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ABSTRACT

Serially correlated high dimensional data are prevalent in the big data era. In order to predict

and learn the complex relationship among the multiple time series, high dimensional modeling has

gained importance in various fields such as control theory, statistics, economics, finance, genetics and

neuroscience. We study a number of high dimensional statistical problems involving different classes

of mixing processes. For example, given a sequence (Xt), one might be interested in predicting Xt

using the past observations Xt−1, · · · , Xt−d.

The vector autoregressive (VAR) models naturally admit a linear autoregressive representation that

allows us to study the joint evolution of the time series. In the high-dimensional setting, where both

the number of components of the time series and the order of the model are allowed to grow with

sample size, consistent estimation is impossible without structural assumptions on the transition

matrices. One such structural assumption is that of sparsity. The lasso program is a celebrated

method for sparse estimation. The majority of theoretical and empirical results on lasso, however,

assume iid data. In addition, it is common for real data sets to contain missing and/or corrupted

data. In the autoregressive scenario, both the independent and dependent variables are affected, and

hence requires careful consideration. We study the problem based upon the framework proposed in

Loh and Wainwright [2012]

In addition, many theoretical results on estimation of high dimensional time series require specifying

an underlying data generating model (DGM). Instead, we assume only (strict) stationarity and

mixing conditions to establish finite sample consistency of lasso for data coming from various families

of distributions. When the DGM is nonlinear, the lasso estimate corresponds to that of a best

v



linear predictor which we assume is sparse. We provide results for three different combinations of

dependence and tail behavior of the time series: α-mixing and Gaussian, β-mixing and subgaussian

tails, and β-mixing and subweilbull tails. To prove our results for the second set, we derive a

novel Hanson-Wright type concentration inequality for β-mixing subgaussian random vectors that

may be of independent interest. Together, applications of these results extend to non-Gaussian,

non-Markovian and non-linear times series models as the examples we provide demonstrate.
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CHAPTER I

Introduction

This thesis establishes high probability guarantees for the restricted eigenvalue (RE)

and deviation bound (DB) conditions for a wide range of geometrically mixing pro-

cesses with subweibull observations. To the best of our knowledge, similar guarantees

have not been given in the literature before. We also provide the RE and DB guar-

antees for noisy and corrupted data under the modified lasso framework(Loh and

Wainwright [2012]). The RE and DB conditions, in addition to the sparsity assump-

tion, allow (via a standard result) us to give high probabilistic non-asymptotic lasso

guarantees in the respective scenarios.

The information age and scientific advances have led to explosions in large data

sets as well as new statistical methods and algorithms aimed at extracting valuable

information in them. On the data side, it is common to see massive dependent data

collected from, for example, micro-array experiments, social networks, mobile phone

usage, high frequency stock market trading, daily grocery sales, etc. At the same

time, the high speed Internet makes big data warehouses readily accessible.

The surge in big data has stimulated exciting developments in statistical models

and algorithms to do prediction and/or gain scientific understanding in the data.

Among the plethora of methods, the linear parametric models remain highly popular

1
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thanks to its superiority in interpretability, computational efficiency, and the rich and

sophisticated theoretical literature. For example, given a sequence of observations

(Xt), one might be interested in predicting Xt using linear combinations of the past

observations Xt−1, · · · , Xt−d.

The vector autoregressive (VAR) models are a linear parametric family that allows

researchers to model interrelationships among variables that exhibit temporal depen-

dence. The transition matrices in a VAR capture the co-evolutionary dynamics of

the system of variables and are the central objects of estimation in this thesis. Many

theoretical results on estimation of high dimensional time series require specifying

an underlying data generating model (DGM) which in reality is almost never known.

Instead, we view the VAR models trained on the data as a predictive tool and do not

assume any parametric DGM. When the underlying DGM is really VAR, the lasso es-

timates correspond to those of the transition matrices; otherwise, they are estimates

of a best sparse linear predictor. Alternative to their DGM, dependent data can be

characterized by (1) their dependence structure, and (2) the probability distribution

of marginal observations. We provide lasso guarantees for (strictly) stationary time

series data that satisfy some dependence and tail behavior conditions.

There are three popular approaches to measuring dependence: physical and predic-

tive dependence measures [Wu, 2005], spectral analysis [Priestley, 1981, Stoica and

Moses, 1997, Basu and Michailidis, 2015], and mixing coefficients [Bradley, 2005].

We adopt the mixing coefficients route. One of the advantages of this measure is

that the mixing coefficients with respect to a process is “invariant” under measurable

transformation of the original process. This allows us to study dependence structure

of more complicated processes from simpler ones. We consider a full spectrum of

(geometric) mixing processes – from independent to identical data.
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The other dimension in analysis of a time series is the marginal distribution of ob-

servations. In particular, the tail behavior of the random variable has direct impact

on the dimension and sample size scalings of the lasso bounds. Because of that, we

study and define a class of subweibull(γ) (with γ > 0) random variables characterized

by tails decaying in the same order of magnitude as that of a Weibull(γ) one. The

parameter γ serves as a measure of how heavy the tail is. The subweibull family

subsumes the well-known subgaussian (γ = 2) and subexponential (γ = 1) classes.

It is common in the literature (eg, see Foss et al. [2011]) to call a random variable

heavy-tailed if its tail decays slower than exponential. This is natural because their

moment generation functions fail to exist at any point. As such, the subweibull

family also includes some heavy tailed random variables.

The crux of this thesis consists of non-asymptotic lasso guarantees for full spectrum of

(geometrically) mixing processes with subweibull(γ) observations and are discussed

in details in Sections II and III. Specifically, we present results for three different

combinations of dependence and tail behavior: α-mixing and Gaussian (Section II),

β-mixing and subgaussian tails (Section III), and β-mixing and subweilbull tails

(Section II). To prove our results for the second set, we derive a novel Hanson-

Wright type concentration inequality for β-mixing subgaussian random vectors that

may be of independent interest. To illustrate the applicability of the theory, we

give examples on nonlinear time series (autoregressive conditionally heteroscedastic

model), misspecified and non-Markovian model (VAR with endogenous variable left

out), heavy-tailed time series (subweibull VAR). Justification of the mixing and

subweibull assumptions for these examples are provided. This concludes the part on

general mixing processes.
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On the other hand, when the true DGM is VAR, the lasso estimates correspond to

those of the transition matrices which we assume to be sparse. Despite the rela-

tively simpler scenarios, in real data applications, we are faced with issues such as

noisy or missing data. We consider the simple Gaussian data corruption and missing

completely at random problems in Section IV and provide the associated lasso guar-

antees. It is based on the modified lasso framework proposed by Loh and Wainwright

[2012].

The thesis is concluded with future directions of research in Section V.

1.1 Recent Work on High Dimensional Time Series

While we mention a few related work in the introductions of the ensuing chapters

as motivation, we wish to emphasize that several other researchers have recently

published work on statistical analysis of high dimensional time series. Song and

Bickel [2011], Wu and Wu [2015] and Alquier et al. [2011] give theoretical guarantees

assuming that RE conditions hold. As Basu and Michailidis [2015] pointed out, it

takes a fair bit of work to actually establish RE conditions in the presence of depen-

dence. Chudik and Pesaran [2011, 2013, 2014] use high dimensional time series for

global macroeconomic modeling. Alternatives to lasso that have been explored in-

clude quantile based methods for heavy-tailed data [Qiu et al., 2015], quasi-likelihood

approaches [Uematsu, 2015], two-stage estimation techniques [Davis et al., 2012] and

the Dantzig selector [Han and Liu, 2013, Han et al., 2015]. Both Han and Liu [2013]

and Han et al. [2015] studied the stable Gaussian VAR models while this chapter

covers wider classes of processes as our examples demonstrate. Fan et al. [2016]

considered the case of multiple sequences of univariate α-mixing heavy-tailed de-

pendent data. Under a stringent condition on the auto-covariance structure (please
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refer to Chapter 2.7 for details), the paper established finite sample `2 consistency

in the real support for penalized least squares estimators. In addition, under mu-

tual incoherence type assumption, it provided sign and `∞ consistency. An AR(1)

example was given as an illustration. Both Uematsu [2015] as well as Kock and

Callot [2015] establish oracle inequalities for the lasso applied to time series predic-

tion. Uematsu [2015] provided results not just for lasso but also for estimators using

penalties such as the SCAD penalty. Also, instead of assuming Gaussian errors, it

is only assumed that fourth moments of the errors exist. Kock and Callot [2015]

provided non-asymptotic lasso error and prediction error bounds for stable Gaussian

VARs. Both Sivakumar et al. [2015] and Medeiros and Mendes [2016] considered

subexponential designs. Sivakumar et al. [2015] studied lasso on iid subexponential

designs and provide finite sample bounds. Medeiros and Mendes [2016] studied adap-

tive lasso for linear time series models and provide sign consistency results. Wang

et al. [2007] provided theoretical guarantees for lasso in linear regression models

with autoregressive errors. Other structured penalties beyond the `1 penalty have

also been considered [Nicholson et al., 2014, 2015, Guo et al., 2015, Ngueyep and

Serban, 2014]. Zhang and Wu [2015], McMurry and Politis [2015], Wang et al. [2013]

and Chen et al. [2013] consider estimation of the covariance (or precision) matrix of

high dimensional time series. McMurry and Politis [2015] and Nardi and Rinaldo

[2011] both highlight that autoregressive (AR) estimation, even in univariate time

series, leads to high dimensional parameter estimation problems if the lag is allowed

to be unbounded.



CHAPTER II

Lasso Guarantees for β-Mixing Heavy Tailed Time Series

2.1 Introduction

High dimensional statistics is a vibrant area of research in modern statistics and ma-

chine learning [Bühlmann and Van De Geer, 2011, Hastie et al., 2015]. The interplay

between computational and statistical aspects of estimation in high dimensions has

led to a variety of efficient algorithms with statistical guarantees including meth-

ods based on convex relaxation (see, e.g., Chandrasekaran et al. [2012], Negahban

et al. [2012]) and methods using iterative optimization techniques (see, e.g., Beck

and Teboulle [2009], Agarwal et al. [2012], Donoho et al. [2009]). However, the bulk

of existing theoretical work focuses on iid samples. The extension of theory and al-

gorithms in high dimensional statistics to time series data, where dependence is the

norm rather than the exception, is just beginning to occur. We briefly summarize

some recent work in Section 1.1 below.

Our focus in this chapter is to give guarantees for `1-regularized least squares estima-

tion, or lasso [Hastie et al., 2015], that hold even when there is temporal dependence

in data. The recent work of Basu and Michailidis [2015] took a major step forward in

providing guarantees for lasso in the time series setting. They considered Gaussian

Vector Auto-Regressive (VAR) models with finite lag (see Example 1) and defined

6
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a measure of stability using the spectral density, which is the Fourier transform

of the autocovariance function of the time series. Then they showed that one can

derive error bounds for lasso in terms of their measure of stability. Their bounds

are an improvement over previous work [Negahban and Wainwright, 2011, Loh and

Wainwright, 2012, Han and Liu, 2013] that assumed operator norm bounds on the

transition matrix. These operator norm conditions are restrictive even for VAR mod-

els with a lag of 1 and never hold (Please see pp. 11–13 in the Supplement of Basu

and Michailidis [2015] for details) if the lag is strictly larger than 1! Therefore, the

results of Basu and Michailidis [2015] hold in greater generality than previous work.

But they do have limitations.

A key limitation is that Basu and Michailidis [2015] assume that the VAR model is

the true data generating mechanism (DGM). Their proof techniques rely heavily on

having the VAR representation of the stationary process available. The VAR model

assumption, while popular in many areas, can be restrictive since the VAR family

is not closed under linear transformations: if Zt is a VAR process then CZt may

not expressible as a finite lag VAR [Lütkepohl, 2005]. We later provides examples

(Examples 2 and 4) of VAR processes where leaving out a single variable breaks

down the VAR assumption. What if we do not assume that Zt is a finite lag VAR

process but simply that it is stationary? Under stationarity (and finite 2nd moment

conditions), the best linear predictor of Zt in terms of Zt−d, . . . , Zt−1 is well defined

even if Zt is not a lag d VAR. If we assume that this best linear predictor involves

sparse coefficient matrices, can we still guarantee consistent parameter estimation?

This chapter provides an affirmative answer to this important question.

We provide finite sample parameter estimation and prediction error bounds for lasso

in two cases: (a) for stationary Gaussian processes with suitably decaying α-mixing
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coefficients (Section 2.3), and (b) for stationary processes with subweibull marginals

and geometrically decaying β-mixing coefficients (Section 2.4). The class of sub-

weibull random variables that we introduce includes subgaussian and subexponen-

tial random variables but also includes random variables with tails heavier than an

exponential. We also show that, for Gaussian processes, the β-mixing condition can

be relaxed to summability of the α-mixing coefficients. Our work provides an alter-

native proof of the consistency of the lasso for sparse Gaussian VAR models. But

the applicability of our results extends to non-Gaussian and non-linear times series

models as the examples we provide demonstrate.

It is well known that guarantees for lasso follow if one can establish restricted eigen-

value (RE) conditions and provide deviation bounds (DB) for the correlation of noise

with the regressors (see the Master Theorem in Section 2.2.3 below for a precise

statement). Therefore, the bulk of the technical work in this chapter boils down to

establishing, with high probability, that RE and DB conditions hold under the Gaus-

sian α-mixing Propositions II.3 and II.2) and the subweibull β-mixing assumptions

respectively (Propositions II.7 and II.8). Note that RE conditions were previously

shown to hold under the iid assumption by Raskutti et al. [2010] for Gaussian random

vectors and by Rudelson and Zhou [2013] for subgaussian random vectors.

2.1.1 Organization of the Chapter

Section 2.2 introduces our notation, presents the common assumptions and states

some useful facts needed later. Then we present two sets of high probability guaran-

tees for the lower restricted eigenvalue and deviation bound conditions in Sections 2.3

and 2.4 respectively. Section 2.3 covers α-mixing Gaussian time series. Note that

α-mixing is a weaker notion than β-mixing and all the parameter dependences are ex-
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plicit. It is followed by Section 2.4 which covers β-mixing time series with subweibull

observations and we make the dependence on the subweibull norm explicit.

We present five examples, two involving α-mixing Gaussian processes and three β-

mixing subweibull vectors. They are presented along with the corresponding the-

oretical results to illustrate applicability of the theory. Examples 1 and 2 concern

applications of the results in Section 2.3. We consider VAR models with Gaussian

innovations when the model is correctly or incorrectly specified. In Examples 3, 4,

and 5, we focus on the case of subweibull random vectors. We consider VAR models

with subweibull innovations when the model is correctly or incorrectly specified (Ex-

amples 3 and 4). In addition, we go beyond linear models and introduce non-linearity

in the DGM in Example 5.

These examples serve to illustrate that our theoretical results for lasso on high di-

mensional dependent data estimation extend beyond the classical linear Gaussian

setting and provides guarantees potentially in the presence of one or more of the

following scenarios: model mis-specification, heavy tailed non-Gaussian innovations

and nonlinearity in the DGM.

2.2 Preliminaries

Consider a stochastic process of pairs (Xt, Yt)
∞
t=1 where Xt ∈ Rp, Yt ∈ Rq, ∀t.

One might be interested in predicting Yt given Xt. In particular, given a depen-

dent sequence (Zt)
T
t=1, one might want to forecast the present Zt using the past

(Zt−d, . . . , Zt−1). A linear predictor is a natural choice. To put it in the regression

setting, we identify Yt = Zt and Xt = (Zt−d, . . . , Zt−1). The pairs (Xt, Yt) defined as

such are no longer iid. Assuming strict stationarity, the parameter matrix of interest
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Θ? ∈ Rp×q is

(2.2.1) Θ? = arg min
Θ∈Rp×q

E[‖Yt −Θ′Xt‖2
2].

Note that Θ? is independent of t owing to stationarity. Because of high dimensionality

(pq � T ), consistent estimation is impossible without regularization. We consider

the lasso procedure. The `1-penalized least squares estimator Θ̂ ∈ Rp×q is defined as

(2.2.2) Θ̂ = arg min
Θ∈Rp×q

1

T
‖ vec(Y−XΘ)‖2

2 + λT ‖vec(Θ)‖1 .

where

Y = (Y1, Y2, . . . , YT )′ ∈ RT×q X = (X1, X2, . . . , XT )′ ∈ RT×p.(2.2.3)

The following matrix of true residuals is not available to an estimator but will appear

in our analysis:

W := Y−XΘ?.(2.2.4)

2.2.1 Notation

For scalars a and b, define shorthands a∧b := min{a, b} and a∨b := max{a, b}. For a

symmetric matrix M, let λmax(M) and λmin(M) denote its maximum and minimum

eigenvalues respectively. For any matrix let M, r(M), |||M|||, |||M|||∞, and |||M|||F

denote its spectral radius maxi {|λi(M)|}, operator norm
√
λmax(M′M), entry-wise

`∞ norm maxi,j |Mi,j|, and Frobenius norm
√

tr(M′M) respectively. For any vector

v ∈ Rp, ‖v‖q denotes its `q norm (
∑p

i=1 |vi|q)1/q. Unless otherwise specified, we shall

use ‖·‖ to denote the `2 norm. For any vector v ∈ Rp, we use ‖v‖0 and ‖v‖∞ to

denote
∑p

i=1 1{vi 6= 0} and maxi{|vi|} respectively. Similarly, for any matrix M,

|||M|||0 = ‖vec(M)‖0 where vec(M) is the vector obtained from M by concatenating
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the rows of M . We say that matrix M (resp. vector v) is s-sparse if |||M|||0 = s (resp.

‖v‖0 = s). We use v′ and M′ to denote the transposes of v and M respectively. When

we index a matrix, we adopt the following conventions. For any matrix M ∈ Rp×q,

for 1 ≤ i ≤ p, 1 ≤ j ≤ q, we define M[i, j] ≡ Mij := e′iMej, M[i, :] ≡ Mi: := e′iM

and M[:, j] ≡M:j := Mej where ei is the vector with all 0s except for a 1 in the ith

coordinate. The set of integers is denoted by Z.

For a lag l ∈ Z, we define the auto-covariance matrix w.r.t. (Xt, Yt)t as Σ(l) =

Σ(X;Y )(l) := E[(Xt;Yt)(Xt+l;Yt+l)
′]. Note that Σ(−l) = Σ(l)′. Similarly, the auto-

covariance matrix of lag l w.r.t. (Xt)t is ΣX(l) := E[XtX
′
t+l], and w.r.t. (Yt)t is

ΣY (l) := E[YtY
′
t+l]. At lag 0, we often simplify the notation as ΣX ≡ ΣX(0) and

ΣY ≡ ΣY (0). The cross-covariance matrix at lag l is ΣX,Y (l) := E[XtY
′
t+l]. Note the

difference between Σ(X;Y )(l) and ΣX,Y (l): the former is a (p+q)× (p+q) matrix, the

latter is a p× q matrix. Thus, Σ(X;Y )(l) is a matrix consisting of four sub-matrices.

