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1 Abstract

Medical interns tend to have a higher rate of depression than the general population due
to factors such as high workload, irregular lifestyle, insufficient sleep, and lack of physical
activity. We used mobile health data collected from medical interns and used it to forecast
their mood with the ultimate goal of tailoring interventions to improve mental health. Our
data sets come from the Intern Health Study (IHS) and include data on mood, physical
activity, sleep, heart rate, PHQ-9 responses, geo-location, and baseline information. This
time series data was collected from medical interns throughout their entire internship period.
Existing studies on mood prediction in mobile health mostly classify an individual’s mood
using a discrete scale, such as high mood vs. low mood, by training on the same individual’s
data. In contrast, we predicted mood on a continuous scale. We also predicted mood
by training on the same individual’s data as well as predicted mood of a new individual
by training on other individuals’ data. We used linear methods and nonlinear methods,
including lasso and neural nets, and compared the performance of these methods. There
are signs that a high degree of missingness affects prediction capability and evaluation of
prediction capability. We did not see any benefits of using nonlinear models so far, but this
may be due to the high missing rate in our data.

2 Introduction

Depression is a pervasive mental disease, with more than 300 million people suffering from
it [1]. Sleep deprivation and physical inactivity are important factors for major depression
[2] [3]. Self-reported happiness is a primary interest of outcome in research on mental health
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[4]. Thus, it is beneficial to be able to predict self-reported moods using sleep, physical
activity and other data collected via smartphones and wearable devices. Accurate mood
predictions can be used to offer interventions in order to prevent the onset of depression.
Several advances in technology and statistical methodology have made the progress in mood
prediction possible.

With smartphone apps and wearable sensors, a large amount of data can be collected pas-
sively in real time. Various health related quantities such as daily activity, sleep, and heart
rate are recorded unobtrusively, providing more available data for analysis. These passively
collected data, in addition to self-reported mood scores, give rise to a time-series data set
containing a large count of frequently collected variables for each individual.

There are several elements involved in the prediction pipeline. Here we are going to talk about
prediction problems, prediction algorithms, multitask learning, missing value imputation and
cross-validation for time series.

The prediction problem most studies focus on is mood prediction at the individual level.
Also, the prediction problem is to classify future mood using a discrete scale. The algorithms
include both linear and nonlinear ones. Works from Rosalind Picard’s lab at MIT split mood
into binary classification labels (high/low), and applied classification algorithms - neural nets,
logistic regression and SVM with modifications on the kernel function [5] [6]. In another
paper, mood was classified into four categories, and was predicted on individual’s history
with behavioural and sleep data using long short-term memory (LSTM) neural network
models [7]. Their results showed that the prediction capability of LSTM outperforms SVM,
and LSTM is able to extract useful information on lag importance. A later work by Picard
showed that LSTM outperforms logistic regression and SVM on classifying mood based on
features including sleep, activity and mobility [5]. There is one work that applied regression
to predict mood with smart phone sensor logs, which included screen time, phone camera
events, etc [8]. However, they found that the forward stepwise regression, which had positive
results before, is inferior to the mean prediction or the lag-2 prediction on their data set.

Noticeably, one work from Picard’s lab used multitask learning, which allows models to
learn different tasks at the same time while still sharing information through similarity
constraints [6]. Specifically, they clustered users based on their personality and gender by
K-means, and then treated prediction for one given cluster as one task. The models include
sharing information across all clusters and unique training on each cluster. In addition to
clustering baseline information, another method could be to cluster on regression coefficients.
In functional data applications, where each data point is a curve with regression coefficient
estimates, K-means could be applied to cluster the data points by plugging in the regression
coefficient estimates [9]. In IHS, we could first fit a linear model, and then extract the
coefficient estimates as data points used in K-means clustering.

Missing value imputation is vital to mood prediction when the degree of missingness is high.
The above study on regression analysis mentioned that individuals with a high degree of
missingness were excluded from the analysis [8]. On the other hand, Picard’s lab proposed
an imputation algorithm to incorporate deep learning called the Multimodal Autoencoder
(MMAE) [10]. The study showed that MMAE is more accurate in reconstructing data from
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a missing module than discarding missing values, mean imputation or PCA reconstruction
method, which applies the inverse transformation learned by PCA.

There are some limitations regarding the currently existing studies. First, according to the
discussions on cross-validation, vanilla cross-validation was frequently applied to evaluate
models on time-series data [6, 8]. It could be problematic in time-series data because a
random split of the data set does not preserve the time-ordering quality. In IHS, we applied
block cross-validation, which splits the train and test data sequentially. Additionally, studies
so far focuses on prediction at the individual level with few positive results on regression
analysis. For IHS, we would apply regression on not only prediction at the individual level,
but also prediction on a new individual’s mood by training other individuals’ data.

