j≤2m of all the outcomes. Note that the

subscripts in σi and Rj refer to the place in these fixed ordering and do not refer to time

points in the game as in σt. It will be clear from the context whether we a referring to a place

in the ordering or to a time point in the game. A game with ranking measure RL and top

k (1 ≤ k ≤ m) feedback can be defined by a pair of loss matrix and feedback matrix. The

loss matrix is denoted by L ∈ Rm!×2m with rows corresponding to actions and columns

corresponding to outcomes. Li,j is the loss the learner suffers when the learner chooses

action σi and the adversary chooses outcome Rj , i.e., Li,j = RL(σi, Rj). The feedback

matrix is denoted by H of size m! × 2m with rows corresponding to actions and columns

corresponding to outcomes. Hi,j is the feedback the learner gets when the learner chooses

action σi and the adversary chooses outcome Rj , i.e., Hi,j = (Rj(σi(1)), ..., Rj(σi(k))).
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Loss matrix L and feedback matrix H together determine the difficulty of a game. In

the following we will introduce some definitions to help understand the underlying struc-

tures of L and H .

Let li denote the column vector consisting of the i-th row of L. It is also called the loss

vector for action i. Let ∆ be the probability simplex in R2m , that is, ∆ = {p ∈ R2m :

p ≥ 0,1Tp = 1} where the inequality between vector is to be interpreted component-wise.

Elements of ∆ can be treated as opponent strategies as they are distributions over all out-

comes. With loss vectors and ∆, we can then define what it means for a learner’s action to

be optimal.

Definition 1 (Optimal action). Learner’s action σi is said to be optimal under p ∈ ∆ if

li · p ≤ lj · p for all 1 ≤ j ≤ m!. That is, σi has expected loss not greater than that of any

other learner’s actions under p.

Identifying opponent strategies an action is optimal under gives the cell decomposition

of ∆.

Definition 2 (Cell decomposition). For learner’s action σi, 1 ≤ i ≤ m!, its cell is defined

to be Ci = {p ∈ ∆ : li · p ≤ lj · p,∀1 ≤ j ≤ m!}. Then {C1, ..., Cm!} forms the cell

decomposition of ∆.

It is easy to see that each cell is either empty or is a closed polytope. Based on properties

of different cells, we can classify corresponding actions as following.

Definition 3 (Classification of actions). Action σi is called dominated if Ci = ∅. Action

σi is called nondominated if Ci 6= ∅. Action σi is called degenerate if it is nondominated

and there exists action σj such that Ci ( Cj . Action σi is called Pareto-optimal if it is

nondominated and not degenerate.

Dominated actions are never optimal. Cells of Pareto-optimal actions have (2m − 1)

dimension, while those of degenerate actions have dimensions strictly less than (2m − 1).
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Sometimes two actions might have the same loss vector, and we will call them duplicate

actions. Formally, action σi is called duplicate if there exists action σj 6= σi such that

li = lj . If actions σi and σj are duplicate to each other, one might think of removing one

of them without loss of generality. Unfortunately, this will not work. Even though σi and

σj have the same loss vector, they might have different feedbacks. Thus removing one of

them might lead to a loss of information that the learner can receive.

Next we introduce the concept of neighbors defined in terms of Pareto-optimal actions.

Definition 4 (Neighbors). Two Pareto-optimal actions σi and σj are neighboring actions

if Ci ∩ Cj has dimension (2m − 2). The neighborhood action set of two neighboring

actions σi and σj is defined as N+
i,j = {k′ : 1 ≤ k′ ≤ m!, Ci ∩ Cj ⊆ Ck′}.

All of the definitions above are with respect to the loss matrix L. The structure of L

(i.e., the number of each type of actions) certainly plays an important role in determining

the difficulty of a game. (For example, if a game has only one Pareto-optimal action, then

simply playing the Pareto-optimal action in each round leads to zero regret.) However, that

is only half of the story. In the other half, we will see the feedback matrix H determines

how easily we can identify optimal actions.

In the following, we will turn our attention on the feedback matrix H . Recall that Hi,j

is the feedback the learner gets when the learner plays action σi and the adversary plays

outcome Rj . Consider the i-th row of H , which is all possible feedbacks the learner could

receive when playing action i. We want to infer what outcome the adversary chose from the

feedback. Thus, the feedback itself does not matter; what matters is the number of distinct

symbols in the i-th row of H . This will determine how easily we can differentiate among

outcomes. Therefore, we will use signal matrices to standardize the feedback matrix H .

Definition 5 (Signal matrix). Recall that in top k feedback model, the feedback matrix

has 2k distinct symbols {0, 1}k. Fix an enumeration s1, ..., s2k of these symbols. Then

the signal matrix Si ∈ {0, 1}2
k×2m , corresponding to action σi, is defined as (Si)l,l′ =

1(Hi,l′ = sl).
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At this point, one might attempt to construct unbiased estimators for loss vectors for

all actions and then apply algorithms like Exp3 (Auer et al., 1998). Unfortunately this

approach will not work in this setting. There are easy counterexamples (see Exhibit 1 in

Appendix I of Lattimore and Szepesvari (2018)). Another approach is to construct unbi-

ased estimators for differences between loss vectors. The idea is that we do not need to

estimate the loss itself; instead it suffices to estimate how an action performs with respect

to the optimal action in order to control the regret. It turns out this idea indeed works.

The following two definitions capture the difficulty with which we can construct unbiased

estimator for loss vector difference.

Definition 6 (Global observability). A pair of actions σi and σj is called globally ob-

servable if li − lj ∈ ⊕1≤k′≤m! Col(STk′), where Col refers to column space. The global

observability condition holds if every pair of actions is globally observable.

Definition 7 (Local observability). A pair of neighboring actions σi and σj is called locally

observable if li − lj ∈ ⊕k′∈N+
i,j

Col(STk′). The local observability condition holds if every

pair of neighboring actions is locally observable.

Global observability means that the loss vector difference can be estimated using feed-

backs from all actions, while local observability means that it can be estimated using just

feedbacks from the neighborhood action set. Clearly, local observability is a stronger con-

dition, and local observability implies global observability.

We note that the above two definitions are given in Bartók et al. (2014). Later, when

Lattimore and Szepesvari (2018) extended Bartók et al. (2014)’s work, they proposed dif-

ferent (but at least more general) definitions of global observability and local observability.

We reproduce as follows.