Using Matlab-like notation, Σ(X;Y )(l) = [ΣX ,ΣX,Y ; ΣY,X ,ΣY ]. As per our convention,

at lag 0, we omit the lag argument l. For example, ΣX,Y denotes ΣX,Y (0) = E[XtY
′
t ].

Finally, let Γ̂ := X′X
T

be the empirical covariance matrix.

2.2.2 Sparsity, Stationarity and Zero Mean Assumptions

The following assumptions are maintained throughout; we will make additional as-

sumptions specific to each of the subweibull and Gaussian scenarios. Our goal is to

provide finite sample bounds on the error Θ̂−Θ?. We shall present theoretical guar-

antees on the `2 parameter estimation error ‖ vec(Θ̂−Θ?)‖2 and also the associated

(in-sample) prediction error
∣∣∣∣∣∣∣∣∣(Θ̂−Θ?)′Γ̂(Θ̂−Θ?)

∣∣∣∣∣∣∣∣∣
F

.

Assumption 1. The matrix Θ? is s-sparse, i.e., ‖vec(Θ?)‖0 ≤ s.
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Assumption 2. The process (Xt, Yt) is strictly stationary: i.e., ∀m, τ, n ≥ 0,

((Xm, Ym), · · · , (Xm+n, Ym+n))
d
= ((Xm+τ , Ym+τ ), · · · , (Xm+n+τ , Ym+n+τ )).

where “
d
=” denotes equality in distribution.

Assumption 3. The process (Xt, Yt) is centered; i.e., ∀t, E(Xt) = 0p×1, and E(Yt) =

0q×1 .

2.2.3 A Master Theorem

We shall start with what we call a “master theorem” that provides non-asymptotic

guarantees for lasso estimation and prediction errors under two well-known condi-

tions, viz. the restricted eigenvalue (RE) and the deviation bound (DB) conditions.

Note that in the classical linear model setting (see, e.g., Hayashi [2000, Ch 2.3])

where sample size is larger than the dimensions (n > p), the conditions for consis-

tency of the ordinary least squares(OLS) estimator are as follows: (a) the empirical

covariance matrix X′X/T
P→ Q and Q invertible, i.e., λmin(Q) > 0, and (b) the

regressors and the noise are asymptotically uncorrelated, i.e., X′W/T → 0.

In high-dimensional regimes, Bickel et al. [2009], Loh and Wainwright [2012] and Ne-

gahban and Wainwright [2012] have established similar consistency conditions for

lasso. The first one is the restricted eigenvalue (RE) condition on X′X/T (which

is a special case, when the loss function is the squared loss, of the restricted strong

convexity (RSC) condition). The second is the deviation bound (DB) condition on

X′W/T . The following lower RE and DB definitions are modified from those given

by Loh and Wainwright [2012].

Definition 1 (Lower Restricted Eigenvalue). A symmetric matrix Γ ∈ Rp×p satisfies

a lower restricted eigenvalue condition with curvature α > 0 and tolerance τ(T, p) > 0
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if,

∀v ∈ Rp, v′Γv ≥ α ‖v‖2
2 − τ(T, p) ‖v‖2

1 .

Definition 2 (Deviation Bound). Consider the random matrices X ∈ RT×p and

W ∈ RT×q defined in (2.2.3) and (2.2.4) above. They are said to satisfy the deviation

bound condition if there exist a deterministic multiplier function Q(X,W,Θ?) and

a rate of decay function R(p, q, T ) such that,

1

T
|||X′W|||∞ ≤ Q(X,W,Θ?)R(p, q, T ).

We now present a master theorem that provides guarantees for the `2 parameter

estimation error and the (in-sample) prediction error. The proof, given in Chapter 2.5

builds on existing result of the same kind [Bickel et al., 2009, Loh and Wainwright,

2012, Negahban and Wainwright, 2012] and we make no claims of originality for

either the result or for the proof.

Theorem II.1 (Estimation and Prediction Errors). Consider the lasso estimator

Θ̂ defined in (2.2.2). Suppose Assumption 1 holds. Further, suppose that Γ̂ :=

X′X/T satisfies the lower RE(α, τ) condition with α ≥ 32sτ and X′W satisfies the

deviation bound. Then, for any λT ≥ 4Q(X,W,Θ?)R(p, q, T ), we have the following

guarantees: ∥∥∥vec(Θ̂−Θ?)
∥∥∥ ≤ 4

√
sλT/α,(2.2.5) ∣∣∣∣∣∣∣∣∣(Θ̂−Θ?)′Γ̂(Θ̂−Θ?)

∣∣∣∣∣∣∣∣∣2
F
≤ 32λ2

T s

α
.(2.2.6)

With this master theorem at our disposal, we just need to establish the validity of

the restricted eigenvalue (RE) condition and deviation bound (DB) conditions for

stationary time series by making appropriate assumptions. We shall do that without

assuming any parametric form of the data generating mechanism. Instead, we will
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impose appropriate tail conditions on the random vectors Xt, Yt and also assume that

they satisfy some type of mixing condition. Specifically, in Section 2.3, we consider

α-mixing Gaussian random vectors. Next, in Section 2.4, we consider β-mixing sub-

weibull random vectors (we define subweibull random vectors below in Section 2.4.1).

Classically, mixing conditions were introduced to generalize classic limit theorems in

probability beyond the case of iid random variables [Rosenblatt, 1956]. Recent work

on high dimensional statistics has established the validity of RE conditions in the

iid Gaussian [Raskutti et al., 2010] and iid subgaussian cases [Rudelson and Zhou,

2013]. One of the main contributions of our work is to extend these results in high

dimensional statistics from the iid to the mixing case.

2.2.4 A Brief Overview of Mixing Conditions

Mixing conditions [Bradley, 2005] are well established in the stochastic processes

literature as a way to allow for dependence in extending results from the iid case.

The general idea is to first define a measure of dependence between two random

variables X, Y (that can vector-valued or even take values in a Banach space) with

associated sigma algebras σ(X), σ(Y ). For example,

α(X, Y ) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ σ(X), B ∈ σ(Y )}.

Then for a stationary stochastic process (Xt)
∞
t=−∞, one defines the mixing coefficients,

for l ≥ 1,

α(l) = α(X−∞:t, Xt+l:∞).

We say that that the process is mixing, in the sense just defined, when α(l)→ 0 as

l → ∞. The particular notion we get using the α measure of dependence above is

called “α-mixing”. It was first used by Rosenblatt [1956] to extend the central limit
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theorem to dependent random variables. There are other, stronger notions of mixing,

such as ρ-mixing and β-mixing that are defined using the dependence measures:

ρ(X, Y ) = sup{Cov(f(X), g(Y )) : Ef = Eg = 0,Ef 2 = Eg2 = 1}

β(X, Y ) = sup
1

2

I∑
i=1

J∑
j=1

|P (Si ∩ Tj)− P (Si)P (Tj)|

where the last supremum is over all pairs of partitions {A1, . . . , AI} and {B1, . . . , BI}

of the sample space Ω such that Ai ∈ σ(X), Bj ∈ σ(Y ) for all i, j. The ρ-mixing

and β-mixing conditions do not imply each other but each, by itself, implies α-

mixing [Bradley, 2005]. For stationary gaussian processes, ρ-mixing is equivalent to

α-mixing (see Fact 3 below).

The β-mixing condition has been of interest in statistical learning theory for obtaining

finite sample generalization error bounds for empirical risk minimization [Vidyasagar,

2003, Sec. 3.4] and boosting [Kulkarni et al., 2005] for dependent samples. There

is also work on estimating β-mixing coefficients from data [Mcdonald et al., 2011].

The usefulness of β-mixing lies in the fact that by using a simple blocking technique,

that goes back to the work of Yu [1994], one can often reduce the situation to the iid

setting. At the same time, many interesting processes such as Markov and hidden

Markov processes satisfy a β-mixing condition [Vidyasagar, 2003, Sec. 3.5]. To the

best of our knowledge, however, there are no results showing that RE and DB con-

ditions holds under mixing conditions. Next we fill this gap in the literature. Before

we continue, we note an elementary but useful fact about mixing conditions, viz.

they persist under arbitrary measurable transformations of the original stochastic

process.

Fact 1. The range of values that the α, β and ρ-mixing coefficients can take on are

bounded(see e.g. Bradley [2005]): Consider the probability space (Ω,F , P ), for any



16

two sigma fields A,B ∈ F , we have

0 ≤ α(A,B) ≤ 1/4, 0 ≤ β(A,B) ≤ 1, 0 ≤ ρ(A,B) ≤ 1

Fact 2. Suppose a stationary process {Ut}Tt=1 is α, ρ, or β-mixing. Then the sta-

tionary sequence {f(Ut)}Tt=1, for any measurable function f(·), also is mixing in the

same sense with its mixing coefficients bounded by those of the original sequence.

2.3 Gaussian Processes under α-Mixing

Here we will study Gaussian processes under the α-mixing condition which is weaker

than that of the β-mixing. We make the following additional assumption.

Assumption 4 (Gaussianity). The process (Xt, Yt) is a Gaussian process.

Assume (Xt, Yt)
T
t=1 satisfies Assumptions 2, 3, and 4. Note that Xt ∼ N (0,ΣX)

and Yt ∼ N (0,ΣY ). To control dependence over time, we will assume α-mixing, the

weakest notion among α, ρ and β-mixing.

Assumption 5 (α-Mixing). The process (Xt, Yt) is an α-mixing process. Let Sα(T ) :=∑T
l=0 α(l). If α(l) is summable, we let α̃ := lim

T→∞
Sα(T ) <∞.

We will use the following useful fact [Ibragimov and Rozanov, 1978, p. 111] in our

analysis.

Fact 3. For any stationary Gaussian process, the α and ρ-mixing coefficients are

related as follows:

∀l ≥ 1, α(l) ≤ ρ(l) ≤ 2πα(l).

Proposition II.2 (Deviation Bound, Gaussian Case). Suppose Assumptions 2–5

hold. Then, there exists a deterministic positive constant c̃, and a free parameter
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b > 0, such that, for T ≥
√

b+1
c̃

log(pq), we have

P
[∣∣∣∣∣∣∣∣∣∣∣∣X′WT

∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ Q(X,W,Θ?)R(p, q, T )

]
≥ 1− 8 exp(−b log(pq))

where

Q(X,W,Θ?) = 8π

√
(b+ 1)

c̃

(
|||ΣX |||

(
1 + max

1≤i≤p
‖Θ?

:i‖
2
2

)
+ |||ΣY |||

)
R(p, q, T ) = Sα(T )

√
log(pq)

T
.

Remark 1. Note that the free parameter b serves to trade-off between the success

probability on the one hand and the sample size threshold and multiplier function Q

on the other. A large b increases the success probability but worsen the sample size

threshold and the multiplier function.

Proposition II.3 (RE, Gaussian Case). Suppose Assumptions 2–5 hold. There

exists some universal constant c > 0, such that for sample size T ≥ 42e log(p)
cmin{1,η2} , we

have, with probability at least 1−2 exp
(
− c

2
T min{1, η2}

)
that for every vector v ∈ Rp,

(2.3.1) |v′Γ̂v| > α‖v‖2
2 − τ(T, p)‖v‖2

1,

where

α =
1

2
λmin(ΣX), τ(T, p) = α/dc T

4 log(p)
min{1, η2}e, and

η =
λmin(ΣX)

108πSα(T )λmax(ΣX)
.

Remark 2. Note that, in Theorem II.1, it is advantageous to have a large α and a

smaller τ so that the convergence rate is fast and the initial sample threshold for the

result to hold is small. The result above, therefore, clearly shows that is advantageous

to have a well-conditioned ΣX .
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2.3.1 Estimation and Prediction Errors

Substituting the RE and DB constants from Propositions II.2-II.3 into Theorem II.1

immediately yields the following guarantees.

Corollary II.4 (Lasso Guarantees for Gaussian Vectors under α-Mixing). Suppose

Assumptions 2–5 hold. Let c, c̃ be fixed constants and b be free parameter defined as

in Propositions II.2 and II.3. Then, for sample size

T ≥ max

{
log(p)

cmin{1, η2}
max {42e, 128s} , log(pq)

√
b+ 1

c̃

}

where η =
λmin(ΣX)

108πSα(T )λmax(ΣX)

we have, with probability at least 1−2 exp
(
− c

2
T min{1, η2}

)
−8 exp(−b log(pq)), that

the lasso error bounds (2.2.5) and (2.2.6) hold with

α =
1

2
λmin(ΣX)

λT = 4Q(X,W,Θ?)R(p, q, T )

where

Q(X,W,Θ?) = 8π

√
(b+ 1)

c̃

(
|||ΣX |||

(
1 + max

1≤i≤p
‖Θ?

:i‖
2
2

)
+ |||ΣY |||

)
,

R(p, q, T ) = Sα(T )

√
log(pq)

T
.

Remark 3. If the α-mixing coefficients are summable, i.e., Sα(T ) ≤ α̃ < ∞, ∀T ,

then we get the usual convergence rate of O(
√

log(pq)
T

). Also, the threshold sample

size is O (s log(pq)). This is in agreement with what is happens in the iid Gaussian

case. When α(l) is not summable then both the initial sample threshold required for

the guarantee to be valid as well as the rate of error decay deteriorate. The latter

becomes O(
√

Sα(T ) log(pq)
T

). We see that as long as Sα(T ) ∈ o
(√

T
)

, we still have
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consistency. In the finite order stable Gaussian VAR case considered by Basu and

Michailidis [2015], the α-mixing coefficients are geometrically decaying and hence

summable (see Example 1 for details).

2.3.2 Examples

We illustrate applicability of our theory in Section 2.3 using the examples below.

Example 1 (Gaussian VAR). Transition matrix estimation in sparse stable VAR

models has been considered by several authors in recent years [Davis et al., 2015,

Han and Liu, 2013, Song and Bickel, 2011]. The lasso estimator is a natural choice

for the problem.

Formally a finite order Gaussian VAR(d) process is defined as follows. Consider

a sequence of serially ordered random vectors (Zt)
T+d
t=1 , Zt ∈ Rp that admits the

following auto-regressive representation:

Zt = A1Zt−1 + · · ·+ AdZt−d + Et(2.3.2)

where each Ak, k = 1, . . . , d is a sparse non-stochastic coefficient matrix in Rp×p and

innovations Et are p-dimensional random vectors from N (0,Σε) with λmin(Σε) > 0

and λmax(Σε) <∞.

Assume that the VAR(d) process is stable; i.e. det
(
Ip×p −

∑d
k=1 Akz

k
)
6= 0, ∀ |z| ≤

1. Now, we identify Xt := (Z ′t, · · · , Z ′t−d+1)′ and Yt := Zt+d for t = 1, . . . , T .

We can verify (see Section 2.8.1 for details) that Assumptions 1–5 hold. Note that

Θ? = (A1, . . . ,Ad)
′ ∈ Rdp×p. As a result, Propositions II.2 and II.3, and thus Corol-

lary II.4 follow and hence we have all the high probabilistic guarantees for lasso on

Example 1. This shows that our theory covers the stable Gaussian VAR models for
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which Basu and Michailidis [2015] provided lasso errors bounds.

We state the following convenient fact because it allows us to study any finite order

VAR model by considering its equivalent VAR(1) representation. See Section 2.8.1

for details.

Fact 4. Every VAR(d) process can be written in VAR(1) form (see e.g. [Lütkepohl,

2005, Ch 2.1]).

Therefore, without loss of generality, we can consider VAR(1) model in the ensuing

Examples.

Example 2 (Gaussian VAR with Omitted Variable). We study OLS estimator of

a VAR(1) process when there are endogenous variables omitted. This arises natu-

rally when the underlying DGM is high-dimensional but not all variables are avail-

able/observable/measurable to the researcher to do estimation/prediction. This also

happens when the researcher mis-specifies the scope of the model.

Notice that the system of the retained set of variables is no longer a finite order

VAR(and thus non-Markovian). There is model mis-specification and this example

also serves to illustrate that our theory is applicable to models beyond the finite

order VAR setting.

Consider a VAR(1) process (Zt,Ξt)
T+1
t=1 such that each vector in the sequence is

generated by the recursion below:

(Zt; Ξt) = A(Zt−1; Ξt−1) + (EZ,t−1; EΞ,t−1)
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where Zt ∈ Rp, Ξt ∈ R, EZ,t ∈ Rp, and EΞ,t ∈ R are partitions of the random vectors

(Zt,Ξt) and Et into p and 1 variables. Also,

A :=

 AZZ AZΞ

AΞZ AΞΞ


is the coefficient matrix of the VAR(1) process with AZΞ 1-sparse, AZZ p-sparse and

r(A) < 1. Et := (EX,t−1; EZ,t−1) for t = 1, . . . , T + 1 are iid draws from a Gaussian

white noise process.

We are interested in the OLS 1-lag estimator of the system restricted to the set of

variables in Zt. Recall that

Θ? := arg min
B∈Rp×p

E
(
‖Zt −B′Zt−1‖2

2

)
Now, set Xt := Zt and Yt := Zt+1 for t = 1, . . . , T . It can be shown that (Θ?)′ =

AZZ + AZΞΣΞZ(0)(ΣZ)−1. We can verify that Assumptions 1–5 hold. See Section

2.8.2 for details. As a result, Propositions II.2 and II.3, and thus Corollary II.4

follow and hence we have all the high probabilistic guarantees for lasso on this non-

Markovian example.

2.4 Subweibull Random Vectors under β-Mixing

Existing analyses of lasso mostly assume data have subgaussian or subexponential

tails. These assumptions ensure that the moment generating function exists, at least

for some values of the free parameter. Non-existence of the moment generating func-

tion is often taken as the definition of having a heavy tail [Foss et al., 2011]. We now

introduce a family of random variables that subsumes subgaussian and subexponen-

tial random variables. In addition, it includes some heavy tailed distributions.
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2.4.1 Subweibull Random Variables and Vectors

Among the several equivalent definitions of the subgaussian and subexponential ran-

dom variables, we recall the ones that are based on the growth behavior of mo-

ments. Recall that a subgaussian (resp. subexponential) random variable X can

be defined as one for which E(|X|p)1/p ≤ K
√
p, ∀p ≥ 1 for some constant K (resp.