3 Data

Our motivating data sets are from the Intern Health Study (IHS) [11]. The study seeks to
predict moods of the 2015-2016 cohort of medical interns from the University of Michigan
and of the 2017-2018 cohort of medical interns from multiple institutions by following each
cohort through their entire internship year. Medical interns have increasing possibility of
depression because of high workload, irregular lifestyle, insufficient sleep time, and lack of
physical activity [12].

3.1 2015-2016 Data

The study includes 23 medical interns from the 2015-2016 cohort. Usually, the start date of
internship is 7/1. The study started to collect data from 3/31/2015 and ended on 7/1/2016.
Data on mood, activity, sleep, heart rate, responses to the PHQ-9 questionnaire and a survey,
and baseline information were collected for every intern. Mood was recorded daily on a 1–10
scale by an app, where 10 means the best mood. In addition, physical activity and sleep
data were recorded every minute by wristbands or apps, and heart rate was recorded every
second. A Personal Health Questionnaire (PHQ-9) and a survey on sleep/working hours and
chronic depression were delivered once every three months for a year. Baseline information
(e.g., pre-intern PHQ-9 score, demographic information, medical specialty) was collected
before 7/1/2015.

After cleaning and aggregating the data to get daily level information, we picked 11 variables
summarizing data about mood, sleep, and physical activity. Since there is a considerable
amount of missing values in our data set, we added “missing” variables which are indicators of
whether data for a specific variable was missing on day t. See Table 1 for more details.

The cleaned-up data composed of the variables in Table 1 were used to train models. There
are three noticeable characteristics of the cleaned data. 1) The rate of missingness is high.
There are up to 72% of mood data, 95% of sleep data, and 81% of activity data missing at the
individual level. The serious missingness led to the selection and evaluation of imputation
methods. 2) From Table 1, the ranges of variables vary significantly, so standardization at
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the individual level was applied on sleep and distance variables. 3) Since this data is a time
series, when fitting models, we added a trend term and treated each day as a lag. Because
mood, sleep, and activity data were collected at various times during a day, we need to find
out where we should start as lag 1. On day t, mood was collected at 8 p.m. Sleep data was
based on any sleep period that ended on day t, even if the subject fell asleep on day t-1.
Activity data was between 12 a.m. of day t and 12 a.m. of day t+1. Thus, if we were to
predict mood on day t, we would treat mood on day t-1, and sleep and activity on day t as
lag 1.

variables Type Values Range
Mood Ordinal 1,2...,10 1-10

Total Minutes Asleep
Total Time in Bed (in mins)

Count 0,1,...
0-914
10-969

Total Distance
Very Active Distance

Moderately Active Distance
Light Active Distance

Continuous Positive Real

0.01-31.10
0.00-21.25
0.00-13.77
0.00-13.78

Mood Missing
Sleep Missing

Activity Missing
Binary 0,1 0,1

Total Sleep Records Count 0,1,2,3,. . . 1-5

Table 1: Description of variables of the 2015-2016 cohort.

3.2 2017-2018 Data

From the 2017-2018 cohort, data on similar modules were collected for 536 interns starting
from 4/1/2017. The internship period was 7/1/2017-6/30/2018. The 2017-2018 data is also
a time series with even higher missingness. There are up to 100% missingness in mood,
sleep and activity data during internship at the individual level. 26 interns who have no
mood during internship were removed from the entire analysis. 3 more interns were re-
moved from analysis including baseline variables because their baseline variables are missing
entirely.

There were some changes on data collection and calculation. First, we additionally collected
geo-location data but incorporating it in the prediction task is left for future work. Also,
activity data were calculated in terms of step counts and active minutes instead of distances.
Lastly, sleep data were calculated to get information for different sleep stages. We picked
13 sleep and activity variables. In addition, we included heart rate data and 21 baseline
variables in analysis. See Table 2 for details on variables used in prediction.
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Variables Type Values Range
Mood Ordinal 1,2...,10 1-10

Inbed (in mins)
Restless (in mins)

Deep Minutes
Rem Minutes
Light Minutes
Wake Minutes
Wake Count
Light Count
Deep Count
Rem Count

Total Minutes

Count 0,1,...

1-1400
0-534
0-210
0-310
58-943
9-228
3-93
3-94
0-13
0-30

58-1116
Daily Step Total
Active Minutes

Count 0,1,...
0-327365

0-868
Resting Heart Rate Count 0,1,... 39-96

Baseline Variables Various

Demographic Information
Medical Specialty

Survey Scores
PHQ-9 Scores

Recent Work/Sleep Hours

Various

Table 2: Description of variables of the 2017-2018 cohort.