Definition 8 (Alternative definitions of global observability and local observability). Let

Σ = {σ|σ : [m] → [m] is bijective}. Let H denote the set of symbols in H . A pair of

actions σi and σj is called globally observable if there exists a function f : Σ × H → R

11



such that
m!∑
k′=1

f(σk′ , Hk′,l′) = Li,l′ − Lj,l′ for all 1 ≤ l′ ≤ 2m

They are locally observable if in addition they are neighbors and f(σk′ , ·) = 0 when k′ /∈

N+
i,j . Again, the global observability condition holds if every pair of actions is globally

observable, and the local observability condition holds if every pair of neighboring actions

is locally observable.

Lemma 1. The alternative definitions of global observability and local observability gen-

eralize the original definitions.

To see why alternative definitions are more general, it is enough to note that σk′ and

Hk′,l′ contain the same information as Sk′ and el′ because observing Hk′,l′ is equivalent to

observing Sk′el′ . The latter can be seen as a one-hot coding vector for the feedback. We

will prove this lemma in Chapter 4 formally.

2.4 Classification Theorem for Finite Partial Monitoring

To make this thesis self-contained, in the section, we will state the important result that we

use from the theory of finite partial monitoring games. The following theorem provides a

full classification of all finite partial monitoring games into four categories.

Theorem 2. [Theorem 2 in Bartók et al. (2014) and Theorem 1 in Lattimore and Szepesvari

(2018)] Let partial monitoring game G = (L,H) have K nondominated actions. Then the

minimax regret rate of G satisfies

R∗T (G) =



0, if K = 1;

Θ̃(
√
T ), if K > 1, G is locally observable;

Θ(T 2/3), if G is globally observable, but not locally observable;

Θ(T ), G is not globally observable.
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where there is a polylogarithmic factor inside Θ̃(·).

This theorem involves upper and lower bounds for each of the four categories. Several

papers (Piccolboni and Schindelhauer, 2001; Antos et al., 2013; Cesa-Bianchi et al., 2006;

Bartók et al., 2014; Lattimore and Szepesvari, 2018) contribute to this theorem. In partic-

ular, Bartók et al. (2014) summerizes and gives a nearly complete classification theorem.

However, they failed to deal with degenerate games (i.e.the game that has degenerate or

duplicate actions). Lattimore and Szepesvari (2018) addressed this gap in the literature.

With this classification theorem, it suffices for us to show the local or global observ-

ability conditions in order to establish minimax regret rates.
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CHAPTER 3

Summary of Results

Under the non-contextual setting of top k feedback model, we have the following results.

3.1 Pairwise Loss (PL) and Sum Loss (SL)

Theorem 3. With respect to loss matrix L and feedback matrix H for SL, the local observ-

ability fails for k = 1, ...,m− 2 and holds for k = m− 1,m.

Theorem 1 in section 2.4 and the discussion in section 2.5 of Chaudhuri and Tewari

(2017) have shown that for SL, the global observability holds for all 1 ≤ k ≤ m. Combin-

ing our Theorem 3 and chaining with Theorem 2, we immediately have the minimax regret

for SL:

R∗T =


Θ(T 2/3), k = 1, ...,m− 2

Θ̃(T 1/2), k = m− 1,m

By equation 2.5, PL has exactly the same minimax regret rates as SL.

Theorem 3 shows this game is hard for almost all values of k. In particular, since in

reality small values of k are more interesting, it rules out the possibility of better regret for

practically interesting cases for k. We also note that Chaudhuri and Tewari (2017) showed

failure of local observability only for k = 1.
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As for the time complexity, Chaudhuri and Tewari (2017) provided efficient (polyno-

mial of m time) algorithm for PL and SL for values of k when global observability holds,

so we have efficient algorithm for k = 1, 2, ...,m−2. For k = m, Suehiro et al. (2012) and

Ailon (2014) have already shown efficient algorithms. The only case left out is k = m− 1.

Such large value of k is not interesting in practice, so we do not pursue this question.

3.2 Discounted Cumulative Gain (DCG)

Although DCG is a gain function, we can negate it to get a loss function. As in Chaudhuri

and Tewari (2017), the results and the proofs for DCG are almost the same as those for SL.

We have the following theorem.

Theorem 4. With respect to loss matrix L and feedback matrix H for DCG, the local

observability fails for k = 1, ...,m− 2 and holds for k = m− 1,m.

Corollary 10 of Chaudhuri and Tewari (2017) has shown that for DCG, the minimax

regret rate is O(T 2/3) for 1 ≤ k ≤ m. Combining with our Theorem 4 and chaining with

Theorem 2, we immediately have the minimax regret for DCG:

R∗T =


Θ(T 2/3), k = 1, ...,m− 2

Θ̃(T 1/2), k = m− 1,m

Theorem 4 generalizes the results in Chaudhuri and Tewari (2017) that showed local

observability fails only for k = 1, and rules out the possibility of better regret for values of

k that are practically interesting. Also, there are efficient algorithms for k = 1, 2, ...,m− 2

(Chaudhuri and Tewari, 2017) and for k = m (Suehiro et al., 2012; Ailon, 2014). Again,

we are not interested in designing an efficient algorithm for k = m− 1.
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3.3 Precision@n Gain (P@n)

Theorem 5. For fixed n such that 1 ≤ n ≤ m, with respect to loss matrix L and feedback

matrix H for P@n, the local observability holds for all 1 ≤ k ≤ m.

It is not hard to see this game contains many duplicate actions (but no degenerate ac-

tions) since P@n only cares about objects ranked in the top n position, irrespective of the

order. The minimax regret does not directly follow from Theorem 2 of Bartók et al. (2014).

However, a very recent paper Lattimore and Szepesvari (2018) has proved that locally ob-

servable games enjoy Θ̃(T 1/2) minimax regret, regardless of the existence of duplicate

actions. This shows the minimax regret for P@n is

R∗T = Θ̃(T 1/2) for 1 ≤ k ≤ m

We note that Chaudhuri and Tewari (2017) only showed T 2/3 regret rates for P@n, so

this result gives improvements over all values of k, including the practically relevant cases

when k is small. In the next section, we will also give an efficient algorithm that realizes

this regret rate.

3.4 Algorithm for Obtaining the Minimax Regret for P@n

with Top-k Feedback

Lattimore and Szepesvari (2018) give an algorithm NEIGHBORHOODWATCH2 that achieves

Θ̃(T 1/2) minimax regret for all finite partial monitoring games with local observability, in-

cluding games with duplicate or degenerate actions. However, directly applying this algo-

rithm to P@n would be intractable, since the algorithm has to spend Ω(poly(K)) time per

round, where the number of actions K equals m! in our setting with P@n.

We provide a modification before applying the algorithm NEIGHBORHOODWATCH2
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so that it spends only O(poly(m)) time per round and obtains a minimax regret rate of

Θ̃(T 1/2). Thus, it is more efficient.

