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ABSTRACT

Distributionally robust optimization (DRO) represents a sophisticated approach to mak-

ing informed decisions in situations where uncertainty plays a significant role, especially in

environments where safety cannot be compromised. This methodology offers a structured

way to tackle decision-making by preparing for the worst-case scenarios within a defined

set of possibilities known as the ambiguity set, aiming to ensure that our decisions remain

effective even under the least favorable conditions.

There has been a notable shift towards enriching this traditional framework with data-

driven insights in recent years. The goal here is to refine how we define the ambiguity

set by leveraging actual data, thereby making DRO more relevant and applicable to real-

world scenarios. However, a common limitation of these advancements is their reliance on

a globally predefined ambiguity set. This means the set is determined before solving the

optimization problem and does not adapt based on new data or insights gained during the

decision-making process.

Addressing this limitation, we introduce a novel approach called Conformalized Distribu-

tionally Robust Optimization (CRDO). CRDO innovatively combines DRO with conformal

prediction, a statistical technique that uses past data to make predictions about future out-

comes within a certain level of confidence. Through conformal prediction, CRDO dynami-

cally generates ambiguity sets based on the space of probability measures—mathematically

rigorous ways to quantify uncertainties. This approach not only allows for more flexibility in

responding to changing data but also enables us to make strong, confidence-backed claims

about the performance of the decisions made using CRDO.

To demonstrate the versatility and power of the CRDO framework, we apply it to a

series of benchmark tasks within the realm of simulation-based inference to showcase how

CRDO can improve decision-making processes by adaptively tuning to the intricacies and

uncertainties inherent in each scenario.

In essence, CRDO represents a significant leap forward in the domain of optimization un-

der uncertainty, blending classical principles with modern data-driven methodologies to cre-

ate a robust, adaptive, and highly applicable approach to tackling some challenging decision-

making scenarios in safety-critical settings.
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CHAPTER 1

Introduction

Stochastic optimization is a mature field often used in safety-critical situations, such as in the

deployment of self-driving cars [4, 17, 5, 30]. Traditionally, problems are framed as seeking

decisions w ∈ W that minimize EP(C)[f(w,C)] for some objective f and random information

dictating the decision quality w.

In cases where contextual information is present, this requires explicit modeling of the

posterior P(C | X) distribution. However, in many scientific applications, such as in astro-

physics, neuroscience, and particle physics [26, 22, 18, 11, 27, 7], decisions are sought over

a very large collection of x, typically on the order of 10,000 or more. Thus, even where the

likelihood and prior are well specified, exact sampling from the P(C | X) posterior becomes

intractable, as doing so would require running on the order of 10,000 separate MCMC chains.

In such scenarios, amortized variational inference (amortized VI) is frequently employed,

leading to decisions being made based on the expectation Eqφ(x)(C)[f(w,C)]. Here, amortized

VI operates by approximating the posterior distribution of uncertain parameters C given

observed data X through a variational approach. This method utilizes a neural network or

a similar model with parameters φ, which are learned from the data to map inputs X to

the parameters of the distribution qφ(x)(C). This process is termed “amortized” because the

cost of learning the mapping is spread across all data points, making it efficient for large

datasets or complex models where traditional inference methods become computationally

prohibitive.

The decision objective Eqφ(x)(C)[f(w,C)] signifies evaluating the expected outcome of the

decision w under the estimated distribution of C. This objective function f represents the

goals or costs associated with different decisions, incorporating the uncertainties captured

by qφ(x)(C). By employing amortized VI, we seek to minimize or optimize this expectation,

thus making informed decisions that account for the underlying uncertainty.

While amortized VI offers a computationally efficient alternative to methods like MCMC

for estimating posterior distributions, it’s also noted for its limitations, including the po-

tential for introducing bias and lacking theoretical guarantees [6, 24, 39, 38]. This poses
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challenges, particularly in fields where precise uncertainty quantification is crucial. For in-

stance, in the subfield of likelihood-free inference, a meta-study on widely used algorithms

relying on VI revealed that they consistently produce unfaithful, overconfident posterior ap-

proximations [19]. Nonetheless, the use of amortized VI in calculating the decision objective

Eqφ(x)(C)[f(w,C)] represents a pragmatic approach to dealing with complex, high-dimensional

data in decision-making processes.

Separately, distributionally robust optimization (DRO) arose, in which solutions of this

optimization set are instead sought over an ambiguity set U(P) of distributions [30, 20, 21].

Significant progress has been achieved in this vein, but DRO requires a priori knowledge

of plausible ambiguity sets or noise distributions to produce practically useful answers. An

overly conservative ambiguity set will likely result in suboptimal performance in typical

circumstances. Towards this end, data-driven DRO has recently become of interest, in

which plausible ambiguity sets are learned empirically [12, 23, 10].

Conformal prediction provides a principled framework for producing distribution-free

uncertainty quantification with marginal frequentist guarantees [3, 34]. By using conformal

prediction on a user-defined score function s(x, y) and obtaining an empirical 1−α quantile

q̂(α) of s(x, y) over a calibration set DC , prediction regions C(x) = {y | s(x, y) ≤ q̂(α)}
attain marginal coverage guarantees. Similar to DRO, the utility of such prediction regions

is directly related to the nature of the score function: a poor choice of score may result in

overly conservative, meaningless prediction sets.