4 Scientific Questions

Mood prediction for an individual who has been observed for a period of time can help
inform individualized depression intervention timing.

In this study, there are two prediction tasks that we will focus on. 1) Predicting an individ-
ual’s future mood by training that same individual’s previous data (T+1). 2) Predicting a
new individual’s mood by training other individuals’ data (N+1).

Xi,t is the predictors on day t for individual i.

ŷi,t is the predicted mood on day t for individual i .

yi,t is the outcome (mood) on day t for individual i.

ȳi is average mood of outcomes yi,t for individual i.

Prediction Problem 1: Predicting the Same User’s Mood (T+1):

For each user i ∈ data set:

For each day t ∈ training:

Train a model fi such that fi(Xi,t) = ŷi,t

For each day t ∈ test:
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Calculate the msei,t = (fi(Xi,t)− yi,t)2

Calculate R2
i = 1−

∑
t∈testmsei,t∑

t∈test (yi,t−ȳi)2

Prediction Problem 2: Predicting a New User’s Mood (N+1):

For each user i ∈ training:

For each day t ∈ [1, 365]:

Train a model f such that f(Xi,t) = ŷi,t

For each user j ∈ test:

For each day t ∈ [1, 365]:

Calculate the msej,t = (f(Xj,t)− yj,t)2

Calculate R2
j = 1−

∑365
t=1msej,t∑365

t=1 (yj,t−ȳj)2

5 Methods

The pipeline of solving prediction problems can be constructed from several elements. In
IHS, the elements include imputation methods in training and test data sets, cross-validation
methods, the number of lags, and the prediction algorithms. See Table 3 for details.

Given the high degree of missingness in our data sets, the selection of imputation method
is vital to the prediction effectiveness and the evaluation of the prediction effectiveness. In
IHS, we applied two imputation methods - mean imputation and carry-forward imputation.
Both will be explained in later paragraphs. In the training process, we always used the
complete training data. In the test process, we could either test on the complete test data
where some moods y were imputed (test on imputed), or on a reduced complete test data
where data points with mood y missing originally were excluded (test on observed).

Some elements in the pipeline relate to time series. We selected and tuned the number
of lags d to include as predictors. Also, in addition to vanilla cross-validation, we applied
block cross-validation which takes the time-ordering between time series data points into
consideration. Block cross-validation will be explained in a later section.

The algorithms include linear and nonlinear ones. In terms of linear algorithms, we started
with lasso. Then we added multitask learning to lasso in setting 1 by clustering lasso co-
efficients. Another direction is nonlinear methods because they capture a wider range of
relationships between mood and other variables. Vanilla neural networks were a nonlinear
method to start with. Then recurrent neural networks were applied to the time series data
in this study, which aims to capture the temporal behaviors in the data [13].
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T+1 N+1
Setting 1 Setting 2 Setting 3

Imputation Mean Imputation Carry-forward Imputation Carry-forward Imputation
Cross-Validation 5-fold Vanilla CV (RNN uses 1-fold block cv) 5-fold Block CV 10-fold Vanilla CV

Lags 1,3,5,10,15 7 7
Test on imputed on observed on observed

Algorithms

Lasso(no baseline)
Lasso with Multitask Learning(no baseline)

Vanilla NN
RNN

Lasso(no baseline)
RNN

Lasso(no baseline)
Lasso(with baseline)

Data Sets 2015
2015
2017

2017

Table 3: Summary of methods.

5.1 Missing Value Imputation

5.1.1 Mean Imputation

In this method, the mean of all observed values within the variable x is used to impute the
missing data entries in x at the individual level.

For individial i:

All missing entries = 1∑365
t=1 I(x

O
i,t)

∑365
t=1 xi,t × I(xOi,t) ,

where I(xOi,t) =

{
1, if xi,t is observed
0, if xi,t is missing

5.1.2 Carry Forward Imputation

Another imputation method we tried is carry forward imputation, which uses an aggregation
of previous values in variable x to impute the missing entry on day t.

Specifically, if x is the mood variable, we used yesterday’s mood to impute today’s mood.

