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ABSTRACT

The ability to collect and process data has greatly expanded the areas of application for data driven
inference, predictions, and decisions. How to collect and modify data is dependent upon the ulti-
mate goal. Two areas of research with focus on these questions are sequential decision making and
algorithmic fairness. Sequential decision making is the process of a learner choosing an action,
observing the outcome, and using this and previous information to determine the next action to
take. Algorithmic fairness is the overarching term used to describe concern over algorithmic deci-
sions being seen as unfair to certain groups or individuals. Biases present in training data may rise
from historical inequities or improper representation. This dissertation addresses four problems
in these two areas: policies for contaminated stochastic multi-armed bandits, fair representation
through convex hull feasibility sampling, data debiasing, and implications of a sequential pipeline
of fair/biased decisions.

We start in Chapter 2 by considering the stochastic multi-armed bandit problem, with the added
assumption that rewards can be contaminated some fixed proportion of the time. This reflects the
scenario of when the reward is from a human response. Here there is no guarantee the observed
reward is from the true reward distribution of the action. To account for the contamination, we pro-
pose an Upper Confidence Bound (UCB) policy that relies on robust mean estimators. We derive
inequality bounds on these estimators in the contaminated setting and give upper bounds on the
regret, showing they are comparable to UCB policies in the standard stochastic setting. Through
simulations, we show the effectiveness or our policies under different types of contamination.

Bias in training data is often split into two categories, representation bias and historical bias.
Representation bias refers to data with no or limited samples from groups within the target popula-
tion. Representation bias can result in unfair outcomes for the underrepresented groups. Historical
bias refers to unwanted correlations between protected attributes and other features caused by so-
cietal inequities. It is an inherent property of the data and cannot be attenuated by more data.

Addressing representational bias, Chapter 3 introduces the convex hull feasibility sampling
problem. Here we develop a framework for sequentially testing whether a known point lies within
the convex hull of a set of points with unknown distributions. This represents the problem of
whether or not it is possible to sample an equally representative data set among labeled groups
when the distribution of the sampling sources is unknown. We provide theoretical results in the 2D

x



setting and simulations of our policy in 2 and 3 dimensions.
In contrast, Chapter 4 addresses historical bias by proposing a data debiasing method based on

a factor model. The goal is to remove variation caused by protected attributes that are undesirable
during training. We compute the correlation between the debiased data and the original protected
attributes and show that in ideal cases there is no correlation. We show empirical results with a
case study.

Chapter 5 explores how bias across multiple decisions—what we call a pipeline—impacts the
final outcome. We show how fair decisions at each decision point can perpetuate a fair outcome,
and also how a biased decision can prevent fair outcomes further down the pipeline. This highlights
the importance of representative data at each training and decision period.

xi



CHAPTER 1

Introduction

Machine learning has become a ubiquitous way to optimize and personalize decisions and expe-
riences. As we harness the power of data, we see both capitalistic and humanitarian applications:
methods that can optimize website layouts to increase revenue can be applied to online courses to
optimize interaction and learning; methods for targeted advertising can also be applied for targeted
medical interventions. As we simplify equipment and software (thus lowering the threshold of who
is able to harness machine learning) we continue to discover a plethora of benefits and challenges.
One sees benefits within smaller scale applications, such as apps that allow small businesses to
optimize emails for responses or optimizing interventions to retain learners in an online course.
A significant challenge of more recent interest is that of ensuring fair outcomes. As algorithms
have impacted more areas of our lives, it has become increasingly clear that human biases are not
attenuated by the machine. Motivated by these benefits and challenges, and with a particular focus
on sequential decision making methods, this dissertation presents four contributions: policies for
contaminated stochastic multi-armed bandits, fair representation through convex hull feasibility
sampling, data debiasing, and implications of a sequential pipeline of fair/biased decisions.

Sequential decision making (SDM) is the process of iteratively collecting information while
updating decision parameters based on the cumulative information available. Examples of ap-
plications include A/B testing web layout to optimize interaction, computer adaptive testing, and
fair data collection. Motivated by SDM applications in education, we present our work on con-
taminated stochastic multi-armed bandits in Chapter 2. When considering applying SDM where
feedback comes from students, experience tells us that the feedback may not always be effort-full
or intentional. Therefore, we approach this problem as a contaminated stochastic bandit and adapt
robust mean estimators for upper confidence bound algorithms in a stochastic setting for when a
fixed proportion of rewards are uncorrelated to the action.

Algorithmic fairness is a field of research concerned with the impact of data driven predictions
and decisions that can give an unfair advantage or cause harm to a group or an individual. We
consider a sequential method for checking feasibility of collecting representationally fair data in
Chapter 3, and an offline method for debiasing data with inherent historical bias in Chapter 4.

1



In Chapter 5, we discuss the implications of fairness within a pipeline of multiple algorithmic
decisions.

In the following sections we provide an overview of the stochastic multi-armed bandit problem,
whose framework is utilized in Chapters 2 and 3, and an introduction to algorithmic fairness.
We also provide the context and motivation along with our research contributions for each of the
chapters.

1.1 Stochastic Multi-armed Bandits

The stochastic multi-armed bandit (MAB) problem was first described in Thompson [1933]. The
standard problem is often presented as a gambling analogy, which also describes the etymology of
the word bandit in multi-armed bandit. A one-armed bandit is a colloquial term for a slot machine,
a gambling device where you put in money, pull a lever (hence the term arm), and receive some
reward. Those who have gambled understand that you do not, on average, earn more money than
you spend (hence the term bandit). Legally though, there must be some chance of winning. We
can think of this chance of winning and the amount won as coming from the reward distribution of
our slot machine. In the multi-armed bandit problem, a learner is faced with many slot machines,
and can play only one at a time. The challenge for the learner is to decide how much time to spend
exploring each machine to estimate its average reward, and how much time playing (exploiting)
the estimated best machine to gain the most reward.

Bandit problems are sequential decision making problems where a learner only observes the
feedback from the chosen action, and gains no information about the unplayed actions. Stochastic
multi-armed bandits refers to a class of bandit problems where the rewards for each action are
assumed to come from fixed distributions. Notationally, we have a ∈ [K] possible actions, such
that the reward for action a at time t, ra(t), is a random sample from the fixed distribution Da.
At each time step, the learner only sees the reward for the action chosen, so the difficultly lies
in balancing exploring all actions and exploiting the optimal action. The method of determining
when to explore and when to exploit is called a policy, typically denoted with π.

There are typically two goals in MABs that determine a policy’s strategy, either to identify the
optimal arm in relation to a stopping rule, or to minimize regret during play. This first instance
is called best arm identification, sometime referred to as pure exploration. Here there are two
scenarios. In the first, there is a fixed budget, with the goal being to identify the optimal arm(s)
with the highest confidence possible within budget. In the second setting there is a fixed confidence
and the goal is to identify the optimal arm(s) with that confidence using the minimum number of
samples. We adapt the best arm identification problem with fixed confidence to the convex hull
feasibility problem in Chapter 3.

2



The other goal, minimizing regret, is the same as maximizing reward. To minimize regret is to
minimize the difference of your cumulative reward to the optimal reward achieved when sampling
only from the action with the highest expected reward. Here we define expected regret for a policy
π after T rounds as

R̄T (π) =
T∑
t=1

E[r∗ − rAt ],

where r∗ is the reward of the optimal action and rAt is the reward for the action chosen at time t.
Adversarial bandits drop the assumption that the rewards are drawn from a fixed distribution.

Instead, if the adversary is oblivious, it is allowed to observe the learner’s policy before play and
then chooses the rewards for each action a and for each time step t. We only consider an oblivious
adversary in the following discussions, not an adaptive adversary which can pick rewards during
play based on the learner’s history.

It might seem questionable where such a strong adversary exists when implementing an adver-
sarial bandit algorithm, but the idea is to account for instances where the rewards are not stochastic
or stationary. By proving effectiveness in the extreme case, one has also shown effectiveness in less
powerful and more realistic cases. It is intuitive to see that for adversaries that are not malicious
but instead close to stochastic, this adversarial assumption is quite strong, and an algorithm that
takes advantage of the near stochasticity might perform better than one that doesn’t. This is indeed
the setting we consider for contaminated stochastic bandits as presented in chapter 2.

1.1.1 Contaminated Stochastic Bandits

One variation of MABs that has been minimally explored is when the stochastic reward assumption
is mostly retained, but some rewards are unrelated to the action they are sampled from, which
we call contaminated stochastic bandits. This framework and policies under this setting are the
purview of Chapter 2. This setting may be considered a mix of stochastic and adversarial bandits,
and is motivated by obtaining feedback from people, in particular students. A simple example is
the wording of a question. Here, a course instructor wishes to try out several different wordings
of a question presented to students in an online setting. The instructor wishes to pick the wording
that results in the most correct answers, as that suggests it has the clearest wording. If all students
closely read the question and answer to the best of their ability, then the data collected can lead to
valid inferences of the best wording. However, this is unlikely to be true. Some students will skim
the question and answer on their assumptions of the content, some may randomly answer simply to
move on, or some may guess without learning the relevant content first. These are all cases where
the information collected is unrelated the instructors question, and may skew the inference.

Formalizing this scenario, in the contaminated stochastic bandits setting we allow the adversary
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to corrupt any reward as long as at any time t there is no more than an ϵ-fraction of contaminated
points. We allow the adversary to give unbounded contaminated rewards that can be chosen with
full knowledge of the learner’s history as well as current and future rewards. This setting allows the
adversary to act differently across actions. In this setting, we limit calculating the expected regret
with respect to the true distributions of the actions, and not the observed, possibly contaminated
rewards.

A ubiquitous class of policies in the bandit literature are those based on upper confidence
bounds (UCB). The class of UCB algorithms is based on the optimism principle, that in the face
of uncertainty, the “learner should act as if the environment is as nice as plausibly possible” [Lat-
timore and Szepesvári, 2020]. This optimism principle along with the use of confidence bounds
first appeared in Lai and Robbins [1985]. UCB algorithms follow the pattern of first choosing
each action once, then for each time step t, estimating an upper confidence bound of the mean re-
ward for each action, UCBa(t), and choosing the next action as the one with the highest estimate,
At = maxa∈[K] UCBa(t). Theoretical results for the performance of UCB policies with respect
the expected regret depend on the concentration bounds of the mean rewards.

Our contribution is to adapt two known robust statistics for the mean, the trimmed mean and
the short mean, to UCB under the contaminated bandits setting. By proving concentration bounds
for these robust mean estimators in this bandit setting, we are able to present two UCB policies.
We provide theoretical guarantees for the upper bound of regret for the two policies and empirical
evidence of their superior performance under several contamination settings.

1.2 Algorithmic Fairness

Biased outcomes in machine learning has seen increasing scrutiny in recent years. Originally,
algorithmic decisions had been seen by some as a fix for biased human-made decisions. It is
increasingly clear, though, that it is nearly impossible to collect training data that is itself free
from bias in some form. These biases in the training data cannot be removed by an impassioned
algorithm, which will inevitably pick up on some undesired patterns and may perpetuate or even
magnify them.

In general, we can separate data biases into two categories. Representation bias is bias in
which data does not accurately capture variation of the target population. For example, this could
be data which has no or few examples from minority groups, making it hard to accurately learn
relationships between features and outcomes for these groups. Or it could be that the variation of
features within one group is significantly less that another, and does not reflect the variation in the
true population. In either case, an algorithm may perform well based on collected data in training
and poorly in production. The other bias which is typically harder to handle is historical bias.
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This is the bias seen in data that is the result of societal inequities. For example, over-policing in
certain neighborhoods will result in more documented crimes in those neighborhoods, even if the
true relative crime rate is the same as in another less-policed neighborhood. With historical bias, it
is sometimes clear what societal mechanisms lead to the bias, but this is not always the case.

In the discourse of algorithmic fairness, a major difficulty is: what is fairness in both an intuitive
and mathematical sense? Depending on one’s world view, fairness could mean equity in results, or
equality in opportunity, among other beliefs. Additionally, there is the question of which groupings
to consider fairness against. Is there only one attribute, such as gender identity, that outcomes
should be fair for, or a cluster of so called protected attributes? Another proposal is to not consider
these groupings and instead say that similar people should be treated similarly, but then the question
arises of how to measure similarity.

There are a vast amount of considerations when one wants to achieve a fair algorithm. Sig-
nificant contributions have been made in the field, each generally pertaining to a specific part in
the algorithmic pipeline. We can roughly define this pipeline as data collection, preprocessing,
algorithmic training, and post-processing. Methods at each stage have their own pros and cons,
and each depends on the result of the process before it. In this dissertation, we consider meth-
ods for both data collection and preprocessing to address representation bias and historical bias,
respectively.

1.2.1 Representative Data Feasibility Sampling

More and more, data collection is being seen as a primary defense against bias in algorithmic
decisions. Indeed, it is often a first choice of action to collect more data if an algorithm results in
biased outcomes [Holstein et al., 2019]. While this is possible in settings where group membership
and (when applicable) outcome labels are known, there are circumstances where data collection
comes from sources with unknown distributions of attributes. In this case, it is not possible to know
how exactly to collect representative data or target collecting more data from a specific group. This
is the scenario we address is Chapter 3.

To the best of our knowledge, the first work to address data collection as a part of bias mitigation
is Abernethy et al. [2020]. Here the goal is to optimize over both a loss function for accuracy and
a loss function for fairness. They assume an infinite availability of group labeled data, and at
every iteration of sampling they choose the sample which will either minimize the accuracy loss
or minimize the fairness loss. Along this vein of work is Shekhar et al. [2021]. Their goal is to
identify a minimax optimal classifier across the sampling proportion of protected attributes and the
loss of the worst performing group. These methods assume a fixed definition of fairness throughout
a project. In reality, the desired fairness at the beginning of a project may not be fixed, and just
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like parameters in a training algorithm, they may be adjusted over the life of a project. We explore
these implications with regards to these two algorithms in Appendix C.

The ability to sample from particular groups is not always possible. Samples may be drawn
from a source where the distribution over desired attributes is unknown. For example, a particular
sample’s label may be determined only after collection. This is the motivation for introducing the
convex hull feasibility sampling problem, which aims to determine if a desired distribution over
protected groups is feasible given a fixed number of sources with unknown distributions over the
protected groups. In the Bernoulli setting, we give a lower bound on the expected sample size
in the infeasible case and an oracle lower bound of the expected sample size in the feasible case.
We define the direction of greatest uncertainty and present three policies based on this direction,
along with a naive Uniform policy. Using high-probability upper bounds, we prove that one policy,
Lower Upper Confidence Bound Mean is superior to Uniform. We define the multinomial version
of the problem along with adjusted algorithms, and using simulations show the performance of our
three policies outperform Uniform under the Bernoulli setting and the multinomial setting with
three dimensions.

1.2.2 Data Debiasing

When bias is the result of systemic historical causes, more data will not reduce the bias present in
the data. In Chapter 4, we introduce a factor model prevalent in genetics applications to model the
contributions of the protected and permissible attributes to the representation. We treat the variation
that is present in the data due to protected attributes (e.g. race) as unwanted, and we propose a
method to remove this unwanted variation (and thus debias the data). We further compute the
correlation between the debiased data and the original protected attributes. In ideal cases, we show
that there is no correlation, and therefore our debiased data satisfies a relaxed version of conditional
parity [Ritov et al., 2017]. Using the COMPAS dataset, we show that debiasing reduces disparity
in the false positive and false negative rates between the majority and minority class.

1.2.3 Fair Pipelines

Most of the discourse on fair algorithms has focused on the impact of a single point of decision.
In Chapter 5, we discuss fairness within a decision pipeline. That is, when multiple, potentially
disjoint, decisions are made before a final outcome is measured as fair. We use the example of a
two stage hiring process throughout. The first stage represents filtering of applicants for interviews,
and the second stage represents the filtering of interviewees for hiring. Using a relaxed definition
of equal opportunity, we highlight the fact that biased decisions early in the pipeline can prohibit a
fair outcome regardless of the fairness of subsequent decisions, and show the compounding effects
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of fair decisions.

1.3 Publications and Contributions

The work in this dissertation is the combination of a first author publication, collaborative papers,
and a preprint. Included in the appendix are the results of an exploratory project created to intro-
duce undergraduates to research. When the work is collaborative, we specify the contribution of
the author.

• Chapter 2 is based off of Niss and Tewari [2020], which was published in the electronic
proceedings of the Uncertainty in Artificial Intelligence conference. This is work in collab-
oration with Ambuj Tewari.

• Chapter 3 is, at the time of this dissertation submission, a preprint based on collaborative
work with Ambuj Tewari and Yuekai Sun [Niss et al., 2022].

• Chapter 4 is based off of Bower et al. [2018], which was presented at the FAT-ML workshop
at ICML. All authors contributed equally to the publication. We note that the author discov-
ered the initial proofs, and Amanda Bower performed most of the experimental work. This
work is also included in Alexander Vargo’s Dissertation as part of their degree requirements
[Vargo, 2020].

• Chapter 5 is based off of Bower et al. [2017], which was published as part of the FAT-ML
workshop at KDD. The author contributed the initial results and analysis in Section 5.2, with
all authors contributing equally to the original publication.

• Appendix C is the result of a project designed to introduce undergraduates to research on
algorithmic fairness. The work presented within this dissertation is contributed solely by the
author.
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CHAPTER 2

What You See May Not Be What You Get: UCB
Bandit Algorithms Robust to ϵ-Contamination

2.1 Introduction

We first review the problem of stochastic multi-armed bandits (sMAB) with contaminated rewards,
or contaminated stochastic bandits (CSB). This scenario assumes that rewards associated with an
action are sampled i.i.d. from a fixed distribution and that the learner observes the reward after
an adversary has the opportunity to contaminate it. The observed reward can be unrelated to the
reward distribution and can be maliciously chosen to fool the learner. An outline for this setup is
presented in Section 2.2.

We are primarily motivated by the use of bandit algorithms in education, where the rewards
often come directly from human opinion. Whether responses come from undergraduate students, a
community sample, or paid participants on platforms like MTurk, there is always reason to believe
some responses are careless or inattentive to the question or could be assisted by bots [Necka et al.,
2016, Curran, 2016].

An example in education is a recent paper testing bandit Thompson sampling to identify
high quality student generated solution explanations to math problems using MTurk participants
[Williams et al., 2016]. Using a rating between 1-10 from 150 participants, the results showed
that Thompson sampling identified participant generated explanations that when viewed by other
participants significantly improved their chance of solving future problems compared to no expla-
nation or “bad” explanations identified by the algorithm. While the proportion of contaminated
responses will always depend on the population, recent work suggests even when screening out
fraudulent participants, between 2 − 30% of MTurk participants give low-quality samples [Ahler
et al., 2019, Ryan, 2018, Necka et al., 2016]. This is consistent with measurements of careless
and inattentive responses seen in survey data, which reports 1 − 30% with an estimated mode of
8 − 12%, with the conclusion that these responses are generally not a random sample [Curran,
2016]. Accounting for these low quality responses is especially relevant in educational setting
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where the number of iterations an algorithm can run is often significantly smaller than those used
by big tech (e.g. advertising).

Recent work in CSB has various assumptions on the adversary, the contamination, and the re-
ward distributions. Many papers require the rewards and contamination to be bounded [Kapoor
et al., 2018, Gupta et al., 2019, Lykouris et al., 2018]. Others do not require boundedness, but
do assume that the adversary contaminates uniformly across rewards [Altschuler et al., 2019]. All
works make some assumption on the number of rewards for an action an adversary can contami-
nate. We discuss previous work more thoroughly in Section 2.3.

Our work expands on these papers by allowing for a full knowledge adaptive adversary that can
give unbounded contamination in any manner. However, there is a trade off when compared to
work assuming bounded rewards and contamination: we require an estimate of the upper bound on
the reward variance. This can often allow for simpler implementation than some algorithms that
require boundedness, as we will discuss in Section 2.4. Our constraint on the adversary is that for
some fixed ε, no more than ε proportion of rewards for an action are contaminated. We provide a
ε-contamination robust UCB algorithm by first proving concentration inequalities for two robust
mean estimators in the ε-contamination context. We are able to show that the regret of our algo-
rithm analyzed on the true reward distributions isO(

√
KT log T ) provided that the contamination

proportion is small enough. Through simulations, we show that with a Bernoulli adversary, our
algorithm outperforms algorithms designed for stochastic (UCB1) and adversarial (EXP3) bandits
as well as those that have “best of both worlds” guarantees (EXP3++ and TsallisInf) even when
our constraint on the adversary is broken.

Though we are motivated by of bandit algorithms applications in education and use this con-
text to determine appropriate parameters in the simulations, we point out opportunities for CSB
modeling to arise in other contexts as well.

Human feedback: There is always a chance that human feedback is careless or inattentive, and
therefore is not representative of the underlying truth related to an action. This may appear in
online surveys that are used for A/B testing, or as is the case above in the explanation generation
example. Adaptive surveys, such as choosing question ordering to minimize dropout rates, are also
an example where the sample sizes can be small compared to other bandit deployments.