A recent procedure CPO (Conformal-Predict-Then-Optimize) leverages such conformal

prediction regions for predict-then-optimize decision-making. In this vein, we extend CPO

and propose CDPO (Conformal-Distributional-Predict-Then-Optimize), a procedure that

leverages conformal prediction to produce prediction regions over probability measures and

thereby produces guarantees on stochastic decision-making algorithms that rely on amortized

variational inference, in turn unifying the fields of distributionally robust optimization and

predict-then-optimize decision-making. Our main contributions are:

• Proposing a new framework (CDPO) for data-driven distributionally robust optimiza-

tion that has strong guarantees downstream.

• Demonstrating the use of conformal prediction over non-parametric probability mea-

sures.

• Demonstrating the generality of the CDPO framework on a suite of SBI tasks.
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CHAPTER 2

Background

2.1 Conformal Prediction

Given a dataset DC = {(X1, y1), . . . (XNC , yNC)} of i.i.d. observations from a distribution

P(Y,X), conformal prediction [3, 34] produces prediction regions with distribution-free the-

oretical guarantees. A prediction region is a mapping from observations of X to sets of

possible values for Y . A prediction region C is said to be marginally calibrated at the 1− α

level if P(Y /∈ U(X)) ≤ α.

Split conformal is one popular version of conformal prediction. In this approach, marginally

calibrated regions C are designed using a “score function” s(x, y). Intuitively, the score

function should have the quality that s(x, y) is smaller when it is more reasonable to guess

that Y = y given the observation X = x. For example, if one has access to a function

f̂(x) which attempts to predict Y from X, one might take s(x, y) = ∥f̂(x) − y∥. The

score function is evaluated on each point of the dataset DC, called the “calibration dataset,”

yielding S = {s(x(j), y(j))}NC
j=1. Note that the calibration dataset cannot be used to pick

the score function; if data is used to design the score function, it must be independent of

DC. This is how “split conformal” gets its name: in typical cases, data are split into two

parts, one used to design s and the other to perform calibration. We then define q̂(α) as the

⌈(NC + 1)(1 − α)⌉/NC quantile of S. For any future x, the set U(x) = {y | s(x, y) ≤ q̂(α)}
satisfies 1− α ≤ P(Y ∈ U(X)). This inequality is known as the coverage guarantee, and it

arises from the exchangeability of the score of a test point s(x′, y′) with S. Those new to

conformal prediction may be surprised to note that the coverage guarantee holds regardless

of the number of samples NC used in calibration; conformal guarantees are not asymptotic

results.

As noted in Vovk’s tutorial [34], while the coverage guarantee holds for any score function,

different score functions may lead to more or less informative prediction regions. For exam-

ple, the score s(x, y) = 1 leads to the highly uninformative prediction region of all possible
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values of Y . Predictive efficiency is one way to quantify informativeness [37, 33]. It is defined

as the inverse of the expected Lebesgue measure of the prediction region, i.e. (E[|U(X)|])−1.

Methods employing conformal prediction often seek to identify prediction regions that are

efficient as well as calibrated.

2.2 Variational Inference

Bayesian methods aim to sample the posterior distribution P(Θ | X), typically using either

MCMC or VI. VI has risen in popularity recently due to how well it lends itself to amorti-

zation. Given an observation X, variational inference transforms the problem of posterior

inference into an optimization problem by seeking

φ∗(X) = argmin
φ

D(qφ(Θ)||P(Θ | X)), (2.1)

where D is a divergence and qφ is a member of a variational family of distributions Q indexed

by the free parameter φ. Normalizing flows have emerged as a particularly apt choice forQ, as

they are highly flexible and perform well empirically [31, 1]. Amortized variational inference

expands on this approach by training a neural network to approximate φ∗(X). This leads

to a variational posterior approximator q(Θ | X) = qφ∗(X)(Θ) that can be rapidly computed

for any value X. The characteristics of φ∗ depend in part on the variational objective,

D. For instance, using a reverse-KL objective, i.e. DKL(qφ(Θ)||P(Θ | X)), is known to

produce mode-seeking posterior approximations, whereas using a forward-KL objective, i.e.

DKL(P(Θ | X)||qφ(Θ)), encourages mode-covering behavior [25]. Popular objectives include

the Forward-Amortized Variational Inference (FAVI) objective [2, 8], the Evidence Lower

Bound (ELBO), and the Importance Weighted ELBO (IWBO) [9].

2.3 Predict-then-Optimize

We present a summary of predict-then-optimize problems and the application of conformal

prediction in this setting, specifically from [28]. Such problems can be formulated as

w∗(x) := min
w∈W

E[f(w,C) | x], (2.2)

where w are decision variables, C an unknown cost parameter, x observed contextual vari-

ables, W a compact feasible region, and f(w, c) an objective function that is convex-concave

and L-Lipschitz in c for any fixed w. The predict-then-optimize framework is so called as
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the nominal approach first predicts ĉ := f(x) and subsequently solves minw f(w, ĉ). Alter-

natively, a predictive contextual distribution P(C | x) is assumed, with respect to which

the optimization formulation is solved. A more comprehensive review of the predict-then-

optimize literature is presented in [13].