For individual i:

If I(xOi,1) = 0:

xi,1 = 1∑365
t=1 I(x

O
i,t)

∑365
t=1 xi,t × I(xOi,t)

For t from 2 to 365:

If I(xOi,t) = 0:

xi,t = xi,t−1

If x is one of the non-mood variables, we used the mean of the previous 7 days to impute.
When there are up to 100% missingness in x, we borrowed information across individuals to
impute.
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For individual i:

If
∑365

t=1 I(xOi,t) = 365:

All entries = 1∑
j∈users

∑365
t=1 I(x

O
j,t)

∑
j∈users

∑365
t=1 xj,t × I(xOj,t)

else:

For t from 1 to 7:

If I(xOi,t) = 0:

xi,t = 1∑365
t′=1 I(x

O
i,t′ )

∑365
t′=1 xi,t′ × I(xOi,t′)

For t from 8 to 365:

If I(xOi,t) = 0:

xi,t = 1
7

∑7
d=1 xi,t−d

Here the set of users depends on the prediction problem. For T+1, the set is all users.
For N+1, the set corresponds to whether individual i belong to the training set or the test
set.

5.2 Block Cross-Validation

Vanilla k-fold cross-validation is a technique to assess test error by randomly splitting the
data set into k folds, and holding out one fold of observations when training the model[14].
However, when it comes to time series, vanilla cross-validation can be problematic because if
the data points are randomly split, we may train on future data points and test on past data
points. Instead, we split the data set sequentially into k equal folds to preserve time-ordering,
train on the previous folds and test on the next. See Figure 1 [15].

Figure 1: Overview of block cross-validation.
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5.3 Prediction Algorithms

5.3.1 Lasso

Lasso is a linear model that can shrink the coefficient estimates towards zero by putting
constraints on the sum of their absolute values, i.e., the L 1 norm of the coefficient vector
[16, p. 69]. It can help pick out significant predictors. Given our data, if we were to predict
mood with d lags, the lasso coefficients β̂Lλ minimizes the quantity in:

T+1:

For each individual i,

∑
t ∈ training

(
yi,t − βi,0 − βi,d∗p+1t−

d∗p∑
j=1

βi,jxi,t,j

)2

+ λ

(
|βi,d∗p+1|+

d∗p∑
j=1

|βi,j|

)

where t is day, i is individual, p is the number of predictors, d is the number of lags, yi,t
is mood of individual i on day t, and xi,t,j is the j-th predictor of individual i on day t.
λ ≥ 0 is a tuning parameter that decides how much to shrink: the larger λ is, the greater
the shrinkage is [16, p. 69].

N+1 (no baseline):

∑
i ∈ training

365∑
t=d+1

(
yi,t − β0 − βd∗p+1t−

d∗p∑
j=1

βjxi,t,j

)2

+ λ

(
|βd∗p+1|+

d∗p∑
j=1

|βj|

)

Note that here all users are split into a training set and a test set.

N+1 (baseline):

∑
i ∈ training

365∑
t=d+1

(
yi,t − β0 − βd∗p+1t−

d∗p∑
j=1

βjxi,t,j −
∑

j′∈baseline

βj′xi,j′

)2

+

λ

(
|βd∗p+1|+

d∗p∑
j=1

|βj|+
∑

j′∈baseline

|βj′ |

)

where j′ is index for baseline variables. xi,j′ is the j′-th baseline variable for individual i.
Note that baseline variables do not vary with time t.

The coefficient estimates generated by lasso can serve as a sign of feature importance. It
is reasonable to conjecture that there might be similarities in the estimated coefficients for
different interns. As a first step towards testing this conjecture, we can try to see how
clustered the estimated coefficient vectors are. If we discover that there is some evidence
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for clustering, we can use multitask learning to learn parameters for the individuals jointly
rather than separately.

5.3.2 Multitask Learning

Multitask learning is a technique which allows us to share information across similar indi-
viduals. In Hastie, Tibshirani and Friedman’s book, K-means is a cluster analysis that can
partition observations into K clusters where each cluster contains observations sharing the
same closest center [16, p. 460].

We clustered 23 interns in the 2015-2016 data set based on the 167 coefficient estimates
generated from a lasso model trained with 15 lags at the individual level. Given 23 data
points β1: 23 where each βi is a 1∗167 vector, we maintain two more variables - cluster means
uk and cluster assignments Zk

i ∈ {0, 1}, where i = 1, ..., 23 and k = 1, ..., K. The value of K
is assumed to be known. Then two steps are performed:

1) Initialize uk arbitrarily, k = 1, ..., K

2) Repeat (a) and (b) until convergence:

(a) update for all i = 1, ..., 23:

Zk
i =

{
1, if k = argminj≤K ||βi − uj||
0, otherwise

(b) update for all k = 1, ..., K:

uk =

∑23
i=1 z

k
i βi∑23

i=1 z
k
i

To determine the number of clusters K, we looked at the within-cluster sum of squares
(WCSS), which is calculated by

K∑
k=1

∑
βi∈Sk

||βi − uk||2

where Sk is a cluster and uk is the mean of the data points in cluster Sk.