Click fraud: Internet users who wish to preserve privacy can intentionally click on ads to ob-
fuscate their true interests either manually or through browser apps. Similarly, malware can click
on ads from one company to falsely indicate high interest, which can cause higher rankings in
searches or more frequent use of the ad than it would otherwise merit [Pearce et al., 2014, Crussell
et al., 2014].
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Measurement errors: If rewards are gathered through some process that may occasionally fail
or be inaccurate, then the rewards may be contaminated. For example, in health apps that use
activity monitors, vigorous movement of the arms may be perceived as running in place [Feehan
et al., 2018, Bai et al., 2018].

2.2 Problem Setting

Here we specify our notation and present the ε-contaminated stochastic bandit problem. We then
argue for a specific notion of regret for CSB. We compare our setting to others current in the field
in Section 2.3.

Notation We use [K] to represent {1, ..., K} for K ∈ R to represent the number of actions and
the indicator function I{·} to be 1 if true and 0 otherwise. Let Na(t) be the number of times
action a has been chosen at time t and xa(t) = {xa(1), ..., xa(Na(t))} to be the vector of all
observed rewards for action a at time t. The suboptimality gap for action a is ∆a and we define
∆min = mina∈[K] ∆a.

2.2.1 ε-Contaminated Stochastic Bandits

A basic parameter in our framework is ε, the fraction of rewards for an action that the adversary is
allowed to contaminate. Before play, the environment picks a true reward ra(t) ∼ Da from fixed
distribution Da for all a ∈ [K] and t ∈ [T ]. The adversary observes these rewards and then play
begins. At time t = 1, 2, ..., T the learner chooses an action At ∈ [K] . The adversary sees At then
chooses an observed reward xAt(t) and then the learner observes only xAt(t).

We present the contaminated stochastic bandits game in algorithm 1.

Algorithm 1: Contaminated Stochastic Bandits
input: Number of actions K, time horizon T .
fix : ra(t) ∀a ∈ [K], t ∈ [T ].
Adversary observes fixed rewards.
for t = 1, ..., T do

Learner picks action At ∈ [K].
Adversary observes At and chooses xAt(t).
Learner observes xAt(t).

end

We allow the adversary to corrupt in any fashion as long as for every time t there is no more
than an ε-fraction of contaminated rewards for any action. That is, we constrain the adversary such
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that,

∀a ∈ [K], ∀t ∈ [T ],

Na(t)∑
i=1

I{ra(i) ̸= xa(i)} ≤ ε ·Na(t).

We allow the adversary to give unbounded contamination that can be chosen with full knowledge
of the learner’s history as well as current and future rewards. This setting allows the adversary to
act differently across actions and places no constraints on the contamination itself, but rather the
rate of contamination.

2.2.2 Notion of Regret

A traditional goal in bandit learning is to minimize the observed cumulative regret gained over the
total number of plays T . Because the adversary in this model can affect the observed cumulative
regret, we argue to instead use a notion of regret that considers only the underlying true rewards.
We call this uncontaminated regret and give the definition below for any time T and policy π in
terms of the true rewards r,

R̄T (π) = max
a∈[K]

E
[ T∑

t=1

ra(t)−
T∑
t=1

rAt(t)

]
. (2.2.1)

This definition equation (2.2.1) is first mentioned in Kapoor et al. [2018] along with another notion
of regret that compares the sum of the observed (possibly contaminated) rewards to the sum of
optimal, uncontaminated rewards,

R̄T (π) = max
a∈[K]

E
[ T∑

t=1

ra(t)−
T∑
t=1

xAt(t)

]
. (2.2.2)

We argue that equation (2.2.2) gives little information about the performance of an algorithm. This
notion of regret can be negative, and with no bounds on the contamination it can be arbitrarily
small and potentially meaningless. We believe that any regret that compares a true component to
an observed (possibly contaminated) component is not a useful measure of performance in CSB as
it is unclear what regret an optimal strategy should produce.

2.3 Reltated Work

We start by briefly addressing why adversarial and “best of both world” algorithms are not opti-
mized for CSB. We then cover relevant work in robust statistics, followed by current work in robust
bandits and how our model differs and relates.
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2.3.1 Adversarial Bandits

Adversarial bandits with an oblivious environment allows the adversary to first look at the learners
policy and then choose all rewards before the game begins. If the learner chooses a deterministic
policy, the adversary can choose rewards such that the learner cannot achieve sublinear worst-
case regret [Lattimore and Szepesvári, 2020]. Algorithms such as EXP3 [Auer et al., 2002] are
thus randomized, but their regret is analysed with respect to the best fixed action where “best”
is defined using the observed rewards. There are no theoretical guarantees with respect to the
uncontaminated regret, so it is not immediately clear how they will perform in a CSB problem.
We remark that adversarial analysis assumes uniformly bounded observed rewards whereas we
allow observed rewards to be unbounded. Additionally, the general adversarial framework does
not take advantage of the structure present in CSB, namely that the adversary can only corrupt a
small fraction of rewards, so it is likely that performance improvements can be made.

2.3.2 Best of Both Worlds

A developing line of work is algorithms that enjoy “best of both worlds” guarantees. That is,
they perform well in both stochastic and adversarial environments without knowing a priori which
environment they will face. Early work in this area [Auer and Chiang, 2016, Bubeck and Slivkins,
2012] started by assuming a stochastic environment and implementing some method to detect a
failure of the i.i.d. assumption on rewards, at which point the algorithm switches to an algorithm for
the adversarial environment for the remainder of iterations. Further work implements algorithms
that can handle an environment that is some mixture of stochastic and adversarial, as in EXP3++
and TsallisInf [Seldin and Slivkins, 2014, Zimmert and Seldin, 2019].

While these algorithms are aimed well for a stochastic environment with some adversarial re-
wards, they differ from contamination robust algorithms in that all observed rewards are thought
to be informative. Their uncontaminated regret has not been analysed and therefore there are no
guarantees in the CSB setting.

2.3.3 Contamination Robust Statistics

The ε-contamination model we consider is closely related to the one introduced by Huber in 1964
[Huber, 1964]. Their goal was to estimate the mean of a Gaussian mixture model where ε fraction
of the sample was not sampled from the main Gaussian component. There has been a recent in-
crease of work using this model, especially in extensions to the high-dimensional case (Diakoniko-
las et al. [2019], Kothari et al. [2018], Lai et al. [2016], Liu et al. [2019]). These works often keep
the assumption of a Gaussian mixture component, though there has been expanding work with
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non-Gaussian models as well.

2.3.4 Contamination Robust Bandits

Some of the first work in CSB started by assuming both rewards and contamination were bounded
[Lykouris et al., 2018, Gupta et al., 2019]. These works assume an adversary that can contaminate
at any time step, but that is constrained in the cumulative contamination. They bound the cumu-
lative max (over actions) absolute difference of the contaminated reward, x, to the true reward,
r,
∑

t maxa |ra(t) − xa(t)| ≤ C. Lykouris et al. [2018] provides a layered UCB-type active arm
elimination algorithm. Gupta et al. [2019] expands on this work to provide an algorithm similar to
active arm elimination in spirit, but which never completely eliminates an action, and which has
better regret guarantees.

Recent work in implementing a robust UCB replaces the empirical mean with the empirical
median, and gives guarantees for the uncontaminated regret with Gaussian rewards [Kapoor et al.,
2018]. They consider an adaptive adversary but require the contamination to be bounded, though
the bound need not be known. They cite work that can expand their robust UCB to distributions
with bounded fourth moments by using the agnostic mean [Lai et al., 2016], though give no uncon-
taminated regret guarantees. In one dimension, the agnostic mean takes the mean of the smallest
interval containing (1− α) fraction of points. This estimator is also known as the α-shorth mean.
Our work expands on this model by allowing for unbounded contamination and analysing the
uncontaminated regret for sub-Gaussian rewards when implementing a UCB algorithm with the
α-shorth mean.

CSB has also been analysed in the best arm identification problem [Altschuler et al., 2019].
Using a Bernoulli adversary that contaminates any reward with probability ε, Altschuler et al.
[2019] consider three adversaries of increasing power, from the oblivious adversary, which does
not know the player’s history nor the current action or reward, to a malicious adversary, which can
contaminate knowing the player’s history and the current action and reward. They give analysis of
the probability of best arm selection and sample complexity of an active arm elimination algorithm.
While their performance measure is different than ours, we generalize their context to allow an
adversary to contaminate in any fashion.

There is also work that explores the impact of an adaptive adversarial contamination on ε-
greedy and UCB algorithms [Jun et al., 2018]. They give a thorough analysis with both theoretical
guarantees and simulations of the effects an adversary can have on these two algorithms when
the adversary does not know the optimal action but is otherwise fully adaptive. They show these
standard algorithms are susceptible to contamination. Similar work looks at contamination in
contextual bandits with a non-adaptive adversary [Ma et al., 2019].
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2.4 Main Results

We present concentration bounds for both the α-shorth and α-trimmed mean estimators in the
ε-contamination context for sub-Gaussian random variables.

Our contribution to the CSB problem is in providing a contamination robust UCB algorithm
that is simple to implement and has theoretical regret guarantees close to those of UCB algorithms
in the uncontaminated setting.

2.4.1 Contamination Robust Mean Estimators

The estimators we analyse have been in use for many decades as robust statistics. Our contribu-
tion is to analyze them within our ε-contamination model with sub-Gaussian samples and provide
simple finite-sample concentration inequalities for ease of use in UCB-type algorithms.

2.4.1.1 Trimmed Mean

Our first estimator suggested for use in the contaminated model is the α-trimmed mean [Liu et al.,
2019].

α-trimmed mean Trim the smallest and largest α-fraction of points from the sample and calcu-
late the mean of the remaining points. This estimator uses 1− 2α fraction of sample points.

Algorithm 2: α-Trimmed Mean
input : Xn = (x1, ..., xn), α
output: α-trimmed mean
(x(1), ..., x(n)) = sorted Xn s.t. x(i) ≤ x(i+1)

cut = ⌈α ∗ n⌉
return mean(x(cut), ..., x(n-cut))

The intuition being if the contamination is large, then it will be removed from the sample. If
it is small, it should have little affect on the mean estimate. Next we provide the concentration
inequality for the α-trimmed mean. [Trimmed mean concentration] Let G be the set of points
x1, ...xn ∈ R that are drawn from a σ-sub-Gaussian distribution with mean µ. Let Sn be a sample
where an ε-fraction of these points are contaminated by an adversary. For ε ≤ α < 1/2, t ≥ n we
have,

|trMeanα(Sn)− µ| ≤

σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)
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with probability at least 1− 4
t2

.
Proof follows from Liu et al. [2019] and can be found in the appendix.
Let Gn be the set of points xi, ...xn ∈ R that are drawn from a σ-sub-Gaussian distribution.

Without loss of generality assume µ = 0. Let Sn be a sample where an ε-fraction of these points
are contaminated by an adversary.

Let G̃ ⊂ Gn represent the points which are not contaminated and C ⊂ Gn represent the
contaminated points. Then our sample can be represented by the union Sn = G̃ ∪ C. Let R
represent the points that remain after trimming α fraction of the largest and smallest points, and T

be the set of points that were trimmed. Then we have,

|trMeanα(Sn)| =
∣∣∣∣ 1

(1− 2α)n

∑
x∈R

x

∣∣∣∣
≤ 1

(1− 2α)n

(∣∣∣∣∑
x∈G̃

x︸ ︷︷ ︸
A1

∣∣∣∣+ ∣∣∣∣ ∑
x∈G̃∩T

x︸ ︷︷ ︸
A2

∣∣∣∣+ ∣∣∣∣ ∑
x∈C∩R

x︸ ︷︷ ︸
A3

∣∣∣∣)

with

A1 ≤
∣∣∣∣ ∑
x∈Gn

x

∣∣∣∣+ ∣∣∣∣ ∑
x∈Gn\G̃

x

∣∣∣∣
≤ n|x̄Gn|+ εn|max

i∈[n]
xi| w.p. at least 1− δ1 − δ2,

A2 ≤ 2αnmax
i∈[n]
|xi| w.p. at least 1− δ2,

A3 ≤ εnmax
i∈[n]
|xi| w.p. at least 1− δ2.

Combining we get,

|trMeanα(Sn)− µ|

≤ 1

(1− 2α)

(
|x̄Gn|+max

i∈[n]
|xi|(2ε+ 2α)

)
≤ 1

(1− 2α)

(
|x̄Gn|+max

i∈[n]
|xi|(4α)

)
≤ σ

(1− 2α)

(√
2

n
log

2

δ1
+ 4α

√
2 log

2t

δ2

)
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with probability at least 1− δ1 − δ2. Letting δ1 =
2
t2

and δ2 =
2
t2

, and assuming α ≥ ε, we have,

|trMeanα(Sn)− µ|

≤ σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)

with probability at least 1− 4
t2

.
A more detailed proof can be found in the appendix.

2.4.1.2 Shorth Mean

The agnostic mean from Lai et al. [2016], which we use the more common term α-shorth mean
for, can be considered a variation of the trimmed mean.

α-shorth mean Take the mean of the shortest interval that removes the smallest δ1 and largest δ2
fraction of points such that δ1 + δ2 = α, where δ1, δ2 are chosen to minimize the interval length of
remaining points. Uses 1− α fraction of sample points.

The α-shorth mean is less computationally efficient than the trimmed mean, but may be a better
mean estimator when the contaminated points are not large outliers and are skewed in one direc-
tion. Intuitively this is because the α-shorth mean can trim off contamination that would require
removing most of the sample with the trimmed mean. Next we provide the concentration inequality
for the α-shorth mean.

Algorithm 3: α-Shorth Mean
input : Xn = (x1, ..., xn), α
output: A mean estimate for the distribution of X
(x(1), ..., x(n)) = sorted Xn s.t. x(i) ≤ x(i+1)

nα = ⌊(1− α) ∗ n⌋
I ∈ argmink{x(k+nα) − x(k)}
Choose uniformly at random from set I if there is more than one starting index with the
smallest interval length

return sMean(X)← mean(x(I), ..., x(I+nα))

[α-shorth mean concentration] Let Gn be the set of points x1, ...xn ∈ R that are drawn from a
σ-sub-Gaussian distribution with mean µ. Let Sn be a sample where an ε-fraction of these points
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are contaminated by an adversary. For ε ≤ α < 1/3, t ≥ n, we have,

|sMeanα(Sn)− µ| ≤

σ

1− 2α

√
4

n
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

with probability at least 1− 4
t2

.

Proof sketch. Without loss of generality assume µ = 0 for the underlying true distribution. Let
G̃ ⊂ Gn represent the points which are not contaminated and C ⊂ Gn represent the contaminated
points. Then our sample can be represented by the union Sn = G̃ ∪ C

Let J be the interval that contains the shortest 1 − α fraction of Sn, I be the interval that
contains G̃ (i.e. the remaining good points after contamination), and T be the interval that contains
the points of Sn after trimming the α largest and smallest fraction of points. Use |I| to denote the
length of interval I . It must be that I ∩ J ̸= ∅ because otherwise the points in I ∪ J would contain
2− 2α > 1 fraction of Sn. Let c be a point in I ∩ J and x be a point in J . Recall that trMeanα(Sn)

is the trimmed mean of the contaminated sample Sn. Then we have,

|x| ≤ |x− c|+ |c− trMeanα(Sn)|+ |trMeanα(Sn)|

≤ |J |+ |I|+ |trMeanα(Sn)|

≤ 2|I|+ |trMeanα(Sn)|

The second step comes from x and c both being in J and because I ⊇ T . The third step comes
from |J | ≤ |I|.

To bound the length of I we have,

|I| ≤ 2max
x∈Gn

|x| w.p. at least 1− δ2.

Finally, since

|trMeanα(Sn)| ≤
1

(1− 2α)
(|x̄Gn|+ 4αmax

x∈Gn

|x|)

with probability at least 1− δ1 − δ2, we get that for x ∈ J ,

|x| ≤ 4max
i∈[n]
|xi|+

1

(1− 2α)
(|x̄Gn|+ 4αmax

x∈Gn

|x|)

=
|x̄Gn|
1− 2α

+
(
4 +

4α

1− 2α

)
max
x∈Gn

|x|.

Now that we have a bound on the contaminated points in J , our analysis follows similarly as the
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trimmed mean by bounding A1, A2, A3 as defined below.

|sMeanα(Sn)|

≤ 1

(1− α)n

(∣∣∣∣∑
x∈G̃

x︸ ︷︷ ︸
A1

∣∣∣∣+ ∣∣∣∣ ∑
x∈G̃∩¬J

x︸ ︷︷ ︸
A2

∣∣∣∣+ ∣∣∣∣ ∑
x∈C∩J

x︸ ︷︷ ︸
A3

∣∣∣∣)

The full proof is contained in the appendix and follows a similar approach as for the trimmed
mean.

Our methods ensured that the first term in each concentration bound is the same, giving them
similar regret guarantees when implemented in a UCB algorithm. We emphasize that the α-shorth
mean uses 1 − α fraction of a sample while the α-trimmed mean uses 1 − 2α fraction of a sam-
ple. We remark that if there is no contamination and α = 0 then our inequalities reduce to the
standard concentration inequality for the empirical mean of samples drawn from a sub-Gaussian
distribution.

2.4.2 Contamination Robust UCB

We present the contamination robust-UCB (crUCB) algorithm for ε-CSB with sub-Gaussian re-
wards.

Algorithm 4: crUCB
input: number of actions K, time horizon T , upper bound on fraction contamination α,

upper bound on sub-Gaussian constant σ0, mean estimate function (α trimmed or
shorth mean) f .

for t ≤ K do
Pick action a when t = a.

end
for t > K do

for a ∈ [K] compute do
f(xa(t))← mean estimate of rewards.
Na(t)← number of times action has been played.

end

Pick action At = argmaxa∈[K]f(xa(t)) +
σ0

(1−2α)

(√
4 log(t)
Na(t)

)
.

Observe reward xAt(t).
end
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We provide uncontaminated regret guarantees for crUCB below for both the α-trimmed and the
α-shorth mean.

[α-trimmed mean crUCB uncontaminated regret] Let K > 1 and T ≥ K − 1. Then with
algorithm 4 with the α-trimmed mean, σ-sub-Gaussian reward distributions with σa ≤ σ0, and
contamination rate ε ≤ α ≤ ∆min

4(∆min+4σ0
√
6 log T )

, we have the uncontaminated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

[α-trimmed mean crUCB uncontaminated regret bounded rewards] If the rewards are bounded
by b, and have contamination rate ε ≤ α ≤ ∆min

4(∆min+4b)
, then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

[α-shorth mean crUCB uncontaminated regret] Let K > 1 and T ≥ K−1. Then with algorithm
4 with the α-shorth mean, sub-Gaussian reward distributions with σa ≤ σ0, and contamination rate
ε ≤ α ≤ ∆min

4(∆min+9σ0
√
6 log T )

, we have the uncontaminated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

[α-shorth mean crUCB uncontaminated regret bounded rewards] If the rewards are bounded
by b, and have contamination rate ε ≤ α ≤ ∆min

4(∆min+9b)
, then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Proofs for section 2.4.2 and 2.4.2 and their corollaries follow standard analysis and are provided
in the appendix.

From section 2.4.2 and 2.4.2 we get that crUCB has the same order of regret in the CSB setting
as UCB1 has in the standard sMAB setting. The constraint on the magnitude of ε is quite strong,
but we show in Section 2.5 that they can be broken and still obtain good empirical performance.

Remark Our bounds above do not allow ε to be too big relative to the minimum suboptimality
gap ∆min. This is natural: if ε > ∆min then no algorithm can get sublinear regret since distin-
guishing between the top two actions is statistically impossible even with infinite samples. We
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give a simple example in the Appendix. Furthermore, it is possible to derive a regret bound1 of
Õ(σ0

√
KT + ασ0

1−4α
T ) for any choice of α such that ε ≤ α < 1/4. The linear term in regret (which

is unavoidable for large ε) may be acceptable if the corruption proportion is not very large.

2.5 Simulations

We compare our crUCB algorithms using the trimmed mean (tUCB) and shorth mean (sUCB)
against a standard stochastic algorithm (UCB1, Auer and Cesa-Bianchi [2002]), a standard adver-
sarial algorithm (EXP3, Auer et al. [2002]), two “best of both worlds” algorithms (EXP3++, Seldin
and Lugosi [2017], 0.5-TsallisInf, Zimmert and Seldin [2019]), and another contamination robust
algorithm (RUCB-MAB, Kapoor et al. [2018]). Each trial has five actions (K = 5), is run for 1000
iterations (T = 1000), for ε ∈ {0.05, 0.1}. For sUCB and tUCB, we set α = ε and σ0 = σ. The
plots are average results over 10 trials with error bars showing the standard deviation.

Our choice of T comes from our motivation to apply contaminated bandits in education, where
the sample sizes are often much smaller than for example in advertising. While T = 1000 would
be considered a large university class, it still allows one to visually see regret for smaller itera-
tions and see how performance stabilizes. We similarly chose number K of arms and proportion
contamination ε to be in a realistic range for the application we have in mind. All algorithms use
recommended parameter settings given within their respective papers.