The formulation in Equation (2.2), however, is inappropriate in risk-sensitive downstream

tasks. For this reason, recent works have begun investigating a risk-sensitive variant or

“robust” alternative to this formulation. One way to do so follows in the vein of conditional

value at risk as studied in [28, 36], where the goal marginalizes over the observed contexts:

EX [min
w∈W

VaRα[f(w,C) | X]]. (2.3)

Crucially, this formulation of interest does not lend itself naturally to a solution. For this

reason, we consider an equivalent framing as the following robust optimization problem:

w∗(x) := min
w,U

max
ĉ∈U(x)

f(w, ĉ)

s.t. PX,C(C ∈ U(X)) ≥ 1− α,
(2.4)

where U : X → F is a uncertainty region predictor. In [28], U(x) was specifically constructed

via conformal prediction to satisfy the desired probabilistic constraint. That is, U(x) was

taken to be the prediction region C(x) produced by conformalizing a predictor q : X → C.
The primary consequence of doing so was having a probabilistic guarantee on the subopti-

mality gap. That is, denoting the suboptimality gap by ∆(x, c) := minw maxĉ∈C(X) f(w, ĉ)−
minw f(w, c), where c is the true parameter corresponding to x, they established that leverag-

ing conformal uncertainty regions guarantees PX,C (0 ≤ ∆(X,C) ≤ L diam(C(X))) ≥ 1−α.

2.4 Distributionally Robust Optimization

We present much of the background from this section as a review of the corresponding

sections from [20]. For a fully comprehensive discussion on the following topics, we refer

readers to the relevant sections therein. Consider a decision problem under uncertainty.

We have a measurable, extended real-valued loss function denoted as l(ξ) to model each

admissible decision result, where ξ ∈ Rm is a random vector governed by a probability

distribution P . Let the feasible set of l be L. We then have the risk of a decision l ∈ L
defined as the expected loss under P :

R(P , l) := EP [l(ξ)], (2.5)

5



and the optimal risk as the lower bound of the risk above within the feasible set L:

R(P ,L) := inf
l∈L

R(P , l). (2.6)

2.4.1 Selection of Nominal Distribution

In most decision-making situations, the distribution P is unknown, meaning we have to find

a nominal distribution P̂N as an estimator. Using such an estimator, Equation (2.5) and

Equation (2.6) become solvable, simply replacing the respective terms with R(P̂N , l) and

R(P̂N ,L).
(1) For non-parametric models, since there is not enough structural information from the

model itself, we have to construct P̂N as the discrete empirical distribution sampling from

the unknown P , which is defined as

P̂N =
1

N

N∑
i=1

δξ̂i ,

where N denotes the size of training samples and δξ̂i denotes the i-th Dirac function whose

mass is at the i-th training sample ξ̂i. Moreover, surprisingly, for the optimization problem

infQ∈PN
W1(Q,P), where PN is the family of N -atom discrete probability distributions de-

fined over a compact set Ξ ∈ Rm, the empirical distribution obtains the optimal convergence

rate N− 1
m [20].

(2) For parametric models, since there is more structural information presented, we in-

stead set P̂N to be an elliptical distribution

P̂N = Eg(µ̂, Σ̂),

where g is a generator depending on the specific structure and training samples and µ̂ and

Σ̂ are the mean and covariance maximum estimators, respectively. Since we formulated P̂
with an elliptical structure, finding the estimator P̂N is equivalent to finding an estimator

θ̂N = (µ̂, Σ̂). We know the MLE estimator θ̂MLE
N is asymptotically unbiased and efficient asN

grows, making it the preferred estimator assuming the structural form of P̂N is well-specified.
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2.4.2 Wasserstein Distance

For any p ∈ [1,∞], the type-p Wasserstein Distance between two probability Q and Q′ on

Rm is defined as:

Wp(Q,Q
′) =

(
inf

π∈Π(Q,Q′)

∫
Rm×Rm

∥ξ − ξ
′∥pπ(dξ, dξ′

)

) 1
p

(2.7)

where ∥·∥ denotes a norm on Rm and Π(Q,Q′) denotes the set of all possible joint probability

distributions of ξ and ξ
′
with marginal distributions Q and Q

′
, respectively.

This problem can be interpreted as the minimum cost of transporting a pile of dirt at

the location represented by a distribution Q to the location represented by a distribution

Q
′
, where the moving cost of a unit mass is ∥ξ − ξ

′∥p, and a transportation plan is encoded

in π, which means the probability π(A×B) is the amount of mass transport from the initial

region A to the target region B.

2.4.3 Strong Duality of Wasserstein Distance

The linear problem above has a strong dual, whose strong duality is proved in [20]:

W p
p (Q,Q

′) = sup

{∫
Rm

ψ(ξ′)Q′(dξ′)−
∫
Rm

ϕ(ξ)Q(dξ)

}
s.t. ϕ and ψ are bounded continuous functions on Rm with

ψ(ξ)− ϕ(ξ′) ≤ ∥ξ − ξ′∥p ∀ξ, ξ′ ∈ Rm,

(2.8)

where W p
p (Q,Q

′) is the p-th power of the p-Wasserstein Distance between Q and Q
′
.

Define the Lipschitz modulus of an extended real-valued function ϕ on Rm as Lip(ϕ), and

Lip(ϕ) := sup
ξ ̸=ξ′

|ϕ(ξ)− ϕ(ξ
′
)|

∥ξ − ξ′∥
.