The more clusters we have, the smaller WCSS is. The optimal number of clusters is the
K from which the decrease in WCSS is not significant anymore. After picking out K, we
treated each cluster as an individual and fit lasso for each cluster.

T+1 (Multitask Learning):

For each k ∈ K, the lasso coefficients β̂Lλ minimizes,

∑
{i,t}∈training

(
yi,t − βk,0 − βk,d∗p+1t−

d∗p∑
j=1

βk,jxi,t,j

)2

+ λ

(
|βk,d∗p+1|+

d∗p∑
j=1

|βk,j|

)
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where {i, t} is an individual-time combination
{
{i, t} : βi ∈ Sk and t ∈ [d+ 1, 365]

}
.

5.3.3 Deep Learning

Deep learning involves a large class of nonlinear models [16, pp. 392-397]. In this study,
we used vanilla neural networks and recurrent neural networks. Vanilla neural networks
are the most widely used neural networks, flattening lags in time series data into one long
vector which is trained as a data point. On the other hand, recurrent neural networks
iterate through the lags in time series data and keep a state that contains information about
previous lags [13].

5.3.3.1 Vanilla Neural Networks

Vanilla neural networks revolve around three objects: layers, neurons, and activation func-
tions. The activation function, the number of layers and neurons are determined before
training. In Hastie, Tibshirani and Friedman’s book, vanilla neural networks are described
as a model that takes in an input vector, applies a nonlinear function on the inputs (which
is called an activation function), and gets a representation of the inputs [16, pp. 392-397].
This representation is called a neuron. Several such neurons make up a layer and can be
treated as inputs for the next layer. In a regression setting, the final layer usually includes
one neuron which gives the prediction results.

Given our data, if we were to predict an individual’s mood on day t with d lags and p variables
per lag, vanilla neural networks take in vectors including mood yi,t, trend variable t, and
d · p predictors xi,t,1:d·p. Despite having numerous combination choices, since we only have
about 365 observations per individual, to avoid overfitting, we picked the number of layers
to be 1 and tuned neurons in a set of 1,5,10,15,20. The activation function was chosen as
the sigmoid function, which is widely used. See Figure 2 for an overview of the model.

T+1:

For each individual i:

For t ∈ training, a neuron zi,t,k in layer 1 can be formulated by:

zi,t,k =
1

1 + e−
(
w

(1)
i,k,0+w

(1)
i,k,d·p+1·t+

∑d·p
j=1 w

(1)
i,k,j ·xi,t,j

)
where w

(1)
i,k,j is the weight on the j-th predictor to construct the k-th neuron in the first layer

for individual i. We seek to find weights that would make the model fit the data well. Thus,
all weights in the model are updated via the gradient descent process of minimizing the loss
function, which in the setting of this study, can be formulated by

For each individual i:
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Loss =
∑

t ∈ training

(
yi,t − w(2)

i,0 −
m∑
k=1

w
(2)
i,k zi,t,k

)2

where w
(2)
i,k is the weight on k-th neuron in the first layer for individual i and m is the

number of neurons [16, pp. 392-397]. Note that on the second layer, we only applied the
linear function.

Figure 2: Overview of the vanilla neural network model.

5.3.3.2 Recurrent Neural Netowrks (RNN)

Vanilla neural networks treat time series data not much differently from regular data, except
for the addition of a trend variable. On the other hand, in Chollet and Allaire’s book,
they described a new nonlinear method called recurrent neural networks which can learn the
temporal behavior for a time sequence [13]. It takes in a data point composed of mood yt
and a d · p matrix of inputs where d is the number of lags, and there are p variables per lag.
After taking in the data, recurrent neural networks train from one lag to the next, carrying
information from previously trained lags. There are different types of RNNs, and in this
study, we trained with three of them – simple RNN, long short-term memory (LSTM), and
gated recurrent unit (GRU).

In the context of IHS, we trained RNN with two layers - an RNN layer and a dense layer.
The RNN layer transforms the matrix input into a 32×1 vector, which is transformed into a
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scalar through a linear activation function. Then the parameters are optimized by rmsprop.
See Table 4 for details of the two layers.

Layer1 Layer2
Activation Function f tanh linear

Input Dimension d× p 32× 1
Output Dimension 32× 1 1× 1

Recurrent Function fr Sigmoid NA
Optimizer rmsprop

Table 4: Description of layers in RNN models.

