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ABSTRACT

This dissertation presents theoretical advancements in reinforcement learning (RL), focusing

on two key settings: online RL under the infinite-horizon average-reward criterion and offline

constrained RL under partial data coverage.

The first part addresses the online setting, where the objective is to optimize long-run

average rewards through interaction with the environment. A family of value-iteration-based

algorithms is proposed by approximating the average-reward objective using a carefully tuned

discounted surrogate. This part resolves an open problem by establishing a computationally

efficient algorithm for linear Markov decision processes under a weak structural assumption.

The proposed algorithm employs span-constrained value clipping and a decoupled planning

strategy that mitigates statistical inefficiencies arising from the complexity of the function

class.

The second part is motivated by safety-critical applications and studies the offline setting,

where the agent must learn a policy from a fixed dataset without further interaction. Primal-

dual algorithms are developed for both linear MDPs and general function-approximation

regimes, based on the linear programming formulation of RL. These methods are oracle-

efficient and provably sample-efficient under partial data coverage. Moreover, they extend

to the constrained RL setting, where the policy must satisfy additional safety constraints

defined by auxiliary reward signals and threshold levels.

Together, the contributions of this dissertation advance the theoretical foundations of

reinforcement learning in settings that prioritize safety and long-term performance.

vii



CHAPTER 1

Introduction

Reinforcement learning (RL) is a general framework for solving decision-making problems,

and has been applied across a range of domains including robotics, healthcare, education,

and industrial engineering. A common feature of these applications is that a decision-making

agent encounters varying situations, and its actions influence future situations. The RL

framework captures this dynamic by modeling the problem as an interaction between an

agent and an environment, where the agent’s actions affect the environment’s state transi-

tions. The role of the problem designer employing the RL framework is to construct a reward

signal that incentivizes a reward-maximizing agent to exhibit the desired behavior. Given

such a reward signal, the objective of the agent is to learn a policy that selects actions to

maximize cumulative rewards through its interaction with the environment.

Within the reinforcement learning framework, different problem settings arise depending

on the nature of the application. One important aspect is the choice of performance measure

for the agent. In the finite-horizon formulation, the focus is on the agent’s performance over

a fixed, finite number of time steps. In contrast, the infinite-horizon formulation considers

the agent’s performance over an unbounded sequence of interactions. In this setting, there

are broadly two approaches to aggregating rewards over time: one based on the discounted

sum of rewards and the other based on the long-term average reward.

Another important aspect is the data collection scheme. In online reinforcement learning,

data is collected through direct interaction with the environment. In this setting, the agent

must balance exploration and exploitation: it needs to explore the environment to learn its

dynamics while simultaneously exploiting current knowledge to maximize rewards. In offline

reinforcement learning, by contrast, the agent is provided with a fixed, pre-collected dataset

and must learn a policy from this data, without further interaction with the environment.

Finally, an additional aspect considered in this thesis is the presence of constraints. In the

standard, unconstrained reinforcement learning formulation, the objective of the agent is to

maximize cumulative reward. However, in safety-critical applications, the problem designer
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may wish to enforce constraints on the agent’s behavior to ensure safe operation. Con-

strained reinforcement learning addresses this by formulating the problem as a constrained

optimization problem, in which the goal is to find a policy that maximizes the primary

reward subject to constraints imposed on auxiliary reward signals.

This thesis examines reinforcement learning problems that span the aforementioned as-

pects, with a focus on advances in algorithmic design and accompanying theoretical guar-

antees. The thesis is organized into two parts: the first part addresses online reinforcement

learning with an infinite-horizon average-reward performance criterion, while the second part

focuses on offline constrained reinforcement learning. The remainder of this chapter presents

the necessary preliminaries for the mathematical formulation of these problems.

1.1 Markov Decision Processes

The reinforcement learning problem is typically modeled as Markov Decision Processes

(MDPs) [Puterman, 2014], which capture the sequential interaction between an agent and an

environment. In an MDP, the actions taken by the agent influence the evolution of the state

of the environment, and the agent receives rewards based on the actions it takes. Formally,

MDPs are defined by the tuple (S,A, r, P, d0) where S is the set of all possible states the

environment can be in, A is the set of all actions the agent can take, r : S ×A → [0, 1] is the

reward function that determines the reward received by the agent when taking an action in

a state, P : S ×A → ∆(S) is the transition probability kernel that governs the transition of

the state of the environment when the agent takes an action in a state. Finally, d0 ∈ ∆(S)
is the initial state distribution that governs the distribution of the initial state. Here, we use

the notation ∆(X ) to denote the probability distribution over the set X .

Interaction Protocol In this thesis, we restrict our attention to the following interaction

protocol between an agent and an environment. The protocol begins with the environment

sampling an initial state from d0. Then, at each time step, the agent selects an action,

receives a reward determined by the reward function r, and the environment transitions

to the next state sampled from the transition kernel P . Since the interaction proceeds

without a fixed terminal time, this setting is referred to as the infinite-horizon setting.

2



Protocol 1: Infinite-Horizon Setting

1 Environment samples s1 ∈ S from distribution d0.

2 for t = 1, 2, . . . do

3 Agent takes action at ∈ A.
4 Agent receives reward rt = r(st, at).

5 Environment transitions to the next state sampled from st+1 ∼ P (·|st, at).

Policy At each time step t, when the agent selects an action at ∈ A, it has access to

the full history (s1, a1, . . . , st−1, at−1, st). Thus, in general, the agent may follow a policy

that maps the history up to time t to a probability distribution over the action space A.
However, all the settings considered in this thesis admit the existence of a stationary policy

that determines the action distribution solely based on the current state, ignoring the past

history. Therefore, we restrict our attention to stationary policies.

A stationary policy is defined as a function π : S → ∆(A) that maps each state to a

distribution over actions. Given a stationary policy π, the transition kernel P , and the

initial state distribution d0, the distribution over the trajectory (s1, a1, s2, a2, . . . ) is fully

specified. We denote by P π the probability measure induced by the interaction of π, P , and

d0, and by Eπ the corresponding expectation.

1.1.1 Linear Markov Decision Processes

In real-world applications, the state space S may be extremely large or even infinite. In such

scenarios, the learner must be able to generalize to states that were not encountered during

training. To enable this generalization, it is necessary to impose structural assumptions on

the underlying MDP.

A widely used assumption in the reinforcement learning theory literature is the linear

MDP assumption [Jin et al., 2020]. This assumption introduces structure into the MDP

by positing that the dynamics and rewards can be represented through a low-dimensional

feature mapping over state-action pairs. The linear MDP framework enables generalization

to unseen states by leveraging this shared feature representation.

The additional assumption made under the linear MDP setting is stated as follows.

Assumption 1 (Linear MDP [Jin et al., 2020]). We assume that the transition and the

reward functions can be expressed as a linear function of a known d-dimensional feature map

φ : S ×A → Rd such that for any (s, a) ∈ S ×A, we have

r(s, a) = ⟨φ(s, a),θ⟩, P (s′|s, a) = ⟨φ(s, a),µ(s′)⟩

3



where µ(·) = (µ1(·), . . . , µd(·)) is a vector of d unknown measures on S and θ ∈ Rd is a

known parameter for the reward function.

As is commonly done in the literature on linear MDPs [Jin et al., 2020], we further assume,

without loss of generality (see Wei et al. [2021] for justification), the following boundedness

conditions:
∥φ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A,

∥θ∥2 ≤
√
d,

∥µ(S)∥2 ≤
√
d.

(1.1)

1.2 Infinite-Horizon Discounted Setting

In the infinite-horizon discounted setting, the agent and the environment interacts under the

infinite-horizon protocol (Protocol 1). The performance metric of a stationary policy π in

this setting is the expected discounted sum of rewards defined as

Jγ(π) : =Eπ
[

∞∑
t=1

γt−1r(st, at)

]
. (1.2)

We define related quantities called value functions that condition on the initial state or

state-action pair:

V π
γ (s) = Eπ

[
∞∑
t=1

γt−1r(st, at)|s1 = s

]

Qπ
γ(s, a) = Eπ

[
∞∑
t=1

γt−1r(st, at)|s1 = s, a1 = a

]
.

We write the optimal value functions under the discounted setting as

V ∗
γ (s) = max

π
V π
γ (s), Q∗

γ(s, a) = max
π

Qπ
γ(s, a).

When clear from the context, we suppress the subscript γ and write V π, Qπ, V ∗ and Q∗. The

goal of RL in this setting is to find a nearly optimal policy that maximizes Jπγ (s) for each s.

1.3 Infinite-Horizon Average-Reward Setting

In the infinite-horizon average-reward setting, the agent and the environment interacts under

the infinite-horizon protocol (Protocol 1). The performance metric in this setting is the

4



expected average of rewards, defined as

Jπ(s) : = lim inf
T→∞

Eπ
[
1

T

T∑
t=1

r(st, at) | s0 = s

]
.

The goal of RL in this setting is to find a nearly optimal policy that maximizes Jπ(s) for

each s.

5



CHAPTER 2

Infinite-Horizon Average-Reward RL

2.1 Introduction

Among the various RL settings, the infinite-horizon setting is particularly well-suited for

applications where optimizing long-term performance is the primary objective. Examples

include production system management [Yang et al., 2021, Gosavi, 2004], inventory man-

agement [Gijsbrechts et al., 2022, Giannoccaro and Pontrandolfo, 2002] and network rout-

ing [Mammeri, 2019], where interactions between the agent and the environment continue

indefinitely, and the natural goal is to optimize long-term rewards.

In the infinite-horizon framework, there are two widely-used definitions of long-term re-

wards. The first is the infinite-horizon discounted setting, where the objective is to maximize

the discounted cumulative sum of rewards, with exponentially decaying weight assigned to

future rewards. The second is the infinite-horizon average-reward setting, where the objec-

tive is to maximize the undiscounted long-term average of rewards, assigning uniform weight

to future and present rewards. Learning in the average-reward setting is more challeng-

ing because its Bellman operator is not a contraction, and the widely used value iteration

algorithm may fail when the transition probability model used for value iteration is not

well-behaved. This complicates algorithm design, especially when the underlying transition

probability model is unknown and must be estimated.

Seminal work by Auer et al. [2008] introduces a value iteration based algorithm for the

infinite-horizon average-reward setting in the tabular case, where the state space and the

action space are finite. To address sensitivity of the value iteration algorithm to the transi-

tion probability model, they maintain a confidence set that captures the true, well-behaved

transition probability model. Their algorithm employs an extended value iteration approach,

which optimally selects the transition probability model from the confidence set at each iter-

ation. This extended value iteration method has since been extensively used in the tabular

setting [Bartlett and Tewari, 2009, Fruit et al., 2018, Zhang and Ji, 2019]. Beyond the tabu-
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lar case, the method has also been adapted to the linear mixture MDP setting [Modi et al.,

2020, Ayoub et al., 2020], where the transition probability model has a low-dimensional

structure [Ayoub et al., 2020, Wu et al., 2022, Chae et al., 2025].

The extended value iteration method is limited to tabular and linear mixture MDPs, as

it relies on sample-efficient transition probability estimation, which is infeasible for settings

like linear MDPs with large state spaces [Jin et al., 2020]. Due to these limitations, re-

searchers have explored alternative approaches for such settings. For example, Wei et al.

[2021] propose a reduction to the finite-horizon episodic setting by dividing the time steps

into episodes of a fixed length. This approach achieves a regret bound of Õ(T 3/4), which

is suboptimal, where T denotes the number of time steps. They also introduce a policy-

based algorithm that alternates between policy evaluation and policy improvement steps

to directly optimize the policy. This approach achieves an order-optimal regret bound of

Õ(
√
T ), but it requires a strong ergodicity assumption on the transition probability model

for sample-efficient policy evaluation. Lastly, they propose another approach that achieves

an order-optimal regret bound by directly solving the Bellman optimality equation as a fixed

point problem, bypassing the need for value iteration. However, the fixed point problem is

computationally intractable.

A recent work by Wei et al. [2020] on infinite-horizon average-reward RL uses a reduction

to the discounted setting to leverage value iteration-based algorithms. They propose a Q-

learning-based algorithm for the tabular setting that solves the discounted setting problem

as a surrogate for the average-reward problem, achieving a regret bound of Õ(T 2/3). This

chapter explores this idea further and presents an computationally efficient algorithm under

the infinite-horizon average-reward setting with linear MDPs, that achieves a sharper regret

bound of Õ(
√
T ).

The chapter is organized as follows. Section 2.2 formalizes the performance measure under

the infinite-horizon average-reward setting, and discusses structural assumptions necessary

for nonvacuous result. Section 2.3 introduces the key technique of approximating the average-

reward setting by the discounted setting, which is used throughout the chapter. Section 2.4

applies the technique to the tabular setting. Section 2.5 applies the technique to the linear

MDP setting. Finally, Section 2.6 discusses a modification of the algorithm for computational

efficiency.

2.1.1 Key References and Related Work

This chapter is based on the following papers written during my PhD.

1. Reinforcement learning for infinite-horizon average-reward linear MDPs via approxi-
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mation by discounted-reward MDPs. AISTATS 2025. [Hong et al., 2025].

This paper proposes a new algorithm for online reinforcement learning under the

infinite-horizon average-reward criterion. The central idea is to approximate the

average-reward objective using a carefully tuned discounted surrogate, enabling the

use of value-iteration-based methods. This paper develops algorithmic techniques and

regret analysis for both the tabular setting and the linear MDP setting.

2. A computationally efficient algorithm for infinite-horizon average-reward linear MDPs.

ICML 2025. [Hong and Tewari, 2025a].

This paper improves the computational efficiency of the above approach in the linear

MDP setting. It eliminates the dependency of computational complexity on the size

of the state space by introducing a novel algorithmic trick and accompanying analysis.

3. Learning infinite-horizon average-reward linear mixture mdps of bounded span. AIS-

TATS 2025. [Chae et al., 2025].

This paper is a related work that applies a similar discounted-approximation technique

to the setting of linear mixture MDPs. While closely related in spirit, this paper is not

discussed in detail in the thesis for brevity.

2.2 Preliminaries

Online RL algorithm aims to find an optimal policy by interacting with the environment.

Initially, without knowledge about the dynamics of the underlying MDP, the performance

of the agent is bound to be bad. The performance of the agent would improve over time as

the agent learns about the environment as it explores the MDP. The overall performance of

an online RL algorithm employed by the agent under this setting is measured by the regret

against the best stationary policy π∗ that maximizes Jπ(s1). Writing J∗(s1) : = Jπ
∗
(s1), we

define the T -step regret as

RT : =
T∑
t=1

(J∗(s1)− r(st, at)).

Since the reward function takes values in the range [0, 1], it follows that J∗(s1) ∈ [0, 1], and

hence the regret is trivially bounded above by T . The question is whether there exists an

algorithm with regret sublinear in T .

As discussed by Bartlett and Tewari [2009], without additional assumptions on the struc-

ture of the MDP, the agent may incur linear regret if it enters a state from which it is

impossible to reach the states that yield high long-run rewards. This scenario suggests the
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need for structural assumptions that ensure the agent can eventually recover from visiting

suboptimal states. A rather strong assumption that allows sublinear regret is the ergodicity

assumption that requires the Markov chain induced by any policy to be ergodic, i.e., irre-

ducible and aperiodic. With this assumption, the agent can always recover from a bad state

by running any policy due to irreducibility.

A weaker assumption that still allows sublinear regret is the weakly communicating as-

sumption, which asserts that the state space can be partitioned into a set of transient states

and a set of communicating states. The states in the transient set are visited only finitely

often with probability 1 under any policy, and they do not affect the long-term performance

of any policy. For every pair of states in the communicating set, there exists a policy such

that the agent can reach one state to the other in finite number steps, which allows agent to

recover from a suboptimal state.

An even weaker assumption, popularized by Wei et al. [2021], is the following.

Assumption 2 (Bellman optimality equation). There exist J∗ ∈ R and functions v∗ : S → R
and q∗ : S ×A → R such that for all (s, a) ∈ S ×A, we have

J∗ + q∗(s, a) = r(s, a) + [Pv∗](s, a)

v∗(s) = max
a∈A

q∗(s, a).

As shown by Wei et al. [2021], under Assumption 2, the policy π∗ that deterministically

selects an action from argmaxa q
∗(s, a) at each state s ∈ S is an optimal policy. Moreover, π∗

always gives an optimal average reward Jπ
∗
(s1) = J∗ for all initial states s1 ∈ S. Since the

optimal average reward is independent of the initial state, we can simply write the regret as

RT =
∑T

t=1(J
∗−r(st, at)). Functions v∗(s) and q∗(s, a) are the relative advantage of starting

with s and (s, a) respectively. A problem with large sp(v∗) to be more difficult since starting

with a bad state can be more disadvantageous. As is common in the literature [Bartlett and

Tewari, 2009, Wei et al., 2020], we assume an upper bound H of the span sp(v∗) is known

to the learner.

2.3 Approximation by Discounted Setting

The key idea of the algorithms presented in this chapter, motivated by Zhang and Xie

[2023], is to approximate the infinite-horizon average-reward setting using the infinite-horizon

discounted setting with a discount factor γ ∈ [0, 1) that is carefully tuned. When γ is close

to 1, the optimal policy for the discounted setting becomes nearly optimal for the average-

reward setting. This is supported by a classical result from Puterman [2014], which states
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that the discounted cumulative reward of a stationary policy converges to its average reward

as γ approaches 1.

The following lemma formally establishes the connection between the infinite-horizon

average-reward setting and the discounted setting.

Lemma 1 (Lemma 2 in Wei et al. [2020]). For any γ ∈ [0, 1), the optimal value function

V ∗
γ for the infinite-horizon discounted setting with discounting factor γ satisfies

(i) sp(V ∗) ≤ 2sp(v∗) and

(ii) |(1− γ)V ∗(s)− J∗| ≤ (1− γ)sp(v∗) for all s ∈ S.

The lemma above implies that the difference between the optimal average reward J∗ and

the optimal discounted cumulative reward normalized by the factor (1 − γ) is small when

γ is close to 1. Therefore, the policy that is optimal under the discounted setting can be

expected to be nearly optimal for the average-reward setting, provided that the discount

factor γ is chosen sufficiently close to 1.

2.4 Tabular Setting

In this section, we introduce an algorithm designed for the tabular setting, where the state

space S and action space A are both finite, and no specific structure is assumed for the

reward function or the transition probabilities. The structure of the algorithm, along with

the accompanying analysis, will lay the groundwork for extending these results to the linear

MDP setting.

2.4.1 Algorithm

Our algorithm, called discounted upper confidence bound clipped value iteration (γ-UCB-

CVI), adapts UCBVI [Azar et al., 2017], which was originally designed for the finite-horizon

episodic setting, to the infinite-horizon discounted setting. At each time step, the algorithm

performs an approximate Bellman backup with an added bonus term β
√

1/Nt(s, a) (Line 10)

where Nt(s, a) is the number of times the state-action pair (s, a) is visited. The bonus term

is designed to guarantee optimism, ensuring that Qt ≥ Q∗ for all t = 1, . . . , T . A key

modification from UCBVI is the clipping step (Line 12), which bounds span of the value

function estimate Vt by H, where the target span H is an input to the algorithm. Without

clipping, the span of the value function Vt can be as large as 1
1−γ , while with clipping, the

span can only be as large as H. As we will see in the analysis, this clipping step is crucial to

10



Algorithm 2: γ-UCB-CVI for Tabular Setting

Input: Discounting factor γ ∈ [0, 1), span H, bonus factor β.
Initialize: Q1(s, a), V1(s)← 1

1−γ ; N0(s, a, s
′)← 0, N0(s, a)← 1, for all

(s, a, s′) ∈ S ×A× S.
1 Receive initial state s1.
2 for time step t = 1, . . . , T do
3 Take action at = argmaxaQt(st, a).
4 Receive reward r(st, at).
5 Receive next state st+1.
6 Nt(st, at, st+1)← Nt−1(st, at, st+1) + 1
7 Nt(st, at)← Nt−1(st, at) + 1.
8 (Other entries of Nt remain the same as Nt−1.)

9 P̂t(s
′|s, a)← Nt(s, a, s

′)/Nt(s, a), ∀(s, a) ∈ S ×A.
10 Qt+1(s, a)← (r(s, a) + γ[P̂tVt](s, a) + β/

√
Nt(s, a)) ∧Qt(s, a), ∀(s, a) ∈ S ×A

11 Ṽt+1(s)← (maxaQt+1(s, a)) ∧ Vt(s), ∀s ∈ S.
12 Vt+1(s)← Ṽt+1(s) ∧ (mins′ Ṽt+1(s

′) +H), ∀s ∈ S.

achieving a sharp dependence on 1
1−γ in the regret bound, which enables the Õ(

√
T ) regret

through tuning γ. Running the algorithm with the discounting factor set to γ = 1− 1/
√
T

and the target span set to H ≥ 2 · sp(v∗) guarantees the following regret bound.

Theorem 1. Under Assumption 2, there exists a constant c > 0 such that, for any fixed δ ∈
(0, 1), if Algorithm 2 is run with γ = 1−

√
1/T , H ≥ 2 ·sp(v∗), and β = cH

√
S log(SAT/δ),

then with probability at least 1− δ, the total regret is bounded by

RT ≤ O
(
H
√
S2AT log(SAT/δ)

)
.

In the theorem above, the constant c in the definition of β is specified in Lemma 2 in

the following subsection. The resulting regret bound matches the best known regret bound

for computationally efficient algorithms in this setting. A comprehensive comparison with

previous work on infinite-horizon average-reward tabular MDPs is provided in Section 2.4.3.

An interesting direction for future work is to improve the regret bound by a factor of
√
S

through a refined analysis using Bernstein-type concentration inequalities, inspired by the

refined analysis of UCBVI in Azar et al. [2017].

2.4.2 Regret Analysis

This section outlines the proof of Theorem 1, with the complete argument deferred to Ap-

pendix A.1. The key component of the analysis is the following concentration inequality.
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Lemma 2. Under the setting of Theorem 1, there exists a constant c such that for any fixed

δ ∈ (0, 1), we have with probability at least 1− δ that

|[(P̂t − P )Vt](s, a)| ≤ c ·H
√
S log(SAT/δ)/Nt(s, a)

for all (s, a, t) ∈ S ×A× [T ].

Without clipping, the span of Vt would be 1
1−γ rather than H, causing the deviation term

[(P̂t−P )Vt](s, a) to scale with 1
1−γ instead of H. Replacing the 1

1−γ factor with H via clipping

is essential for achieving a regret bound of Õ(
√
T ) when tuning γ.

In Theorem 1, the bonus factor parameter β is chosen based on the concentration bound

established in the preceding lemma. This choice guarantees that the deviation term [(P̂t −
P )Vt](s, a) is bounded by β/

√
Nt(s, a), which corresponds to the bonus term used by the

algorithm. With this result in place, the following optimism result can now be established.

Lemma 3 (Optimism). Under the setting of Theorem 1, we have with probability at least

1− δ that

Vt(s) ≥ V ∗(s), Qt(s, a) ≥ Q∗(s, a)

for all (s, a, t) ∈ S ×A× [T ].

The proof uses an induction argument (e.g. Lemma 18 in Azar et al. [2017]) to show

Ṽt(s) ≥ V ∗(s). To establish that the clipped value function Vt, no larger than Ṽt by design,

still satisfies Vt(s) ≥ V ∗(s), we use sp(V ∗) ≤ 2 · sp(v∗) ≤ H (Lemma 1), which guarantees

the clipping operation does not clip Vt below V ∗.

Now consider the high probability events established in Lemma 2 and Lemma 3 to hold.

By the value iteration step (Line 10) of Algorithm 2 and the concentration inequality in

Lemma 2, it follows that for all t = 2, . . . , T ,

r(st, at) ≥ Qt(st, at)− γ[P̂t−1Vt−1](st, at)− β/
√
Nt−1(st, at).

Furthermore, by the optimism guarantee of Lemma 3, it holds that

Vt(st) ≤ Ṽt(st) ≤ max
a
Qt(st, a) = Qt(st, at),

which implies

r(st, at) ≥ Vt(st)− γ[PVt−1](st, at)− 2β/
√
Nt−1(st, at).
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Hence, the regret can be bounded by

RT =
T∑
t=1

(J∗ − r(st, at))

≤
T∑
t=2

(J∗ − Vt(st) + γ[PVt−1](st, at) + 2β/
√
Nt−1(st, at)) +O(1),

where the first inequality uses the fact that J∗ ≤ 1, which can be decomposed into

=
T∑
t=2

(J∗ − (1− γ)Vt(st))︸ ︷︷ ︸
(a)

+γ
T∑
t=2

(Vt−1(st+1)− Vt(st))︸ ︷︷ ︸
(b)

+ γ
T∑
t=2

(PVt−1(st, at)− Vt−1(st+1))︸ ︷︷ ︸
(c)

+ 2 β
T∑
t=2

1/
√
Nt−1(st, at)︸ ︷︷ ︸
(d)

+ O(1).

The terms (a), (b), (c), (d) can be bounded separately as follows.

Bounding Term (a) Using the optimism result (Lemma 3) that says Vt(s) ≥ V ∗(s) for

all s ∈ S and Lemma 1 that bounds |J∗ − (1− γ)V ∗(s)| for all s ∈ S,

T∑
t=2

(J∗ − (1− γ)Vt(st)) ≤
T∑
t=2

(J∗ − (1− γ)V ∗(st))

≤ T (1− γ)sp(v∗).

Bounding Term (b) Note that for any s ∈ S, the sequence {Vt(s)}Tt=1 is monotonically

decreasing due to Line 11-12 in Algorithm 2. Moreover, since Vt(s) ∈ [0, 1
1−γ ] for all t =

1, . . . , T , the total decrease in Vt(s) from t = 1 to T is bounded above by 1
1−γ . Hence,

T∑
t=2

(Vt−1(st+1)− Vt(st)) ≤
T∑
t=2

(Vt−1(st+1)− Vt+1(st+1)) +O
(

1

1− γ

)

≤
∑
s∈S

T∑
t=2

(Vt−1(s)− Vt+1(s)) +O
(

1

1− γ

)
≤ O

(
S

1− γ

)
.
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Bounding Term (c) Term (c) is the sum of a martingale difference sequence where each

term is bounded by H. Hence, by the Azuma-Hoeffding inequality, with probability at least

1−δ, term (c) is bounded by H
√

2T log(1/δ). Without clipping, each term of the martingale

difference sequence can only be bounded by 1
1−γ , leading to a bound of Õ( 1

1−γ

√
T ), which is

too loose for achieving a regret bound of Õ(
√
T ).

Bounding Term (d) We can bound the sum of the bonus terms (d) using a stan-

dard argument (Azar et al. [2017], Lemma 21 in Appendix A.1) by O(β
√
SAT ) =

O(H
√
S2AT log(SAT/δ)).

Combining the above, and rescaling δ, it follows that with probability at least 1− δ,

RT ≤ O
(
T (1− γ)sp(v∗) + S

1− γ
+H

√
T log(1/δ) +H

√
S2AT log(SAT/δ)

)
.

Choosing γ = 1− 1/
√
T gives

RT ≤ O
(
H
√
S2AT log(SAT/δ)

)
,

which completes the proof of Theorem 1.

2.4.3 Related Work

Seminal work by Auer et al. [2008] on infinite-horizon average-reward setting in tabular

MDPs laid the foundation for the problem. Their model-based algorithm called UCRL2

constructs a confidence set on the transition model and run an extended value iteration that

involves choosing the optimistic model in the confidence set each iteration. They achieve

a regret bound of O(DS
√
AT ) where D is the diameter of the true MDP. Bartlett and

Tewari [2009] improve the regret bound of UCRL2 by restricting the confidence set of the

model to only include models such that the span of the induced optimal value function is

bounded. Their algorithm, called REGAL, achieves a regret bound that scales with the

span of the optimal value function sp(v∗) instead of the diameter of the MDP. However,

REGAL is computationally inefficient. Fruit et al. [2018] propose a model-based algorithm

called SCAL, which is a computationally efficient version of REGAL. Zhang and Ji [2019]

propose a model-based algorithm called EBF that achieves the minimax optimal regret of

O(
√

sp(v∗)SAT ) by maintaining a tighter model confidence set by making use of the estimate

for the optimal bias function. However, their algorithm is computationally inefficient. There

is another line of work on model-free algorithms for this setting. Wei et al. [2020] introduce

a model-free Q-learning-based algorithm called Optimistic Q-learning. Their algorithm is a
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Table 2.1: Comparison of algorithms for infinite-horizon average-reward RL in tabular setting

Algorithm Regret Õ(·) Assumption

UCRL2 [Auer et al., 2008] DS
√
AT Bounded diameter

† REGAL [Bartlett and Tewari, 2009] sp(v∗)
√
SAT Weakly communicating

PSRL [Ouyang et al., 2017] sp(v∗)S
√
AT Weakly communicating

† OSP [Ortner, 2020]
√
tmixSAT Ergodic

SCAL [Fruit et al., 2018] sp(v∗)S
√
AT Weakly communicating

UCRL2B [Fruit et al., 2020] S
√
DAT Bounded diameter

† EBF [Zhang and Ji, 2019]
√
sp(v∗)SAT Weakly communicating

Optimistic Q-learning [Wei et al., 2020] sp(v∗)(SA)
1
3T

2
3 Weakly communicating

MDP-OOMD [Wei et al., 2020]
√
t3mixηAT Ergodic

UCB-AVG [Zhang and Xie, 2023] sp(v∗)S5A2
√
T Weakly communicating

γ-UCB-CVI [Hong et al., 2025] sp(v∗)S
√
AT Bellman optimality equation

Lower bound [Auer et al., 2008] Ω(
√
DSAT )

reduction to the discounted setting. Although model-free, their algorithm has a suboptimal

regret of O(T 2/3). Recently, Zhang and Xie [2023] introduce a Q-learning-based algorithm

called UCB-AVG that achieves regret bound of O(
√
T ). Their algorithm, which is also a

reduction to the discounted setting, is the first model-free to achieve the order optimal regret

bound. Their main idea is to use the optimal bias function estimate to increase statistical

efficiency. Agrawal and Agrawal [2024] introduces a model-free Q-learning-based algorithm

and provides a unified view of episodic setting and infinite-horizon average-reward setting.

However, their algorithm requires additional assumption of the existence of a state with

bounded hitting time.

Comparison of algorithms for infinite-horizon average-reward RL in the tabular setting can

be see in Table 2.1. The sign † indicates that the corresponding algorithm is computationally

inefficient.

2.5 Linear MDP Setting

In this section, the key ideas developed in the previous section are applied to the linear MDP

setting (see Section 1.1.1 for the definition). As discussed by Jin et al. [2020], although the

transition model P is linear in the d-dimensional feature mapping φ, the transition kernel

P retains infinite degrees of freedom due to the unknown measure µ, making the estimation

of P challenging.

For sample-efficient learning, the key observation is that [Pv](s, a) is linear in φ(s, a) for
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any function v : S → R. That is, there exists a vector w∗
v ∈ Rd such that

[Pv](s, a) = ⟨φ(s, a),w∗
v⟩,

since

[Pv](s, a) : =

∫
s′∈S

v(s′)P (ds′ | s, a)

=

∫
s′∈S

v(s′)⟨φ(s, a),µ(ds′)⟩

= ⟨φ(s, a),
∫
s′∈S

v(s′)µ(ds′)⟩.

This representation allows the estimation of [Pv](s, a) via linear regression, circumventing

the need to estimate the full transition kernel P .

Exploiting the linearity, for a function V : S → R, we can estimate w∗(V ) given a

trajectory data (s1, a1, . . . , st−1, at−1, st) via linear regression as follows:

ŵt(V ) : =Λ−1
t

t−1∑
τ=1

V (sτ+1) ·φ(sτ , aτ )

where Λt = λI +
∑t−1

τ=1φ(st, at)φ(st, at)
⊤. With such a regression coefficient, [PV ](s, a) can

be estimated by

[P̂tV ](s, a) : =⟨φ(s, a), ŵt(V − V (s1))⟩+ V (s1).

We estimate [PV ](s, a) by estimating [P (V − V (s1))](s, a) and then adding back V (s1).

This allows bounding the norm of the regression coefficient ∥ŵt(V − V (s1))∥2 by a bound

that scales with the span of V instead of the magnitude of V , which is required for getting

a sharp regret bound.

Naively adapting the algorithm design and analysis for the tabular setting to the linear

MDP setting would result in a regret bound that is polynomial in S, the size of the state

space, when bounding
∑T

t=1(Vt−1(st+1)−Vt(st)). Also, algorithmically making the state value

function monotonically decrease in t by taking minimum with the previous estimate every

iteration, as is done in the tabular setting for the telescoping sum argument, would lead to

an exponential covering number for the function class of the value function, in either T or S

[He et al., 2023]. A major challenge in algorithm design and analysis is sidestepping these

issues. The algorithm presented in the next section for the linear MDP setting addresses

these issues.
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Algorithm 3: γ-LSCVI-UCB

Input: Discounting factor γ ∈ (0, 1), regularization λ > 0, span H, bonus factor β.
Initialize: t← 1, k ← 1, tk ← 1, Λ1 ← λI, Λ̄0 ← λI, Q1

t (·, ·)← 1
1−γ for t ∈ [T ].

1 Receive state s1.
2 for time step t = 1, . . . , T do
3 Take action at = argmaxaQ

k
t (st, a). Receive reward r(st, at). Receive next state

st+1.
4 Λ̄t ← Λ̄t−1 +φ(st, at)φ(st, at)

T .

5 if 2 det(Λk) < det(Λ̄t) then
6 k ← k + 1, tk ← t+ 1, Λk ← Λ̄t.

// Run value iteration to plan for remaining T − tk + 1 time steps

in the new episode.

7 Ṽ k
T+1(·)← 1

1−γ , V
k
T+1(·)← 1

1−γ .

8 for u = T, T − 1, . . . , tk do

9 wk
u+1 ← Λ−1

k

∑tk−1
τ=1 φ(sτ , aτ )(V

k
u+1(sτ+1)− V k

u+1(s1))).

10 Qk
u(·, ·)←

(
r(·, ·) + γ(⟨φ(·, ·),wk

u+1⟩+ V k
u+1(s1) + β∥φ(·, ·)∥Λ−1

k
)
)
∧ 1

1−γ .

11 Ṽ k
u (·)← maxaQ

k
u(·, a).

12 V k
u (·)← Ṽ k

u (·) ∧ (mins′ Ṽ
k
u (s

′) +H).

2.5.1 Algorithm

The algorithm presented in this section, referred to as discounted least-squares clipped value

iteration with upper confidence bound (γ-LSCVI-UCB), extends the LSVI-UCB algorithm of

Jin et al. [2020], originally developed for the finite-horizon episodic setting, to the infinite-

horizon discounted setting. The main modifications introduced to adapt to the discounted

setting are summarized below.

Clipping the Value Function The value function estimates are clipped to restrict their

span (Line 12), following the same strategy employed in the tabular case discussed in the

previous section. This clipping operation enforces a bounded span, which is critical in

controlling the bias arising from approximation and enables a regret bound with improved

dependence on the discount factor, saving a factor of 1/(1− γ).
In the previous algorithm, γ-UCB-CVI, designed for the tabular setting, the value itera-

tion procedure is interleaved with the decision-making process. Specifically, at each time step

t, the agent selects an action greedily with respect to the most recently updated action-value

function Qt. This design structure is common across value iteration-based and Q-learning-

based algorithms in both infinite-horizon average-reward tabular MDPs [Zhang and Xie,
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2023] and infinite-horizon discounted tabular MDPs [Liu and Su, 2020, He et al., 2021]. Un-

der this interleaved design, the value function sequence {Vt} is algorithmically required to

be monotonic in order to control the telescoping sum
∑

t (Vt−1(st+1)− Vt(st)).
However, in the linear MDP setting, enforcing monotonicity of {Vt} by defining

Vt : =min(Vt−1, Vt) would cause the complexity of the function class from which value es-

timates are drawn to grow with T . In particular, the logarithm of the covering number of

the function class would scale with T , leading to vacuous regret bounds.

To avoid this issue, a novel algorithmic structure is adopted that decouples the value

iteration updates from the decision-making process. This structural separation allows the

algorithm to maintain a fixed function class and leverage concentration tools without incur-

ring complexity penalties tied to time horizon T .