When p = 1, the constraint in problem 2.4 becomes Lip(ϕ) = supξ ̸=ξ′
|ϕ(ξ)−ϕ(ξ

′
)|

∥ξ−ξ′∥ ≤ 1, which

means problem 2.4 becomes

W1(Q,Q
′) = sup

Lip(ϕ)≤1

∫
Rm

ψ(ξ′)Q′(dξ′)−
∫
Rm

ϕ(ξ)Q(dξ). (2.9)

which is called the Kantorovich-Rubinstein theorem [20]. For a L-Lipschitz continuous loss
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function l(ξ), and a nominal distribution P̂N with W1(P̂N ,P) ≤ ε, we have∣∣∣R(P̂N , l)−R(P , l)
∣∣∣ = EP̂N

[l(ξ)]− EP [l(ξ)]

=

∫
Rm

l(ξ)P̂N(dξ)−
∫
Rm

l(ξ)P(dξ)

= L · (
∫
Rm

l(ξ)

L
P̂N(dξ)−

∫
Rm

l(ξ)

L
P(dξ))

Since l(ξ) is L-Lipschitz continuous, Lip(l) = supξ ̸=ξ′
|l(ξ)−l(ξ

′
)|

∥ξ−ξ′∥ ≤ L, which means Lip( l
L
) =

supξ ̸=ξ′
| l(ξ)

L
− l(ξ

′
)

L
|

∥ξ−ξ′∥ ≤ L
L
= 1. Therefore, we have that

∣∣∣R(P̂N , l)−R(P , l)
∣∣∣ ≤ L ·W1(P̂N ,P) ≤ L · ε.

2.4.4 Extra Notations

• Wasserstein metric. Let Ξ ⊆ Rm be a closed set. We denote P(Ξ) as the family of all

probability supported on Ξ. We then define the ambiguity set

Bε,p(P̂N) =
{
Q ∈ P(Ξ) : Wp(Q, P̂N) ≤ ε

}
as the ball centered at the nominal distribution with radius ε in the metric of p-

Wasserstein distance. When we do optimization within the feasible set, we can treat ε

as the maximum estimation error.

• Indicator function. The indicator function for a set Ξ ∈ Rm is defined as

δΞ(ξ) =

0 if ξ ∈ Ξ,

∞ if ξ /∈ Ξ.

• Conjugate function. The conjugate of a function l(ξ) on Rm is defined as

l∗(z) = sup
ξ
zT ξ − l(ξ).

The conjugate of indicator function is

σΞ(z) = δ∗Ξ(z) = sup
ξ
zT ξ − δΞ(ξ)

.
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Consider the case ξ ∈ Ξ, we obtain the conjugate of the indicator function for the

set Ξ is σΞ(z) = supξ z
T ξ, which coincides with the definition of support function for

Ξ. Therefore, on a certain set Ξ, the indicator function and the support function are

conjugate of each other.

• Dual Norm. If ∥ξ∥ denotes the norm of ξ ∈ Rm, then ∥z∥∗ = sup∥ξ∥≤1 z
T ξ denotes the

corresponding dual norm.

2.4.5 High-level Analysis of the Optimal Worst-case Risk

Use the notation in section 2.4.4, we have the worst-case risk

Rε,p(P̂N , l) := sup
Q∈Bε,p(P̂N )

R(Q, l) (2.10)

and the worst-case optimal risk

Rε,p(P̂N ,L) := inf
l∈L

R(P̂N , l) (2.11)

Equation (2.11) is the general formulation of distributionally robust optimization problems.

This problem can often be reformulated as a finite convex program which can be solved in

polynomial time, and the detailed process of the reformulation will be shown below.

2.4.6 Computation and Proof

The worst-case risk (2.6) for any fixed loss function l ∈ L satisfies strong duality:

Rε,p(P̂N , l) = inf
γ>0

EP̂N
[lγ(ξ)] + γεp (2.12)

where lγ(ξ) = supz∈Ξ l(z)− γ∥z − ξ∥p defined on a convex set Ξ. The proof of this duality

proceeds as follows. We first note that

Rε,p(P̂N , l) = sup
Q∈Bε,p(P̂N )

R(Q, l) = sup
Wp(Q,P̂N )≤ε

EQ(l(ξ)).

This problem can be reformulated as below by the definition of expectation and p-Wasserstein

Distance: 
sup
Π,Q

∫
Ξ

l(ξ)Q(dξ)

s.t.

∫
Ξ2

∥ξ − ξ′∥pΠ(dξ, dξ′) ≤ εp
(2.13)
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In the non-parametric setting, we know from section 2.4.1 that P̂N should be written as a

mean of the sum of N Dirac functions with the mass of each is at i-th training sample ξ̂i.

Therefore, we know the joint probability Π(ξ, ξ′) can be constructed from the marginal distri-

butions P̂N and Qi respectively of ξ′ and ξ. In turn, we can write Π(dξ, dξ′) = 1
N

N∑
i=1

δξ̂i ⊗Qi,

where the tensor product denotes the combination of two independent probability distri-

bution δξ̂i and Qi. Let M(Ξ) denote the set of all Dirac distributions supported on Ξ.

Equation (2.13) can then be rewritten as
sup

Qi∈M(Ξ)

1

N

N∑
i=1

∫
Ξ

l(ξ)Qi(dξ)

s.t.
1

N

N∑
i=1

∫
Ξ

∥ξ − ξ̂i∥
p
Qi(dξ) ≤ εp,

(2.14)

Using the standard Lagrange dual, Equation (2.14) can be written in its dual form as follows:

sup
Qi∈M(Ξ)

inf
γ≥0

{
1

N

N∑
i=1

∫
Ξ

l(ξ)Qi(dξ) + γ(εp − 1

N

N∑
i=1

∫
Ξ

∥ξ − ξ̂i∥
p
Qi(dξ))

}
(2.15)

≤ inf
γ≥0

sup
Qi∈M(Ξ)

{
γεp +

1

N

N∑
i=1

∫
Ξ

(l(ξ)− γ∥ξ − ξ̂i∥
p
)Qi(dξ)

}
(2.16)

= inf
γ≥0

γεp +
1

N

N∑
i=1

sup
ξ∈Ξ

{
l(ξ)− γ∥ξ − ξ̂i∥

p
}
, (2.17)

where we invoked the Minimax Theorem to perform the second step and noted that the

term γεp is invariant in the feasible set and hence could be moved out in the final step.