In layer 1, when simple RNN trains over lags, at lag j, it generates output by combining the
input on lag j and a state, which is the output of the lag j+1 via an activation function.
The output on lag j will be forwarded to the training on lag j-1 as a state which includes
information from previous lags. The algorithm could be written out as:

T+1:

For each individial i:

For t ∈ training:

1) Initialize statei,t,d = 0

2) For lag j from d to 1

a. Generate outputi,t,j = f1(Wi,1 · xi,t,j + Ui,1 · statei,t,j + bi,1)

b. Update statei,t,j−1 = outputi,t,j

3) ŷi,t = f2(outputi,t,1)

xi,t,j is the p × 1 vector from lag j of day t for individual i. f1 and f2 are the activation
functions in the two layers respectively. Activation functions are applied element-wise. Wi,1

and Ui,1 are parameterized matrices and bi,1 is a bias vector in layer 1.

Although theoretically simple RNN can retain information from many lags ago, the long-
term dependency may not be accounted for [13]. According to Chollet and Allaire, LSTM
is designed to solve this problem by adding a term into the activation function [13]. The
term, called carry, aims to keep information from the past lags intact and enable later lags to
retrieve previous information with ease. With this additional term, the algorithm of LSTM
can be written as:

T+1:

For each individial i:

For t ∈ training:

1) Initialize statei,t,d = 0, carryi,t,d = 0

2) For lag j from d to 1

13
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a. Generate outputi,t,j = f1(Wi,1 · xi,t,j + Ui,1 · statei,t,j + Vi,1 · carryi,t,j + bi,1)

b. Generate three terms which will make up carryi,t,j−1

mi,t,j = fr(Ui,m · statei,t,j +Wi,m · xi,t,j + bi,m)

ni,t,j = fr(Ui,n · statei,t,j +Wi,n · xi,t,j + bi,n)

ki,t,j = fr(Ui,k · statei,t,j +Wi,k · xi,t,j + bi,k)

c. Update statei,t,j−1 = outputi,t,j, carryi,t,j−1 = mi,t,j∗ki,t,j+carryi,t,j∗ni,t,j
3) ŷi,t = f2(outputi,t,1)

where fr is the recurrent function. fr is also applied element-wise. ∗ is element-wise multi-
plication.

Compared to LSTM, GRU is cheaper to run [13]. It combines the carry term into the state
term [17]. The algorithm can be written as:

T+1:

For each individial i:

For t ∈ training:

For lag j from d to 1,

ri,t,j = fr(Wi,r · xi,t,j + Ui,r · outputi,t,j+1)

zi,t,j = fr(Wi,z · xi,t,j + Ui,z · outputi,t,j+1)

statei,t,j = f1(Wi,1 · xi,t,j + Ui,1 · (ri,t,j ∗ outputi,t,j+1))

outputi,t,j = zi,t,j ∗ outputi,t,j+1 + (1− zi,t,j) ∗ statei,t,j))

ŷi,t = f2(outputi,t,1)

6 Results and Discussion

6.1 Setting 1

The discussion in this section focuses on comparing different algorithms in setting 1, which
are noted in Table 3. The analysis is trying to solve prediction problem T+1 on the 2015-2016
data.

6.1.1 Multitask Learning

After clustering the 167 lasso coefficient estimates of 23 individuals by K-means, we can see
from Figure 3 that WCSS does not decrease significantly after 4. This suggests that there
may be 4 clusters of individuals with similar coefficient estimates.
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Figure 3: WCSS vs number of clusters from K-means.

Then we were curious whether there was any trend in prediction accuracy regarding cluster-
ing. Thus, we clustered the 23 individuals into different numbers of clusters ranging from
1 to 23. For every number of clusters, we fit a lasso model on each cluster and calculated
each model’s MSE. The results are in Figure 4. We can see that despite seeing 4 clusters
in Figure 3, test MSE does not have a significant drop at 4 clusters. The general trend is
decreasing in a fluctuating fashion.
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Figure 4: MSE of different cluster.

6.1.2 Model Comparison

Linear models trained include lasso on the individual level (23 cluster), lasso on the cluster
level(4 clusters), and lasso on all individuals (1 cluster). Nonlinear models include vanilla
neural networks and RNNs. See Figure 5 for the boxplots of the R2 values for each model.
Overall, lasso trained at the individual level performed the best.

The medians of linear and nonlinear models are similar, while the spread of nonlinear models
is larger with more negative outliers. This suggests that there may not be a lot of evidence of
nonlinear relationships between mood and other variables. Among three linear algorithms,
we can learn that lasso on the individual level has a higher median, while the other two
models look similar. Among nonlinear algorithms, GRU and LSTM have higher medians
than simple RNN or vanilla neural networks, and GRU has less negative values than LSTM.
Thus, GRU is the best model in nonlinear methods.