E(|X|p)1/p ≤ Kp, ∀p ≥ 1). A natural generalization of these definitions that allows

for heavier tails is as follows. Fix some γ > 0, and require

‖X‖p := (E|X|p)1/p ≤ Kp1/γ, ∀p ≥ 1 ∧ γ

There are a few different equivalent ways to imposing the condition above including a

tail condition that says that the tail is no heavier than that of a Weibull random vari-

able with parameter γ. That is the reason why we call this family “subweibull(γ)”.

Lemma II.5. (Subweibull properties) Let X be a random variable. Then the follow-

ing statements are equivalent for every γ > 0. The constants K1, K2, K3 differ from

each other at most by a constant depending only on γ.

1. The tails of X satisfies

P (|X| > t) ≤ 2 exp {−(t/K1)γ} , ∀t ≥ 0.

2. The moments of X satisfy,

‖X‖p := (E|X|p)1/p ≤ K2p
1/γ, ∀p ≥ 1 ∧ γ.

3. The moment generating function of |X|γ is finite at some point; namely

E [exp (|X| /K3)γ] ≤ 2.
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Remark 4. A similar tail condition is called “Condition C0” by Tao and Vu [2013].

However, to the best of our knowledge, this family has not been systematically

introduced. The equivalence above is related to the theory of Orlicz spaces (see, for

example, Lemma 3.1 in the lecture notes of Pisier [2016]).

Definition 3. (Subweibull(γ) Random Variable and Norm). A random variable X

that satisfies any property in Lemma II.5 is called a subweibull(γ) random variable.

The subweibull(γ) norm associated with X, denoted ‖X‖ψγ , is defined to be the

smallest constant such that the moment condition in definition Lemma II.5 holds.

In other words, for every γ > 0,

‖X‖ψγ := sup
p≥1

(E|X|p)1/pp−1/γ.

It is easy to see that ‖·‖ψγ , being a pointwise supremum of norms, is indeed a norm

on the space of subweibull(γ) random variables.

Remark 5. It is common in the literature (see, for example Foss et al. [2011]) to call

a random variable heavy-tailed if its tail decays slower than that of an exponential

random variable. This way of distinguishing between light and heavy tails is natural

because the moment generating function for a heavy-tailed random variable thus

defined fails to exist at any point. Note that, under such a definition, subweibull(γ)

random variables with γ < 1 include heavy-tailed random variables.

In our theoretical analysis, we will often be dealing with squares of random vari-

ables. The next lemma tells us what happens to the subweibull parameter γ and the

associated constant, under squaring.



24

Lemma II.6. For any γ ∈ (0,∞), if a random variable X is subweibull(2γ) then

X2 is subweibull(γ). Moreover,

‖X2‖ψγ ≤ 21/γ‖X‖2
ψ2γ
.

We now define the subweibull norm of a random vector to capture dependence among

its coordinates. It is defined using one dimensional projections of the random vector

in the same way as we define subgaussian and subexponential norms of random

vectors.

Definition 4. Let γ ∈ (0,∞). A random vector X ∈ Rp is said to be a subweibull(γ)

random vector if all of its one dimensional projections are subweibull(γ) random

variables. We define the subweibull(γ) norm of a random vector as,

‖X‖ψγ := sup
v∈Sp−1

‖v′X‖ψγ

where Sp−1 is the unit sphere in Rp.

Having introduced the subweibull family, we present the assumptions required for the

lasso guarantees. In proving our results, we need measures that control the amount

of dependence in the observations across time as well as within a given time period.

Assumption 6. The process (Xt, Yt) is geometrically β-mixing; i.e., there exist

constants c > 0 and γ1 > 0 such that

β(n) ≤ 2 exp(−c · nγ1), ∀n ∈ N.

Assumption 7. Each random vector in the sequences (Xt) and (Yt) follows a

subweibull(γ2) distribution with ‖Xt‖ψγ2 ≤ KX , ‖Yt‖ψγ2 < KY for t = 1, · · · , T .

Finally, we make an joint assumption on the allowed pairs γ1, γ2.
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Assumption 8. Assume γ < 1 where

γ :=

(
1

γ1

+
2

γ2

)−1

.

Remark 6. Note that the parameters γ1 and γ2 defines a difficulty landscape with

smaller values of γ1, γ2 corresponding to harder problems. The “easy case” where

γ1 ≥ 1 and γ2 ≥ 2 are already addressed in the literature (see, e.g., Wong et al.

[2017]). This chapter serves to provide theoretical guarantees for the difficult scenario

when the tail probability decays slowly (γ2 < 2) and/or data exhibit strong temporal

dependence (γ1 < 1) and hence extends the literature to the entire spectrum of

possibilities, i.e., all positive values of γ1 and γ2.

Now, we are ready to provide high probability guarantees for the deviation bound

and restricted eigenvalue conditions.

Proposition II.7 (Deviation Bound, β-Mixing Subweibull Case). Suppose Assump-

tions 1-3 and 6-8 hold. Let c′ > 0 be a universal constant and let K be defined

as

K := 22/γ2 (KY +KX (1 + |||Θ?|||))2 .

Then with sample size T ≥ C1(log(pq))
2
γ
−1

, we have

P

(
1

T
|||X′W|||∞ > C2K

√
log(pq)

T

)
≤ 2 exp(−c′ log(pq))

where the constants C1, C2 depend only on c′ and the parameters γ1, γ2, c appearing

in Assumptions 6 and 7.

Proposition II.8 (RE, β-Mixing Subweibull Case). Suppose Assumptions 1-3 and

6-8 hold. Let

K := 22/γ2K2
X .
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Then for sample size

T ≥ max

{
54K (2C1 log(p))1/γ

λmin(ΣX)
,

(
54K

λmin(ΣX)

) 2−γ
1−γ
(
C2

C1

) 1
1−γ
}

we have with probability at least

1− 2T exp {−c̃T γ} , where c̃ =
(λmin(ΣX))γ

(54K)γ2C1

,

that for all v ∈ Rp,

1

T
‖Xv‖2

2 ≥ α ‖v‖2
2 − τ ‖v‖

2
1 .

where α = 1
2
λmin(ΣX) and τ = α

2c̃
·
(

log(p)
T γ

)
. Note that the constants C1, C2 depend

only on the parameters γ1, γ2, c appearing in Assumptions 6 and 7.

2.4.2 Estimation and Prediction Errors

Substituting the RE and DB constants from Propositions II.7-II.8 into Theorem II.1

immediately yields the following guarantee.

Corollary II.9 (Lasso Guarantees for Subweibull Vectors under β-Mixing). Suppose

Assumptions 1-3 and 6-8 hold. Let c′, C1, C2, c̃ be constants as defined in Proposi-

tions II.7-II.8, and let K := 22/γ2 (KY +KX (1 + |||Θ?|||))2.

Then for sample size

T ≥max

{
C1(log(pq))

2
γ
−1
,

54K [2 max{8s/c̃, C1} log(p)]1/γ

λmin(ΣX)
,

(
54K

λmin(ΣX)

) 2−γ
1−γ
(
C2

C1

) 1
1−γ
}

we have with probability at least

1− 2T exp {−c̃T γ} − 2 exp(−c′ log(pq))
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that the lasso error bounds (2.2.5) and (2.2.6) hold with

α =
1

2
λmin(ΣX)

λT = 4Q(X,W,Θ?)R(p, q, T )

where

Q(X,W,Θ?) = C2K,

R(p, q, T ) =

√
log(pq)

T
.

Remark 7. The impact of mixing behavior is limited to the initial sample size and

the probability with which the error bounds hold. The parameter error bound itself

resembles the bounds obtained in the iid case but with an additional multiplicative

factor that depends on the ‘effective condition number” K/λmin(ΣX).

2.4.3 Examples

We explore applicability of our theory in Section 2.4 beyond just linear Gaussian

processes using the examples below. Together, these demonstrate that the high

probabilistic guarantees for lasso cover cases of heavy tailed subweibull data, presence

of model mis-specification, and/or nonlinearity.

Example 3 (Subweibull VAR). We study a generalization of the VAR, one that has

subweibull(γ2) realizations. Consider a VAR(1) model defined as in Example 1 except

that we replace the Gaussian white noise innovations with iid random vectors from

some subweibull(γ2) distribution with a non-singular covariance matrix Σε. Now,

consider a sequence (Zt)t generated according to the model. Then, each Zt will be a

mean zero subweibull random vector.

Now, we identify Xt := (Z ′t, · · · , Z ′t−d+1)′ and Yt := Zt+d for t = 1, . . . , T . Assuming

that Ai’s are sparse, |||A||| < 1 and (Zt)t is stable, we can verify (see Section 2.8.1
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for details) that Assumptions 1-3 and 6-8 hold. Note that Θ? = (A1, . . . ,Ad)
′ ∈

Rdp×p. As a result, Propositions II.7 and II.8 follow and hence we have all the high

probability guarantees for lasso on Example 3. This shows that our theory covers

DGMs beyond just the stable Gaussian processes.

Example 4 (VAR with Subweibull Innovations and Omitted Variable). Using the

same setup as in Example 2 except that we replace the Gaussian white noise inno-

vations with iid random vectors from some subweibull(γ2) distribution with a non-

singular covariance matrix Σε. Now, consider a sequence (Zt)t generated according

to the model. Then, each Zt will be a mean zero subweibull random vector.

Now, set Xt := Zt and Yt := Zt+1 for t = 1, . . . , T . Assume |||A||| < 1. It can be

shown that (Θ?)′ = AZZ + AZΞΣΞZ(0)(ΣZ)−1. We can verify that Assumptions 1-3

and 6-7 hold. See Section 2.8.2 for details. Therefore, Propositions II.7 and II.8 and

thus Corollary II.9 follow and and hence we have all the high probabilistic guarantees

for subweibull random vectors from a non-Markovian model.

Example 5 (Multivariate ARCH). We explore the generality of our theory by con-

sidering a multivariate nonlinear time series model with subweibull innovations. A

popular nonlinear multivariate time series model in econometrics and finance is the

vector autoregressive conditionally heteroscedastic (ARCH) model. We choose the

following specific ARCH model just for convenient validation of the geometric β-

mixing property of the process; it may potentially be applicable to a larger class of

multivariate ARCH models.
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Let (Zt)
T+1
t=1 be random vectors defined by the following recursion, for any constants

c > 0, m ∈ (0, 1), a > 0, and A sparse with |||A||| < 1:

Zt = AZt−1 + Σ(Zt−1)Et

Σ(z) := c · clipa,b (‖z‖m) Ip×p

(2.4.1)

where Et are iid random vectors from some subweibull(γ2) distribution with a non-

singular covariance matrix Σε, and clipa,b (x) clips the argument x to stay in the

interval [a, b]. Consequently, each Zt will be a mean zero subweibull random vector.

Note that Θ∗ = A′, the transpose of the coefficient matrix A here.

Now, set Xt := Zt and Yt = Zt+1 for t = 1, . . . , T . We can verify (see Section 2.8.3 for

details) that Assumptions 1-3 and 6-7 hold. Therefore, Propositions II.7 and II.8, and

thus Corollary II.9 follow and and hence we have all the high probabilistic guarantees

for lasso on nonlinear models with subweibull innovations.

2.5 Proof of Master Theorem

Proof of Theorem II.1. We will break down the proof in steps.

1. Since Θ̂ is optimal for 2.2.2 and Θ? is feasible,

1

T

∣∣∣∣∣∣∣∣∣Y −XΘ̂
∣∣∣∣∣∣∣∣∣2
F

+ λT

∥∥∥vec(Θ̂)
∥∥∥

1
≤ 1

T
|||Y −XΘ?|||2F + λT ‖vec(Θ?)‖1

2. Let ∆̂ := Θ̂−Θ? ∈ Rp×q

1

T

∣∣∣∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣∣∣∣2
F
≤ 2

T
tr(∆̂′X′W) + λT

(
‖vec(Θ?)‖1 −

∥∥∥vec(Θ̂)
∥∥∥

1

)
Note that∥∥∥vec(Θ? + ∆̂)

∥∥∥
1
− ‖vec(Θ?)‖1 ≥{‖vec(Θ?

S)‖1 −
∥∥∥vec(∆̂S)

∥∥∥
1
}

+
∥∥∥vec(∆̂Sc)

∥∥∥
1
− ‖vec(Θ?)‖1

=
∥∥∥vec(∆̂Sc)

∥∥∥
1
−
∥∥∥vec(∆̂S)

∥∥∥
1
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where S denote the support of Θ?.

3. With RE constant α and tolerance τ , deviation bound constant Q(ΣX ,ΣW )

and λT ≥ 2Q(ΣX ,ΣW )
√

log(q)
T

, we have

α
∣∣∣∣∣∣∣∣∣∆̂∣∣∣∣∣∣∣∣∣2

F
−τ‖ vec(∆̂)‖2

1

RE

≤ 1

T
|||X∆|||2F

≤ 2

T
tr(∆̂′X′W) + λT{

∥∥∥vec(∆̂S)
∥∥∥

1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ 2

T

q∑
k=1

‖∆̂:k‖1‖(X′W):k‖∞ + λT{
∥∥∥vec(∆̂S)

∥∥∥
1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ 2

T
‖ vec(∆̂)‖1|||X′W|||∞ + λT{

∥∥∥vec(∆̂S)
∥∥∥

1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

DB

≤ 2‖ vec(∆̂)‖1Q(ΣX ,ΣW )R(p, q, T ) + λT{
∥∥∥vec(∆̂S)

∥∥∥
1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ ‖ vec(∆̂)‖1λN/2 + λT{
∥∥∥vec(∆̂S)

∥∥∥
1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ 3λT
2

∥∥∥vec(∆̂S)
∥∥∥

1
− λT

2

∥∥∥vec(∆̂Sc)
∥∥∥

1

≤ 2λT

∥∥∥vec(∆̂)
∥∥∥

1

4. In particular, this says that 3
∥∥∥vec(∆̂S)

∥∥∥
1
≥
∥∥∥vec(∆̂Sc)

∥∥∥
1

So
∥∥∥vec(∆̂)

∥∥∥
1
≤ 4

∥∥∥vec(∆̂S)
∥∥∥

1
≤ 4
√
s
∥∥∥vec(∆̂)

∥∥∥
5. Finally, with α ≥ 32sτ ,

α

2

∥∥∥vec(∆̂)
∥∥∥2

F
≤ (α− 16sτ)

∥∥∥vec(∆̂)
∥∥∥2

F

≤ α
∥∥∥vec(∆̂)

∥∥∥2

F
− τ‖ vec(∆̂)‖2

1

≤ 2λT‖ vec(∆̂)‖1

≤ 2
√
sλT‖∆̂‖F

6. ∥∥∥vec(∆̂)
∥∥∥
F
≤ 4λT

√
s

α
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7. From step 4, we have

1

T

∣∣∣∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣∣∣∣2
F
≤ 8λT

√
s
∥∥∥vec(∆̂)

∥∥∥
Then, from step 6

1

T

∣∣∣∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣∣∣∣2
F
≤ 8λT

√
s
∥∥∥vec(∆̂)

∥∥∥ ≤ 32λ2
T s/α

2.6 Proofs for Gaussian Processes under α-Mixing

We will also need the following result to control spectral/operator norms of matrices.

Fact 5 (Schur Test). For any matrix M, we have

|||M|||2 ≤ max
i
‖Mi:‖1 ·max

j
‖M:j‖1 .

Therefore, for any symmetric matrix M ∈ Rn×n, |||M||| ≤ max1≤i≤n ‖Mi:‖1.

Claim 1. For any random vectors X ∈ Rn and Y ∈ Rn, we have

|||E [XY ′]||| = |||E [Y X ′]||| ≤ |||ΣX |||+ |||ΣY |||
2

Proof. We have,

|||E [XY ′]||| = |||E [Y X ′]|||

:= sup
‖u‖≤1, ‖v‖≤1

E [u′Y X ′v]

= sup
‖u‖≤1, ‖v‖≤1

E [(Y ′u)(X ′v)]

≤ sup
‖u‖≤1, ‖v‖≤1

√
E [(Y ′u)2]

√
E [(X ′v)2] by CauchySchwarz ineq.

= sup
‖u‖≤1

√
E [(Y ′u)2] sup

‖v‖≤1

√
E [(X ′v)2]

=
√
|||E [XX ′]|||

√
|||E [Y Y ′]|||

≤ |||E [XX ′]|||+ |||E [Y Y ′]|||
2

.
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The proof of Proposition II.3 relies on the following result.

Lemma II.10. For a second order stationary ρ-mixing sequence of random vectors

{Xt}t, their l-th auto-covariance matrix can be bounded as follows:

|||ΣX(l)||| ≤ ρ(l)|||ΣX(0)|||, ∀ l ∈ Z.

Proof. Recall the definition of ρ-mixing, for random vectors X and Y on the proba-

bility space (Ω,F ,P), let A := σ(X) and B := σ(Y ).

ρ(X, Y ) := sup{cor(f(X), g(Y )) | f ∈ L2(A), g ∈ L2(B)}

≥ cor(u′X, v′Y ) ∀ fixed u, v

=
|E[u′Xv′Y ]|√
E(u′X)2E(v′Y )2

u, v non-zero

Hence, ∀u, v fixed,

|u′E[XY ′]v| ≤ ρ(X, Y )
√
E(u′X)2

√
E(v′Y )2

sup
u,v
|u′E[XY ′]v| ≤ ρ(X, Y )

√
sup
u

E(u′X)2

√
sup
v

E(v′Y )2

But,

|||E[XY ′]||| ≡ sup
u,v
|u′E[XY ′]v| ≤ ρ(X, Y )

√
sup
u

E(u′X)2

√
sup
v

E(v′Y )2

For a stationary time series {Xt}, recall that ∀t, l

ΣX(l) := E[XtX
′
t+l].
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By stationarity, ∀t, l

ρ(Xt, Xt+l) = ρ(l).

Hence,

|||ΣX(l)||| ≤ ρ(l)|||ΣX(0)|||.

Proof of Proposition II.2. Note that by Fact 2 α and ρ-mixing are equivalent for

stationary Gaussian processes. The proof will operate via arguments in ρ-mixing

coefficients.

Recall |||X′W|||∞ = max1≤i≤p,1≤j≤q |[X′W]i,j| = max1≤i≤p,1≤j≤q |X′:iW:j|.