We note that since top-k (for k > 1) feedback contains strictly more information than

top-1 feedback does, it suffices to give an efficient algorithm for P@n with top-1 feedback

which we will show in the following.

We first give a high-level idea why we can significantly reduce the time complexity

from exponential in m to polynomial in m. It has to do with the structure of the game for

P@n. We have the following observations for P@n.

Lemma 13 in Chapter 4: For P@n, each of learner’s actions σi is Pareto-optimal.

Lemma 14 in Chapter 4: For action σi, define Ai = {a : 1(σ−1i (a) ≤ n) = 1} and

Bi = {b : 1(σ−1i (b) ≤ n) = 0} be subsets of {1, 2, ...,m}. A pair of learner’s actions

{σi, σj} is a neighboring action pair if there is exactly one pair of objects {a, b} such that

a ∈ Ai, a ∈ Bj , b ∈ Bi, and b ∈ Aj .

Lemma 15 in Chapter 4: For neighboring action pair {σi, σj}, the neighborhood action

set is N+
i,j = {k : 1 ≤ k ≤ m!, lk = li or lk = lj}.

Lemma 14 says that P@n only cares about how action σ partitions [m] into sets A and

B; the order of objects within A (or B) does not matter. Furthermore, each ordering of ob-

jects in A and B corresponds to a unique action. Therefore, based on loss vectors, we can

define equivalent classes over m! actions such that all actions within a class share the same

loss vector. In other words, each class collects actions duplicate to each other. A simple

calculation shows all classes have the same number of actions, n!(m − n)!, and there are(
m
n

)
classes. Note that

(
m
n

)
is O(mn) for fixed n, a polynomial of m. In real applications,

n is usually very small, such as 1, 3, 5 or 10.

In each of the equivalent classes, all the actions have the same partition of [m] into sets

A and B, where all objects in A are ranked before objects in B. For top-1 feedback setting,

the algorithm only receives the relevance for the object ranked at the top. Therefore, in a

class, the algorithm only needs to determine which object from A to be placed at the top
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position. Clearly, there are just n choices as there are n objects in A, so we reduce the

number of actions to consider in each class from n!(m− n)! to n. Note that this reduction

does not incur any loss of information. This is the key idea to simplify the time complexity.

We only need to keep a distribution to sample from n
(
m
n

)
actions, instead of sampling from

m! actions.

To make this section self-contained, we will include the algorithm NEIGHBORHOOD-

WATCH2 in Lattimore and Szepesvari (2018) with some changes so that it is consistent

with our notations.

Let C be the set of those n
(
m
n

)
actions defined above. Let A be an arbitrary largest

subset of Pareto-optimal actions from C such thatA does not contain actions that are dupli-

cates of each other. Note that |A| =
(
m
n

)
. Let D = C \ A. For action a, let Na be the set of

actions consisting a and a’s neighbors. By the alternative definition of local observability,

there exists a function vab : Σ×H → R for each pair of neighboring actions a, b such that

the requirement in Definition 8 is satisfied. For notational convenience, let vaa = 0 for all

action a. Define V = maxa,b‖vab‖∞.

Algorithm 1 NEIGHBORHOODWATCH2
1: Input L, H , η, γ

2: for t = 1, . . . , T do

3: For a, k ∈ C let Qtka = 1A(k)
1Nk∩A(a) exp

(
−η
∑t−1

s=1 Z̃ska

)
∑

b∈Nk∩A exp
(
−η
∑t−1

s=1 Z̃skb

) + 1D(k)
1A(a)

|A|

4: Find distribution P̃t such that P̃>t = P̃>t Qt

5: Compute Pt = (1− γ)REDISTRIBUTE(P̃t) + γ
|C|1

6: Sample At ∼ Pt and receive feedback Φt

7: Compute loss-difference estimators for each k ∈ A and a ∈ Nk ∩ A:

Ẑtka =
P̃tkv

ak(At,Φt)

PtAt

and βtka = ηV 2
∑
b∈N+

ak

P̃ 2
tk

Ptb
and Z̃tka = Ẑtka − βtka

8: end for
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Note that REDISTRIBUTE function has no effect since there are no degenerate actions,

so Pt = (1− γ)P̃t + γ
|C|1 and we omit the definition of REDISTRIBUTE function here.

Theorem 6 (Derived from Theorem 2 in Lattimore and Szepesvari (2018)). LetK = |C| =

n
(
m
n

)
. For top-1 feedback model with P@n, suppose the algorithm above is run on G =

(L,H) with η = 1
V

√
log(K)/T and γ = ηKV . Then

R∗T ≤ O
(KV
εG

√
T log(K)

)

where εG is a constant specific to the game G, not depending on T . Moreover, the time

complexity in each round is O(poly(m)), and V
εG

is O(poly(m)).
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CHAPTER 4

Proofs

4.1 Proofs for Section 2

Proof for Lemma 1.

Proof. We prove the alternative definition of global observability (Definition 8) generalizes

the original definition (Definition 6). It will follow that the alternative definition of local

observability (Definition 8) generalizes the original definition (Definition 7).

Consider top k feedback model, so each signal matrix Sk′ is 2k by 2m. Definition 6 says

a pair of actions σi and σj is globally observable if li − lj ∈ ⊕1≤k′≤m! Col(STk′). So we can

write li − lj as

li − lj =
m!∑
k′=1

2k∑
l′=1

ck′,l′(S
T
k′)l′

where ck′,l′ ∈ R is constant, and (STk′)l′ is the l′-th column of STk′ . Define

f(σk′ , Hk′,k′′) =
2k∑
l′=1

ck′,l′(S
T
k′)k′′,l′ , for 1 ≤ k′′ ≤ 2m (4.1)

where (STk′)l′,k′′ is the element in row k′′ and column l′ of STk′ . Then li − lj can also be

written as

li − lj =
m!∑
k′=1


f(σk′ , Hk′,1)

...

f(σk′ , Hk′,2m)


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satisfying Definition 8.

4.2 Proofs for Theorem 3 in Section 3.1

In this section, the loss function is SL unless otherwise stated.

Lemma 7 (Chaudhuri and Tewari (2017), Lemma 2). For SL, each of the leaner’s actions

σi is Pareto-optimal.

Proof. We reproduce their proof as concepts in the proof are useful for proving our results.

For p ∈ ∆, li · p =
∑2m

j=1 pj(σ
−1
i · Rj) = σ−1i ·

∑2m

j=1 pjRj = σ−1i · E[R], where

the expectation is taken with respect to p. Then li · p is minimized when E[R(σi(1))] ≥

E[R(σi(2))] ≥ ... ≥ E[R(σi(m))]. Therefore, the cell of σi is Ci = {p ∈ ∆ : 1Tp =

1,E[R(σi(1))] ≥ E[R(σi(2))] ≥ ... ≥ E[R(σi(m))]}. Ci has only one equality constraint,

and hence has dimension (2m − 1). This shows σi is Pareto-optimal.