Rewards and gaps We chose the reward distribution to be binomial(n=10) to simulate likert
scale and because this distribution has bounded rewards and is not symmetric for large p. For the
optimal action, p = .9 and for suboptimal actions p = .8, thus the suboptimality gap is ∆ = 1. All
non-optimal actions have the same true distribution.

Adversaries We focus on a Bernoulli adversary which gives a contaminated reward at every
time step with probability ε. We also implement a cluster adversary which contaminates at the
beginning of play to show the weakness of algorithms to this type of attack.

Contamination We use a random malicious contamination scheme which chooses a contami-
nated reward uniformly from ranges that increase suboptimal action means and decrease the opti-
mal action’s mean.

Performance measurement We plot the average regret over 10 trials for 1000 iterations.
We recommend to view the plots on a color screen.

1The Õ(·) notation hides constants and logarithmic terms. See Appendix for details.
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(a) ε = 0 (b) ε = 0.05

(c) ε = 0.1

Figure 2.1: Binomial Rewards With Varying Proportion Of Contamination

In Figure 2.1a we see that the adversarial and best of both worlds algorithms, EXP3, EXP3++,
and TsallisInf, perform poorly in the purely stochastic setting compared to the UCB type algo-
rithms. In Figure 2.1, we see the best of these, TsallisInf, starts to degrade as the proportion
of contamination increases while the robust UCB algorithms are only slightly affected. These
simulations show a clear performance benefit to using algorithms that specifically account for con-
taminated rewards.

Figure 2.3 and Figure 2.4 shows that for both sUCB and tUCB, the choice of α is much less
sensitive than choice of σ. Over estimating or slightly underestimating α does not degrade per-
formance significantly. Underestimating σ can give a significant boost to performance while over
estimating can degrade it. This is consistent with the performance of UCB algorithms in practice,
which often scale the exploration term to improve empirical performance [Liu et al., 2014].

To look at the impact of using a contamination robust algorithm when there is no contamination,
we plotted various α values when ε = 0, shown in Figure 2.2. Assuming small amounts of con-
tamination when there is none only has a small impact on performance, suggesting it is permissible
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(a) α = 0 (b) α = 0.05

(c) α = 0.1

Figure 2.2: Misspecified α For ε = 0.

to use contamination robust methods when there is uncertainty of contamination. Similarly, small
K and large ∆ can render bounded contamination impotent and would not require algorithms that
account for it.

We have included RUCB-MAB in our simulations because it is simple to implement and can
perform similarly well to our algorithms. We note it currently has guarantees only for Gaussian
rewards [Kapoor et al., 2018].

Figure 2.5 shows the poor performance of all algorithms when the first ε rewards are contami-
nated. TsallisInf and EXP3++ show some recovery, but it is clear this type of adversary is harmful.
This remains an open problem for scenarios with small T .

We also considered including the BARBAR algorithm [Gupta et al., 2019] whose epoch scheme
is the only algorithm we know that accounts for the front cluster attack. We chose against this as
for our setting of T = 1000 the BARBAR algorithm only has one epoch, and thus does not make
any updates to the estimated gaps, resulting in pure random exploration.
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(a) sUCB (b) tUCB

Figure 2.3: Regret Sensitivity For Various α.

(a) sUCB (b) tUCB

Figure 2.4: Regret Sensitivity For Various σ.

2.6 Discussion

We have presented two variants of an ε-contamination robust UCB algorithm to handle uninfor-
mative or malicious rewards in the stochastic bandit setting. As the main contribution, we proved
concentration inequalities for the α-trimmed and α-shorth mean in the ε-contamination setting
with sub-Gaussian samples and guarantees on the uncontaminated regret of the crUCB algorithms.
The regret guarantees are similar to those in the uncontaminated sMAB setting.

We have shown through simulation that these algorithms can outperform “best of both worlds”
algorithms and those for stochastic or adversarial environments when using a small number of
iterations and ε chosen to be reasonable when implementing bandits in education.

We highlight that our algorithms are simple to implement. In practice, it is often easy to find up-
per bounds on the parameters which are robust to underestimation. Our algorithms are numerically
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(a) ε = .1

Figure 2.5: Front Cluster Attack

stable and have clear intuition to their actions.
A weak point of these algorithms is they require knowledge of α before hand. Choices of α

may come from domain knowledge, but could also require a separate study.
In this work we assumed a fully adaptive adversarial contamination, constrained only by the

total fraction of contamination at any time step. By making more assumptions about the adversary,
it is likely possible to improve uncontaminated regret bounds.

Limitations The adversary used in the simulation is quite simple and does not take full advantage
of the power we allow in our model. We designed it as a first test of our algorithms and associated
theory. In the future, we would like to design simulated adversaries that are modeled on real
world contamination. It will also be important to deploy contamination robust algorithms in the
real world. This will require thought on how to select various tuning parameters ahead of the
deployment.

There remain many open questions in this area. In particular, we think this work could be
improved along the following directions.

Randomized algorithms UCB-type algorithms are often outperformed in applications by the
randomized Thompson sampling algorithm. Creating a randomized algorithm that accounts for
the contamination model would increase the practicality of this line of work.

Contamination correlated with true rewards One possibility is that the contaminated rewards
contain information of the true rewards. For example if contamination can be missing data, we
know dropout can be correlated with the treatment condition.
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CHAPTER 3

Achieving Representative Data via Convex Hull
Feasibility Sampling Algorithms

3.1 Introduction

Implementing algorithmic fairness in practice is a difficult task because most data science pipelines
consists of many steps (e.g. data collection, data cleaning, training and post-processing), and any
of these steps can affect the fairness of the outcome. Thus implementing algorithmic fairness in
practice is generally non-trivial. Representation bias is a known issue when training ML models
[Hashimoto et al., 2018, Rolf et al., 2021]. This bias represent a lack of or minimal data from a
subgroup of the desired population that can negatively impact the algorithmic outcomes. Unlike
historical bias which is inherent in the data [Julia Angwin, 2016], representation bias can be alle-
viated through intentional data collection. When queried about ways individuals have attempted to
address fairness, many cited more data collection as a first approach [Holstein et al., 2019]. While
this is possible in settings where group membership and (when applicable) outcome labels are
known and can be directly sampled, there are circumstances where data is collected from sources
with unknown distributions of protected attributes.

An example of this is given in Holstein et al. [2019]. Here they describe a company that wishes
to automate essay scoring whose current iteration has unfair outcomes for a minority group. Their
algorithm is scoring these minority students on average more unfavorably than the majority group
based on scores by a human specialist. They desire more high scoring essays from minority stu-
dents to improve their scoring accuracy within that group. Because they do not know the distribu-
tion of these students at the schools they are collecting essays from, they do not have an efficient
strategy to collect those needed samples, or know if it is possible to collect a data set with their
desired distribution.

An approach to this problem is to have a sampling policy to determine if there exists a distri-
bution across schools that would produce a data set with the desired proportion of high scoring
essay from the minority group. The goal of this iterative sampling policy would be to make this
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determination using a minimum number of samples. Once this feasibility is known, one can either
sample accordingly or seek out other sources.

There are a myriad of strategies now published that are methods to improve fairness at the
post-data collection stages [Dwork et al., 2012, Friedler et al., 2019]. These training strategies
and post-processing strategies will improve fairness outcomes, but there is a limit to improvement
before impacting accuracy. It is always preferred in any machine learning application to start with
the best data one can access. This highlights another benefit collecting fair data over post-collection
strategies. If fairness is truly a concern, it must also be recognized that data collected today will be
used for a different purpose tomorrow. By considering how to curate fair data in isolation, this can
impact fairness outcomes regardless of the way data is used apart from its original purpose.

For example, consider that, in general, different definitions of fairness cannot be simultaneously
satisfied except for in certain (possibly unattainable) scenarios [Kleinberg et al., 2017, Pleiss et al.,
2017]. Collecting data to achieve one type of fairness when trained with a particular algorithm
gives no guarantee for outcomes of other measurements of fairness. If the measurement for fairness
changes over the life of a project, the data is no longer optimal. Aiming for fair representation from
the onset will mitigate some of these problems. Additionally, equal representation is one of the
scenarios that can produce fair outcomes in relation to calibration and equalized odds, something
that lopsided data cannot achieve.

This work aims to provide a sampling method that tests whether a curator can create a fair data
set from available sources, where ”fair” is defined in terms of a predefined proportion of group
memberships. To the best of our knowledge, similar work in this area of fair sampling assumes
a fair data set is achievable. This work focuses on testing that assumption. Considering the cost
of collecting data, the goal will be to determine the feasibility of these sources with a minimum
number of samples. When collecting data, if one can sample any protected attribute any number
of times, it is simple to create training data that is consistent with some notion of fairness, such
as equal proportions of protected attributes. In this chapter, we consider the scenario where the
sampling sources have unknown distributions of attributes and the curator has defined a ”balanced”
set in regards to the desired proportions of the training data. That is, data can be sampled from
different sources (such as polling in different cities) but knowledge of the distributions of data from
those sources is unknown. This problem setting is described in full in Section 3.2.

Aside from collecting fair data for training, this method could also be used when fair sampling is
the desired end outcome. For example, advertising community services with a desired outcome of
equal men and women using those services. Different advertising strategies would reach different
populations. A practitioner would want to know as quickly as possible whether their selected
strategies can achieve their desired distribution, and if so what combination of strategies would do
this.
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Contributions We introduce the convex hull feasibility sampling problem. In the Bernoulli set-
ting, we give a lower bound on the expected sample size in the infeasible case and an oracle lower
bound of the expected sample size in the feasible case. We define the direction of greatest uncer-
tainty and present three policies that use this direction, along with a naive Uniform policy. Using
high-probability upper bounds, we prove that one policy, Lower Upper Confidence Bound (LUCB)
Mean is superior to Uniform. We define the Multinomial version of the problem along with ad-
justed algorithms, and using simulations show the performance of our three policies outperform
Uniform in the Bernoulli setting and the Multinomial setting with three dimensions.

3.1.1 Related Work

3.1.1.1 Fair Sampling

To the best of our knowledge, the first work to address data collection as a part of bias mitigation
is Abernethy et al. [2020]. Here the goal is to optimize over both a loss function for accuracy
and a loss function for fairness. They assume an infinite availability of group labeled data, and
at every iteration of sampling they choose the sample which will either minimize the accuracy
loss or minimize the fairness loss. The choice of which loss to minimize at every time point is
determined by a Bernoulli variable with probability p, where p is a parameter chosen beforehand.
When a sample is chosen to increase fairness, a sample is drawn from the group which currently
has the worst loss performance. Otherwise a sample is chosen randomly. The intuition in both
cases is that more training samples will improve performance, either overall performance when
sampling at random or a specific group’s performance when sampling to improve fairness. A
similar framework is presented in Tae and Whang [2021], where the groupings are predefined
slices of a current data set, and the goal is to obtain additional samples within a budget so as to
maximize average accuracy as well as minimize the average difference between the accuracy of
each slice and that of the total data. Their sampling method relies on estimating learning curves and
allocating the sampling budget to slices that will have maximum impact on accuracy and fairness.

Along this vein of work is Shekhar et al. [2021]. Their goal identify a minimax optimal classifier
across the sampling proportion of protected attributes and the loss of the worst performing group.
Given a function class F , loss l, and protected attributes z ∈ Z , they propose an adaptive sampling
policy that identifies the worst performing group z and dedicates a larger proportion of the sampling
budget to that group.

We include an exploration of fairness results when optimizing samples for a particular definition
in Appendix C. Using two data sets often seen the algorithmic fairness literature, we sample and
train using the policies presented in Abernethy et al. [2020], Shekhar et al. [2021], and discuss the
outcomes of several fairness measurements.
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In Asudeh et al. [2019], they forgo optimization for a particular learning algorithm and focus on
the coverage of features within the data. They define the set maximum uncovered patterns (MUP),
which aims to identifying feature combinations that fail to meet predefined threshold counts. In
addition to providing several algorithms to identify the set of MUP, they provide a greedy algorithm
to sample additions data whose feature patterns are MUP until all meet the required sampling
threshold.

The work closest to ours is presented in Nargesian et al. [2021], where the goal is to collect a
data set of a given size consisting of a desired count from each defined group. Here they assume
a priori that the desired counts are feasible, and if minimums are not achieved they propose over-
sampling until minority group counts are met and removing excess majority samples. In addition
to results for when the sampling distributions are known, they tackle the unknown distribution
model with a multi-armed bandit strategy. They propose a reward function that depends on the
true distribution of a group (such as from census population data), with the intuition being if a
sample is from a group with a high proportion in the population then the reward is low and if from
a minority group the reward should be high. Using a UCB type strategy with this reward function
presents a sampling strategy that aims to sample from the distribution with the largest proportion
of the minority group. Our work differs substantially by focusing on the feasibility of the desired
proportions, and frames the problem through use of a convex hull composed of points defined by
a confidence region.

There are several other frameworks around obtaining a fair data set. For example, an active
learning application is presented in Anahideh et al. [2021], where the goal is to sequentially se-
lect which points to label so as to balance model accuracy along with a predetermined notion of
fairness. Data augmentation with synthetic points has also been explored Sharma et al. [2020].

3.1.1.2 Bandit Pure Exploration

The feasibility problem is closely related to the pure exploration multi-armed bandit problem. In
pure exploration a learner has k actions with unknown means and the goal is to identify the action
or subset of actions with the largest mean from the fewest samples. There are two settings in
this problem, fixed-confidence and fixed-budget. In the fixed-confidence setting, a policy aims to
minimize the sample complexity while guaranteeing the outcome of a policy is correct with some
minimum predetermined probability. In the fixed-budget setting, a policy, given a predetermined
sample size, aims to provide the largest confidence with which the largest means are correctly
identified.

To see the connection to our feasibility problem to the fixed-confidence setting, consider the
two class case, which reduces to identifying if there exists pi ≤ x ≤ pj . Here p1, . . . , pk are the
k unknown means and the desired mean x encodes our definition of a balanced data set. Then
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by determining if x is or isn’t the maximum or minimum mean with some probability 1 − δ we
determine whether we correctly identify feasibility with probability 1− δ.

The PAC pure-exploration setting was first presented in Even-dar et al. [2002] for identifying
the top action with a fixed confidence. Their successive elimination algorithm relies on uniformly
sampling actions from a decreasing set, removing actions from the set as they are determined
to be lower than the top action with high confidence. Another set of policies uses lower upper
confidence bounds on the means of the actions [Gabillon et al., 2012, Kalyanakrishnan et al., 2012,
Kaufmann and Kalyanakrishnan, 2013, Jamieson et al., 2014]. A lower bound on the expected
sample complexity for Bernoulli rewards is presented in Mannor and Tsitsiklis [2004], where they
provide worst case and gap dependent bounds. This is expanded upon by Garivier and Kaufmann
[2016], who provide a lower bound on sample complexity for one parameter exponential families
and a policy with a asymptotically matching upper bound.

Relation to Sequential Hypothesis Testing: The multi-armed bandit pure exploration prob-
lem (also known as best arm identification) and the convex hull feasibility sampling problem we
present in this chapter are a both sequential hypothesis testing problems. They rely on sequen-
tial sampling until terminated by a predefined stopping rule. When in a fixed-confidence setting,
the sequential nature can allow for reaching a conclusion using smaller sample sizes than offline,
batch hypothesis testing. In the fixed-budget setting, sequential sampling can result in higher con-
fidence conclusions. The relation of classical sequential testing theory presented in Wald [1945] to
best arm identification sample complexity bounds is discussed in Kaufmann and Kalyanakrishnan
[2013].

3.1.1.3 Probabilistic Hyperplane Separability

The fields of computational geometry and computer science are not new to the problems of convex
hull feasibility and hyperplane separability with probabilistic points. Though the underlying data
assumptions are not quite matched to the convex hull feasibility problem we present in this chap-
ter, there are significant similarities that may ultimately be used in future research and we would
be remiss not to point them out. The goal of these papers is typically to provide an algorithm
identifying separability or the probability of separability that minimizes run time complexity.

We briefly characterize three variations of these problems that are similar to ours. The first
is that which considers the probability of linear separability between two sets of points A and B

which are drawn from sets A and B, as in Fink et al. [2017]. The second variation considers n

labeled points from sets A and B, each with a known uncertainty region. The question then is
to determine separability of sets of uncertainty regions, as seen in Sheikhi et al. [2017]. Finally,
there is the problem formulation where there are n points, with the value of each point i having a
probability distribution over a discrete set si with the goal to find the probability a set O lies within
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the probabilistic convex hull [Yan et al., 2015].

3.2 General Problem Definition

The fixed-confidence ϵ-convex hull feasibility problem is defined as follows. Each of k source
distributions, which we will hereto refer to as actions, are independently belong to some known
family P with unknown means µi in dimension d. We are given a known variable x ∈ Rd and a
relaxation of ϵ ≥ 0 and define xϵ as the open set {y : ||y − x|| < ϵ}, with xϵ = x when ϵ = 0. We
define the feasible case as when there exists some y ∈ xϵ that lies in the convex hull of {µ1, ..., µk}
and the infeasible case as when the set xϵ lies outside of the convex hull of {µ1, ..., µk}. We include
the relaxation of x with ϵ because it may not be necessary to achieve exact feasibility.

If the µi’s are known, then it is possible to determine whether x is in the convex hull of the µi’s
by solving a linear optimization problem. Instead, we consider the setting in which the µi’s are
unknown, but we can (actively) observe noisy versions of the µi’s. The goal is to give a determina-
tion of the feasibility of xϵ with a predetermined confidence while minimizing the number of times
the actions are sampled.

In the fairness setting, the dimension d represents the number of groups defined by the protected
attribute labels that the curator wishes to balance on. For example d = 2 could represent the
groupings of ‘men’ and ‘women’. The points µi’s correspond to data sources: the j-th component
of µi is the fraction of samples from the j-th group in samples from the i-th data source. The
components of the query point x correspond to the desired fractions of samples from each group
in the data set. The convex hull feasibility problem is thus equivalent to determining whether there
is a set of weights wi such that drawing wi fraction of samples from the i-th data source will lead
to a data set with the desired fractions of samples from each group.

3.2.1 Feasibility and Infeasbility

Given i ∈ [k], µi ∈ Rd, x ∈ Rd and ϵ ≥ 0, we first state the feasible and infeasible cases more
formally.

Definition 3.2.1 (Infeasible Case). The problem is (x, ϵ)-infeasible if there exists some separating
hyperplane between xϵ and the µi.

∃a ∈ Rd such that ∀i ∈ [k], y ∈ xϵ (µi − y)Ta < 0.

Definition 3.2.2 (Feasible Case). The problem is (x, ϵ)-feasible if there exists a convex combina-
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tion that expresses some y ∈ xϵ in terms of the µi’s:

∃λ ∈ ∆k−1such that y =
k∑

i=1

λiµi.

where ∆k−1 is the (k − 1)-dimensional probability simplex in Rk.

Because the µi are unknown, we must rely on confidence regions to inform a decision of
whether the underlying case is feasible or infeasible. If each confidence region Ri contains µi

with probability at least 1 − δ
k

then we can make a high-confidence decision on the underlying
case.

Definition 3.2.3 (1− δ Confident Infeasible). There exists a separating hyperplane between the set
xϵ and the confidence regions for all actions.

∃a ∈ Rd such that ∀i ∈ [k], y ∈ xϵ, vi ∈ Ri, we have that (vi − y)Ta < 0.

Definition 3.2.4 (1− δ Confident Feasible). For all sets consisting of a point from each confidence
region, there exists a point in xϵ within their convex hull.

∀vi ∈ Ri, i ∈ [k], ∃λ ∈ ∆k−1, y ∈ xϵ such that y =
k∑

i=1

λivi.

3.2.2 Formalization Assumptions and Practical Implementation

This formalization allows us to approach the problem under reasonable assumptions but does not
capture the many variations expected in a practical implementation. We highlight some of the
assumptions and variations as directions of future work as well as to make them readily apparent
to practitioners.

This work assumes each action is of sufficient size that the sampling policy will not sample the
entire population. Additionally, we are assuming that the distribution of features uncorrelated to
those defining the labels used for balancing the data are similar across actions, so that the sampling
policy is not biasing these other features. Finally, we assume that the cost of each action is equal.

An example that holds each of these assumptions could be gathering survey data balanced
on political affiliation where each action represents a large city. It is unknown beforehand the
distribution of people likely to respond to the survey, and the reward incentive (cost) for each
sample would be the same across actions. Depending on the measured features, it can be reasonable
to assume a sampling policy would not induce bias.
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Conversely, an example that does not hold all these assumptions would be the example given
in the introduction: advertising for community services. Different advertising strategies are likely
to have different costs, and the population reached by certain strategies may be small and stagnant
enough so that additional advertising provides no benefit, making additional sampling moot.

We consider the assumptions in this work reasonable in an initial formulation, and highlight
that they are fertile ground for further work in consideration of the convex hull feasibility problem.