Let [N ] denote {1, 2, · · · , N}, to maximize the remaining part, in our non-parametric mod-

eling, we have to find the N Dirac distributions Q1, · · · , QN , and each Qi (i ∈ [N ]) will

have its mass attained on and only on a ξ = ξ∗i ∈ Ξ such that l(ξ) − γ∥ξ − ξ̂i∥
p
attains

supξ∈Ξ

{
l(ξ)− γ∥ξ − ξ̂i∥

p
}
. Moreover, since the integral of the Dirac function is 1 due to

the definition of the probability mass function, the second equality holds as above.

For the last problem above, we only substitute the variable ξ with z, and it can be written

as infγ≥0 γε
p+ 1

N

N∑
i=1

supz∈Ξ

{
l(z)− γ∥z − ξ̂i∥

p
}
. Since P̂N is a probability distribution with

equal mass at N points ξ̂i, i ∈ [N ], so we have

EP̂N
[lγ(ξ)] =

1

N

N∑
i=1

sup
z∈Ξ

{
l(z)− γ∥z − ξ̂i∥

p
}

10



by the definition of expectation, lγ(ξ), and the special property of P̂N . Therefore, we have

proved that problem Equation (2.10) can be reformulated as its duality form Equation (2.12).

Since lγ(ξ) is a Moreau-Yosida regularization [20] of l(ξ), and lγ(ξ) is jointly convex in γ and

l for any fixed ξ, therefore the dual form Equation (2.12) is a convex minimization problem

whose optimal value is also convex in l, and that’s part of the reason why the strong duality

is achieved. Equation (2.12) is still an intermediate step of the reformulation, and we will

show the remaining necessary assumptions to make the strong duality attained in the process

of proving the reformulation to the final finite convex program.

• (Convexity Assumptions [14, p.128 Assumption 4.1]) The set Ξ ∈ Rm is convex and closed,

and l(ξ) = maxj∈[J ] lj(ξ) with the negative constituent functions −lj proper, convex, lower

semicontinous, and not indentically ∞ for all j ∈ [j]. By proposition 3.4 in [35], the inequal-

ity of Equation (2.16) can be reduced to equality under the assumptions above. Therefore,

theorem Equation (2.12) is fully proved.

Now under the convexity assumption, we continue to reformulate Equation (2.12) into a

finite convex program:

Rε,p(P̂N , l) = inf γεp +
1

N

N∑
i=1

si.

s.t. γ ∈ R+, si ∈ R, uij ∈ Rm, vij ∈ Rm

[−lj]∗(uij − vij) + σΞ(vij)− uTij ξ̂i + φ(q)γ

∥∥∥∥uijγ
∥∥∥∥q
∗
≤ si ∀i ∈ [N ], j ∈ [J ],

(2.18)

Where φ(q) = (q−1)q−1

qq
for q > 1 and φ(1) = 1.

Now we start to prove Equation (2.18). Continue the notation of Equation (2.17) and

reformulate it as: 
inf
γ,si

γεp +
1

N

N∑
i=1

si

s.t. sup
ξ∈Ξ

(l(ξ)− γ∥ξ − ξ̂i∥
p
) ≤ si, ∀i ∈ [N ]

λ ≥ 0

(2.19)
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=


inf
γ,si

γεp +
1

N

N∑
i=1

si

s.t. sup
ξ∈Ξ,uij∈Rm

(
lj(ξ)− uTij(ξ − ξ̂i) + uTij(ξ − ξ̂i)− γ∥ξ − ξ̂i∥

p
)
≤ si, ∀i ≤ N, ∀j ≤ J

λ ≥ 0

(2.20)

≤


inf
γ,si

γεp +
1

N

N∑
i=1

si

s.t. sup
ξ∈Ξ,uij∈Rm

(
lj(ξ)− uTij(ξ − ξ̂i)

)
+ sup

ξ∈Ξ,uij∈Rm

(
uTij(ξ − ξ̂i)− γ∥ξ − ξ̂i∥

p
)
≤ si, ∀i ≤ N,∀j ≤ J

λ ≥ 0.

(2.21)

In the first equality, we first exploit the property in the convexity assumptions that l(ξ) can

be written as the maximum of a series of constituent concave loss functions. Then we add

and delete the term uTij(ξ − ξ̂i) once in the first constraint, and split it into two parts in the

second inequality. Since we have

sup
ξ∈Ξ,uij∈Rm

(
lj(ξ)− uTij(ξ − ξ̂i) + uTij(ξ − ξ̂i)− γ∥ξ − ξ̂i∥

p
)

≤ sup
ξ∈Ξ,uij∈Rm

(
lj(ξ)− uTij(ξ − ξ̂i)

)
+ sup

ξ∈Ξ,uij∈Rm

(
uTij(ξ − ξ̂i)− γ∥ξ − ξ̂i∥

p
)
,

the first constraint in Equation (2.21) is more strict than that in Equation (2.20), which

means the minimum value Equation (2.20) can attain is at least as small as that in Equa-

tion (2.21).