By Assumption (3), we have

EX:i = 0,∀i and

EY:j = 0,∀j

By first order optimality of the optimization problem in (2.2.1), we have

EX′:i(Y−XΘ?) = 0,∀i⇒ EX:i
′W:j = 0,∀i, j

We know ∀i, j

(2.6.1)

|X′:iW:j| = |X′:iW:j − E[X′:iW:j]|

=
1

2

∣∣(‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
)
−
(
‖X:i‖2 − E[‖X:i‖2]

)
−
(
‖W:j‖2 − E[‖W:j‖2]

)∣∣
≤ 1

2

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣+

1

2

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣+

1

2

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣
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Therefore,

P
(

1

T
|X′:iW:j| > 3t

)
≤ P

(
1

2T

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣ > t

)
This suggests proof strategy via controlling tail probability on each of the terms

|‖X:i‖2 − E[‖X:i‖2]|, |‖W:j‖2 − E[‖W:j‖2]| and |‖X:i + W:j‖2 − E[‖X:i + W:j‖2]|. As-

suming the conditions in Proposition II.2, we can apply the Hanson-Wright inequality

(Lemma II.11) on each of them because we know that

∀i, j

X:i ∼ N(0,ΣX:i
), i = 1, · · · , p, and

W:j := Y:j − [XΘ?]:j ∼ N(0,ΣW:j
), j = 1, · · · , q

since both {Xt}Tt=1 and {Yt}Tt=1 are centered Gaussian vectors.

So,

X:i + W:j ∼ N(0,ΣX:i
+ ΣW:j

+ ΣW:j ,X:i
+ ΣX:i,W:j

)

We are ready to apply the tail bound on each term on the RHS of (2.6.1). By Lemma

(II.11), ∃ constant c > 0 such that ∀t ≥ 0

‖X:i‖2 − E‖X:i‖2

T |||ΣX:i
|||

≤ t w.p. at least 1− 2 exp(−cT min{t, t2})

‖W:j‖2 − E‖W:j‖2

T
∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣ ≤ t w.p. at least 1− 2 exp(−cT min{t, t2})

‖X:i + W:j‖2 − E‖X:i + W:j‖2

T
∣∣∣∣∣∣ΣX:i+W:j

∣∣∣∣∣∣ ≤ t w.p. at least 1− 2 exp(−cT min{t, t2})
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With Claim 1, the third inequality implies, for some c̃ > 0, that w.p. at least

1− 8 exp(−c̃T min{t, t2})

the following holds

‖X:i + W:j‖2 − E‖X:i + W:j‖2

2T (|||ΣX:i
|||+

∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣) ≤ ‖X:i + W:j‖2 − E‖X:i + W:j‖2

T
∣∣∣∣∣∣ΣX:i+W:j

∣∣∣∣∣∣ ≤ t

Therefore,

X′:iW:j

3T (|||ΣX:i
|||+

∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣) ≤ 3t w.p. at least 1− 8 exp(−c̃T min{t, t2})

Appealing to the union bound over all i ∈ [1 · · · p] and j ∈ [1 · · · q], for any ∆

P[ max
1≤i≤p,1≤j≤q

X′:iW:j ≥ ∆] ≤ pqP[X′:iW:j ≥ ∆]

We can conclude that

P[ max
1≤i≤p,1≤j≤q

X′:iW:j

3T (|||ΣX:i
|||+

∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣) ≤ 3t] ≥ 1− 8pq exp(−c̃T min{t, t2})

Now, for a free parameter b > 0, chooset =
√

(b+1) log(pq)
c̃T

, for T ≥ (b+1) log(pq)
c̃

we have

P

[∣∣∣∣∣∣∣∣∣∣∣∣X′WT
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤
√

(b+ 1) log(pq)

c̃T
max

1≤i≤p,1≤j≤q
(|||ΣX:i

|||+
∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣)]

≥ 1− 8 exp[−b log(pq)]

Let’s find out what
∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣ and |||ΣX:i
||| are. Recall W = Y−XΘ?. So,

ΣW:i
= ΣY:i

+ ΣXΘ?:i
+ ΣY:i,XΘ?:i

+ ΣXΘ?:i,Y:i
(2.6.2)

By Claim 1, we have

(2.6.3) |||ΣW:i
||| ≤ 2|||ΣY:i

|||+ 2
∣∣∣∣∣∣ΣXΘ?:i

∣∣∣∣∣∣
Let’s figure out each of the summands on the RHS of equation (2.6.3) above.
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ΣXΘ?:i
[l, k] := E [(XΘ?

:i)(XΘ?
:i)
′] [l, k]

= E [e′l(XΘ?
:i)(XΘ?

:i)
′ek]

= E
[
(X′l,:Θ

?
:i)((Θ

?
:i)
′Xk,:)

]
= E

[
(Θ?

:i)
′Xl,:X

′
k,:Θ

?
:i

]
= (Θ?

:i)
′ [EXl,:X

′
k,:

]
Θ?

:i

With the equality above,

∣∣∣∣∣∣ΣXΘ?:i

∣∣∣∣∣∣ ≤ max
1≤k≤T

∥∥(ΣXΘ?:i
)[k, :]

∥∥
1

by Fact 5

≤ 2
T∑
l=0

ρ(l) ‖Θ?
:i‖

2
2 |||ΣX(0)||| by Lemma II.10

Therefore,

max
1≤i≤p

∣∣∣∣∣∣ΣXΘ?:i

∣∣∣∣∣∣ ≤ max
1≤i≤p

2
T∑
l=0

ρ(l) ‖Θ?
:i‖

2
2 |||ΣX(0)||| = 2|||ΣX(0)|||

T∑
l=0

ρ(l) max
1≤i≤p

‖Θ?
:i‖

2
2

Similarly,

max
1≤i≤p

|||ΣY:i
||| ≤ 2|||ΣY (0)|||

T∑
l=0

ρ(l)

and

max
1≤i≤p

|||ΣX:i
||| ≤ 2|||ΣX(0)|||

T∑
l=0

ρ(l)

So,. by inequality (2.6.3)

max
1≤i≤q

|||ΣW:i
||| ≤ 4

T∑
l=0

ρ(l)

(
|||ΣX ||| max

1≤i≤p
‖Θ?

:i‖
2
2 + |||ΣY |||

)

Therefore,

max
1≤i≤p,1≤j≤q

(|||ΣX:i
|||+

∣∣∣∣∣∣ΣW:j

∣∣∣∣∣∣) ≤ 4
T∑
l=0

ρ(l)

(
|||ΣX |||

(
1 + max

1≤i≤p
‖Θ?

:i‖
2
2

)
+ |||ΣY |||

)



37

Finally, to state the final result:

For a free parameter b > 0, chooset =
√

(b+1) log(pq)
c̃T

, for T ≥ (b+1) log(pq)
c̃

we have with

probability at least

1− 8 exp[−b log(pq)]

that∣∣∣∣∣∣∣∣∣∣∣∣X′WT
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤
√

(b+ 1) log(pq)

c̃T
4

T∑
l=0

ρ(l)

(
|||ΣX |||

(
1 + max

1≤i≤p
‖Θ?

:i‖
2
2

)
+ |||ΣY |||

)

Also, because of Fact 3, we have∣∣∣∣∣∣∣∣∣∣∣∣X′WT
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤
√

(b+ 1) log(pq)

c̃T
8πSα(T )

(
|||ΣX |||

(
1 + max

1≤i≤p
‖Θ?

:i‖
2
2

)
+ |||ΣY |||

)

Proof of Proposition II.3. Note that, by Fact 3, α and ρ-mixing are equivalent for

stationary Gaussian processes. The proof will operate via arguments involving ρ-

mixing coefficients.

For a fixed unit test vector v ∈ Rp, ‖v‖2 = 1, consider the Gaussian vector Xv ∈ RT .

To apply the Hanson-Wright inequality (Lemma (II.11)), we have to upper bound

the operator norm of the covariance matrix Q of Xv.

Q takes the form

Q =



v′EX1X
′
1v · · · v′EX1X

′
jv · · · v′EX1X

′
Tv

...
. . .

...

v′EXtX
′
1v v′EXtX

′
tv v′EXtX

′
Tv

...
. . .

...

v′EXTX
′
1v · · · v′EXTX

′
1v · · · v′EXTX

′
Tv


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We can thus use Fact 5 and Lemma II.10 to upper bound |||Q||| by

T∑
t=0

ρ(l)|||ΣX(0)|||

Now, we can apply Lemma II.11 on any fixed unit test vector v ∈ Rp, ‖v‖2 = 1.

Recall Γ̂ := X′X
T
∈ Rp×p. Using Lemma II.11, we have, ∀η > 0

P[|v′(Γ̂− ΣX(0))v > η|||Q||||] ≤ 2 exp{−cT min(η, η2)} ⇒

P[v′(Γ̂− ΣX(0))v > η

T∑
t=0

ρ(l)|||ΣX(0)|||] ≤ 2 exp{−cT min(η, η2)}

Using Lemma F.2 in Basu and Michailidis [2015], for any integer k > 0, we extend

it to all vectors in J(2k) := {v ∈ Rp : ‖v‖ ≤ 1, ‖v‖0 ≤ 2k}:

P

[
sup

v∈J(2k)

|v′(Γ̂− ΣX(0))v| > η
T∑
t=0

ρ(l)|||ΣX(0)|||

]

≤ 2 exp{−cT min{η, η2}+ 2kmin{log(p), log(
21ep

2k
))}
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By Lemma 12 in Loh and Wainwright [2012], we further extend the bound to all

∀v ∈ Rp,

|v′(Γ̂− ΣX(0))v| > 27η
T∑
t=0

ρ(l)|||ΣX(0)|||
(
‖v‖2

2 +
1

k
‖v‖2

1

)
w.p. ≤ 2 exp{−cT min(η, η2) + 2kmin(log(p), log(

21ep

2k
))}

m

|v′(Γ̂− ΣX(0))v| ≤ 27η
T∑
t=0

ρ(l)|||ΣX(0)|||
(
‖v‖2

2 +
1

k
‖v‖2

1

)
w.p. > 1− 2 exp{−cT min(η, η2) + 2kmin(log(p), log(

21ep

2k
))}

⇓

|v′(Γ̂)v| > −27η
T∑
t=0

ρ(l)|||ΣX(0)|||
(
‖v‖2

2 +
1

k
‖v‖2

1

)
+ λmin(ΣX(0))‖v‖2

2

w.p. > 1− 2 exp{−cT min(η, η2) + 2kmin(log(p), log(
21ep

2k
))}

Intuitively, we know the quadratic form of a Hermitian matrix should have its

magnitude bounded from below by its minimum eigenvalue. To achieve that, pick

η = λmin(ΣX(0))

54
∑T
t=0 ρ(l)λmax(ΣX(0))

. So, we have

|v′Γ̂v| > 1

2
λmin(ΣX(0))‖v‖2

2 −
λmin(ΣX(0))

2k
‖v‖2

1

w.p.

≥ 1− 2 exp{−cT min(1, η2) + 2kmin(log(p), log(
21ep

2k
))}

because min(1, η2) ≤ min(η, η2).

Now, we choose k to make sure the first component in the exponential dominates.

For now, assume p ≥ 21ep
2k

. Let k = dc T
4 log(p)

min{1, η2}e. Now, choose T such that

k ≥ 21e
2

. Let T ≥ 42e log(p)
cmin{1,η2} , where s is the sparsity.
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Finally, we have, for T ≥ s 42e log(p)
cmin{1,η2} , with probability at least

1− 2 exp{−T c
2

min{1, η2}}

the following holds

|v′Γ̂v| > 1

2
λmin(ΣX(0))‖v‖2

2 −
λmin(ΣX(0))

2k
‖v‖2

1

Also, let η̃ := λmin(ΣX(0))
108πSα(T )λmax(ΣX(0))

we can bound η with η̃ by Fact 3.

2.6.1 Hanson-Wright Inequality

The general statement of the Hanson-Wright inequality can be found in the paper

by [Rudelson and Vershynin, 2013, Theorem 1.1]. We use a form of the inequality

which is derived in the proof of Proposition 2.4 of Basu and Michailidis [2015] as an

easy consequence of the general result. We state the modified form of the inequality

and the proof below for completeness.

Lemma II.11 (Variant of Hanson-Wright Inequality). If Y ∼ N(0n×1,Qn×n), then

there exists universal constant c > 0 such that for any η > 0,

(2.6.4) P
[

1

n

∣∣‖Y ‖2
2 − E ‖Y ‖2

2

∣∣ > η|||Q|||
]
≤ 2 exp

[
−cnmin

{
η, η2

}]
.

Proof. The lemma easily follows from Theorem 1.1 in Rudelson and Vershynin [2013].

Write Y = Q1/2X, where X ∼ N (0, I) and (Q1/2)′(Q1/2) = Q. Note that each

component Xi of X is independent N (0, 1), so that ‖Xi‖ψ2
≤ 1. Then, by the above

theorem,

P
[

1

n

∣∣‖Y ‖2
2 − Tr(Q)

∣∣ > η|||Q|||
]

= P
[

1

n
|X ′QX − EX ′QX| > η|||Q|||

]
≤ 2 exp

[
−cmin

{
n2η2|||Q|||
|||Q|||2F

,
nη|||Q|||
|||Q|||

}]

≤ 2 exp
[
−cmin

{
η, η2

}]
since |||Q|||2F ≤ n|||Q|||2
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Lastly, note that Tr(Q) = Tr(EY Y ′) = ETr(Y Y ′) = ETr(Y ′Y ) = ETr ‖Y ‖2 =

E ‖Y ‖2.

2.7 Proofs for Subweibull Random Vectors under β-Mixing

2.7.1 Proof Related to Subweibull Properties

Proof. (of Lemma II.5) Property 1 ⇒ Property 2: Since we can scale X by K1,

without loss of generality, we can assume K1 = 1. Then we have, for p ≥ γ,

E |X|p =

∫ ∞
0

P (|X|p ≥ u) du

=

∫ ∞
0

P (|X| ≥ t) ptp−1dt using change of variable u = tp

≤
∫ ∞

0

2e−t
γ

ptp−1dt by Property 1

=
2p

γ

∫ ∞
0

e−v · v
p−1
γ v

1−γ
γ dv using change of variable v = tγ

=
2p

γ

∫ ∞
0

e−v · vp/γ−1dv

=
2p

γ
· Γ
(
p

γ

)
≤ 2p

γ

(
p

γ

)p/γ
since Γ(x) ≤ xx, ∀x ≥ 1.

Therefore, for p ≥ γ,

(E |X|p)1/p ≤ 21/p(1/γ)1/pp1/p (p/γ)1/γ ≤ Cγ · p1/γ

where Cγ = 4(1/γ ∨ 1)(1/γ)1/γ. If γ ≤ 1, this covers all p ≥ 1. If γ > 1, we have, for

p = 1, . . . , dγe − 1,

(E |X|p)1/p ≤ 21/p(1/γ)1/pp1/p max
i=1,...,dγe−1

Γ(i/γ)1/i ≤ C ′γ,

where C ′γ = 4(1/γ ∨ 1) maxi=1,...,dγe−1 Γ(i/γ)1/i. Therefore, for all p,

(E |X|p)1/p ≤ (Cγ ∨ C ′γ) · p1/γ.
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Property 2 ⇒ Property 3: Without loss of generality, we can assume K2 = 1. Using

Taylor series expansion of exp(·), for some positive λ,

E exp [(λ |X|)γ2 ] = E

[
1 +

∞∑
p=1

E [((λ |X|)γ)p]
p!

]

≤ 1 +
∞∑
p=1

(λγγp)p

(p/e)p
by Property 2 and Stirling’s approx.

=
∞∑
p=0

(eγλγ)p =
1

1− eγλγ
≤ 2,

where the last inequality holds for any λ satisfying eγλγ ≤ 1/2, i.e., λ ≤ (2eγ)−1/γ.

Therefore Property 2 holds with K3 = (2eγ)1/γ.

Property 3 ⇒ Property 1: Without loss of generality, we can assume K3 = 1. For all

t > 0,

P (|X| > t) = P (exp (|X|γ2) ≥ exp (tγ2))

≤ exp (− (tγ2))E exp (|X|γ2) by Markov’s inequality

≤ 2 exp (− (tγ2)) by Property 3

Proof. (of Lemma II.6) By definition,

∥∥X2
∥∥
ψγ

= sup
p≥1

p−1/γ
(
E
∣∣X2

∣∣p)1/p

= sup
p≥1

(
p−1/(2γ)

(
E |X|2p

)1/2p
)2
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Now we make a change of variables p̃ := 2p. Then, we have,

∥∥X2
∥∥
ψγ

= 21/γ sup
p̃≥2

(
p̃−1/(2γ)

(
E |X|p̃

)1/p̃
)2

≤ 21/γ sup
p̃≥1

(
p̃−1/(2γ)

(
E |X|p̃

)1/p̃
)2

= 21/γ

(
sup
p̃≥1

p̃−1/(2γ)
(
E |X|p̃

)1/p̃
)2

= 21/γ ‖X‖2
ψ2γ

.

2.7.2 Subweibull Norm Under Linear Transformations

We will need the following result about changes to the subweibull norm under linear

transformations.

Lemma II.12. Let X be a random vector and A be a fixed matrix. We have,

‖AX‖ψγ ≤ |||A||| · ‖X‖ψγ

Proof. We have,

‖AX‖ψγ = sup
‖v‖2≤1

‖v′AX‖ψγ = sup
‖v‖2≤1

‖(A′v)′X‖ψγ

≤ sup
‖u‖2≤|||A|||

‖u′X‖ψγ

= |||A||| sup
‖u‖2≤1

‖u′X‖ψγ = |||A||| ‖X‖ψγ .

2.7.3 Concentration Inequality for Sums of β-Mixing Subweibull Random Variables

We will state and prove a modified form of Theorem 1 of Merlevède et al. [2011].

This concentration result will be used to prove the high probability guarantees on

the deviation bound (Lemma II.7) and lower restricted eigenvalue (Lemma II.8)

conditions.
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Lemma II.13. Let (Xj)
T
j=1 be a strictly stationary sequence of zero mean random

variables that are subweibull(γ2) with subweibull constant K. Denote their sum by

ST . Suppose their β-mixing coefficients satisfy β(n) ≤ 2 exp(−cnγ1). Let γ be a

parameter given by

1

γ
=

1

γ1

+
1

γ2

.

Further assume γ < 1. Then for T > 4, and any t > 1/T ,

P
{∣∣∣∣STT

∣∣∣∣ > t

}
≤ T exp

{
− (tT )γ

KγC1

}
+ exp

{
− t2T

K2C2

}
(2.7.1)

where the constants C1, C2 depend only on γ1, γ2 and c.

Proof. Note that, in this proof, constants C,C1, C2, . . . can depend on c, γ1 and γ2

and C1, C2 in the proof are not the same as the eventual constants C1, C2 that appear

in the lemma statement.