Planning until the End of Horizon Prior to executing any action at time t, the algo-

rithm performs a sequence of T − t value iteration steps to construct a series of action-value

functions QT , QT−1, . . . , Qt (Lines 7–12). At each decision point t, the agent then selects

a greedy action with respect to Qt. This algorithmic structure resembles that of value

iteration-based algorithms for the finite-horizon episodic setting [Azar et al., 2017, Jin et al.,

2020], in which Bellman updates are used to generate action-value functions corresponding

to each time step of a fixed-length episode, and actions are chosen greedily according to these

functions throughout the episode. Under this structure, Qt−1 becomes one Bellman update

ahead of Qt. As a result, the key quantity of interest becomes
∑T

t=1 Vt+1(st+1)−Vt(st), which
can now be bounded by telescoping sum.

Restarting when Information Doubles If all T action-value functions are generated

at the initial time step via approximate value iteration and subsequently used for decision-

making over T steps, the collected trajectory data cannot be leveraged for improving future

decisions. To address this limitation while retaining the pregeneration scheme, we period-

ically restart the value iteration process based on the growth of an information measure

derived from the observed data. Specifically, we initiate a new sequence of value iterations

whenever a chosen information criterion doubles, enabling the algorithm to incorporate newly

collected trajectory data into future planning. To implement this mechanism, we adopt the

rarely-switching covariance matrix technique introduced by Wang et al. [2021]. This ap-

proach triggers a restart when the determinant of the empirical covariance matrix doubles

(Line 5).

The algorithm γ-LSCVI-UCB, based on the design discussed above, has the following

guarantee.
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Theorem 2. Under Assumptions 2 and 1, running Algorithm 3 with inputs γ = 1 −√
log(T )/T , λ = 1, H ≥ 2 · sp(v∗) and β = 2cβ · Hd

√
log(dT/δ) guarantees with proba-

bility at least 1− δ,
RT ≤ O(H

√
d3T log(dT/δ)).

The constant cβ is an absolute constant defined in Lemma 4. A refined analysis of the

variance of the value estimate [He et al., 2023] may improve our regret by a factor of
√
d,

which would be an interesting future work.

2.5.2 Regret Analysis

This section outlines the proof of the regret bound presented in Theorem 2. The first step

is to show that the value iteration step in Line 10 with the bonus term β∥ϕ(·, ·)∥Λ−1
k

with

appropriately chosen β ensures the value function estimates Vt and Qt to be optimistic

estimates of V ∗ and Q∗, respectively. The argument is based on the following concentration

inequality for the regression coefficients. See Appendix A.2.1 for a proof.

Lemma 4 (Concentration of regression coefficients). With probability at least 1 − δ, there
exists an absolute constant cβ such that for β = cβ ·Hd

√
log(dT/δ), we have

|⟨ϕ,wk
u −wk

u
∗⟩| ≤ β∥ϕ∥Λ−1

k

for all episode indices k and for all vectors ϕ ∈ Rd where wk
u
∗ : =

∫
(V k

u (s)− V k
u (s1))dµ(s) is

a parameter that satisfies ⟨φ(s, a),wk
u
∗⟩ = [PV k

u ](s, a)− V k
u (s1).

With the concentration inequality, we can show the following optimism result. See Ap-

pendix A.2.2 for an induction-based proof.

Lemma 5 (Optimism). Under the linear MDP setting, running Algorithm 3 with input

H ≥ 2 · sp(v∗) guarantees with probability at least 1 − δ that for all episodes k = 1, 2, . . . ,

u = tk, . . . , T + 1 and for all (s, a) ∈ S ×A, we have

V k
u (s) ≥ V ∗(s), Qk

u(s, a) ≥ Q∗(s, a).

Now, we show the regret bound under the event that the high probability events in the

previous two lemmas (Lemma 4, Lemma 5) hold. Let t be a time step in episode k such

that both t and t+1 are in episode k. By the definition of Qk
u(·, ·) (Line 10), we have for all

19



t = tk, . . . , T + 1 and (s, a) ∈ S ×A that

r(s, a) ≥ Qk
t (s, a)− γ(⟨φ(s, a),wk

t+1⟩+min
s′
V k
t+1(s

′)− β∥φ(s, a)∥Λ−1
k
)

≥ Qk
t (s, a)− γ[PV k

t+1](s, a)− 4β∥φ(s, a)∥Λ̄−1
t

where the second inequality uses the concentration bound for the regression coefficients in

Lemma 4. It also uses ∥x∥Λ−1
k
≤ 2∥x∥Λ−1

t
(Lemma 30). Hence, we can bound the regret in

episode k by

Rk =

tk+1−1∑
t=tk

(J∗ − r(st, at))

≤
tk+1−1∑
t=tk

(J∗ −Qk
t (st, at) + γ[PV k

t+1](st, at) + 4β∥φ(st, at)∥Λ̄−1
t
),

which can be decomposed into

=

tk+1−1∑
t=tk

(J∗ − (1− γ)V k
t+1(st+1))︸ ︷︷ ︸

(a)

+γ

tk+1−1∑
t=tk

(V k
t+1(st+1)−Qk

t (st, at))︸ ︷︷ ︸
(b)

+ γ

tk+1−1∑
t=tk

[PV k
t+1](st, at)− V k

t+1(st+1))︸ ︷︷ ︸
(c)

+4β

tk+1−1∑
t=tk

∥φ(st, at)∥Λ̄−1
t︸ ︷︷ ︸

(d)

where the first inequality uses the bound for r(st, at). With the same argument as in the

tabular case, the term (a) summed over all episodes can be bounded by T (1 − γ)sp(v∗)

using the optimism V k
u (st+1) ≥ V ∗(st+1), and Lemma 1 that bounds |J∗ − (1 − γ)V ∗(s)|

for all s ∈ S. Term (d), summed over all episodes, can be bounded by O(β
√
dT log T )

using Cauchy-Schwartz and Lemma 29. Term (c), summed over all episodes, is a sum of

a martingale difference sequence, which can be bounded by O(sp(v∗)
√
T log(1/δ)) since

sp(V k
u ) ≤ 2 · sp(v∗) by the clipping step in Line 12.
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Bounding Term (b) To bound term (b) note that

V k
t+1(st+1) ≤ Ṽ k

t+1(st+1)

= max
a
Qk
t+1(st+1, a)

= Qk
t+1(st+1, at+1)

as long as the time step t+1 is in episode k, since the algorithm chooses at+1 that maximizes

Qk
t+1(st+1, ·). Hence,

tk+1−1∑
t=tk

(V k
t+1(st+1)−Qk

t (st, at)) ≤
1

1− γ
+

tk+1−2∑
t=tk

(Qk
t+1(st+1, at+1)−Qk

t (st, at))

≤ O
(

1

1− γ

)
where the second inequality uses telescoping sum and the fact that Qk

t ≤ 1
1−γ . Since the

episode is advanced when the determinant of the covariance matrix doubles, it can be shown

that the number of episodes is bounded by O(d log(T )) (Lemma 31). Combining all the

bounds, and using β = O(sp(v∗)d
√
log(dT/δ), we get

RT ≤ O
(
T (1− γ)sp(v∗) + d

1− γ
log(T ) +H

√
T log(1/δ) +H

√
d3T log(dT/δ)

)
.

Setting γ = 1−
√

(log T )/T , we get

RT ≤ O
(
H
√
d3T log(dT/δ)

)
,

which concludes the proof of Theorem 2.

2.5.3 Computational Complexity

The algorithm γ-LSCVI-UCB runs in episodes and since a new episode starts only when the

determinant of the covariance matrix Λt doubles, there can be at most O(d log2 T ) episodes
(see Lemma 31). In each episode, we run at most T value iterations. In each iteration

step u, the algorithm computes mins′ Ṽ
t
u(s

′) which requires evaluating Ṽ t
u(s

′) at all s′ ∈ S,
which requires O(d2SA) computations. Also, the algorithm computes wk

u+1, which requires

O(d2 + Td) operations. All other operations runs in O(d2 +A) per value iteration. In total,

the algorithm runs in O((log2 T )d3SAT 2). See Appendix A.2.3 for detailed analysis.

The FOPO algorithm by Wei et al. [2021] that matches the regret bound under the same
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set of assumptions, has a time complexity of O(T d log2 T ). Although the time complexity of

γ-LSCVI-UCB is an improvement over previous work in the sense that the time complexity

is polynomial in problem parameters, it has linear dependency on S. The dependency on S

arises from taking the minimum of value functions for clipping. The algorithm presented in

the next section gets rid of this dependency by employing an efficient clipping.

2.6 Linear MDP Setting: Computational Efficiency

This section presents the algorithm called discounted Deviation Controlled Least Squares

Clipped Value Iteration with Upper Confidence Bound (γ-DC-LSCVI-UCB, Algorithm 4),

which improves computational complexity of the algorithm presented in the previous section.

2.6.1 Computationally Efficient Clipping

The algorithm design for computational efficiency is centered around bounding the term

T−1∑
t=1

V t
t+1(st+1)− Ṽ t+1

t+1 (st+1),

where {Ṽ t
u}u∈[t:T ] is the sequence of value functions generated at time step t, and {V t

u}u∈[t:T ]
is the sequence of clipped value functions generated at time step t. Note that the clipped

value function V t
t+1 in the summation is generated at time step t, prior to observing the next

state st+1. With unlimited compute power, the γ-LSCVI-UCB algorithm by previous work

uses mins∈S Ṽ
t
t+1(s) as the clipping threshold, which allows bounding V t

t+1 evaluated at st+1

by

V t
t+1(st+1) = Clip(Ṽ t

t+1(st+1);min
s∈S

Ṽ t
t+1(s),min

s∈S
Ṽ t
t+1(s) +H)

≤ Ṽ t
t+1(st+1)

where the inequality only holds because mins∈S Ṽ
t
t+1(s) ≤ Ṽ t

t+1(st+1). The algorithm γ-

LSCVI-UCB also reuses the sequence of value functions most of the time steps, such that

Ṽ t
t+1(st+1) = Ṽ t+1

t+1 (st+1), allowing the bound V t
t+1(st+1)− Ṽ t+1

t+1 (st+1) ≤ 0.

For computational efficiency, suppose we use mt as the clipping threshold instead of

mins∈S Ṽ
t
t+1(s), where mt is computed using states s1, . . . , st only. Then, the bound

V t
t+1(st+1) ≤ Ṽ t

t+1(st+1) may no longer hold because

V t
t+1(st+1) = Clip(Ṽ t

t+1(st+1);mt,mt +H) ≥ mt
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and we may havemt > Ṽ t
t+1(st+1) since we cannot look ahead st+1 when choosing the clipping

threshold mt. We can instead get a bound with an error term:

V t
t+1(st+1) = Clip(Ṽ t

t+1(st+1);mt,mt +H)

≤ Ṽ t
t+1(st+1) + max{mt − Ṽ t

t+1(st+1), 0}.

One key idea of handling the sum of the error terms is to choose mt+1 = Ṽ t
t+1(st+1) ∧ mt

(Line 14), leading to

V t
t+1(st+1) ≤ Ṽ t

t+1(st+1) + ∆t

where ∆t = mt − mt+1. Then the sum of the errors ∆t can then be bounded using a

telescoping sum.

The clipping threshold mt+1 = Ṽ t
t+1(st+1) ∧mt may change every time step. Hence, after

advancing to the next time step t+1 and computing the new threshold mt+1, the algorithm

computes Qt+1
t+1 afresh, which involves generating a sequence of value functions V t+1

T , . . . , V t+1
t+1

by running clipped value iteration with the new threshold mt+1. Therefore, unlike previous

work that ensures Ṽ t
t+1(st+1) = Ṽ t+1

t+1 (st+1) by reusing the sequence of value functions, we

need to control the difference between Ṽ t
t+1(st+1) and Ṽ

t+1
t+1 (st+1) to be able to bound

V t
t+1(st+1) ≤ Ṽ t

t+1(st+1) + ∆t ≈ Ṽ t+1
t+1 (st+1) + ∆t.

The next section discusses the algorithm design for ensuring Ṽ t
t+1 ≈ Ṽ t+1

t+1 .

2.6.2 Deviation-Controlled Value Iteration

Previous discussion suggests we need to bound the difference between sequences of value

functions {Ṽ t
u}u∈[T ] and {Ṽ t+1

u }u∈[T ] generated by value iterations using different clipping

thresholds mt and mt+1. We would expect that the difference between sequences of value

functions to be bounded by the difference in clipping thresholds mt −mt+1. Surprisingly, a

naive adaptation of the previous work γ-LSCVI-UCB, fails to control the difference. To see

this, consider the following clipped value iteration procedure that generates a sequence of

value functions {Ṽ t
u}u at time step t using the clipping threshold mt.

We argue that controlling the difference ∥Ṽ t
u+1− Ṽ t+1

u+1∥∞ ≤ ∆ for ∆ = mt−mt+1 at value

iteration index u + 1 does not necessarily control the difference ∥Ṽ t
u − Ṽ t+1

u ∥∞ at the next

value iteration. To see this, suppose ∥Ṽ t
u+1− Ṽ t+1

u+1∥∞ ≤ ∆. Then, by value iteration, we have

∥Ṽ t
u − Ṽ t+1

u ∥∞ ≤ ∥Qt
u −Qt+1

u ∥∞ ≈ ∥P̂t(V t
u+1 − V t+1

u+1)∥∞.
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V t
T+1(·)← 1

1−γ .

for u = T, T − 1, . . . , t do

Qt
u(·, ·)←

(
r(·, ·) + γ([P̂tV

t
u+1](·, ·) + β∥φ(·, ·)∥Λ−1

t
)
)
∧ 1

1−γ .

Ṽ t
u(·)← maxaQ

t
u(·, a).

V t
u(·)← Clip(Ṽ t

u(·);mt,mt +H).

It is natural to expect that ∥V t
u+1−V t+1

u+1∥∞ ≤ ∆ would imply ∥P̂t(V t
u+1−V t+1

u+1)∥∞ ≤ ∆. This

is true when [P̂tV ](s, a) is an expectation of V (·) with respect to an empirical probability

distribution P̂t(·|·, ·), which is the case for the tabular setting (see Appendix A.3.3.1 for

more discussion). However, in the linear MDP setting, and more generally in general value

function approximation setting, [P̂tV ](s, a) is defined through a regression: [P̂tV ](s, a) =

⟨φ(s, a), ŵt(V
t
u+1 − V t+1

u+1)⟩, which can be arbitrarily larger than ∆ as shown in the next

lemma.

Lemma 6. There exist ϕ1, . . . ,ϕn ∈ Rd with ∥ϕi∥ ≤ 1 for i = 1, . . . , n, and y1, . . . , yn ∈ R
with |yi| ≤ ∆, i = 1, . . . , n for any ∆ > 0, such that

|⟨wn,ϕ⟩| ≥
1

2
∆
√
n

for some ϕ ∈ Rd where wn is the regression coefficient wn = Λ−1
n

∑n
i=1 yiϕi where Λn =∑n

i=1ϕiϕ
⊤
i + λI.

To address this issue, we propose a novel value iteration procedure that explicitly controls

the deviation of a sequence of value functions from its previous sequences. The key idea is

to clip the value function Q̃t
u so that its values do not deviate too much from value functions

Q̃t−1
u and Q̃t−2

u from previously generated sequences of value functions (Line 6-8). With this

scheme, we can bound the difference between Ṽ t
u and Ṽ t+1

u as follows.

Lemma 7. When running γ-DC-LSCVI-UCB (Algorithm 4), we have

|Ṽ t+1
u (s)− Ṽ t

u(s)| ≤ mt−1 −mt+1

for all t ∈ [T ], u ∈ [t : T ] and for all s ∈ S.

The lemma above says that the sequence of value functions {Ṽ t+1
u }u∈[t+1:T ] generated at

time step t+1 deviates from the chain of value functions {Ṽ t
u}u∈[t:T ] by at most mt−1−mt+1.

This deviation control enables bounding the term
∑T−1

t=1 V
t
t+1(st+1) − Ṽ t+1

t+1 (st+1), which we

demonstrate in the next section.
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Algorithm 4: γ-DC-LSCVI-UCB [Hong and Tewari, 2025a]

Input: Discounting factor γ ∈ [0, 1), regularization constant λ > 0, span H > 0,
bonus factor β > 0.

Initialize: Λ1 ← λI, m−1 ←∞, m0 ←∞, m1 ← 1
1−γ , Q̃

0
u(·, ·)← 1

1−γ ,

Q̃−1
u (·, ·)← 1

1−γ .

1 Receive state s1.
2 for t = 1, . . . , T do
3 V t

T+1(·)← 1
1−γ .

4 for u = T, T − 1, . . . , t do

5 Q̃t
u(·, ·)←

(
r(·, ·) + γ([P̂tV

t
u+1](·, ·) + β∥φ(·, ·)∥Λ−1

t
)
)
∧ 1

1−γ .

6 U t
u(·, ·)← Q̃t−1

u (·, ·) ∧ Q̃t−2
u (·, ·).

7 Ltu(·, ·)← (Q̃t−1
u (·, ·)−mt−1 +mt) ∨ (Q̃t−2

u (·, ·)−mt−2 +mt).

8 Qt
u(·, ·)← Clip(Q̃t

u(·, ·);Ltu(·, ·), U t
u(·, ·)).

9 Ṽ t
u(·)← maxaQ

t
u(·, a).

10 V t
u(·)← Clip(Ṽ t

u(·);mt,mt +H).

11 Take action at ← argmaxa∈AQ
t
t(st, a).

12 Receive reward r(st, at). Receive next state st+1.
13 Λt+1 ← Λt +φ(st, at)φ(st, at)

⊤.

14 mt+1 ← Ṽ t
t+1(st+1) ∧mt.

2.6.3 Regret Analysis

In this section, we outline a regret analysis for our algorithm. Central to the regret analysis

is the following concentration bound for the estimate P̂tV .

Lemma 8. With probability at least 1− δ, there exists an absolute constant cβ such that for

β = cβ ·Hd
√

log(dT/δ),

|[P̂tV t
u ](s, a)− [PV t

u ](s, a)| ≤ β∥φ(s, a)∥Λ−1
t

for all t ∈ [T ], u ∈ [t : T ] and (s, a) ∈ S ×A.

A proof for the lemma above first finds a concentration bound for P̂tV for a fixed value

function V : S → R using a concentration bound for vector-valued self-normalized processes.

Then, an ϵ-net covering argument is used to get a uniform bound on the function class that

captures all value functions V t
u encountered by the algorithm. For this to work, we require

the function class to have low covering number. We can show that the log covering number

of the function class that captures functions Q̃t
u can be bounded by Õ(d2), which amounts

to covering the d × d matrices Λt. Since Qt
u is a function of 5 functions in this function
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class, the log covering number of the function class that captures Qt
u is bounded by Õ(d2).

With the concentration inequality, and the fact that the algorithm uses β∥φ(s, a)∥Λ−1
t

as the

bonus term, we get the following results.

Lemma 9 (Optimism). With probability at least 1 − δ, for all t ∈ [T ] and u ∈ [t : T ] and

s ∈ S, we have

V t
u(s) ≥ V ∗(s),

as long as the input argument H is chosen such that H ≥ 2 · sp(v∗).

Lemma 10. With probability at least 1− δ, we have for all t ∈ [4 : T ] and u ∈ [t : T ] that

Qt
u(s, a) ≤ r(s, a) + γ[PV t

u+1](s, a) + 2β∥φ(s, a)∥Λ−1
t

+ 2(mt−3 −mt)

for all (s, a) ∈ S ×A.

Using the lemma above, the regret can be bounded by

RT =
∑T

t=1(J
∗ − r(st, at))

≤
∑T

t=4(J
∗ −Qt

t(st, at) + γ[PV t
t+1](st, at) + 2β∥φ(st, at)∥Λ−1

t
+ 2(mt−3 −mt)) +O(1)

which can be decomposed into

=
∑T

t=4(J
∗ − (1− γ)V t

t+1(st+1))︸ ︷︷ ︸
(a)

+
∑T

t=4(V
t
t+1(st+1)− Ṽ t

t (st))︸ ︷︷ ︸
(b)

+ γ
∑T

t=4([PV
t
t+1](st, at)− V t

t+1(st+1))︸ ︷︷ ︸
(c)

+2 β
∑T

t=4 ∥φ(st, at)∥Λ−1
t︸ ︷︷ ︸

(d)

+ O( 1

1− γ
).

where we use Qt
t(st, at) = Ṽ t

t (st) by the choice of at by the algorithm. Each term can be

bounded as follows.

Bounding (a) By the optimism result (Lemma 9), we have V t
u(s) ≥ V ∗(s) for all t ∈ [T ]

and u ∈ [t : T ] with high probability. It follows that

J∗ − (1− γ)V t
t+1(st+1) ≤ J∗ − (1− γ)V ∗(st+1)

≤ (1− γ)sp(v∗)

where the last inequality is by the bound on the error of approximating the average-reward

setting by the discounted setting provided in Lemma 1. Hence, the term (a) can be bounded

by T (1− γ)sp(v∗).
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Bounding (b) Using Lemma 7 that controls the difference between Ṽ t+1
u and Ṽ t

u , we have

V t
t+1(st+1) = Clip(Ṽ t

t+1(st+1);mt,mt +H)

≤ Clip(Ṽ t
t+1(st+1);mt+1,mt+1 +H) +mt −mt+1

≤ Ṽ t
t+1(st+1) +mt −mt+1

≤ Ṽ t+1
t+1 (st+1) + 2mt−1 − 2mt+1

where the second inequality holds because Ṽ t
t+1(st+1) ≥ mt+1 by Line 14. Hence, term (b)

can be bounded by O( 1
1−γ ) using telescoping sums of Ṽ t+1

t+1 (st+1)− Ṽ t
t (st) and 2mt−1−2mt+1,

and the fact that V t
u ≤ 1

1−γ and mt ≤ 1
1−γ for all t ∈ [T ] and u ∈ [t : T ].

Bounding (c) Since V t
u is Ft-measurable where Ft is history up to time step t, we have

E[V t
t+1(st+1)|Ft] = [PV t

t+1](st, at), making the summation (c) a summation of a martingale

difference sequence. Since sp(V t
t+1) ≤ H for all t ∈ [T ], the summation can be bounded by

Õ(sp(v∗)
√
T ) using Azuma-Hoeffding inequality.

Bounding (d) The sum of the bonus terms can be bounded by Õ(β
√
dT ) using a standard

analysis from literature on linear MDP.

Combining the bounds, and choosing H ≥ 2 · sp(v∗) and β = Õ(sp(v∗)d) specified in

Lemma 8, we get

RT ≤ Õ(T (1− γ)sp(v∗) + 1
1−γ +H

√
T +H

√
d3T ).

Choosing γ = 1 −
√
1/T , we get RT ≤ Õ(H

√
d3T ), leading to our main result (see Ap-

pendix A.3.4 for a more detailed analysis):

Theorem 3. Under Assumptions 2 and 1, running Algorithm 4 with inputs γ = 1−
√

1/T ,

λ = 1, H = 2 · sp(v∗) and β = 2cβ · sp(v∗)d
√
log(dT/δ) guarantees with probability at least

1− δ,
RT ≤ O(sp(v∗)

√
d3T log(dT/δ) log T ).

where cβ is defined in Lemma 8.

The regret bound for our algorithm γ-DC-LSCVI-UCB matches the regret bound of the

previous algorithm γ-LSCVI-UCB.
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2.6.4 Computational Complexity

Our algorithm γ-LSCVI-UCB+ runs up to T steps of value iteration every time step, resulting

inO(T 2) value iteration steps. This can be seen by the nested loop structure of the algorithm,

where the outer loop is indexed by t for the time step and the inner loop is indexed by u

for the value iteration step. The computational bottleneck of the algorithm is computing

Q̃t
u(s, a) for all a ∈ A and all s ∈ {s1, . . . , st−1}, which involves computing the regression

coefficient ŵt(V
t
u+1). Computing the regression coefficient takes O(T + d2) operations.

In total, the computational complexity of our algorithm is O(T 3d2A), which is polynomial

in the problem parameters T, d, A and is independent of the size of the state space. Although

our algorithm enjoys a polynomial-time computational complexity, it is super linear in T ,

just as the the OLSVI.FH algorithm [Wei et al., 2021] and the previous work γ-LSCVI-

UCB [Hong et al., 2025]. We leave further improving the computational complexity to be

linear in T as future work.

2.6.5 Related Work

Table 2.2 compares our work with previous approaches for infinite-horizon average-reward

linear MDPs. All algorithms in this table uses the Bellman optimality equation assumption.

FOPO solves the Bellman optimality equation directly as a fixed-point problem, which is

computationally intractable, with brute-force solution requiring computational complexity

that scales with T d, where d is the dimension of the feature representation. OLSVI.FH

reduces the problem to the finite-horizon episodic setting. This approach is computationally

efficient, but has suboptimal regret bound. LOOP generalizes FOPO to the general function

approximation setting, but inherits the computational complexity that scales with T d for

solving a fixed-point problem. γ-LSCVI-UCB reduces the average-reward problem to the

discounted problem and achieves an order-optimal regret bound. However, its computational

complexity scales with the size of the state space S. Our work is the first computationally

efficient algorithm to achieve Õ(
√
T ) regret without making strong assumptions.

There is another algorithm called MDP-EXP2 [Wei et al., 2021] directly optimizes for the

policy by alternating between policy evaluation and policy improvement. This approach is

computationally efficient and achieves an order-optimal regret bound, but requires a strong

assumption that all policies induce Markov chains that have uniformly bounded mixing time.
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Table 2.2: Comparison of algorithms for infinite-horizon average-reward linear MDP

Algorithm Regret Õ(·) Computation poly(·)

FOPO [Wei et al., 2021] sp(v∗)
√
d3T T d, A, d

OLSVI.FH [Wei et al., 2021]
√
sp(v∗)(dT )

3
4 T,A, d

LOOP [He et al., 2024]
√
sp(v∗)3d3T T d, A, d

γ-LSCVI-UCB [Hong et al., 2025] sp(v∗)
√
d3T T, S,A, d

γ-DC-LSCVI-UCB [Hong and Tewari, 2025a] sp(v∗)
√
d3T T,A, d

Lower Bound [Wu et al., 2022] Ω(d
√

sp(v∗)T )

2.7 Discussion

2.7.1 Anytime Algorithm

All algorithms γ-UCB-CVI, γ-DC-LSCVI-UCB and γ-LSCVI-UCB presented in this chapter

require the knowledge of the time horizon T to tune the discount factor γ in order to achieve

a T -step regret bound of Õ(
√
T ). This limitation can be addressed using the standard

doubling trick, which allows us to obtain a regret bound of Õ(
√
T ) for any horizon T . The

doubling trick is a standard technique in online learning to convert an algorithm with O(
√
T )

regret guarantee for a fixed known T to an anytime algorithm that does not take T as an

input and guarantee T -step regret of O(
√
T ) for any T . The idea is to run the algorithm in

phases, where each phase lasts twice as long as the previous one. At the beginning of each

phase, the algorithm is restarted with parameters tuned for that phase length.

2.7.2 Knowledge of Span of Optimal Bias Function

Throughout this chapter, we assume that an upper bound of the span of the optimal bias

function sp(v∗) is known to the learner. In practice, if one has a general sense of the diameter

of the MDP, which is the expected number of steps needed to transition between any two

states in the worst case, the diameter can serve as an upper bound, since the diameter is

guaranteed to be an upper bound of sp(v∗) when the reward function is bounded by 1.

The problem of relaxing the assumption on the knowledge of sp(v∗) has been addressed

only recently in the tabular setting [Boone and Zhang, 2024]. The proposed approach esti-

mates the difference in values of the optimal bias function between two states by the total

reward collected when transitioning from one state to the other. Extending such relaxation

techniques to the linear MDP setting remains an open problem and a direction for future

research.
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2.7.3 Other Related Work

Infinite-Horizon Average-Reward Setting with General Function Approximation

He et al. [2024] study infinite-horizon average reward with general function approximation.

They propose an algorithm called LOOP which is a modified version of the fitted Q-iteration

with optimistic planning and lazy policy updates. Although their algorithm when adapted

to the linear MDP set up achieves O(
√

sp(v∗)3d3T ), which is comparable to our work, their

algorithm is computationally inefficient.

Infinite-Horizon Average-Reward Setting with Linear MDPs There is another

work by Ghosh et al. [2023] on the infinite-horizon average-reward setting with linear MDPs.

They study a more general constrained MDP setting where the goal is to maximize average

reward while minimizing the average cost. They achieve Õ(sp(v∗)
√
d3T ) regret, same as our

work, but they make an additional assumption that the optimal policy is in a smooth softmax

policy class. Also, their algorithm requires solving an intractable optimization problem.

Reduction of Average-Reward to Finite-Horizon Episodic Setting There are works

that reduce the average-reward setting to the finite-horizon episodic setting. However, in

general, this reduction can only give regret bound of O(T 2/3). Chen et al. [2022] study

the constrained tabular MDP setting and propose an algorithm that uses the finite-horizon

reduction. Their algorithm gives regret bound of O(T 2/3). Wei et al. [2021] study the linear

MDP setting and propose a finite-horizon reduction that uses the LSVI-UCB [Jin et al.,

2020]. Their reduction gives regret bound of O(T 2/3).

Online RL in Infinite-Horizon Discounted Setting The literature on online RL in

the infinite-horizon discounted setting is sparse because there is no natural notion of regret in

this setting without additional assumption on the structure of the MDP. The seminal paper

by Liu and Su [2020] introduce a notion of regret in the discounted setting and propose a Q-

learning-based algorithm for the tabular setting and provides a regret bound. He et al. [2021]

propose a model-based algorithm that adapts UCBVI [Azar et al., 2017] to the discounted

setting and achieve a nearly minimax optimal regret bound. Ji and Li [2024] propose a

model-free algorithm with nearly minimax optimal regret bound.

Approximation by discounted setting The method of approximating the average-

reward setting by the discounted setting has been used in various settings. It is used in

the problem of finding a nearly optimal policy given access to a simulator in the tabular

setting by Jin and Sidford [2021], Wang et al. [2022], Zurek and Chen [2023], Wang et al.
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[2023]. It is also used in the online RL setting with tabular MDPs: Wei et al. [2020] propose

a Q-learning based algorithm, but has Õ(T 2/3) regret. Zhang and Xie [2023] improve the

regret to Õ(
√
T ) by making use of an estimate for the span of optimal bias function. The

reduction is also used in the linear mixture MDP setting by Chae et al. [2025].

Span-constraining methods Learning in the infinite-horizon average-reward setting re-

quires an assumption that ensures the agent can recover from a bad state, leading to a

bounded span of the optimal value function. For statistical efficiency, previous work makes

use of this fact by constraining the span of the value function estimates. Bartlett and Tewari

[2009] modify the extended value iteration algorithm by Auer et al. [2008] to constrain the

confidence set on the model so that the spans of the models in the set are bounded. Fruit et al.

[2018] propose a computationally efficient version of the algorithm proposed by Bartlett and

Tewari [2009]. Zhang and Ji [2019] improve the algorithm proposed by Bartlett and Tewari

[2009] by constructing tighter confidence sets using a method for directly estimating the bias

function. Zhang and Xie [2023] study a Q-learning-based algorithm that projects the value

function to a function class of span-constrained functions. Hong et al. [2025] and Chae et al.

[2025] propose a value iteration-based algorithm and clips the value function to constrain its

span.
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CHAPTER 3

Offline Constrained Reinforcement Learning

3.1 Introduction

The previous chapter discussed the online reinforcement learning framework, where the agent

interacts with the environment to collect data for policy improvement. However, in many

real-world scenarios, such interaction, particularly when guided by a suboptimal policy, may

be costly or unsafe [Kumar et al., 2021, Tang and Wiens, 2021, Levine et al., 2018]. For

example, in autonomous driving, allowing an agent to learn from scratch through direct

interaction may result in collisions. In such settings, learning from a pre-collected dataset

without further interaction becomes a desirable alternative, especially when such data is

readily available. In the case of autonomous driving, for instance, the agent may have access

to trajectory data collected by human drivers.

In safety-critical applications, it is often necessary to impose constraints on the behavior

of the agent. For instance, in autonomous driving, the agent may be required to obey speed

limits and avoid collisions, while still aiming to reach the destination efficiently. The con-

strained reinforcement learning framework [Altman, 1999] provides a natural formulation for

incorporating such requirements. It aims to learn a policy that maximizes a primary reward

signal while satisfying constraints defined by auxiliary reward signals. These constraints are

typically specified by designing suitable safety-related signals and setting thresholds that

must be satisfied.

This chapter focuses on the offline constrained reinforcement learning problem, where

the objective is to solve a constrained RL problem using a pre-collected dataset. Offline

constrained RL inherits the central challenge of offline reinforcement learning [Levine et al.,

2020], namely the issue of distribution shift [Levine et al., 2020], which arises due to the

mismatch between the state-action distribution of the offline dataset and those induced by

the candidate policies.

A commonly adopted condition that enables sample-efficient learning of an optimal pol-
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icy is the uniform data coverage assumption [Antos et al., 2007], which requires the offline

dataset to provide sufficient coverage over the state-action distributions induced by all poli-

cies. However, this assumption is typically impractical, as it demands the dataset to include

states visited by suboptimal policies that would never be encountered by an optimal policy.

Such a full data coverage is difficult to obtain in real-world scenarios where data collection

is limited or costly.

Recent work has sought to relax this requirement by studying offline RL under a partial

data coverage assumption, where the dataset is only assumed to cover the distribution of a

single target policy [Jin et al., 2021]. However, existing methods under this relaxed condition

suffer from either suboptimal sample complexity or computational inefficiency. This chapter

introduces a computationally efficient algorithm for offline constrained RL under the partial

data coverage assumption. The algorithm is based on a linear programming formulation.

3.1.1 Key References and Related Work

This chapter is based on the following papers written during my PhD.

1. A primal-dual algorithm for offline constrained reinforcement learning with linear

MDPs. ICML 2024. [Hong and Tewari, 2024]

This paper studies offline constrained reinforcement learning in the linear MDP setting.

It introduces a primal-dual algorithm based on the linear programming formulation of

RL and proves sample-efficiency under partial data coverage assumptions.

2. Offline constrained reinforcement learning under partial data coverage. Preprint 2025.

[Hong and Tewari, 2025b]

This paper extends this line of work to general function approximation settings. It de-

velops an oracle-efficient primal-dual algorithm and generalizes the approach to handle

additional safety constraints via a constrained RL formulation.

3. A primal-dual-critic algorithm for offline constrained reinforcement learning. AISTATS

2024. [Hong et al., 2024]

This earlier paper also addresses offline constrained RL in the linear MDP setting.

However, it requires full data coverage for all policies and uses a different algorithmic

structure. Due to these differences and the stronger assumptions required, this paper

is not discussed in detail in the thesis.
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3.2 Preliminaries

3.2.1 Constrained Reinforcement Learning

We formulate constrained RL with a Constrained Markov decision process (CMDP) [Altman,

1999] defined by a tuple M =
(
S,A, P, r0, {ri}Ii=1, γ, d0

)
. Unlike an ordinary MDP, the

CMDP allows for multiple reward signals: a primary reward r0, and there are I additional

rewards r1, . . . , rI . For each reward signal ri, i = 0, 1, . . . I, we define the discounted return

of a policy π as Ji(π) : =Eπ[
∑∞

t=0 γ
tri(st, at)]. Similarly, the state value function and state-

action value function of π with respect to ri are defined as

V π
i (s) : =Eπ [

∑∞
t=0 γ

tri(st, at)|s0 = s] , Qπ
i (s, a) : =Eπ [

∑∞
t=0 γ

tri(st, at)|s0 = s, a0 = a] .

The goal of CMDP is to find a stationary policy π that solves the following optimization

problem:

max
π

J0(π)

subject to Ji(π) ≥ τi/(1− γ), i = 1, . . . I
(3.1)

where τi ∈ [0, 1], i = 1, . . . , I are thresholds specified by the designer.

We assume the following Slater’s condition, a commonly made assumption in constrained

RL [Le et al., 2019, Chen et al., 2021, Bai et al., 2023, Ding et al., 2020] for ensuring strong

duality of the optimization problem.

Assumption 3 (Slater’s condition). There exist a constant φ > 0 and a policy π such that

Ji(π) ≥ (τi + φ)/(1− γ) for all i = 1, . . . , I. Assume φ is known.