For

sup
ξ∈Ξ,uij∈Rm

(
lj(ξ)− uTij(ξ − ξ̂i)

)
,

12



substitute uij with −uij, we have

sup
ξ∈Ξ,uij∈Rm

{
lj(ξ) + uTijξ

}
− uTij ξ̂i

= [−lj + δΞ]
∗ − uTij ξ̂i

= cl ([−lj]∗ # [δΞ]
∗)− uTij ξ̂i

= cl

(
inf
vij

([−lj]∗ (uij − vij) + [δΞ]
∗ (vij))

)
− uTij ξ̂i.

For the first equality, since the indicator function is defined on Ξ, δΞ = 0 for ξ ∈ Ξ, so this

term can be added within the conjugate of −lj.
For the second equality, we first introduce an operation called epi-addition or int-convolution

[32, p. 23 1(12)] as below:

For f1 : Rm −→ R and f2 : Rm −→ R,

(f1 # f2) = inf
x1+x2=x

{f1(x1) + f2(x2)} = inf
w

{f1(x− w) + f2(w)} ,

and from [32, p. 493 Theorem 11.23 (a)], for f = (f1 # f2), we will have f
∗ = f ∗

1 + f ∗
2 , and if

f = f1 + f2, f1 and f2 are proper, convex, and lower semicontinous such that dom f1 meets

dom f2, then f
∗ = cl(f ∗

1 # f ∗
2 ), when cl denotes the closure operation of a set. Under the

convexity assumption, the second quality holds.

For the third equality, it holds naturally by the definition of epi-addition introduced before.

Since the closure operation maps any function to its largest lower semicontinuous minorant.

As cl[f(ξ)] < 0 if and only if f(ξ) < 0 for any function f [14, p.131], we can conclude that

sup
ξ∈Ξ,uij∈Rm

(
lj(ξ)− uTij(ξ − ξ̂i)

)
= sup

ξ∈Ξ,uij∈Rm

{
lj(ξ) + uTijξ

}
− uTij ξ̂i

= [−lj]∗ (uij − vij) + σΞ(vij)− uTij ξ̂i. (2.22)

For

sup
ξ∈Ξ,uij∈Rm

(
uTij(ξ − ξ̂i)− γ∥ξ − ξ̂i∥

p
)
,

it equals to

sup
ξ∈Ξ,uij∈Rm

(
uTijξ − γ∥ξ − ξ̂i∥

p
)
− uTij ξ̂i = φ(q)γ

∥∥∥∥uijγ
∥∥∥∥q
∗
. (2.23)

Before giving a vigorous justification for Equation (2.23), we introduce the concept of Con-

jugates of Powers of Norms [40, p.71 Lemma C.9]. Assume ∥ · ∥ and ∥ · ∥∗ are mutually dual

13



norms, and p, q ∈ [1,∞] satisfy 1
p
+ 1

q
= 1, then the conjugate of h(z) = 1

p
∥z∥p is given by

h∗(y) = sup
z

{
zTy − 1

p
∥z∥p

}
≤ sup

z

{
∥z∥∥y∥∗ −

1

p
∥z∥p

}
= max

t≥0

{
t∥y∥∗ −

1

p
tp
}

(2.24)

we can easily find that Equation (2.24) attains its maximum when t = ∥y∥
1

p−1
∗ , and the

maximum value is (1 − 1
p
)∥y∥

p
p−1
∗ = 1

q
∥y∥q∗, using 1

p
+ 1

q
= 1. When ∥z∥ = ∥y∥

1
p−1
∗ , the first

inequality is tight, hence we have

h∗(y) = sup
z

{
zTy − 1

p
∥z∥p

}
=

1

q
∥y∥q∗. (2.25)

Now we can prove Equation (2.23). Since LHS in Equation (2.23) can be written as:

sup
ξ∈Ξ,uij∈Rm

(
uTijξ − γ∥ξ − ξ̂i∥

p
)
− uTij ξ̂i = uTij ξ̂i + sup

ξ

{
uTijξ − γ∥ξ∥p

}
− uTij ξ̂i

= γp sup
ξ

{
(uij/γ)

T

p
ξ − 1

p
∥ξ∥p

}
= γp · 1

q

∥∥∥∥uijγ · 1
p

∥∥∥∥q
∗

= γ
p1−q

q

∥∥∥∥uijγ
∥∥∥∥q
∗

= γ
[q/(q − 1)]1−q

q

∥∥∥∥uijγ
∥∥∥∥q
∗

= γ
[(q − 1)/q]q−1

q

∥∥∥∥uijγ
∥∥∥∥q
∗

= φ(q)γ

∥∥∥∥uijγ
∥∥∥∥q
∗

(2.26)

In Equation (2.26), the first equality use ξ to substitute ξ − ξ̂i, the third quality uses Equa-

tion (2.25), and the last equalities use 1
p
+ 1

q
= 1. Therefore, we have proved Equation (2.23)

and the optimal value obtained when ξ∗ = ξ̂i+
∥∥∥uij

γ

∥∥∥ 1
p−1

∗
following from the process of deriving

Equation (2.24). Combining Equation (2.22) and Equation (2.23) and the inequality (tight

because the derivation of Equation (2.22) is regardless of ξ) right below Equation (2.21), we

derived the constraints for Equation (2.18), and hence justify Equation (2.18).
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CHAPTER 3

Conformalized Distributionally Robust

Optimization

3.1 Method

We now propose CRDO, a method that produces prediction regions over probability measures

and thereby enables distribution-free claims to be made downstream. We focus on settings of

contextual DRO as in [15], namely where we predict full distributions Qφ(x)(C). We assume

well-specified prior and likelihood models, respectively P(C) and P(X | C), with complex

posteriors distributions P(C | X), for which amortized variational inference is applied.