Further, we will assume that K = 1. The general form then follows by scaling the

random variables by 1/K and applying the lemma with t replaced by t/K. The proof

consists of two parts. First, we will state a concentration inequality of Merlevède

et al. [2011] and bound a certain parameter V appearing in their inequality using the

β-mixing assumption. Second, we will simplify the expression that we get directly

from their concentration inequality to get a more convenient form.

Step 1: Controlling the V parameter using β-mixing coefficients First, recall that

Theorem 1 of Merlevède et al. [2011], under the condition of our lemma, gives

P {|ST | > u} ≤ T exp

{
−u

γ

C1

}
+ exp

{
− u2

C2(1 + TV )

}
+ exp

{
− u2

C3T
exp

{
1

C4

(
u(1−γ)

log(u)

)γ}}
(2.7.2)
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First of all, we need to control the quantity V that appears in the denominator of

the second term of (2.7.2). V is a worst case measure of the partial sum of the

auto-covariances on the clipped dependent sequence (Xt)
T
t=1. It is increasing in time

horizon T and related to dimension p and sparsity s and hence not an absolute

constant. To the best of our knowledge, V is not controllable under the weaker α-

mixing condition. As Merlevède et al. [2011] mention in their Section 2.1.1, using

results of Viennet [1997], we have, for any β-mixing strictly stationary sequence (Yt)

with geometrically decaying β-mixing coefficients; i.e.,

β(k) ≤ 2 exp {−ckγ1} for any positive k

the associated quantity V can be upper bounded as

V ≤ EX2
1 + 4

∑
k≥0

E(BkX
2
1 )

for some sequence (Bk) with values in [0, 1] satisfying E(Bk) ≤ β(k). In our case, (Xt)

is stationary and we know that its finite moments exist because of Assumption 7.

Then,

V ≤ EX2
1 + 4

∑
k≥0

E(BkX
2
1 )

≤ EX2
1 + 4

∑
k≥0

√
E(B2

k)E(X4
1 ) Cauchy-Schwarz ineqeuality

= EX2
1 + 4

√
E(X4

1 )
∑
k≥0

√
E(B2

k) all finite moments of X1 exist

≤ EX2
1 + 4

√
E(X4

1 )
∑
k≥0

√
E(Bk)

≤ C,

where the second to last inequality follows because Bk ∈ [0, 1] ⇒ B2
k ≤ Bk. The

last inequality comes from the fact that
√
E(Bk) ≤

√
β(k) ≤

√
2 exp

{
−1

2
ckγ1

}
⇒
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(
√

E(Bk)) summable. Moreover since X1 is subweibull(γ2) with constant 1, both

EX2
1 and E(X4

1 ) are bounded with constants depending only on γ2. Note that C

depends on c, γ1 and γ2.

Step 2: Deriving a Convenient form Eventually we will apply the concentration

inequality above with u = tT , and we will choose t such that u = tT > 1. Under the

condition that u > 1, we will now show that the term appearing in the exponent in

the third term in (2.7.2),

(u)(1−γ)

(log(u))
,(2.7.3)

is larger than a γ-dependent constant. Along with the fact that V is a constant in

the second term, the second and third terms in (2.7.2) can then be combined into

one.

Let u > 1. Note that the expression (2.7.3) remains positive and blows up to infinity

as u approaches 1 from above. Taking derivative with respect to u, we obtain

d

du

u(1−γ)

(log(u))
=

u−γ

log(u)

[
(1− γ)− 1

log(u)

]

Observe that the derivative is negative when u < u∗ = e
1

1−γ ; for u > u∗, it becomes

positive again. Hence, the expression (2.7.3) reaches its minimum at u∗, where its

value is, (
e

1
1−γ

)1−γ

1
1−γ

= e(1− γ),

which is positive since γ < 1.
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2.7.4 Proofs of Deviation and RE Bounds

Proof. (of Proposition II.7) Note that constants C1, C2, . . . can change from line to

line and depend only on γ1, γ2, c appearing in Assumption 6 and Assumption 7, and

on the constant c′ appearing in the high probability guarantee.

Recall that W := Y−XΘ?, and

|||X′W|||∞ = max
1≤i≤p,1≤j≤q

|[X′W]i,j|

= max
1≤i≤p,1≤j≤q

|(X:i)
′W:j|

By Assumption 3, we have

EX:i = 0,∀i = 1, · · · , p and

EY:j = 0,∀j = 1, · · · , q

By first order optimality of the optimization problem in (2.2.1), we have

E(X:i)
′(Y−XΘ?) = 0,∀i⇒ E(X:i)

′W:j = 0,∀i, j

We know ∀i, j

|(X:i)
′W:j|

= |(X:i)
′W:j − E[(X:i)

′W:j]|

=
1

2

∣∣(‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
)
−
(
‖X:i‖2 − E[‖X:i‖2]

)
−
(
‖W:j‖2 − E[‖W:j‖2]

)∣∣
≤ 1

2

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣+

1

2

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣+

1

2

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣

Therefore,

P
(

1

T
|(X:i)

′W:j| > 3t

)
≤ P

(
1

2T

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣ > t

)
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We will control the tail probabilities for each of the terms |‖X:i‖2 − E[‖X:i‖2]|,

|‖W:j‖2 − E[‖W:j‖2]| and |‖X:i + W:j‖2 − E[‖X:i + W:j‖2]|. Before we apply Lemma II.13,

we have to figure out their subweibull norms. We will first calculate the subweibull(γ2)

norm of Xti,Wtj and Xti+Wtj. This will immediate yield control of the subweibull(γ2/2)

norms of their squares via Lemma II.6.

Recall that

Wt: = Yt: − (XΘ?)t:

= Yt: −Xt:Θ
?

Therefore, we have,

‖Wtj‖γ2 ≤ ‖Wt:‖γ2 by Definition 4

= ‖Yt: −Xt:Θ
?‖γ2

≤ ‖Yt:‖γ2 + ‖Xt:Θ
?‖γ2 ‖·‖γ2 is a norm

≤ ‖Yt:‖γ2 + ‖Xt:‖γ2 |||Θ
?||| by Lemma II.12

≤ KY + |||Θ?|||KX by Assumption 7.

We also have,

‖Xti + Wtj‖γ2 ≤ ‖Xti‖γ2 + ‖Wtj‖γ2 ‖·‖γ2 is a norm

≤ KY +KX (1 + |||Θ?|||) .

Using Lemma II.6, we know that the subweibull(γ2/2) constants of the squares of

Xti,Wtj and Xti + Wtj are all bounded by

K = 22/γ2 (KY +KX (1 + |||Θ?|||))2 .
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We now apply Lemma II.13 three times with γ2 replaced by γ2/2, to get, for any

t > 1/2T ,

P
(

1

T
|(X:i)

′W:j| > 3t

)
≤ 3T exp

{
−(2tT )γ

KγC1

}
+ 3 exp

{
− 4t2T

K2C2

}
,

where γ = (1/γ1 + 2/γ2)−1 is less than 1 by Assumption 8.

Now, taking a union bound over the pq possible values of i, j, gives us

P
(

1

T
|||X′W|||∞ > 3t

)
≤ 3Tpq exp

{
−(2tT )γ

KγC1

}
+ 3pq exp

{
− 4t2T

K2C2

}
.

If we set,

t = K max

{
C2

√
log(3pq)

T
,
C1

T
(log(3Tpq))1/γ

}
then the probability of the large deviation event above is at most

2 exp(−c′ log(3pq)).

Note that the constant c′ can be made arbitrarily large but affects the constants

C1, C2 above.

In the expression for t above, we want to ensure that two conditions are met. First,

the 1/
√
T term should dominate. That is, we want,√

log(3pq)

T
≥ C1

T
(log(3Tpq))1/γ ,

which, in turn, is implied by√
log(3pq)

T
≥ C2

T
(log(3T ))1/γ and

√
log(3pq)

T
≥ C2

T
(log(pq))1/γ

Both of these are met if T ≥ C3(log(pq))
2
γ
−1

.

Finally, the condition t > 1/2T should be met.That is,

C2

√
log(3pq)

T
>

1

2T

which happens as soon as T ≥ C2
2/4.
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Proof. (of Lemma II.8) Recall that X1, · · · , Xt ∈ Rp are subweibull random variables

forming a β-mixing and stationary sequence.

Step I: Concentration for a fixed vector Now, fix a unit vector v ∈ Rp, ‖v‖2 = 1.

Define real valued random variables Zt = v′Xt, t = 1, · · · , T . Note that the β-mixing

rate of (Zt) is bounded by the same of (Xt) by Fact 2. From Lemma II.6, we know

that ‖Z2
t ‖ψγ2/2 ≤ 22/γ2 ‖Zt‖2

ψγ2
. Moreover, ‖Zt‖ψγ2 ≤ ‖Xt‖ψγ2 . Therefore, we can

invoke Lemma II.13 for the sum ST (v) =
∑T

t=1 (Z2
t − EZ2

t ) with γ2 replaced by γ2/2,

γ = (1/γ1 + 2/γ2)−1 and K = 22/γ2K2
X to get the following bound, for T > 4 and

t > 1/T ,

P
{∣∣∣∣ST (v)

T

∣∣∣∣ > t

}
≤ T exp

{
− (tT )γ

KγC1

}
+ exp

{
− t2T

K2C2

}

Step II: Uniform concentration over all vectors Let J(2k) denote the set of 2k-

sparse vector with Euclidean norm at most 1. Then, using union bound arguments

similar to those in Lemma F.2 of Basu and Michailidis [2015], we have

P

{
sup

v∈J(2k)

∣∣∣∣ST (v)

T

∣∣∣∣ > 3t

}

≤ exp

{
log(T )− (tT )γ

KγC1

+ k log(p)

}
+ exp

{
− t2T

K2C2

+ k log(p)

}
.

From the 2k-sparse set, we will extend our bound to all v ∈ Rp. To do so, we will

apply Lemma 12 in Loh and Wainwright [2012]. For k ≥ 1, with probability at least

1− exp

{
log(T )− (tT )γ

KγC1

+ k log(p)

}
− exp

{
− t2T

K2C2

+ k log(p)

}
(2.7.4)

the following holds uniformly for all v ∈ Rp

1

T
|ST (v)| ≥ 27t

(
‖v‖2

2 +
1

k
‖v‖2

1

)
.
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Let Σ̂T (v) := 1
T
‖Xv‖2

2 and note that EΣ̂T (v) = v′ΣX(0)v. Therefore, 1
T
ST = Σ̂T (v)−

EΣ̂T (v). Using these notations, the above inequality implies that

Σ̂T (v) ≥ v′ (ΣX(0)) v − 27 · t
(
‖v‖2

2 +
1

k
‖v‖2

1

)
≥ λmin(ΣX(0)) ‖v‖2

2 − 27 · t
(
‖v‖2

2 +
1

k
‖v‖2

1

)
= ‖v‖2

2 (λmin(ΣX(0))− 27t)− 27t

k
‖v‖2

1

= ‖v‖2
2

1

2
λmin(ΣX(0))− λmin(ΣX(0))

2k
‖v‖2

1 ,

where the last line follows by picking t = 1
54
λmin(ΣX(0)).

Step III: Selecting parameters The only thing left is to set the parameter k ap-

propriately. We want to set it so that

2k log p = min

{
(tT )γ

KγC1

,
t2T

K2C2

}
so that the failure probability in (2.7.4) is at most 1 − 2T exp(−k log p). We want

the minimum above to be attained at the first term which means we want

T ≥
(
K

t

) 2−γ
1−γ
(
C2

C1

) 1
1−γ

Under this condition, we have

k =
(tT )γ

2KγC1 log p
.

To ensure that k ≥ 1, we need

T ≥ 54K (2C1 log(p))1/γ

λmin(ΣX(0))

To conclude, we have the following RE guarantee. For sample size

T ≥ max

{
54K (2C1 log(p))1/γ

λmin(ΣX(0))
,

(
54K

λmin(ΣX(0))

) 2−γ
1−γ
(
C2

C1

) 1
1−γ
}
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we have with probability at least

1− 2T exp {−c′T γ} , where c′ =
(λmin(ΣX(0)))γ

(54K)γ2C1

we have, for all v ∈ Rp,

Σ̂T (v) ≥ α ‖v‖2
2 − τ ‖v‖

2
1

where

α =
1

2
λmin(ΣX(0)), τ =

α

2c′
·
(

log(p)

T γ

)
.

2.8 Verification of Assumptions for the Examples

2.8.1 VAR

Note that every VAR(d) process has an equivalent VAR(1) representation (see e.g.

[Lütkepohl, 2005, Ch 2.1]) as

Z̃t = ÃZ̃t−1 + Ẽt(2.8.1)

where

Z̃t :=



Zt

Zt−1

...

Zt−d+1


(pd×1)

Ẽt :=



Et

0

...

0


(pd×1)

and Ã :=



A1 A2 · · · Ad−1 Ad

Ip 0 0 0 0

0 Ip 0 0

...
. . .

...
...

0 0 · · · Ip 0


(dp×dp)

(2.8.2)

Because of this equivalence, justification of Assumptions 5(Gaussian case) and 6

(subweibull case) will operate through this corresponding augmented VAR(1) repre-

sentation.
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For both Gaussian and subweibull VARs, Assumption 3 is true since the sequences

(Zt) is centered. Second, Θ? = (A1, · · · ,Ad). So Assumption 1 follows from con-

struction.

For the remaining assumptions, we will consider the Gaussian and subweibull cases

separately.

Gaussian VAR (Zt) satisfies Assumption 4 by model assumption.

To show that (Zt) is α-mixing with summable coefficients, we use the following facts

together with the equivalence between (Zt) and (Z̃t) and Fact 2.

Since (Z̃t) is stable, the spectral radius of Ã, r(Ã) < 1, hence Assumption 2 holds.

Also the innovations Ẽ has finite first absolute moment and positive support ev-

erywhere. Then, according to Tjøstheim [1990, Theorem 4.4], (Z̃t) is geometrically

ergodic. Note here that Gaussianity is not required here. Hence, it also applies to

innovations from mixture of Gaussians.

Next, we present a standard result (see e.g. [Liebscher, 2005, Proposition 2]).

Fact 6. A stationary Markov chain {Zt} is geometrically ergodic implies {Zt} is

absolutely regular (or β-mixing) with

β(n) = O(γn), γ ∈ (0, 1)

By the fact that β-mixing implies α-mixing (see Section 2.2.4) for a random process,

we know that α-mixing coefficients decay geometrically and hence is summable. So,

Assumption 5 holds.
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Subweibull VAR To show that (Zt) satisfies Assumptions 2 and 6, we establish

that (Zt) is geometrically ergodic. To show the latter, we use Propositions 1 and 2

in Liebscher [2005] together with the equivalence between (Zt) and (Z̃t) and Fact 2.

To apply Proposition 1 in Liebscher [2005], we check the three conditions one by

one. Condition (i) is immediate with m = 1, E = Rp, and µ is the Lebesgue

measure. For condition (ii), we set E = Rp, µ to be the Lebesgue measure, and m̄ =

dinfu∈C,v∈A ‖u− v‖2e the minimum “distance” between the sets C and A. Because

C is bounded and A Borel, m̄ is finite. Lastly, for condition (iii), we again let

E = Rp, µ to be the Lebesgue measure, and now the function Q(·) = ‖·‖ and the set

K = {x ∈ Rp : ‖x‖ ≤ 2E‖Ẽt‖
c ε
} where c = 1−

∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣. Then,

• Recall from model assumption that
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣ < 1; hence,

E
[∥∥∥ Z̃t+1

∥∥∥ ∣∣∣Z̃t = z
]
<
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣ ‖z‖+ E(

∥∥∥Ẽt+1

∥∥∥) ≤
(

1− c

2

)
‖z‖ − ε,

for all z ∈ E\K

• For all z ∈ K,

E
[∥∥∥ Z̃t+1

∥∥∥ ∣∣∣Z̃t = z
]
<
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣ ‖z‖+ E(

∥∥∥Ẽt+1

∥∥∥) ≤
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣2E

∥∥∥Ẽt∥∥∥
cε

• For all z ∈ K,

0 ≤ ‖z‖ ≤
2E
∥∥∥Ẽt∥∥∥
cε

Now, by Proposition 1 in Liebscher [2005], (Z̃t) is geometrically ergodic; hence (Z̃t)

will be stationary. Once it reaches stationarity, by Proposition 2 in the same pa-

per, the sequence will be β-mixing with geometrically decaying mixing coefficients.

Therefore, Assumptions 2 and 6 hold.
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We are left with checking Assumption 7. Let γ be the subweibull parameter associ-

ated with (Et).

Assume that the spectral radius of A is smaller than 1; i.e. r(A) < 1. This is an

equivalent notion of stability of VAR process.

By the definition of the spectral radius,

lim
m→∞

|||Am|||1/m = r(A) < 1

In other words, there exists a positive integer k <∞ such that
∣∣∣∣∣∣Ak∣∣∣∣∣∣ < 1.

By the recursive nature of the time series,

‖Zt‖ψγ ≤
∣∣∣∣∣∣Ak∣∣∣∣∣∣‖Zt−1‖ψγ +

k∑
i=1

∣∣∣∣∣∣Ak−i∣∣∣∣∣∣‖Et−k+i‖ψγ

To simplify notation, let Ci :=
∣∣∣∣∣∣Ak−i∣∣∣∣∣∣. Using stationarity, we have the following

‖Zt‖ψγ ≤
‖εt‖ψγ

1− |||Ak|||

(
k∑
i=1

ci

)
<∞

The last inequality follows because Ci <∞, ∀i = 1, · · · , k.

Thus, the sequence (Zt) satisfies Assumption 7.

2.8.2 VAR with Misspecification

Assumption 3 is immediate from model definitions. By the same arguments as in

Chapter 2.8.1, (Zt,Ξt) are stationary and so is the sub-process (Zt); Assumption 2

holds. Again, (Zt,Ξt) satisfy Assumption 5 (for Example 2) and Assumption 6 (for

Example 4) according to Chapter 2.8.1. By Fact 2, we have the same Assumptions

hold for the respective sub-processes (Zt) in the respective cases.

To show that (Θ?)′ = AZZ+AZΞΣΞZ(0)(ΣZ(0))−1, consider the following arguments.