Determining whether the game is locally observable requires knowing all neighboring

action pairs. We now characterize neighboring actions pairs for SL.

Lemma 8. A pair of actions σi and σj is a neighboring action pair if and only if there is

exactly one pair of objects {a, b}, whose positions differ in σi and σj , such that a is placed

just before b in σi, and b is placed just before a in σj .

Our Lemma 8 strengthens Lemma 3 of Chaudhuri and Tewari (2017) by showing the

condition (there is exactly ...) is also necessary.

Proof. The “if” part is Lemma 3 of Chaudhuri and Tewari (2017). We only need to prove

the “only if” part.

Assume the condition (there is exactly ...) fails to hold. Note that σi and σj cannot be

the same, so they differ in at least two positions. Then there are two cases. 1. σi and σj

differ in exactly two positions, but the two positions are not consecutive. 2. σi and σj differ
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in more than two positions.

Consider case 1. Without loss of generality, assume σi and σj differ in positions k and

k′ where k′ − k > 1. Then there is a unique pair of objects {a, b} such that σi(k) = a,

σi(k
′) = b, σj(k) = b and σj(k′) = a, and σi(l) = σj(l) for l 6= k, k′. From Lemma 7, σi

has cell

Ci = {p ∈ ∆ : E[R(σi(1))] ≥ ... ≥ E[R(σi(k))] ≥ ... ≥ E[R(σi(k
′))] ≥ ... ≥ E[R(σi(m))]}

and σj has cell

Cj = {p ∈ ∆ : E[R(σj(1))] ≥ ... ≥ E[R(σj(k))] ≥ ... ≥ E[R(σj(k
′))] ≥ ... ≥ E[R(σj(m))]}

Then

Ci ∩ Cj = {p ∈ ∆ :E[R(σi(1))] ≥ ... ≥ E[R(σi(k))] ≥ ...

≥ E[R(σi(k
′))] ≥ ... ≥ E[R(σi(m))],

E[R(σj(1))] ≥ ... ≥ E[R(σj(k))] ≥ ...

≥ E[R(σj(k
′))] ≥ ... ≥ E[R(σj(m))]}

Since

E[R(σi(k))] = E[R(σj(k
′))] = E[R(a)]

and

E[R(σi(k
′))] = E[R(σj(k))] = E[R(b)]
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It follows that Ci ∩ Cj has a constraint

E[R(σi(k))] = ... = E[R(σi(k
′))]

Since k′ − k > 1, E[R(σi(k))] = ... = E[R(σi(k
′))] has at least two equalities. Then

Ci ∩ Cj has at least three equality constraints (including 1Tp = 1), which shows Ci ∩ Cj

has dimension less than (2m − 2). Therefore, {σi, σj} is not a neighboring action pair.

Now consider case 2. If σi and σj differ in more than two positions, then there are at

least two pairs of objects such that for each pair, the relative order of the two objects in σi

is different from that in σj . Applying argument for case 1 to case 2 shows {σi, σj} is not a

neighboring action pair.

Remark 2. From Lemma 8, neighboring action pair {σi, σj} has the form: σi(k) =

a, σi(k + 1) = b, σj(k) = b, σj(k + 1) = a and σi(l) = σj(l),∀l 6= k, k + 1, for ob-

jects a and b. Using the definition of SL, we can see that li − lj contains 2m−1 nonzero

entries, of which 2m−2 entries are 1 and 2m−2 entries are −1. Moreover, if Rs(a) = 1 and

Rs(b) = 0 for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj is −1. If

Rs(a) = 0 and Rs(b) = 1 for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj

is 1. If Rs(a) = Rs(b) for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj is

0.

Once we know what is a neighboring action pair, we need to characterize the corre-

sponding neighborhood action set.

Lemma 9. For neighboring action pair {σi, σj}, the neighborhood action set is N+
i,j =

{i, j}, so ⊕k∈N+
i,j

Col(STk ) = Col(STi )⊕ Col(STj ).

Proof. By definition of neighborhood action set, N+
i,j = {k : 1 ≤ k ≤ m!, Ci ∩ Cj ⊆

Ck}. Bartók et al. (2014) mentions that if N+
i,j contains some other action σk, then either

Ck = Ci, Ck = Cj , or Ck = Ci ∩ Cj . From Lemma 7, for SL each of learner’s actions is
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Pareto-optimal, so dim(Ck) = 2m− 1. This shows Ck 6= Ci ∩Cj . To see Ck 6= Ci, assume

for contraction that Ck = Ci. Then this means that both actions σi and σk are optimal under

p, ∀p ∈ Ck, which implies 0 = li · p− lk · p = p · (li − lk) for all p ∈ Ck. For SL, li 6= lk

for i 6= k. Then p · (li − lk) = 0 for all p ∈ Ck would impose another equality constraint

on Ck, so dim(Ck) ≤ 2m − 2. We know dim(Ck) = 2m − 1, a contraction. This shows

Ck 6= Ci. Similarly, we have Ck 6= Cj . Therefore, N+
i,j = {i, j} and ⊕k∈N+

i,j
Col(STk ) =

Col(STi )⊕ Col(STj ).

We are ready to prove Theorem 3. For readers’ convenience, let us recall that Theorem

3 says for SL the local observability fails for k = 1, ...,m− 2 and holds for k = m− 1,m.

The proof will contain two parts corresponding to the case when local observability fails

and the case when local observability holds.

Proof. Part 1: We first prove the local observability fails for k = 1, ...,m−2. It suffices to

show the local observability fails for k = m − 2 because top k feedback has strictly more

information than top k′ feedback does for k′ < k. (In other words, if top k′ feedback is

locally observable, then top k feedback must be, as one can always throw away the extra

information.)

Note that for the signal matrix when k = m− 2, each row has exactly 4 ones and each

column has exactly 1 one.

Consider two actions σ1 = 1, 2, 3, ...,m−2,m−1,m and σ2 = 1, 2, 3, ...,m−2,m,m−

1. That is, σ1 gives object i rank i for 1 ≤ i ≤ m. σ2 gives object i rank i for 1 ≤ i ≤ m−2,

object m rank m − 1 and object m − 1 rank m. By Lemma 8, σ1 and σ2 are neighboring

actions.

Inspired by observations from Remark 2, we form 2m−2 groups of 4 relevance vectors

such that within each group, the relevance vectors only differ at object m− 1 and m. Cor-

respondingly, we divide the vector l1− l2 into 2m−2 groups. Then each group is [0 1 −1 0].