3.2.3 Sampling Policy

A sampling policy π is a mapping of the history of all samples drawn up to the current time to
the choice of which action to sample next and the termination of the algorithm. When a policy
terminates, it outputs a result of either feasible or infeasible. Let τ represent the stopping time of
a policy, and I(π, δ) ∈ {feasible, infeasible} be the indicator function of the output for policy π

given confidence 1− δ.

Definition 3.2.5 (Sound Policy). Given some δ, We call a policy (1 − δ)-sound if the expected
value of the stopping time is finite and if with probability at least 1 − δ the policy selects the
correct underlying case,

E[τ ] <∞

P (I(π, δ) = feasible|feasible) ≥ 1− δ, P (I(π, δ) = infeasible|infeasible) ≥ 1− δ

3.3 Bernoulli Feasibility Sampling

We focus on the case where there are two protected categories (d = 2). In this case the µi lie in
the 2-dimensional simplex and convex hull feasibility simplifies into testing in 1-dimension with
Bernoulli means. This setting maps onto the scenario with two groups labels, {0, 1}, with x ∈ [0, 1]

representing the desired proportion of samples from group 1 and the probability of sampling group
1 from action i is pi. For our theoretical analysis, we assume without loss of generality that
p1 ≥ p2 ≥ ... ≥ pk.

3.3.1 Sample Complexity Lower Bounds

We will take inspiration from the pure exploration bandit literature and give a lower bound on the
expected value of the stopping time τ as a measure of sample complexity in the Bernoulli setting.

The multi-armed bandit best arm identification problem and the Bernoulli convex hull feasibility
problem share certain similarities pointing towards similar techniques, but significant differences
prevent direct application. In the best arm identification problem, to determine the best action with
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high confidence, all sub-optimal actions must be sampled to some extent to rule them sub-optimal.
This remains true in our problem when the problem instance is infeasible, as all actions must
be sampled sufficiently to determine them separable from our set of interest xϵ. If the instance
is feasible, the relation of the ”sub-optimal” actions to each other or xϵ becomes irrelevant. For
example, if two actions are sampled such they are determined with high confidence to be above and
below xϵ respectively, sampling from the other actions provides no additional information about
the feasibility or infeasibility of the problem. Additionally, there may be multiple sets of actions
whose convex hull is feasible.

The possibility of multiple optimal subsets of actions presents a difficulty in determining a
lower bound for feasible instances since for any (1− δ)-sound policy, it may not have sampled all
actions and there may be multiple sets of actions that would trigger termination with the correct
outcome. Therefore, for a specific feasible instance, it becomes difficult to give an expected lower
bound for each action, except for the case when the playable actions comprise a unique feasible
set.

Considering this, we give a looser oracle lower bound for the feasible case. Here, the oracle
knows the optimal subset(s) of actions but does not know their means. The oracle lower bound then
is the minimum expected sample complexity when only actions in an optimal subset are played.
Note that the oracle lower bound is still a valid lower bound since we are only giving the learner
more information about the problem. However, the true lower bound might be much higher than
our oracle lower bound.

Notation: For any feasible problem instance, let

Ω = {J ⊆ [k]|{pi}i∈J is (x, ϵ) feasible}

be the set of all subsets of actions whose means are (x, ϵ)-feasible. Then we define the optimal
subset of actions, J ∗, as the subset(s) that is the ‘easiest’ to distinguish from any infeasible in-
stance. That is, we want to define the set of actions who collectively require the fewest samples to
determine with high confidence is not any infeasible instance. In the Bernoulli setting we define
this as

J ∗ = argmin
J∈Ω


(
minu∈{−1,1}D(µi, x+ uϵ)

)−1 |J | = 1∑
i∈J
(
maxu∈{−1,1}D(µi, x+ uϵ)

)−1
otherwise

where D is the Kullback–Leibler divergence. Here we want to maximize the distance between
action means and a boundary point of xϵ while minimizing the cumulative distance across all
actions in the set. There are two feasible cases, either only one action is feasible or two actions are
a feasible set, so |J ∗| ∈ {1, 2}. When analysis differs for these cases and |J ∗| = 1 then we write
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J ∗ = {l∗}, else we write J ∗ = {1, k}, as in this case the optimal subset consists of the actions
with the largest and smallest mean, p1 and pk.

Theorem 1 (Oracle Feasible case). For a problem instance ν that is (x, ϵ)-feasible, for any (1−δ)-
sound deterministic policy with d = 2, δ < 1/2,

Eν [τ ] ≥

max {D(pl∗ |x− ϵ)−1, D(pl∗ |x+ ϵ)−1} 1
2
log
(

1
4δ

)
J ∗ = {l∗}[

1
D(p1|x−ϵ)

+ 1
D(pk|x+ϵ)

]
1
2
log
(

1
4δ

)
J ∗ = {1, k},

Theorem 2 (Infeasible case). For a problem instance ν ′ that is (x, ϵ)-infeasible, for any (1 − δ)-

sound deterministic policy with d = 2, δ < 1/2,

Eν′ [τ ] ≥
k∑

i=1

max
{
D(pi|x− ϵ)−1, D(pi|x+ ϵ)−1

} 1

2
log(

1

4δ
)

Lower bound proofs can be found in appendix A.1.1.

3.3.2 Sampling Policies

We present four sampling policies, a naive Uniform policy as a baseline along with Lower Upper
Confidence Bound (LUCB) Mean, LUCB Ratio and Beta Thompson Sampling. We give high
probability upper bounds for Uniform and LUCB Mean, and empirical evidence that LUCB Mean,
LUCB Ratio, and Beta TS significantly outperform Uniform.

Notation: Let B(n, δ) be a confidence margin dependent upon sample size n and confidence
parameter δ such that

∞∑
n=1

P (|pi − p̂i(n)| > B (n, δ)) <
δ

k
. (3.3.1)

We write Bi(t) to represent the confidence margin for action i given its sample size at time
t when δ is implied. Let p̂i(t) be the estimated mean of action i at time t, and Ri(t) = {y :

p̂i(t) − Bi(t) ≤ y ≤ p̂i(t) + Bi(t)} be the confidence region of action i at time t. We use at to
specify the action chosen at time t and ni(t) the number of times action i has been chosen at time
t. Each policy follows the same stopping rules for termination.

We next define the direction of greatest uncertainty, which is used to determine termination and
in our sampling policies for action selection. This measure aims to capture which direction away
from x, we are least certain an action mean lies on.

Definition 3.3.1 (Direction of greatest uncertainty). Given a confidence margin Bi and mean esti-
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mate p̂i, the direction of greatest uncertainty u ∈ {1,−1} is defined as,

u = argmin
u∈{1,−1}

max
i∈[k]

u(p̂i − x)−Bi.

The intuition behind this definition is that it identifies the direction from x we are furthest from
determining a mean exists in that direction. For example, if x = .5, and there are two confidence
regions (.48, .9) and (.49, .8), then the closest lower bound in direction u = −1 is .8, and the closest
lower bound in direction u = 1 is .48. The decision boundary that implies a mean lies below x

is further from x than a decision boundary that implies a mean lies above it, so our direction of
greatest uncertainty is u = −1 and we should sample actions that we have a higher belief are below
x.

All the policies presented follow the same stopping rules.
Stopping Rules: If one of the following criteria are met, the policy terminates,

1. Feasible: xϵ is not separable from any subset consisting of a point from each of the confi-
dence regions.
minu∈{−1,1}maxi∈[k](p̂i − x)u−Bi(t) > −ϵ

2. Infeasible: xϵ is separable from all confidence regions.
minu∈{−1,1}maxi∈[k](p̂i − x)u+Bi(t) < −ϵ

Where stopping rule 1 states there is a mean whose confidence interval lies above x − ϵ and one
whose confidence intervals lies below x+ϵ. The same confidence interval may satisfy both of these
conditions. Intuitively, stopping rule 1 says that if the true means lie in their respective confidence
intervals, then no matter their value, a point in xϵ lies in their convex hull.

3.3.2.1 Uniform

This simple policy samples from the active actions and chooses the action with the least samples,
leading to uniform sample sizes across active actions. Active actions at time t are those whose
confidence regions at time (t−1) contain a boundary point of xϵ. The policy is given in algorithm 5.

Algorithm 5: Uniform Bernoulli
input: Number of actions k, confidence 1− δ, x, ϵ.
Sample from each action once.
while Stop = False do

Update active actions At = {i : ∃y ∈ ∂xϵ, y ∈ Ri(t)}.
at+1 = argmini∈At

ni(t)
end
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3.3.2.2 LUCB Mean

This policy is based on the idea of sampling the active action with the confidence boundary furthest
from x in the direction of greatest uncertainty, as given in definition 3.3.1. Given this direction, we
exploit the action whose confidence bound is furthest from x. The policy is given in algorithm 6.

Algorithm 6: LUCB Mean Bernoulli
input: Number of actions k, confidence 1− δ, x, ϵ.
Sample from each action once.
while Stop = False do

ut = argminu∈{1,−1}maxi∈[k] u(p̂i(t)− x)−Bi(t)
at+1 = argmaxi∈[k] ut(p̂i(t)− x) +Bi(t)

end

3.3.2.3 LUCB Ratio

Using definition 3.3.1 to define the direction of greatest uncertainty, the intuition of this policy is
to sample from the active action whose confidence region has the largest proportion of area on the
side of x in this direction. It is possible that two actions have the same confidence ratio, at which
point exploring the less sampled action provides more information. To account for this, we scale
the confidence ratio by 1√

ni
. The policy is given in algorithm 7.

Algorithm 7: LUCB Ratio Bernoulli
input: Number of actions k, confidence 1− δ, x, ϵ.
Sample from each action once.
while Stop = False do

ut = argminu∈{1,−1}maxi∈[k] u(p̂i(t)− x)−Bi(t)

at+1 = argmaxi∈[k]
1√
ni

ut(p̂i(t)−x)+Bi(t)
ut(x−p̂i(t))+Bi(t)

end

3.3.2.4 Thompson Sampling

This probabilistic algorithm is a standard choice in the bandit literature. With few changes we
adjust it to the convex hull feasibility problem. Again we use the direction of greatest uncertainty,
sample a mean from the posterior of each action, and play the action with the mean furthest from
x in the given direction. The policy is given in line 8 where ri(t) are the number of success drawn
from action i at time t.
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Algorithm 8: Beta Thompson Sampling
input: Number of actions k, confidence 1− δ, x, ϵ
Sample from each action once.
while Stop = False do

Update posteriors πi(t) = Beta(1 + ri(t), 1 + (ni(t)− ri(t)))
ut = argminu∈{1,−1}maxi∈[k] u(p̂i(t)− x)−Bi(t)

Sample p̃i(t) from posterior πi(t) for all i ∈ [k]
at+1 = argmaxi∈[k] ut(p̃i(t)− x)

end

( )
pi x

∆max
i

∆min
i

ϵ

Figure 3.1: Visualization of ∆max
i ,∆min

i for some pi given x, ϵ.

3.3.3 Sample Complexity Upper Bounds

For both Uniform and LUCB Mean policies we give high probability upper bounds on the sample
complexity. These policies sample all actions in relation to the optimal feasible subset, and thus
allow a simple bounding on the complexity of each action. In Section 3.5, we show that Beta TS,
LUCB Ratio, and LUCB Mean outperform Uniform empirically.

Notation:We define ∆max
i to be the maximum distance from pi to a boundary of xϵ and define

∆min
i to be the minimum distance from pi to a boundary of xϵ. Let smax

i be the minimum integer
solution to ∆max

i > 2B(smax
i , δ) and similarly for smin

i . Therefore we have that with probability at
least 1− δ/k, when action i is sampled smax

i (smin
i ) times, ∆max

i (∆min
i ) will not be contained in its

confidence region. A visualization of the gap relationship is show in figure 3.1. We additionally
define ∆i,j = |pi − pj| and si,j and the smallest integer such that ∆i,j > 2B(si,j).

For the feasible Bernoulli setting, the optimal subset J ∗ will consist of one action, J ∗ = {l∗},
or two actions, J ∗ = {1, k}. In the following theorems we include the general case for any B(n, δ)

that satisfies equation (3.3.1) and where s depends on choice of B(n, δ), as well as for the case
with B(n, δ) =

√
1
2n

log(n2 5k
3δ
), which shows the gap dependencies clearly.

Theorem 3 (Uniform Complexity). Let j∗ = argmaxi∈{1,k} s
max
i . Assume B(n, δ) satisfies equa-

tion (3.3.1). When the underlying case is feasible, the sample complexity of Uniform is bounded

above by
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τ ≤

O
(∑k

i=1min
(
smax
j∗ , smin

i

))
J ∗ = {1, k}

O
(∑k

i=1min (smin
l∗ , smin

i )
)
J ∗ = {l∗}

and for B(n, δ) =
√

1
2n

log(n2 5k
3δ
),

τ ≤

O
(∑k

i=1min
(

1
(∆max

j∗ )2
, 1
(∆min

i )2

))
J ∗ = {1, k}

O
(∑k

i=1min
(

1
(∆min

l∗ )2
, 1
(∆min

i )2

))
J ∗ = {l∗}

with probability at least 1− δ.

When the cases is infeasible, the sample complexity of Uniform is bounded above by

τ ≤ O

(
k∑

i=1

smin
i

)
τ ≤ O

(
k∑

i=1

1

(∆min
i )2

)

For B(n, δ) =

√
1

2n
log(n2

5k

3δ
)

With probability at least 1− δ.

Theorem 4 (LUCB Mean Complexity). Let j∗ = argmaxi∈{1,k} s
max
i and i∗ = argmini∈{1,k} s

max
i .

Assume B(n, δ) satisfies equation (3.3.1). When the underlying is feasible, the sample complexity

of LUCB Mean is bounded above by

τ ≤


O

( ∑
i:∆i,j∗≤∆max

j∗

smax
j∗ +

∑
i:∆i,j∗>∆max

j∗

max (si,j∗ , s
max
i∗ )

)
∃i, j, pi < x < pj

O
(∑k

i=1min
(
si,j∗ , s

min
j∗

))
otherwise

and for B(n, δ) =
√

1
2n

log(n2 5k
3δ
)

τ ≤


O

( ∑
i:∆i,j∗≤∆max

j∗

1
(∆max

j∗ )2
+

∑
i:∆i,j∗>∆max

j∗

max
(

1
∆2

i,j∗
, 1
(∆max

i∗ )2

))
∃i, j, pi < x < pj

O
(

k∑
i=1

min
(

1
∆2

i,j∗
, 1
(∆min

j∗ )2

))
otherwise

with probability at last 1− δ.
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When the underlying case is infeasible, the sample complexity of LUCB Mean is bounded above

by,

τ ≤ O

(
k∑

i=1

smin
i

)
τ ≤ O

(
k∑

i=1

1

(∆min
i )2

)

For B(n, δ) =

√
1

2n
log(n2

5k

3δ
)

With probability at least 1− δ.

This shows that for any problem instance, the worst case sample complexity is lower using the
LUCB Mean policy compared to the Uniform policy, since min(smax

j∗ , smin
l ) ≥ max(sl,j∗ , s

max
i∗ )

for all l ∈ [k]. We leave details of this to Appendix A.1.3.
Intuitively, theorem 3 says that all actions are sampled as many times as the most sampled

optimal arm or until it’s confidence region is disjoint from xϵ. For theorem 4, the bounds are more
complicated because it depends upon how close the action mean is to pj∗ and the instance setting.
Generally speaking, the bounds describe a relationship between the relative distance of an action’s
mean and the most sampled optimal action’s mean, an action’s mean and a boundary point in xϵ,
and the worst case behavior of the action’s confidence region. These particular’s are detailed in the
proof.

3.4 Multinomial Feasibility Sampling

By expanding our definition of the direction of greatest uncertainty and our stopping rules, we can
modify each policy to work in higher dimensions.

3.4.1 Feasibility and Infeasibility Checks

Recall the definition of 1 − δ Confident Feasible (definition 3.2.4). If we assume ϵ = 0, an
equivalent definition would be

∀u, ||u|| = 1, ∃Ri such that (qi − (x+ w))T u > 0 ∀qi ∈ Ri

which states that x is not separable from any subset of points constructed from the confidence
regions. Alternatively, we may say that for all unit vectors u, maxi∈[k] minq∈Ri

(qi − x)Tu > 0. If
we limit the confidence regions to be balls with radius B, then we can simplify to say x is feasible
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if
min

u:||u||=1
max
i∈[k]

(p̂i − x)Tu−Bi > 0.

Now considering ϵ > 0, we would need to show there exists some point (x+w) ∈ xϵ, ||w|| < ϵ,

min
u:||u||=1

max
i∈[k]

(p̂i − (x+ w))Tu−Bi > 0

We have that for some λ ∈ (0, 1),

min
u:||u||=1

max
i∈[k]

(p̂i − x)Tu−Bi > −λϵ

min
u:||u||=1

max
i∈[k]

(p̂i − x)Tu−Bi − wTu > −λϵ− wTu

min
u:||u||=1

max
i∈[k]

(p̂i − (x+ w))Tu−Bi − wTa > 0

Where in the last line we have that since u is a unit vector and the length of w is bounded by ϵ,
we can pick w, λ ∈ (0, 1) such that wTu = −λϵ. Therefore a feasibility check becomes if, given
some λ ∈ (0, 1),

min
u:||u||=1

max
i∈[k]

(p̂i − (x+ w))Tu−Bi > 0.

In a similar fashion, an infeasibility check would be if there exists a unit vector a such that,

min
u:||u||=1

max
i∈[k]

(p̂i − x)Tu+Bi < −ϵ.

3.4.2 Sampling Policies

Using the above formulation for checking feasibility lends itself to defining the direction of greatest
uncertainty in any dimension.

Definition 3.4.1 (Direction of greatest uncertainty). Given a confidence margin Bi and mean esti-
mate p̂i, the direction of greatest uncertainty u is defined as,

u = argmin
u: ||u||=1

max
i∈[k]

(p̂i − x)Tu−Bi.

Unfortunately, finding the direction of greatest uncertainty for d ≥ 3, and thus also check-
ing feasibility, is a non-convex problem, so we cannot obtain the optimal solution. One obvious
workaround to this is simply doing a grid search over some subset of points on the unit ball. This
is the approach we take.

Let G be some subset of the unit ball in dimension d which will be the directions we search
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over, and let λ ∈ (0, 1) be a parameter.
Stopping Rules: If one of the following criteria are met, the policy terminates,

1. xϵ is not separable from the confidence balls in any direction u ∈ G.
minu∈Gmaxi∈[k](p̂i(t)− x)Tu−Bi(t) > −λϵ

2. xϵ is separable from all confidence balls.
minu∈Gmaxi∈[k](p̂i(t)− x)Tu+Bi(t) < −ϵ

Our sampling algorithms do not change significantly to accommodate higher dimensions. The
Uniform policy no longer has an active action set, and the other policies use the updated definition
of direction of greatest uncertainty and vector dot products instead of scalar multiplication. The
policies are given in algorithm 9 (Uniform), algorithm 10 (LUCB Mean), algorithm 11 (LUCB
Ratio), and algorithm 12 (Dirichlet Thompson sampling).

Algorithm 9: Uniform
input: Number of actions k, confidence 1− δ, x, ϵ.
Sample from each action once.
while Stop = False do

at+1 = argmini∈[k] ni(t)

end

Algorithm 10: LUCB Sampling
input: Number of actions K, confidence 1− δ, unit vectors G.
fix : A = [k]
Sample from each action once.
while Stop = False do

ut = argminu∈G umaxi∈[k](p̂i − x)Tu−Bi(t)
at+1 = argmaxi∈[k](p̂i(t)− x)Tut +Bi(t)

end

Algorithm 11: Confidence Ratio Sampling
input: Number of actions K, confidence 1− δ, unit vectors G.
Sample from each action once.
while Stop = False do

ut = argminu∈Gmaxi∈[k](p̂i − x)Tu−Bi(t)

at+1 = argmaxi∈[k]
1√
ni

(p̂i(t)−x)Tut+Bi(t)
(x−p̂i(t))Tut+Bi(t)

end
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Algorithm 12: Dirichlet Thompson Sampling
input: Number of actions K, confidence 1− δ, priors πi, unit vectors G
Sample from each action once.
while Stop = False do

ut = argmina∈Gmaxi∈[k](p̂i − x)Tu−Bi(t)
Sample pi(t) from posterior πi(t) for all i ∈ [k]
at+1 = argmaxi∈[k](pi(t)− x)Tut

end
Solve for t in plug optimization. If t ≥ 0, out = feasible, else if t < 0 out = infeasible.

3.5 Simulations

We compare the average sample size till termination of our three policies against the naive uniform
sampling method.