By Assumption 2, we have the auto-covariance matrix of the whole system (Zt,Ξt)

as
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Σ(Z,Ξ) =

 ΣX(0) ΣXΞ(0)

ΣΞX(0) ΣΞ(0)


Recall our Θ? definition from Eq. (2.2.1)

Θ? := arg min
B∈Rp×p

E
(
‖Zt −B′Zt−1‖2

2

)
Taking derivatives and setting to zero, we obtain

(2.8.3) (Θ?)′ = ΣZ(−1)(ΣZ)−1

Note that

ΣZ(−1) = Σ(Z,Ξ)(−1)[1 : p1, 1 : p1]

= E (AZZZt−1 + AZΞΞt−1 + EZ,t−1)Z ′t−1

= E
(
AZZZt−1Z

′
t−1 + AZΞΞt−1Z

′
t−1 + EZ,t−1Z

′
t−1

)
= AZZΣZ(0) + AZΞΣΞZ(0)

by Assumption 2 and the fact that the innovations are iid.

Naturally,

(Θ?)′ = AZZΣZ(0)(ΣZ(0))−1 + AZΞΣΞZ(0)(ΣZ(0))−1 = AZZ + AZΞΣΞZ(0)(ΣZ(0))−1

Remark 8. Notice that AZΞ is a column vector and suppose it is 1-sparse, and AZZ

is p-sparse, then Θ? is at most 2p-sparse. So Assumption 1 can be built in by model

construction.

Remark 9. We gave an explicit model here where the left out variable Ξ was univari-

ate. That was only for convenience. In fact, whenever the set of left-out variables Ξ
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affect only a small set of variables Ξ in the retained system Z, the matrix Θ? is guar-

anteed to be sparse. To see that, suppose Ξ ∈ Rq and AZΞ has at most s0 non-zero

rows (and let AZZ to be s-sparse as always), then Θ? is at most (s0p+ s)-sparse.

Lastly, for Example 2, the sub-process (Zt) is Gaussian because is obtained from

a linear transformation of (Zt,Ξt) which is Gaussian; we have Assumption 4. For

Example 4, note that Zt = M(Zt,Ξt) where M = [Ip, 0; 0′, 0] is a sub-setting matrix

that selects the first p entries of a (p + 1)-dimensional vector. Hence, the fact that

Zt is subweibull follows from the same arguments in Chapter 2.8.1 pertaining to

establishing the subweibull property in conjunction with applying Lemma II.12 on

Zt = M(Zt,Ξt); so, Assumption 7 holds.

Remark 10. Any VAR(d) process has an equivalent VAR(1) representation (Lutke-

pohl 2005). Our results extend to any VAR(d) processes.

2.8.3 ARCH

Verifying the Assumptions. To show that Assumption 6 hold for a process defined

by Eq. (2.4.1) we leverage on Theorem 2 from Liebscher [2005]. Note that the original

ARCH model in Liebscher [2005] assumes the innovations to have positive support

everywhere. However, this is just a convenient assumption to establish the first

two conditions in Proposition 1 (on which proof of Theorem 2 relies) from the same

paper. ARCH model with innovations from more general distributions (e.g. uniform)

also satisfies the first two conditions of Proposition 1 by the same arguments in the

Subweibull paragraph of Chapter 2.8.1.

Theorem 2 tells us that for our ARCH model, if it satisfies the following conditions,

it is guaranteed to be absolutely regular with geometrically decaying β-coefficients.
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• Et has positive density everywhere on Rp and has identity covariance by con-

struction.

• Σ(z) = o(‖z‖) because m ∈ (0, 1).

• |||Σ(z)−1||| ≤ 1/(ac), |det (Σ(z)) | ≤ bc

• r(A) ≤ |||A||| < 1

So, Assumption 6 is valid here. We check other assumptions next.

Mean 0 is immediate, so we have Assumption 3. When the Markov chain did not

start from a stationary distribution, geometric ergodicity implies that the sequence

is approaching the stationary distribution exponentially fast. So, after a burning

period, we will have Assumption 2 approximately valid here.

The subweibull constant of Σ(Zt−1)Et given Zt−1 = z is bounded as follows: for every

z,

‖Σ(z)Et‖ψγ ≤ |||Σ(z)||| ‖Et‖ψγ by Lemma II.12

≤ Kecb =: KE

where Ke := sup
t
‖Et‖ψγ

By the recursive relationship of (Zt)t, we have

‖Zt‖ψγ ≤ |||A||| ‖Zt−1‖ψγ +KE.

which yields the bound ‖Zt‖ψγ ≤ KE/(1− |||A|||) <∞. Hence Assumption 7 holds.

We will show below that Θ? = A′. Hence, sparsity (Assumption 1) can be built in

when we construct our model 2.4.1.
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Recall Eq. 2.8.3 from Chapter 2.8.2 that

Θ? = ΣZ(−1)(ΣZ)−1

Now,

ΣZ(−1) = EZtZ ′t−1 by stationarity

= E (AZt−1 + Σ(Zt−1)Et)Z ′t−1 Eq. (2.4.1)

= AEZt−1Z
′
t−1 + EΣ(Zt−1)EtZ ′t−1

= AΣZ + E[c clipa,b (‖Zt−1‖m) EtZ ′t−1]

= AΣZ + E[cEtZ ′t−1clipa,b (‖Zt−1‖m)]

= AΣZ + cE [Et]E
[
Z ′t−1clipa,b (‖Zt−1‖m)

]
i.i.d. innovations

= AΣZ Et mean 0,

where clipa,b (x) := min{max{x, a}, b} for b > a.

Since ΣZ is invertible, we have (Θ?)′ = ΣZ(−1)(ΣZ)−1 = A.



CHAPTER III

Lasso Guarantees for Time Series Estimation Under
Subgaussian Tails and β-Mixing

3.1 Introduction

Efficient estimation methods in high dimensional statistics [Bühlmann and Van

De Geer, 2011, Hastie et al., 2015] include methods based on convex relaxation

(see, e.g., Chandrasekaran et al. [2012], Negahban et al. [2012]) and methods using

iterative optimization techniques (see, e.g., Beck and Teboulle [2009], Agarwal et al.

[2012], Donoho et al. [2009]). A lot of work in the past decade has improved our

understanding of the theoretical properties of these algorithms. However, the bulk of

existing theoretical work focuses on iid samples. The extension of theory and algo-

rithms in high dimensional statistics to time series data is just beginning to occur as

we briefly summarize in Section ?? below. Note that, in time series applications, de-

pendence among samples is the norm rather than the exception. So the development

of high dimensional statistical theory to handle dependence is a pressing concern in

time series estimation.

In this chapter, we give guarantees for `1-regularized least squares estimation, or

Lasso [Hastie et al., 2015], that hold even when there is temporal dependence in data.

Recently, Basu and Michailidis [2015] took a step forward in providing guarantees for

60
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Lasso in the time series setting. They considered Gaussian VAR models with finite

lag (see Example 6) and defined a measure of stability using the spectral density,

which is the Fourier transform of the autocovariance function of the time series. Then

they showed that one can derive error bounds for Lasso in terms of their measure

of stability. Their bounds are an improvement over previous work [Negahban and

Wainwright, 2011, Loh and Wainwright, 2012, Han and Liu, 2013] that assumed

operator norm bounds on the transition matrix. These operator norm conditions

are restrictive even for VAR models with a lag of 1 and never hold if the lag is

strictly larger than 1! Therefore, the results of Basu and Michailidis [2015] are very

interesting. But they do have limitations.

A key limitation is that Basu and Michailidis [2015] assume that the VAR model

is the true data generating mechanism (DGM). Their proof techniques rely heavily

on having the VAR representation of the stationary process available. The VAR

model assumption, though popular, can be restrictive. The VAR family is not closed

under linear transformations: if Zt is a VAR process then CZt may not expressible

as a finite lag VAR [Lütkepohl, 2005]. We later provides an example (Example 8) of

VAR processes where omitting a single variable breaks down the VAR assumption.

What if we do not assume that Zt is a finite lag VAR process but simply that it is

stationary? Under stationarity (and finite 2nd moment conditions), the best linear

predictor of Zt in terms of Zt−d, . . . , Zt−1 is well defined even if Zt is not a lag d

VAR. If we assume that this best linear predictor involves sparse coefficient matrices,

can we still guarantee consistent parameter estimation? This chapter provides an

affirmative answer to this important question.

We provide finite sample parameter estimation and prediction error bounds for Lasso

in stationary processes with subgaussian marginals and geometrically decaying β-
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mixing coefficients (Corollary III.4). It is well known that guarantees for Lasso fol-

low if one can establish restricted eigenvalue (RE) conditions and provide deviation

bounds (DB) for the correlation of the noise with the regressors (see Theorem IV.2

in Section 3.6.2 below for a precise statement). Therefore, the bulk of the techni-

cal work in this chapter boils down to establishing, with high probability, that the

RE and DB conditions hold under the subgaussian β-mixing assumptions. (Propo-

sitions III.2, III.3). Note that RE conditions were previously shown to hold under

the iid assumption by Raskutti et al. [2010] for Gaussian random vectors and by

Rudelson and Zhou [2013] for subgaussian random vectors. Our results rely on novel

concentration inequality (Lemma III.1) for β-mixing subgaussian random variables

that may be of independent interest. The inequality is proved by applying a blocking

trick to Bernstein’s concentration inequality for iid random variables. All proofs are

deferred to the appendix.

To illustrate potential applications of our results, we present four examples. Ex-

ample 6 considers a vanilla Gaussian VAR. Example 7 considers VAR models with

subgaussian innovations. Examples 8 is concerned with subgaussian VAR models

when the model is mis-specified. Lastly, we go beyond linear models and introduce

non-linearity in the DGM in Example 9. To summarize, our theory for Lasso in high

dimensional time series estimation extends beyond the classical linear Gaussian set-

tings and provides guarantees potentially in the presence of model mis-specification,

subgaussian innovations and/or nonlinearity in the DGM.

3.2 Preliminaries

Lasso Estimation Procedure for Dependent Data Consider a stochastic process of

pairs (Xt, Yt)
∞
t=1 where Xt ∈ Rp, Yt ∈ Rq, ∀t. One might be interested in predicting
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Yt given Xt. In particular, given a depedndent sequence (Zt)
T
t=1, one might want

to forecast the present Zt using the past (Zt−d, . . . , Zt−1). A linear predictor is a

natural choice. To put it in the regression setting, we identify Yt = Zt and Xt =

(Zt−d, . . . , Zt−1). The pairs (Xt, Yt) defined as such are no longer iid. Assuming strict

stationarity, the parameter matrix of interest Θ? ∈ Rp×q is

(3.2.1) Θ? = arg min
Θ∈Rp×q

E[‖Yt −Θ′Xt‖2
2].

Note that Θ? is independent of t owing to stationarity. Because of high dimensionality

(pq � T ), consistent estimation is impossible without regularization. We consider

the Lasso procedure. The `1-penalized least squares estimator Θ̂ ∈ Rp×q is defined

as

(3.2.2) Θ̂ = arg min
Θ∈Rp×q

1

T
‖ vec(Y −XΘ)‖2

2 + λT ‖vec(Θ)‖1 .

where

Y = (Y1, Y2, . . . , YT )′ ∈ RT×q X = (X1, X2, . . . , XT )′ ∈ RT×p.(3.2.3)

The following matrix of true residuals is not available to an estimator but will appear

in our analysis:

W := Y−XΘ?.(3.2.4)

Matrix and Vector Notation For a symmetric matrix M, let λmax(M) and λmin(M)

denote its maximum and minimum eigenvalues respectively. For any matrix let M,

r(M), |||M|||, |||M|||∞, and |||M|||F denote its spectral radius maxi {|λi(M)|}, op-

erator norm
√
λmax(M′M), entrywise `∞ norm maxi,j |Mi,j|, and Frobenius norm√

tr(M′M) respectively. For any vector v ∈ Rp, ‖v‖q denotes its `q norm (
∑p

i=1 |vi|q)1/q.



64

Unless otherwise specified, we shall use ‖·‖ to denote the `2 norm. For any vector

v ∈ Rp, we use ‖v‖0 and ‖v‖∞ to denote
∑p

i=1 1{vi 6= 0} and maxi{|vi|} respec-

tively. Similarly, for any matrix M, |||M|||0 = ‖vec(M)‖0 where vec(M) is the vector

obtained from M by concatenating the rows of M . We say that matrix M (resp.

vector v) is s-sparse if |||M|||0 = s (resp. ‖v‖0 = s). We use v′ and M′ to denote

the transposes of v and M respectively. When we index a matrix, we adopt the

following conventions. For any matrix M ∈ Rp×q, for 1 ≤ i ≤ p, 1 ≤ j ≤ q, we define

M[i, j] ≡ Mij := e′iMej, M[i, :] ≡ Mi: := e′iM and M[:, j] ≡ M:j := Mej where ei

is the vector with all 0s except for a 1 in the ith coordinate. The set of integers is

denoted by Z.

For a lag l ∈ Z, we define the auto-covariance matrix w.r.t. (Xt, Yt)t as Σ(l) =

Σ(X;Y )(l) := E[(Xt;Yt)(Xt+l;Yt+l)
′]. Note that Σ(−l) = Σ(l)′. Similarly, the auto-

covariance matrix of lag l w.r.t. (Xt)t is ΣX(l) := E[XtX
′
t+l], and w.r.t. (Yt)t is

ΣY (l) := E[YtY
′
t+l]. The cross-covariance matrix at lag l is ΣX,Y (l) := E[XtY

′
t+l].

Note the difference between Σ(X;Y )(l) and ΣX,Y (l): the former is a (p+ q)× (p+ q)

matrix, the latter is a p × q matrix. Thus, Σ(X;Y )(l) is a matrix consisting of four

sub-matrices. Using Matlab-like notation, Σ(X;Y )(l) = [ΣX ,ΣX,Y ; ΣY,X ,ΣY ]. As per

our convention, at lag 0, we omit the lag argument l. For example, ΣX,Y denotes

ΣX,Y (0) = E[XtY
′
t ].

A Brief Introduction to the β-Mixing Condition Mixing conditions [Bradley, 2005]

are well established in the stochastic processes literature as a way to allow for de-

pendence in extending results from the iid case. The general idea is to first define a

measure of dependence between two random variables X, Y (that can vector-valued

or even take values in a Banach space) with associated sigma algebras σ(X), σ(Y ).
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In particular,

β(X, Y ) = sup
1

2

I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|

where the last supremum is over all pairs of partitions {A1, . . . , AI} and {B1, . . . , BI}

of the sample space Ω such that Ai ∈ σ(X), Bj ∈ σ(Y ) for all i, j. Then for a

stationary stochastic process (Xt)
∞
t=−∞, one defines the mixing coefficients, for l ≥ 1,

β(l) = β(X−∞:t, Xt+l:∞).

The β-mixing condition has been of interest in statistical learning theory for obtaining

finite sample generalization error bounds for empirical risk minimization [Vidyasagar,

2003, Sec. 3.4] and boosting [Kulkarni et al., 2005] for dependent samples. There is

also work on estimating β-mixing coefficients from data [Mcdonald et al., 2011]. At

the same time, many interesting processes such as Markov and hidden Markov pro-

cesses satisfy a β-mixing condition [Vidyasagar, 2003, Sec. 3.5]. Before we continue,

we note an elementary but useful fact about mixing conditions, viz. they persist

under arbitrary measurable transformations of the original stochastic process.

Fact 7. Suppose a stationary process {Ut}Tt=1 is β-mixing. Then the stationary

sequence {f(Ut)}Tt=1, for any measurable function f(·), also is mixing in the same

sense with its mixing coefficients bounded by those of the original sequence.

3.3 Main Results

We start with introducing two well-known sufficient conditions that enable us to

provide non-asymptotic guarantees for Lasso estimation and prediction errors – the

restricted eigenvalue (RE) and the deviation bound (DB) conditions. Note that in the

classical linear model setting (see, e.g., Chap. 2.3 in Hayashi [2000]) where sample
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size is larger than the dimensions (n > p), the conditions for consistency of the

ordinary least squares (OLS) estimator are as follows: (a) the empirical covariance

matrix X′X/T
P→ Q and Q invertible, i.e., λmin(Q) > 0, and (b) the regressors and

the noise are asymptotically uncorrelated, i.e., X′W/T → 0.

In high-dimensional regimes, Bickel et al. [2009], Loh and Wainwright [2012] and Ne-

gahban and Wainwright [2012] have established similar consistency conditions for

Lasso. The first one is the restricted eigenvalue (RE) condition on X′X/T (which

is a special case, when the loss function is the squared loss, of the restricted strong

convexity (RSC) condition). The second is the deviation bound (DB) condition on

X′W. The following lower RE and DB definitions are modified from those given by

Loh and Wainwright [2012].

Definition 5 (Lower Restricted Eigenvalue). A symmetric matrix Γ ∈ Rp×p satisfies

a lower restricted eigenvalue condition with curvature α > 0 and tolerance τ(T, p) > 0

if

∀v ∈ Rp, v′Γv ≥ α ‖v‖2
2 − τ(T, p) ‖v‖2

1 .

Definition 6 (Deviation Bound). Consider the random matrices X ∈ RT×p and

W ∈ RT×q defined in (3.2.3) and (3.2.4) above. They are said to satisfy the deviation

bound condition if there exist a deterministic multiplier function Q(X,W,Θ?) and

a rate of decay function R(p, q, T ) such that:

1

T
|||X′W|||∞ ≤ Q(X,W,Θ?)R(p, q, T ).

We will show that, with high probability, the RE and DB conditions hold for depen-

dent data that satisfy Asumptions 9–13 described below. We shall do that without

assuming any parametric form of the data generating mechanism. Instead, we will
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assume a subgaussian tail condition on the random vectors Xt, Yt and that they

satisfy the geometrically β-mixing condition.

3.3.1 Assumptions

Assumption 9 (Sparsity). The matrix Θ? is s-sparse, i.e. ‖vec(Θ?)‖0 ≤ s.

Assumption 10 (Stationarity). The process (Xt, Yt) is strictly stationary: i.e.,

∀t, τ, n ≥ 0,

((Xt, Yt), · · · , (Xt+n, Yt+n))
d
= ((Xt+τ , Yt+τ ), · · · , (Xt+τ+n, Yt+τ+n)).

where “
d
=” denotes equality in distribution.

Assumption 11 (Centering). We have, ∀t, E(Xt) = 0p×1, and E(Yt) = 0q×1 .

The thin tail property of the Gaussian distribution is desirable from the theoretical

perspective, so we would like to keep that but at the same time allow for more

generality. The subgaussian distributions are a nice family characterized by having

tail probabilities of the same as or lower order than the Gaussian. We now focus

on subgaussian random vectors and present high probabilistic error bounds with all

parameter dependences explicit.