For signal matrices S1 and S2, we can also form 2m−2 groups of 4 columns accordingly.

For k = m − 2, the signal matrix is of size 2m−2 × 2m, and in this case, σ1 and σ2 have
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the same signal matrix S = S1 = S2 because σ1 and σ2 have exactly the same feedback no

matter what the relevance vector is. Now in each group, there are only two types of rows

of S, namely [0 0 0 0] and [1 1 1 1]. Table 4.1 shows l1 − l2 and two types of rows of S for

each group. It is clear that l1 − l2 /∈ Col(ST ). This shows the local observability fails for

k = m− 2.

R(m− 1) = 0 R(m− 1) = 0 R(m− 1) = 1 R(m− 1) = 1
R(m) = 0 R(m) = 1 R(m) = 0 R(m) = 1

l1 − l2 0 1 -1 0

rows of S
1 1 1 1
0 0 0 0

Table 4.1: SL, Part 1, within the group, R(c) is the same for all c 6= m− 1,m.

Part 2: We then prove the local observability holds for k = m−1,m. Again, it suffices

to show the local observability holds for k = m − 1. (Note that for k = m, the game has

bandit feedback, and thus is locally observable as in Section 2.1 of Bartók et al. (2014).)

Note that for the signal matrix when k = m− 1, each row has exactly 2 ones and each

column has exactly 1 one.

Consider neighboring action pair {σi, σj}. Let {a, b} be a pair of objects as in Remark

2. We proceed similarly as in Part 1. We form 2m−2 groups of 4 relevance vectors such that

within each group, the relevance vectors only differ at object a and b. Correspondingly,

we divide the vector la − lb into 2m−2 groups. Then each group is [0 1 − 1 0]. For signal

matrices Si and Sj , we can also form 2m−2 groups of 4 columns accordingly. Then there

are two cases:

(1) Neither a nor b is ranked last by σi or σj , so the relevance for a and the relevance for b

are both revealed through feedback. Concatenate Si and Sj by row and denote the resultant

matrix by S. S is of size 2m × 2m. Now in each group, there are only five types of rows of

S, as shown in Table 4.2. It is clear that the piece [0 1 − 1 0] is in the row space of S. In

this case, li − lj ∈ Col(STi )⊕ Col(STj ).

(2) Either a or b is ranked last by σi or σj , so only one of the relevance for a and the
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relevance for b is revealed through feedback. Concatenate Si and Sj by row and denote

the resultant matrix by S. S is of size 2m × 2m. Now in each group, there are only five

types of rows of S, as shown in Table 4.3. The piece [0 1 − 1 0] is in the row space of

S because [0 1 − 1 0] = 2[1 1 0 0] + [0 0 1 1] − 2[1 0 1 0] − [0 1 0 1]. In this case,

li − lj ∈ Col(STi )⊕ Col(STj ).

In either case, we have li− lj ∈ Col(STi )⊕Col(STj ), so {σi, σj} is locally observable.

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 1 -1 0

rows of S

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Table 4.2: SL, Part 2 (1), within the group, R(c) is the same for all c 6= a, b.

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 1 -1 0

rows of S

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
0 0 0 0

Table 4.3: SL, Part 2 (2), within the group, R(c) is the same for all c 6= a, b.

Hence the local observability holds.

4.3 Proofs for Theorem 4 in Section 3.2

In this section, the loss function is negated DCG unless otherwise stated.

Lemma 10. For negated DCG, each of the leaner’s actions σi is Pareto-optimal.
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Proof. Let f(σ) = [ 1
log2(1+σ

−1(1))
, ..., 1

log2(1+σ
−1(m))

]. Note that negated DCG can be writ-

ten as −DCG(σ,R) = −f(σ) · R. For p ∈ ∆, li · p = −
∑2m

j=1 pj(f(σi) · Rj) =

−f(σi) ·
∑2m

j=1 pjRj = −f(σi) · E[R], where the expectation is taken with respect to p.

Note that −f(σi) is an element-wise strictly increasing transformation of σ−1i . That is,

σ−1i (k′) > σ−1i (l′) implies − 1
log2(1+σ

−1
i (k′))

> − 1
log2(1+σ

−1
i (l′))

. Then similarly as in SL, li · p

is minimized when E[R(σi(1))] ≥ E[R(σi(2))] ≥ ... ≥ E[R(σi(m))]. Therefore, the cell

of σi is Ci = {p ∈ ∆ : 1Tp = 1,E[R(σi(1))] ≥ E[R(σi(2))] ≥ ... ≥ E[R(σi(m))]}.

Ci has only one equality constraint, and hence has dimension (2m − 1). This shows σi is

Pareto-optimal.

Lemma 11. A pair of actions σi and σj is a neighboring action pair if and only if there is

exactly one pair of objects {a, b}, whose positions differ in σi and σj , such that a is placed

just before b in σi, and b is placed just before a in σj .

Proof. This follows from the proof for Lemma 8.

Remark 3. From Lemma 11, neighboring action pair {σi, σj} has the form: σi(k′) =

a, σi(k
′+ 1) = b, σj(k

′) = b, σj(k
′+ 1) = a for some k′, and σi(l) = σj(l),∀l 6= k′, k′+ 1,

for objects a and b. Using the definition of negated DCG, we can see that li − lj contains

2m−1 nonzero entries, of which 2m−2 entries are − 1
log2(1+k

′+1)
+ 1

log2(1+k
′)

and 2m−2 entries

are − 1
log2(1+k

′)
+ 1

log2(1+k
′+1)

. Moreover, if Rs(a) = 1 and Rs(b) = 0 for the s-th (1 ≤

s ≤ 2m) relevance, then the s-th entry of li − lj is − 1
log2(1+k

′)
+ 1

log2(1+k
′+1)

. If Rs(a) = 0

and Rs(b) = 1 for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th entry of li − lj is

− 1
log2(1+k

′+1)
+ 1

log2(1+k
′)

. If Rs(a) = Rs(b) for the s-th (1 ≤ s ≤ 2m) relevance, then the

s-th entry of li − lj is 0.

Note that Remark 3 is different from Remark 2. For negated DCG, the loss vector

difference between a neighboring action pair is specific to that pair (the dependence on k′

as in Remark 3). For SL, the loss vector difference between a neighboring action pair is
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almost the same (up to sign) for all neighboring action pairs. We will see this difference,

however, does not affect our analysis.

Lemma 12. For neighboring action pair {σi, σj}, the neighborhood action set is N+
i,j =

{i, j}, so ⊕k∈N+
i,j

Col(STk ) = Col(STi )⊕ Col(STj ).

Proof. This follows from the proof for Lemma 9.