3.1.1 CDPO: Score Function

Let c ∈ C, where (C, d) is a general metric space, and F be the σ-field of C. While the stan-

dard predict-then-optimize framework assumes a linear objective function cTw, we consider

general convex-concave objective functions f(w, c) that are L-Lipschitz in c under the metric

d for any fixed w. With this generalization, the robust formulation of predict-then-optimize

can be stated as
w∗(x) := inf

w∈W
sup

Q̃∈U(x)

EQ̃[f(w,C)]

s.t. PX,PC
(PC ∈ U(X)) ≥ 1− α,

(3.1)

where U : X → M(F) is a uncertainty region predictor over the space of probability measures

on F . Exact solution of this problem is intractable, as no practical methods exist to optimize

over the measure space U . For any fixed U , this robust counterpart to the stochastic predict-

then-optimize problem produces a valid upper bound if we use the following score function:

s(x,PC) = W1(Qφ(x)(C),PC), (3.2)
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where W1 represents the 1-Wasserstein distance. To compute the quantile q̂ of such a score

over DC, we assume the recovery of samples from the exact posterior P(C | x) for a subset

of x, namely via MCMC methods. That is, we assume a dataset of the form {xi, {cPj }
NP
j=1}

exists, where each cPj ∼ P(C | xi).
From here, C(x) = {Q | s(x,Q) ≤ q̂(α)} has marginal guarantees in the form PX,PC

(PC ∈
C(X)) ≥ 1−α. Notably, even computing W for multi-dimensional distributions is a compu-

tationally challenging task; however, we can use the well-known equivalence between com-

puting W1 and the Assignment Problem, which can be solved in O(N3) with the Hungarian

Algorithm [29]. With this choice of score function, we can bound the nominal stochastic

optimal value:

∆(x,PC) := inf
w∈W

sup
Q̃∈U(x)

EQ̃[f(w,C)]− inf
w∈W

EPC
[f(w,C)].

We clearly see ∆(x,PC) ≥ 0 if PC ∈ U(x). This framing makes clear the consequences of

leveraging efficient prediction regions with guaranteed coverage, formalized below.

Lemma 3.1.1. Consider any f(w, c) that is L-Lipschitz in c under the metric d for any

fixed w. Assume further that PX,PC
(PC ∈ U(X)) ≥ 1 − α with supQ̃∈U(x) W1(Q̃,PC) =

diam(U(x)). Then, PX,PC
(∆(X,PC) ≤ L diam(U(X))) ≥ 1− α.

Proof. We consider the event of interest conditionally on a pair (x,PC) where PC ∈ U(x):

| inf
w∈W

sup
Q̃∈U(x)

EQ̃[f(w,C)]− inf
w∈W

EPC
[f(w,C)]|

≤ sup
w∈W

| sup
Q̃∈U(x)

EQ̃[f(w,C)]− EPC
[f(w,C)]|

≤ sup
w∈W

sup
Q̃∈U(x)

|EQ̃[f(w,C)]− EPC
[f(w,C)]|

≤ sup
w∈W

sup
Q̃∈U(x)

LW1(Q̃,PC) = Ldiam(U(x)).

Since PX,PC
(PC ∈ U(X)) ≥ 1− α, the result immediately follows.

Thus, 1− α validity of the prediction region ensures the result of the RO procedure is a

valid bound with probability 1−α, and greater efficiency of the prediction region translates

to a tighter upper bound.
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3.1.2 CDPO: Optimization Algorithm

While the statement of Theorem 3.1.1 was made assuming the exact 1-Wasserstein distance

could be computed, we note that this is untrue for any distribution of interest, for which this

quantity must be estimated with samples drawn respectively from the distributions of inter-

est. That is, to compute Equation (3.2), samples {cQj }
MQ
j=1 ∼ Q(C) are drawn, which, along

with the corresponding samples coming from the dataset, can be used to define corresponding

empirical distributions, namely as:

Q̂(C | xi) :=
1

MQ

MQ∑
j=1

δcQj P̂(C | xi) :=
1

MP

MP∑
j=1

δcPj . (3.3)

For simplicity of computation, we takeMP =MQ =M . Using these empirical distributions,

we are then able to estimate the 1-Wasserstein distance using the aforementioned Hungarian

Algorithm. That is, with such samples the distance is estimated as:

W1(Q̃(C | xi),P(C | xi)) ≈ W1(Q̂(C | xi), P̂(C | xi)) = inf
π

M∑
j=1

∣∣cQj − cPπ(j)
∣∣ , (3.4)

where π : [1, ...,M ] → [1, ...,M ] is a permutation function. We note that this use of an

estimate of 1-Wasserstein distance requires a modification to the standard proof of coverage

paralleling that presented in [16], but we defer this formalization to future work. Despite a

formal presentation, this estimation should not result in significant over- or under-coverage,

as the estimand has no one-sided bias with respect to the true probability distance.

We then fix α ∈ [0, 1] and take U(x) to be the 1−α prediction region C(x). We now seek

to solve Equation (3.1) for this choice of U(x). The constraint of the original formulation,

therefore, is satisfied by virtue of taking U(x) := Bq̂(Q̂). In turn, we are then left having to

solve the optimization problem

inf
w∈W

sup
Q̃∈Bq̂(Q̂)

EQ̃[f(w,C)]. (3.5)

We now leverage the insights of [20] to reframe this problem in a tractably solvable manner,

as discussed extensively in the background section. That is, we can reformulate this problem

simply as a regularized optimization problem in the following sense:

w∗(x) := inf
w∈W

(
1

M

M∑
i=1

f(w⊤cQi ) + q̂ · Lip(f) · ||w||∞

)
, (3.6)
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where we have specifically considered the case where f(w, c) = f(w⊤c) with cQi being samples

drawn from Qφ(x)(C). Note that this problem lends itself to an efficient solution algorithm,

which we make use of in the experiments of the following section.