As discussed in Hong et al. [2024], Slater’s condition is a mild assumption since given the

knowledge of the feasibility of the problem, we can guarantee that Slater’s condition is met

by slightly loosening the cost threshold.

3.2.2 Linear Programming Formulation of RL

Recall that reinforcement learning aims to find an optimal policy of the following optimiza-

tion problem

max
π∈Π

Jγ(π)

where Π denotes the set of stationary policies and Jγ(π) represents the discounted value of

policy π, as defined in Equation (1.2). The linear programming (LP) formulation of this

problem, introduced by Manne [1960], reformulates the optimization over policies into a
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linear program whose decision variable is the occupancy measure. The occupancy measure

associated with a policy π, denoted by µπ ∈ ∆(S ×A), is defined as

µπ(s, a) : =(1− γ)
∞∑
t=1

γt−1P π(st = s, at = a).

Intuitively, µπ(s, a) represents the expected discounted visitation frequency of the state-

action pair (s, a) under policy π, normalized so that µπ forms a probability distribution over

the space S ×A.
Leveraging the relation (1 − γ)Jγ(π) = ⟨µπ, r⟩, the LP optimizes ⟨µ, r⟩ over admissible

occupancy measures µ:

max
µ≥0

⟨µ, r⟩

subject to E⊤µ = (1− γ)d0 + γP⊤µ.
(3.2)

where the optimization variable is µ ∈ R|S×A|. The bold-faced variables r ∈ R|S×A|, d0 ∈ R|S|

and P ∈ R|S×A|×|S| denote the vector or matrix representations of the functions r, d0 and P ,

respectively. The linear operator E is such that [E⊤µ](s) =
∑

a′ µ(s, a
′) and [EV ](s, a) =

V (s) for all s, a. The constraint, known as the Bellman flow constraint, ensures µ is an

admissible occupancy measure induced by some policy.

The linear programming formulation can be adapted to the constrained RL setting as

follows:
max
µ≥0

⟨µ, r0⟩

subject to E⊤µ = (1− γ)d0 + γP⊤µ

⟨µ, ri⟩ ≥ τi, i = 1, . . . I.

(3.3)

Policy Extraction Consider a procedure for extracting policy from an occupancy measure

µ, not necessarily admissible:

[π(µ)](a|s) : = µ(s, a)∑
a′ µ(s, a

′)
if
∑
a′

µ(s, a′) > 0,
1

|A|
otherwise. (3.4)

It is known that given an admissible occupancy measure µ, the extracted policy π(µ) induces

the occupancy measure µ, i.e., µ = µπ(µ). With this fact, we can find an optimal occupancy

measure µ∗ by solving the linear program to find optimal µ∗, and extracting policy π∗ = π(µ∗)

from it.
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3.2.3 Offline Dataset

The offline reinforcement learning (RL) setting assumes access to a dataset

D = {(sj, aj, s′j)}nj=1.

The pairs (sj, aj) for j = 1, . . . , n are assumed to be independent and identically distributed

samples drawn from a data distribution µD ∈ ∆(S × A), and each s′j is sampled from the

transition kernel P (· | sj, aj). This i.i.d. assumption on the offline dataset is standard in the

offline RL literature [Xie et al., 2021, Zhan et al., 2022, Chen and Jiang, 2022, Zhu et al.,

2023] and is used to facilitate the derivation of concentration bounds.

A central challenge in sample-efficient offline RL is the issue of distribution shift, which

refers to the mismatch between the state-action distribution of the offline dataset and that

induced by the target (optimal) policy. To enable reliable learning from offline data, it is

necessary to impose an assumption on data coverage that ensures the distribution induced

by the target policy is adequately represented in the dataset.

A commonly used assumption in this context is the concentrability assumption, which

places an upper bound on the ratio between the occupancy measure of the target policy and

that of the behavior policy. The normalized occupancy measure of a policy π is defined as

µπ(s, a) = (1− γ)Eπ
[

∞∑
t=0

γtI{st = s, at = a}

]
.

Intuitively, µπ(s, a) represents the normalized visitation frequency of the state-action pair

(s, a) under policy π. The normalization ensures that µπ is a probability distribution over

S × A, satisfying
∑

s,a µ
π(s, a) = 1. We use the notation µπ ∈ R|S×A| to denote the vector

representation of the function µπ(s, a).

The concentrability assumption is formally stated below.

Assumption 4 (Concentrability). Let π∗ denote an optimal policy, and let µ∗ = µπ
∗
. Then,

for all s ∈ S and a ∈ A with µD(s, a) > 0,

µ∗(s, a)

µD(s, a)
≤ C∗,

where C∗ is a known constant.

This assumption is widely adopted in the offline RL literature [Munos, 2003, 2005]. It

requires that the ratio µ∗(s, a)/µD(s, a) is bounded for all state-action pairs (s, a) where

µD(s, a) is strictly positive.
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3.3 Linear MDP Setting

This section discusses the algorithm design and theoretical analysis for the linear MDP set-

ting (see Section 1.1.1 for the definition). The linear structure induces a low-dimensional

factorization of key quantities, which allows learning statistically and computationally effi-

cient.

In this section, a technical assumption is additionally imposed, following Wagenmaker

et al. [2022], to control the complexity of the measure embedding ψ. Specifically, it is

assumed that there exists a constant Dψ such that

∥|ψ| (S)∥2 ≤ Dψ

√
d,

where

|ψ| (S) : =
∑
s∈S

(|ψ1(s)| , . . . , |ψd(s)|) .

This condition holds, for example, when each ψi is a probability measure on S. In that case,

the ℓ1 norm of each ψi is bounded by 1, and thus the assumption holds with Dψ = 1.

Let P ∈ R|S×A|×|S| denote the matrix representation of the transition kernel P , where the

entry at row (s, a) and column s′ is defined as

(P )(s,a),s′ = P (s′ | s, a), for all (s, a, s′) ∈ S ×A× S.

The linear structure of the MDP implies that the transition matrix admits a factorized form

P = ΦΨ,

whereΦ ∈ R|S×A|×d is the known matrix whose rows are the feature vectors (φ(s, a))(s,a)∈S×A,

and Ψ ∈ Rd×|S| is the unknown matrix whose rows correspond to the measures (ψi(s
′))s′∈S .

This factorization enables the use of linear regression techniques in estimating the transition

dynamics and propagating value functions.

We use r = Φθ and P = ΦΨ, which hold by the linear MDP assumption, to rewrite the

linear program (3.2) as

max
µ≥0

⟨θ,ΦTµ⟩

subject to ETµ = (1− γ)ν0 + γΨTΦTµ

Note that the optimization variable µ ∈ R|S×A| is high-dimensional and depends on the

cardinality of S. Following Gabbianelli et al. [2024a], for the purpose of computational and
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statistical efficiency, a low-dimensional optimization variable is introduced:

λ = ΦTµ ∈ Rd,

which has the interpretation of the average occupancy measure in the feature space.

With this reparametrization, the primal linear program becomes

max
µ≥0, λ

⟨θ,λ⟩

subject to ETµ = (1− γ)ν0 + γΨTλ

λ = ΦTµ,

where E is the state-action to state marginalization matrix and ν0 ∈ R|S| is the initial state

distribution.

The corresponding dual program is given by

min
v, ζ

(1− γ)⟨ν0,v⟩

subject to ζ = θ + γΨv

Ev ≥ Φζ,

where the dual variable v ∈ R|S| corresponds to the state value function and ζ ∈ Rd is such

that Φζ ∈ R|S×A| represents the state-action value function.

The Lagrangian associated with the primal and dual problems is

L(λ,µ; v, ζ) = (1− γ)⟨ν0,v⟩+ ⟨λ, θ + γΨv − ζ⟩+ ⟨µ, Φζ −Ev⟩

= ⟨λ,θ⟩+ ⟨v, (1− γ)ν0 + γΨTλ−ETµ⟩+ ⟨ζ, ΦTµ− λ⟩.

Note that the optimization variables λ, ζ ∈ Rd are low-dimensional, whereas µ ∈ R|S×A|

and v ∈ R|S| are not. To enable the use of a primal-dual algorithm that operates only on low-

dimensional variables, a parameterization of µ and v via a policy variable π is introduced,

following Gabbianelli et al. [2024a]:

µλ,π(s, a) = π(a | s) [(1− γ)ν0(s) + γ⟨ψ(s),λ⟩] , (3.5)

vζ,π(s) =
∑
a∈A

π(a | s)⟨ζ,φ(s, a)⟩. (3.6)

The parameterization in (3.5) ensures that the Bellman flow constraint ETµλ,π = (1 −
γ)ν0 + γΨTλ is satisfied by construction. Similarly, the choice of vζ,π in (3.6) ensures that
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the inner product ⟨µ,Φζ −Evζ,π⟩ = 0 holds.

Using the above parameterization, the Lagrangian function can be expressed entirely in

terms of the low-dimensional variables λ, ζ, and the policy π:

f(λ, ζ, π) = ⟨λ,θ0⟩+ ⟨ζ, ΦTµλ,π − λ⟩ (3.7)

= (1− γ)⟨ν0, vζ,π⟩+ ⟨λ, θ0 + γΨvζ,π − ζ⟩. (3.8)

Although this formulation introduces the policy π as an additional object to track, it

remains computationally efficient. In particular, only the distribution π(a | s) for state-

action pairs (s, a) that appear in the dataset needs to be maintained. See Appendix B.3 for

further computational details.

Previous work on offline linear MDPs [Gabbianelli et al., 2024a] runs a primal-dual al-

gorithm over the variables ζ and β = Λ†λ, where Λ† denotes a pseudoinverse of a suitable

scaling matrix. Their approach estimates the gradient of the Lagrangian with respect to

these variables and performs a gradient descent step on ζ for each gradient ascent step on

β. This results in a double-loop algorithmic structure.

Since each gradient descent or ascent step requires a fresh batch of independent samples to

control the estimation error, the double-loop structure incurs a sample complexity of O(ϵ−4)

for achieving ϵ-optimality.

In contrast, the approach developed here avoids the double-loop structure and achieves

a sample complexity of O(ϵ−2). This is accomplished by constraining the variable λ to lie

within a carefully constructed confidence set that enables uniform estimation of the gradient

of the Lagrangian across all relevant choices of λ, ζ, and π.

The details of this construction and the associated analysis are presented in the following

subsections.

3.3.1 Regret Analysis

We use Qπ ∈ R|S×A| to denote the matrix representation of the function Qπ such that

(Qπ)s,a = Qπ(s, a) and V π ∈ R|S| the vector representation of the function V π such that

V π
s = V π(s). With these notations, the well known Bellman equation Qπ(s, a) = r(s, a) +

γPV π(s, a) (see e.g. Puterman [2014]) can be written compactly as

Qπ = r + γPV π = Φ(θ + γΨV π) = Φζπ (3.9)
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where r ∈ R|S×A| is the matrix representation of the reward function r and we define

ζπ : =θ + γΨV π ∈ Rd.

This shows that the action value function is linear in the feature vector:

Qπ(s, a) = ⟨φ(s, a), ζπ⟩.

Due to the boundedness assumptions ∥θ∥2 ≤
√
d and ∥|ψ|(S)∥2 ≤ Dψ

√
d, and the fact that

V π(s) ∈ [0, 1
1−γ ], the norm of the parameter ζπ is bounded by

∥ζπ∥2 ≤
√
d+

γDψ

√
d

1− γ
= O

(
Dψ

√
d

1− γ

)
.

We define Dζ : =
√
d+

γDψ
√
d

1−γ .

For a given policy π, recall that ζπ ∈ Rd is the parameter such that the action-value

function satisfies Qπ = Φζπ. It can be shown that for any λ ∈ Rd,

f(ζπ,λ, π) = J(π).

Furthermore, defining λπ = ΦTµπ, which represents the average occupancy in the feature

space under policy π, it can also be shown that for any ζ ∈ Rd,

f(ζ,λπ, π) = J(π).

Proofs of these identities are provided in Appendix B.5.2.

As a result, for any sequences {πt}, {ζt} ⊂ Rd, and {λt} ⊂ Rd, the suboptimality gap

can be decomposed as

J(π∗)− J(πt) = f(ζt,λ
∗, π∗)− f(ζπt ,λt, πt)

= (f(ζt,λ
∗, π∗)− f(ζt,λ∗, πt)︸ ︷︷ ︸

Regπt

) + (f(ζt,λ
∗, πt)− f(ζt,λt, πt)︸ ︷︷ ︸

Regλt

)

+ (f(ζt,λt, πt)− f(ζπt ,λt, πt)︸ ︷︷ ︸
Regζt

),

where λ∗ = λπ
∗
denotes the feature occupancy vector under the optimal policy.

This decomposition expresses the suboptimality J(π∗) − J(πt) in terms of the regrets of

the three players: the policy player, the dual variable player, and the primal variable player.
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If the cumulative regrets
∑T

t=1Regπt ,
∑T

t=1Regλt , and
∑T

t=1Regζt are all sublinear in T ,

then the average suboptimality satisfies

1

T

T∑
t=1

(J(π∗)− J(πt)) = J(π∗)− J(π̄) = o(1),

where π̄ = Unif(π1, . . . , πT ) is the mixture policy that selects one of π1, . . . , πT uniformly at

random and executes the selected policy throughout the episode.

The remainder of this section outlines regret analyses for the three players. These analyses

motivate the algorithm introduced in Section 3.3.2.

3.3.1.1 Bounding Regret of π-player

Using Equation (3.8), the regret of π-player simplifies to

Regπt = f(ζt,λ
∗, π∗)− f(ζt,λ∗, πt)

= ⟨ν∗,vζt,π∗ − vζt,πt⟩

= ⟨ν∗,
∑

a(π
∗(a|·)− πt(a|·))⟨ζt,φ(·, a)⟩⟩.

where we define νπ = (1 − γ)ν0 + γΨTλπ as the state occupancy measure induced by π

and write ν∗ = νπ
∗
. The regret can be bounded if π-player updates its policy using an

exponentiation algorithm [Zanette et al., 2021]

πt+1 = σ

(
α

t∑
i=1

Φζi

)

where σ(q) for q ∈ R|S×A| is a softmax policy with

σ(q)(a|s) : = exp(q(s, a))∑
a′ exp(q(s, a

′))
.

Based on the standard mirror descent analysis by Gabbianelli et al. [2024a] (Appendix B.4.1)

we can show that, choosing α = O((1− γ)
√

log |A|/(dT )) gives

1

T

T∑
t=1

Regπt ≤ O
(

1

1− γ
√

(d log |A|)/T
)

which vanishes as T increases. Consequently, choosing T to be at least Ω( d log |A|
(1−γ)2ϵ2 ) gives

1
T

∑T
t=1 Reg

π
t ≤ ϵ. Note that when the exponentiation algorithm is employed, the π-player
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does not need to know the value of ζt when choosing πt, allowing the π-player to play before

the ζ-player. Another benefit of the exponentiation algorithm is that the policy chosen by

the π-player is restricted to the softmax function class Π(Dπ) where Π(·) is defined as

Π(B) : ={σ(Φz) : z ∈ Bd(B)}. (3.10)

and Dπ : =αTDζ . The restriction allows statistically efficient estimation of quantities that

depend on policies in Π(B) via covering argument on Π(B), as we will see in later sections.

3.3.1.2 Bounding Regret of ζ-player

Using Equation (3.7), the regret of ζ-player simplifies to

Regζt = f(ζt,λt, πt)− f(ζπt ,λt, πt)

= ⟨ζt − ζπt ,ΦTµλt,πt − λt⟩.

Recall that µλ,π = π ◦E[(1− γ)ν0 + γΨTλ]. The only unknown quantity in the regret is

ΨTλ ∈ R|S|. Note that ΨTφ(s, a) = (P (s′|s, a))s′∈S is a next-state distribution given current

state-action pair (s, a), and es′k is an unbiased estimator for ΨTφ(sk, ak). Hence, if λ is a

linear combination
∑n

k=1 ckφ(sk, ak), we can construct an unbiased estimator
∑n

k=1 ckes′k for

ΨTλ. Motivated by this observation, to facilitate the algorithm design for the ζ-player, we

will restrict the λ-player to choose a linear combination of feature vectors that appear in the

dataset to allow estimating ΨTλ. Specifically, we strict the λ-player to choose λt from the

following set where the bound B will be chosen later.

Cn(B) : =

{
1

n

n∑
k=1

ckφ(sk, ak) : c1, . . . , cn ∈ [−B,B]

}
. (3.11)

Given the restriction, we can parameterize the value of λt by the coefficients ct ∈ [−B,B]n

for some bound B, and write λt = λ(ct) where we define

λ(c) : =
1

n

n∑
k=1

ckφ(sk, ak)

Following the previous discussion, we define the estimates for ΨTλ(c) and µλ(c),π parame-
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terized by c ∈ [−B,B]n:

Ψ̂Tλ(c) : =
1

n

n∑
k=1

ckes′k

µ̂λ(c),π : =π ◦E[(1− γ)ν0 + γΨ̂Tλ(c)].

These estimates enjoy the following concentration bound, which can be shown using matrix

Bernstein inequality. See Appendix B.4.2 for a proof.

Lemma 11. For a fixed λ(c) = 1
n

∑n
k=1 ckφ(sk, ak) with |ck| ≤ B for k = 1, . . . , n, and a

policy π, we have

∥ΦTµλ(c),π −ΦT µ̂λ(c),π∥2 ≤ O

(
B

√
log(d/δ)

n

)
with probability at least 1− δ conditional on the data of state-action pairs {(sk, ak)}nk=1.

For estimating the regret ⟨ζt− ζπt ,ΦTµλ(ct),πt −λ(ct)⟩, we need a uniform concentration

bound on the estimates ΦT µ̂λ(ct),π over λ(c) and π. The restriction on the π-player to choose

a policy in the softmax function class defined in (3.10) allows converting the concentration

bound for a fixed policy π in Lemma 11 to a uniform concentration bound over all policies

in the softmax function class via a covering argument. The conversion is possible due to the

fact that the log covering number for the softmax function class is bounded by Õ(d) (see

Lemma 41 in Appendix B.1). However, such a conversion to a uniform concentration bound

over all λ(c) for c ∈ [−B,B]n is elusive since a naive covering argument on the space of

parameters [−B,B]n will give a log covering number bound of O(n). To sidestep this issue,

we exploit the fact that Cn(B) can be spanned by a set of spanners {φ(sj, aj)}j∈I for some

index set I ⊆ {1, . . . , n} of size at most d. This can be seen by the following lemma by

Awerbuch and Kleinberg [2008].

Lemma 12 (Barycentric spanner). Let K ⊆ Rd be compact set. Then, there exists a spanner

{ϕ1, · · ·ϕd} ⊂ K such that any vector x ∈ K can be represented as x =
∑d

i=1 ciϕi where

ci ∈ [−C,C] for all i = 1, . . . , d. Such a spanner is called a C-approximate barycentric

spanner for K. If K is finite, we can find a C-approximate barycentric spanner in time

complexity O(nd2 logC d).

Applying this lemma, we can compute a 2-approximate barycentric spanner {φ(sj, aj)}j∈I
for {φ(sk, ak)}nk=1 where I ⊆ {1, . . . , n} is an index set of size d. Given any c ∈ [−B,B]n,

we can convert it to c′ ∈ [−2B, 2B]n with c′k nonzero only if k ∈ I such that λ(c) = λ(c′).
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This can be seen by

λ(c) =
1

n

n∑
k=1

ckφ(sk, ak)

=
∑
j∈I

(
1

n

n∑
k=1

bkjck

)
φ(sj, aj) = λ(c

′)

where the coefficients bkj ∈ [−2, 2] are such that φ(sk, ak) =
∑

j∈I bkjφ(sj, aj), which exist

by the fact that {φ(sj, aj)}j∈I is a 2-approximate barycentric spanner of {φ(sk, ak)}nk=1. We

summarize the definition of the conversion from c to c′ that satisfies λ(c) = λ(c′).

Definition 1. Given a dataset {(sk, ak, s′k)}nk=1, let {φ(sj, aj)}j∈I be a 2-approximate

barycentric spanner for {φ(sk, ak)}nk=1 with |I| ≤ d. We define the conversion of c ∈ Rn to

c′ ∈ Rn as

c′j =

 1
n

∑n
k=1 bkjck if j ∈ I

0 otherwise.
(3.12)

where bkj are the coefficients such that φ(sk, ak) =
∑

j∈I bkjφ(sj, aj) with bkj = 0 for j /∈ I.

Given ct ∈ [−B,B]n such that λ(ct) ∈ Cn(B), let c′t ∈ [−2B, 2B]n be the conversion

such that λ(c′t) = λ(ct) with only the coefficients with indices in I nonzero. The converted

coefficients c′t ∈ Rn live in a low dimensional space {c′ ∈ [−2B, 2B]n : c′j = 0 if j /∈ I} with
the log covering number of O(d). To use a covering argument, let c′′t be the covering center

closest to c′t. Then we can decompose the regret of the ζ-player as

Regζt = ⟨ζt − ζπt ,ΦTµλ(ct),πt − λ(ct)⟩

= ⟨ζt − ζπt ,ΦTµλ(c′t),πt
−ΦTµλt(c′′t ),πt

⟩+ ⟨ζt − ζπt ,ΦTµλ(c′′t ),πt
−ΦT µ̂λ(c′′t ),πt

⟩

+ ⟨ζt − ζπt ,ΦT µ̂λ(c′′t ),πt
−ΦT µ̂λ(c′t),πt

⟩+ ⟨ζt − ζπt ,ΦT µ̂λ(c′t),πt
− λ(c′t)⟩.

The first term can be bounded since λ(c′t) ≈ λt(c
′′
t ). The second term can be bounded

using a union bound of the concentration inequalities on ΦT µ̂λ(c′′),π over c′′ in the cover of

[−2B, 2B]d. The third term can be bounded since c′t ≈ c′′t . The last term, interpreted as a

regret of the ζ-player against a dynamic action ζπt , can be bounded by a greedy ζ-player

that minimizes ⟨·,ΦT µ̂λ(c′t),πt
− λ(c′t)⟩. The greedy strategy requires ζ-player to play after

λ-player and π-player. The bounds lead to

1

T

T∑
t=1

Regζt ≤ O

(
Bd

1− γ

√
log(Bdn/δ)

n

)
.
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In summary, we can bound the regret of ζ-player if ζ-player plays ζt ∈ Bd(Dζ) that minimizes

⟨·,ΦT µ̂λ(c′t),πt
− λ(c′t)⟩. The greedy strategy requires ζ-player to play after λ-player and π-

player. See Appendix B.4.2 for detailed analysis.

3.3.1.3 Bounding Regret of λ-player

Using Equation (3.8), the regret of λ-player simplifies to

Regλt = f(ζt,λ
∗, πt)− f(ζt,λt, πt)

= ⟨λ∗ − λt,θ + γΨvζt,πt − ζt︸ ︷︷ ︸
=ξt

⟩

The sum of Regλt over t = 1, . . . , T is the regret of the λ-player against a fixed action λ∗

where the reward function at time t is ⟨·, ξt⟩. From the previous section, we require λ player

to play before ζ-player, whose play affects ξt. Hence, the decision of λ-player at time t

must be made before the knowledge of ξt. Assuming for now that ξt is known (ξt is in fact

unknown and needs to be estimated since Ψ is unknown), the regret of λ-player can be made

sublinear in T by employing a no-regret online convex optimization oracle (defined below)

on Cn(B) as long as λ∗ ∈ Cn(B).

Definition 2. An algorithm is called a no-regret online convex optimization oracle with

respect to a convex set C if, for any sequence of convex functions h1, . . . , hT : Rd → [−1, 1]
and for any λ ∈ C, the sequence of vectors λ1, . . . ,λT ∈ C produced by the algorithm satisfies

1

T

T∑
t=1

ht(λt)− ht(λ) ≤ ϵλopt(T )

for some ϵλopt(T ) > 0 that converges to 0 as T →∞.

The online gradient descent algorithm [Hazan et al., 2016] is an example of a compu-

tationally efficient online convex optimization oracle. Employing a no-regret online convex

optimization oracle with convex set Cn(B) on the sequence of functions ⟨·, ξt⟩, the λ-player
can enjoy a sublinear regret against any fixed λ ∈ Cn(B). However, λ∗ may not lie in

Cn(B) for any B. In fact, we can construct an example where λ∗ is not in the span of

{φ(sk, ak)}nk=1 with probability at least 1/2 (Lemma 44). To sidestep this problem, we show

λ∗ can be approximated by a vector λ̂∗ in Cn(C∗):

Lemma 13. Under the concentrability assumption 4, there exists λ̂∗ ∈ Rd of the form
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λ̂∗ = 1
n

∑n
k=1 ckφ(sk, ak) with ck ∈ [0, C∗], k = 1, . . . , n such that

∥λ̂∗ − λ∗∥2 ≤ O
(
C∗
√

log(d/δ)
n

)
with probability at least 1− δ.

Note that this lemma is the only place the data coverage assumption is needed for our

analysis and this is where we require choosing B = C∗. Also, in our algorithm, computing

λ̂∗ is not needed. Only the existence of such a vector λ̂∗ is needed in the analysis. With the

lemma above, we can approximate the regret as

Regλt = ⟨λ∗ − λt,θ + γΨvζt,πt − ζt⟩

≈ ⟨λ̂∗ − λt,θ + γΨvζt,πt − ζt⟩

and argue that the sum of the above quantity over t = 1, . . . , T is sublinear since the regret

against λ̂∗ ∈ Cn(C∗) is sublinear when employing a no-regret online convex optimization

oracle. Now, we deal with the fact that the term Ψvζt,πt is unknown and needs to be

estimated. Observing that ⟨φ(s, a),Ψv⟩ = Es′∼P (·|s,a)[v(s
′)], we can estimate Ψv ∈ Rd

for any v ∈ R|S| by regressing v(s′) on φ(s, a) using the triplets (s, a, s′) in the dataset D.
Following the literature on linear bandits [Abbasi-Yadkori et al., 2011], we use the regularized

least squares estimate

Ψ̂v : =(nΛ̂n + I)
−1
∑n

k=1 v(s
′
k)φ(sk, ak) (3.13)

where Λ̂n : =
1
n

∑n
k=1φ(sk, ak)φ(sk, ak)

T is the empirical Gram matrix. By the well-known

result for linear bandits (e.g. Theorem 2 in Abbasi-Yadkori et al. [2011]), we have the

following high-probability concentration bound (Lemma 46) for the estimate Ψ̂v where v :

S → [0, Dv]:

∥Ψv − Ψ̂v∥nΛ̂n+I ≤ O
(
Dv

√
d log(n/δ)

)
.

Since we need concentration bound of Ψ̂vζt,πt where vζt,πt are random, we need a uniform

bound over all possible functions vζt,πt . Since the domain of v has cardinality |S|, a naive

covering argument on the function space of v will make the bound scale with poly(|S|).
To avoid this, we use a careful covering argument exploiting the fact that πt is a softmax

function parameterized by a d-dimensional vector and ζt are d-dimensional vectors. With

covering, we can show the following uniform concentration bound.
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Lemma 14. Consider a function class

V = {vζ,π ∈ (S → [0, Dv]) : ζ ∈ B(Dζ), π ∈ Π(Dπ)} .

With probability at least 1− δ, we have

∥Ψv − Ψ̂v∥nΛ̂n+I ≤ O
(
Dv

√
d log(DζDπn/δ)

)

uniformly over v ∈ V where Ψ̂v is the least squares estimate defined in (3.13).

See Lemma 14 in the Appendix for detail. With the uniform concentration bound, we

can continue bounding the regret of λ-player as follows.

⟨λ̂∗ − λt,θ + γΨvζt,πt − ζt⟩ = ⟨λ̂∗ − λt,θ + γΨ̂vζt,πt − ζt⟩+ γ⟨λ̂∗ − λt,Ψvζt,πt − Ψ̂vζt,πt⟩.

The sum of the first term across t = 1, . . . , T can be bounded by employing online convex

optimization algorithm. We can bound the second term as follows.

⟨λ̂∗ − λt,Ψvζt,πt − Ψ̂vζt,πt⟩ ≤ ∥λ̂∗ − λt∥(Λ̂n+I/n)−1∥Ψvζt,πt − Ψ̂vζt,πt∥Λ̂n+I/n

≤ ∥λ̂∗ − λt∥Λ̂†
n︸ ︷︷ ︸

(i)

∥Ψvζt,πt − Ψ̂vζt,πt∥Λ̂n+I/n︸ ︷︷ ︸
(ii)

where the second inequality follows since λ̂∗ − λt is in the column space of Λ̂n. (ii) can

be bounded using Lemma 14. (i) can be bounded by the following technical lemma. See

Appendix B.2.1 for a proof.

Lemma 15. For any λ(c) = 1
n

∑n
k=1 ckφ(sk, ak) with ck ∈ [−B,B], k = 1, . . . , n, we have

∥λ(c)∥2
Λ̂†
n
≤ dB2.

Combining all the bounds, we get the following.

1

T

T∑
t=1

Regλt ≤ Õ

(
C∗d3/2

1− γ

√
log(dnT/δ)

n

)
+ ϵλopt(T )

where Õ hides log log |A|. See Appendix B.4.3 for details.

47



3.3.2 Algorithm and Regret Bound

Motivated by the regret decomposition analysis presented in the previous section, a primal-

dual algorithm is introduced that operates over T steps. At each step t, the three players—the

λ-player, the ζ-player, and the π-player—select actions denoted by λt, ζt, and πt, respectively.

Since the analysis requires the ζ-player to act greedily with respect to the previously

chosen strategies of the other players, the algorithm is structured such that the λ-player and

the π-player play first, selecting λt and πt, respectively, after which the ζ-player responds

with a greedy choice of ζt.

Algorithm 5: Primal-Dual Algorithm for Offline Linear MDPs

Input: Dataset D = {(sj, aj, rj, s′j)}nj=1, no-regret online convex optimization oracle
OCO.

Initialize: π1 uniform, c′1 ← 0, α←
√
log |A|/T .

1 for t = 1, . . . , T do
2 ζt ← argminζ∈Bd(Dζ)⟨ζ,Φ

T µ̂λ(c′t),πt
− λ(c′t)⟩.

3 λ(ct+1)← OCO(θ − ζt + γΨ̂vζt,πt ; Cn(C∗)).
4 Convert ct+1 to c′t+1 using Definition 1.

5 πt+1 ← σ(α
∑t

i=1Φζi).

Return: π̄ = Unif(π1, . . . , πT )

The regret analysis of the three players in the previous section leads to our main result

in the following theorem.

Theorem 4. Under Assumptions 1 and 4, as long as T is at least Ω( d log |A|
(1−γ)2ϵ2 ), the policy π̄

produced by Algorithm 5 satisfies J(π̄) ≥ J(π∗)− ϵ with probability at least 1− δ as long as

n ≥ Ω

(
(C∗)2d3 log(dn(log |A|)/(δϵ(1− γ)))

(1− γ)2ϵ4

)
.

Our work is an improvement over the work by Gabbianelli et al. [2024a] who give

Õ( (C
∗)2d2 log |A|
(1−γ)4ϵ2 ) sample complexity.

3.3.3 Extension to Constrained RL Setting

This section extends the algorithm and accompanying analysis developed in the previous sec-

tion for offline unconstrained reinforcement learning to the offline constrained reinforcement

learning setting. Recall that the constrained reinforcement learning problem is formulated

as the optimization problem in (3.1).
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Algorithm 6: Primal-Dual Algorithm for Offline Linear CMDPs

Input: Dataset D = {(sj, aj, rj, s′j)}nj=1, Dw, τ

Initialize: π1 uniform, c′1 ← 0, α←
√
log |A|/T .

1 for t = 1, . . . , T do
2 ζt ← argminζ∈Bd(Dζ)⟨ζ,Φ

T µ̂λ(c′t),πt
− λ(c′t)⟩.

3 wt ← argminw∈Dw∆I ⟨w, τ −ΘTλt⟩.
4 λ(ct+1)← OCO(θ0 − ζt +Θwt + γΨ̂vζt,πt ; Cn(C∗)).
5 Convert ct+1 to c′t+1 using Definition 1.

6 πt+1 ← σ(α
∑t

i=1Φζi).

Return: π̄ = Unif(π1, . . . , πT )

Analogously to the linear MDP setting discussed previously, to enable sample efficient

learning over arbitrarily large state spaces, the following linear structure is assumed on the

CMDP.

Assumption 5 (Linear CMDP). We assume that the transition and the reward functions

can be expressed as a linear function of a known feature map φ : S ×A → Rd such that

ri(s, a) = ⟨φ(s, a),θi⟩, P (s′|s, a) = ⟨φ(s, a),ψ(s′)⟩

for all (s, a, s′) ∈ S × A × S and i = 1, . . . , I, where θi ∈ Rd are known parameters and

ψ = (ψ1, . . . , ψd) is a vector of d unknown (signed) measures on S.

Also, similarly to the linear MDP setting, we require the data coverage assumption (As-

sumption 4) that says
µπ

∗
(s, a)

µD(s, a)
≤ C∗

for a known upper bound C∗ for all (s, a) ∈ S ×A where π∗ is optimal for the optimization

problem (3.1).

The structure of our algorithm for the constrained RL setting is similar to that for the

unconstrained RL setting. The difference is that we add the w-player that adjusts the weights

on the rewards r1, . . . , rI . Closely following the analysis for the unconstrained setting, we

can show the following sample complexity for the constrained setting.

Theorem 5. Under Assumptions 4,3 and 5, the policy π̄ produced by Algorithm 5 with

threshold τ and Dw = 1+ 1
ϕ
and T at least Ω( d log |A|

(1−γ)2ϵ2 ) and large enough such that ϵλopt(T ) ≤ ϵ

satisfies J0(π̄) ≥ J0(π
∗) − ϵ and Ji(π̄) ≥ τi − ϵ with probability at least 1 − δ as long as the

sample size is

n ≥ Ω

(
(C∗)2d3 log(dn(log |A|)/(δϕϵ(1− γ)))

(1− γ)2ϕ2ϵ2

)
.
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See Appendix B.5 for details.

3.3.4 Discussion

The preceding discussion relies on the concentrability assumption (Assumption 4), which

requires that µ∗(s, a)/µ(s, a) ≤ C∗ for all s ∈ S and a ∈ A. With a careful analysis, the

same result can be shown under a weaker assumption based on the notion of feature coverage

introduced in Gabbianelli et al. [2024a]:

Assumption 6 (Feature coverage). For an optimal policy π∗, we have

(λ∗)T (Λ†)2λ∗ ≤ C∗ and λ∗ ∈ Col(Λ)

where λ∗ : =Eµ∗ [φ(s, a)] and Col(·) is the column space.

The feature coverage assumption requires λ∗, the expected occupancy of the target policy

in the feature space, to be covered by covariance matrix induced by the data distribution µB.

Under the feature coverage assumption, λ∗ can be approximated by a linear combination of

φ(sk, ak), k = 1, . . . , n (Lemma 45). This result is analogous to Lemma 13 that uses concen-

trability assumption instead. It follows that the result in Theorem 4 with the concentrability

assumption (Assumption 4) replaced by the feature coverage assumption (Assumption 6). A

limitation of our work is that we use a stronger notion of feature coverage compared to the

one used by Gabbianelli et al. [2024a], who assume (λ∗)T (Λ†)λ∗ is bounded. However, they

require the knowledge of Λ and their sample complexity is Õ(ϵ−4).

Very recently, Neu and Okolo [2025b] improve the primal-dual algorithm presented in this

thesis to work with the weaker notion of feature coverage.

3.3.5 Related Work

In Table 3.1, we compare our work to previous works. The column N shows how the

sample complexity bound scales with the error tolerance ϵ. The first five algorithms are for

offline RL with general function approximation. The algorithms can be reduced to the linear

function approximation setting by taking a value function class consisting of linear functions.