We now prove Theorem 4. For readers’ convenience, let us recall that Theorem 4 says

for DCG the local observability fails for k = 1, ...,m− 2 and holds for k = m− 1,m. The

proof will contain two parts corresponding to the case when local observability fails and

the case when local observability holds.

Proof. Part 1: We first prove the local observability fails for k = 1, ...,m−2. It suffices to

show the local observability fails for k = m − 2 because top k feedback has strictly more

information than top k′ feedback does for k′ < k.

Note that for the signal matrix when k = m− 2, each row has exactly 4 ones and each

column has exactly 1 one.

Consider two actions σ1 = 1, 2, 3, ...,m−2,m−1,m and σ2 = 1, 2, 3, ...,m−2,m,m−

1. That is, σ1 gives object i rank i for 1 ≤ i ≤ m. σ2 gives object i rank i for 1 ≤ i ≤ m−2,

object m rank m− 1 and object m− 1 rank m. By Lemma 11, σ1 and σ2 are neighboring

actions.

Inspired by observations from Remark 3, we form 2m−2 groups of 4 relevance vec-

tors such that within each group, the relevance vectors only differ at object m − 1 and

m. Correspondingly, we divide the vector l1 − l2 into 2m−2 groups. Then each group is

[0, − 1
log2(m+1)

+ 1
log2(m)

, − 1
log2(m)

+ 1
log2(m+1)

, 0] (see Remark 3). For signal matrices S1

and S2, we can also form 2m−2 groups of 4 columns accordingly. For k = m − 2, the

signal matrix is of size 2m−2 × 2m, and in this case, σ1 and σ2 have the same signal matrix

S = S1 = S2 because σ1 and σ2 have exactly the same feedback no matter what the rele-

vance vector is. Now in each group, there are only two types of rows of S, namely [0 0 0 0]
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and [1 1 1 1]. Table 4.4 shows l1 − l2 and two types of rows of S for each group. It is clear

that l1 − l2 /∈ Col(ST ). This shows the local observability fails for k = m− 2.

R(m− 1) = 0 R(m− 1) = 0 R(m− 1) = 1 R(m− 1) = 1
R(m) = 0 R(m) = 1 R(m) = 0 R(m) = 1

l1 − l2 0 − 1
log2(m+1)

+ 1
log2(m)

− 1
log2(m)

+ 1
log2(m+1)

0

rows of S
1 1 1 1
0 0 0 0

Table 4.4: DCG, Part 1, within the group, R(c) is the same for all c 6= m− 1,m.

Part 2: We then prove the local observability holds for k = m−1,m. Again, it suffices

to show the local observability holds for k = m − 1. (Note that for k = m, the game has

bandit feedback, and thus is locally observable as in Section 2.1 of Bartók et al. (2014).)

Note that for the signal matrix when k = m− 1, each row has exactly 2 ones and each

column has exactly 1 one.

Consider neighboring action pair {σi, σj}. Let {a, b} be a pair of objects as in Remark

3. We proceed similarly as in Part 1. We form 2m−2 groups of 4 relevance vectors such

that within each group, the relevance vectors only differ at object a and b. Correspond-

ingly, we divide the vector la − lb into 2m−2 groups. Then each group is [0, − 1
log2(m+1)

+

1
log2(m)

, − 1
log2(m)

+ 1
log2(m+1)

, 0]. For signal matrices Si and Sj , we can also form 2m−2

groups of 4 columns accordingly. Then there are two cases:

(1) Neither a nor b is ranked last by σi or σj , so the relevance for a and the relevance for b are

both revealed through feedback. Concatenate Si and Sj by row and denote the resultant ma-

trix by S. S is of size 2m×2m. Now in each group, there are only five types of rows of S, as

shown in Table 4.5. It is clear that the piece [0, − 1
log2(m+1)

+ 1
log2(m)

, − 1
log2(m)

+ 1
log2(m+1)

, 0]

is in the row space of S. In this case, li − lj ∈ Col(STi )⊕ Col(STj ).

(2) Either a or b is ranked last by σi or σj , so only one of the relevance for a and the rel-

evance for b is revealed through feedback. Concatenate Si and Sj by row and denote the

resultant matrix by S. S is of size 2m× 2m. Now in each group, there are only five types of

rows of S, as shown in Table 4.6. The piece [0, − 1
log2(m+1)

+ 1
log2(m)

, − 1
log2(m)

+ 1
log2(m+1)

, 0]

29



is in the row space of S because [0, − 1
log2(m+1)

+ 1
log2(m)

, − 1
log2(m)

+ 1
log2(m+1)

, 0] =

(− 1
log2(m+1)

+ 1
log2(m)

)[1 1 0 0] − (− 1
log2(m+1)

+ 1
log2(m)

)[1 0 1 0]. In this case, li − lj ∈

Col(STi )⊕ Col(STj ).

In either case, we have li− lj ∈ Col(STi )⊕Col(STj ), so {σi, σj} is locally observable.

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 − 1
log2(m+1)

+ 1
log2(m)

− 1
log2(m)

+ 1
log2(m+1)

0

rows of S

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Table 4.5: DCG, Part 2 (1), within the group, R(c) is the same for all c 6= a, b.

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 − 1
log2(m+1)

+ 1
log2(m)

− 1
log2(m)

+ 1
log2(m+1)

0

rows of S

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
0 0 0 0

Table 4.6: DCG, Part 2 (2), within the group, R(c) is the same for all c 6= a, b.

Hence the local observability holds.

4.4 Proofs for Theorem 5 in Section 3.3

In this section, the loss function is negated P@n unless otherwise stated.

Lemma 13. For negated P@n, each of learner’s actions σi is Pareto-optimal.

Proof. The negated P@n is defined as−P@n(σ,R) = −f(σ)·Rwhere f(σ) = [1(σ−1(1) ≤

n), ...,1(σ−1(m) ≤ n)]. For any p ∈ ∆, we have li · p = −
∑2m

j=1 pj(f(σi) · Rj) =

−f(σi) · (
∑2m

j=1 pjRj) = −f(σi) · E[R], where the expectation is taken with respect to
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p. Let Ai = {a : 1(σ−1i (a) ≤ n) = 1} and Bi = {b : 1(σ−1i (b) ≤ n) = 0} be sub-

sets of {1, 2, ...,m}. Ai is the set of objects contributing to the loss while Bi is the set

of objects not contributing to the loss. Then li · p is minimized when the expected rele-

vances of objects are such that E[R(a)] ≥ E[R(b)] for all a ∈ Ai, b ∈ Bi. Therefore,

Ci = {p ∈ ∆ : 1Tp = 1,E[R(a)] ≥ E[R(b)],∀a ∈ Ai,∀b ∈ Bi}. Ci has only one equality

constraint and hence has dimension (2m − 1). This shows action σi is Pareto-optimal.