3.5.1 Setup

We run our policies in the Bernoulli setting (which correlates to both d = 1 and d = 2) and the
Multinomial setting with d = 3. Each graph shows the average sample size at termination for
the four policies when averaged over 30 trials using B(n, δ) =

√
1
2n

log(n2 5k
3δ
). In all trials, we

set δ = .01, k = 10, ϵ = 0.1, and set λ = .99 when d = 3. In the Multinomial setting, we
use a grid search over 300 points on the unit sphere. For the Bernoulli setting we run scenarios
for |J ∗| ∈ {1, 2} and for the Multinomial setting |J ∗| ∈ {1, 2, 3}. In each of these settings we
further consider two cases, when J ∗ is unique and when it is not. When the J ∗ is unique, it is an
element of the set of optimal subsets when J ∗ is not unique. Therefore the oracle lower bound is
the same for unique and non-unique cases and we can compare the two outcomes when all other
parameters are fixed. The setting for each scenario is listed in the caption. The desired values is
in the Bernoulli case x = .5, and x = (.33, .33, .33) in the Multinomial case. The means used in
each setting are listed in tables 3.1 and 3.2, and were chosen as a general representation of several
different scenarios.

Table 3.1: Bernoulli Mean Values

Bernoulli |J ∗| = 1 |J∗| = 2

Optimal .5 .3, .7

Non-optimal .48, .52 .48, .52
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Table 3.2: Multinomial Mean Vectors

Multinomial |J∗| = 1 |J∗| = 2 |J∗| = 3

Optimal (.33, .33, .33)
(.1, .57, .33)
(.57, .1, .33)

(.2, .1, .7)
(.7, .2, .1)
(.1, .7, .2)

Non-optimal (0, 0, .1)
(.2, .47, .33)
(.47, .2, .33)

(.33, .33, .34)
(.33, .34, .33)
(.34, .33, .33)

3.5.2 Results

When the average sample size of the Uniform policy is substantially larger than that of the best
performing policy, the y-axis has a break point to indicate a change in the scale.

Figures 3.2 and 3.3 show results for Bernoulli sampling and figures 3.4 to 3.6 show resuts for
the Multinomial sampling with d = 3. It is clear that the Uniform sampling policy performs the
worst in all cases, and is improved upon by all other policies presented in this chapter. It is clearly
seen, and somewhat surprising, that there is a large relative difference in performance of LUCB
Ratio and Thompson sampling between the Bernoulli and Multinomial setting.

In the Multinomial setting Dirichlet Thompson sampling has superior performance, while in the
Bernoulli setting LUCB Ratio has the best performance, except when there in one unique optimal
action, as seen in figure 3.2a. Here Beta Thompson sampling (Beta TS) outperforms the other
policies. We speculate that in this particular Bernoulli setting, Beta TS this may be because this
case is most similar to the standard multi-armed bandit problem, which aims to select the action
with the highest mean as often as possible. The multi-armed bandit Beta TS policy is one of the
simplest and most effective policies in practice [Chapelle and Li, 2011].

Looking at figure 3.2, when J ∗ is unique it requires fewer sample sizes on average for each
policy than when J ∗ is not unique. This relationship reversed in figure 3.3. This example shows
that uniqueness of J ∗ in the Bernoulli setting does not imply a simpler problem. This is similarly
seen in the Multinomial setting. We see in figure 3.4 that Dirichlet TS and LUCB Ratio perform
better in the unique optimal subset setting, and there is no difference for LUCB Mean and Uniform.
Whereas in figure 3.5, all but LUCB Ratio perform better in the non-unique optimal subset setting.

We see in both the Bernoulli and Multinomial setting that the larger the optimal subset, the
fewer average samples before termination. This is because when |J ∗| < d the optimal subsets
must be sampled until B(n, δ) ≈ ϵ to ensure there is a mean either on both sides of x or that a
confidence region is fully contained in xϵ in all directions.

In practice, results will be dependent upon the underlying truth, as can be inferred by the Oracle
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(a) J ∗ unique. (b) J ∗ not unique.

Figure 3.2: Average stopping time in Bernoulli setting, d = 1, |J ∗| = 1, k = 10.

(a) J ∗ unique. (b) J ∗ not unique.

Figure 3.3: Average stopping time in Bernoulli setting, d = 1, |J ∗| = 2, k = 10.

average sample complexity lower bound and the high probably sample complexity upper bounds
given in this chapter. These simulations give evidence of the magnitude of improvement using
an adaptive sampling method over the naive uniform method. Depending on the setting, average
sample size can be reasonably small, as seen in figures 3.3a and 3.3b. In the Multinomial setting,
average sample sizes are in the thousands. The practicality of this method can be seen to depend
upon the true distributions, sampling budget, and parameter values.

3.6 Summary and Discussion

We introduce the convex hull feasibility problem in the context of fair data collection. In the
Bernoulli setting, we give a lower bound on the expected sample complexity in the (x, ϵ)-infeasible
instance and an oracle lower bound on the expected sample complexity in the (x, ϵ)-feasible in-
stance. We introduce four sampling policies for the Bernoulli setting, Uniform, LUCB Mean,

44



(a) J ∗ unique. (b) J ∗ not unique.

Figure 3.4: Average stopping time in Multinomial setting, d = 3, |J ∗| = 1, k = 10.

(a) J ∗ unique. (b) J ∗ not unique.

Figure 3.5: Average stopping time in Multinomial setting, d = 3, |J ∗| = 2, k = 10.

(a) J ∗ unique. (b) J ∗ not unique.

Figure 3.6: Average stopping time in Multinomial setting, d = 3, |J ∗| = 3, k = 10.
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LUCB Ratio, and Beta TS and give high probability upper bounds on sample complexity for the
Uniform and LUCB Mean policies. We give the adaptation of the Binomial policies to the Multino-
mial case. Through simulation, we show LUCB Mean, LUCB Ratio, and the Thompson sampling
policies significantly outperform Uniform in the Bernoulli and Multinomial setting. Under our sim-
ulation scenarios, we see that LUCB Ratio is typically the best performing policy in our Bernoulli
settings, while Dirichlet TS is the best performing policy in our Multinomial settings. We discuss
that the practicality of implementation is dependent upon the underlying distributions, sampling
budget, and chosen parameters. Large sampling budgets would enable this method practical under
most settings, whereas with small sampling budgets this method would only be practical if there
was a strong prior that the underlying distributions has a small oracle lower bound.

While this work focused on Bernoulli and Multinomial convex hull feasibility sampling, the
general problem is applicable when points are drawn from any distribution for which one can
construct a confidence region that satisfies equation (3.3.1).

There are some limitations within this work. Notably, we were only able to give an oracle lower
bound on the expected sample complexity in the feasible case. A true lower bound would allow
for better comparison of a policy’s theoretical performance. Additionally, we provide theoretical
results in the Bernoulli settings, but not the Multinomial setting.

3.6.1 Future Work

The work in this chapter is somewhat analogous to multi-armed bandit best arm identification with
fixed-confidence problem. Another approach seen in the best arm identification literature is the
fixed-budget setting, which could also be applied to the convex hull feasibility problem. Given a
set of samples, the confidence regions can be such that they do not meet the definition of either
(1 − δ)-confident feasible or (1 − δ)-confident infeasible. In this case we could ask instead what
is the probability of feasibility or infeasible given the current sample, or if adaptively sampling,
what is the highest probably of a correct decision when sampling with a budget. One application
of this could be to check Pareto frontier feasibility, where if given noisy gradients, we ask what is
the probability all groups can be improved versus the probability that improving some groups may
harm others.

The problem remains that for higher dimensions, d > 2, the optimization problem for deter-
mining both feasibility and the direction of greatest uncertainty in non-convex. A relaxation of this
formulation could result in a better solutions than the current grid-search allows.

Another avenue of interest would be testing on standard data sets used in the fairness literature.
Here one could calculate the theoretical lower bounds given the entire data set, then compare to the
performance of the policies presented in this work in terms of average sample size. Finally, with
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the curated balanced data sets, one could compare fairness outcomes compared to other curation
or preprocessing methods.
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CHAPTER 4

Debiasing Representations by Removing Unwanted
Variation Due to Protected Attributes

4.1 Introduction

It is generally assumed that the use of algorithms removes human bias from decision making. In
practice, this is not usually the case, and there are numerous examples of algorithms with outcomes
that are unfair to members of different protected classes (see e.g. Angwin et al. [2016], Steel and
Angwin [2010]).

In recent years, there has been a flurry of work aimed at correcting this issue. Starting with the
seminal paper Dwork et al. [2012], this work has generally fallen into four categories:

1. Mathematical or statistical definitions of fairness (e.g. Friedler et al. [2016], Ritov et al.
[2017]).

2. Algorithms (or recommendations for algorithms) that are modeled to ensure fairness (e.g.
Joseph et al. [2016]).

3. Methods of preprocessing data in order to remove inherent bias so that algorithms trained on
the debiased data will be fair (e.g. Zemel et al. [2013], Feldman et al. [2015]).

4. Methods of debiasing the outcomes of existing algorithms (a postprocessing step; e.g. Hardt
et al. [2016]).

This work falls into the third category of preprocessing. We introduce a factor model prevalent
in genetics applications to model the contributions of the protected and permissible attributes to
the representation. We treat the variation that is present in the data due to protected attributes
(e.g. race) as unwanted, and we propose a method to remove this unwanted variation based on the
factor model (and thus debias the data). We further compute the correlation between the debiased
data and the original protected attributes. In ideal cases, we show that there is no correlation, and
therefore our debiased data satisfies a relaxed version of conditional parity Ritov et al. [2017] in
these cases.
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4.1.1 Motivating Example

We use ProPublica’s COMPAS data set and COMPAS risk recidivism scores as an example
throughout. More information can be found from Angwin et al. [2016] and Practitioners Guide
to COMPAS 1. Much has been written questioning the fairness of these scores with respect to
race, with concerns about the disparate false negative and false positive rates between African-
Americans and Caucasians.

Notation: We denote matrices by uppercase greek or Latin characters and vectors by lowercase
characters. A (single) subscript on a matrix indexes its rows (unless otherwise stated). A random
matrix X ∈ Rn×d is distributed according to a matrix-variate normal distribution with mean M ∈
Rn×d, row covariance Σr ∈ Rn×n, and column covariance Σc ∈ Rd×d, which we denote by X ∼
MN(M,Σr,Σc).

4.2 Related Work

The factor model of the representation that motivates the proposed approach (Equation 4.3.1) is
widely used in genetics applications to model gene expression data. The model was first introduced
by Leek and Storey [2008] to represent wanted and unwanted variation in gene expression data.
The model was exploited by Gagnon-Bartsch et al. [2013] to develop the removing unwanted
variation (RUV) family of methods.

RUV methods rely on knowledge of a set of control genes: genes whose variation in their
expression levels are solely attributed to variation in Z, for example, genes unaffected by the
treatments. Formally, a set of controls is a set of indices I ⊂ [d] such that BI = 0. Thus

YI = XAT
I + EI ,

where YI and EI consist of subsets of the columns of Y and E, which suggests estimating AT
I by

linear regression. This is precisely the “transpose” of the method that we advocate.

4.3 Adjusting for Protected Attributes

Consider the following widely adopted model for matrix-variate data:

Y
(n×d)

= X
(n×k)

AT

(k×d)
+ Z

(n×l)
BT

(l×d)
+ E

(n×d)
. (4.3.1)

1http://www.northpointeinc.com/files/technical
documents/FieldGuide2 081412.pdf
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The rows of Y are representations, the rows of X (resp. Z) are protected attributes (resp. per-
missible attributes) of the samples, and the rows of E are error terms that represent idiosyncratic
variation in the representations. In this work, we assume k, l≪ d.

In practice, Y is usually observed, X is sometimes observed, and Z is usually unobserved. For
example, in Bolukbasi et al. [2016], the representations are embeddings of words in the vocabulary,
and the protected attribute is the gender bias of (the embeddings of) words. The rows of Z are
unobserved factor loadings that represent the “good” variation in the word embeddings. In analogy
to the framework proposed by Friedler et al. [2016], the rows of Z are points in the construct space
while the rows of Y are points in the observed space. We emphasize that like the construct space,
Z is unobserved.

x

z y

Figure 4.1: The model (4.3.1) and (4.3.2). permissible attributes

We highlight that we permit non-trivial correlation between the protected and permissible at-
tributes. In other words, we allow the protected attribute to confound the relationship between
the permissible attribute and the representation (see Figure 4.1 for a graphical representation of
the dependencies between the rows of Y , X , and Z). This complicates the task of debiasing the
representations. To keep things simple, we assume the regression of Z on X is linear:

Z
(n×l)

= X
(n×k)

ΓT

(k×l)
+ W

(n×l)
. (4.3.2)

The rows of W are error terms that represent variation in the permissible attributes not attributed
to variation in the protected attributes. We specify the distributions of X , E, and W , in Sections
4.3.2 and 4.3.3.

Our goal is to obtain debiased representations Ydb such that the debiased representations are

uncorrelated with the protected attributes conditioned on the permissible attributes:

Cov
[
[Ydb]i, xi | zi

]
= 0. (4.3.3)

This is implied by conditional parity: [Ydb]i ⊥ xi | zi, and we consider (4.3.3) as a first-order
approximation of conditional parity. An ideal debiased representation is the variation in the repre-
sentation attributed to the permissible attributes ZBT , but this is typically unobservable in practice.
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Another way to state our goal is estimating ZBT .

4.3.0.1 COMPAS example

Under this model, each row of Y corresponds to each person’s data allowed for recidivism predic-
tion. The data we use in our experiments in Section 4.4 includes age, juvenile and adult felony and
misdemeanor counts, and whether the offense was a misdemeanor or felony. Each row of X cor-
responds to a person’s race, where we limit our experiments to Caucasian and African-American.
Z is unknown.

4.3.1 Homogeneous Subgroups

The proposed approach relies crucially on knowledge of homogeneous subgroups: groups of sam-
ples in which the variation in their representations is mostly attributed to variation in their pro-
tected attributes. Formally, we presume knowledge of sets of indices I1, . . . , IG ⊂ [n] such that
HgZIg ≈ 0, where Hg = I|Ig | − 1

|Ig |1|Ig |1
T
|Ig | is the centering matrix, for any g ∈ [G]. In other

words,
HgYIg ≈ HgXIgA

T +HgE.

Ideally, HgZIg exactly vanishes. This ideal situation arises when the samples in the g-th group
share permissible attributes: ZIg = 1|Ig |z

T
g for some zg ∈ Rl.

Intuitively, homogeneous subgroups are groups of samples in which we expect a machine learn-
ing algorithm that only discriminates by the permissible attributes to treat similarly. For example,
in Bolukbasi et al. [2016], the homogeneous subgroups are pairs of words that differ only in their
gender bias: (waiter, waitress), (king, queen).

4.3.1.1 COMPAS example

In our experiments in Section 4.4, homogeneous groups consist of people who either did not re-
cidivate within two years or people who did recidivate within two years and were charged with the
same degree of felony or misdemeanor. Although Z is unknown, we expect subjects who go on
to commit similar crimes or those who do not recidivate to have similar zi regardless of race. We
emphasize that the homogeneous subgroups are not defined by having similar attributes in Y .

4.3.2 Adjustment When the Protected Attribute is Unobserved

In this section, we show that the approach proposed by Bolukbasi et al. [2016] produces debiased
representations that satisfy (4.3.3).
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When the protected attributes are not observed, it is generally not possible to attribute variation
in the representations to variation in the protected and permissible attributes. Thus, Bolukbasi
et al. [2016] settle on removing the variation in the representations in the subspace spanned by
the protected attributes. In other words, we debias the representations by projecting them onto the
orthocomplement ofR(A).

Formally, let Qg ∈ R|Ig |×(|Ig |−1) be a subunitary matrix such thatR(Qg) coincides withR(Hg).
Under (4.3.4), we have

QT
g YIg ≈ QT

g XIg +QT
g E,

which implies Cov
[
QT

gYIg
]
≈ ΣE + AAT. This is a factor model, which allows us to consistently

estimate A by factor analysis under mild conditions. We impose classical sufficient conditions for
identifiability of A Anderson and Rubin [1956]:

1. Let A−i be the (d − 1) × k submatrix of A consisting of all but the i-th row of A. For any
i ∈ [n], there are two disjoint submatrices of A−i of rank k.

2. ATΣ−1
E A is diagonal, and the diagonal entries are distinct, positive, and arranged in decreas-

ing order.

We remark that the additional assumptions we imposed in this section are a tad stronger than
necessary: the assumptions actually imply identifiability of A, but we only wish to estimateR(A).

In light of the preceding development, here is a natural approach to adjustment when the pro-
tected attribute is unobserved:

1. estimate A by factor analysis:
argmin{1

2

∑G
g=1 ∥HgYIg −XA∥2F};

2. debias Y by projection ontoR(A)⊥:
Ydb = Y (I − PR(A)).

Which gives:
Cov[[Ydb]i, xi|zi] = Cov[PR(A)⊥(Bzi + ei)|zi] = 0

It is important to note that when B ⊂ R(A) then the debiased representations will be non-
informative because they only contain noise.

4.3.3 Adjustment if the Protected Attribute is Observed

If the protected attribute is observed, it is straightfoward to debias the representations. The main
challenge here is estimating A. Once we have a good estimator ÂT , we debias the representations
by subtracting XÂT . We summarize the approach in Algorithm 13.
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Algorithm 13: Adjustment if the protected attr. is observed
input: representations Y ∈ Rn×d, protected attributes X ∈ Rn×k and groups

I1, . . . , IG ⊂ [n]
Estimate A by regression:

ÂT ∈ argmin{1
2

∑G
g=1 ∥Yg −XgA

T∥2F},

where Yg = YIg − 1|Ig |(
1

|Ig |1
T
|Ig |YIg) and Xg is defined similarly.

Debias Y : subtract the variation in Y attributed to X from Y : Ydb = Y −XÂT .

To study the properties of Algorithm 13, we impose the following assumptions on the distribu-
tions of X , E, and W :

X ∼ MN(0, In,Σx),

E | (X,Z) ∼ MN(0, In,Σϵ).
(4.3.4)

Proposition 1. Let Zg and Eg be defined similarly as Yg and Xg. Under conditions (4.3.1), (4.3.2),
and (4.3.4),

ÂT − AT | (X,Z) ∼ MN(T
∑G

g=1 X
T
gZgB

T,T,Σϵ)

where T = (
∑G

g=1X
T
g Xg)

†.

We see that the (conditional) bias in the OLS estimator of A depends on the similarity of the per-
missible attributes in homogeneous subgroups. If Zg = 0 for all g ∈ G, then Â is a (conditionally)
unbiased estimator of A.

Proposition 2. Under conditions (4.3.1), (4.3.2), and (4.3.4), we have

Cov[yi − Âxi, xi | zi] = −BCov[Z̃X̃(X̃TX̃)†xi, xi|zi]

We see that if Â = A or Z̃ = 0 then the debiased yi is uncorrelated with the protected attributes
xi.

4.4 Experiments: Debiased Representations for Recidivism
Risk Scores

We empirically demonstrate the efficacy of Algorithm 13 for reducing racial bias in recidivism
risk scores based on data that ProPublica 2 used in their investigation of COMPAS scores. Because
we do not have access to Northpointe’s COMPAS algorithm, we fit our own models to the raw

2https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
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and debiased data. Although simple, the scores output by our model perform comparably to the
proprietary COMPAS scores (see Figure 4.2 and Table 4.3).

In particular, we show that logistic regression (LR) trained on debiased data obtained from
Algorithm 13 reduces the magnitude of the difference in the false positive rates (FPR) and false
negative rates (FNR) between Caucasians and African-Americans (AA) compared to LR trained
on raw, potentially biased data. This “fairer” outcome is achieved with a relatively small impact
on the percentage of correct predictions. The variables in our LR model are discussed in Section
4.3.0.1.

We split our data into three pieces: a training set used just for debiasing in order to estimate
A in Equation (4.3.1), a training set used to fit LR, and a test set to evaluate the performance of
the learned model. The same training set is used to fit LR to both the raw data and the debiased
data. Figure 4.3 shows the distribution of the probabilities of recidivism for African-Americans
according to a logistic model based on the raw and debiased representations. The distribution of
the probabilities from the raw representation is skewed to the right. In particular, the right tail of
the distribution of probabilities from the raw representation is noticeably heavier than that from
the debiased representation.

The ROC curve of the LR model trained on raw data is similar to the ROC curve of COMPAS
scores validating the choice of LR as a proxy for COMPAS scores. See Figure 4.2. Over 30 splits
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Figure 4.2: ROC curves based on COMPAS scores compared to ROC curves from the Raw COM-
PAS data using logistic regression.

of the data into train and test sets, the average accuracy (the percentage of correct predictions) is
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65% for COMPAS. The accuracy for LR trained on raw data and debiased data is comparable,
again validating our proxy and justifying the slight loss in accuracy after debiasing in pursuit of
fairer outcomes. See Table 4.3.
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Figure 4.3: Distribution of recidivism probabilities from raw and debiased representations for
African-Americans.

For the remaining discussion, we average all results over 30 splits of the data into train and
test sets. Table 4.1 and Table 4.2 show the average FPR and FNR for the LR model before and
after debiasing. The two tables differ only in the threshold used to declare someone at risk for
recidivism based on his or her logistic score; we choose to examine the 50th and 80th quantiles of
LR scores since Northpointe specifies that COMPAS scores above the of 50th (respectively 80th)
quantile are said to indicate a “Medium” (respectively ”High”) risk of recidivism. In Table 4.1, we
see that there is no difference in FPR after debiasing. The difference in FNR between the races
goes from nearly 20% before debiasing to 4% after debiasing. In Table 4.2, we see FNR are nearly
equalized, whereas the magnitude of the difference of FPR between both race groups is improved.
However, now Caucasians suffer from disparate impact of FPR instead of African-Americans.