The computational efficiency of algorithms for the general function approximation setting is

judged based on the efficiency when applied to linear function class. As the table shows, our

algorithm is the first computationally efficient algorithm with sample complexity O(ϵ−2) for

finding ϵ-optimal policy under partial data coverage assumption. Moreover, our algorithm

supports constraints on additional reward signals.
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Table 3.1: Comparison of algorithms for offline RL with linear MDPs

Algorithm
Partial
coverage

Comp’
efficient

Support
constraints

N

FQI [Munos and Szepesvári, 2008] No Yes No ϵ−2

CBPL [Le et al., 2019] No Yes Yes ϵ−2

Minimax [Xie et al., 2021] Yes No No ϵ−2

CPPO [Uehara and Sun, 2022] Yes No No ϵ−2

Minimax [Zanette, 2023] No No No ϵ−2

Primal-Dual [Gabbianelli et al., 2024a] Yes Yes No ϵ−4

Primal-Dual [Neu and Okolo, 2025b] Yes Yes Yes ϵ−2

Primal-Dual [Hong and Tewari, 2024] Yes Yes Yes ϵ−2

Offline RL with General Function Approximation Offline RL with general function

approximation is widely studied in the discounted infinite-horizon setting. When casting the

linear function approximation setting to the general function approximation setting, we get

the realizability and Bellman completeness for free when using linear function class since the

value function under linear function approximation is linear. In Table 3.1, we only compared

works on general function approximation that assumes realizability, Bellman completeness

and data coverage. There are other works that relax Bellman completeness assumption at

the cost of introducing another assumption. For example, Xie and Jiang [2020], Zhan et al.

[2022], Zhu et al. [2023] relax Bellman completeness assumption and introduce marginalized

importance weight assumption.

Offline RL with Episodic Setting Offline RL with linear function approximation has

been studied in the finite-horizon episodic setting. Zanette et al. [2021] propose a computa-

tionally efficient actor-critic algorithm with pessimism to achieve O(ϵ−2) sample complexity

under partial data coverage. Jin et al. [2021] propose a computationally efficient value it-

eration based algorithm with pessimism to achieve O(ϵ−2) sample complexity under partial

data coverage. However, they require the knowledge of the covariance matrix induced by the

state-action data distribution. Although their results are computationally efficient and work

under partial data coverage, they do not apply to the infinite-horizon discounted setting. Wu

et al. [2021] study offline constrained RL with a more general way of specifying constraints.

Their focus is on episodic setting with linear mixture MDP.
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3.4 General Function Approximation Setting

In this section, we study a more general function approximation setting. Introducing La-

grangian multipliers V ∈ R|S| for the Bellman flow constraints in the linear program (3.2),

the Lagrangian function is

L(µ,V ) : =⟨µ, r⟩+ ⟨V , (1− γ)d0 + γP⊤µ−E⊤µ⟩

By the saddle point theorem for convex optimization (e.g. [Boyd and Vandenberghe, 2004]),

a saddle point (µ∗,V ∗) of L over R|S×A|
+ × R|S| is optimal. Also, as shown by Zhan et al.

[2022], such a saddle point (µ∗,V ∗) is a saddle point of L when the domains are restricted

to U × V provided that µ∗ ∈ U and V ∗ ∈ V (see Lemma 56 in Appendix). However, they

show that a saddle point of L over U ×V is not necessarily optimal as shown in the following

proposition.

Proposition 1. There exists a MDP (S,A, r, γ, d0) and function classes U ⊆ RS×A
+ and

V ⊆ RS with µ∗ ∈ U and V ∗ ∈ V such that there exists a saddle point (µ̂, V̂ ) of the

Lagrangian function L associated with the linear programming formulation of the MDP over

U × V, such that the extracted policy π(µ̂) is not optimal.

This proposition suggests that finding a saddle point of L over U × V may not give an

optimal solution even when U × V contains an optimal solution. As a workaround of this

problem, Zhan et al. [2022] add a regularization term −αEµ[f(µ/µD)] to enforce strong

concavity L in terms of µ. However, this approach leads to sample complexity for finding

ε near optimal policy scales with 1/ε4. In our paper, we propose a simple workaround that

does not affect the sample complexity. Specifically, we add an assumption that the function

class V is rich enough:

Assumption 7 (All-Policy State-Value Realizability). We have V π ∈ V for all stationary

policy π.

With this stronger assumption on V , we can show that a saddle point of L over U × V is

optimal, as formally stated in the following:

Lemma 16. Consider function classes U ⊆ RS×A and V ⊆ RS such that µ∗ ∈ U and V ∗ ∈ V.
Suppose V π ∈ V for all policy π. Then, for any saddle point (µ̂, V̂ ) of L(·, ·) over U ×V, the
extracted policy π(µ̂) is optimal.

With the result in the proposition above, we consider an algorithm that finds a saddle

point (µ̂, V̂ ) that solves maxµ∈U minV ∈V L(µ, V ), then returns the policy π̂ = π(µ̂) extracted
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from µ̂. Since computing the Lagrangian function requires the knowledge of the transition

probability kernel P , we need to estimate the Lagrangian function. To facilitate the estima-

tion, we change the measure from µ to µD by multiplying the importance weight w = µ/µD

and express the Lagrangian in terms of w instead of µ as follows.

L(w,V ) : =(1− γ)V (s0) + EµD [(w(s, a)(r(s, a) + γ[PV ](s, a)− V (s))].

Analogous to Lemma 16, we can show that if a function class W for the MIW contains the

optimal w∗ = µ∗/µD and a function class V contains V π ∈ V for all stationary policy π, then

a saddle point of L(w, V ) overW×V is optimal. In addition to the realizability assumption

on V (Assumption 7), we make the following realizability assumption on W .

Assumption 8. For an optimal policy π∗, we have w∗ = µπ
∗
/µD ∈ W.

With the realizability assumptions, we consider an algorithm that finds a saddle point of

the estimated Lagrangian:

max
w∈W

min
V ∈V

L̂(w, V ) : =(1− γ)V (s0) +
1

n

n∑
i=1

w(si, ai)(r(si, ai) + γV (s′i)− V (si)) (3.14)

where L̂(w, V ) is an unbiased estimate of L(w, V ). After finding a saddle point (ŵ, V̂ ), we

need to extract policy from ŵ. In general, the policy extraction from an importance weight

w ∈ W can be done by the policy extraction from the corresponding occupancy measure

µ = w · µD and using (3.4):

[π(w)](a|s) = w(s, a)µD(s, a)∑
a′ w(s, a

′)µD(s, a′)
if
∑
a′

w(s, a′)µD(s, a
′) > 0,

1

|A|
otherwise. (3.15)

The policy π(ŵ) extracted from a solution (ŵ, V̂ ) of the saddle point problem (3.14) gives

the following guarantee.

Theorem 6. Under Assumptions 4, 7 and 8, if (ŵ, V̂ ) is a saddle point that solves (3.14),

then the extracted policy π̂ = π(ŵ) satisfies

J(π̂) ≥ J(π∗)− εn

with probability at least 1− δ where εn = O( C∗

1−γ

√
log(|W||V|/δ)/n).

Note that the theorem statement assumes the function classesW and V are finite. We can

generalize this result to infinite function classes using a covering argument, which replaces
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the cardinalities of the function classes with their covering numbers. One drawback of this

approach, common in approaches for offline RL that uses linear programming formulation, is

that the policy extraction step requires the knowledge of µD. However, it may be impractical

to have such a knowledge. As a workaround, Zhan et al. [2022] propose a behavior cloning to

learn the policy π(µD). However, such an approach requires access to an additional function

class for the behavior policy, which may be impractical. In the next section, we propose a

Lagrangian decomposition and reparameterizing trick as a workaround.

3.4.1 Lagrangian Decomposition

To handle the case where the data generating distribution µD is unknown, we use the La-

grangian decomposition that adds a dummy occupancy measure variable µ to the original

linear program (3.2):

max
µ≥0,ν≥0

⟨µ, r⟩

subject to E⊤ν = (1− γ)d0 + γP⊤µ

µ = ν.

Introducing the Lagrangian multiplier Q ∈ R|S×A| for the constraint µ = ν, the Lagrangian

function becomes

L(µ,ν;Q,V ) = (1− γ)⟨d0,V ⟩+ ⟨µ, r + γPV −Q⟩+ ⟨ν,Q−EV ⟩

= ⟨r,µ⟩+ ⟨V , (1− γ)d0 + γP⊤µ−E⊤ν⟩+ ⟨Q,ν − µ⟩.

The Lagrangian decomposition [Shepardson and Marsten, 1980, Guignard and Kim, 1987] is

a classical method for decomposing an optimization into subproblems by introducing copies

of optimization variables. To our knowledge the method is first used in the context of

MDP by Mehta and Meyn [2009]. Since then, the method has been used in RL in various

settings [Neu and Okolo, 2023, Gabbianelli et al., 2024b, Hong and Tewari, 2024, Neu and

Okolo, 2025a].

It appears that we have made the problem more complex for nothing, but with a reparam-

eterization trick, we can expose a policy variable π, so that the policy extraction step (3.15)

can be bypassed, eliminating the need to know the data generating distribution µD. The

reparameterization trick is first introduced by Gabbianelli et al. [2024b] for offline RL with

linear MDPs, but without a clear justification. In the remainder of this section we discuss

the reparameterization trick, and argue that naive adaptation of the trick to the general

function approximation setting may fail.
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We motivate the trick by observing that an optimal µ∗ and ν∗ satisfy

ν∗(s, a) = π∗(a|s)ν∗(s) = π∗(a|s)((1− γ)d0(s) + γ[P⊤µ∗](s))

where π∗ is the policy extracted from ν∗. Note that we expressed ν∗ in terms of π∗ and µ∗.

For the purpose of finding an optimal µ∗ and ν∗, we can restrict the search space for (µ∗, ν∗)

from R|S×A|
+ × R|S×A|

+ to

F(U ,Π) :={(µ, νπ,µ) : µ ∈ U , π ∈ Π}

where Π is a policy class that contains an optimal policy π∗ and U is a function class that

contains µ∗, and

νπ,µ(s, a) : = π(a|s)((1− γ)d0(s) + γ[P⊤µ](s)).

Necessarily, any (µ, ν) ∈ F(U ,Π) satisfies the Bellman flow constraint, and it follows that the

Lagrangian function is not dependent on the corresponding Lagrangian multiplier V . With

a slight abusive notation, we write the Lagrangian function as L(µ, π;Q) = L(µ, νπ,µ;Q),

suppressing the dependency on V , when (µ,ν) is restricted to F(U ,Π). With this restriction,

a natural algorithm is to find a saddle point of L over F(U ,Π) × Q, then extract a policy.

However, the following shows that such an algorithm may fail.

Proposition 2. There exists a MDP (S,A, r, γ, d0) and function classes U ⊆ RS×A
+ , Q ⊆

RS×A and policy class Π, with µ∗ ∈ U , Q∗ ∈ Q and π∗ ∈ Π such that there exists a

saddle point (µ̂, νµ̂,π; Q̂) of the Lagrangian function L associated with the linear programming

formulation of the MDP over F(U ,Π)×Q, where the policy π̂ is not optimal.

To deal with the problem of spurious saddle points, we make the following assumption.

Assumption 9 (All-Policy State-Action Value Function Realizability). We have Qπ ∈ Q
for all stationary policy π.

Indeed, with the assumption above, we get the following guarantee.

Lemma 17. Consider function classes U ⊆ R|S×A| and Q ⊆ R|S×A|, such that µ∗ ∈ U and

Qπ ∈ Q for all policy π ∈ Π, where Π is a function class that contains an optimal policy π∗.

If (µ̂, νµ̂,π̂; Q̂) is a saddle point of L over F(U ,Π)×Q, then the policy π̂ is optimal.

As done in the previous section, we can change variable w = µ/µD for estimating the
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Lagrangian as

L(µ, π;Q) = ⟨µ, r⟩+ ⟨Q,νµ,π − µ⟩ = (1− γ)⟨Q(·, π),d0⟩+ ⟨µ, r + γPQ(·, π)−Q⟩

≈ (1− γ)Q(s0, π) + 1
n

∑n
i=1w(si, ai)(r(si, ai) + γQ(s′i, π)−Q(si, ai))

=: L̂(w, π;Q)

where π ∈ Π is the policy that parameterizes ν = νµ,π and Q(s, π) =
∑

a π(a|s)Q(s, a). With

the estimate, we consider an algorithm that finds a saddle point (ŵ, π̂; Q̂) of the estimate

max
w∈W,π∈Π

min
Q∈Q

L̂(w, π;Q), (3.16)

then returns π̂. This algorithm has the following guarantee.

Theorem 7. Let Π be a function class for policies such that π∗ ∈ Π where π∗ is an optimal

policy. Under Assumptions 4, 8 and 9, if (ŵ, π̂; Q̂) is a saddle point that solves (3.16), then

we have

J(π̂) ≥ J(π∗)− εn

with probability at least 1− δ where εn = O( C∗

1−γ

√
log(|W||Q||Π|/δ)/n).

We have not yet addressed the computational challenges of finding the saddle point. In

the next section, we introduce an oracle-efficient primal-dual algorithm that approximately

solves the saddle point problem. As discussed there, this algorithm does not require access

to a policy class Π.

3.4.2 Oracle-Efficient Primal-Dual Algorithm

We propose an oracle-efficient primal-dual algorithm that solves the saddle point prob-

lem (3.16). Inspired by Xie et al. [2021], Cheng et al. [2022], we view the problem of

finding a saddle point as a Stackelberg game between the primal variables w and π, and the

dual variable Q, with the w-player and the π-player as the leaders and the Q-player as the

follower:
(w∗, π∗) ∈ argmax

w∈W,π∈Π
L̂(w, π;Qw,π)

s.t. Qw,π ∈ argmin
Q∈Q

L̂(w, π;Q).

Our primal-dual algorithm aims to solve this game iteratively by optimizing for the leader

variables and the follower variable, alternately. Specifically, the w-player employs a no-regret

algorithm using a no-regret oracle that enjoys the following guarantee.
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Definition 3 (No-Regret Oracle). Given a set X ⊆ R|S×A|, we say O is a no-regret oracle

with respect to X if for any sequence of linear functions ht : X → R with |ht(x)| ≤ 1 for all

x ∈ X , t = 1, . . . , T , the oracle sequentially outputs xt ∈ X for each t given the sequence

h1, . . . , ht−1 as an input such that

T∑
t=1

ht(x
∗)− ht(xt) ≤ o(T )

where x∗ = argmaxx∈F
∑T

t=1 ht(x).

The w-player employs a no-regret oracle with respect to the function classW to generate

a sequence w1, . . . , wT ∈ W , based on the sequence of functions {L̂(·, πt;Qt)}Tt=1 (Line 2).

The objective is to maximize
∑T

t=1 L̂(wt, πt;Qt), and the no-regret oracle ensures that the

sequence competes effectively with the optimal fixed w∗ in hindsight. An example of such

an oracle is the online gradient ascent algorithm, which takes a gradient step followed by

projection onto W . See Appendix C.3 for details.

The π-player optimizes the policy using mirror descent updates (Line 3). Intuitively, the

mirror descent updates increase the weight on the action with high action value. A key

advantage is that they eliminate the need for an explicit policy class Π, as the policy class is

implicitly defined by the value function class Q. Specifically, with an additional assumption

that Q is convex, the policies encountered during mirror descent are softmax policies of the

form:

Π(Q, C) : =
{
π : π(·|s) = exp(cQ(s, ·))∑

a′ exp(cQ(s, a
′))
, Q ∈ Q, c ∈ [0, C]

}
.

The Q-player chooses a function Q that minimizes L̂(w, π; ·) (Line 4). Due to the linearity
of L̂(wt, πt; ·), the minimizer can be computed given a linear optimization oracle that solves

the problem of the form argminQ∈Q⟨c,Q⟩. The algorithm runs for T iterations and returns

a policy sampled uniformly at random from π1, . . . , πT .

Algorithm 7: PDORL

Input: Dataset D = {(si, ai, s′i)}ni=1, function classes W and Q, no-regret oracle O,
learning rate α > 0, number of iterations T .

1 for t = 1, . . . , T do

2 wt ← O(L̂(·, πt−1;Qt−1);W).
3 πt(·|s) ∝ πt−1(·|s) exp(αQt−1(·, s)), for s ∈ {s′1, . . . , s′n}.
4 Qt ← argminQ∈Q L̂(wt, πt;Q).

Return: Uniform(π1, . . . , πT )

The policy returned by the algorithm has the following guarantee.
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Theorem 8. Under Assumptions 4, 8 and 9, running Algorithm 7 with a no-regret oracle O
with sublinear regret RegT , α = (1−γ)

√
log |A|/

√
T and T large enough such that RegT/T ≤

1/
√
n and T ≥ n, we have with probability at least 1− δ that

J(π̂) ≥ J(π∗)− εn

where εn = O
(
C∗

1−γ

√
log(N1/

√
n(W , ∥ · ∥∞)N1/(8

√
nT )(Q, ∥ · ∥∞)/δ)/n

)
.

The proof of the theorem relies on the fact that the suboptimality of the returned policy

can be decomposed into the regrets of the three players, and that each regret can be bounded

using the property of the strategy employed by each player. See Appendix C.1.7 for detail.

3.4.3 Extension to Constrained RL

The corresponding linear program, with Lagrangian decomposition, is

max
µ≥0,ν≥0

⟨µ, r0⟩

subject to E⊤ν = (1− γ)d0 + γP⊤µ

µ = ν

⟨µ, ri⟩ ≥ τi, i = 1, . . . I.

The corresponding Lagrangian function is

L(µ,ν;Q,V ,λ) = ⟨µ, r0⟩+ ⟨V , (1− γ)d0 + γP⊤µ−E⊤ν⟩+ ⟨Q,ν − µ⟩+ ⟨λ,R⊤µ− τ ⟩

where R ∈ R|S×A|×I is the matrix containing the reward functions r1, . . . , rI . As done

for the unconstrained RL setting, we restrict (µ, ν) to be in F(U ,Π), so that ν(s, a) =

π(a|s)((1 − γ)d0(s) + γ[P⊤µ](s)) for some π ∈ Π, and reparameterize µ as an importance

weight w = µ/µD. Then, we can rewrite the Lagrangian and estimate it as:

L(µ, π;Q,λ)

= (1− γ)⟨Q(·, π),d0⟩+ ⟨µ, r0 +Rλ+ γPQ(·, π)−Q⟩ − ⟨λ, τ ⟩

≈ (1− γ)Q(s0, π) +
1

n

n∑
j=1

w(sj, aj)((r0 +
I∑
i=1

λiri)(sj, aj) + γQ(s′j, π)−Q(sj, aj))− ⟨λ, τ⟩

=: L̂(w, π;Q, λ).

To derive a uniform concentration bound for the Lagrangian estimate across all λ, we

require a bound on λ. To achieve this, we assume the Slater’s condition (Assumption 3)
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Algorithm 8: PDOCRL

Input: Dataset D, function classes W and Q, learning rate α > 0, dual bound
B > 0, no-regret oracle O, number of iterations T .

1 for t = 1, . . . , T do

2 wt ← O(L̂(·, πt−1;Qt−1, λt−1);W).
3 πt(·|·)← πt−1(·|·) exp(αQt−1(·, ·)).
4 Qt ← argminQ∈Q L̂(wt, πt;Q, λt−1).

5 λt ← argminλ∈B∆I L̂(wt, πt;Qt, λ).

Return: Uniform(π1, . . . , πT )

that ensures the existence of a feasible policy that satisfies the constraints with a positive

margin φ. Then, it can be shown that the optimal dual variable is bounded as stated in the

following lemma.

Lemma 18. Consider a constrained optimization problem (3.1) with thresholds τ =

(τ1, . . . , τI). Suppose the problem satisfies Assumption 3 with margin φ > 0. Then, the

optimal dual variable λ⋆ of the problem satisfies ∥λ⋆∥1 ≤ 1
φ
.

The lemma motivates an algorithm that solves the following saddle point problem:

max
w∈W,π∈Π

min
Q∈Q,λ∈ 1

φ
∆I
L̂(w, π;Q, λ) (3.17)

where ∆I = {λ ∈ RI
+ :
∑I

i=1 λi ≤ 1}. We can show that a solution (ŵ, π̂; Q̂, λ̂) to the saddle

point problem has the following guarantee.

Theorem 9. Let Π be a function class for policies such that π∗ ∈ Π where π∗ is an optimal

policy. Under Assumptions 4, 8, 9 and 3, if (ŵ, π̂; Q̂, λ̂) is a saddle point that solves (3.17),

then π̂ satisfies

J0(π̂) ≥ J0(π
∗)− εn, Ji(π̂) ≥ τi − εn, i = 1, . . . , I.

where εn = O
(
( 1
φ
+ 1

1−γ )C
∗
√

log(N1/
√
n(W , ∥ · ∥∞)N1/(8

√
nT )(Q, ∥ · ∥∞)/δ)/n

)
.

For computational efficiency, we present a primal-dual algorithm. The algorithm design

is similar to PDORL (Algorithm 7) for the unconstrained problem. The main difference is

the introduction of the λ-player that greedily minimizes L̂(wt, πt;Qt, λ) at each time step t.

We present below our algorithm called Primal-Dual algorithm for Offline Constrained RL

(PDOCRL).

The policy returned by the algorithm has the following guarantee.
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Table 3.2: Comparison of algorithms for offline RL with value function approximation

Algorithm
Partial
coverage

Comp’
efficient

Requires
µD

N

FQI [Munos and Szepesvári, 2008] No Yes No ϵ−2

Minimax [Xie et al., 2021] Yes No No ϵ−5

Minimax [Zanette, 2023] Yes No No ϵ−2

PRO-RL [Zhan et al., 2022] Yes No Yes ϵ−6

A-Crab [Zhu et al., 2023] Yes No No ϵ−2

ATAC [Cheng et al., 2022] Yes No No ϵ−3

CORAL [Rashidinejad et al., 2022] Yes No Yes ϵ−2

PDORL [Hong and Tewari, 2025b] Yes Yes No ϵ−2

Theorem 10. Under Assumptions 4, 8, 3 and Qπ
i ∈ Q for all i = 0, 1, . . . , I and for all

stationary policy π, running Algorithm 8 with a no-regret oracle O with sublinear regret RegT ,

learning rate α = (1− γ)
√

log |A|/
√
T , dual bound B = 1+ 1

φ
and T large enough such that

RegT/T ≤ 1/
√
n and T ≥ n, we have with probability at least 1− δ that

J0(π̂) ≥ J0(π
∗)− εn, Ji(π̂) ≥ τi − εn, i = 1, . . . , I.

where εn = O
(
( 1
φ
+ 1

1−γ )C
∗
√

log(N1/
√
n(W , ∥ · ∥∞)N1/(8

√
nT )(Q, ∥ · ∥∞)/δ)/n

)
.

3.4.4 Related Work

In this section, we compare our algorithm, PDORL (Algorithm 7), with prior work on offline

reinforcement learning with function approximation, where the performance objective is the

infinite-horizon discounted sum of rewards. See Table 3.2 for the comparison.

Note that our algorithm is the only oracle-efficient algorithm that achieves sample com-

plexity of ϵ−2 under partial data coverage that does not require the knowledge of the data

generating distribution µD.

Hong and Tewari [2024] propose a primal-dual algorithm where the primal variable is

the policy and the dual variable is the Lagrangian multiplier associated with the constraint.

The update rule for the dual variable requires checking whether the current policy violates

the constraint, which demands data coverage for every policy encountered. Le et al. [2019]

propose a primal-dual algorithm, using fitted Q-iteration and fitted Q-evaluation algorithms

as subroutines. These likewise assume full data coverage and require a function class for the

value function that is closed under the Bellman operation. Zhang et al. [2024] propose an

oracle-efficient, linear programming based algorithm for offline constrained RL that achieves
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Table 3.3: Comparison of algorithms for offline constrained RL

Algorithm
Partial
coverage

Oracle
efficient

Requires
µD

N

PDCA [Hong and Tewari, 2024] No No No (C∗)2

(1−γ)2ϵ2

MBCL [Le et al., 2019] No Yes No (C∗)2

(1−γ)8ϵ2

POCC [Zhang et al., 2024] Yes Yes Yes (C∗)2

(1−γ)2ϵ2

PDOCRL [Hong and Tewari, 2025b] Yes Yes No (C∗)2

(1−γ)2ϵ2

Lower bound [Rashidinejad et al., 2021] C∗

(1−γ)ϵ2

O(ϵ−2) sample complexity with only partial data coverage. However, their approach rely on

an auxiliary function class X that maps the Bellman flow error to its ℓ1 norm. See Table 3.3

for a detailed comparison. Entries highlighted in red indicate suboptimality relative to our

work. The last column is sample complexity for finding ϵ-optimal policy. C∗ is the coefficient

that measures the data coverage of an optimal policy.

3.5 Discussion

Throughout this chapter, we assumed that an upper bound C∗ of the concentrability coef-

ficient of an optimal policy is known to the learner. In practice, it is unreasonable to have

such a knowledge.

By modifying the analysis, it can be shown that the algorithm returns a policy that

competes with the best policy among those covered by the dataset. Therefore, even if the

value of C∗ is misspecified in the sense that it does not upper bound the concentrability

coefficient of the optimal policy, the returned policy remains meaningful as long as C∗ upper

bounds the concentrability coefficient of a sufficiently good policy.

When the well-specified upper bound C∗ is unknown, the learner faces a tradeoff. Selecting

a large value of C∗ allows the returned policy to compete with a broader class of policies,

but at the expense of a looser suboptimality guarantee relative to the best policy in this

larger set. On the other hand, selecting a smaller value of C∗ yields a tighter suboptimality

bound, but limits the comparison to a smaller set of policies. An interesting direction for

future work is to develop principled methods for selecting C∗ that effectively balance this

tradeoff.
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CHAPTER 4

Conclusion

This thesis advances the theoretical foundations of reinforcement learning (RL) by addressing

two important challenges: online RL with the infinite-horizon average-reward criterion, and

offline constrained RL under partial data coverage. In both settings, the emphasis lies

in designing algorithms that are both statistically and computationally efficient, and in

establishing finite-time performance guarantees.

In the first part (Chapter 2), we focused on the online average-reward setting, which

is particularly relevant in applications where long-term performance is important. We in-

troduced a family of algorithms that reduce the average-reward problem to the discounted

setting using a carefully tuned discount factor. This reduction enabled us to leverage value-

iteration-based methods while maintaining tight control over approximation errors. In the

tabular case, we proposed a clipped value iteration algorithm (γ-UCB-CVI) that achieves

sublinear regret by combining optimism with a span-constrained value function update. In

the linear MDP setting, we introduced a novel planning architecture (γ-LSCVI-UCB) that

decouples value iteration from policy execution and restarts planning episodes based on in-

formation growth. We also proposed a computationally efficient variant (γ-DC-LSCVI-UCB)

that avoids explicit state enumeration by introducing an efficient clipping scheme and a

deviation-controlled planning strategy.

In the second part (Chapter 3), we turned our attention to offline constrained reinforce-

ment learning, where the agent must optimize a policy under safety constraints using only

a fixed dataset. This setting is motivated by safety-critical domains where online explo-

ration is infeasible. We developed a primal-dual algorithmic framework grounded in the

linear programming formulation of constrained RL. In the linear MDP case, we showed that

under partial feature coverage, it is possible to learn near-optimal policies while satisfy-

ing constraints. In the general function approximation setting, we extended our methods

using a Lagrangian decomposition and proposed an oracle-efficient primal-dual algorithm

that adapts to both unconstrained and constrained objectives. Importantly, our analysis
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establishes finite-sample guarantees without requiring the knowledge of the underlying data

distribution of the offline dataset.

Future directions include designing memory-efficient algorithms for both settings. In the

online setting, our algorithms require maintaining full value functions across value iterations,

which may be costly when run for many time steps. For the offline constrained setting, our

current algorithms provide guarantees on the average policy across primal-dual iterates,

requiring storage of all intermediate policies. Developing a primal-dual algorithm with last-

iterate convergence, guaranteeing near-optimality and constraint satisfaction at the final

policy, would not only reduce storage requirements but also simplify policy deployment in

practical systems.

Another important direction for future work is to relax assumptions such as the knowledge

of sp(v∗) and C∗. While recent work in the tabular setting explores estimating sp(v∗) from

data, extending such ideas to the linear or general function approximation settings remains

open. Similarly, treating C∗ as a tunable hyperparameter raises the question of how to

balance the tradeoff between statistical guarantees and policy class coverage. Developing

adaptive or data-driven methods for selecting these quantities would improve the practicality

and robustness of algorithms in both online and offline settings.
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APPENDIX A

Analysis of Infinite-Horizon Average-Reward

RL

A.1 Tabular Setting

Central to the analysis of the concentration bound for the approximate Bellman backup is

the following concentration bound for scalar-valued self-normalized processes.

Lemma 19 (Concentration of Scalar-Valued Self-Normalized Processes [Abbasi-Yadkori

et al., 2012]). Let {εt}∞t=1 be a real-valued stochastic process with corresponding filtration

{Ft}∞t=0. Let εt|Ft−1 be zero-mean and σ-subgaussian. Let {Zt}∞t=0 be an R-valued stochas-

tic process where Zt ∈ Ft−1. Assume W > 0 is deterministic. Then for any δ > 0, with

probability at least 1− δ, we have for all t ≥ 0 that

(
∑t

s=1 Zsεs)
2

W +
∑t

s=1 Z
2
s

≤ 2σ2 log


√
W +

∑t
s=1 Z

2
s

δ
√
W

 .

A.1.1 Proof of Lemma 2

To show a bound for |(P̂t − P )Vt(s, a)| uniformly on t ∈ [T ], we use a covering argument on

the function class that captures Vt. Note that the value functions Vt defined in the algorithm

always lie in the following function class.

Vtabular = {v ∈ RS : v(s) ∈ [0, 1
1−γ ] for all s ∈ S}.

We first bound the error for a fixed value function in Vtabular. Afterward, we will use a

covering argument to get a uniform bound over Vtabular.
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Lemma 20. Fix any V ∈ Vtabular. There exists some constant C such that for any δ ∈ (0, 1),

with probability at least 1− δ, we have:

|[(P̂t − P )V ](s, a)| ≤ Csp(v∗)

√
log(SAT/δ)

Nt(s, a)

for all (s, a) ∈ S ×A and t = 1, . . . , T .

Proof. Fix any (s, a) ∈ S ×A. By definition, we have:

[(P̂t − P )V ](s, a) =
1

Nt(s, a)

t∑
τ=1

I{sτ = s, aτ = a}[V (sτ+1)− [PV ](s, a)].

Let εt = V (st+1)− [PV ](st, at), Zt = I{st = s, at = a}, and W = 1. Since the range of εt

is bounded by 2 · sp(v∗), it is sp(v∗)-subgaussian. By Lemma 19, we know for some constant

C, with probability at least 1− δ, for all t = 1, . . . , T , we have

|[(P̂t − P )V ](s, a)| = |
∑t

s=1 Zsεs|
1 +

∑t
s=1 Z

2
s

≤ C · sp(v∗)

√
log(

√
Nt(s, a)/δ)

Nt(s, a)

≤ C · sp(v∗)

√
log(T/δ)

Nt(s, a)
.

Applying a union bound for all (s, a) ∈ S ×A gives us the desired inequality.

We use Nϵ to denote the ϵ-covering number of Vtabular with respect to the distance

dist(V, V ′) = ∥V − V ′∥∞. Using a grid of size ϵ, since functions in Vtabular has the range

[0, 1
1−γ ], it can be seen that logNϵ ≤ S log 1

ϵ(1−γ) . Now, we prove a uniform concentration

bound using a covering argument on Vtabular.

Proof of Lemma 2. Note that Vt ∈ Vtabular for all t. Consider an ϵ-cover of Vtabular. For any
Vt ∈ Vtabular, there exists Ṽt in the ϵ-cover such that sups |Vt(s)− Ṽt(s)| ≤ ϵ. Thus, we have

|[(P̂t−P )Vt](s, a)| ≤ |[(P̂t−P )Ṽt](s, a)|+ |[(P̂t−P )(Vt− Ṽt)](s, a)| ≤ |[(P̂t−P )Ṽ ](s, a)|+2ϵ.
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We then apply Lemma 20 and a union bound to obtain:

|[(P̂t − P )Vt](s, a)| ≤ C · sp(v∗)

√
log(SATNϵ/δ)

Nt(s, a)
+ 2ϵ

≤ C · sp(v∗)

√
log(SAT/δ) + S log(1/(ϵ(1− γ)))

Nt(s, a)
+ 2ϵ.

Picking ϵ = 1√
T
concludes the proof.

A.1.2 Proof of Lemma 3

Proof of Lemma 3. We prove by induction on t ≥ 1. The base case t = 1 is trivial since

Algorithm 2 initializes V1(·) = 1
1−γ , Q1(·, ·) = 1

1−γ . Now, suppose V1, . . . , Vt ≥ V ∗ and

Q1, . . . , Qt ≥ Q∗.

We first show that Qt+1(s, a) ≥ Q∗(s, a). By the Bellman optimality equation for the

discounted setting, we have for all (s, a) ∈ S ×A that

Q∗(s, a) = r(s, a) + γ[PV ∗](s, a).

Fix any pair (s, a) ∈ S ×A. By the definition of Qt+1 in Line 10 of Algorithm 2, we have

Qt+1(s, a) = (r(s, a) + γ[P̂tVt](s, a) + β/
√
Nt(s, a)) ∧Qt(s, a)

≥ (r(s, a) + γ[PVt](s, a)) ∧Qt(s, a)

≥ (r(s, a) + γ[PV ∗](s, a)) ∧Q∗(s, a)

= Q∗(s, a)

where the first inequality is by the concentration inequality in Lemma 2 and our choice of

β in Theorem 1, and the second inequality is by the induction hypotheses Vt ≥ V ∗ and

Qt ≥ Q∗. The last equality is by the Bellman optimality equation.

Now, we show Vt+1(s) ≥ V ∗(s). By the definition of Ṽt+1 in Line 11 of Algorithm 2, we

have
Ṽt+1(s) = (max

a
Qt+1(s, a)) ∧ Vt(s)

≥ (max
a
Q∗(s, a)) ∧ V ∗(s)

= V ∗(s)

where the inequality is by the optimism of Qt+1 we just proved, and the induction hypothesis

Vt ≥ V ∗.
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Finally, by the definition of Vt+1 in Line 12 of Algorithm 2, we have

Vt+1(s) = Ṽt+1(s) ∧ (min
s′
Ṽt+1(s

′) + sp(v∗)) ≥ Ṽt+1(s) ≥ V ∗(s),

which completes the proof by induction.

A.1.3 Omitted Proofs

Lemma 21 (Sum of Bonus Terms). Consider running Algorithm 2. The sum of the bonus

terms can be bounded by
T∑
t=1

√
1/Nt−1(st, at) ≤ 2

√
SAT .

Proof. Recall that Nt(s, a) = 1 +
∑t

s=1 I{st = s, at = a}. For convenience, write nt(s, a) =∑t
s=1 I{st = s, at = a} such that Nt(s, a) = 1 + nt(s, a). Then,

T∑
t=1

√
1/Nt−1(st, at) ≤

∑
s∈S

∑
a∈A

nT (s,a)∑
n=1

√
1/n

≤ 2
∑
s∈S

∑
a∈A

√
nT (s, a)

≤ 2
√
SAT

where the second inequality uses the identity
∑N

n=1 1/
√
n ≤ 2

√
N , and the last inequality is

by Cauchy-Schwarz and the fact that
∑

s

∑
a nT (s, a) = T .

A.2 Linear MDP Setting

A.2.1 Concentration Bound for Regression Coefficients

Central to the analysis of the concentration bound for the approximate Bellman backup is

the following concentration bound for vector-valued self-normalized processes.

Lemma 22 (Concentration of vector-valued self-normalized processes [Abbasi-Yadkori et al.,

2011]). Let {εt}∞t=1 be a real-valued stochastic process with corresponding filtration {Ft}∞t=0.

Let εt|Ft−1 be zero-mean and σ-subgaussian. Let {ϕt}∞t=0 be an Rd-valued stochastic process

where ϕt ∈ Ft−1. Assume Λ0 is a d×d positive definite matrix, and let Λt = Λ0+
∑t

s=1 ϕsϕ
T
s .

67



Then for any δ > 0, with probability at least 1− δ, we have for all t ≥ 0 that∥∥∥∥∥
t∑

s=1

ϕsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

(
det(Λt)

1/2det(Λ0)
−1/2

δ

)
.

Lemma 23. Let V : S → [−B,B] be a bounded function. Then, w∗(V ) =
∫
S V (s′)dµ(s′)

which satisfies [PV ](s, a) = ⟨φ(s, a),w∗(V )⟩ for all (s, a) ∈ S ×A, satisfies

∥w∗(V )∥2 ≤ B
√
d.

Proof.