It is noticeable that R2 values of the same individual do not show consistency between
methods. For example, the R2 values of some individuals are around 0.2 in linear but
negative in nonlinear.
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Figure 5: Side-by-side boxplots for R2 of each algorithm in setting 1.

6.2 Setting 2

The discussion in this section focuses on comparing different algorithms in setting 2, which
are noted in Table 3. The analysis is trying to solve prediction problem T+1 on the 2015-2016
data and the 2017-2018 data.

6.2.1 Prediction with Lasso

Table 5 displays statistics for R2 in each cross-validation split from lasso to solve T+1 on
both data sets. -Inf happens when every observed mood in the test set of an individual are
the same. NA occurs when there is no observed mood for an individual in the test set. The
summary statistics in Table 5 were calculated by excluding the -Inf and NA entries.

From Table 5, Figure 6 and Figure 7, we have a couple observations. 1) With the increase
of cv, -Inf and NA becomes more prevalent in the 2017-2018 data, which indicates that the
degree of missingness in mood increases over the course of the study. 2) In both data sets,
the centers of R2 do not change much with the increase in cv. It shows a counter-intuitive
point that an increase in training data sample size does not improve prediction. A conjecture
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may be that the current evaluation of prediction effectiveness is affected by missingness. The
sample size of the test data decreased over time. Thus, when it comes to the later cv splits
where there are only a few test data points, the variance becomes low and the prediction
with the mean will be sufficient. In this case, R2 may not increase because R2 uses mean
prediction as a benchmark. Another conjecture could be with the increase of cv, there are
more imputed training data, which does not help with prediction. 3) R2 in the 2015-2016
data set is much less negative than that in the 2017-2018 data set. Since 2015-2016 data
set has less missingness, it may indicate that a better imputation method could help with
prediction.

Total -Inf NA Min. 1st Qu. Median Mean 3rd Qu. Max

cv 1
2015 23 0 0 -1.24 -0.09 0.00 -0.04 0.09 0.62
2017 510 28 91 -49.10 -0.28 -0.07 -0.40 0.00 0.86

cv 2
2015 23 0 0 -0.67 -0.13 -0.04 -0.06 0.06 0.42
2017 510 40 120 -41.35 -0.31 -0.08 -0.50 0.00 0.47

cv 3
2015 23 0 0 -0.64 -0.08 -0.01 -0.03 0.11 0.21
2017 510 48 158 -49.68 -0.39 -0.08 -0.53 0.02 0.52

cv 4
2015 23 0 0 -1.25 -0.21 0.02 -0.15 0.07 0.17
2017 510 54 206 -11.12 -0.30 -0.08 -0.36 -0.01 0.50

Table 5: Summary statistics of R2 from lasso model on 2015 and 2017 data for T+1 in setting 2.

Figure 6: Side-by-side boxplots for R2 of block cross validation from lasso on 2015 data in setting 2.
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Figure 7: Side-by-side boxplots for R2 of block cross validation from lasso on 2017 data in setting 2.

6.2.2 Prediction with GRU

In setting 2, we only applied GRU on the 2017-2018 data set. Note that only in this section,
we used yesterday’s sleep and activity as lag 1 for sleep and activity predictors.

Training GRU includes tuning parameters. The parameters we focused on are epoch, step
epoch and batch size. In GRU, the training data is trained for multiple iterations which
are called as epochs. An epoch is constructed from several step epochs. In each step epoch,
the model trains a batch size of the total training data points. In this section, we only
tuned epoch from 1 to 50 with step epoch and batch size fixed. Table 6 show details of the
parameter values used.

Table 7 shows the results after fitting GRU. The statistics show the results are much worse
than lasso in Section 7.2.1. A conjecture may be that the current GRU model is overfitting.
In block cross-validation, the sample size in the training data is always less than 300, which
is not large. However, we have 32 units in the hidden layer, which results in multiple 32 ∗ p
and 32 ∗ 32 matrices. The next step is to reduce the hidden units to a smaller number.

Name Explanation cv 1 cv 2 cv 3 cv 4
Epoch (Tuned) Number of iterations over the

entire training data provided
50 50 50 50

Step Epoch Total number of steps before
declaring one epoch finished

4 3 5 5

Batch Size Number of data points in each
Step Epoch

20 50 50 60

Table 6: Parameters in GRU in setting 2.
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Total -Inf NA Min. 1st Qu. Median Mean 3rd Qu. Max
cv 1 510 35 72 -428.56 -13.45 -5.38 -15.05 -1.40 0.15
cv 2 510 39 118 -263.97 -19.64 -9.05 -18.51 -3.35 0.24
cv 3 510 49 157 -128.13 -5.18 -1.65 -7.90 -0.07 0.19
cv 4 510 55 205 -401.59 -6.21 -1.20 -10.18 -0.06 0.16

Table 7: Summary statistics of R2 from GRU on 2017 data for T+1 in setting 2.