Next, we characterize neighboring action pairs for negated P@n.

Lemma 14. For negated P@n, a pair of learner’s actions {σi, σj} is a neighboring action

pair if there is exactly one pair of objects {a, b} such that a ∈ Ai, a ∈ Bj , b ∈ Bi, and

b ∈ Aj , where Ai, Aj, Bi, Bj are defined as in Lemma 13.

Proof. For the “if” part, assume the condition (there is exactly ...) holds. From Lemma

13, action σi is Pareto-optimal and its cell is Ci = {p ∈ ∆ : E[R(x)] ≥ E[R(y)],∀x ∈

Ai, y ∈ Bi}. Action σj is also Pareto-optimal and its cell is Cj = {p ∈ ∆ : E[R(x)] ≥

E[R(y)],∀x ∈ Aj, y ∈ Bj}. Then Ci ∩ Cj = {p ∈ ∆ : E[R(a)] = E[R(b)] and E[R(x)] ≥

E[R(y)],∀x ∈ Ai, y ∈ Bi and E[R(z)] ≥ E[R(w)], ∀z ∈ Aj, w ∈ Bj}. Ci ∩ Cj has

only two equality constraints (counting 1Tp = 1), and hence it has dimension (2m − 2).

Therefore, {σi, σj} is a neighboring action pair.

For the “only if” part, assume the condition (there is exactly ...) does not hold. Note

that for negated P@n, |Ai| = n and |Bi| = m− n for all action σi. There are two cases. 1.

|Ai \ Aj| = 0. 2. |Ai \ Aj| > 1.

For the first case, if |Ai \ Aj| = 0, then Ai = Aj and Bi = Bj . Then Ci ∩ Cj = Ci has

dimension (2m−1) because σi is Pareto-optimal by Lemma 13. Thus, in this case, {σi, σj}

is not a neighboring action pair.

For the second case, if |Ai\Aj| > 1, then there are at least two pair of objects {a, b} and

{a′, b′} such that a, a′ ∈ Ai, a, a′ ∈ Bj , b, b′ ∈ Bi, and b, b′ ∈ Aj . Following the arguments

in the “if” part, it is easy to show thatCi∩Cj has at least three equality constraints (counting
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1Tp = 1), and hence it has dimension less than (2m− 2). Thus, in this case, {σi, σj} is not

a neighboring action pair.

Remark 4. From Lemma 14, for neighboring action pair {σi, σj}, we know there is ex-

actly one pair of objects {a, b} such that a ∈ Ai, a ∈ Bj , b ∈ Bi, and b ∈ Aj , where

Ai, Aj, Bi, Bj are defined as in Lemma 13. Using definition of negated P@n, we can see

li− lj contains 2m−1 nonzero entries, of which 2m−2 entries are 1 and 2m−2 entries are −1.

Moreover, if Rs(a) = 1 and Rs(b) = 0 for the s-th (1 ≤ s ≤ 2m) relevance, then the s-th

entry of li − lj is −1. If Rs(a) = 0 and Rs(b) = 1 for the s-th (1 ≤ s ≤ 2m) relevance,

then the s-th entry of li − lj is 1. If Rs(a) = Rs(b) for the s-th (1 ≤ s ≤ 2m) relevance,

then the s-th entry of li − lj is 0.

Then we characterize neighborhood action set for a neighboring action pair.

Lemma 15. For neighboring action pair {σi, σj}, the neighborhood action set is N+
i,j =

{k : 1 ≤ k ≤ m!, lk = li or lk = lj}.

Proof. By definition of neighborhood action set, N+
i,j = {k : 1 ≤ k ≤ m!, Ci ∩ Cj ⊆ Ck}.

Bartók et al. (2014) mentions that if N+
i,j contains some other action σk, then either Ck =

Ci, Ck = Cj , or Ck = Ci∩Cj . From Lemma 13, every action is Pareto-optimal for negated

P@n, so dim(Ck) = 2m − 1. Hence Ck 6= Ci ∩ Cj . If Ck = Ci, then both actions σi and

σk are optimal under p, ∀p ∈ Ck, which implies 0 = li · p − lk · p = p · (li − lk) for all

p ∈ Ck. Since Ck has dimension (2m − 1), p · (li − lk) = 0 cannot impose an equality

constraint on Ck. Therefore, li = lk. Similarly, if Ck = Cj , then lj = lk. This shows

N+
i,j = {k : 1 ≤ k ≤ 2m, lk = li or lk = lj}.

Remark 5. Negated P@n says that it only matters the way of partitioning m objects into

2 sets A and B as in Lemma 13. For a fixed partition A and B, we can permute objects

within A and within B, and all such permutations give the same loss vector and the same

cell. Thus, there are duplicate actions in P@n, but no degenerate actions.
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We now prove Theorem 5. Let us recall that Theorem 5 says the local observability

holds for all 1 ≤ k ≤ m.

Proof. It suffices to show the local observability holds for k = 1 because there is strictly

more information for game with k > 1 than that with k = 1.

Note that for the signal matrix when k = 1, each row has exactly 2m−1 ones and each

column has exactly 1 one.

Consider neighboring action pair {σi, σj}. Let {a, b} be a pair of objects as in Remark

4. We form 2m−2 groups of 4 relevance vectors such that within each group, the relevance

vectors only differ at object a and b. Correspondingly, we divide the vector la − lb into

2m−2 groups. Then each group is [0 − 1 1 0]. For signal matrices Sl where l ∈ N+
i,j ,

we can also form 2m−2 groups of 4 columns accordingly. Then concatenate all signal

matrices Sl where l ∈ N+
i,j by row and denote the resultant matrix by S. S is of size

24n!(m−n)! × 2m. Now in each group, there are only five types of rows of S, as shown

in Table 4.7. [1 1 0 0] and [0 0 1 1] correspond to the action σl with l ∈ N+
i,j that puts

object a rank 1. [1 0 1 0] and [0 1 0 1] correspond to the action σl′ with l′ ∈ N+
i,j that puts

object b rank 1. The piece [0 − 1 1 0] is in the row space of S because [0 − 1 1 0] =

−2[1 1 0 0] − [0 0 1 1] + 2[1 0 1 0] + [0 1 0 1]. Therefore, li − lj ∈ ⊕l∈N+
i,j

Col(STl ), so

{σi, σj} is locally observable and the local observability holds for P@n.