4.5 Summary and discussion

We study a factor model of representations that explicitly models the contributions of the protected
and permissible attributes. Based on the model, we propose an approach to debias the representa-
tions. We show that under certain conditions, we can guarantee relaxed conditional parity for the
debiased representations.
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LR raw LR debiased
FPR (SE) FNR (SE) FPR (SE) FNR (SE)

Population 0.8 (0.01) 0.68 (0.01) 0.9 (0.01) 0.69 (0.01)
Caucasian 0.05 (0.01) 0.81 (0.02) 0.9 (0.02) 0.72 (0.03)
AA 0.11 (0.01) 0.62 (0.01) 0.9 (0.01) 0.68 (0.02)

Table 4.1: Average percent FPR and FNR with standard errors (SE) based on the 80th quantile of
LR scores.

LR raw LR debiased
FPR (SE) FNR (SE) FPR (SE) FNR (SE)

Population 0.32 (0.01) 0.32 (0.01) 0.4 (0.01) 0.34 (0.01)
Caucasian 0.22 (0.02) 0.5 (0.02) 0.42 (0.03) 0.31 (0.02)
AA 0.4 (0.02) 0.23 (0.01) 0.27 (0.02) 0.35 (0.02)

Table 4.2: Average percent FPR and FNR with standard errors (SE) based on the 50th quantile of
LR scores.

Accuracy LR Raw (SE) LR Debiased (SE) COMPAS (SE)
50 quantile 0.67 (.011) 0.65 (.01) 0.65 (.008)
80 quantile 0.61 (.01) 0.60 (.01) 0.61 (.01)

Table 4.3: Percentage of correct predictions (with standard errors) by logistic regression and
thresholding COMPAS scores
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CHAPTER 5

Fair Pipelines

Automated-decision making saves time and is implicitly assumed to prevent human bias. However,
such automated decisions may unfortunately lead to unfair outcomes. Until recently, the use of
automated-decision making has been largely unchecked. In pursuit of this goal, the first question
that needs to be addressed is what “fairness” itself actually means and how to quantify it. A meta-
analysis of the current literature indicates there are a multitude of inequivalent applications of the
term, and consequently metrics. See, for example, Friedler et al. [2016] (which is based off of
definitions in the seminal paper, Dwork et al. [2012]) for a general framework that encompasses
notions of individual fairness and group fairness (“non-discrimination”).

In this work, we are particularly interested in how effects of bias compound in decision-making
pipelines. While prior work in algorithmic fairness has focused on fairness of one decision, it is
not immediately clear how fairness propagates throughout a compound decision making process.
Complicated decisions usually require more than one decision. For example, a hiring process may
include two decisions: from an applicant pool, one first decides who gets an interview, and the
final hiring decision is made from the pool of interviewees. Although this is a relatively simple
two-decision example, one can imagine a recursive-like compound decision-process where the
outcome of one decision affects another and vice versa. For instance, perhaps to be brought in for
an interview at company A, working for company B helps greatly, but working for company A also
helps an applicant greatly to get an interview at company B.

We ask the following questions:

1. Can a decision at point j in a decision pipeline correct for unfairness at point i < j?

2. How much fairness from point i is preserved in later points in the pipeline?

3. More specifically, how does the fairness from each stage contribute to the fairness of the
final decision?

Our contribution to the algorithmic fairness field is to highlight the need to study compound
decision making processes by studying how composability and fairness interact. We emphasize
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that pipelines are useful to study because they decouple the intermediate decisions since there may
be completely different parties with varying goals and mechanisms responsible for each decision.
Perhaps suprisingly, even in the most basic example of a two-stage pipeline, we show under a
(1 + ε)-equal opportunity definition of fair, the two stages cannot necessarily be combined as
expected. Finally, pipelines set the stage for a number of interesting questions detailed in Section
5.3.1.

5.1 Framework

5.1.1 Pipelines

Definition 5.1.1 (Straight Pipeline). An n-stage (straight) pipeline P (f, g) on a set O is an ordered
set of decision functions

F = {f1 : O → D1, f2 : O × D̂1 → D2, . . . , fT : O × D̂T−1 → DT}

where D̂t = Dkt ×Dkt+1 × · · · ×Dt−1 ×Dt for 1 ≤ kt ≤ t for t = 1, . . . , T and rule functions

{g1 : D1 → {0, 1}, . . . , gT−1 : DT−1 → {0, 1}}

where the final decision for x ∈ O is given by

P (f, g)(x) :=

{
f̂T (x) gt(f̂t(x)) = 1 ∀t ∈ [T − 1]

FAIL otherwise

where for x ∈ O, f̂1(x) = f1(x) and for t = 2, . . . , T , f̂t(x) = ft(x, f̂kt(x), f̂kt+1(x), . . . , f̂t(x)).

We will say decision function ft takes place at stage t of the pipeline for t = 1, . . . , T .

To understand the above definition, note that a straight pipeline P (f, g) on a set O (for instance,
applicants to a job) takes input x ∈ O and applies a decision function on x. If the first decision
(f1(x)), on x is satisfactory (where satisfactory is determined by g1), x is passed onto the next
decision function and so on and so forth until there are no more decisions to be made (reaching
fT ) or an intermediate stage declares an unsatisfactory decision (determined by some gt) at which
point no further decisions shall be made. Each subsequent decision function after the first may see
some part of the past decisions prior in the pipeline (how many decisions back decision function
ft can see back is determined by kt).

We expect the following variations and restrictions to be common with illustrative examples
below:
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1. Filtering pipeline. When each decision function ft is binary, take gt(0) = 0 and gt(1) = 1,
i.e., only the positive-decision subset of previous stage gets passed on. In this case, we may
use the notation P (f, g) in place of Pf for concision.

2. Cumulative decisions pipeline. Take kt ≤ i, i.e., the decision at each stage agglomerates
some score onto previous stages’ decision scores, so that each stage’s decision can depend
on some of the previous decisions.

3. Informed pipeline. Each stage of the pipeline has summary statistics about the outcome
of previous stages. In this chapter, those statistics are implicit in the definition of ft. In
particular, our notation above, while sufficient for this work, is insufficient to study linked
decisions in which each decision reacts to statistics about the other.

The below diagram illustrates a two-stage pipeline, where the second decision can see what hap-
pened in the first decision on a given input:

x f1(x) (x, f1(x)) f2(x, f1(x))

P (f, g)(x) = FAIL P (f, g)(x) = f̂2(x)

f1

g1(f1(x))=0

g1(f1(x))=1 f2

Example 5.1.1 (Hiring decisions as a two-stage filtering pipeline). Let O be the applicant pool, f1 :
O → D1 = {0, 1} the decision as to who receives an interview, and f2 : O ×D1 → D2 = {0, 1}
the hiring decision. Then Pf (x) = f̂2(x) = f2(x, f1(x)) for all applicants x such that f1(x) = 1

(i.e. for all applicants who receive an interview), and 0 (or FAIL) otherwise.

5.1.2 Fairness

As we have stated, there is no consensus in the literature on the definition of fairness. However,
there have been many recent proposed definitions. For simplicity, in order to illustrate how fairness
propagates through a filtering pipeline, we will build on the definition of equal opportunity found
in Hardt et al. [2016].

Equal Opportunity

We consider the case of making a binary decision Ŷ ∈ {0, 1} and measure fairness with respect
to a protected attribute A ∈ {0, 1} (such as age, gender, or race) and the true target outcome
Y ∈ {0, 1}, which captures if an individual is qualified or not.
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Definition 5.1.2. As defined in Hardt et al. [2016], a binary predictor Ŷ satisfies equal opportunity
with respect to A and Y if

Pr{Ŷ = 1|A = 0, Y = 1} = Pr{Ŷ = 1|A = 1, Y = 1}.

In other words, we make sure that the true positive rates are the same across a protected attribute.
We usually think of A = 0 as a majority class.

(1 + ε)-Equal Opportunity

Equal opportunity may be far too restrictive since it requires exact equality of two probabilities. In
addition, because our goal is to measure how fairness propagates through a pipeline, we propose to
quantify fairness relative to a majority class with an ε factor. In fact, we propose a framework that
consists of boosting the minority class in order to correct for existing bias. Therefore, we introduce
the notion of (1+ε)-equal opportunity, which allows for compensation of inherent biases in training
data.

Definition 5.1.3 ((1+ ε)-equal opportunity). A binary predictor Ŷ satisfies (1+ ε)-equal opportu-
nity with respect to A, Y , and majority class A = 0 if

(1 + ε) Pr{Ŷ = 1|A = 0, Y = 1} ≤ Pr{Ŷ = 1|A = 1, Y = 1},

where ε ∈ [0, 1) can be any real number such that

(1 + ε) Pr{Ŷ = 1|A = 0, Y = 1} ∈ [0, 1].

This definition generalizes to more than one protected class in a natural way: if A = {a1, . . . , am}
and am represents the majority class, then Ŷ satisfies ((1 + ε1), . . . , (1 + εm))-equal opportunity
with respect to A, Y , and am, if

(1 + εt) Pr{Ŷ = 1|A = am, Y = 1} ≤ Pr{Ŷ = 1|A = at, Y = 1}

for t = 1, . . . ,m− 1.

That is, we make sure that the true positive rates in the protected class are 1+ε times the rates in
the majority class. The factor of (1+ ε) could be determined, for example, by a Human-Resources
professional or lawyer in order to correct known bias, past or present, whose mechanisms may
not be fully understood. (The problem of choosing ε properly is a much more difficult control
problem, possibly involving feedback, and is deferred to later work.)
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5.1.3 Why pipelines?

Examples

We will now illustrate the utility of studying pipelines with a few examples. Many more examples
have been identified in O’Neil [2016].

1. Hiring. Hiring for a job is at least a two-stage pipeline: (1) determine who to interview out
of an applicant pool and (2) determine who to hire out of an interview pool. Hiring is also an
example of a filtering pipeline since only those who have successfully got an interview are
passed onto the interview stage. This pipeline can also be an example of a informed pipeline

if the final stage gets information about the racial, gender, and age make-up of the applicant
pool for instance.

2. Criminal Justice. Getting parole can be thought of as a three-stage pipeline: (1) compute a
defendant’s risk assessment score, (2) if the defendant is convicted, determine the criminal’s
sentencing, and (3) determine whether the criminal gets parole. This pipeline is an example
of a cumulative decisions pipeline since the parole board has information about the risk
assessment score and sentencing.

3. Mortgages Getting a mortgage for a home can be thought of as a looping pipeline. An
applicant’s FICO score is used to determine whether they get a mortgage. However, an
applicant’s FICO score is affected by prior credit and loan decisions, which also use the
applicant’s FICO score.

In the following, we show that (under specific circumstances) the fairness of a compound pro-
cess can be guaranteed by making each link in the pipeline fair. This has the desirable implication
that “global” fairness can be obtained via “local” fairness under these specific circumstances. In
future work, we aim to develop a more general result that would guarantee fairness over the en-
tire pipeline while allowing for each organization making one of the decisions in the pipeline to
consider fairness only in its own decision.

5.2 Results

For the rest of the chapter, we will focus on two-stage pipelines whose decision functions are binary
decision functions, i.e., D1 = D2 = {0, 1}. We will usually refer to such a decision function as a
binary predictor Ŷ .
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5.2.1 Pipeline Fairness

Consider a two-stage pipeline with binary predictors f1 = X̂ and f2 = Ŷ where again we take
A = 0 to be the majority class and X and Y be the true target outcomes. Using the hiring scenario
from above, for example, X̂ would represent the decision about whether or not to interview a
candidate and Ŷ would represent the decision about whether or not to hire a candidate. If X = 1,
then the candidate is qualified to get an interview; likewise, a candidate with Y = 1 is a good fit
for the job.

We define the pipeline to be (1+α)-equal opportunity fair if the final decision is (1+α)-equal
opportunity fair:

(1 + α) Pr{Ŷ = 1|Y = 1, A = 0} ≤ Pr{Ŷ = 1|Y = 1, A = 1}.

Assuming

1. (1 + ε) Pr{X̂ = 1|Y = 1, A = 0} ≤ Pr{X̂ = 1|Y = 1, A = 1}, a nontrivial assumption
that looks something like (1 + ε)-equal opportunity for the first stage in the pipeline.

2. (1 + δ) Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 0} ≤ Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 1}, that is,
(1 + δ)-equal opportunity for the second stage in the pipeline.

3. Ŷ = 1 =⇒ X̂ = 1.

See Section 5.1.3 for a discussion of these assumptions. Then, we have that

(1 + ε)(1 + δ) Pr{Ŷ = 1|Y = 1, A = 0}

= (1 + ε)(1 + δ) Pr{Ŷ = 1, X̂ = 1|Y = 1, A = 0}

= (1 + ε) Pr{X̂ = 1|Y = 1, A = 0}(1 + δ) Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 0}

≤ Pr{X̂ = 1|Y = 1, A = 1}Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 1}

= Pr{Ŷ = 1, X̂ = 1|Y = 1, A = 1}

= Pr{Ŷ = 1|Y = 1, A = 1}

Therefore,

(1 + ε)(1 + δ) Pr{Ŷ = 1|Y = 1, A = 0} ≤ Pr{Ŷ |Y = 1, A = 1},
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so the pipeline is (1+ ε)(1+ δ) = (1+ ε+ δ+ o(ε+ δ))-equal opportunity fair and hence fairness
is multiplicative over each stage under the above assumptions.

A Toy Example

To provide insight into how a (1 + ε)-equal opportunity decision at different stages of the pipeline
affect outcomes, we give an example using the two-stage hiring model pipeline.

Suppose a company wishes to interview 20 people, and hire 2 of those 20. Assume 100 ap-
plicants apply, with 90 from a majority group and 10 from a minority group. Also assume the
proportion of applicants qualified for the job are equal for both groups. For this simple exam-
ple, we make the strong assumption that we have very good algorithms that choose only people
qualified for the job, and that there are enough qualified applicants for each scenario.

Define the interview, the first stage, as a (1 + ε)-equal opportunity decision, and the hiring,
the second stage, as a (1 + δ) decision. Using the definitions from the above section with strict
equality, our decisions satisfy:

1. (1 + ε) Pr{X̂ = 1|Y = 1, A = 0} = Pr{X̂ = 1|Y = 1, A = 1}

2. (1 + δ) Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 0} = Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 1}

Table 5.1 and figure 5.1 provide a numerical table and visual of four scenarios. Case one and
two present a situation where a perceived bias is accounted for at different stages in the pipeline.
Case three presents a scenario where an attempt to fix a bias is implemented at stage one, but is
counterbalanced at stage two, and case four presents the reverse circumstance.

Table 5.1: Two-stage hiring model expected count outcomes under four different cases for δ, ϵ
values.

Case: ε, δ
majority
interviewed

minority
interviewed

majority
hired

minority
hired

1: 2, 0 15 5 1.5 0.5

2: 0, 2 18 2 1.5 0.5

3: 2, -.666 15 5 1.8 0.2

4: -.666, 2 19.28 .71 1.8 0.2

One observation of note is that if one wishes to implement a (1 + ε)-decision to fix a perceived
bias, the final outcome is independent of the stage at which the (1+ε)-decision is made. Simulation
shows that the variance of the final decision is also independent of the stage at which a decision is
implemented.
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Figure 5.1: Results from two stage example. Number expected interviewed and expected hired.

This may be important for future policy, as giving preference to a minority group during the
interview is perhaps more publicly acceptable than giving higher preference to minorities during
hiring. Additionally, instead of giving preference to the minority group to receive more interviews
from the current unbalanced applicant pool, the same outcome can be achieved by recruiting more
minority applicants.

5.2.2 Where Difficulties Lie

Notice that, above we assume that fairness in the first stage of the pipeline to mean (1+ε) Pr{X̂ =

1|Y = 1, A = 0} ≤ Pr{X̂ = 1|Y = 1, A = 1} and fairness in the second stage to mean
(1 + δ) Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 0} ≤ Pr{Ŷ = 1|X̂ = 1, Y = 1, A = 1}. Fairness in stage
two fits in the framework of equal opportunity since it’s a statement about an applicant getting
hired given that the applicant is hiring-qualified and made it successfully through the first stage
of the pipeline. Unfortunately, the first stage “fairness” assumption is a bit troublesome because
it requires the first stage to make a decision based on the quality measured in the last stage. In
a real world application, the first stage may be controlled by different mechanisms or goals than
the last stage. In the context of a pipeline process where each portion is controlled by the same
organization (or perhaps the portions are controlled by two sub-entities of the one organization),
these assumptions make sense. However, there are many scenarios where this assumption will not
be met.

For an example, we return to the two-stage pipeline hiring example where the first stage of the
pipeline determines who gets an interview and the second stage determines who gets hired. The
interview stage may only care about someone’s resume to determine if they should be granted an
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interview. However, it’s not hard to imagine a case where a candidate is hiring qualified (Y = 1;
they have the skills for the interview and job) but is not interview qualified (X = 0; their resume
could be bad because they never received guidance on creating a good resume). Therefore, the
issue seems to be with the specific ratio for i = 0, 1:

Pr{X̂ = 1|X = 1, A = i}
Pr{X̂ = 1|Y = 1, A = i}

.

Ideally, we want these probabilities to be as close as possible so that we can decouple the pipeline.
If not, being fair in the interview stage only based on interview qualifications and being fair in the
hiring stage may not result in a pipeline that is fair.

5.3 Conclusion

In this chapter, we formalized the notion of a compound decision process called a pipeline, which
is ubiquitous in domains like hiring, criminal justice, and finance. A pipeline decouples the final
decision into intermediate decisions, which is important since although each decision affects the
final outcome, different processes with different goals may be in charge of each intermediate stage.
Decoupling allows us to see how fairness in each stage contributes to the fairness in the final
decision.

We also modified the definition of equal opportunity to allow boosting of the minority class and
showed under what assumptions of fairness on the intermediate stages of the pipeline result in an
overall fair pipeline according to this definition. In this case, the fairness from each stage of the
pipeline is in some sense independent so that the entire pipeline has fairness factor given by the
product. On the other hand, we would like to point out if the first stage is unfair, then the second
stage cannot necessarily rectify the situation. For example, if the first stage grants interviews to
just one or two from a minority class, then the second stage is limited to hiring both of them, which
will not result in overall fairness. Therefore, it is important to get the first stage right.

5.3.1 Future Work

We hope that our work highlights the need and sets the stage to understand compound decision
making. We now give many directions for future research.

Stability

In a straight pipeline, will a small amount of unfairness or bias in the beginning turn into a large
amount of unfairness at the end?
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Bias as pipeline stage

In our main hiring example above, we composed two remedies to implicit bias. Alternatively, bias
might be analyzed as a pipeline stage with parameter ϵ of sign opposite to the corresponding ϵ in
the remedy stage.

Transparency

How transparent can a pipeline be? One method to test is whether measuring transparency by
qualitative input influence Datta et al. [2016] is cumulative, and how it differs by the type of
pipeline. Does one need information at each stage, or is it sufficient to have good information of
only the final decision?

Variance and small pools

We can ask that the expected rate of positive decisions for a subclass be (approximately) pro-
portional to that class’s presence in the population. But, as with reliable randomized algorithms,
we really want the outcomes to concentrate at (or near) the expectation with high probability. If
a protected class is tiny, then small aberrations may cause an outcome far from the mean, with
relatively large probability. In the context of pipelines, after asking whether means are preserved
through pipelines, we can ask whether concentration is preserved. As in the case with randomized
algorithms, it is sometimes appropriate to distort the mean to preserve concentration.

Feedback loops

More generally, some situations involve many interacting decisions, possibly with feedback loops.
Under what circumstances can each decision be made autonomously, with some guarantee that
the system will converge to meet some overall guarantee of fairness? For example, early in the
days of long-distance running, just after women were allowed to enter major marathons without
restriction, fewer women than men chose to do so at the elite level. Some race organizers—on the
assumption that the sport should attract women and men equally—offered an equal total purse (say,
for the top ten spots) for each of the men’s and women’s races and, since fewer women entered,
those who did chased a larger expected individual payout. Policies like these are designed to
lure more women elites the following year. What if the process is decelerated, say, by offering a
purse proportional to the square root of the participation rate, e.g., with initial participation rates
of r0 : r1 given by 10:90, the purse is proportional to

√
r, so

√
.1:
√
.9, which is 25:75? What if the

process is accelerated, by offering a purse proportional to 1/r, so 1/.1 : 1/.9, about 9:1, reversing
the participation ratio? Note that, for these types of incentives, Neither class needs to be marked
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as protected, which may be desirable, though the goal of equal participation must be assumed.
Typically (but depending on the strength of the economic signal to incentivize future runners),

√
r

has an attractive fixed point at 50:50 and 1/r has a repulsive fixed point at 50:50. Under appropriate
assumptions, we can pose a purely mathematical question: What is the least function g(r) (or give
a bound on g) that leads to an attractive fixed point? By analogy with cryptography, can such
systems (with or without loops) be tolerant to a bounded number of unfair players? Or bounded
“total amount of unfairness,” distributed among all the players and not otherwise quantified or
understood?