6.3 Setting 3

The discussion in this section focuses on comparing different algorithms in setting 3, which
is described in Table 3. The analysis is trying to solve prediction problem N+1 on the 2017-
2018 data. The interns were split into a training set and a test set. The train/test ratio is
3:1.

Table 8 displays statistics for R2 from lasso with baseline variables and lasso without baseline
variables. The total number of individuals in the test sets are different because we excluded
3 individuals in the lasso with baseline model because their baseline variables are missing
entirely. -Inf happens when every observed mood for an individual is the same. NA occurs
when there is no observed mood for an individual from day d + 1 to 365. The following
summary statistics were calculated excluding -Inf and NA entries.

From Table 8 and Figure 8, there is not enough evidence showing baseline variables improve
the prediction capability of lasso for N+1. Adding baseline variables to lasso generates more
negative R2, and a more negative center as well.

Total -Inf NA Min. 1st Qu. Median Mean 3rd Qu. Max
Baseline 125 4 0 -6.28 -0.41 -0.22 -0.31 -0.05 0.69

No Baseline 128 2 2 -8.17 -0.48 -0.18 -0.33 0.08 0.80

Table 8: Summary statistics of R2 from lasso models on 2017 data for N+1 in setting 3.
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Figure 8: Side-by-side boxplots for R2 of each algorithm on 2017 data in setting 3.

Since lasso without baseline performs slightly better, we looked at the important variables
selected by the model. Table 9 shows the variable names and their coefficient estimates.
mood.l1-mood.l7 are lags 1-7 of the mood variable. deepCount.l6 and deepCount.l2 are lag
6 and lag 2 of variable deep sleep counts, respectively. remCount.l1 is lag 1 of variable rem
sleep count.

In general, mood from the past is important for future mood prediction. Yesterday’s mood
is the most important predictor. An increase in previous mood will bring an increase in
future mood. Besides mood, Table 9 shows evidence that the number of cycles of deep sleep
and rem sleep may help with future mood prediction.

Order 1 2 3 4 5 6 7 8 9 10
Variable mood.l1 mood.l2 mood.l7 mood.l3 mood.l4 mood.l5 mood.l6 deepCount.l6 deepCount.l2 remCount.l1

Coefficient Est. 0.5650 0.1091 0.0793 0.0575 0.0501 0.0493 0.0391 -0.0050 0.0039 0.0021

Table 9: Variable importance from lasso without baseline on 2017 data for N+1 in setting 3.

7 Conclusion and Future Work

This work has compared the performances of prediction algorithms on predicting self-reported
mood based on data from mobile phones and wearables. Firstly, we specified two predic-
tion problems - T+1 and N+1. Next, in order to take the high degree of missingness
and the time-ordering quality of our data into consideration, we investigated and applied
carry-forward imputation methods and block cross-validation in addition to mean imputa-
tion and vanilla cross-validation. With these methods, we built up three different settings
where prediction algorithms were applied. Then we extended the currently existing linear
models by introducing multitask learning and explored nonlinear methods - neural network
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models, including vanilla and recurrent neural networks. There is no major improvement
by applying nonlinear algorithms, but this may be due to some limitations of the study.
1) The 2015-2016 data set is small. 2) Another limitation is the high rate of missingness
in both data sets. All of the code for the project, which is written in R, is available at
https://github.com/smengjie/mood prediction.

Some future work includes:

1. Multitask learning can be applied on the 2017-2018 data set. Since the 2017-2018 data
set has more individuals, clustering will probably be more accurate.

2. More imputation methods could be tried and evaluated. In the study, we saw that under
the same setting, algorithms generally gave more accurate prediction on the 2015-2016 data
set, which has less missing values. This could be a sign that more accurate imputation can
improve prediction accuracy.

3. More cross-validation methods for time series can be discussed and applied.

4. In setting 2, GRU model can be modified. 1) Lags of sleep and activity in GRU can be
modified to be more consistent with the rest of the study. 2) Tune learning rate and epoch.
3) Tune the number of units in the hidden layer in a set of numbers smaller than 32.

5. Try LSTM and simple RNN in setting 2.

There are also some midterm goals:

1. Try classification prediction problem. Based on current literature review, most studies
focused on predicting using a discrete scale. Previous studies on mood classification can also
be used as a benchmark.

2. Include geo-location data in the analysis of the 2017-2018 data set.

3. Analyze the 2017-2018 data set with interventions.

4. Understand the reliability of evaluation of mood prediction capability when there is a
high degree of missingness in the test set.
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