R(a) = 0 R(a) = 0 R(a) = 1 R(a) = 1
R(b) = 0 R(b) = 1 R(b) = 0 R(b) = 1

li − lj 0 -1 1 0

rows of S

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
0 0 0 0

Table 4.7: P@n, within the group, R(c) is the same for all c 6= a, b.
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u

w

Figure 4.1: Illustrating proof for Lemma 16
, adopted from Lattimore and Szepesvari (2018).

4.5 Proofs for Theorem 6 in Section 3.4

In this section, the loss function is negated P@n unless otherwise stated.

Lemma 16 (Lemma 2 in Lattimore and Szepesvari (2018), Lemma 6 in Bartók et al.

(2014)). There exists a constant εG > 0, depending only on G, such that for all c, d ∈ A

and u ∈ Cd there exists e ∈ Nc ∩ A with

(lc − ld) · u ≤
1

εG
(lc − le) · u

Moreover, 1
εG

is in the order of poly(m).

Proof. We follow the proof for Lemma 2 in Lattimore and Szepesvari (2018) with some

modifications to ensure 1
εG

is in the order of poly(m).

Since u ∈ Cd, we have (lc − ld) · u ≥ 0. The result is trivial if c, d are neighbors or

(lc − ld) · u = 0.

Now assume c, d are not neighbors and (lc − ld) · u > 0. Let v be the centroid of Cc.

Consider the line segment connecting u and v. Then let w be the first point on this line

segment for which there exists e ∈ Nc ∩A with w ∈ Ce (see Figure 4.1). w is well-defined

by the Jordan-Brouwer separation theorem, and e is well-defined because A is a duplicate-

free set of Pareto-optimal classes.

Recall that each class c′ ∈ A corresponds to a unique partition of [m] into two subsets

Ac′ and Bc′ such that only objects in Ac′ contribute to the calculation of negated P@n. For

each c′ ∈ A, we can define f(c′) = [1(1 ∈ Ac′), ...,1(m ∈ Ac′)]. Let R = [R1, ..., R2m ]
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collect all relevance vectors: the i-th column of R is the i-th relevance vector Ri. Then we

can rewrite (lc′ − ld′) · u′ as

(lc′ − ld′) · u′ = (−f(c′) ·R + f(d′) ·R) · u′ = (−f(c′) + f(d′)) ·Ru′

for all c′, d′ ∈ A and u′ ∈ ∆. Note that Ru′ = Eu′ [R] is the expected relevance vector

under u′.

Now, using twice (lc − le) · w = 0, we calculate

(lc − le) · u = (lc − le) · (u− w)

= (−f(c) + f(e)) ·R(u− w)

=
‖R(u− w)‖2
‖R(w − v)‖2

(−f(c) + f(e)) ·R(w − v)

=
‖R(u− w)‖2
‖R(w − v)‖2

(lc − le) · (w − v)

=
‖R(u− w)‖2
‖R(w − v)‖2

(le − lc) · v > 0

(4.2)

where the third equality uses w 6= v is a point of the line segment connecting v and u, so

that w−v and u−w are parallel and have the same direction. Note that (le− lc) ·v > 0 be-

cause c, e are different Pareto-optimal classes and v is the centroid of Cc. ‖R(w − v)‖2 =

‖Ew[R]− Ev[R]‖2 > 0 because otherwise, Ew[R] = Ev[R] would imply (lc − le) · v =

(−f(c) + f(e)) · Ev[R] = (−f(c) + f(e)) · Ew[R] = 0, contradicting v is the centroid of

Cc. To see ‖R(u− w)‖2 > 0, we recalculate (lc − le) · u in another way

(lc − le) · u = (lc − le) · (u− w) =
‖u− w‖2
‖w − v‖2

(lc − le) · (w − v) =
‖u− w‖2
‖w − v‖2

(le − lc) · v > 0

(4.3)

The inequality in Equation 4.3 holds because ‖u− w‖2 > 0 and ‖w − v‖2 > 0 (see Figure

4.1). Therefore, ‖R(u− w)‖2 > 0 in Equation 4.2 also holds.
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Let vc′ be the centroid of Cc′ for any c′ ∈ A. Then we have

(lc − ld) · u
(lc − le) · u

=
(lc − ld) · (w + u− w)

(lc − le) · u
(a)
≤ (lc − le) · w + (lc − ld) · (u− w)

(lc − le) · u
(b)
=

(lc − ld) · (u− w)

(lc − le) · u

=
(−f(c) + f(d)) ·R(u− w)

(−f(c) + f(e)) ·Ru
(c)
=
‖R(w − v)‖2 (−f(c) + f(d)) ·R(u− w)

‖R(u− w)‖2 (le − lc) · v
(d)
≤ ‖R(w − v)‖2 ‖−f(c) + f(d)‖2

(le − lc) · v

=
‖Ew[R]− Ev[R]‖2 ‖−f(c) + f(d)‖2

(le − lc) · v
(e)
≤ 2m

minc′∈Cmind′∈Nc′
(ld′ − lc′) · vc′

where (a) follows since (lc − ld) ·w < 0 = (lc − le) ·w, (b) follows since (lc − le) ·w = 0,

(c) follows by Equation 4.2, (d) follows by Cauchy-Schwarz. Note that 0 � E[R] � 1,

we can bound ‖Ew[R]− Ev[R]‖2 by
√
m. Since both f(c) and f(d) are binary vectors, we

can bound ‖−f(c) + f(d)‖2 by 2
√
m. Then (e) follows since v is the centroid of Cc and

(le − lc) · v ≥ minc′∈Cmind′∈Nc′
(ld′ − lc′) · vc′ .

Finally, we want to find a lower bound for

min
c′∈C

min
d′∈Nc′

(ld′ − lc′) · vc′ = min
c′∈C

min
d′∈Nc′

(−f(d′) + f(c′)) · Evc′ [R]

Note that for any c′ ∈ A, Evc′ [R(i)] = 1 if object i ∈ Ac′ and 1
2

otherwise. Along with

observations from Remark 4, we have

(−f(d′) + f(c′)) · Evc′ [R] =
1

2
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for all c′ ∈ A and d′ ∈ Nc′ . Therefore, we can bound

2m

minc′∈Cmind′∈Nc′
(ld′ − lc′) · vc′

≤ 4m :=
1

εG
(4.4)

1
εG

is clearly a polymonial of m.

Proof for Theorem 6.

Proof. It is easy to see that the time complexity in each round is only O(poly(K)) =

O(poly(m)). The definition of vak (see Equation 4.1) does not depend on m. Therefore,

V = maxa,b‖vab‖∞ is a constant not depending on m. Since 1
εG

= 4m (Equation 4.4 in

Lemma 16), then V
εG

is O(poly(m)). The remaining proof can be found in Lattimore and

Szepesvari (2018).
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