Definitions of fairness

To return to the elite runners example, we may need refined definitions of fairness, say, “interim
fairness,” that captures increased year-over-year participation of an underrepresented class, and
calls the improvement “interim fair” even if the system has not yet converged to a fair state. As
for hiring, suppose a University department only hires faculty from a pool of recent PhDs, which
is unbalanced. If the hiring process selects underrepresented faculty at a far higher rate than their
presence in the PhD pool, that should be deemed ”interim fair” for some purposes.

Different notions of fairness

Furthermore, we would like to understand how different definitions of fairness other than (1 + ε)-
equal opportunity propagate through a pipeline.
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CHAPTER 6

Concluding Remarks and Future Work

This dissertation explored topics in sequential decision making and algorithmic fairness. We pre-
sented novel problems in established domains and proposed modeling and algorithmic solutions,
supporting their performance through theoretical guarantees and empirical results. We conclude
with a brief summary of the work presented within and highlight some possible areas of future
work.

6.1 Contaminated Stochastic Bandits

We have presented two variants of an ε-contamination robust UCB algorithm to handle uninfor-
mative or malicious rewards in the stochastic bandit setting. As the main contribution, we proved
concentration inequalities for the α-trimmed and α-shorth mean in the ε-contamination setting
with sub-Gaussian samples and guarantees on the uncontaminated regret of the crUCB algorithms.
The regret guarantees are similar to those in the uncontaminated stochastic multi-armed bandit
setting.

We have shown through simulation that these algorithms can outperform “best of both worlds”
algorithms and those for stochastic or adversarial environments when using a small number of
iterations and ε chosen to be reasonable when implementing bandits in education.

We highlight that our algorithms are simple to implement. In practice, it is often easy to find up-
per bounds on the parameters which are robust to underestimation. Our algorithms are numerically
stable and have clear intuition to their actions.

A weak point of these algorithms is they require knowledge of α before hand. Choices of α
may come from domain knowledge, but could also require a separate study.

In this work we assumed a fully adaptive adversarial contamination, constrained only by the
total fraction of contamination at any time step. By making more assumptions about the adversary,
it is likely possible to improve uncontaminated regret bounds.
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There remain many open questions in this area. In particular, we think this work could be
improved along the following directions,

• Randomized algorithms: UCB-type algorithms are often outperformed in applications by
the randomized Thompson sampling algorithm. Creating a randomized algorithm that ac-
counts for the contamination model would increase the practicality of this line of work.

• Contamination correlated with true rewards: One possibility is that the contaminated
rewards contain information of the true rewards. For example if contamination is missing
data in a clinical trial, where we know dropout can be correlated with the treatment condition.

6.2 Algorithmic Fairness

We explored three problems in algorithmic fairness, all relating to the quality of training data.
Our work on convex hull feasibility sampling, in Chapter 3, provides a method of determining
whether an equally representative sample is attainable given a fixed set of sources with unknown
distributions. Chapter 4 presents a method of removing historical bias present in data. Finally,
Chapter 5 on fair pipelines highlights the need for representative data at each training step within
a pipeline of decisions.

6.2.1 Convex Hull Feasibility Sampling

We introduce the convex hull feasibility problem in the context of fair data collection. In the
Bernoulli setting, we give a lower bound on the expected sample complexity in the (x, ϵ)-infeasible
instance and an oracle lower bound on the expected sample complexity in the (x, ϵ)-feasible in-
stance. We introduce four sampling policies for the Bernoulli setting, Uniform, LUCB Mean,
LUCB Ratio, and Beta TS and give high probability upper bounds on sample complexity for the
Uniform and LUCB Mean policies. We give the adaptation of the Binomial policies for the multi-
nomial case. Through simulation, we show LUCB Mean, LUCB Ratio, and the Thompson sam-
pling policies significantly outperform Uniform in the Bernoulli and multinomial setting. In these
simulations, we see that LUCB Ratio is typically the best performing policy in the Bernoulli set-
ting, while Dirichlet TS is the best performing policy in the Multinomial setting.

While this work focused on Bernoulli and multinomial convex hull feasibility sampling, the
general problem is applicable when points are drawn from any distribution for which one can
construct a confidence region that meets 3.3.1.

The work in this chapter is somewhat analogous to multi-armed bandit best arm identification
with fixed-confidence. Another approach seen in the best arm identification literature is the fixed-
budget setting, which could also be applied to the convex hull feasibility problem. If given a set of

69



samples, the confidence regions can be such that they do not meet the definition of either (1− δ)-
confident feasible or (1 − δ)-confident infeasible. In this case we could ask instead what is the
probability of feasibility or infeasible given the current sample, or if adaptively sampling, what is
the highest probably of a correct decision when sampling with a budget. One application of this
could be to check Pareto frontier feasibility, where if given noisy gradients, we ask what is the
probability all groups can be improved versus the probability that improving some groups may
harm others.

6.2.2 Debiasing Data

Here we studied a factor model of representations that explicitly models the contributions of the
protected and permissible attributes. Based on the model, we propose an approach to debias the
representations. We show that under certain conditions, we can guarantee relaxed conditional
parity for the debiased representations.

6.2.3 Fair Pipelines

In this chapter, we formalized the notion of a compound decision process called a pipeline, which
is ubiquitous in domains like hiring, criminal justice, and finance. A pipeline decouples the final
decision into intermediate decisions, which is important since although each decision affects the
final outcome, different processes with different goals may be in charge of each intermediate stage.
Decoupling allows us to see how fairness in each stage contributes to the fairness in the final
decision.
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APPENDIX A

Convex Hull Feasibility Sampling Algorithms
Appendix

A.1 Proofs

A.1.1 Lower Bounds

Proof of theorem 1. Let ν be the feasible instance. With the optimal set known, to check feasibility
we only need to check the relationship between the mean of each action mean and the set xϵ. If the
set J ∗ consists of only one point, it must be sampled enough to determine it lies within xϵ. If J ∗

= {1,k}, we must sample to determine that one of the means lies above x − ϵ and one lies below
x+ ϵ.

We start with the case where J ∗ = {i∗} ∈ {1, k}. Since this is a feasible set, it must be that
|pi − x| < ϵ. The closest infeasible case is the boundary of xϵ closest to pi. The KL divergence
from this infeasible case is given by min (D(pi|x− ϵ), D(pi|x+ ϵ))

Let t̃i = max {D(pi|x− ϵ)−1, D(pi|x+ ϵ)−1} 1
2
log( 1

4δ
). We let Ni be the random variable

representing the number of times action i was sampled when the policy terminates. We will use
a proof by contradiction similar to that presented by Mannor and Tsitsiklis [2004] along with a
divergence decomposition [Lattimore and Szepesvári, 2020, Lemma 15.1].

Assume E[Ni∗ ] ≤ t̃i∗ . Let O ∈ {feasible, infeasible} be the output of a policy, and define
event B = {O = feasible}. Then by definition of a 1 − δ-sound policy, Pν(B) ≥ 1 − δ ≥ 1/2

for ν ∈ Ef . Without loss of generality, assume x − ϵ < pi∗ ≤ x. Then the closest infeasible case
would be pi∗ = x− ϵ. We will call H0 : pi∗ = pi∗ , H1 : pi∗ = x− ϵ. We get that,
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P1(B) = E1[1{B}]

= E0

[
L1

L0

1{B}
]

= E0

[
L1

L0

|B
]
P0(B)

= E0

[
exp

{
− log

(
L0

L1

)}
|B
]
P0(B)

≥ exp

{
−E0

[
log

(
L0

L1

)
|B
]}

P0(B)

= exp {−E0 [Ni|B]D(pi∗ , x− ϵ)}P0(B)

≥ exp
{
−2t̃i∗D(pi∗ , x− ϵ)

}
P0(B)

= 4δP0(B)

> δ

which contradicts that the policy is 1− δ sound under hypothesis H1, which means that

E0[Ni∗ ] ≥ max
{
D(p∗|x− ϵ)−1, D(pi∗|x+ ϵ)−1

} 1

2
log

(
1

4δ

)
.

For J ∗ = {1, k}, we define H0 : p1 = p1, pk = pk and H1 : P1 = x−ϵ or pk = p+ϵ. Because
p1 ≥ pk by definition, if either p1 = x− ϵ or pk = x+ ϵ then the problem is infeasible. By setting
t̃i = max {D(pi|x− ϵ)−1, D(pi|x+ ϵ)−1} 1

2
log( 1

4δ
) and following the same method as above for

actions i ∈ {1, k}, get

E0[Ti] ≥ min
{
D(pi|x− ϵ)−1, D(pi|x+ ϵ)−1

} 1

2
log

(
1

4δ

)
.

Proof sketch of theorem 2. The proof for the infeasible lower bound follows closely to that of the
feasible case, therefore we provide a brief proof outline. Because all means must lie outside xϵ, the
closest feasible case is the boundary of xϵ nearest the means. To determine infeasibility, all actions
must be sampled sufficiently to reject this boundary. Without loss of generality, if we assume
pi < x− ϵ, then the closest boundary would be x− ϵ. Setting Hi : pi = pi, H1 : pi = x− ϵ for all i,
t̃i = max {D(pi|x− ϵ)−1, D(pi|x+ ϵ)−1} 1

2
log( 1

4δ
) and following the methods from the feasible

case, we get the desired result.
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A.1.2 Upper Bounds

Proof of theorem 3. Given some δ and B(n, δ) that satisfies equation (3.3.1), let event E be the
event that all confidences regions contain their mean, E = {∀i ∈ [k], n ∈ N, p̂i(n) − B(n, δ) ≤
pi ≤ p̂i(n) + B(n, δ)}. Under event E, each action i will become inactive at or before being
sampled smin

i times.
We start with the feasible cases. When where J ∗ = {i∗} and under event E, action i∗ can be

sampled at most smin
i∗ times before the policy will terminate due to stopping rule 1. Thus the bound

on the sample size of each action is the minimum of the sample size it is guaranteed to become
inactive under E, which is smin

i , and the sample size of smin
i∗ when the policy terminates. Since

event E happens with probability at least 1 − δ, this concludes the proof when the optimal subset
is one action.

In the case where J ∗ = {1, k}, under event E the policy will terminate due to stopping rule 1,
which will happen when action 1 is sampled smax

1 times and action k is sampled smax
k times. Again,

under E an action becomes inactive when sampled at most smin
i times, this gives that each action is

sampled at most (smin
i ,max (smax

1 , smax
k )) times. Again, event E happens with probability at least

1− δ.
When the problem is infeasible, each action will be sampled until its confidence region is dis-

joint form xϵ. Under event E, this sample size is bounded above by smin
i for all i.

Proof of theorem 4. We Start with the feasible case where there exists a mean on both sides of x.
Let event E be the event that all confidences regions contain their mean, E = {∀i ∈ [k], n ∈
N, p̂i(n) − B(n, δ) ≤ pi ≤ p̂i(n) + B(n, δ)}. Without loss of generality, let actions i, j be the
action that triggers termination at time τ . Define the sample size of action l at time t as Nl(t).
Assume without loss of generality that j∗ = k, and pj < x, thus i∗ = 1 and pi > x. If j = k, then
under event E, Nj(τ) ≤ smax

k . If j ̸= k it must be that,

p̂j(Nj(τ)− 1)−B(Nj(τ)− 1) ≤ pk by E

p̂j(Nj(τ)− 1) +B(Nj(τ)− 1) ≥ x+ ϵ definition of τ

Therefore
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p̂j(Nj(τ)− 1) +B(Nj(τ)− 1) ≥ x+ ϵ

2B(Nj(τ)− 1) ≥ x+ ϵ− (p̂j(Nj(τ)− 1)−B(Nj(τ)− 1))

≥ x+ ϵ− pk

= ∆max
k

> 2B(smax
k )

since B is a decreasing function, Nj(τ) − 1 < smax
k =⇒ Nj(τ) ≤ smax

k . Similarly for action i

we have that Nj(τ) ≤ smax
1

For non-terminating actions we have that under E,

p̂l(Nl(τ)− 1)−B(Nl(τ)− 1) ≤ pk p̂l(Nl(τ)− 1) +B(Nl(τ)− 1) ≥ max(x+ ϵ, pl)

which implies that

2B(Nl(τ)− 1) ≥ max(|pk − (x+ ϵ)|, |pl − pk|) = max(∆max
k ,∆l,j) > max(2B(smax

k ), 2B(sk,l))

giving Nl(τ) ≤ min(smax
k , sk,l) and similarly Nl(τ) ≤ min(smax

1 , s1,l). To meet
both these bounds, it must be that Nl(τ) ≤ max(min(smax

1 , s1,l),min(smax
k , sk,l)) =

max(min(smax
i∗ , sl,i∗),min(smax

j∗ , sl,j∗)).
When smax

j∗ ≤ sl,j∗ , which is equivalent to ∆max
j∗ ≥ ∆l,j∗ , then smax

j∗ ≥ smax
i∗ by definition. If

smax
i∗ ≥ sl,i∗ , then we have that

∆l,i∗ = ∆i∗ +∆min
l

≥ ∆max
j∗ +∆min

l

≥ ∆max
j∗

Thus smax
j∗ ≥ sl,i∗ . So when ∆max

j∗ ≥ ∆l,j∗ , the sample size of action l is bounded above by smax
j∗ .

When smax
j∗ > sl,j∗ , which is equivalent to ∆max

j∗ < ∆l,j∗ , it must be that pi∗ and pl are
on the same side of xϵ, thus smax

i∗ < sl,i∗ and the sample size of action i is bounded above by
max(sl,j∗ , s

max
i∗ ).

When J ∗ = l∗. there are two scenarios. Either all means lies in xϵ, or all means lie in one
direction from xϵ. In the first case, the outcome is the same as above. In the second case, it must
be that the optimal action mean must be sample at most smin

l∗ times, at which point it would trigger
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termination under E. Let j be the action that triggered stopping rule 1. Without loss of generality,
assume pl∗ < x. If j = l∗, then under E, Nj(τ) ≤ smin

l∗ . If j ̸= l∗,

p̂j(Nj(τ)− 1) +B(Nj(τ)− 1) ≥ pl∗ by E

p̂j(Nj(τ)− 1)−B(Nj(τ)− 1) ≤ x− ϵ definition of τ

and as in the feasible case,

p̂j(Nj(τ)− 1)−B(Nj(τ)− 1) ≤ x− ϵ

2B(Nj(τ)− 1) ≥ p̂j(Nj(τ)− 1)−B(Nj(τ)− 1)− (x+ ϵ)

≥ pl∗ − (x− ϵ)

= ∆min
l∗

> 2B(smin
l∗ )

which gives that Nj(τ) ≤ smin
l∗ . For all other actions l ̸= j,

p̂l(Nl(τ)− 1) +B(Nl(τ)− 1) ≥ pj p̂l(Nl(τ)− 1)−B(Nl(τ)− 1) ≤ min(x− ϵ, pl)

and using the same logic from above gives Nl(τ) ≤ min(smin
l∗ , sl,l∗).

In the infeasible case, assume without loss of generality that pi ≤ xϵ for all i ∈ [k]. Under E, it
must be that p̂i(Ni(τ)− 1)− B(Ni(τ)− 1) ≤ pi and p̂i(Ni(τ)− 1)− B(Ni(τ)− 1) ≥ x− ϵ for
all i ∈ [k]. Therefore

2B(Ni(τ)− 1) ≥ x− ϵ− pi

= ∆min
i

> 2B(smin
i )

and Ni(τ) ≤ smin
i . Since E happens with probability at least 1− δ, this concludes the proof.
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A.1.3 Upper bound improvement of LUCB Mean over Uniform

We start with the case where ∃i, j, pi < x < pj , |J ∗| = 2. If ∆l,j∗ ≤ ∆max
j∗ then

min(smax
j∗ , smin

l ) ≥ smax
j∗ , because

∆min
l ≤

∆min
j∗ pl /∈ xϵ

ϵ pl ∈ xϵ

< ∆max
j∗

Therefore min(smax
j∗ , smin

l ) ≥ smax
j∗ when ∆l,j∗ ≤ ∆max

j∗ .
If ∆l,j∗ > ∆max

j∗ , then pl is on the same side of xϵ as pi∗ . To show min(smax
j∗ , smin

l ) ≥
max(smax

i∗ , sl,j∗), we have that,

∆min
l < ∆max

j∗ +∆min
l = ∆l,j∗

∆min
l < ∆max

i∗ by definition

and by definition

∆max
j∗ < ∆max

i∗

∆max
j∗ < ∆l,j∗

Since min(smin
j∗ , smin

l ) ≥ min(smax
j∗ , smin

l ) ≥ max(smax
i∗ , sl,j∗) this covers the |J ∗| = 1 case as

well.
When all means are on one side of x, then |J ∗| = 1 and must show min(smin

j∗ , smin
l ) ≥

min(sl,j∗ , s
min
j∗ ). If ∆max

j∗ ≤ ∆min
l then we have,

∆min
l < ∆min

j∗ +∆min
l∗ = ∆l,j∗

We have therefore shown in all cases, LUCB Mean has a lower high probability upper bound on
sample complexity in the (x, ϵ)-feasible Bernoulli setting than Uniform.
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APPENDIX B

Contamination Robust Bandits Appendix

B.1 Proofs

B.1.1 Theorem 2.4.1.1

[Trimmed mean concentration] Let G be the set of points x1, ...xn ∈ R that are drawn from a
σ-sub-Gaussian distribution with mean µ. Let Sn be a sample where an ε-fraction of these points
are contaminated by an adversary. For ε ≤ α < 1/2, t ≥ n we have,

|trMeanα(Sn)− µ| ≤

σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)
with probability at least 1− 4

t2
.

Proof of section 2.4.1.1. Without loss of generality assume µ = 0 for the underlying true distribu-
tion. For X ∼ σ-sub-Gaussian, by definition, we have:

P

(
|X| ≥ µ+ η

)
≤ 2 exp(− η2

2σ2
)

P

(
|x̄n − µ| ≥ σ

√
2

n
log

2

δ1

)
≤ δ1

and

P

(
max
i∈[n]
|Xi| ≥ t

)
≤ 2n exp

(
− t2

2σ2

)
P

(
max
i∈[n]
|Xi| ≥ σ

√
2 log

2n

δ2

)
≤ δ2.
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Let G̃ ⊂ Gn represent the points which are not contaminated and C ⊂ Gn represent the contami-
nated points. Then our sample can be represented by the union Sn = G̃ ∪ C. Let R represent the
points that remain after trimming α fraction of the largest and smallest points, and T be the set of
points that were trimmed. Then we have that.

|trMeanα(Sn)| =
∣∣∣∣ 1

(1− 2α)n

∑
x∈R

x

∣∣∣∣
=

1

(1− 2α)n

∣∣∣∣ ∑
x∈G̃∩R

x+
∑

x∈C∩R

x

∣∣∣∣
≤ 1

(1− 2α)n

∣∣∣∣∑
x∈G̃

x︸ ︷︷ ︸
A1

−
∑

x∈G̃∩T

x︸ ︷︷ ︸
A2

+
∑

x∈C∩R

x︸ ︷︷ ︸
A3

∣∣∣∣
≤ 1

(1− 2α)n

(∣∣∣∣∑
x∈G̃

x︸ ︷︷ ︸
A1

∣∣∣∣+ ∣∣∣∣ ∑
x∈G̃∩T

x︸ ︷︷ ︸
A2

∣∣∣∣+ ∣∣∣∣ ∑
x∈C∩R

x︸ ︷︷ ︸
A3

∣∣∣∣)

with

A1 =

∣∣∣∣ ∑
x∈Gn

x−
∑

x∈Gn\G̃

x

∣∣∣∣ ≤ ∣∣∣∣ ∑
x∈Gn

x

∣∣∣∣+ ∣∣∣∣ ∑
x∈Gn\G̃

x

∣∣∣∣ ≤ n|x̄Gn|+ εnmax
x∈Gn

|x| w.p. at least 1− δ1 − δ2,

A2 ≤ 2αnmax
x∈Gn

|x| w.p. at least 1− δ2,

A3 ≤ εnmax
x∈Gn

|x| w.p. at least 1− δ2.

Combining we get,

|trMeanα(Sn)− µ| ≤ 1

(1− 2α)

(
|x̄Gn|+max

x∈Gn

|x|(2ε+ 2α)

)
≤ 1

(1− 2α)

(
|x̄Gn|+max

x∈Gn

|x|(4α)
)

≤ σ

(1− 2α)

(√
2

n
log

2

δ1
+ 4α

√
2 log

2t

δ2

)
with probability at least 1− δ1− δ2. Letting δ1 =

2
t2

and δ2 =
2
t2

, and assuming α ≥ ε, we have,

|trMeanα(Sn)− µ| ≤ σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)
with probability at least 1− 4

t2
.
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B.1.2 Theorem 2.4.1.2

[α-shorth mean concentration] Let Gn be the set of points x1, ...xn ∈ R that are drawn from a
σ-sub-Gaussian distribution with mean µ. Let Sn be a sample where an ε-fraction of these points
are contaminated by an adversary. For ε ≤ α < 1/3, t ≥ n, we have,

|sMeanα(Sn)− µ| ≤

σ

1− 2α

√
4

n
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

with probability at least 1− 4
t2

.