Assumption 12 (Subgaussianity). The subgaussian constants of Xt and Yt are

bounded above by
√
KX and

√
KY respectively. (Please see Section 3.6.1 for a

detailed introduction to subgaussian random vectors. )

Classically, mixing conditions were introduced to generalize classic limit theorems in

probability beyond the case of iid random variables [Rosenblatt, 1956]. Recent work

on high dimensional statistics has established the validity of RE conditions in the

iid Gaussian [Raskutti et al., 2010] and iid Subgaussian cases [Rudelson and Zhou,
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2013]. One of the main contributions of our work is to extend these results in high

dimensional statistics from the iid to the mixing case.

Assumption 13 (β-Mixing). The process ((Xt, Yt))t is geometrically β-mixing, i.e.,

there exists some constant cβ > 0 such that ∀l ≥ 1, β(l) ≤ exp(−cβl),

The β-mixing condition allows us to apply the independent block technique developed

by Yu [1994]. For examples of large classes of Markov and hidden Markov processes

that are geometrically β-mixing, see Theorem 3.11 and Theorem 3.12 of Vidyasagar

[2003]. In the independent blocking technique, we construct a new set of independent

blocks such that each block has the same distribution as that of the corresponding

block from the original sequence. Results of Yu [1994] provide upper bounds on the

difference between probabilities of events defined using the independent blocks versus

the same event defined using the original data. Classical probability theory tools for

independent data can then be applied on the constructed independent blocks. In

Section 3.6.3, we apply the independent blocking technique to Bernstein’s inequality

to get the following concentration inequality for β-mixing random variables.

Lemma III.1 (Concentration of β-Mixing Subgaussian Random Variables). Let Z =

(Z1, . . . , ZT ) consist of a sequence of mean-zero random variables with exponentially

decaying β-mixing coefficients as in 13. Let K be such that maxTt=1 ‖Zt‖ψ2
≤
√
K.

Choose a block length aT ≥ 1 and let µT = bT/(2aT )c. We have, for any t > 0,

P[
1

T
|‖Z‖2

2 − E[‖Z‖2
2]| > t] ≤4 exp

(
−CB min

{
t2µT
K2

,
tµT
K

})
+ 2(µT − 1) exp (−cβaT ) + exp

(
−2tµT
K

)
.
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In particular, for 0 < t < K,

P
[

1

T
|‖Z‖2

2 − E[‖Z‖2
2]| > t

]
≤4 exp

(
−CB

t2µT
K2

)
+ 2(µT − 1) exp (−cβaT ) + exp

(
−2tµT
K

)
.

Here CB is the universal constant appearing in Bernstein’s inequality (Proposition III.7).

Remark 11. The three terms in the bound above all have interpretations: the first is

a concentration term with a rate that depends on the “effective sample size” µT , the

number of blocks; the second is a dependence penalty accounting for the fact that

the blocks are not exactly independent; and the third is a remainder term coming

from the fact that 2aT may not exactly divide T . The key terms are the first two and

exhibit a natural trade-off: increasing aT worsens the first term since µT decreases,

but it improves the second term since there is less dependence at larger lags.

3.3.2 High Probability Guarantees for the Lower Restricted Eigenvalue and Deviation
Bound Conditions

We show that both lower RE and DB conditions hold, with high probability, under

our assumptions.

Proposition III.2 (RE). Suppose Assumptions 9–13 hold. Let CB be the Berstein’s

inequality constant, C = min{CB, 2}, b = min{ 1
54KX

λmin(ΣX), 1} and c = 1
6

max{cβ, Cb2}.

Then for T ≥
(

1
c

log(p)
)2

, with probability at least 1 − 5 exp
(
−CT 1

2

)
− 2(T

1
2 −

1) exp
(
−cβT

1
2

)
, we have for every vector v ∈ Rp,

v′Γ̂v ≥ α2 ‖v‖2 − τ2(T, p) ‖v‖2
1 ,

where α2 = 1
2
λmin(ΣX) , and τ2(T, p) = 27bKX log(p)/cT

1
2 .
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Proposition III.3 (Deviation Bound). Suppose Assumptions 9–13 hold. Let K =

√
KY +

√
KX (1 + |||Θ?|||) and ξ ∈ (0, 1) be a free parameter. Then, for sample size

T ≥ max

{(
log(pq) max

{
K4

2CB
, K2

}) 1
1−ξ

,

[
2

cβ
log(pq)

] 1
ξ

}
,

we have

P
[

1

T
|||X′W|||∞ ≤ Q(X,W,Θ?)R(p, q, T )

]
≥ 1− 15 exp

(
−1

2
log(pq)

)
− 6(T 1−ξ − 1) exp

(
−1

2
cβT

ξ

)
where

Q(X,W,Θ?) =

√
2K4

CB
, R(p, q, T ) =

√
log(pq)

T 1−ξ .

Remark 12. Since ξ ∈ (0, 1) is a free parameter, we choose it to be arbitrarily close to

zero so that R(p, q, T ) scales at a rate arbitrarily close to
√

log(pq)
T

. However, there is

a price to pay for this: both the initial sample threshold and the success probability

worsen as we make ξ very small.

3.3.3 Estimation and Prediction Errors

The guarantees below follow easily from plugging the RE and DB constants from

Propositions III.2 and III.3 into a “master theorem” (Theorem III.5 in Section 3.6.2).

The “master theorem”, in various forms, is well-known in the literature (e.g., see

Bickel et al. [2009], Loh and Wainwright [2012], Negahban and Wainwright [2012]).

Corollary III.4 (Lasso Guarantee under Subgaussian Tails and β-Mixing). Suppose

Assumptions 9–13 hold. Let CB, C, c, b and K be as defined in Propositions III.2 and
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III.3 and C̃ := min{C, cβ}. Let ξ ∈ (0, 1) be a free parameter. Then, for sample size

T ≥max

{(
log(p)

c

)2

max

{(
1728sbKX

λmin(ΣX)

)2

, 1

}
,

(
log(pq) max

{
K4

2CB
, K2

}) 1
1−ξ

,

[
2

cβ
log(pq)

] 1
ξ

}

we have with probability at least

1− 15 exp

(
−1

2
log(pq)

)
− 6(T 1−ξ − 1) exp

(
−1

2
cβT

ξ

)
− 5(T

1
2 − 1) exp

(
−C̃T

1
2

)

the Lasso estimation and (in-sample) prediction error bounds

∥∥∥vec(Θ̂−Θ?)
∥∥∥ ≤ 4

√
sλT/α,(3.3.1) ∣∣∣∣∣∣∣∣∣(Θ̂−Θ?)′Γ̂(Θ̂−Θ?)

∣∣∣∣∣∣∣∣∣2
F
≤ 32λ2

T s

α
.(3.3.2)

hold with

α =
1

2
λmin(ΣX), λT = 4Q(X,W,Θ?)R(p, q, T )

where

Γ̂ := X′X/T, Q(X,W,Θ?) =

√
2K4

CB
, R(p, q, T ) =

√
log(pq)

T 1−ξ .

Remark 13. The condition number of ΣX plays an important part in the literature

of Lasso error guarantees [Loh and Wainwright, 2012, e.g.]. Here, we see that the

role of the condition number λmax(ΣX)/λmin(ΣX) is replaced by KX/λmin(ΣX) that

now serves as the “effective condition number.”

3.4 Examples

We explore applicability of our theory beyond just linear Gaussian processes using

the examples below. In the following examples, we identify Xt := Zt and Yt := Zt+1
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for t = 1, . . . , T . For the specific parameter matrix Θ? in each Example below, we

can verify that Assumptions 9–13 hold (see Section 3.6.5) for details. Therefore,

Propositions III.2 and III.3 and Corollary III.4 follow. Hence we have all the high

probabilistic guarantees for Lasso on data generated from DGM potentially involving

subgaussianity, model mis-specification, and/or nonlinearity.

Example 6 (Gaussian VAR). Transition matrix estimation in sparse stable VAR

models has been considered by several authors in recent years [Davis et al., 2015,

Han and Liu, 2013, Song and Bickel, 2011]. The Lasso estimator is a natural choice

for the problem.

We state the following convenient fact because it allows us to study any finite order

VAR model by considering its equivalent VAR(1) representation. See Section 3.6.5

for details.

Fact 8. Every VAR(d) process can be written in VAR(1) form (see e.g. [Lütkepohl,

2005, Ch 2.1]).

Therefore, without loss of generality, we can consider VAR(1) model in the ensuing

Examples.

Formally a first order Gaussian VAR(1) process is defined as follows. Consider a

sequence of serially ordered random vectors (Zt), Zt ∈ Rp that admits the following

auto-regressive representation:

Zt = AZt−1 + Et(3.4.1)

where A is a non-stochastic coefficient matrix in Rp×p and innovations Et are p-

dimensional random vectors from N (0,Σε) with λmin(Σε) > 0 and λmax(Σε) <∞.
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Assume that the VAR(1) process is stable; i.e. det (Ip×p −Az) 6= 0, ∀ |z| ≤ 1. Also,

assume A is s-sparse. In here, Θ? = A′ ∈ Rp×p.

Example 7 (VAR with Subgaussian Innovations). Consider a VAR(1) model defined

as in Example 6 except that we replace the Gaussian white noise innovations with

subgaussian ones and assume |||A||| < 1.

For example, take iid random vectors from the uniform distribution; i.e. ∀t, Et
iid∼

U
([
−
√

3,
√

3
]p)

. These Et will be independent centered isotropic subgaussian ran-

dom vectors, giving us we a VAR(1) model with subgaussian innovations. If we take

a sequence (Zt)
T+1
t=1 generated according to the model, each element Zt will be a mean

zero subgaussian random vector. Note that Θ? = A′.

Example 8 (VAR with subgaussian Innovations and Omitted Variable). We will

study estimation of a VAR(1) process when there are endogenous variables omit-

ted. This arises naturally when the underlying DGM is high-dimensional but not

all variables are available/observable/measurable to the researcher to do estima-

tion/prediction. This also happens when the researcher mis-specifies the scope of

the model.

Notice that the system of the retained set of variables is no longer a finite order

VAR (and thus non-Markovian). This example serves to illustrate that our theory

is applicable to models beyond the finite order VAR setting.

Consider a VAR(1) process (Zt,Ξt)
T+1
t=1 such that each vector in the sequence is

generated by the recursion below:

(Zt; Ξt) = A(Zt−1; Ξt−1) + (EZ,t−1; EΞ,t−1)
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where Zt ∈ Rp, Ξt ∈ R, EZ,t ∈ Rp, and EΞ,t ∈ R are partitions of the random vectors

(Zt,Ξt) and Et into p and 1 variables. Also,

A :=

 AZZ AZΞ

AΞZ AΞΞ


is the coefficient matrix of the VAR(1) process with AZΞ 1-sparse, AZZ p-sparse and

|||A||| < 1. Et := (EX,t−1; EZ,t−1) for t = 1, . . . , T + 1 are iid draws from a subgaus-

sian distribution; in particular we consider the subgaussian distribution described in

Example 7.

We are interested in the OLS 1-lag estimator of the system restricted to the set of

variables in Zt. Recall that

Θ? := arg min
B∈Rp×p

E
(
‖Zt −B′Zt−1‖2

2

)
We show in the chapter that (Θ?)′ = AZZ + AZΞΣΞZ(0)(ΣZ)−1 is sparse.

Example 9 (Multivariate ARCH). We will explore the generality of our theory by

considering a multivariate nonlinear time series model with subgaussian innovations.

A popular nonlinear multivariate time series model in econometrics and finance is

the vector autoregressive conditionally heteroscedastic (ARCH) model. We chose the

following specific ARCH model for convenient validation of the geometric β-mixing

property; it may potentially be applicable to a larger class of multivariate ARCH

models. Consider a sequence of random vector (Zt)
T+1
t=1 generated by the following

recursion. For any constants c > 0, m ∈ (0, 1), a > 0, and A sparse with |||A||| < 1:

Zt = AZt−1 + Σ(Zt−1)Et

Σ(z) := c · clipa,b (‖z‖m) Ip×p

(3.4.2)

where Et are iid random vectors from some subgaussian distribution and clipa,b (x)

clips the argument x to stay in the interval [a, b]. We can take innovations Et to be iid
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random vectors from uniform distribution as described in Example 7. Consequently,

each Zt will be a mean zero subgaussian random vector. Note that Θ? = A′, the

transpose of the coefficient matrix A here.

3.5 Simulations

Corollary III.4 in Section 3.3 makes a precise prediction for the `2 parameter er-

ror
∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣∣∣∣
F

. We report scaling simulations for Examples 6–9 to confirm the

sharpness of the bounds.

Sparsity is always s =
√
p, noise covariance matrix Σε = Ip, and the operator

norm of the driving matrix set to |||A||| = 0.9. The problem dimensions are p ∈

{50, 100, 200, 300}. Top left, top right, bottom left and bottom right sub-figures in

Figure 3.1 correspond to simulations of Examples 6, 7, 8 and 9 respectively.

In all combinations of the four dimensions and Examples, the error decreases to zero

as the sample size n increases, showing consistency of the method. In each sub-figure,

the `2 parameter error curves align when plotted against a suitably rescaled sample

size ( T
s log(p)

) for different values of dimension p. We see the error scaling agrees nicely

with theoretical guarantees provided by Corollary III.4.

3.6 Supplement

3.6.1 Sub-Gaussian Constants for Random Vectors

The sub-Gaussian and sub-Exponential constants have various equivalent definitions,

we adopt the following from Rudelson and Vershynin [2013].
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Figure 3.1: `2 estimation error of lasso against rescaled sample size for Examples 6–9.
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Definition 7 (Sub-Gaussian Norm and Random Variables/Vectors). A random vari-

able U is called sub-Gaussian with sub-Gaussian constant K if its sub-Gaussian norm

‖U‖ψ2
:= sup

p≥1
p−

1
2 (E |U |p)1/p

satisfies ‖U‖ψ2
≤ K.

A random vector V ∈ Rn is called sub-Gaussian if all of its one-dimensional projec-

tions are sub-Gaussian and we define

‖V ‖ψ2
:= sup

v∈Rn:‖v‖≤1

‖v′V ‖ψ2

.

Definition 8 (Sub-exponential Norm and Random Variables/Vectors). A random

variable U is called sub-exponential with sub-exponential constant K if its sub-

exponential norm

‖U‖ψ1
:= sup

p≥1
p−1(E |U |p)1/p

satisfies ‖U‖ψ1
≤ K.

A random vector V ∈ Rn is called sub-exponential if all of its one-dimensional

projections are sub-exponential and we define

‖U‖ψ1
:= sup

v∈Rn:‖v‖≤1

‖v′V ‖ψ1

Fact 9. A random variable U is sub-Gaussian iff U2 is sub-exponential with ‖U‖2
ψ2

=

‖U2‖ψ1
.

3.6.2 Proof of Master Theorem

We present a master theorem that provides guarantees for the `2 parameter esti-

mation error and for the (in-sample) prediction error. The proof builds on existing
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result of the same kind [Bickel et al., 2009, Loh and Wainwright, 2012, Negahban

and Wainwright, 2012] and we make no claims of originality for either the result or

for the proof.

Theorem III.5 (Estimation and Prediction Errors). Consider the Lasso estimator

Θ̂ defined in (3.2.2). Suppose Assumption 9 holds. Further, suppose that Γ̂ :=

X′X/T satisfies the lower RE(α, τ) condition with α ≥ 32sτ and X′W satisfies the

deviation bound. Then, for any λT ≥ 4Q(X,W,Θ?)R(p, q, T ), we have the following

guarantees:

∥∥∥vec(Θ̂−Θ?)
∥∥∥ ≤ 4

√
sλT/α,(3.6.1) ∣∣∣∣∣∣∣∣∣(Θ̂−Θ?)′Γ̂(Θ̂−Θ?)

∣∣∣∣∣∣∣∣∣2
F
≤ 32λ2

T s

α
.(3.6.2)

Proof of Theorem IV.2. We wil break down the proof in steps.

1. Since Θ̂ is optimal for 3.2.2 and Θ? is feasible,

1

T

∣∣∣∣∣∣∣∣∣Y −XΘ̂
∣∣∣∣∣∣∣∣∣2
F

+ λT

∥∥∥vec(Θ̂)
∥∥∥

1
≤ 1

T
|||Y −XΘ?|||2F + λT ‖vec(Θ?)‖1

2. Let ∆̂ := Θ̂−Θ? ∈ Rp×q

1

T

∣∣∣∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣∣∣∣2
F
≤ 2

T
tr(∆̂′X′W) + λT

(
‖vec(Θ?)‖1 −

∥∥∥vec(Θ̂)
∥∥∥

1

)
Note that

∥∥∥vec(Θ? + ∆̂)
∥∥∥

1
− ‖vec(Θ?)‖1 ≥{‖vec(Θ?

S)‖1 −
∥∥∥vec(∆̂S)

∥∥∥
1
}

+
∥∥∥vec(∆̂Sc)

∥∥∥
1
− ‖vec(Θ?)‖1

=
∥∥∥vec(∆̂Sc)

∥∥∥
1
−
∥∥∥vec(∆̂S)

∥∥∥
1

where S denote the support of Θ?.
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3. With RE constant α and tolerance τ , deviation bound constant Q(ΣX ,ΣW )

and λT ≥ 2Q(ΣX ,ΣW )
√

log(q)
T

, we have

α
∣∣∣∣∣∣∣∣∣∆̂∣∣∣∣∣∣∣∣∣2

F
−τ‖ vec(∆̂)‖2

1

RE

≤ 1

T
|||X∆|||2F

≤ 2

T
tr(∆̂′X′W) + λT{

∥∥∥vec(∆̂S)
∥∥∥

1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ 2

T

q∑
k=1

‖∆̂:k‖1‖(X′W):k‖∞ + λT{
∥∥∥vec(∆̂S)

∥∥∥
1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ 2

T
‖ vec(∆̂)‖1|||X′W|||∞ + λT{

∥∥∥vec(∆̂S)
∥∥∥

1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

DB

≤ 2‖ vec(∆̂)‖1Q(ΣX ,ΣW )R(p, q, T ) + λT{
∥∥∥vec(∆̂S)

∥∥∥
1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ ‖ vec(∆̂)‖1λN/2 + λT{
∥∥∥vec(∆̂S)

∥∥∥
1
−
∥∥∥vec(∆̂Sc)

∥∥∥
1
}

≤ 3λT
2

∥∥∥vec(∆̂S)
∥∥∥

1
− λT

2

∥∥∥vec(∆̂Sc)
∥∥∥

1

≤ 2λT

∥∥∥vec(∆̂)
∥∥∥

1

4. In particular, this says that 3
∥∥∥vec(∆̂S)

∥∥∥
1
≥
∥∥∥vec(∆̂Sc)

∥∥∥
1

So
∥∥∥vec(∆̂)

∥∥∥
1
≤ 4

∥∥∥vec(∆̂S)
∥∥∥

1
≤ 4
√
s
∥∥∥vec(∆̂)

∥∥∥
5. Finally, with α ≥ 32sτ ,

α

2

∥∥∥vec(∆̂)
∥∥∥2

F
≤ (α− 16sτ)

∥∥∥vec(∆̂)
∥∥∥2

F

≤ α
∥∥∥vec(∆̂)

∥∥∥2

F
− τ‖ vec(∆̂)‖2

1

≤ 2λT‖ vec(∆̂)‖1

≤ 2
√
sλT‖∆̂‖F

6. ∥∥∥vec(∆̂)
∥∥∥
F
≤ 4λT

√
s

α
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7. From step 4, we have

1

T

∣∣∣∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣∣∣∣2
F
≤ 8λT

√
s
∥∥∥vec(∆̂)

∥∥∥
Then, from step 6

1

T

∣∣∣∣∣∣∣∣∣X∆̂
∣∣∣∣∣∣∣∣∣2
F
≤ 8λT

√
s
∥∥∥vec(∆̂)

∥∥∥ ≤ 32λ2
T s/α

3.6.3 Proofs for Sub-Gaussian Random Vectors under β-Mixing

Proof of Lemma III.1.