3.2 Experiments

We first study the fractional knapsack problem under various complex contextual mappings:

inf
w∈W

sup
Q̃∈Bq̂(Q̂)

EQ̃[−w
⊤C] (3.7)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX,PC
(PC ∈ U(X)) ≥ 1− α.

where p ∈ Rn and B > 0. The distributions P(C) and P(X | C) are taken to be those

from various simulation-based inference (SBI) benchmark tasks provided by [19], chosen as

they have P(C | X) with complex structure. We specifically study Two Moons, Lotka-

Volterra, Gaussian Linear Uniform, Bernoulli GLM, Susceptible-Infected-Recovered (SIR),

and Gaussian Mixture. K reference posteriors were provided by the authors of [19] for each

task, specifically using a modified rejection sampling scheme and taking M = 10, 000. The

variational family fit in all cases was a normalizing spline flow.

Using the reframing of the previous section, we solved the following equivalent formulation

for the setups in question:

inf
w∈W

(
1

M

M∑
i=1

−w⊤cQi + q̂ · ||w||∞

)
(3.8)

s.t.w ∈ [0, 1]n, pTw ≤ B,PX,PC
(PC ∈ U(X)) ≥ 1− α,

where we note that f := id has a Lipschitz constant of Lip(f) = 1. We then compute q̂

over the NC reference-variational posterior pairs taking α = 0.9, where NC = 10 in [19].

Solving this problem, by Theorem 3.1.1 then produces a valid upper bound on the nominal

stochastic solution, as demonstrated in the following results. We specifically report the

expected suboptimality gap proportion, ∆% = EX [∆(X,C(X))/minw f(w,C(X))] below.
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Table 3.1: Suboptimality gaps (∆%) across tasks. Means and standard deviations are
reported over 3 test samples.

Task ∆%

SLCP -0.562 (0.041)
Gaussian Linear Uniform -0.430 (0.048)

Gernoulli GLM -0.484 (0.169)
Gaussian Mixture -0.167 (0.024)
Gaussian Linear -0.805 (0.180)
Bernoulli GLM -0.456 (0.155)
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CHAPTER 4

Conclusion

We have shown that conformal prediction can be practically leveraged in settings of stochastic

optimization to provide strong guarantees than those traditionally provided with variation

posteriors. This initial work suggests many directions for extension:

First, we solely considered synthetic benchmark tasks in this initial study: future work

should demonstrate that the performance and utility of this method is retained in a broader

class of applications of practical interest.

Second, this method employed the reframing of the DRO using the empirical distributions

of samples from the variational distribution: using the structural forms of the variational

distributions would be a similarly interesting extension.

Moreover, the reformulation of the DRO problem in chapter 2.4 is compatible for any

p ∈ [1,∞), and we only consider the case p = 1 as an initial step in our CDPO algorithm

and experiments. Making the algorithm for general p is an extension which is potentially

exciting.
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[15] Adrián Esteban-Pérez and Juan MMorales. Distributionally robust stochastic programs
with side information based on trimmings. Mathematical Programming, 195(1-2):1069–
1105, 2022.

[16] Shai Feldman, Stephen Bates, and Yaniv Romano. Calibrated multiple-output quan-
tile regression with representation learning. Journal of Machine Learning Research,
24(24):1–48, 2023.
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Nonnenmacher, and Jakob HMacke. Flexible statistical inference for mechanistic models
of neural dynamics. Advances in neural information processing systems, 30, 2017.

[23] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust
optimization using the wasserstein metric: performance guarantees and tractable refor-
mulations. Mathematical Programming, 171(1-2):115–166, 2018.

[24] Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

22



[25] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

[26] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with
bayesian conditional density estimation. Advances in neural information processing
systems, 29, 2016.

[27] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood:
Fast likelihood-free inference with autoregressive flows. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 837–848. PMLR, 2019.

[28] Yash Patel, Sahana Rayan, and Ambuj Tewari. Conformal contextual robust optimiza-
tion. arXiv preprint arXiv:2310.10003, 2023.

[29] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applica-
tions to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607,
2019.

[30] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review.
arXiv preprint arXiv:1908.05659, 2019.

[31] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[32] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin, 2010.

[33] Matteo Sesia and Emmanuel J Candès. A comparison of some conformal quantile
regression methods. Stat, 9(1):e261, 2020.

[34] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Ma-
chine Learning Research, 9(3), 2008.

[35] Alexander Shapiro. On Duality Theory of Conic Linear Problems, volume 57 of Non-
convex Optimization and Its Applications, pages 135–165. Springer, Boston, MA, 2001.

[36] Chunlin Sun, Linyu Liu, and Xiaocheng Li. Predict-then-calibrate: A new perspective
of robust contextual lp. arXiv preprint arXiv:2305.15686, 2023.

[37] Yachong Yang and Arun Kumar Kuchibhotla. Finite-sample efficient conformal predic-
tion. arXiv preprint arXiv:2104.13871, 2021.

[38] Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but did it work?:
Evaluating variational inference. In International Conference on Machine Learning,
pages 5581–5590. PMLR, 2018.
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