∥w∗(V )∥2 =
∥∥∥∥∫

S
V (s′)dµ(s′)

∥∥∥∥
2

≤ B

∥∥∥∥∫
S
dµ(s′)

∥∥∥∥
2

≤ B
√
d

where the first inequality holds since µ is a vector of positive measures and V (s′) ≥ 0. The

last inequality is by the boundedness assumption (1.1) on µ(S).

Lemma 24. Let w be a ridge regression coefficient obtained by regressing y ∈ [0, B] on

x ∈ Rd using the dataset {(xi, yi)}ni=1 so that w = Λ−1
∑n

i=1 xiyi where Λ =
∑n

i=1 xx
T +λI.

Then,

∥w∥2 ≤ B
√
dn/λ.

Proof. For any unit vector u ∈ Rd with ∥u∥2 = 1, we have

|uTw| =

∣∣∣∣∣uTΛ−1

n∑
i=1

xiyi

∣∣∣∣∣
≤ B

n∑
i=1

|uTΛ−1xi|

≤ B
n∑
i=1

√
uTΛ−1u

√
xTi Λ

−1xi

≤ B√
λ

n∑
i=1

√
xTi Λ

−1xi

≤ B√
λ

√
n

√√√√ n∑
i=1

xTi Λ
−1xi

≤ B
√
dn/λ

where the second inequality and the fourth inequality are by Cauchy-Schwartz, the third

inequality is by Λ ⪰ λI, and the last inequality is by Lemma 28.
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The desired result follows from the fact that ∥w∥2 = maxu:∥u∥2=1 |uTw|.

The following self-normalized process bound is an adaptation of Lemma D.4 in Jin et al.

[2020]. Their proof defines the bound B to be a value that satisfies ∥V ∥∞ ≤ B. Upon

observing their proof, it is easy to see that we can strengthen their result to require only

sp(V ) ≤ B. The following lemma is the strengthened version.

Lemma 25 (Adaptation of Lemma D.4 in Jin et al. [2020]). Let {xt}∞t=1 be a stochastic

process on state space S with corresponding filtration {Ft}∞t=0. Let {ϕt}∞t=0 be a Rd-valued

stochastic process where ϕt ∈ Ft−1, and ∥ϕt∥2 ≤ 1. Let Λn = λI +
∑n

t=1 ϕtϕ
T
t . Then for any

δ > 0 and any given function class V, with probability at least 1− δ, for all n ≥ 0, and any

V ∈ V satisfying sp(V ) ≤ H, we have∥∥∥∥∥
n∑
t=1

ϕt(V (xt)− E[V (xt)|Ft−1])

∥∥∥∥∥
2

Λ−1
n

≤ 4H2

[
d

2
log

(
n+ λ

λ

)
+ log

Nε
δ

]
+

8n2ε2

λ

where Nε is the ε-covering number of V with respect to the distance dist(V, V ′) = supx |V (x)−
V ′(x)|.

Lemma 26 (Adaptation of Lemma D.6 in Jin et al. [2020]). Let Vlinear be a class of functions

mapping from S to R with the following parametric form

V (·) = (max
a
wTφ(·, a) + v + β

√
φ(·, a)TΛ−1φ(·, a)) ∧M (A.1)

where the parameters (w, β, v,Λ,M) satisfy ∥w∥ ≤ L, β ∈ [0, B], v ∈ [0, D], M ≥ 0

and the minimum eigenvalue satisfies λmin(Λ) ≥ λ. Assume ∥φ(s, a)∥ ≤ 1 for all (s, a)

pairs, and let Nε be the ε-covering number of V with respect to the distance dist(V, V ′) =

supx |V (x)− V ′(x)|. Then

logNε ≤ d log(1 + 8L/ε) + log(1 + 4D/ε) + d2 log[1 + 8d1/2B2/(λε2)].

For the next lemma, we define value functions V
(t)
u to be the functions obtained by the

following value iteration (analogous to Line 7-12 in Algorithm 3):

With this definition, we show a high-probability bound on ∥
∑t

τ=1φ(sτ , aτ )[V
(t)
u (sτ+1)−

PV
(t)
u (sτ , aτ )]∥Λ−1

t
uniformly on u ∈ [T ] and t ∈ [T ]. Since the tuple (tk− 1, V t

u ,Λtk) encoun-

tered in Algorithm 3 is the same as the pair (t, V
(t)
u ,Λt) for some t ∈ [T ], the uniform bound

implies bound on ∥
∑tk−1

τ=1 φ(sτ , aτ )[V
k
u (sτ+1)− PV k

u (sτ , aτ )]∥Λ−1
tk

for all episode k.

Lemma 27 (Adaptation of Lemma B.3 in Jin et al. [2020]). Under the linear MDP setting

in Theorem 2 for the γ-LSCVI-UCB algorithm with clipping oracle (Algorithm 3), let cβ be
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V
(t)
T+1(·)← 1

1−γ .

for u = T, T − 1, . . . , 1 do

w
(t)
u+1 ← Λ−1

t

∑t−1
τ=1φ(sτ , aτ )(V

(t)
u+1(sτ+1)−mins′ Ṽ

(t)
u+1(s

′)).

Q̃
(t)
u (·, ·)←

(
r(·, ·) + γ(⟨φ(·, ·),w(t)

u+1⟩+mins′ Ṽ
(t)
u+1(s

′) + β∥φ(·, ·)∥Λ−1
t
)
)
∧ 1

1−γ .

Ṽ
(t)
u (·)← maxa Q̃

(t)
u (·, a).

V
(t)
u (·)← Ṽ

(t)
u (·) ∧ (mins′ Ṽ

(t)
u (s′) +H).

the constant in the definition of β = cβHd
√

log(dT/δ). There exists an absolute constant C

that is independent of cβ such that for any fixed δ ∈ (0, 1), the event E defined by

∀u ∈ [T ], t ∈ [T ] :∥∥∥∥∥
t∑

τ=1

φ(sτ , aτ )[V
(t)
u (sτ+1)− [PV (t)

u ](sτ , aτ )]

∥∥∥∥∥
Λ−1
t

≤ C ·Hd
√

log((cβ + 1)dT/δ)

satisfies P (E) ≥ 1− δ.

Proof. For all t = 1, . . . , T , by Lemma 24, we have ∥wt∥2 ≤ H
√
dt/λ. Hence, by combining

Lemma 26 and Lemma 25, for any ε > 0 and any fixed pair (u, t) ∈ [T ]× [T ], we have with

probability at least 1− δ/T 2 that

∥∥∥∥ t∑
τ=1

φ(sτ , aτ )[V
(t)
u (sτ+1)− [PV (t)

u ](sτ , aτ )]

∥∥∥∥2
Λ−1
t

≤ 4H2

[
2

d
log

(
t+ λ

λ

)
+ d log

(
1 +

4H
√
dt

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)

+ log

(
T 2

δ

)]
+

8t2ε2

λ
.

Using a union bound over (u, t) ∈ [T ]× [T ] and choosing ε = Hd/t and λ = 1, there exists

an absolute constant C > 0 independent of cβ such that, with probability at least 1− δ,

∥∥∥∥ t∑
τ=1

φ(sτ , aτ )[V
(t)
u (sτ+1)− [PV (t)

u ](sτ , aτ )]

∥∥∥∥2
Λ−1
t

≤ C2 · d2H2 log((cβ + 1)dT/δ),

which concludes the proof.

Proof of Lemma 4. We prove under the event E defined in Lemma 27. For convenience, we
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introduce the notation V̄ k
u (s) = V k

u (s)−mins′ V
k
u (s

′). With this notation, we can write

wk
u = Λ−1

tk

tk−1∑
τ=1

φ(sτ , aτ )V̄
k
u (sτ+1).

We can decompose ⟨ϕ,wk
u⟩ as

⟨ϕ,wk
u⟩ = ⟨ϕ,Λ−1

tk

tk−1∑
τ=1

φ(sτ , aτ )[PV̄
k
u ](sτ , aτ )⟩︸ ︷︷ ︸

(a)

+ ⟨ϕ,Λ−1
tk

tk−1∑
τ=1

φ(sτ , aτ )(V̄
k
u (sτ+1)− PV̄ k

u (sτ , aτ ))︸ ︷︷ ︸
(b)

.

Sincewk
u
∗ =

∫
V̄ k
u (s)dµ(s) = w

∗(V̄ k
u ) and V̄

k
u (s) ∈ [0, H] for all s ∈ S, it follows by Lemma 23

that ∥wk
u
∗∥2 ≤ H

√
d. Hence, the first term (a) in the display above can be bounded as

⟨ϕ,Λ−1
k

tk−1∑
τ=1

φ(sτ , aτ )[PV̄
k
u ](sτ , aτ )⟩ = ⟨ϕ,Λ−1

k

tk−1∑
τ=1

φ(sτ , aτ )φ(sτ , aτ )
Twk

u
∗⟩

= ⟨ϕ,wk
u
∗⟩ − λ⟨ϕ,Λ−1

k w
k
u
∗⟩

≤ ⟨ϕ,wk
u
∗⟩+ λ∥ϕ∥Λ−1

k
∥wk

u
∗∥Λ−1

k

≤ ⟨ϕ,wk
u
∗⟩+H

√
λd∥ϕ∥Λ−1

k

where the first inequality is by Cauchy-Schwartz and the second inequality is by Lemma 23.

Under the event E defined in Lemma 27, the second term (b) can be bounded by

⟨ϕ,Λ−1
k

tk−1∑
τ=1

φ(sτ , aτ )(V̄
k
u (sτ+1)− [PV̄ k

u ](sτ , aτ ))

≤ ∥ϕ∥Λ−1
k

∥∥∥∥ tk−1∑
τ=1

φ(sτ , aτ )(V
k
u (sτ+1)− [PV k

u ](sτ , aτ ))

∥∥∥∥
Λ−1
k

≤ C ·Hd
√

log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1
k
.

Combining the two bounds and rearranging, we get

⟨ϕ,wk
u −wk

u
∗⟩ ≤ C ·Hd

√
(log(cβ + 1)dT/δ) · ∥ϕ∥Λ−1

k
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for some absolute constant C independent of cβ. Lower bound of ⟨ϕ,wk
u−wk

u
∗⟩ can be shown

similarly, establishing

|⟨ϕ,wk
u −wk

u
∗⟩| ≤ C ·Hd

√
log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1

k
.

It remains to show that there exists a choice of absolute constant cβ such that

C
√
log(cβ + 1) + log(dT/δ) ≤ cβ

√
log(dT/δ).

Noting that log(dT/δ) ≥ log 2, this can be done by choosing an absolute constant cβ that

satisfies C
√
log 2 + log(cβ + 1) ≤ cβ

√
log 2.

A.2.2 Optimism

Proof of Lemma 5. We prove under the event E defined in Lemma 27. Fix any episode index

k > 1. We prove by induction on u = T +1, T, . . . , 1. The base case u = T +1 is trivial since

V k
T+1(s) =

1
1−γ ≥ V ∗(s) for all s ∈ S and Qk

T+1(s, a) =
1

1−γ ≥ Q∗(s, a) for all (s, a) ∈ S ×A.
Now, suppose the optimism results V k

u+1(s) ≥ V ∗(s) and Qk
u+1(s, a) ≥ Q∗(s, a) for all

(s, a) ∈ S × A hold for some u ∈ [T ]. For convenience, we use the notation V̄ k
u (s) =

V k
u (s)−mins′ V

k
u (s

′). Using the concentration bounds of regression coefficients wk
u provided

in Lemma 4, which holds under the event E , we can lower bound Qk
u(s, a) as follows.

Qk
u(s, a) =

(
r(s, a) + γ(⟨φ(s, a),wk

u+1⟩+min
s′
V k
u+1(s

′) + β∥φ(s, a)∥Λ−1
k

)
∧ 1

1− γ

≥
(
r(s, a) + γ(⟨φ(s, a),wk

u+1
∗⟩+min

s′
V k
u+1(s

′))
)
∧ 1

1− γ

= (r(s, a) + γPV k
u+1(s, a)) ∧

1

1− γ

≥ (r(s, a) + γPV ∗(s, a)) ∧ 1

1− γ
= Q∗(s, a)

where wk
u+1

∗ is a parameter that satisfies ⟨φ(s, a),wk
u+1

∗⟩ = [PV̄ k
u+1](s, a). The second

inequality is by the induction hypothesis V k
u+1 ≥ V ∗ and the last equality is by the Bellman

optimality equation for the discounted setting and the fact that Q∗ ≤ 1
1−γ .

We established Qk
u(s, a) ≥ Q∗(s, a) for all (s, a) ∈ S × A. It remains to show that

V k
u (s) ≥ V ∗(s) for all s ∈ S. Recall that the algorithm defines Ṽ k

u (·) = maxaQ
k
u(·, a).
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Hence, for all s ∈ S, we have

Ṽ k
u (s)− V ∗(s) = max

a
Qk
u(s, a)− V ∗(s)

≥ Qk
u(s, a

∗
s)−Q∗(s, a∗s)

≥ 0

where we use the notation a∗s = argmaxaQ
∗(s, a) so that V ∗(s) = Q∗(s, a∗s), establishing

Ṽ k
u (s) ≥ V ∗(s) for all s ∈ S. Hence, for all s ∈ S, we have

V k
u (s) = Ṽ k

u (s) ∧ (min
s′
Ṽ k
u (s

′) + 2 · sp(v∗))

≥ V ∗(s) ∧ (min
s′
V ∗(s′) + 2 · sp(v∗))

= V ∗(s)

where the last equality is due to sp(V ∗) ≤ 2 · sp(v∗) by Lemma 1. By induction, the proof

for the optimism results V k
u (s) ≥ V ∗(s) and Qk

u(s, a) ≥ Q∗(s, a) for u = T + 1, T, . . . , 1 is

complete.

A.2.3 Computational Complexity

The algorithm γ-LSCVI-UCB runs in episodes and the number of episodes is bounded by

O(d log T ). In each episode, value iteration is run for at most T iterations. In each itera-

tion u in episode k, one evaluation of mins′ Ṽ
k
u (s

′), tk evaluations of V k
u (·) of V k

u (·) and a

multiplication of d× d matrix (Λ−1
k ) and a d-dimensional vector is required.

One evaluation of mins′ Ṽ
k
u (s

′) involves S evaluations of Ṽ k
u (·). One evaluation of Ṽ k

u (·)
involves A evaluations of Qk

u(·, ·). One evaluation of Qk
u(·, ·) requires O(d2) operations. In

total, one evaluation of mins′ Ṽ
k
u (s

′) requires O(d2SA) operations.
Now, computing wk

u requires evaluating V k
u+1(·) for at most T states, which requires

O(d2AT ) operations; adding at most T d-dimensional vectors, which requires Td operations;

and multiplying by d× d matrix, which requires d2 operations.

In total, computing wk
u requires O(d2A(S + T )) operations. Hence, running at most T

value iterations in each episode requires O(d2A(S + T )T ) operations, and since there are at

most O(d log T ) episodes, total operations for the algorithm is Õ(d3A(S + T )T ), which is

polynomial in d, S,A, T .
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A.2.4 Other Technical Lemmas

Lemma 28 (Lemma D.1 in Jin et al. [2020]). Let Λt =
∑t

i=1ϕiϕ
T
i + λI where ϕi ∈ Rd and

λ > 0. Then,
t∑
i=1

ϕTi Λ
−1
t ϕi ≤ d.

Lemma 29 (Lemma 11 in Abbasi-Yadkori et al. [2011]). Let {ϕt}t≥1 be a bounded sequence

in Rd with ∥ϕt∥2 ≤ 1 for all t ≥ 1. Let Λ0 = I and Λt =
∑t

i=1ϕiϕ
T
i + I for t ≥ 1. Then,

t∑
i=1

ϕTi Λ
−1
i−1ϕi ≤ 2 log det(Λt) ≤ 2d log(1 + t).

Lemma 30 (Lemma 12 in Abbasi-Yadkori et al. [2011]). Suppose A,B ∈ Rd×d are two

positive definite matrices satisfying A ⪰ B. Then, for any x ∈ Rd, we have

∥x∥A ≤ ∥x∥B

√
det(A)

det(B)
.

Lemma 31 (Bound on number of episodes). The number of episodes K in Algorithm 3 is

bounded by

K ≤ d log2

(
1 +

T

λd

)
.

Proof. Let {Λk}Kk=1 and {Λ̄t}Tt=0 be as defined in Algorithm 3. Note that

tr(Λ̄T ) = tr(λId) +
T∑
t=1

tr(φ(st, at)φ(st, at)
T ) = λd+

T∑
t=1

∥φ(st, at)∥22 ≤ λd+ T.

By the AM–GM inequality, we have

det(Λ̄T ) ≤
(
tr(Λ̄T )

d

)d
≤
(
λd+ T

d

)d
.

Since we update Λk only when det(Λ̄t) doubles, det(Λ̄T ) ≥ det(ΛK) ≥ det(Λ1) · 2K =

λd · 2K . Thus, we obtain

K ≤ d log2

(
1 +

T

λd

)
as desired.
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A.3 Linear MDP Setting: Computational Efficiency

A.3.1 Concentration Inequalities

Lemma 32 (Adaptation of Lemma B.3 in Jin et al. [2020]). Under the linear MDP setting

in Theorem 2 for the γ-LSCVI-UCB algorithm with clipping oracle (Algorithm 3), let cβ be

the constant in the definition of β = cβHd
√
log(dT/δ). There exists an absolute constant C

that is independent of cβ such that for any fixed δ ∈ (0, 1), the event E defined by

∀u ∈ [T ], t ∈ [T ] :∥∥∥∥∥
t−1∑
τ=1

φ(sτ , aτ )[V
t
u(sτ+1)− [PV t

u ](sτ , aτ )]

∥∥∥∥∥
Λ−1
t

≤ C ·Hd
√
log((cβ + 1)dT/δ)

satisfies P (E) ≥ 1− δ.

Proof. By Lemma 24, we have ∥wt∥2 ≤ H
√
dt/λ for all t = 1, . . . , T . Hence, by combining

Lemma 38 and Lemma 25, for any ε > 0 and any fixed pair (u, t) ∈ [T ]× [T ], we have with

probability at least 1− δ/T 2 that

∥∥∥∥ t−1∑
τ=1

φ(sτ , aτ )[V
t
u(sτ+1)− [PV t

u ](sτ , aτ )]

∥∥∥∥2
Λ−1
t

≤ 4H2

[
2

d
log

(
t+ λ

λ

)
+ d log

(
1 +

4H
√
dt

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)
+ log

(
T 2

δ

)]

+
8t2ε2

λ
.

Using a union bound over (u, t) ∈ [T ]× [T ] and choosing ε = Hd/t and λ = 1, there exists

an absolute constant C > 0 independent of cβ such that, with probability at least 1− δ,

∥∥∥∥ t−1∑
τ=1

φ(sτ , aτ )[V
t
u(sτ+1)− [PV t

u ](sτ , aτ )]

∥∥∥∥2
Λ−1
t

≤ C2 · d2H2 log((cβ + 1)dT/δ),

which concludes the proof.

A.3.2 Proof of Lemma 4

Proof of Lemma 4. We prove under the event E defined in Lemma 32. Recall the definition

[P̂tV
t
u ](s, a) = ⟨φ(s, a), ŵt(V

t
u − V t

u(s1))⟩+ V t
u(s1)
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where ŵt(V
t
u − V t

u(s1)) = Λ−1
t

∑t−1
τ=1(V

t
u(sτ+1) − V t

u(s1)) · φ(sτ , aτ ). For convenience, we

introduce the notation V̄ k
u (s) = V k

u (s)− V k
u (s1) and w

t
u = ŵt(V̄

t
u). With these notations, we

have

[P̂tV
t
u ](s, a) = ⟨φ(s, a),wt

u⟩+ V t
u(s1), wt

u = Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )V̄
k
u (sτ+1).

We can decompose ⟨φ(s, a),wt
u⟩ as

⟨φ(s, a),wt
u⟩ = ⟨φ(s, a),Λ−1

t

t−1∑
τ=1

φ(sτ , aτ )[PV̄
t
u ](sτ , aτ )⟩︸ ︷︷ ︸

(a)

+ ⟨φ(s, a),Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )(V̄
t
u(sτ+1)− [PV̄ t

u ](sτ , aτ ))︸ ︷︷ ︸
(b)

.

Since V̄ t
u(s) ∈ [−H,H] for all s ∈ S, it follows by Lemma 23 that ∥w∗(V̄ t

u)∥2 ≤ H
√
d. Hence,

the first term (a) in the display above can be bounded as

⟨φ(s, a),Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )[PV̄
t
u ](sτ , aτ )⟩ = ⟨φ(s, a),Λ−1

t

t−1∑
τ=1

φ(sτ , aτ )φ(sτ , aτ )
Tw∗(V̄ t

u)⟩

= ⟨φ(s, a),w∗(V̄ t
u)⟩ − λ⟨φ(s, a),Λ−1

t w
∗(V̄ t

u)⟩

≤ ⟨φ(s, a),w∗(V̄ t
u)⟩+ λ∥φ(s, a)∥Λ−1

t
∥w∗(V̄ t

u)∥Λ−1
t

≤ ⟨φ(s, a),w∗(V̄ t
u)⟩+H

√
λd∥φ(s, a)∥Λ−1

t

where the first inequality is by Cauchy-Schwartz and the second inequality is by Lemma 23.

Under the event E defined in Lemma 32, the second term (b) can be bounded by

⟨φ(s, a),Λ−1
t

t−1∑
τ=1

φ(sτ , aτ )(V̄
t
u(sτ+1)− [PV̄ t

u ](sτ , aτ ))

≤ ∥φ(s, a)∥Λ−1
t

∥∥∥∥ t−1∑
τ=1

φ(sτ , aτ )(V
t
u(sτ+1)− [PV t

u ](sτ , aτ ))

∥∥∥∥
Λ−1
t

≤ C ·Hd
√
log((cβ + 1)dT/δ) · ∥φ(s, a)∥Λ−1

t
.

Combining the two bounds and rearranging, we get

⟨ϕ,wt
u −w∗(V̄ t

u)⟩ ≤ C ·Hd
√
(log(cβ + 1)dT/δ) · ∥ϕ∥Λ−1

t
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for some absolute constant C independent of cβ. Lower bound of ⟨ϕ,wt
u −w∗(V̄ t

u)⟩ can be

shown similarly, establishing

|⟨ϕ,wt
u −w∗(V̄ t

u)⟩| ≤ C ·Hd
√
log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1

t
.

Hence,

|[P̂tV t
u ](s, a)− [PV t

u ](s, a)| = |⟨φ(s, a), ŵt(V
t
u − V t

u(s1))⟩+ V t
u(s1)− ⟨φ(s, a),w∗(V t

u)⟩

= |⟨φ(s, a),wt
u −w∗(V̄ t

u)⟩|

≤ C ·Hd
√

log((cβ + 1)dT/δ) · ∥ϕ∥Λ−1
t

where the last equality uses the fact that w∗(V ) =
∫
S V (s′)µ(s′) is linear. It remains to

show that there exists a choice of absolute constant cβ such that

C
√
log(cβ + 1) + log(dT/δ) ≤ cβ

√
log(dT/δ).

Noting that log(dT/δ) ≥ log 2, this can be done by choosing an absolute constant cβ that

satisfies C
√
log 2 + log(cβ + 1) ≤ cβ

√
log 2.

Lemma 33. The clipping operation Clip(x;L,U) has the following properties:

(i) Clip(x;L,U) = Clip(x− c;L− c, U − c) + c.

(ii) Clip(x;L,U) ≤ Clip(y;L,U) if x ≤ y.

(iii) Clip(x;L,U) ≤ x if and only if x ≥ L.

(iv) Clip(x;L,U) ≥ Clip(x;L′, U ′) if L ≥ L′ and U ≥ U ′.

Proof. The proofs are straight from the definition.

A.3.3 Deviation-Controlled Value Iteration

A.3.3.1 Positive Result for Tabular MDPs

In this section, we show that the scheme used in the algorithm γ-LSCVI-UCB+ for control-

ling the deviation between chains of value functions with different clipping thresholds is not

necessary in the tabular setting.

To reuse the notations developed for the linear setting, we treat the tabular setting with

the size of the state space S and the size of the action space A as the SA-dimensional
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linear MDP setting where each pair (s, a) ∈ S × A is mapped to a one-hot encoded vector

φ(s, a) = e(s,a) ∈ RSA where the entry associated to (s, a) is equal to 1 and all other entries 0.

We show that under the tabular setting, Algorithm 9 that removes the step for clipping Qt
u

from γ-LSCVI-UCB+ successfully control the deviation of a chain of value functions from its

previous chain. Note that the algorithm uses the doubling-trick that updates the covariance

matrix used for regression only when its determinant doubles. The trick is used to facilitate

the analysis of the difference Qt
u(s, a)−Qt+1

u (s, a) shown in the proof of the lemma below.

We use λ = 0 and treat Λ−1
t as the pseudoinverse of Λ, and set ∥φ(s, a)∥Λ−1

t
= 1

1−γ when

∥φ(s, a)∥Λ−1
t

= 0, that is, when the direction φ(s, a) is never explored. Then, as shown

in the following lemma, the deviation between chains of value iterations is controlled even

without the extra scheme used for the linear MDP setting.

Lemma 34. When running γ-LSCVI-UCB+ algorithm without deviation control under the

tabular setting, for all t ∈ [T ], u ∈ [t : T ], we have

|Ṽ t+1
u (s)− Ṽ t

u(s)| ≤ mt −mt+1

|V t+1
u (s)− V t

u(s)| ≤ mt −mt+1

for all s ∈ S.

Proof. We introduce the notation Nt(s, a) =
∑t−1

τ=1 I{sτ = s, aτ = a} and Nt(s, a, s
′) =∑t−1

τ=1 I{sτ = s, aτ = a, sτ+1 = s′}, which is the visitation counts up to (excluding) time

step t of the state-action pair (s, a) and state-action-state triplet (s, a, s′), respectively. Note

that in the tabular setting, we have [P̂tV ](s, a) =
∑

s′:Nt(s,a,s′)>0(Nt(s, a, s
′)/Nt(s, a))V (s′),

which is the expectation of V with respect to the empirical transition probability kernel P̂t:

P̂t(s
′|s, a) = Nt(s, a, s

′)/Nt(s, a). Hence, P̂t is linear such that [P̂tV1](s, a) − [P̂tV2](s, a) =

[P̂t(V1 − V2)](s, a), and it satisfies [P̂t∆](s, a) ≤ ∥∆∥∞ for any function ∆ : S → R. We

exploit these facts to prove the lemma.

We show by induction on u = T + 1, . . . , 1. Fix t such that both t and t + 1 are in

the same episode k. For the base case u = T + 1, we have V t+1
T+1(s) = V t

T+1(s) = 1
1−γ

for all s ∈ S, and trivially, we have |V t+1
T+1(s) − V t

T+1(s)| ≤ mt − mt+1. Now, suppose

|V t+1
u+1(s)− V t

u+1(s)| ≤ mt −mt+1 for all s ∈ S for some u ∈ [T ]. Then,

|Qt
u(s, a)−Qt+1

u (s, a)| ≤ γ([P̂tkV
t
u+1](s, a)− [P̂tkV

t+1
u+1 ](s, a)) ≤ mt −mt+1

where the first inequality is by the fact that (· ∧ 1
1−γ ) is a contraction and the second

inequality is by the previous discussion on P̂tk being a expectation with respect to a proper

probability kernel in the tabular setting. Since maxaQ(·, a) is a contraction, it follows that
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|Ṽ t
u(s)− Ṽ t+1

u (s)| ≤ mt −mt+1. Hence, using the fact that mt ≥ mt+1, we have

V t
u(s)− V t+1

u (s)

= Clip(Ṽ t
u(s);mt,mt +H)−Clip(Ṽ t+1

u (s);mt+1,mt+1 +H)

≤ Clip(Ṽ t+1
u (s) +mt −mt+1;mt,mt +H)−Clip(Ṽ t+1

u (s);mt+1,mt+1 +H)

= Clip(Ṽ t+1
u (s);mt+1,mt+1 +H) +mt −mt+1 −Clip(Ṽ t+1

u (s);mt+1,mt+1 +H)

= mt −mt+1

where the second equality uses the property (i) of the clipping operation. Similarly, we have

V t
u(s)− V t+1

u (s) = Clip(Ṽ t
u(s);mt,mt +H)−Clip(Ṽ t+1

u (s);mt+1,mt+1 +H)

≥ Clip(Ṽ t
u(s);mt,mt +H)−Clip(Ṽ t+1

u (s);mt,mt +H)

≥ Clip(Ṽ t
u(s);mt,mt +H)−Clip(Ṽ t

u(s)−mt +mt+1;mt,mt +H)

= Clip(Ṽ t
u(s);mt,mt +H)−Clip(Ṽ t

u(s);mt+1,mt+1 +H)−mt +mt+1

≥ −mt +mt+1

where the second equality uses the property (i) of the clipping operation. The two inequalities

establish |V t
u(s)− V t+1

u (s)| ≤ mt−mt+1 as desired. By induction, the proof is complete.

A.3.3.2 Negative Result for Linear MDPs

Proof of Lemma 6. For convenience, let n = 2m. If n is odd, we can take ϕn = 0

and similar argument holds. Take ϕ1, · · ·ϕm = (η, 1/2, 0, · · · , 0) and ϕm+1, · · · ,ϕ2m =

(η,−1/2, 0, · · · , 0) where η > 0 is to be chosen later. Take y1 = · · · = y2m = ∆ and

λ = 1. Then, Λn = diag(η2n, n/4, 0, . . . , 0) + I and
∑n

i=1 yiϕi = (η∆n, 0, . . . , 0). Hence,

wn = ( η∆n
η2n+1

, 0, . . . , 0). It follows that, choosing ϕ = (1, 0, . . . , 0), we get

|⟨wn,ϕ⟩| =
η∆n

η2n+ 1
.

Choosing η = 1/
√
n, we get |⟨wn,ϕ⟩| = 1

2
∆
√
n, which completes the proof.

79



Algorithm 9: γ-LSCVI-UCB+ without Deviation Control

Input: Discounting factor γ ∈ [0, 1), regularization constant λ > 0, span H > 0,
bonus factor β > 0.

Initialize: k ← 1, tk ← 1, Λ1 ← λI, m1 ← 1
1−γ .

1 Receive state s1.
2 for t = 1, . . . , T do
3 V t

T+1(·)← 1
1−γ .

4 for u = T, T − 1, . . . , t do

5 Qt
u(·, ·)←

(
r(·, ·) + γ([P̂tkV

t
u+1](·, ·) + β∥φ(·, ·)∥Λ−1

tk

)
)
∧ 1

1−γ .

6 Ṽ t
u(·)← maxaQ

t
u(·, a).

7 V t
u(·)← Clip(Ṽ t

u(·);mt,mt +H).

8 Take action at ← argmaxa∈AQ
t
t(st, a). Receive reward r(st, at). Receive next

state st+1.
9 Λt+1 ← Λt +φ(st, at)φ(st, at)

⊤.

10 mt+1 ← Ṽ t
t+1(st+1) ∧mt.

11 if 2 det(Λtk) < det(Λt+1) then
12 k ← k + 1, tk ← t+ 1.

A.3.3.3 Deviation-Controlled Value Iteration for Linear MDPs

Lemma 35. For all t ∈ [T ], u ∈ [t : T ], we have

|Ṽ t+1
u (s)− Ṽ t

u(s)| ≤ mt−1 −mt+1

|V t+1
u (s)− V t

u(s)| ≤ mt−1 −mt+1

for all s ∈ S.

Proof. We first show that Ṽ t+1
u (s)− Ṽ t

u(s) ≥ −mt−1 +mt+1 and V
t+1
u (s)− V t

u(s) ≥ −mt−1 +

mt+1. By definitions of Qt+1
u and Qt

u, we have

Qt+1
u (s, a) = Clip(Q̃t+1

u (s, a);Lt+1
u (s, a), U t+1

u (s, a))

≥ Lt+1
u (s, a)

= (Q̃t
u(s, a)−mt +mt+1) ∨ (Q̃t−1

u (s, a)−mt−1 +mt+1)

≥ Q̃t−1
u (s, a)−mt−1 +mt+1,
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and

Qt
u(s, a) = Clip(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≤ U t
u(s, a)

= Q̃t−1
u (s, a) ∧ Q̃t−2

u (s, a)

≤ Q̃t−1
u (s, a).

Chaining the two inequalities, we get Qt+1
u (s, a) ≥ Qt

u(s, a)−mt−1 +mt+1. It follows that

Ṽ t+1
u (s) = max

a
Qt+1
u (s, a)

≥ max
a
Qt
u(s, a)−mt−1 +mt+1

= Ṽ t
u(s)−mt−1 +mt+1,

which shows the first claim. Hence,

V t+1
u (s) = Clip(Ṽ t+1

u (s);mt+1,mt+1 +H)

≥ Clip(Ṽ t
u(s)−mt−1 +mt+1;mt+1,mt+1 +H)

= Clip(Ṽ t
u(s);mt−1,mt−1 +H)−mt−1 +mt+1

≥ Clip(Ṽ t
u(s);mt,mt +H)−mt−1 +mt+1

= V t
u(s)−mt−1 +mt+1,

where the second equality is by Property (i) of the clipping operation and the second in-

equality is by Property (iv) of the clipping operation and the fact that mt−1 ≥ mt. This

shows the second claim.

Now, we show that Ṽ t+1
u (s)− Ṽ t

u(s) ≤ mt−1 −mt+1 and V t+1
u (s)− V t

u(s) ≤ mt−1 −mt+1.

By definitions of Qt+1
u and Qt

u, we have

Qt+1
u (s, a) = Clip(Q̃t+1

u (s, a);Lt+1
u (s, a), U t+1

u (s, a))

≤ U t+1
u (s, a)

= Q̃t
u(s, a) ∧ Q̃t−1

u (s, a)

≤ Q̃t−1
u (s, a),
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and

Qt
u(s, a) = Clip(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≥ Ltu(s, a)

= (Q̃t−1
u (s, a)−mt +mt+1) ∨ (Q̃t−2

u (s, a)−mt−1 +mt+1)

≥ Q̃t−1
u (s, a)−mt +mt+1

≥ Q̃t−1
u (s, a)−mt−1 +mt+1.

Chaining the two inequalities, we get Qt+1
u (s, a) ≤ Qt

u(s, a) + mt−1 − mt+1, and it follows

that

Ṽ t+1
u = max

a
Qt+1
u (s, a)

≤ max
a
Qt
u(s, a) +mt−1 −mt+1

= Ṽ t
u(s) +mt−1 −mt+1,

which shows the first claim. Hence,

V t+1
u (s) = Clip(Ṽ t+1

u (s);mt+1,mt+1 +H)

≤ Clip(Ṽ t
u(s) +mt −mt+1;mt+1,mt+1 +H)

≤ Clip(Ṽ t
u(s) +mt −mt+1;mt,mt +H)

= Clip(Ṽ t
u(s);mt+1,mt+1 +H) +mt −mt+1

≤ Clip(Ṽ t
u(s);mt,mt +H) +mt −mt+1

= V t
u(s) +mt −mt+1

≤ V t
u(s) +mt−1 −mt+1.

A.3.4 Regret Analysis

We first prove the optimism result that says the value function estimates are optimistic

estimates of the true value function.

A.3.4.1 Proof of Lemma 9

Proof of Lemma 9. We prove under the event E defined in Lemma 32, which holds with

probability at least 1− δ. We prove by induction on t and u.
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Suppose V τ
u (s) ≥ V ∗(s), Ṽ τ

u (s) ≥ V ∗(s) and Q̃τ
u(s, a) ≥ Q∗(s, a) hold for all τ = 1, . . . , t−1

and u ∈ [τ : T ] and (s, a) ∈ S × A. If we show that V t
u(s) ≥ V ∗(s), Ṽ t

u(s) and Q̃
t
u(s, a) ≥

Q∗(s, a) for all u ∈ [t : T ] and (s, a) ∈ S × A, the proof is complete by induction on t. We

show this by induction on u = T + 1, T, . . . , t.

The base case u = T + 1 holds since V t
T+1(s) =

1
1−γ ≥ V ∗(s) for all s ∈ S. Now, suppose

V t
u+1(s) ≥ V ∗(s) for all s ∈ S for some u ∈ [t+ 1 : T ]. Then,

Q̃t
u(s, a) = (r(s, a) + γ([P̂tV

t
u+1](s, a) + β∥φ(s, a)∥Λ−1

t
) ∧ 1

1− γ

≥ (r(s, a) + γ[PV t
u+1](s, a)) ∧

1

1− γ

≥ (r(s, a) + γ[PV ∗](s, a)) ∧ 1

1− γ

= Q∗(s, a) ∧ 1

1− γ
= Q∗(s, a)

where the first inequality is by the event E , the second inequality by the induction hypothesis.