Proof of section 2.4.1.2. Without loss of generality assume µ = 0 for the underlying true distribu-
tion. Let X ∼ σ-sub-Gaussian.

We want to bound the impact of the contaminated points in our interval. Once we have this
bound, the proof follows just as in the trimmed mean.

Assume α < 1/3 and ε ≤ α. Let J be the interval that contains the shortest 1 − α fraction of
Sn, I be the interval that contains G̃ (i.e. the remaining good points after contamination), and T

be the interval that contains the points of Sn after trimming the α largest and smallest fraction of
points. Use |I| to denote the length of interval I . It must be that I ∩ J ̸= ∅ because otherwise the
points in I ∪ J would contain 2− 2α > 1 fraction of Sn. Let c be a point in I ∩ J and x be a point
in J . Recall that trMeanα(Sn) is the trimmed mean of the contaminated sample Sn from above.
Then we have,

|x| ≤ |x− c|+ |c− trMeanα(Sn)|+ |trMeanα(Sn)|

≤ |J |+ |I|+ |trMeanα(Sn)|

≤ 2|I|+ |trMeanα(Sn)|

The second step comes from x and c both being in J and because I ⊇ T . The third step comes
from |J | ≤ |I|.

To bound the length of I we have,

|I| ≤ 2max
x∈Gn

|x| w.p. at least 1− δ2.

Finally, since

|trMeanα(Sn)| ≤
1

(1− 2α)
(|x̄Gn|+ 4αmax

x∈Gn

|x|)
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with probability at least 1− δ1 − δ2, we get that for x ∈ J ,

|x| ≤ 4max
x∈Gn

|x|+ 1

(1− 2α)
(|x̄Gn|+ 4αmax

x∈Gn

|x|) w.p. at least 1− δ1 − δ2,

=
|x̄Gn|
1− 2α

+
(
4 +

4α

1− 2α

)
max
x∈Gn

|x|.

Now that we have a bound on the contaminated points in J , our analysis follows as before,

|sMeanα(Sn)|

≤ 1

(1− α)n

(∣∣∣∣∑
x∈G̃

x︸ ︷︷ ︸
A1

∣∣∣∣+ ∣∣∣∣ ∑
x∈G̃∩¬J

x︸ ︷︷ ︸
A2

∣∣∣∣+ ∣∣∣∣ ∑
x∈C∩J

x︸ ︷︷ ︸
A3

∣∣∣∣)

where

A1 ≤ n|x̄Gn|+ εnmax
x∈Gn

|x| w.p. at least 1− δ1 − δ2,

A2 ≤ αnmax
x∈Gn

|x| w.p. at least 1− δ2,

A3 ≤ εn

(
|x̄Gn|
1− 2α

+
(
4 +

4α

1− 2α

)
max
x∈Gn

|x|

)
w.p. at least 1− δ1 − δ2.

Combining we get,

|sMeanα(Sn)− µ|

≤ 1

(1− α)

(
|x̄Gn|

(
1 +

ε

1− 2α

)
+max

x∈Gn

|x|
(
5ε+ α +

4αε

1− 2α

))
≤ 1

(1− α)

(
|x̄Gn|

( 1− α

1− 2α

)
+max

x∈Gn

|x|
(
6α +

4α2

1− 2α

))
=

1

1− α

(
|x̄Gn|

( 1− α

1− 2α

)
+max

x∈Gn

|x|6α− 8α2

1− 2α

)
≤ σ

1− 2α

√
2

n
log

2

δ1
+

(6α− 8α2)σ

(1− 2α)(1− α)

√
2 log

2t

δ2

With probability at least 1− δ1 − δ2. Letting δ1 =
2
t2

and δ2 =
2
t2

, and assuming α ≥ ε, we have,

|sMeanα(Sn)− µ|

≤ σ

1− 2α

√
4

n
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t
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With probability at least 1− 4
t2

.

B.1.3 Theorem 2.4.2

[α-trimmed mean crUCB uncontaminated regret] Let K > 1 and T ≥ K−1. Then with algorithm
4 with the α-trimmed mean, σ-sub-Gaussian reward distributions with σa ≤ σ0, and contamination
rate ε ≤ α ≤ ∆min

4(∆min+4σ0
√
6 log T )

, we have the uncontaminated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

Proof of section 2.4.2. First will show that E[Na(t)] < ∞ for non-optimal actions. Assume
Na(t) ≥ 64σ2

0 log(T )

∆2
a

.

µ̂a +
σ0

(1− 2α)

(√
4

Na(t)
log t+ 4α

√
6 log(t)

)

≤ µa +
σi + σ0

(1− 2α)

(√
4

Na(t)
log t+ 4α

√
6 log(t)

)
w.p. at least 1− 4

t2

≤ µ∗ −∆a +
2σ0

(1− 2α)

(√
4

Na(t)
log t+ 4α

√
6 log(t)

)
≤ µ∗ −∆a +

∆a

2(1− 2α)
+

2σ04α

(1− 2α)

√
6 log t Na(t) ≥

64σ2
0 log(T )

∆2
a

≤ µ∗ α ≤ ∆a

4(∆a + 4σ0

√
6 log(t))

≤ µ̂∗ +
σi∗

(1− 2α)

(√
4

N∗(t)
log t+ 4α

√
6 log(t)

)
w.p. at least 1− 4

t2

≤ µ̂∗ +
σ0

(1− 2α)

(√
4

N∗(t)
log t+ 4α

√
6 log(t)

)
.
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Now to find E[Na(T )] for non-optimal actions.

E[Na(T )] = 1 + E
[ T∑

t=K+1

1{At = a}
]

= 1 + E
[ T∑

t=K+1

1

{
At = a,Na(t) ≤

64σ2
0 log(T )

∆2
a

}
+ 1

{
At = a,Na(t) >

64σ2
0 log(T )

∆2
a

}]

≤ 1 +
64σ2

0 log(T )

∆2
a

+
T∑

t=K+1

P
[
At = a,Na(t) >

64σ2
0 log(T )

∆2
a

]

= 1 +
64σ2

0 log(T )

∆2
a

+
T∑

t=K+1

P
[
At = a|Na(t) >

64σ2
0 log(T )

∆2
a

]
P
[
Na(t) >

64σ2
0 log(T )

∆2
a

]

≤ 1 +
64σ2

0 log(T )

∆2
a

+
T∑

t=K+1

8

t2

≤ 64σ2
0 log(T )

∆2
a

+ 15.

Finally, we can find the regret following the standard analysis,

R̄ =
K∑
a=2

∆aE[Na(T )]

=
∑
∆a<∆

∆aE[Na(T )] +
∑
∆a≥∆

∆aE
[
Na(T )

]
≤ ∆T +

∑
∆a≥∆

[64σ2
0 log(T )

∆a

+ 15∆a

]
E[Na(t)] ≤

64σ2
0 log(T )

∆a

+ 15

≤ 8σ0

√
KT log(T ) +

∑
15∆a ∆ =

√
64Kσ2

0 log(T )

T
.

B.1.4 Corollary 2.4.2

[α-trimmed mean crUCB uncontaminated regret bounded rewards] If the rewards are bounded by
b, and have contamination rate ε ≤ α ≤ ∆min

4(∆min+4b)
, then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Proof of section 2.4.2. By replacing the part of the concentration bound for the trimmed mean that
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is based on the maximum value in the sample with b, we get that,

|trMeanα(Sn)− µ| ≤ σ

(1− 2α)

√
4

n
log(t) +

4α

1− 2α
b

with probability at least 1− 4
t2

.
First will show that E[Na(t)] <∞ for non-optimal actions. Assume Na(t) ≥ 64σ2

0 log(T )

∆2
a

.

µ̂a +
σ0

(1− 2α)

√
4

Na(t)
log t+

4α

1− 2α
b

≤ µa +
σi + σ0

(1− 2α)

√
4

Na(t)
log t+

8α

1− 2α
b w.p. at least 1− 4

t2

≤ µ∗ −∆a +
2σ0

(1− 2α)

√
4

Na(t)
log t+

8α

1− 2α
b

≤ µ∗ −∆a +
∆a

2(1− 2α)
+

8α

(1− 2α)
b Na(t) ≥

64σ2
0 log(T )

∆2
a

≤ µ∗ α ≤ ∆a

4(∆a + 4b)

≤ µ̂∗ +
σi∗

(1− 2α)

√
4

N∗(t)
log t+

4α

1− 2α
b w.p. at least 1− 4

t2

≤ µ̂∗ +
σ0

(1− 2α)

√
4

N∗(t)
log t+

4α

1− 2α
b.

Results follow with a similar analysis as above.

B.1.5 Theorem 2.4.2

[α-shorth mean crUCB uncontaminated regret] Let K > 1 and T ≥ K − 1. Then with algorithm
4 with the α-shorth mean, sub-Gaussian reward distributions with σa ≤ σ0, and contamination rate
ε ≤ α ≤ ∆min

4(∆min+9σ0
√
6 log T )

, we have the uncontaminated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

Proof of section 2.4.2. The proof for the contamination robust UCB using the α-shorth mean is
similar to that of the trimmed mean.
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µ̂a +
σ0

1− 2α

√
4

Na(t)
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

≤ µ∗ −∆a +
2σ0

1− 2α

√
4

Na(t)
log t+ 2

(6α− 8α2)σ0

(1− 2α)(1− α)

√
log t w.p.a.l 1− 4

t2

≤ µ∗ −∆a +
∆a

2(1− 2α)
+

18ασ0

(1− 2α)

√
6 log t Na(t) ≥

64σ2
0 log(t)

∆2
a

, α < 1/3

≤ µ∗ α ≤ ∆a

4(∆a + 9σ0

√
6 log t)

≤ µ̂∗ +
σ0

1− 2α

√
4

N∗(t)
log t+

6α− 8α2σ

(1− 2α)(1− α)

√
6 log t

Using the analysis from the trimmed mean regret, we again get,

E[Na(t)] ≤
64σ2

0 log T

∆a

+
∑

15∆a

Using this value and standard regret analysis yields

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

B.1.6 Corollary 2.4.2

[α-shorth mean crUCB uncontaminated regret bounded rewards] If the rewards are bounded by b,
and have contamination rate ε ≤ α ≤ ∆min

4(∆min+9b)
, then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Proof of section 2.4.2. By replacing the part of the concentration bound for the trimmed mean that
is based on the maximum value in the sample with b, we get that,

|sMeanα(Sn)− µ| ≤ σ

1− 2α

√
4

n
log t+

6α− 8α2

(1− 2α)(1− α)
b

With probability at least 1− 4
t2

.
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Follow similar analysis as in appendix B.1.4 but setting constraint to be,

ε ≤ α ≤ ∆min

4(∆min + 9b)

B.2 Relationship of ε and ∆min

One quick example showing that ε > ∆min can prohibit sublinear regret is to consider the CSB
game with two actions and Bernoulli rewards. If a1 ∼ B(p) and a2 ∼ B(p− ε) then an adversary
can choose all the contaminated rewards for a2 to be 1 making it appear that a2 ∼ B(p). Thus the
actions are indistinguishable to the learner.

However, we can still provide a bound for larger values of ε provided one is willing to toler-
ate a linear term in the regret. We outline the argument only for the trimmed mean case since
the argument for the shorth mean is very similar. Note that argument for bounding E[Na(T )] in
Section 2.4.2 works under the condition

α ≤ ∆a

4(∆a + 4σ0

√
6 log(T ))

.

Let S be the set of actions satisfying this condition. The arguments in the proof of Section 2.4.2
show that ∑

a>1,a∈S

∆aE[Na(T )] ≤ 8σ0

√
KT log(T ) +

∑
a>1,a∈S

15∆a.

Therefore the bound of Õ(σ0

√
KT ) holds only for the regret due to actions a ∈ S. For any action

a /∈ S, we have

∆a <
16ασ0

√
6 log(T )

1− 4α

assuming α < 0.25. The total regret contribution for a /∈ S is therefore

∑
a>1,a/∈S

∆aE[Na(T )] ≤
16ασ0

√
6 log(T )

1− 4α

∑
a>1,a/∈S

E[Na(T )]

≤
16ασ0

√
6 log(T )

1− 4α
T

So the total regret is Õ(
√
KT + α

1−4α
T ).
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APPENDIX C

Exploration of Effects on Various Fairness Violations
When Optimizing Fair Data Collection

C.1 Introduction

Collecting good data is a high priority when developing any algorithmic decision policy. Poor
data leads to poor decisions that when implemented can have serious negative consequences on
peoples’ lives. The field of fair algorithms has begun to consider sampling strategies to collect
data that optimizes upon some desirable fairness definition Abernethy et al. [2020], Shekhar et al.
[2021], Asudeh et al. [2019]. These strategies have been shown to be effective for fixed fairness
definitions. This exploration considers the impact of fairness outcomes for metrics not used for
optimization in the sampling procedure. This represents the situation where the measurement used
for the desired fairness changes over the course of a project. The desired fairness at the beginning
of a project may not be fixed, and just like parameters in a training algorithm they may be adjusted
over the course of a project before implementation.

With this in mind, we explore the fairness violation outcomes defined by multiple fairness
measurements when optimized for a single fairness measure. We additionally compare the results
to a data set with equal representation among the protected groups.

C.2 Sampling Algorithms

We selected two methods to implement, those given in Abernethy et al. [2020] and Shekhar et al.
[2021].

C.2.1 Abernathy 2020

This sampling strategy measures a fairness loss at each time point, and with probability p sample
randomly from all protected groups, and with probability (1− p) sample from the protected group
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with largest fairness loss. The intuition behind their method is that more samples will decrease
loss. This sampling policy can be thought of as an ϵ−Greedy policy.

Algorithm 14: Abernathy 2020
input : Parameter p ∈ [0, 1], number of rounds T .
Start with some initial classifier h0 (e.g., trained on an initial training set S0 or chosen at
random)

output: a classifier h ∈ H
for t = 1 to t = T do

Let Ga be the group for which f|a(ht−1) is largest, evaluated on a validation set.
With probability p sample (x, y, a) ∼ Pr and with probability 1− p sample
(x, y, a) ∼ Pr|Ga .

Set St = St−1 ∪ {(x, y, a)}; update ht−1 to obtain the classifier ht.
end
return ht

C.2.2 Shekhar 2021

This policy uses the optimism principle to estimate the protected group with the largest loss. They
additionally include forced exploration by ensuring all groups are sampled a minimum number of
times relative to the current step. Here A is the set of protected groups.

The upper bound of loss for protected group a is defined as

Ut(a, ht, c) =
1

|Da,t

|
∑

(x,y)∈Da,t

l(ht, x, y) + ea(Na,t) +
2c

πt(a)

∑
a′∈A

πa′ea′(Na′,t)

where

ea(N) =
2√
N

√
6 log

(
2

3
eN

)
+ 2 log

(
2

3δ
N2π2|A|

)
.

C.3 Analysis

C.3.1 Data

Using two data sets common in the fairness literature, the Adult Data Set and the Default of Credit
Card Clients Data Set Dua and Graff [2017], Yeh and Lien [2009]. We dropped all data points with
missing values.
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Algorithm 15: Shekhar 2021: Optimistic Sampling for Fair Classification (Aopt)
input : Parameter c > 0, number of rounds T .
output: a classifier h ∈ H
Draw two independent samples from each a ∈ A, assigning one to the training set D and
one to the group validation set Da.

for t = 2d to t = T do
if mina∈A Na,t <

√
t then

at = argmina∈A Na,t

end
else

at = argmaxa∈A Ut(a, ht−1, c)
end
(X

(i)
t , Y

(i)
t )i=1,2 ∼ P|Ga

Update (ea(Na,t))a∈A

Dt = Dt−1 ∪ (X
(1)
t , Y

(1)
t ), Dat,t = Dat,t−1 ∪ (X

(2)
t , Y

(2)
t )

Update ht

end
return ht

For the Adult data set, we used ’¡=50K’ and ’¿50K’ as the class labels, and defined the protected
groups as ’Male’ and ’Female’. Quantitative data was normalized, and categorical data was split
into multiple features using one-hot encoding. We kept the given split between test and train, using
the train data set to sample from and as the validation set specified in the sampling algorithms.

For the Default of Credit Card Clients data set, we again used gender as the protected attribute.
We similarly normalized quantitative data and transformed categorical data using one-hot encod-
ing.

C.3.2 Fairness measurements

We sampling from the two data sets using the samplings algorithms with three different definitions
of fairness, overall accuracy equality, false negative rate equality (also known as equal opportu-
nity), and predictive parity.

Overall Accuracy Equality: To satisfy this fairness definition, all groups must have equal
prediction accuracy.

False Negative Rate Equality (Equal Opportunity): To satisfy this fairness definition, all
groups must have equal false negative rates.

Predictive Parity: To satisfy this fairness definition, all groups must have equal true positive
rates.

Considering the different fairness definitions and how to decide loss, it is not always clear how
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to consider the loss. For example, if one group have higher false positive rates than another, which
one has a bigger loss? Is is the group that has the higher false positive rate because more training
may lower it, or the group that has lower false positive rate, because the term ’loss’ implies they
are worse of opportunity wise. Additionally, some fairness definitions consider multiple metrics,
such as equalized odds, which defines equality as equal true positive rates (TPR) and equal false
positive rates (FPR). From an accuracy standpoint, we want high TPR and low FPR. How then to
combine them to determine a loss? Should that loss be minimized or maximized?

C.3.3 Results

We ran the sampling algorithms using each fairness definition to 1000 samples, with a batch size
of 10, using 30 values in [0,1] for the parameters p and C. At sizes 500 and 1000, we measure the
fairness violation using each fairness definition. We also randomly sampled equally representative
data as a baseline measure. Results are an average over 10 trials.

The Pareto frontier represents the best in error and fairness violations for each sampling algo-
rithm. To compare outcomes, we first determined which parameters defined the Pareto frontier of
the fairness violations measured from the fairness definition used for sampling. The Pareto frontier
for all other fairness violations is then determined only from the parameters in the original fron-
tier. This choice is to used to represent the best results for one fairness definition, if we are Pareto
optimal on a different definition.

We will refer to policy A for results from the sampling algorithm in Abernethy et al. [2020],
and policy S for results from Shekhar et al. [2021]

When looking at the outcomes for the Adult data set, seen in figures C.1 and C.2, we see that
the policy A outperforms policy S. This is most likely simply because that policy S uses a large
portion of the sampled data as a validation set, whereas policy A only used a validation set of size
300.

A more interesting observation in that in policy A, for each fairness measure, the data collected
to optimize fairness for that measure generally outperforms data collected to optimize over other
fairness measure, with the only exception being in appendix C.3.3. This does not hold for policy
S, where there are several cases of the equal representation data or and data collected to optimize
a different fairness measure had a better frontier. This can be seen in appendix C.3.3.

This is not the case with the Credit Default data, where both policy A and policy S have that
a fairness measure is not always optimized using data collected using that fairness measure, as
seen in figures C.3 and C.4. While policy A almost always outperforms the equally representative
data, we can see that this is not the case for policy S, which is often outperformed by the equally
representative data.
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C.4 Discussion

We see that in the adult data set, policy A performs as expected, and performance when optimized
over the desired fairness measure it better that when optimized over other fairness measure. It is
interesting that is does not hold true for the Credit Default data set, where optimizing for overall
fairness accuracy often outperforms when sampling using other fairness measures, even when it is
the other fairness measure we desire to be equal. This is particularly interesting because we are
deriving Pareto frontiers only from the subset of points optimal for the fairness used in sampling.

This implies that in certain circumstances, at least with these sampling policies, it may be better
to sampling with respect to a different fairness measure than the one ultimately desired.

This work is limited by the small sample sizes and consideration of only two data sets. We also
used a large batch size, whereas both policies referenced in this paper present their simulations and
empirical results using a batch size of 1.
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Figure C.1: Pareto frontier of fairness violations from Adult data set, sample size 500. Frontier
for fairness measure not used for sampling determined only from subset of parameters that define
frontier for fairness measurement used in sampling.
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Figure C.2: Fairness violations from Adult data set, sample size 1000. Frontier for fairness measure
not used for sampling determined only from subset of parameters that define frontier for fairness
measurement used in sampling.
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Figure C.3: Fairness violations from Default of Credit Card Clients data set, sample size 500.
Frontier for fairness measure not used for sampling determined only from subset of parameters
that define frontier for fairness measurement used in sampling.
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Figure C.4: Fairness violations from Default of Credit Card Clients data set, sample size 1000.
Frontier for fairness measure not used for sampling determined only from subset of parameters
that define frontier for fairness measurement used in sampling.
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