The second equality is by the Bellman optimality equation. This shows Q̃t
u(s, a) ≥ Q∗(s, a)

for all (s, a) ∈ S ×A as desired. Additionally,

Qt
u(s, a) = Clip(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≥ Clip(Q∗(s, a);Ltu(s, a), U
t
u(s, a))

≥ Q∗(s, a) ∧ U t
u(s, a)

= Q∗(s, a) ∧ (Q̃t−1
u (s, a) ∧ Q̃t−2

u (s, a))

≥ Q∗(s, a)

where the second inequality is by the clipping property (ii), and the last inequality holds by

induction hypothesis. It follows that

Ṽ t
u(s) = max

a
Qt
u(s, a) ≥ max

a
Q∗(s, a) = V ∗(s).

Note that by induction hypothesis, Ṽ τ
u (s) ≥ V ∗(s) for all τ ∈ [t − 1], u ∈

[τ : T ] and s ∈ S. Hence, mt = min{Ṽ t−1
t (st), Ṽ

t−2
t−1 (st−1), . . . , Ṽ

1
2 (s2) ≥
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min{V ∗(st), V
∗(st−1), . . . , V

∗(s2),
1

1−γ} ≥ mins∈S V
∗(s). It follows that

V t
u(s) = Clip(Ṽ t

u(s);mt,mt +H)

≥ Clip(V ∗(s);mt,mt +H)

≥ Clip(V ∗(s);min
s′∈S

V ∗(s′),min
s′∈S

V ∗(s′) +H)

≥ V ∗(s)

where the last inequality uses the fact that H ≥ 2 · sp(v∗) is chosen such that sp(V ∗) ≤ H.

We have shown that if V t
u+1(s) ≥ V ∗(s) holds for all s ∈ S, then V t

u(s) ≥ V ∗(s), Ṽ t
u(s)

and Q̃t
u(s, a) hold for all (s, a) ∈ S × A. By induction on u = T, . . . , 1, it follows that

V t
u(s) ≥ V ∗(s), Ṽ t

u(s) ≥ V ∗(s) and Q̃t
u(s, a) ≥ Q∗(s, a) hold for all (s, a) ∈ S ×A. The proof

is complete by induction on t.

Now, we show an upper bound of the action value function estimate, which is a direct

consequence of the concentration inequality in Lemma 32.

A.3.4.2 Proof of Lemma 10

Proof of Lemma 10. We prove under the event E defined in Lemma 32, which holds with

probability at least 1− δ. Fix any t ∈ [T ] and u ∈ [t : T ]. By event E , we have

Q̃t
u(s, a) =

(
r(s, a) + γ([P̂tV

t
u+1](s, a) + β∥φ(·, ·)∥Λ−1

t

)
∧ 1

1− γ
≤ r(s, a) + γ[PV t

u+1](s, a) + 2β∥φ(s, a)∥Λ−1
t

for all t ∈ [T ]. Hence, by Lemma 35, we have for t ≥ 4 that

Q̃t−2
u (s, a) ≤ r(s, a) + γ[PV t−2

u+1 ](s, a) + 2β∥φ(s, a)∥Λ−1
t

≤ r(s, a) + γ[P (V t
u+1)](s, a) + 2β∥φ(s, a)∥Λ−1

t
+mt−3 −mt−1 +mt−2 −mt

≤ r(s, a) + γ[PV t
u+1](s, a) + 2β∥φ(s, a)∥Λ−1

t
+ 2(mt−3 −mt).

Therefore, for t ≥ 4, we have

Qt
u(s, a) = Clip(Q̃t

u(s, a);L
t
u(s, a), U

t
u(s, a))

≤ U t
u(s, a)

= Q̃t−1
u (s, a) ∧ Q̃t−2

u (s, a)

≤ r(s, a) + γ[PV t
u+1](s, a) + 2β∥φ(s, a)∥Λ−1

t
+ 2(mt−3 −mt)
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A.3.4.3 Proof of Main Theorem

Now, we are ready to prove the main theorem.

Proof of Theorem 2. We prove under the event E defined in Lemma 32, which occurs with

probability at least 1− δ. By Lemma 10, we have for t ≥ 4,

Qt
u(s, a) ≤ r(s, a) + γ[PV t

u+1](s, a) + 2β∥φ(s, a)∥Λ−1
t

+ 2(mt−3 −mt).

Plugging in u← t, s← st, a← at, we get

RT =
T∑
t=1

(J∗ − r(st, at))

≤
T∑
t=4

(J∗ −Qt
t(st, at) + γ[PV t

t+1](st, at) + 2β∥φ(st, at)∥Λ−1
t

+ 2(mt−3 −mt)) +O(1)

=
T∑
t=4

(J∗ − (1− γ)V t
t+1(st+1))︸ ︷︷ ︸

(a)

+
T∑
t=4

(V t
t+1(st+1)−Qt

t(st, at))︸ ︷︷ ︸
(b)

+ γ
T∑
t=4

([PV t
t+1](st, at)− V t

t+1(st+1))︸ ︷︷ ︸
(c)

+2 β
T∑
t=4

∥φ(st, at)∥Λ−1
t︸ ︷︷ ︸

(d)

+O( 1

1− γ
).

Bounding (a) By the optimism result (Lemma 9), we have V t
u(s) ≥ V ∗(s) for all t ∈ [T ]

and u ∈ [t : T ] with high probability. It follows that

J∗ − (1− γ)V t
t+1(st+1) ≤ J∗ − (1− γ)V ∗(st+1)

≤ (1− γ)sp(v∗)

where the last inequality is by the bound on the error of approximating the average-reward

setting by the discounted setting provided in Lemma 1. Hence, the term (a) can be bounded

by T (1− γ)sp(v∗).
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Bounding (b) Using Lemma 7 that controls the difference between Ṽ t+1
u and Ṽ t

u , we have

V t
t+1(st+1) = Clip(Ṽ t

t+1(st+1);mt,mt +H)

= Clip(Ṽ t
t+1(st+1)−mt +mt+1;mt+1,mt+1 +H) +mt −mt+1

≤ Clip(Ṽ t
t+1(st+1);mt+1,mt+1 +H) +mt −mt+1

≤ Ṽ t
t+1(st+1) +mt −mt+1

≤ Ṽ t+1
t+1 (st+1) + 2mt−1 − 2mt+1

where the second inequality holds because Ṽ t
t+1(st+1) ≥ mt+1 by Line 14. Hence, Term (b)

can be bounded by O( 1
1−γ ) using telescoping sums of Ṽ t+1

t+1 (st+1)− Ṽ t
t (st) and 2mt−1−2mt+1,

and the fact that V t
u ≤ 1

1−γ and mt ≤ 1
1−γ for all t ∈ [T ] and u ∈ [t : T ].

Bounding (c) Since V t
u is Ft-measurable where Ft is history up to time step t, we have

E[V t
t+1(st+1)|Ft] = [PV t

t+1](st, at), making the summation (c) a summation of a martingale

difference sequence. Since sp(V t
t+1) ≤ H for all t ∈ [T ], the summation can be bounded by

O(sp(v∗)
√
T log(1/δ)) using Azuma-Hoeffding inequality.

Bounding (d) The sum of the bonus terms can be bounded by

β
T∑
t=1

∥φ(st, at)∥Λ−1
t
≤ β
√
T

(
T∑
t=1

∥φ(st, at)∥2Λ−1
t

)1/2

≤ O(β
√
dT log T )

where the first inequality is by Cauchy-Schwartz and the last inequality is by Lemma 29.

Combining the four bounds, and choosing H = 2 · sp(v∗) and choosing β =

O(sp(v∗)d
√
log(dT/δ)) specified in Lemma 4, we get

RT ≤ O(T (1− γ)sp(v∗) + 1
1−γ + sp(v∗)

√
T log(1/δ) + sp(v∗)

√
d3T log(dT/δ) log T ).

Choosing γ such that 1
1−γ =

√
T , we get

RT ≤ O(sp(v∗)
√
d3T log(dT/δ) log T ).
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A.3.5 Covering Numbers

In this section, we provide results on covering numbers of function classes used in this paper.

We use the notation Nϵ(F , ∥ · ∥) to denote the ε-covering number of the function class F
with respect to the distance measure induced by the norm ∥ · ∥.

We first present a classical result that bounds the covering number of Euclidean ball.

Lemma 36. For any ε > 0, the d-dimensional Euclidean ball Bd(R) with radius R > 0 has

log-covering number upper bounded by

logNε(Bd(R), ∥ · ∥2) ≤ d log(1 + 2R/ε).

Using this classical result, we bound the covering number of the function class that cap-

tures the functions Q̃t
u(·, ·) encountered by our algorithm.

Lemma 37 (Adaptation of Lemma D.6 in Jin et al. [2020]). Let Q be a class of functions

mapping from S ×A to R with the following parametric form

Q(·, ·) = (wTφ(·, ·) + v + β
√
φ(·, ·)TΛ−1φ(·, ·)) ∧M (A.2)

where the parameters (w, β, v,Λ) satisfy ∥w∥ ≤ L, β ∈ [0, B] and v ∈ [0, D], and Λ is a

positive definite matrix with minimum eigenvalue satisfying λmin(Λ) ≥ λ > 0. The constant

M > 0 is fixed. Assume ∥φ(s, a)∥ ≤ 1 for all (s, a) pairs. Then

logNε(Q, ∥ · ∥∞) ≤ d log(1 + 8L/ε) + log(1 + 8D/ε) + d2 log[1 + 8d1/2B2/(λε2)].

Proof. Introducing A = β2Λ−1, we can reparameterize as

Q(·, ·) = (wTφ(·, ·) + v +
√
φ(·, ·)TAφ(·, ·)) ∧M

where the parameters (w, v,A) satisfy ∥w∥2 ≤ L, ∥A∥ ≤ B2λ−1, v ∈ [0, D]. For any pair

of functions Q1, Q2 ∈ Q with parameterization (w1, v1,A1) and (w2, v2,A2), respectively,
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using the fact that · ∧M is a contraction, we get

∥Q1 −Q2∥∞ ≤ sup
s,a
|(w⊤

1 φ(s, a) + v1 +
√
φ(s, a)⊤A1φ(s, a)) (A.3)

− (w⊤
2 φ(s, a) + v2 +

√
φ(s, a)⊤A2φ(s, a))|

≤ sup
ϕ:∥ϕ∥2≤1

|(w⊤
1 ϕ+ v1 +

√
ϕ⊤A1ϕ)− (w⊤

2 ϕ+ v2 +
√
ϕ⊤A2ϕ)|

≤ sup
ϕ:∥ϕ∥2≤1

|(w1 −w2)
⊤ϕ|+ |v1 − v2|+ sup

ϕ:∥ϕ∥2≤1

√
|ϕ⊤(A1 −A2)ϕ|

= ∥w1 −w2∥2 + |v1 − v2|+
√
∥A1 −A2∥2

≤ ∥w1 −w2∥2 + |v1 − v2|+
√
∥A1 −A2∥F (A.4)

where the third inequality uses the fact that |
√
x −√y| ≤

√
|x− y| holds for any x, y ≥ 0

and ∥ · ∥F denotes the Frobenius norm.

Let Cw be an ε/4-cover of {w ∈ Rd : ∥w∥ ≤ L} with respect to the L2-norm, CA an

ε2/4-cover of {A ∈ Rd×d : ∥A∥F ≤ d1/2B2λ−1} with respect to the Frobenius norm, and Cv
an ε/2-cover of the interval [0, D]. Then, treating the matrix A ∈ Rd×d as a long vector of

dimension d× d, and applying Lemma 36, we know that we can find such covers with

log |Cw| ≤ d log(1+8L/ε), log |CA| ≤ d2 log(1+8d1/2B2/(λε2)), log |Cv| ≤ log(1+8D/ε).

Hence, the set of functions

CQ = {Q ∈ RS×A : Q(·, ·) = wTφ(·, ·) + v +
√
φ(·, ·)TAφ(·, ·),w ∈ Cw,A ∈ CA, v ∈ Cv}

has cardinality bounded by log |CQ| ≤ d log(1 + 8L/ε) + d2 log(1 + 8d1/2B2/(λε2)) + log(1 +

8D/ε). We can show that CQ defined above is an ε-cover for Q as follows. Fix any Q ∈ Q
parameterized by (w, v,A) and consider Q̃ ∈ Q parameterized by (w̃, ṽ, Ã) where w̃ ∈ Cw
with ∥w− w̃∥2 ≤ ε/4, ṽ ∈ Cv with |v− ṽ| ≤ ε/4 and Ã ∈ CA with ∥A− Ã∥F ≤ ε2/4. Then,

by the bound (A.4), we have ∥Q− Q̃∥∞ ≤ ε as desired. This concludes the proof.

Lemma 38. Let V be a class of functions mapping from S to R defined as

V = {max
a
Q(·, a) : Q(·, ·) = Clip(Q1(·, ·);Q2(·, ·)∨Q3(·, ·), Q4(·, ·)∧Q5(·, ·), Q1, . . . , Q5 ∈ Q}

where the function class Q is defined in Lemma 37. Then,

logNϵ(V , ∥ · ∥∞) ≤ 5d log(1 + 8L/ε) + 5 log(1 + 8D/ε) + 5d2 log[1 + 8d1/2B2/(λε2)].
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Proof. Let W be a class of functions mapping from S ×A → R of the form

Q(·, ·) = Clip(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·))

where Q1, . . . , Q5 ∈ Q. Let C0 be an ϵ-cover of the function class Q with size log |C0| ≤
d log(1+8L/ε)+log(1+4D/ε)+d2 log[1+8d1/2B2/(λε2)]. Such a cover exists by Lemma 37.

Let C be defined as

C = {Q ∈ RS×A : Q(·, ·) = Clip(Q1(·, ·);Q2(·, ·)∨Q3(·, ·), Q4(·, ·)∧Q5(·, ·), Q1, . . . , Q5 ∈ C0}.

Then, we have log |C| ≤ 5 log |C0|, and we can show that C is an ε-cover of W as follows.

Consider a function W ∈ W , with W (·, ·) = Clip(Q1(·, ·);Q2(·, ·)∨Q3(·, ·), Q4(·, ·)∧Q5(·, ·))
where Q1, . . . , Q5 ∈ Q. Let Q̃i ∈ C0 be the approximation of Qi for i = 1, . . . , 5 such

that ∥Q̃i − Qi∥∞ ≤ ε. Such a Q̃i exists since C0 is an ε-cover of Q. Let Q̃(·, ·) =

Clip(Q̃1(·, ·); Q̃2(·, ·) ∨ Q̃3(·, ·), Q̃4(·, ·) ∧Q5(·, ·)). Then, Q̃ ∈ C and

Q(·, ·) = Clip(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·))

≤ Clip(Q̃1(·, ·) + ε; (Q̃2(·, ·) + ε) ∨ (Q̃3(·, ·) + ε), (Q̃4(·, ·) + ε) ∧ (Q̃5(·, ·) + ε))

= Cilp(Q̃1(·, ·); Q̃2(·, ·) ∨ Q̃3(·, ·), Q̃4(·, ·) ∧ Q̃5(·, ·)) + ε

= Q̃(·, ·) + ε.

Similarly, we have

Q(·, ·) = Clip(Q1(·, ·);Q2(·, ·) ∨Q3(·, ·), Q4(·, ·) ∧Q5(·, ·))

≥ Clip(Q̃1(·, ·)− ε; (Q̃2(·, ·)− ε) ∨ (Q̃3(·, ·)− ε), (Q̃4(·, ·)− ε) ∧ (Q̃5(·, ·)− ε))

= Cilp(Q̃1(·, ·); Q̃2(·, ·) ∨ Q̃3(·, ·), Q̃4(·, ·) ∧ Q̃5(·, ·))− ε

= Q̃(·, ·)− ε,

which shows ∥Q − Q̃∥∞ ≤ ε, and that C is an ε-cover of W . Since maxa is a contraction

map, it follows that V = {maxaQ(·, a) : Q ∈ W} is covered by Ṽ = {maxaQ(·, a) : Q ∈ C}.
The proof is complete by observing that log |Ṽ| ≤ log |C| ≤ 5 log |C0|, and that there exists

ε-cover C0 for Q with log |C0| ≤ d log(1 + 8L/ε) + log(1 + 8D/ε) + d2 log[1 + 8d1/2B2/(λε2)]

by Lemma 37.
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APPENDIX B

Analysis of Offline Constrained RL with

Linear MDPs

B.1 Covering Numbers

Lemma 39 (Covering balls. e.g. Wainwright [2019]). For any ϵ ∈ (0, 1), we have

logN (Bd(r), ∥ · ∥∞, ϵ) ≤ d log

(
1 +

2r

ϵ

)
.

Lemma 40 (Lemma 7 in Zanette et al. [2021]). Consider a feature mapping φ : S×A → Rd

such that ∥φ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A. Then for all s ∈ S, we have∑
a∈A

|πθ′(a|s)− πθ(a|s)| ≤ 8∥θ − θ′∥2

for any pair θ,θ′ ∈ Rd such that ∥θ − θ′∥2 ≤ 1
2
.

Lemma 41 (Covering softmax function class. Lemma 6 in Zanette et al. [2021]). For any

ϵ ∈ (0, 1), we have

logN (Π(B), ∥ · ∥∞,1, ϵ) ≤ d log

(
1 +

16B

ϵ

)
where the norm ∥ · ∥∞,1 is defined by

∥π − π′∥∞,1 : = sup
s∈S

∑
a∈A

|π(a|s)− π′(a|s)|.

Lemma 42 (Covering number bound for the space of v). Consider the function class

V = {vζ,π : ζ ∈ B(Dζ), π ∈ Π(Dπ)}
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where vζ,π : S → R is defined by vζ,π(s) =
∑

a π(a|s)⟨ζ, φ(s, a)⟩. Then,

N (V , ∥ · ∥∞, ϵ) ≤ N (B(Dζ), ∥ · ∥2, ϵ/2)×N (Π(Dπ), ∥ · ∥∞,1, ϵ/(2Dζ)).

and it follows that

logN (V , ∥ · ∥∞, ϵ) ≤ O(d log(DζDπ/ϵ)).

Proof. Consider Cv = {vζ,π ∈ (S → [0, 1
1−γ ]) : ζ ∈ Cζ , π ∈ Cπ} where Cζ is an ϵ/2-cover of

B(Dζ) with respect to ∥ · ∥2 and Cπ is an ϵ/(2Dζ)-cover of Π(Dπ) with respect to ∥ · ∥∞,1.

Such covers with |Cζ | ≤ (1 + 4Dζ/ϵ)
d and |Cπ| ≤ (1 + 32DζDπ/ϵ)

d exist by previous lemmas.

Consider any vζ,π ∈ V . Then, there exists ζ ′ ∈ Cζ and π′ ∈ Cπ with ∥ζ − ζ ′∥2 ≤ ϵ/2 and

∥π − π′∥∞,1 = sups∈S
∑

a∈A |π(a|s) − π′(a|s)| ≤ ϵ/(2Dζ). Then for any s ∈ S, vζ′,π′ ∈ Cv
satisfies

|vζ,π(s)− vζ′,π′(s)| = |
∑
a

π(a|s)⟨ζ, φ(s, a)⟩ −
∑
a

π′(a|s)⟨ζ ′, φ(s, a)⟩|

= |
∑
a

(π(a|s)− π′(a|s))⟨ζ, φ(s, a)⟩+ π′(a|s)⟨ζ − ζ ′, φ(s, a)⟩|

≤ Dζ

∑
a

|π(a|s)− π′(a|s)|+
∑
a

π′(a|s)ϵ/2

≤ ϵ.

It follows that Cv is an ϵ-cover of V with respect to ∥ · ∥∞ with |Cv| = |Cζ ||Cπ| and we are

done.

B.2 Concentration Inequalities

Lemma 43 (Matrix Bernstein). Consider a finite sequence {Sk} of independent, ran-

dom matrices with common dimension d1 × d2. Assume that ESk = 0 and ∥Sk∥ ≤ L

for each index k. Let Z =
∑

k Sk and define v(Z) : =max{∥E[ZZT ]∥, ∥E[ZTZ]∥} =

max{∥
∑

k E[SkSTk ]∥, ∥
∑

k E[STk Sk]∥}. Then,

P (∥Z∥ ≥ t) ≤ (d1 + d2) exp

(
−t2/2

v(Z) + Lt/3

)
and it follows that with probability at least 1− δ, we have

∥Z∥ ≤ 2L log((d1 + d2)/δ)

3
+
√

2v(Z) log((d1 + d2)/δ).
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Lemma 44. There exists an example where λ∗ = Eµ∗ [φ(s, a)] is not in the span of

φ(s1, a1), . . . ,φ(sn, an) with probability at least 1/2.

Proof. Consider the case where S = {s}, A = {a1, a2}, d = 2, and φ(s, a1) = e1 and

φ(s, a2) = e2. Let µ = µ∗ and µ(s, a1) = p and µ(s, a2) = 1− p. Let F be the event where

λ∗ is not in the span of φ(s1, a1), . . . ,φ(sn, an). Then,

P (F ) = (1− p)n ≥ 1

2

as long as we choose p ≤ 1− 2−1/n.

Proof of Lemma 13. Let ck = w∗(sk, ak) = µ∗(sk, ak)/µ(sk, ak), k = 1, . . . , n. Note that

µ(sk, ak) > 0, k = 1, . . . , n must hold, otherwise such sk, ak cannot be sampled. By the

concentrability assumption, we have ck ∈ [0, C∗], k = 1, . . . , n. Let zk = ckφ(sk, ak) for

k = 1, . . . , n. Then, ∥zk∥ ≤ C∗ and

E[zk] = E(s,a)∼µ[w
∗(s, a)φ(s, a)] = E(s,a)∼µ

[
µ∗(s, a)

µ(s, a)
φ(s, a)

]
= E(s,a)∼µ∗ [φ(s, a)] = λ

∗.

Define Sk = zk − λ∗, k = 1, . . . , n Then, E[Sk] = 0 and ∥Sk∥2 ≤ ∥zk∥2 + E[∥zk∥2] ≤ 2C∗

and ∥E[STk Sk]∥2 ≤ E[zTk zk] ≤ (C∗)2 and ∥E[SkSTk ]∥2 ≤ (C∗)2. Applying matrix Bernstein

inequality (Lemma 43) on {Sk}nk=1, we have

∥ 1
n

n∑
k=1

Sk∥2 = ∥
1

n
w∗(sk, ak)φ(sk, ak)− λ∗∥2 ≤

4C∗ log((d+ 1)/δ)

3n
+

√
8(C∗)2 log((d+ 1)/δ)

n

with probability at least 1− δ and the result follows.

Lemma 45. Under the feature coverage assumption 6, there exists λ̂∗ ∈ Rd of the form

λ̂∗ = 1
n

∑n
k=1 ckφ(sk, ak) with ck ∈ [0, C∗], k = 1, . . . , n such that

∥λ̂∗ − λ∗∥2 ≤ O

(
C∗

√
log(d/δ)

n

)

with probability at least 1− δ.

Proof. Since λ∗ ∈ Col(Λ), we have λ∗ = ΛΛ†λ∗ and it follows that

λ∗ = ΛΛ†λ∗

= E[φ(s, a)φ(s, a)TΛ†λ∗]

= E[⟨φ(s, a),Λ†λ∗⟩φ(s, a)].
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Let ck = ⟨φ(sk, ak),Λ†λ∗⟩. Then, by Cauchy-Schwartz, we have

|ck| ≤ ∥φ(sk, ak)∥2∥Λ†λ∗∥2 ≤ C∗

where the last inequality follows by the feature coverage assumption. Using matrix Bernstein

inequality as is done in the proof of Lemma 13, the result follows.

B.2.1 Proof of Lemma 15

Proof of Lemma 15. Consider λ = 1
n

∑n
k=1 ckφ(sk, ak) with |ck| ≤ B, k = 1, . . . , n. Let

Λ̂n = UDUT be the eigendecomposition of Λ̂n = 1
n

∑n
k=1φ(sk, ak)φ(sk, ak)

T where

D = diag(d1, . . . , dd) with d1 ≥ · · · ≥ dd ≥ 0. Then, we have D = UT Λ̂nU =
1
n

∑n
k=1U

Tφ(sk, ak)φ(sk, ak)
TU and it follows that di = 1

n

∑n
k=1⟨ui,φ(sk, ak)⟩2 where di

is the ith diagonal entry of D. Also,

λ =
1

n

n∑
k=1

ckφ(sk, ak)

=
1

n

n∑
k=1

ck

d∑
i=1

⟨φ(sk, ak),ui⟩ui

=
d∑
i=1

(
1

n

n∑
k=1

ck⟨φ(sk, ak),ui⟩

)
ui.

where the second equality follows by x = UUTx =
∑d

i=1⟨x,ui⟩ui for any vector x ∈ Rd.

So,

λT Λ̂†
nλ =

d′∑
i=1

(
1

n

n∑
k=1

ck⟨φ(sk, ak),ui⟩

)2

/di

=
1

n

d′∑
i=1

(
n∑
k=1

ck⟨φ(sk, ak),ui⟩

)2/(
n∑
k=1

⟨φ(sk, ak),ui⟩2
)

≤ 1

n

d′∑
i=1

(
n∑
k=1

c2k

)
≤ dB2

where d′ is the number of strictly positive diagonal entries in D and the first inequality

follows by Cauchy-Schwartz.
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B.2.2 Proof of Lemma 14

Lemma 46. Let v : S → [0, Dv]. With probability at least 1− δ, we have

∥Ψv − Ψ̂v∥nΛ̂n+I ≤ O
(
Dv

√
d log(n/δ)

)
where Ψ̂v is the least squares estimate defined in (3.13).

Proof. Note that ∥Ψv∥2 ≤ Dv

√
d by the boundedness assumption on Ψ. The result follows

directly from Theorem 2 in Abbasi-Yadkori et al. [2011].

Proof of Lemma 14. Let C be an (1/n)-cover on V . By Lemma 42, such a cover with log |C| ≤
O(d log(DζDπn)) exists. Applying a union bound over C and using the concentration bound

in Lemma 46, we get ∥∥∥Ψv − Ψ̂v
∥∥∥
nΛ̂n+I

≤ O
(
Dv

√
d log(DζDπn/δ)

)
(B.1)

for all v ∈ C with probability at least 1− δ. For any v ∈ V , we can find v′ in the cover that

satisfies ∥v − v′∥∞ ≤ 1/n. Hence,∥∥∥Ψv − Ψ̂v
∥∥∥
nΛ̂n+I

≤ ∥Ψ(v − v′) +Ψv′ − Ψ̂v′ + Ψ̂v′ − Ψ̂v∥nΛ̂n+I

≤ ∥Ψ(v − v′)∥nΛ̂n+I +

∥∥∥∥∥(nΛ̂n + I)
−1

n∑
k=1

(v′(s′k)− v(s′k))φ(sk, ak)

∥∥∥∥∥
nΛ̂n+I

+O
(
Dv

√
d log(DζDπn/δ)

)
.

The first term can be bounded using the boundedness assumption on Ψ by

∥Ψ(v − v′)∥2
nΛ̂n+I

≤ ∥Ψ(v − v′)∥22∥nΛ̂n + I∥2 ≤ d/n2 · (1 + n) ≤ O(1)
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as long as n ≥ d. The second term can be bounded by∥∥∥∥∥(nΛ̂+ I)−1

n∑
k=1

(v′(s′k)− v(s′k))φ(sk, ak)

∥∥∥∥∥
2

nΛ̂+I

=
n∑
k=1

(v′(s′k)− v(s′k))φ(sk, ak)T (nΛ̂+ I)−1

n∑
k=1

(v′(s′k)− v(s′k))φ(sk, ak)

≤
n∑
k=1

∥(v′(s′k)− v(s′k))φ(sk, ak)∥22

≤
n∑
k=1

(v′(s′k)− v(s′k))2

≤ 1

where the first inequality uses nΛ̂+ I ≽ I. The result follows.

B.3 Computational Efficiency

In this section, we explain why our algorithms are computationally efficient by showing that

the algorithms only require computing quantities for states that appear in the offline dataset

to compute the policy πt at each step. This is how we avoid computation complexity that

scales with the size of the state space.

Recall that πt = σ(α
∑t−1

i=1 Φζi) and by definition of σ(·),

πt(a|s) =
exp(α

∑t−1
i=1φ(s, a)

Tζi)∑
a′ exp(α

∑t−1
i=1φ(s, a

′)Tζi)
.

We argue that the algorithm only needs to compute πt(a|s) for the states s that appear

as the next state in the dataset D. There are two parts where the object πt is used in the

algorithm:

Line 3 in Algorithm 5 and Line 4 in Algorithm 6 In these lines, the object πt is used

to compute

Ψ̂vζt,πt = (nΛ̂ + I)−1

n∑
k=1

vζt,πt(s
′
k)φ(sk, ak)

where vζt,πt(s
′
k) = (nΛ̂ + I)−1

∑
a πt(a|s′k)⟨ζt,φ(s′k, a)⟩. As we claimed, we only need to

compute πt(·|s′k) for s′k that appear in the dataset D.
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Line 2 in Algorithm 5 and Line 2 in Algorithm 6 In this lines, the object πt is used

to compute ΦT µ̂λt,πt for λt of the form λt =
1
n

∑n
k=1 ckφ(sk, ak). By definition,

µ̂λ,π = π ◦ E[(1− γ)ν0 + γΨ̂λ = π ◦ E[(1− γ)es0 + γ
1

n

n∑
k=1

ckes′k ]

and it follows that

ΦT µ̂λt,πt = (1− γ)ΦT (πt ◦Ees0) + γ
1

n

n∑
k=1

ckΦ
T (πt ◦Ees′k)

= (1− γ)
∑
a

πt(s0, a)φ(s0, a) + γ
1

n

n∑
k=1

ck
∑
a

πt(a|s′k)φ(s′k, a).

Again, we only need to compute πt(·|s′k) for s′k that appears in D.

B.4 Regret Analysis

B.4.1 Bounding the Regret of π-Player

Lemma 47 (Mirror Descent, Lemma D.2 in Gabbianelli et al. [2024a]). Let q1, . . . , qT be a

sequence of functions from S × A to R with ∥qt∥∞ ≤ Dq for t = 1, . . . , T . Given an initial

policy π1 : S → ∆(A) and a learning rate α > 0, define the sequence of policies π2, . . . , πT+1

such that

πt+1(a|s) ∝ πt(a|s) exp(αqt(s, a)).

Then, for any comparator policy π∗, we have

T∑
t=1

∑
s∈S

νπ
∗
(s)⟨π∗(·|s)− πt(·|s), qt(s, ·)⟩ ≤

H(π∗∥π1)
α

+
αTD2

q

2

where H(π∥π′) : =
∑

s∈S ν
π(s)D(π(·|s)∥π′(·|s)) is the conditional entropy.

Lemma 48 (Lemma B.3 in Gabbianelli et al. [2024a]). The sequence of policies π1, . . . , πT

produced by an exponentiation algorithm πt+1 = σ(α
∑t

i=1Φζi) satisfies

T∑
t=1

∑
s∈S

νπ
∗
(s)
∑
a∈A

(π∗(a|s)− πt(a|s))⟨ζt,φ(s, a)⟩ ≤
log |A|
α

+
αTD2

φD
2
ζ

2

where ∥ζt∥2 ≤ Dζ, t = 1, . . . , T and ∥φ(·, ·)∥2 ≤ Dφ.
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B.4.2 Bounding the regret of ζ-player

Proof of Lemma 11. Recall µλ(c),π(s, a) = π(a|s)
[
(1− γ)ν0(s) + γ(ΨTλ(c))s

]
where we use

the notation (x)s to denote the sth entry of vector x. We can write

ΦTµλ(c),π =
∑
s,a

µλ(c),π(s, a)φ(s, a)

=
∑
s,a

π(a|s)[(1− γ)ν0(s) + γ(ΨTλ(c))s]φ(s, a)

= (1− γ)
∑
a

π(a|s0)φ(s0, a) + γ
∑
s

(ΨTλ(c))s
∑
a

π(a|s)φ(s, a)

= (1− γ)φ(s0, π) + γ
∑
s

(ΨTλ(c))sφ(s, π)

where we use the notation φ(s, π) =
∑

a π(a|s)φ(s, a). Recall that λ(c) =
1
n

∑n
k=1 ckφ(sk, ak) where ck ∈ [−B,B], k = 1, . . . , n. Following the same argument for

expanding ΦTµλ(c),π, we get

ΦT µ̂λ(c),π = (1− γ)φ(s0, π) + γ
∑
s

(Ψ̂Tλ(c))sφ(s, π)

= (1− γ)φ(s0, π) +
γ

n

n∑
k=1

ckφ(s
′
k, π).

Also, using ΨTλ(c) = 1
n

∑n
k=1 ckΨ

Tφ(sk, ak) = 1
n

∑n
k=1 ckP (·|sk, ak) =

1
n

∑n
k=1 ckE[es′k |sk, ak], we get

ΦTµλ(c),π = (1− γ)φ(s0, π) + γ
∑
s

(ΨTλ(c))sφ(s, π)

= (1− γ)φ(s0, π) +
γ

n

n∑
k=1

ckE[φ(s′k, π)|sk, ak].

Hence,

∥ΦT (µλ(c),π − µ̂λ(c),π)∥2 = γ

∥∥∥∥∥ 1n
n∑
k=1

ck(φ(s
′
k, π)− E[φ(s′k, π)|sk, ak])

∥∥∥∥∥
2

≤ O

(
B

√
log(d/δ)

n

)

where the last inequality uses Matrix Bernstein inequality (Lemma 43) with Sk =

ckφ(s
′
k, π)− ckE[φ(s′k, π)|sk, ak].
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Lemma 49. Given a fixed λ ∈ Cn(B), we have for all π ∈ Π(Dπ) that

∥ΦTµλ,π −ΦT µ̂λ,π∥2 ≤ O

(
B

√
log(d/δ) + d log(Dπdn)

n

)

with probability at least 1− δ.

Proof. Consider an ε-cover of Π(Dπ) with covering balls when measuring distances with the

norm ∥π− π′∥∞,1 = sups∈S
∑

a∈A |π(a|s)− π′(a|s)|. By Lemma 41, there exists such a cover

with log covering number

logN (Π(Dπ), ∥ · ∥∞,1, ε) ≤ d log

(
1 +

16Dπ

ε

)
.

Fix any π ∈ Π(Dπ) and consider its nearest cover center π′ measuring distances by ∥ · ∥∞,1.

Then,

∥ΦTµλ,π −ΦT µ̂λ,π∥2 ≤ ∥ΦTµλ,π −ΦTµλ,π′︸ ︷︷ ︸
(i)

∥2 + ∥ΦTµλ,π′ −ΦT µ̂λ,π′︸ ︷︷ ︸
(ii)

∥2

+ ∥ΦT µ̂λ,π′ −ΦT µ̂λ,π︸ ︷︷ ︸
(iii)

∥2.

Note that

ΦTµλ,π =
∑
s,a

µλ,π(s, a)φ(s, a)

=
∑
s,a

π(a|s)[(1− γ)ν0(s) + γ(ΨTλ)s]φ(s, a)

= (1− γ)
∑
a

π(a|s0)φ(s0, a) + γ
∑
s

(ΨTλ)s
∑
a

π(a|s)φ(s, a)

= (1− γ)φ(s0, π) + γ
∑
s

(ΨTλ)sφ(s, π), (B.2)

where we use the notation φ(s, π) =
∑

a π(a|s)φ(s, a). The first term (i) can be bounded
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by

∥ΦTµλ,π −ΦTµλ,π′∥2 ≤ (1− γ) ∥φ(s0, π − π′)∥2 + γ

∥∥∥∥∥∑
s

(ΨTλ)sφ(s, π − π′)

∥∥∥∥∥
2

= (1− γ)

∥∥∥∥∥∑
a

(π(a|s0)− π′(a|s0))φ(s0, a)

∥∥∥∥∥
2

+ γ

∥∥∥∥∥∑
s

(ΦTλ)s
∑
a

(π(a|s)− π′(a|s))φ(s, a)

∥∥∥∥∥
2

≤ (1− γ)
∑
a

|π(a|s0)− π′(a|s0)|∥φ(s0, a)∥2

+ γ
∑
s

(|Ψ|T |λ|)s
∑
a

|π(a|s)− π′(a|s)|∥φ(s, a)∥2

≤ (1− γ)ε+ γε1TS |Ψ|T |λ|

≤ (1− γ)ε+ γεDψ

√
d∥λ∥2

≤ (1− γ)ε+ γε
√
dDψB

where the second to last inequality uses the boundedness assumption on Ψ and the last

inequality follows by ∥λ∥2 ≤ B.

The second term (ii) can be bounded by a union bound of the concentration inequality

in Lemma 11 across all π′ in the cover, resulting in the following bound

∥ΦTµλ,π′ −ΦT µ̂λ,π′∥2 ≤ O

(
B

√
log(d/δ) + d log(Dπ/ε)

n

)
.

To bound the third term (iii), note that

ΦT µ̂λ,π = (1− γ)φ(s0, π) + γ
∑
s

(Ψ̂Tλ)sφ(s, π)

= (1− γ)φ(s0, π) +
γ

n

n∑
k=1

ckφ(s
′
k, π). (B.3)

where λ = 1
n

∑n
k=1 ckφ(sk, ak). Therefore,

∥ΦT µ̂λ,π′ −ΦT µ̂λ,π∥2 ≤ (1− γ)∥φ(s0, π − π′)∥2 +
γ

n

n∑
k=1

ck∥φ(s′k, π − π′)∥2

≤ (1− γ)ε+ γBε
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where the last inequality uses ∥φ(s, π − π′)∥2 = ∥
∑

a(π(a|s) − π′(a|s))φ(s, a)∥2 ≤∑
a |π(a|s)− π′(a|s)|∥φ(s, a)∥2 ≤ ε. Combining the bounds of the three terms, we get

∥ΦTµλ,π −ΦT µ̂λ,π∥2 ≤ O

(
B

√
log(d/δ) + d log(Dπ/ε)

n
+
√
dBε

)
.

Choosing ε = 1/
√
dn, we get the desired result.

Lemma 50. The sequences {πt}, {λ(c′t)}, {ζt} produced by Algorithm 5 satisfies

Regζt = ⟨ζt − ζπt ,ΦTµλ(c′t),πt
− λ(c′t)⟩ ≤ O

(
C∗d

1− γ

√
log(dnT (log |A|)/δ)

n

)

for t = 1, . . . , T with probability at least 1− δ.

Proof. Recall that I ⊆ {1, . . . , n} is an index set of size d such that {φ(sj, aj)}j∈I is a

2-approximate barycentric spanner for {φ(sk, ak)}nk=1. Let C ′n(C∗) = {c′ ∈ [−2C∗, 2C∗]n :

c′j = 0 if j ∈ I}. Consider a ε-cover of C ′n(C∗) with respect to distance induced by ∥ · ∥∞
where ε is to be chosen later, and let c′′t be the closest covering center to c′t. There exists a

cover with covering number (1 + 4C∗/ε)d. We can decompose the regret of ζ-player at step

t into

Regζt = ⟨ζt − ζπt ,ΦTµλ(c′t),πt
− λ(c′t)⟩

= ⟨ζt − ζπt ,ΦTµλ(c′t),πt
−ΦTµλt(c′′t ),πt

⟩︸ ︷︷ ︸
(a)

+ ⟨ζt − ζπt ,ΦTµλ(c′′t ),πt
−ΦT µ̂λ(c′′t ),πt

⟩︸ ︷︷ ︸
(b)

+ ⟨ζt − ζπt ,ΦT µ̂λ(c′′t ),πt
−ΦT µ̂λ(c′t),πt

⟩︸ ︷︷ ︸
(c)

+ ⟨ζt − ζπt ,ΦT µ̂λ(c′t),πt
− λ(c′t)⟩︸ ︷︷ ︸

(d)

.

Bounding (a) Recall from equation (B.2) that

ΦTµλ,π = (1− γ)φ(s0, π) + γ
∑
s

(ΨTλ)sφ(s, π)

where we use the notation φ(s, π) =
∑

a π(a|s)φ(s, a). Also, since ∥c′t − c′′t ∥∞ ≤ ε, we have

∥λ(c′t)− λ(c′′t )∥2 =
1

n

∥∥∥∥∥
n∑
k=1

(c′tk − c′′tk)φ(sk, ak)

∥∥∥∥∥
2

≤ 1

n

n∑
k=1

|c′tk − c′′tk|∥φ(sk, ak)∥2 ≤ ε.
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Hence,

∥ΦTµλ(c′t),πt
−ΦTµλ(c′′t ),πt

∥2 = γ∥
∑
s∈S

(ΨT (λ(c′t)− λ(c′′t )))sφ(s, π)∥

≤ γ
∑
s∈S

|(ΨT (λ(c′t)− λ(c′′t )))s|∥φ(s, π)∥2

≤ γ
∑
s∈S

|(ΨT (λ(c′t)− λ(c′′t )))s|

≤ γε1TS |Ψ|T1d
≤ γεDψd

where we use the notation |Ψ| for the matrix that takes element-wise absolute value

of Ψ. The second inequality follows since ∥ψ(s, π)∥2 = ∥
∑

a π(a|s)φ(s, a)∥2 ≤∑
a π(a|s)∥φ(s, a)∥2 ≤

∑
a π(a|s) = 1. The last inequality follows by the boundedness

assumption on Φ. Hence, choosing ε = 1/
√
dn, Term (a) can be bounded by

⟨ζt − ζπtwt ,Φ
Tµλt,πt −ΦTµλ′

t,πt
⟩ ≤ ∥ζt − ζπtwt∥2∥Φ

Tµλt,πt −ΦTµλ′
t,πt
∥2

≤ 2γDζDψ

√
d√

n
.

Bounding (b) The second term can be bounded by a union bound of the concentration

inequality in Lemma 49 over a (1/
√
dn)-cover of C ′n(C∗) = {c′ ∈ [−2C∗, 2C∗]n : c′j = 0 if j ∈

I}, which gives

⟨ζt − ζπt ,ΦTµλ′
t,πt
−ΦT µ̂λ′

t,πt
⟩ ≤ ∥ζt − ζπt∥2∥ΦTµλ′

t,πt
−ΦT µ̂λ′

t,πt
∥2

≤ O

(
DζC

∗

√
d log(Dπdn/δ)

n

)

Bounding (c) Recall from (B.3) that ΦT µ̂λ,π = (1−γ)φ(s0, π)+ γ
n

∑n
k=1 ckφ(s

′
k, π). Since

∥c′t − c′′t ∥∞ ≤ 1/
√
dn, we have

∥ΦT µ̂λ(c′′t ),πt
−ΦT µ̂λ(c′t),πt

∥2 =
γ

n

∥∥∥∥∥
n∑
k=1

(c′′tk − c′tk)φ(s′k, πt)

∥∥∥∥∥
2

≤ γ/
√
dn.

It follows by Cauchy-Schwartz that

⟨ζt − ζπt ,ΦT µ̂λ(c′′t ),πt
−ΦT µ̂λ(c′t),πt

⟩ ≤ O(Dζ/
√
dn).
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Bounding (d) Recall that ζ-player chooses ζt ∈ Bd(Dζ) greedily that minimizes

⟨·,ΦT µ̂λ(c′t),πt
− λ(c′t)⟩ and that ζπtwt ∈ Bd(Dζ). Hence, the term (d) can be bounded by

⟨ζt − ζπt ,ΦT µ̂λ(c′t),πt
− λ(c′t)⟩ ≤ 0.

Combining all the bounds, and using Dζ : =
√
d +

γDψ
√
d

1−γ ≤ O(
√
d

1−γ ) and Dπ = αTDζ ≤
O(
√

log |A|T ), we get

Regζt ≤ O

(
C∗d

1− γ

√
log(dnT (log |A|)/δ)

n

)
.

B.4.3 Bounding the Regret of λ-Player

Lemma 51. The sequences {πt}, {λ(ct)}, {ζt} produced by Algorithm 5 satisfies

1

T

T∑
t=1

Regλt ≤ O

(
C∗d3/2

1− γ

√
log(dnT (log |A|)/δ)

n

)
+ ϵλopt(T )

with probability at least 1− δ.

Proof. The regret of λ-player at step t can be bounded by

Regλt = f(ζt,λ
∗, πt)− f(ζt,λ(ct), πt)

= ⟨λ∗ − λ(ct),θ + γΨvζt,πt − ζt⟩

= ⟨λ̂∗ − λ(ct),θ + γΨ̂vζt,πt − ζt⟩+ γ⟨λ̂∗ − λ(ct),Ψvζt,πt − Ψ̂vζt,πt⟩

+ ⟨λ∗ − λ̂∗,θ + γΨvζt,πt − ζt⟩.

The average of the first term over t = 1, . . . , T is ϵλopt(T ) which vanishes as T increases since

the λ-player employs a no-regret online convex optimization oracle (Definition 2) on the
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sequence of functions ⟨·,θ + γΨ̂vζt,πt − ζt⟩. The second term can be bounded as follows.

⟨λ̂∗ − λ(ct),Ψvζt,πt − Ψ̂vζt,πt⟩ ≤ ∥λ̂∗ − λ(ct)∥(nΛ̂n+I)−1∥Ψvζt,πt − Ψ̂vζt,πt∥nΛ̂n+I

≤ 1√
n
∥λ̂∗ − λ(ct)∥Λ̂†

n
∥Ψvζt,πt − Ψ̂vζt,πt∥nΛ̂n+I

≤ 2√
n
C∗
√
d · O(Dv

√
d log(DζDπn/δ))

≤ O

(
C∗d3/2

1− γ

√
log(dnT (log |A|)/δ)

n

)

where the second inequality follows since nΛ̂n + I ≽ nΛ̂n and the fact that both λ̂∗ and

λ(ct) are in the column space of Λ̂; the third inequality follows by Lemma 15 and Lemma 14

and the fact that the range of vζt,πt is [0, Dζ ] so that we can set Dv = Dζ ; the last inequality

follows by Dζ ≤ O(
√
d

1−γ ) and Dπ = αTDζ = O(
√
T log |A|). The third term can be bounded

by

⟨λ∗ − λ̂∗,θ + γΨvζt,πt − ζt⟩ ≤ ∥λ∗ − λ̂∗∥2∥θ + γΨvζt,πt − ζt∥2

≤ O

(
C∗

√
log(d/δ)

n

)
· O(Dζ

√
d)

≤ O

(
C∗d

1− γ

√
log(d/δ)

n

)

where the second inequality follows by Lemma 13 and the last inequality follows by the

bound Dζ ≤ O(
√
d

1−γ ) and the boundedness assumption on Ψ. Combining the three bounds

completes the proof.

B.5 Details in Offline Constrained RL Setting

B.5.1 Lagrangian Formulation

Recall that in the linear CMDP setting, the optimization problem of interest is

max
π

J0(π)

subject to Ji(π) ≥ τi, i = 1, . . . , I.
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which we denote by P(τ ) parameterized by the thresholds τ ∈ RI . We write the Lagrangian

function corresponding to the optimization problem P(τ ) as

L(π,w) : = J(π) +w · (J(π)− τ )

where J(·) = (J1(·), . . . , JI(·)), τ = (τ1, . . . , τI) and w ∈ RI is the Lagrangian multipliers

corresponding to the constraints. The linear programming formulation of the constrained

reinforcement learning problem is:

max
µ≥0

⟨r0,µ⟩

subject to ⟨ri,µ⟩ ≥ τi, i = 1, . . . , I,

ETµ = (1− γ)ν0 + γP Tµ.

Using ri = Φθi, i = 0, . . . , I, and P = ΦΨ, which holds by the linear CMDP assumption

(Assumption 5), the linear program can be written as

max
µ≥0

⟨θ0,ΦTµ⟩

subject to ⟨θi,ΦTµ⟩ ≥ τi, i = 1, . . . , I,

ETµ = (1− γ)ν0 + γΨTΦTµ

Note that the optimization variable µ ∈ R|S×A| is high-dimensional that depends on the

size of S. With the goal of computational and statistical efficiency, we introduce a low-

dimensional optimization variable λ = ΦTµ ∈ Rd, which has the interpretation of the aver-

age occupancy in the feature space. With the reparametrization, the optimization problem

becomes
max
µ≥0,λ

⟨θ0,λ⟩

subject to ⟨θi,λ⟩ ≥ τi, i = 1, . . . , I,

ETµ = (1− γ)ν0 + γΨTλ

λ = ΦTµ.

The dual of the linear program above is

min
w≥0,v,ζ

(1− γ)⟨ν0,v⟩ − ⟨w, τ ⟩

subject to ζ = θ0 +Θw + γΨv

Ev ≥ Φζ.
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where we write Θ =
[
θ1 · · · θI

]
∈ Rd×I . The Lagrangian associated to this pair of linear

programs is

L(λ,µ;v,w, ζ) = (1− γ)⟨ν0,v⟩+ ⟨λ,θ0 + γΨv − ζ⟩+ ⟨µ,Φζ −Ev⟩ − ⟨w, τ −ΘTλ⟩

= ⟨λ,θ0⟩+ ⟨v, (1− γ)ν0 + γΨTλ−ETµ⟩+ ⟨ζ,ΦTµ− λ⟩ − ⟨w, τ −ΘTλ⟩.

Note that the optimization variables λ, ζ ∈ Rd and w ∈ RI are low-dimensional, but

µ ∈ R|S×A| and v ∈ R|S| are not. With the goal of running a primal-dual algorithm on

the Lagrangian using only low-dimensional variables, we introduce policy variable π and

parameterize µ and v, as was done for the unconstrained RL setting, by

µλ,π(s, a) = π(a|s) [(1− γ)ν0(s) + γ⟨ψ(s),λ⟩]

vζ,π(s) =
∑
a

π(a|s)⟨ζ,φ(s, a)⟩.

Note that the choice of µλ,π makes the Bellman flow constraint ETµ = (1 − γ)ν0 + γΨTλ

of the primal problem satisfied. Also, the choice of vζ,π makes ⟨µλ,π,Φζ − Evζ,π⟩ = 0.

Using the above parameterization, the Lagrangian can be rewritten in terms of ζ,λ,w, π as

follows:

g(λ, ζ,w, π) = ⟨λ,θ0⟩+ ⟨ζ,ΦTµλ,π − λ⟩ − ⟨w, τ −ΘTλ⟩ (B.4)

= (1− γ)⟨ν0,vζ,π⟩+ ⟨λ,θ0 + γΨvζ,π − ζ⟩ − ⟨w, τ −ΘTλ⟩. (B.5)

At the cost of having to keep track of π, we can now run a primal-dual algorithm on the

low-dimensional variables ζ, λ and w. As is the case for the unconstrained RL setting, the

introduction of π in the equation does not make the algorithm inefficient because we can

only keep track of the distribution π(s|a) for state-action pairs that appear in the dataset.

B.5.2 Technical Lemmas on Lagrangian

For a linearized reward function u = r0 + w · r where we use the notation r to denote

the vector of reward functions r1, . . . , rI such that u(s, a) = r0(s, a) +
∑I

i=1wiri(s, a), the

Bellman equation becomes

Qπ
w = Φ(θ0 +Θw + γΨV π

w ) = Φζπw (B.6)

105



where we write Qπ
w and V π

w as the value functions of the policy π with respect to the

linearized reward function r0 +w · r and define

ζπw : =θ0 +Θw + γΨV π
w .

Note that if w ∈ Dw∆
I , we have ∥ζπw∥2 ≤ 1 + Dw + γ

√
d(1+Dw)
1−γ = O

(
Dw

√
d

1−γ

)
. We define

Dζ : = 1 +Dw + γ
√
d(1+Dw)
1−γ .

Lemma 52. Let ζπw be the parameter that satisfies Qπ
w = Φζπw for a given w ∈ RI and a

policy π. Then,

L(π,w) = g(ζπw,λ, π,w)

for all λ ∈ Rd in the span of {φ(s, a)}(s,a)∈S×A.

Proof. For convenience, define the reward function u(s, a) = r0(s, a) +
∑I

i=1wiri(s, a). By

the linear CMDP assumption, we have u = Φ(θ0 + Θw) where u ∈ R|S×A| is the vector

representation of the reward function u. Also, by the definition of vζ,π in (3.6), we have

vζπw,π(s) =
∑
a

π(a|s)⟨ζπw,φ(s, a)⟩ =
∑
a

π(a|s)Qπ
w(s, a) = V π

w(s).

Since we assume λ ∈ Rd is in the span of {φ(s, a)}(s,a)∈S×A, there exists α ∈ R|S×A| such

that λ = ΦTα. Hence, using the form (B.5) of the Lagrangian function, we have

g(ζπw,λ, π,w) = (1− γ)⟨ν0,vζπw⟩+ ⟨λ,θ0 + γΨvζπw − ζ
π
w⟩ − ⟨w, τ −ΘTλ⟩

= (1− γ)⟨ν0,V π
w ⟩+ ⟨λ,θ0 +Θw + γΨV π

w − ζπw⟩ − ⟨w, τ ⟩

= (1− γ)⟨ν0,V π
w ⟩+ ⟨α,Φ(θ0 +Θw + γΨV π

w − ζπw)⟩ − ⟨w, τ ⟩

= (1− γ)⟨ν0,V π
w ⟩+ ⟨α,u+ γPV π

w −Qπ
w⟩ − ⟨w, τ ⟩

= (1− γ)⟨ν0,V π
w ⟩ − ⟨w, τ ⟩

= L(π,w)

where the second to last equality uses the Bellman equation (3.9) and the last equality is by

L(π,w) = J0(π) +w · (J(π)− τ ) and the fact that J0(π) +w · J(π) is the value of π with

respect to the linearized value function r0 +w · r.

Lemma 53. Under the linear MDP setting, let ζπ be the parameter that satisfies Qπ = Φζπ

for a policy π. Then,

J(π) = f(ζπ,λ, π)

for all λ ∈ Rd in the span of {φ(s, a)}(s,a)∈S×A.
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Proof. This is a direct corollary of Lemma 52, which can be seen by setting w = 0.

Lemma 54. Given a policy π, let µπ be the occupancy measure induced by π and let λπ =

ΦTµπ. Then, for any ζ ∈ Rd and any w ∈ RI , we have

L(π,w) = g(ζ,λπ,w, π).

Proof. By the definition of µλ,π in (3.5), we have

µλπ ,π(s, a) = π(a|s) [(1− γ)ν0(s) + γ⟨ψ(s),λπ⟩]

= π(a|s)
[
(1− γ)ν0(s) + γ⟨ψ(s),ΦTµπ⟩

]
= µπ(s, a).

Using the form (B.4) of the Lagrangian function, we have

g(ζ,λπ,w, π) = ⟨λπ,θ0⟩+ ⟨ζ,ΦTµλπ ,π − λπ⟩ − ⟨w, τ −ΘTλπ⟩

= ⟨ΦTµπ,θ0⟩ − ⟨w, τ −ΘTΦTµπ⟩

= ⟨µπ, r0⟩ − ⟨w, τ −RTµπ⟩

= L(π,w)

where the second equality uses µλπ ,π = µπ and λπ = ΦTµπ; and the third equality uses the

matrix notation for the reward functions R = {ri(s, a)}(s,a)∈R|S×A|,i∈[I]; the last equality uses

Ji(π) = ⟨µπ, ri⟩, i = 1, . . . , I.

Lemma 55. Under the linear MDP setting, let µπ be the occupancy measure induced by a

policy π and let λπ = ΦTµπ. Then, for any ζ ∈ Rd, we have

J(π) = f(ζ,λπ, π).

Proof. This is a direct corollary of Lemma 54, which can be seen by setting w = 0.

B.5.3 Proof of Theorem 5

For a given w ∈ RI and a policy π, define ζπw ∈ Rd to be the parameter that satisfies

Qπ
w = Φζπw where Qπ

w is the state-action value function of the policy π with respect to

the reward function r0 + w · r. Using g(ζπw,λ,w, π) = L(π,w) for any λ that is a linear

combination of {φ(s, a)}(s,a)∈S×A (Lemma B.4) and g(ζ,λπ,w, π) = L(π,w) for any ζ ∈ Rd
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where λπ = ΦTµπ (Lemma B.5), we have

L(π∗,wt)− L(πt,w) = g(ζt,λ
∗,wt, π)− g(ζπtwt ,λ(c

′
t),w, πt))

= (g(ζt,λ
∗,wt, π

∗)− g(ζt,λ∗,wt, πt)︸ ︷︷ ︸
Regπt

)

+ (g(ζt,λ
∗,wt, πt)− g(ζt,λ(c′t),wt, πt)︸ ︷︷ ︸

Regλt

)

+ (g(ζt,λ(c
′
t),wt, πt)− g(ζt,λ(c′t),w, πt)︸ ︷︷ ︸

Regwt

)

+ (g(ζt,λ(c
′
t),w, πt)− g(ζπtwt ,λ(c

′
t),w, πt)︸ ︷︷ ︸

Regζt

)

where π∗ is an optimal policy for the optimization problem P(τ ) and we use the notation

λ∗ = λπ
∗
. Note that the suboptimality L(π∗,wt)−L(πt,w) is decomposed into regret terms

of the four players. As long as we show that the sum of the four regrets over t = 1, . . . , T are

sublinear in T and the dataset size n, we obtain 1
T

∑T
t=1 L(π

∗,wt)− L(πt,w) = L(π∗, w̄)−
L(π̄,w) = o(1) where w̄ = 1

T

∑T
t=1wt and π̄ = Unif(π1, . . . , πT ) is the mixture policy

that chooses a policy among π1, . . . , πT uniformly at random and runs the chosen policy

for the entire trajectory. Then, for large enough T and n, we get L(π∗, w̄) ≤ L(π̄,w) + ϵ

where ϵ vanishes as T and n increase. Such a pair is a near saddle point of the Lagrangian

function L(·, ·) and it can be shown that the mixture policy π̄ is a near-optimal solution

of the optimization problem (3.1). Specifically, we can show that if the Slater’s condition

(Assumption 3) holds, then a near saddle point (π̄, w̄) of L(·, ·) with L(π, w̄) ≤ L(π̄,w)+O(ϵ)
for all policies π and w ∈ (1 + 1

ϕ
)∆I satisfies

J0(π̄) ≥ J0(π
∗)− ϵ

Ji(π̄) ≥ τi − ϵ, i = 1, . . . , I

where π∗ is the optimal policy for P(τ ), implying that π̄ is a nearly optimal solution for the

optimization problem.

In the rest of the section, we sketch the analysis that shows that L(π, w̄)−L(π̄,w) ≤ ϵ for

large enough T and n = O(ϵ−2). With the decomposition of L(π,wt)−L(πt,w) into regrets

of the four players discussed previously, we study how the four regrets can be bounded in

the next four subsections.
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B.5.3.1 Bounding Regret of π-Player

Using the expression (B.5), the regret of π-player simplifies to

Regπt = g(ζt,λ
∗,wt, π

∗)− g(ζt,λ∗,wt, πt)

= ⟨ν∗,vζt,π − vζt,πt⟩

= ⟨ν∗,
∑

a(π(a|·)− πt(a|·))⟨ζt,φ(·, a)⟩⟩.

where ν∗ = (1 − γ)ν0 + γΨTλ∗ is the state occupancy measure induced by π∗. This is

identical to the regret term for the π-player in the unconstrained RL setting. As is done in

the unconstrained RL setting, choosing α = O((1− γ)
√

log |A|/(dT )), we get

1

T

T∑
t=1

Regπt ≤ O
(

1

1− γ
√

(d log |A|)/T
)

which is sublinear in T . Consequently, choosing T to be at least Ω( d log |A|
(1−γ)2ϵ2 ) gives

1
T

∑T
t=1 Reg

π
t ≤ ϵ.

B.5.3.2 Bounding Regret of ζ-Player

Note that the regret for the ζ-player simplifies to

Regζt = g(ζt,λ(c
′
t),w, πt)− g(ζπtwt ,λ(c

′
t),w, πt)

= ⟨ζt − ζπtwt ,Φ
Tµλt,πt − λt⟩

which has the same form as in the unconstrained case. The proof is essentially the same

as the proof in Section B.4.2 for the unconstrained setting. The only difference is that

Dζ ≤ O(Dw
√
d

1−γ ) where Dw = 1 + 1
ϕ
. Following the proof, we get

Regζt ≤ O

(
C∗d

(1− γ)ϕ

√
log(dnT (log |A|)/(δϕ))

n

)
.

B.5.3.3 Bounding Regret of λ-Player

Using the expression (B.5), the regret of λ-player simplifies to

Regλt = f(ζt,λ
∗,wt, πt)− f(ζt,λt,wt, πt)

= ⟨λ∗ − λt,θ0 + γΨvζt,πt − ζt +Θwt︸ ︷︷ ︸
=ξt

⟩
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Following the analysis for the unconstrained setting in Section B.4.3, we get

1

T

T∑
t=1

Regλt ≤ O

(
C∗d3/2

(1− γ)ϕ

√
log(dnT (log |A|)/(δϕ))

n

)
+ ϵλopt(T )

B.5.3.4 Bounding Regret of w-Player

Using expression (B.4), the regret of w-player simplifies to

g(ζt,λ(c
′
t),wt, πt)− g(ζt,λ(c′t),w, πt) = ⟨wt −w, τ −ΘTλt⟩

which is bounded by 0 since the w-player choose wt ∈ Dw∆
I that minimizes ⟨·, τ −ΘTλt⟩.
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APPENDIX C

Details of Offline Constrained RL with

General Function Approximation

C.1 Analysis for Offline Unconstrained RL

C.1.1 Invariance of Saddle Points

Lemma 56 (Lemma 31 in Zhan et al. [2022]). Suppose (x∗, y∗) is a saddle point of f(x, y)

over X × Y, then for any X ′ ⊆ X and Y ′ ⊆ Y, if (x∗, y∗) ∈ X ′ × Y ′, we have:

(x∗, y∗) ∈ argmin
x∈X ′

argmax
y∈Y ′

f(x, y),

(x∗, y∗) ∈ argmax
y∈Y ′

argmin
x∈X ′

f(x, y).

C.1.2 Proof of Proposition 1

Recall the linear programming formulation of MDPM = (S,A, r, γ, d0):

max
µ≥0

⟨µ, r⟩

subject to E⊤µ = (1− γ)d0 + γP⊤µ

where µ ∈ R|S×A|
+ . Consider the associated Lagrangian function

L(µ;V ) = ⟨µ, r⟩+ ⟨V , (1− γ)d0 + γP⊤µ−E⊤µ⟩

where V ∈ R|S| is the Lagrangian multiplier. Let (µ∗,V ∗) be a saddle point of L over

R|S×A|
+ × R|S| such that the policy π(µ∗) extracted from µ∗ is optimal. Consider having

access to function classes U ⊆ R|S×A|
+ and V ⊆ R|S| that capture the saddle point so that

µ∗ ∈ U and V ∗ ∈ V . A natural procedure for solving the linear program with access to the
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function classes is to find a saddle point (µ̂, V̂ ) of L over U ×V and extract the policy π(µ̂).

However, we show that such a procedure does not necessarily give an optimal policy.

Proof of Proposition 1. We explicitly construct a MDP (S,A, r, γ, d0) and function classes

U , V as follows (see Figure C.1). Let S = {s0, l1, r1, l2, r2} and A = {L,R}. Let the reward

function be defined as r(l1, a) = 1, r(l2, a) = 2 for all a ∈ A, and all other entries of the

reward function are 0. Let γ = 1/2 and d0(s0) = 1 such that the MDP starts from s0

deterministically. The states l1, l2 and r2 are absorbing, such that both actions L and R

taken at these states do not change states, i.e., P (s|s, L) = P (s|s, R) = 1 for s = l1, l2, r2. In

other states s0 and r2, the action L has equal probability of transitioning to the states in the

level below, i.e., P (l1|s0, L) = P (r1|s0, L) = 1/2 and P (l2|r1, L) = P (r2|r1, L) = 1/2. On the

other hand, action R has probability 1/4 of transitioning to the left state and probability

3/4 of transitioning to the right state, i.e., P (l1|s0, R) = P (l2|r1, R) = 1/4 and P (r1|s0, R) =
P (r2|r1, R) = 3/4.

It can be seen that the optimal state value function V ∗ has values V ∗(s0) = 1, V ∗(l1) =

2, V ∗(r1) = 2, V ∗(l2) = 8, V ∗(r2) = 0 and an optimal occupancy measure µ∗ is the one

induced by the policy that always chooses the action L: µ∗(s0, L) = 1/2, µ∗(l1, L) =

1/4, µ∗(r1, L) = 1/8, µ∗(l2, L) = µ∗(r2, L) = 1/16, and all other entries 0. By straightforward

calculation, we get

L(µ,V ∗) =
1

2
V ∗(s0)−

1

4
µ(r1, R).

Note that L(µ,V ∗) depends on µ only through the value µ(r1, R). Hence, any µ is a best

response to V ∗ that maximizes L(µ,V ∗) as long as µ(r1, R) = 0. Consider function classes

V = {V ∗} and U = {µ∗, µ̃} where µ̃ is a function with µ̃(s0, R) = 1/2 and µ̃(l1, L) =

µ̃(l1, R) = 1/4, and the function values for other entries are 0. The policy π̃ extracted from

µ̃ chooses the action R at the initial state s0. Since µ̃(r1, R) = 0, it is a saddle point of L.

However, µ̃ is not an optimal solution of the linear program, since it is not feasible.

C.1.3 Proof of Lemma 16

Proof of Lemma 16. Recall the linear programming formulation

max
µ≥0

⟨µ, r⟩

subject to E⊤µ = (1− γ)d0 + γP⊤µ
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Figure C.1: An example MDP with spurious saddle points.

and its Lagrangian function

L(µ;V ) = ⟨µ, r⟩+ ⟨V , (1− γ)d0 + γP⊤µ− E⊤µ⟩.

Let (µ∗, V ∗) be a saddle point of the Lagrangian function L over R|S×A|
+ ×R|S|. Then, by the

saddle point theorem for convex optimization, µ∗ solves the linear program. In particular,

µ∗ satisfies the Bellman flow constraint and the extracted policy π∗ = π(µ∗) induces µ∗. It

follows that

L(µ∗,V ) = ⟨µ∗, r⟩ = (1− γ)J(π∗)

for all V ∈ R|S|. Also, rewriting the Lagrangian function as

L(µ;V ) = ⟨µ, r + γPV −EV ⟩+ ⟨V , (1− γ)d0⟩,

it can be seen by the Bellman equation r + γPV π = Qπ that

L(µ;V π(µ)) = ⟨V π(µ), (1− γ)d0⟩ = (1− γ)J(π(µ))

for all µ.

Consider any pair of function classes U ⊆ R|S×A| and V ⊆ R|S| such that µ∗ ∈ U and

V ∗ ∈ V , and that V π ∈ V for all policy π. Let (µ̂, V̂ ) be any saddle point of L over U × V ,
and let π̂ = π(µ̂) be the policy extracted from µ̂. Then, since µ̂ is the best response among

functions in U to V̂ , and µ∗ ∈ U , we have

L(µ̂, V̂ ) ≥ L(µ∗, V̂ ) = (1− γ)J(π∗).

On the other hand, since V̂ is the best response to µ̂ and V π̂ ∈ V where π̂ = π(µ̂) is the
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policy extracted from µ̂, we have

L(µ̂, V̂ ) ≤ L(µ̂, V π̂) = (1− γ)J(π̂).

It follows that J(π̂) ≥ J(π∗) and that π̂ = π(µ̂) is optimal.

Proof of Lemma 17. Suppose (µ̂, ν̂; Q̂) is a saddle point of L over F(U ,Π)×Q. First, we show
that if (µ, ν) ∈ F(U ,Π) and π = π(ν) is the policy extracted from ν, then L(µ, ν;Qπ) = J(π).

It can be seen by

L(µ, ν;Qπ) = ⟨r, µ⟩+ ⟨Qπ, ν − µ⟩

= ⟨r, µ⟩+
∑
s,a

Qπ(s, a)(π(a|s)((1− γ)d0(s) + γ[P⊤µ](s)))− ⟨Qπ, µ⟩

= ⟨r, µ⟩+
∑
s

V π(s)((1− γ)d0(s) + γ[P⊤µ](s))− ⟨Qπ, µ⟩

= ⟨r, µ⟩+ ⟨V π, (1− γ)d0 + γP⊤µ⟩ − ⟨Qπ, µ⟩

= J(π) + ⟨µ, r + γPV π −Qπ⟩

= J(π)

where the last equality is by the Bellman equation Qπ(s, a) = r(s, a) + γ[PV π](s, a). Also,

L(µ∗, ν∗; Q̂) = ⟨r, µ∗⟩ = (1− γ)J(π∗). Since (µ∗, ν∗) ∈ F(U ,Π), we have

J(π∗) = L(µ∗, ν∗; Q̂) ≤ L(µ̂, ν̂; Q̂) ≤ L(µ̂, ν̂;Qπ̂) = J(π̂)

where we denote by π̂ = π(ν̂) the policy extracted from ν̂. The inequalities hold since

(ν̂, ν̂; Q̂) is a saddle point. It follows that π̂ is optimal.

C.1.4 Proof of Theorem 6

We first show the following concentration bound.

Lemma 57. Consider a Lagrangian function estimate L̂:

L̂(w, V ) = (1− γ)V (s0) +
1

n

n∑
i=1

w(si, ai)(r(si, ai) + γV (s′i)− V (si)).

Given a function class W and V for w and V respectively, with boundedness condition

∥w∥∞ ≤ C for all w ∈ W and ∥V ∥∞ ≤ 1
1−γ for all V ∈ V, we have for all w ∈ W
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and V ∈ V that

|L(w, V )− L̂(w, V )| ≤ O((1 + C

1− γ
)
√

log(|W||V|/δ)/n)

with probability at least 1− δ.

Proof. Fix w ∈ W and V ∈ V . Let Zi = (1 − γ)V (s0) + w(si, ai)(r(si, ai) + γV (s′i) −
V (si)). Then, E[Zi] = L(w, V ), and |Zi| ≤ O(1 + C

1−γ ). By Hoeffding’s inequality, we have
1
n

∑n
i=1 E[Zi] − Zi ≤ O((1 +

C
1−γ )

√
log(1/δ)/n). The desired uniform concentration bound

follows by a union bound over W ×V .

Now, we are ready to prove the theorem.

Proof of Theorem 6. Let (ŵ, V̂ ) be a saddle point that solves

max
w∈W

min
V ∈V

L̂(w, V ),

and let π̂ be the policy extracted from ŵ. We have for all policy π that

L(wπ, V π) = (1− γ)V π(s0) + ⟨µπ, r + γPV π − V π⟩ = (1− γ)J(π).

Let π∗ be an optimal policy with wπ
∗ ∈ W . Then,

(1− γ)J(π∗) = L(wπ
∗
, V π∗

)

≤ L(wπ
∗
, V̂ )

≤ L̂(wπ
∗
, V̂ ) + ε

≤ L̂(ŵ, V̂ ) + ε

≤ L̂(ŵ, V π̂) + ε

≤ L(ŵ, V π̂) + 2ε

= (1− γ)J(π̂) + 2ε,

where εn = O((1 + C∗/(1− γ))
√

log(|W||V|/δ)/n).

C.1.5 Proof of Proposition 2

Proof of Proposition 2. We use the same MDP constructed for proving Proposition 1. Let

S = {s0, l1, r1, l2, r2} and A = {L,R}. Let the reward function be defined as r(l1, a) = 1,

r(l2, a) = 2 for all a ∈ A, and all other entries of the reward function are 0. Let γ = 1/2 and
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d0(s0) = 1 such that the MDP starts from s0 deterministically. The states l1, l2 and r2 are

absorbing, such that both actions L and R taken at these states do not change states, i.e.,

P (s|s, L) = P (s|s, R) = 1 for s = l1, l2, r2. In other states s0 and r2, the action L has equal

probability of transitioning to the states in the level below, i.e., P (l1|s0, L) = P (r1|s0, L) =
1/2 and P (l2|r1, L) = P (r2|r1, L) = 1/2. On the other hand, action R has probability 1/4

of transitioning to the left state and probability 3/4 of transitioning to the right state, i.e.,

P (l1|s0, R) = P (l2|r1, R) = 1/4 and P (r1|s0, R) = P (r2|r1, R) = 3/4.

It can be seen that the optimal state-action value function Q∗ has values Q∗(s0, L) =

Q∗(s0, R) = 1, Q∗(l1, R) = Q∗(l1, L) = 2, Q∗(r1, L) = 2, Q∗(r1, R) = 0, Q∗(l2, L) =

Q∗(l2, R) = 8, Q∗(r2, L) = Q∗(r2, R) = 0 and an optimal occupancy measure µ∗ is the

one induced by the policy that always chooses the action L: µ∗(s0, L) = 1/2, µ∗(l1, L) =

1/4, µ∗(r1, L) = 1/8, µ∗(l2, L) = µ∗(r2, L) = 1/16, and all other entries 0. By straightfor-

ward calculation, we get

L(µ∗, νµ∗,π;Q
∗) = (1− γ)Q∗(s0, π) + ⟨µ∗, r + γPQ∗(·, π)−Q∗⟩

=
1

2
+ µ∗(s0, L)(r(s0, L) + γ[PQ∗(·, π)](s0, L)−Q∗(s0, L))

+ µ∗(l1, L)(r(l1, L) + γ[PQ∗(·, π)](l1, L)−Q∗(l1, L))

+ µ∗(r1, L)(r(r1, L) + γ[PQ∗(·, π)](r1, L)−Q∗(r1, L))

+ µ∗(l2, L)(r(l2, L) + γ[PQ∗(·, π)](l2, L)−Q∗(l2, L))

+ µ∗(r2, L)(r(l1, L) + γ[PQ∗(·, π)](r2, L)−Q∗(r2, L))

=
1

2

Note that L(µ∗, νµ∗,π;Q
∗) does not depend on π. Hence, any (µ∗, νµ∗,π) is a best response

to Q∗ that maximizes L(µ∗, νµ∗,π;Q
∗).

Consider function classes Q = {Q∗} and U = {µ∗} and Π = {π∗, π̃} where π̃ always

chooses the action R. Then, π̃ is not optimal, but both (µ∗, νµ∗,π∗ ;Q∗) and (µ∗, νµ∗,π̃;Q
∗)

are saddle points of L over F(U ,Π)×Q, and the learner cannot identify the optimal policy

π∗.

C.1.6 Proof of Theorem 7

We first show the following concentration bound.
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Lemma 58. Consider a Lagrangian function estimate

L̂(w, π;Q) = (1− γ)Q(s0, π) +
1

n

n∑
i=1

w(si, ai)(r(si, ai) + γQ(s′i, π)−Q(si, ai))

Given a function classW, Π and Q for w, π and Q, respectively, with boundedness condition

∥w∥∞ ≤ C for all w ∈ W and ∥Q∥∞ ≤ 1
1−γ for all Q ∈ Q, we have for all w ∈ W, π ∈ Π

and Q ∈ Q that

|L(w, π;Q)− L̂(w, π;Q)| ≤ εn.

with probability at least 1− δ where εn = O( C
1−γ

√
log(|W||Π||Q|/δ)/n).

Proof. Fix w ∈ W , π ∈ Π and Q ∈ Q. Let

Zi = (1− γ)Q(s0, π) + w(si, ai)(r(si, ai) + γQ(s′i, π)−Q(si, ai)).

Then, E[Zi] = L(w, π;Q) and |Zi−E[Zi]| ≤ O( C
1−γ ). By the Hoeffding’s inequality, we have

|L(w, π;Q)− L̂(w, π;Q)| ≤ O( C

1− γ
√

log(1/δ)/n).

By a union bound over (w, π,Q) ∈ W × Π×Q, the proof is complete.

Now, we are ready to prove the theorem.

Proof of Theorem 7. Let (ŵ, π̂; Q̂) be a saddle point that solves

max
w∈W,π∈Π

min
Q∈Q

L̂(w, π;Q),

We have for all policy π that

L(w, π;Qπ) = ⟨µ, r⟩+ ⟨Qπ, ν − µ⟩

= ⟨µ, r⟩+
∑
s

Qπ(s, π)((1− γ)d0(s) + γ[P⊤µ](s))− ⟨Qπ, µ⟩

= (1− γ)⟨Qπ(·, π), d0⟩+ ⟨µ, r + γ[PQπ(·, π)]−Qπ⟩

= (1− γ)J(π).

Also,

L(w∗, π∗;Q) = (1− γ)J(π∗)
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for all Q. Hence,

(1− γ)J(π∗) = L(wπ
∗
, π∗;Qπ∗

)

≤ L(wπ
∗
, π∗; Q̂)

≤ L̂(wπ
∗
, π∗; Q̂) + εn

≤ L̂(ŵ, π̂; Q̂) + εn

≤ L̂(ŵ, π̂;Qπ̂) + εn

≤ L(ŵ, π̂;Qπ̂) + 2εn

= (1− γ)J(π̂) + 2εn,

where εn = O((1 + C
1−γ )

√
log(|W||Π||Q|/δ)/n).

C.1.7 Proof of Theorem 8

We first show that the softmax policy class that captures the policies encountered by the

algorithm has low covering number.

Lemma 59. Consider two value functions Q,Q′ : S × A → R with ∥Q′ −Q∥∞ ≤ 1. Then,

for all s ∈ S, we have ∑
a∈A

|πQ′(a|s)− πQ(a|s)| ≤ 8∥Q−Q′∥∞

where πQ(·|s) ∝ exp(Q(s, ·)) denotes the softmax policy induced by Q.

Proof. Straight from the definition, we have

T : =
πQ′(a|s)
πQ(a|s)

=
exp(Q′(s, a))

exp(Q(s, a))
·
∑

a′′ exp(Q(s, a
′′))∑

a′ exp(Q
′(s, a′))

= exp(Q′(s, a)−Q(s, a)) ·
∑
a′′

(exp(Q(s, a′′)−Q′(s, a′′)) · exp(Q′(s, a′′))∑
a′ exp(Q

′(s, a′))
)

= exp(Q′(s, a)−Q(s, a))
∑
a′′

πQ′(a′′|s) exp(Q(s, a′′)−Q′(s, a′′))

≤ exp(2∆)

≤ 1 + 4∆

where we use the notation ∆ = ∥Q′ − Q∥∞. The second to last inequality follows since∑
a′′ πQ′(a′′|s) = 1. The last inequality follows by the identity exp(x) ≤ 1+ 2x for x ∈ [0, 1].
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Rearranging, we get

πQ′(a|s)− πQ(a|s) ≤ 4πQ(a|s)∆.

Switching the roles of Q and Q′, we get πQ(a|s)− πQ′(a|s) ≤ 4πQ′(a|s)∆, and it follows that

|πQ(a|s)− πQ′(a|s)| ≤ 4∆max{πQ(a|s), πQ′(a|s)} ≤ 4∆(πQ(a|s) + πQ′(a|s)).

Summing over a ∈ A, we get the desired inequality.

Lemma 60. For any ϵ ∈ (0, 1), we have

logN (Π(Q, C), ∥ · ∥∞,1, ϵ) ≤ logN (Q, ∥ · ∥∞, ϵ/(8C))

where the norm ∥ · ∥∞,1 is defined by

∥π − π′∥∞,1 : = sup
s∈S

∑
a∈A

|π(a|s)− π′(a|s)|.

Proof. The result is a direct consequence of Lemma 59.

With the bound on the covering number of the softmax policy class, we show a uniform

concentration bound on the Lagrangian estimate.

Lemma 61. Consider a Lagrangian function estimate

L̂(w, π;Q) = (1− γ)Q(s0, π) +
1

n

n∑
i=1

w(si, ai)(r(si, ai) + γQ(s′i, π)−Q(si, ai))

Given a function classW, Π and Q for w, π and Q, respectively, with boundedness condition

∥w∥∞ ≤ C for all w ∈ W and ∥Q∥∞ ≤ 1
1−γ for all Q ∈ Q, we have with probability at least

1− δ that, for all w ∈ W, π ∈ Π and Q ∈ Q,

|L(w, π;Q)− L̂(w, π;Q)| ≤ εn.

where εn = O( C
1−γ

√
log(N1/

√
n(W , ∥ · ∥∞)N1/

√
n(Π, ∥ · ∥1,∞)N1/

√
n(Q, ∥ · ∥∞)/δ)/n).

Proof. Consider coverings C(W , ∥·∥∞, ε), C(Π, ∥·∥1,∞, ε) and C(Q, ∥·∥∞, ε) forW , Π and Q,
respectively, where ε = 1/

√
n with cardinalities bounded byNε(W , ∥·∥∞), Nε(Π, ∥·∥1,∞) and

Nε(Q, ∥ · ∥∞), respectively. Following the proof of Lemma 58 and applying a union bound

over the coverings, we get with probability at least 1 − δ that for all w̄ ∈ C(W , ∥ · ∥∞, ε),
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π̄ ∈ C(Π, ∥ · ∥1,∞, ε) and Q̄ ∈ C(Q, ∥ · ∥∞, ε) that

|L(w̄, π̄; Q̄)− L̂(w̄, π̄; Q̄)|

≤ O( C

1− γ

√
log(Nε(W , ∥ · ∥∞)Nε(Π, ∥ · ∥1,∞)Nε(Q, ∥ · ∥∞)/δ)/n).

Given any (w, π,Q) ∈ W × Π × Q consider w̄, π̄, Q̄ in respective coverings such that ∥w −
w̄∥∞ ≤ ε, maxs ∥π(·|s) − π̄(·|s)∥1 ≤ ε and ∥Q − Q̄∥∞ ≤ ε. Then, we have the following

inequalities:

L̂(w, π;Q)− L̂(w, π; Q̄) = (1− γ)(Q− Q̄)(s0, π)

+
1

n

n∑
i=1

w(si, ai)(γ(Q− Q̄)(s′i, π)− (Q− Q̄)(si, ai))

≤ (1− γ)ε+ 2Cε,

and

L̂(w, π; Q̄)− L̂(w, π̄; Q̄) = (1− γ)Q̄(s0, π − π̄) +
γ

n

n∑
i=1

w(si, ai)Q̄(s
′
i, π − π̄)

≤ ε+
Cε

1− γ
,

and

L̂(w, π̄; Q̄)− L̂(w̄, π̄; Q̄) = 1

n

n∑
i=1

(w − w̄)(si, ai)(r(si, ai) + γQ(s′i, π)−Q(si, ai))

≤ 2ε

1− γ
.

Summing up, we get L̂(w, π;Q)−L̂(w̄, π̄; Q̄) ≤ O( Cε
1−γ ). Similarly, we get the reverse inequal-

ity L̂(w̄, π̄; Q̄) − L̂(w, π;Q) ≤ O( Cε
1−γ ). Using the fact that L̂ is an unbiased estimate of L,

and taking expectations on both sides of the inequalities, we get |L(w, π;Q)−L(w̄, π̄; Q̄)| ≤
O( Cε

1−γ ). It follows by the choice ε = 1/
√
n that

|L(w, π;Q)− L̂(w, π;Q)| ≤ |L(w, π;Q)− L(w̄, π̄; Q̄)|+ |L(w̄, π̄; Q̄)− L̂(w̄, π̄; Q̄)|

+ |L̂(w̄, π̄; Q̄)− L̂(w, π;Q)|

≤ εn

where εn is defined in the theorem statement.

Before showing the theorem, we provide a guarantee for the strategy employed by the
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π-player.

Lemma 62 (Lemma D.2 in Gabbianelli et al. [2024b]). Let Q1, . . . , QT : S × A → R be a

sequence of functions so that ∥Qt∥∞ ≤ D for t = 1, . . . , T . Given an initial policy π1 and a

learning rate α > 0, let

πt+1(·|s) ∝ πt(·|s) exp(αQt(s, ·))

for all s ∈ S for t = 1, . . . , T . Then, for any comparator policy π∗, we have

T∑
t=1

∑
s∈S

µπ
∗
(s)⟨π∗(·|s)− πt(·|s), Qt(s, ·)⟩ ≤

H(π∗∥π1)
α

+
αTD2

2

where H(π∥π′) : =
∑

s∈S µ
π(s)KL(π(·|s)∥π′(·|s)).

We are now ready to show the theorem.

Proof of Theorem 8. Let π̄ = Unif(π1, . . . , πT ) be the policy returned by Algorithm 7. It is

a policy that first uniformly randomly draws from {π1, . . . , πT}, then follows the policy for

the entire trajectory. It follows that J(π̄) = 1
T

∑T
t=1 J(πt), and

(1− γ)J(π∗)− (1− γ)J(π̄) = 1

T

T∑
t=1

L(w∗, π∗;Qt)− L(wt, πt;Qπt)

=
1

T

T∑
t=1

L(w∗, π∗;Qt)− L(w∗, πt;Qt)

+
1

T

T∑
t=1

L(w∗, πt;Qt)− L(wt, πt;Qt)

+
1

T

T∑
t=1

L(wt, πt;Qt)− L(wt, πt;Qπt).

Note that the suboptimality of the policy π̄ is decomposed into average regret terms of the

three players. We bound each of the regret terms as follows.
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Regret of π-player The one-step regret of π-player can be written as

L(w∗, π∗;Qt)− L(w∗, πt;Qt) = (1− γ)⟨Qt(·, π∗ − πt), d0⟩+ γ⟨µ∗, PQt(·, π∗ − πt)⟩

= (1− γ)⟨Qt(·, π∗ − πt), d0⟩+ γ⟨Qt(·, π∗ − πt), P⊤µ∗⟩

= ⟨Qt(·, π∗ − πt), (1− γ)d0 + γP⊤µ∗⟩

= ⟨E⊤µ∗, Qt(·, π∗ − πt)⟩

=
∑
s∈S

µ∗(s)Qt(s, π
∗ − πt)

=
∑
s∈S

µ∗(s)⟨π∗(·|s)− πt(·|s), Qt(s, ·)⟩.

Hence, the regret of π-player can be bounded as

T∑
t=1

(L(w∗, π∗;Qt)− L(w∗, πt;Qt)) =
T∑
t=1

∑
s∈S

µ∗(s)⟨π∗(·|s)− πt(·|s), Qt(s, ·)⟩

≤ H(π
∗∥π1)
α

+
αTD2

2

≤ log |A|
α

+
αT

2(1− γ)2

≤ 2

1− γ
√
T log |A|

where the first inequality is by Lemma 62 and the second inequality is by a trivial bound of

relative entropy: H(π∗∥π1) = Es∼µπ [KL(π∗(·|s)∥π1(·|s))] ≤ log |A|. The last inequality is by

the choice of α = (1− γ)
√
log |A|/

√
T .

Regret of w-player Note that the policies encountered by the algorithm is in the function

class Π(Q, T ). By the concentration bound in Lemma 58 and the covering number bound of

Π(Q, T ) provided by Lemma 60, the one-step regret of w-player can be bounded by

L(w∗, πt;Qt)− L(wt, πt;Qt) ≤ L̂(w∗, πt;Qt)− L̂(wt, πt;Qt) + 2εn

where εn = O(( C
1−γ )

√
log(N1/

√
n(W , ∥ · ∥∞)N1/(8

√
nT )(Q, ∥ · ∥∞)/δ)/n). Hence, the regret of

w-player can be bounded by

T∑
t=1

L(w∗, πt;Qt)− L(wt, πt;Qt) ≤
T∑
t=1

L̂(w∗, πt;Qt)− L̂(wt, πt;Qt) + 2εnT

≤ RegT + 2εnT

122



where the second inequality holds by the fact that the w-player employs a no-regret oracle.

Regret of Q-player The one-step regret of Q-player can be bounded as

L(wt, πt;Qt)− L(wt, πt;Qπt) ≤ L̂(wt, πt;Qt)− L̂(wt, πt;Qπt) + 2εn

≤ 2εn

where the first inequality is by the concentration inequality in Lemma 58 and the second

inequality is by the fact that Q-player chooses Qt ∈ Q greedily and that Qπt ∈ Q by the

all-policy realizability assumption. Hence, the regret of Q-player can be bounded by

T∑
t=1

L(wt, πt;Qt)− L(wt, πt;Qπt) ≤ 2εnT.

Combining the regret bounds, we get

(1− γ)J(π∗)− (1− γ)J(π̄) ≤ 2

1− γ
√

log |A|/
√
T +RegT/T + 4εn

C.2 Analysis for Offline Constrained RL

C.2.1 Convex Optimization

Proof of Lemma 18. Let π⋆ be an optimal policy of the optimization problem P(τ ).
Define the dual function f(Q,λ) = maxµ∈RS×A

+ ,ν∈RS×A
+

L(µ, ν;Q, λ). Let (Q∗,λ⋆) =

argminQ∈RS×A,λ∈RI+ f(Q,λ). Trivially, λ⋆i ≥ 0 for all i = 1, . . . , I. Also, by strong dual-

ity, we have f(Q∗,λ⋆) = J0(π
⋆).

By the definition of the dual function, for any policy π, we have

(1− γ)J0(π∗) = f(Q∗, λ∗) ≥ L(µπ, µπ;Q∗, λ∗)

= ⟨µπ, r0⟩+ ⟨µπ, R⊤λ∗⟩ − ⟨λ∗, τ⟩

= (1− γ)J0(π) + (1− γ)
I∑
i=1

λ∗i (Ji(π)−
τi

1− γ
). (C.1)

Let π̂ be a feasible policy with Ji(π̂) ≥ (τi +φ)/(1− γ) for all i = 1, . . . , I. Such a policy
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exists by the assumption of this lemma. Then, using the display above, we get

(1− γ)J0(π∗) ≥ (1− γ)J0(π̂) + (1− γ)
I∑
i=1

λ∗i (Ji(π̂)−
τi

1− γ
)

≥ (1− γ)J0(π̂) + φ
I∑
i=1

λ∗i

= (1− γ)J0(π̂) + φ∥λ∗∥1.

Rearranging and using 1/(1− γ) ≥ J0(π
⋆) ≥ J0(π̂) ≥ 0 completes the proof:

∥λ⋆∥1 ≤
(1− γ)J0(π⋆)− (1− γ)J0(π̂)

φ
≤ 1

φ
.

C.2.2 Proof of Theorem 9

We first show a concentration bound on the Lagrangian estimate.

Lemma 63. Consider a Lagrangian function estimate

L̂(w, π;Q, λ)

= (1− γ)Q(s0, π) +
1

n

n∑
j=1

w(sj, aj)((r0 +
I∑
i=1

λiri)(sj, aj) + γQ(s′j, π)−Q(sj, aj))− ⟨λ, τ⟩

Given a function classW, Π and Q for w, π and Q, respectively, with boundedness condition

∥w∥∞ ≤ C for all w ∈ W and ∥Q∥∞ ≤ 1
1−γ for all Q ∈ Q, we have with probability at least

1− δ that, for all w ∈ W, π ∈ Π, Q ∈ Q and λ ∈ 1
φ
∆I ,

|L(w, π;Q, λ)− L̂(w, π;Q, λ)| ≤ εn.

where εn = O(( 1
φ
+ 1

1−γ )C
√

log(N1/
√
n(W , ∥ · ∥∞)N1/

√
n(Π, ∥ · ∥1,∞)N1/

√
n(Q, ∥ · ∥∞)/δ)/n).

Proof. Fix w ∈ W , π ∈ Π, Q ∈ Q and λ ∈ 1
φ
∆I . Let

Zj = (1− γ)Q(s0, π) + w(sj, aj)((r0 +
I∑
i=1

λiri)(sj, aj) + γQ(s′j, π)−Q(sj, aj))− ⟨λ, τ⟩.

Then, E[Zj] = L(w, π;Q, λ) and |Zj − E[Zj]| ≤ O(Cφ + C
1−γ ). By the Hoeffding’s inequality,
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we have

|L(w, π;Q, λ)− L̂(w, π;Q, λ)| ≤ O((C
φ

+
C

1− γ
)
√

log(1/δ)/n).

Given any (w, π,Q, λ) ∈ W × Π×Q× 1
φ
∆I consider w̄, π̄, Q̄, λ̄ in respective coverings such

that ∥w − w̄∥∞ ≤ ε, maxs ∥π(·|s) − π̄(·|s)∥1 ≤ ε, ∥Q − Q̄∥∞ ≤ ε and ∥λ − λ̄∥1 ≤ ε. Then,

following a similar calculation as in the proof of Lemma 58, we have

L̂(w, π;Q, λ)− L̂(w, π;Q, λ̄) ≤ 2Cε

L̂(w, π;Q, λ̄)− L̂(w, π; Q̄, λ̄) ≤ (1− γ)ε+ 2Cε

L̂(w, π; Q̄, λ̄)− L̂(w, π̄; Q̄, λ̄) ≤ ε+
Cε

1− γ

L̂(w, π̄; Q̄, λ̄)− L̂(w̄, π̄; Q̄, λ̄) ≤ 2ε

1− γ
+
ε

φ
.

Summing up, we get L̂(w, π;Q, λ) − L̂(w̄, π̄; Q̄, λ̄) ≤ O( Cε
1−γ + ε

φ
). Similarly, we get the

reverse inequality L̂(w̄, π̄; Q̄, λ̄) − L̂(w, π;Q, λ) ≤ O( Cε
1−γ + ε

φ
). Using the fact that L̂ is an

unbiased estimate of L, and taking expectations on both sides of the inequalities, we get

|L(w, π;Q, λ)− L(w̄, π̄; Q̄, λ̄)| ≤ O( Cε
1−γ +

ε
φ
). It follows by the choice ε = 1/

√
n that

|L(w, π;Q, λ)− L̂(w, π;Q, λ)|

≤ |L(w, π;Q, λ)− L(w̄, π̄; Q̄, λ̄)|+ |L(w̄, π̄; Q̄, λ̄)− L̂(w̄, π̄; Q̄, λ̄)|

+ |L̂(w̄, π̄; Q̄, λ̄)− L̂(w, π;Q, λ)|

≤ εn

where εn is defined in the theorem statement.

Definition 4. We say (x̄, ȳ) is a ξ-near saddle point for a function L(·, ·) with respect to

the input space X × Y if L(x, ȳ) ≤ L(x̄, y) + ξ for all x ∈ X and y ∈ Y.

Lemma 64. If (x̂, ŷ) is a saddle point of L̂(·, ·) over X × Y and |L(x, y) − L̂(x, y)| ≤ ξ/2

for all (x, y) ∈ X × Y, then (x̂, ŷ) is a ξ-near saddle point of L(·, ·).

Proof. Since (x̂, ŷ is a saddle point of L̂(·, ·), we have for all (x, y) ∈ X ×A that

L(x, ŷ)− L(x̂, y) ≤ L̂(x, ŷ)− L̂(x̂, y) + ξ ≤ ξ,

as required.

Lemma 65. Assume that Slater’s condition (Assumption 3) holds. Suppose (ŵ, π̂; Q̂, λ̂) is

a ξ-near saddle point for the Lagrangian function L(·, ·; ·, ·) with respect to (W ×Π)× (Q×
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(1 + 1
φ
)∆I). Then, we have

J0(π̂) ≥ J0(π
∗)− ξ

1− γ
(Optimality)

Ji(π̂) ≥
τi

1− γ
− ξ

1− γ
, for all i = 1, . . . I (Feasibility)

where π∗ is an optimal policy in Π.

Proof. We first prove J0(π̄) ≥ J0(π
∗) − ξ. Since (ŵ, π̂; Q̂, λ̂) is a ξ-near saddle point for

L(·, ·; ·, ·) with respect to (W×Π)× (Q× (1+ 1
φ
)∆I) and π∗ ∈ Π, we have L(w∗, π∗; Q̂, λ̂) ≤

L(w∗, π∗; Q̂, λ) + ξ for all λ ∈ (1 + 1
φ
)∆I . Choosing λ = 0, we get

L(w∗, π∗; Q̂, λ̂) ≤ L(ŵ, π̂;Qπ̂
0 , 0) + ξ = (1− γ)J0(π̂) + ξ.

Rearranging, we get

J0(π̂) ≥ J0(π
∗) +

I∑
i=1

λ̂i(Ji(π
∗)− τi

1− γ
)− ξ

1− γ

≥ J0(π
∗)− ξ

1− γ

where the second inequality uses the feasibility of π∗. This proves the near optimality of π̂

with respect to π∗.

Now, we prove near feasibility of π̂. Consider a saddle point (w∗, π∗;Q∗, λ∗) of L. Then,

by (C.1), we have

J0(π
∗)− J0(π̂) ≥

I∑
i=1

λ∗i (Ji(π̂)−
τi

1− γ
) ≥ m

I∑
i=1

λ∗i = m∥λ∗∥1 (C.2)

where we define m = mini∈[I](Ji(π̂)− τi
1−γ ).

Recall from the proof of the near optimality that L(w∗, π∗; Q̂, λ̂) ≤ L(ŵ, π̂;Q, λ) + ξ for

all Q ∈ Q and λ ∈ (1 + 1
φ
)∆I holds since (ŵ, π̂; Q̂, λ̂) is a ξ-near saddle point. Choosing λ

such that λj = 1 + 1
φ
for j = argmini∈[I](Ji(π̂)− τi

1−γ ) and λj = 0 for other j’s, we get

L(w∗, π∗; Q̂, λ̂) ≤ L(ŵ, π̂;Qπ̂
λ, λ) + ξ = (1− γ)J0(π̂) + (1− γ)(1 + 1/φ)m+ ξ,

where we define Qπ
λ = Qπ

0 +
∑I

i=1 λiQ
π
i , which is the action value function of π with respect
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to the reward r0 +
∑I

i=1 λiri. On the other hand, the feasibility of π∗ gives

L(w∗, π∗; Q̂, λ̂) = (1− γ)J0(π∗) + (1− γ)
I∑
i=1

λ̂i(Ji(π
∗)− τi

1− γ
) ≥ (1− γ)J0(π∗).

Combining the previous two inequalities, and (C.2), we get

(1 + 1/φ)m+
ξ

1− γ
≥ J0(π

∗)− J0(π̂) ≥ m∥λ∗∥1.

Rearranging, we get

−ξ
1 + 1/φ− ∥λ∗∥1

≤ (1− γ)m ≤ (1− γ)Ji(π̂)− τi

for all i = 1, . . . , I. It follows that

(1− γ)Ji(π̂) ≥ τi −
ξ

1 + 1/φ− ∥λ∗∥1
≥ τi − ξ

where the last inequality uses the fact that ∥λ∗∥1 ≤ 1/φ. This completes the proof.

Proof of Theorem 9. By Lemma 63, we have with probability at least 1 − δ that for all

w ∈ W , π ∈ Π, Q ∈ Q and λ ∈ (1 + 1
φ
)∆I ,

|L(w, π;Q, λ)− L̂(w, π;Q, λ)| ≤ εn

where εn = O(( 1
φ
+ 1

1−γ )C
√

log(N1/
√
n(W , ∥ · ∥∞)N1/

√
n(Π, ∥ · ∥1,∞)N1/

√
n(Q, ∥ · ∥∞)/δ)/n).

Let (ŵ, π̂; Q̂, λ̂) be a saddle point of L̂. Then, by Lemma 64, it is a (2εn)-near saddle point

of L, and the result follows by Lemma 65.

C.2.3 Proof of Theorem 10

Lemma 66. Assume that Slater’s condition (Assumption 3) holds. Define L(π, λ) = (1 −
γ)J0(π) + (1− γ)

∑I
i=1 λi(Ji(π)−

τi
1−γ ). If L(π

∗, λ̂) ≤ L(π̂, λ) + ξ for all λ ∈ (1+ 1
φ
)∆I , then

we have

J0(π̂) ≥ J0(π
∗)− ξ

1− γ
(Optimality)

Ji(π̂) ≥
τi

1− γ
− ξ

1− γ
, for all i = 1, . . . I (Feasibility)
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Proof. To show the near optimality, observe that

L(π∗, λ̂) ≤ L(π̂, 0) + ξ = (1− γ)J0(π̂) + ξ.

Rearranging, we get

(1− γ)J0(π̂) ≥ L(π∗, λ̂)− ξ

= (1− γ)J0(π∗) + (1− γ)
I∑
i=1

λi(Ji(π
∗)− τi

1− γ
)− ξ

≥ (1− γ)J0(π∗)− ξ,

as desired.

To show near feasibility, consider a saddle point (µ∗, π∗;Q∗, λ∗) of L(·, ·; ·, ·) defined in

Section 3.4.3. Then, π∗ is an optimal policy, and for all λ ∈ 1
φ
∆I , we have

L(π̂, λ∗) = L(wπ̂, π̂;Q∗, λ∗) ≤ L(w∗, π∗;Q, λ) = L(π∗, λ).

Hence, choosing λ = λ∗, we have L(π̂, λ∗) ≤ L(π∗, λ∗) = (1− γ)J0(π∗), and rearranging, we

get

(1− γ)J0(π∗) ≥ (1− γ)J0(π̂)+ (1− γ)
I∑
i=1

λ∗i (Ji(π̂)−
τi

1− γ
) ≥ (1− γ)J0(π̂)+ (1− γ)m∥λ∗∥1

where we define m = mini∈[I](Ji(π̂) − τi
1−γ ). Also, choosing λ to be λi = 1 + 1

φ
where

i = argmini∈[I](Ji(π̂)− τi
1−γ ), we get

(1− γ)J0(π∗) ≤ (1− γ)J0(π∗) + (1− γ)
I∑
i=1

λ̂i(Ji(π
∗)− τi

1− γ
)

= L(π∗, λ̂) ≤ L(π̂, λ) + ξ

= (1− γ)J0(π̂) + (1− γ)m(1 +
1

φ
) + ξ

where the first inequality follows by the feasibility of π∗. Rearranging, we get

J0(π
∗)− J0(π̂) ≤ m(1 +

1

φ
) +

ξ

1− γ
,
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and combining with the previous inequality, we get

m∥λ∗∥1 ≤ m(1 +
1

φ
) +

ξ

1− γ
.

Following the same calculation as in the proof of Lemma 65, we get the desired result.

Proof of Theorem 10. Define L(π, λ) = (1 − γ)J0(π) + (1 − γ)
∑I

i=1 λi(Ji(π) −
τi

1−γ ). Let

π̂ = Unif{π1, . . . , πT} be the policy returned by the algorithm and let λ̂ = 1
T

∑T
t=1 λt. By

Lemma 66, it is enough to show that L(π∗, λ̂) ≤ L(π̂, λ)+ εn for all λ ∈ (1+ 1
φ
)∆I . Consider

the following decomposition:

L(π∗, λ̂)− L(π̂, λ) = 1

T

T∑
t=1

L(π∗, λt)− L(πt, λ)

=
1

T

T∑
t=1

L(w∗, π∗;Qt, λt)− L(wt, πt;Qπt
λ , λ)

=
1

T

T∑
t=1

L(w∗, π∗;Qt, λt)− L(w∗, πt;Qt, λt)

+
1

T

T∑
t=1

L(w∗, πt;Qt, λt)− L(wt, πt;Qt, λt)

+
1

T

T∑
t=1

L(wt, πt;Qt, λt)− L(wt, πt;Qπt
λ , λt)

+
1

T

T∑
t=1

L(wt, πt;Q
πt
λ , λt)− L(wt, πt;Q

πt
λ , λ).

Regret of π-player Using the uniform concentration bound on the Lagrangian estimate

provided in Lemma 63, the summand in the first term can be bounded by

L(w∗, π∗;Qt, λt)− L(w∗, πt;Qt, λt) ≤ L̂(w∗, π∗;Qt, λt)− L̂(w∗, πt;Qt, λt) + 2εn

= (1− γ)Qt(s0, π
∗ − πt) + γ⟨µ∗, PQt(·, π∗ − πt)⟩,

which coincides with the regret of π-player in the analysis of the primal dual algorithm for

the unconstrained RL provided in the proof of Theorem 8. Following the same proof, using

the fact that the π player employs , we get

T∑
t=1

L(w∗, π∗;Qt, λt)− L(w∗, πt;Qt, λt) ≤
2

1− γ
√
T log |A|.
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Regret of w-player Similarly, the summand in the second term can be bounded by

L(w∗, πt;Qt, λt)− L(wt, πt;Qt, λt) ≤ L̂(w∗, πt;Qt, λt)− L̂(wt, πt;Qt, λt) + 2εn,

and the no-regret oracle employed by the w-player ensures the summation is bounded by

RegT + 2εn.

Regret of Q-player The summand in the third term can be bounded by

L(wt, πt;Qt, λt)− L(wt, πt;Qπt
λ , λt) ≤ L̂(wt, πt;Qt, λt)− L̂(wt, πt;Qπt

λ , λt) + 2εn,

which is bounded by 2εn since the Q-player employs a greedy strategy.

Regret of λ-player The summand in the fourth term can be bounded by

L(wt, πt;Q
πt
λ , λt)− L(wt, πt;Q

πt
λ , λ) ≤ L̂(wt, πt;Q

πt
λ , λt)− L̂(wt, πt;Q

πt
λ , λ) + 2εn,

which is bounded by 2εn since the λ-player employs a greedy strategy.

Combining the four bounds, we get

L(π∗, λ̂)− L(π̂, λ) ≤ O(εn),

and invoking Lemma 66 completes the proof.

C.3 Online Gradient Descent

We show a guarantee on the online gradient descent algorithm where the sequence of func-

tions are linear:

Lemma 67. Given x1 ∈ X ⊆ Rd where X is convex and η > 0, define the sequences

x2, . . . , xn+1 ∈ X and h1, . . . , hn ∈ Rd such that for k = 1, . . . , n,

xk+1 = ΠX (xk + ηhk)

where ΠX (·) is a projection onto X . Then, with the assumption that ∥hk∥2 ≤ G for all
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k = 1, . . . , n, we have for any x∗ ∈ X :

n∑
k=1

⟨x∗ − xk, hk⟩ ≤
∥x1 − x∗∥22

2η
+
ηnG2

2
.

Proof. We start by bounding following term:

∥xk+1 − x∗∥22 = ∥ΠX (xk + ηhk)− x∗∥22
≤ ∥xk + ηhk − x∗∥22
= ∥xk − x∗∥22 + 2η⟨xk − x∗, hk⟩+ η2∥hk∥22.

Rearranging, we get

2η⟨x∗ − xk, hk⟩ ≤ ∥xk − x∗∥22 − ∥xk+1 − x∗∥22 + η2∥hk∥22.

Summing over k = 1, . . . , n, we get

2η
n∑
k=1

⟨x∗ − xk, hk⟩ ≤ ∥x1 − x∗∥22 − ∥xn+1 − x∗∥22 + η2
n∑
k=1

∥hk∥22 ≤ ∥x1 − x∗∥22 + η2nG2.

Rearranging completes the proof.

Using the lemma above, we can get see that the online gradient descent algorithm can be

used as a no-regret oracle for the w-player in Algorithm 7. To see this, recall from the proof

of Theorem 8 that the w-player aims to minimize

T∑
t=1

L̂(w∗, πt;Qt)− L̂(wt, πt;Qt)

=
T∑
t=1

(
1

n

n∑
i=1

(w∗(si, ai)− wt(si, ai))(r(si, ai) + γQt(s
′
i, πt)−Qt(si, ai))

)

=
T∑
t=1

⟨w̃∗ − w̃t, ht⟩,

where w̃∗ and w̃t are n-dimensional vectors with i-th entry corresponding to w∗(si, ai)

and wt(si, ai), respectively. The n-vector ht represents the vector with i-entry r(si, ai) +

γQt(s
′
i, πt) − Qt(si, ai). Note that ∥ht∥2 ≤

√
n(1 + 1

1−γ ) for all t = 1, . . . , T . Applying the
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lemma, we get
T∑
t=1

L̂(w∗, πt;Qt)− L̂(wt, πt, ;Qt) ≤
C2n

η
+
ηnTB2

2
,

where B = 1 + 1
1−γ . Choosing η = C/(B

√
T ), we get the upper bound O(nCB

√
T ), which

is sublinear in T .

The online gradient descent algorithm gives a similar guarantee when employed in Algo-

rithm 8 for the constrained RL setting.
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stochastic bandits. Advances in neural information processing systems, 24, 2011.

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conver-
sions and application to sparse stochastic bandits. In Artificial Intelligence and Statistics,
pages 1–9. PMLR, 2012.

Priyank Agrawal and Shipra Agrawal. Optimistic q-learning for average reward and episodic
reinforcement learning. arXiv preprint arXiv:2407.13743, 2024.

Eitan Altman. Constrained Markov Decision Processes, volume 7. CRC Press, 1999.
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