Following the description in Yu [1994], we divide the stationary sequence of real

valued random variables {Zt}Tt=1 into 2µT blocks of size aT with a remainder block

of length T − 2µTaT . Let H and T be sets that denote the indices in the odd and

even blocks respectively, and let Re to denote the indices in the remainder block. To

be specific,

O = ∪µTj=1Oj where Oj := {i : 2(j − 1)aT + 1 ≤ i ≤ (2j − 1)aT}, ∀j

E := ∪µTj=1Ej where Ej := {i : (2j − 1)aT + 1 ≤ i ≤ (2j)aT}, ∀j

Let Zo := {Zt : t ∈ O} be a collection of the random vectors in the odd blocks.

Similarly, Ze := {Zt : t ∈ E} is a collection of the random vectors in the even blocks,

and Zr := {Zt : t ∈ Re} a collection of the random vectors in the remainder block.

Lastly, Z := ZO ∪ Ze ∪ Zr

Now, take a sequence of i.i.d. blocks {Z̃Oj : j = 1, · · · , µt} such that each Z̃Oj is

independent of {Zt}Tt=1 and each Z̃Oj has the same distribution as the corresponding



81

block from the original sequence {Zj : j ∈ Oj}. We construct the even and remainder

blocks in a similar way and denote them {Z̃Ej : j = 1, · · · , µt} and Z̃Re respectivey.

Z̃O := ∪µTj=1Z̃Oj(Z̃E := ∪µTj=1Z̃Ej) denote the union of the odd(even) blocks.

For the odd blocks: ∀ t > 0,

P[
2

T
|‖Zo‖2

2 − E(‖Zo‖2
2)| > t]

= E[1{ 2

T
|‖Zo‖2

2 − E(‖Zo‖2
2)|} > t}]

≤ E[1{ 2

T
|‖Z̃o‖2

2 − E(‖Z̃o‖2
2)|} > t}] + (µaT − 1)β(aT )

= P[
2

T
|‖Z̃o‖2

2 − E(‖Z̃o‖2
2)| > t}] + (µaT − 1)β(aT )

= P[
1

µT
|
µT∑
i=1

‖Z̃oi‖2
2 − E(‖Z̃oi‖2

2)| > taT ] + (µaT − 1)β(aT )

≤ 2 exp

{
−CB min

{
t2µT
K2

,
tµT
K

}}
+ (µaT − 1)β(aT )

Where the first inequality follows from [Yu, 1994, Lemma 4.1] with M = 1. By Fact

(9), the corresponding sub-exponential constant of each
∥∥∥Z̃oi∥∥∥2

≤ aTK where K is

the sub-exponential norm because of fact 9. With this, the second inequality follows

from the Bernstein’s inequality (Proposition (III.7)) with some constant CB > 0.

Then

2 exp

{
−CB min

{
t2µT
K2

,
tµT
K

}}
+ (µaT − 1)β(aT )

≤ 2 exp

{
−CB min

{
t2µT
K2

,
tµT
K

}}
+ (µT − 1) exp{−cβaT}

So,

P[
2

T
|‖Zo‖2

2−E(‖Zo‖2
2)| > t] ≤ 2 exp

{
−CB min

{
t2µT
K2

,
tµT
K

}}
+(µT−1) exp{−cβaT}
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Taking the union bound over the odd and even blocks,

P[
1

T
|‖Z‖2

2−E(‖Z‖2
2)| > t] ≤ 4 exp

{
−CB min

{
t2µT
K2

,
tµT
K

}}
+2(µT−1) exp{−cβaT}

For 0 < t < K, it reduces to

P[
1

T
|‖Z‖2

2 − E(‖Z‖2
2)| > t] ≤ 4 exp

{
−CB

t2µT
K2

}
+ 2(µT − 1) exp{−cβaT}

For the remainder block, since ‖Zr‖2
2 has sub-exponential constant at most aTK ≤

KT/(2µT ), we have

P
[

1

T
|‖Zr‖2

2 − E(‖Zr‖2
2)| > t

]
≤ exp

(
−tT
aTK

)
≤ exp

(
−2tµT
K

)
Together, by union bound

P
[

1

T
|‖Z‖2

2 − E(‖Z‖2
2)| > t

]
≤ 4 exp{−CB

t2µT
K2
}+2(µT−1) exp{−cβaT}+exp{−2tµT

K
}

Proof of Proposition III.2. Recall that the sequence X1, · · · , XT ∈ Rp form a β-

mixing and stationary sequence.

Now, fix a unit vector v ∈ Rp, ‖v‖2 = 1.

Define real valued random variables Zt = X ′tv, t = 1, · · · , T . Note that the β mixing

rate of {Zt}Tt=1 is bounded by the same of {Xt}Tt=1 by Fact 7. We suppress the X

subscript of the sub-Gaussian constant
√
KX here, and refer it as

√
K.

We can apply Lemma III.1 on Z := {Zt}Tt=1. Set t = bK. We have,

P
[

1

T
|‖Z‖2

2 − E(‖Z‖2
2)| > bK

]
≤ 4 exp

{
−CBb2µT

}
+ 2(µt − 1) exp{−cβat}+ exp{−bµT}

≤ 5 exp{−min{CB, 2}b2µT}+ 2(µt − 1) exp{−cβat}
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Using Lemma F.2 in Basu and Michailidis [2015], we extend the inequality to hold

for all vectors J(2k), the set of unit norm 2s-sparse vectors. We have

P

[
sup

v∈J(2k)

1

T
|‖Z‖2

2 − E(‖Z‖2
2)| > bK

]

≤ 5 exp{−Cb2µT + 3k log(p)}+ 2(µt − 1) exp{−cβat + 3k log(p)}

The constant C is defined as C := min{CB, 2}.

Recall Γ̂ := X′X
T

, the above concentration can be equivalently expressed as

P

[
sup

v∈J(2k)

∣∣∣v′ (Γ̂− ΣX(0)
)
v
∣∣∣ ≤ bK

]

≥ 1− 5 exp{−Cb2µT + 3k log(p)} − 2(µt − 1) exp{−cβat + 3k log(p)}

Finally, we will extend the concentration to all v ∈ Rp to establish the lower-RE

result. By Lemma 12 of Loh and Wainwright [2012], for parameter k ≥ 1, w.p. at

least

1− 5 exp{−Cb2µT + 3k log(p)} − 2(µt − 1) exp{−cβat + 3k log(p)}

we have ∣∣∣v′ (Γ̂− ΣX(0)
)
v
∣∣∣ ≤ 27Kb

[
‖v‖2 +

1

k
‖v‖2

1

]
This implies that

v′Γ̂v ≥ ‖v‖2 [λmin(ΣX(0))− 27bK]− 27bK

k
‖v‖2

1

w.p. 1− 5 exp{−Cb2µT + 3k log(p)} − 2(µt − 1) exp{−cβat + 3k log(p)}.



84

Now, choose set k = 1
6 log(p)

min {Cb2µt, cβaT}. Let’s choose that, for some ξ ∈ (0, 1),

at = T ξ and µT = T 1−ξ. Then,

k = c
1

log(p)
min{aT , µT} = c

1

log(p)
min{T ξ, T 1−ξ}

Where c = 1
6

max{cβ, Cb2}. To ensure k ≥ 1, we require T ≥
(

1
c

log(p)
)min{ 1

ξ
, 1
1−ξ}

With these specifications, We have for probability at least

1− 5 exp{−Cb2T
1
2} − 2(T

1
2 − 1) exp{−cβT

1
2/2}

that

v′Γ̂v ≥ ‖v‖2 [λmin(ΣX(0))− 27bK]− 27bK log(p)

cmin{T ξ, T 1−ξ}
‖v‖2

1 .

Now, choose ξ = 1
2

since it optimizes the rate of decay in the tolerance parameter.

Also, choose b = min{ 1
54K

λmin(ΣX(0)), 1}; this ensures that λmin(ΣX(0)) − 27bK ≥

1
2
λmin(ΣX(0)).

In all, for T ≥
(

1
c

log(p)
)2

w.p. at least

1− 5 exp{−Cb2T
1
2} − 2(T

1
2 − 1) exp{−cβT

1
2/2}

v′Γ̂v ≥ ‖v‖2 1

2
λmin(ΣX(0))− 27bK log(p)

cT
1
2

‖v‖2
1 .

Proof of Proposition III.3.

Recall |||X′W|||∞ = max1≤i≤p,1≤j≤q |[X′W]i,j| = max1≤i≤p,1≤j≤q |X′:iW:j|.
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By lemma condition (11), we have

EX:i = 0,∀i and

EY:j = 0,∀j

By first order optimality of the optimization problem in (3.2.1), we have

EX′:i(Y−XΘ?) = 0,∀i⇒ EX:i
′W:j = 0,∀i, j

We know ∀i, j

|X′:iW:j| = |X′:iW:j − E[X′:iW:j]|

=
1

2
|
(
‖X:i + W:j‖2 − E[‖X:i + W:j‖2]

)
−
(
‖X:i‖2 − E[‖X:i‖2]

)
−
(
‖W:j‖2 − E[‖W:j‖2]

)
|

≤ 1

2

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣

+
1

2

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣+

1

2

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣

Therefore,

P
(

1

T
|X′:iW:j| > 3t

)
≤ P

(
1

2T

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣ > t

)
This suggests proof strategy via controlling tail probability on each of the terms

|‖X:i‖2 − E[‖X:i‖2]|, |‖W:j‖2 − E[‖W:j‖2]| and |‖X:i + W:j‖2 − E[‖X:i + W:j‖2]|. As-

suming the conditions in lemma III.3, we can apply lemma III.1 on each of them.

We have to figure out their sub-Gaussian constants.
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Let’s define

KW := sup
1≤t≤T,1≤j≤q

‖Wtj‖ψ2

and

KX+W := sup
1≤t≤T,1≤j≤q,1≤i≤p

‖Xti + Wtj‖ψ2

. We have to figure out the constants KW and KW+X.

Now,

sup
1≤t≤T

sup
1≤i≤q

‖Wti‖ψ2
≤ sup

1≤t≤T
‖Wt:‖ψ2

by definition of sub-Gaussian random vector

= ‖W1:‖ψ2
by stationarity

Let’s figure out ‖W1:‖ψ2
,

W1: = Y1: − (XΘ?)1:

= Y1: −X1:Θ
?

Thus,

‖W1:‖ψ2
≤ ‖Y1:‖ψ2

+ ‖X1:Θ
?‖ψ2

since ‖·‖ψ2
is a norm

≤ ‖Y1:‖ψ2
+ ‖X1:‖ψ2

|||Θ?||| by lemma III.6

=
√
KY + |||Θ?|||

√
KX by stationarity

Therefore,

(3.6.3) KW ≤
√
KY + |||Θ?|||

√
KX
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Similarly,

sup
1≤i≤p,1≤j≤q,1≤t≤T

‖Xti + Wtj‖ψ2
≤ sup

1≤i≤p,1≤t≤T
‖Xti‖ψ2

+ sup
1≤j≤q,1≤t≤T

‖Wtj‖ψ2

≤ ‖X1:‖ψ2
+ ‖W1:‖ψ2

≤
√
KY +

√
KX (1 + |||Θ?|||)

where the last inequality follows from equation (3.6.3).

Therefore,

(3.6.4) KX+W ≤
√
KY +

√
KX (1 + |||Θ?|||)

Take

K := max{KX, KW, KX+W} ≤
√
KY +

√
KX (1 + |||Θ?|||)(3.6.5)

For ξ ∈ [0, 1], set aT = T ξ and µT = T 1−ξ. Applying lemma III.1 three times with

sub-Gaussian constant K, we have

P
(

1

T
|X′:iW:j| > 3t

)
≤ P

(
1

2T

∣∣‖X:i + W:j‖2 − E[‖X:i + W:j‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖X:i‖2 − E[‖X:i‖2]
∣∣ > t

)
+ P

(
1

2T

∣∣‖W:j‖2 − E[‖W:j‖2]
∣∣ > t

)
≤ 4 exp{−CB

4t2T 1−ξ

K4
}+ 2(T 1−ξ − 1) exp{−cβT ξ}+ exp{− 2

K2
tT 1−ξ}}

+ 4 exp{−CB
4t2T 1−ξ

K4
}+ 2(T 1−ξ − 1) exp{−cβT ξ}+ exp{− 2

K2
tT 1−ξ}}

+ 4 exp{−CB
4t2T 1−ξ

K4
}+ 2(T 1−ξ − 1) exp{−cβT ξ}+ exp{− 2

K2
tT 1−ξ}}
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By union bound,

P[
1

T
|||X′W|||∞ > 3t] = P[ max

1≤i≤p, 1≤j≤q

1

T
|X′:iW:j| > 3t]

≤ 3pq

{
4 exp{−CB

4t2T 1−ξ

K4
}+ 2(T 1−ξ − 1) exp{−cβT ξ}+ exp{− 2

K2
tT 1−ξ}

}
= 12 exp{−CB

4t2T 1−ξ

K4
+ log{pq}}

+ 6(T 1−ξ − 1) exp{−cβT ξ + log{pq}}

+ 3 exp{− 2

K2
tT 1−ξ + log{pq}}

To ensure proper decay in the probability, we require

T ≥ max

{(
log(pq) max

{
K4

2CB
, K2

}) 1
1−ξ

,

[
2

cβ
log(pq)

] 1
ξ

,

}

With

t :=

√
K4 log(pq)

2T 1−ξCB

P

 1

T
|||X′W|||∞ >

√
72K4 log(pq)

T 1−ξCB

 ≤ 15 exp

{
−1

2
log(pq)

}

+ 6(T 1−ξ − 1) exp

{
−1

2
cβT

ξ

}

where K =
√
KY +

√
KX (1 + |||Θ?|||)

Lemma III.6. For any sub-Gaussian random vector X and non-stochastic matrix

A. We have

‖AX‖ψ2
≤ |||A||| ‖X‖ψ2
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Proof. We have,

‖AX‖ψ2
= sup
‖v‖2≤1

‖v′AX‖ψ2

= sup
‖v‖2≤1

‖(A′v)′X‖ψ2

≤ sup
‖u‖2≤|||A|||

‖u′X‖ψ2

= |||A||| sup
‖u‖2≤1

‖u′X‖ψ2

= |||A||| ‖X‖ψ2
.

3.6.4 Bernstein’s Concentration Inequality

We state the Bernstein’s inequality [Vershynin, 2010, Proposition 5.16] below for

completeness.

Proposition III.7 (Bernstein’s Inequality). Let X1, · · · , XN be independent centered

sub-exponential random variables, and K = maxi ‖Xi‖ψ1
. Then for every a =

(a1, · · · , aN) ∈ RN and every t ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−CB min

(
t2

K2 ‖a‖2
2

,
t

K ‖a‖∞

)]
where CB > 0 is an absolute constant.

3.6.5 Verification of Assumptions for the Examples

VAR

Formally a finite order Gaussian VAR(d) process is defined as follows. Consider

a sequence of serially ordered random vectors (Zt)
T+d
t=1 , Zt ∈ Rp that admits the

following auto-regressive representation:

Zt = A1Zt−1 + · · ·+ AdZt−d + Et(3.6.6)
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where each Ak, k = 1, . . . , d is a non-stochastic coefficient matrix in Rp×p and inno-

vations Et are p-dimensional random vectors from N (0,Σε). Assume λmin(Σε) > 0

and λmax(Σε) <∞.

Note that every VAR(d) process has an equivalent VAR(1) representation (see e.g.

[Lütkepohl, 2005, Ch 2.1]) as

Z̃t = ÃZ̃t−1 + Ẽt(3.6.7)

where

Z̃t :=



Zt

Zt−1

...

Zt−d+1


(pd×1)

Ẽt :=



Et

0

...

0


(pd×1)

and Ã :=



A1 A2 · · · Ad−1 Ad

Ip 0 0 0 0

0 Ip 0 0

...
. . .

...
...

0 0 · · · Ip 0


(dp×dp)

(3.6.8)

Because of this equivalence, justification of Assumption 13 will operate through this

corresponding augmented VAR(1) representation.

For both Gaussian and sub-Gaussian VARs, Assumption 11 is true since the se-

quences (Zt) is centered. Second, Θ? = (A1, · · · ,Ad). So Assumption 9 follows from

construction.

For the remaining Assumptions, we will consider the Gaussian and sub-Gaussian

cases separately.

Gaussian VAR (Zt) satisfies Assumption 12 by model assumption.

To show that (Zt) is β-mixing with geometrically decaying coefficients, we use the

following facts together with the equivalence between (Zt) and (Z̃t) and Fact 7.
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Since (Z̃t) is stable, the spectral radius of Ã, r(Ã) < 1, hence Assumption 10 holds.

Also the innovations Ẽ has finite first absolute moment and positive support every-

where. Then, according to Theorem 4.4 in Tjøstheim [1990], (Z̃t) is geometrically

ergodic. Note here that Gaussianity is not required here. Hence, it also applies to

innovations from mixture of Gaussians.

Next, we present a standard result (see e.g. [Liebscher, 2005, Proposition 2]).

Fact 10. A stationary Markov chain {Zt} is geometrically ergodic implies {Zt} is

absolutely regular(a.k.a. β-mixing) with

β(n) = O(γn), γn ∈ (0, 1)

So, Assumption 13 holds.

Sub-Gaussian VAR When the innovations are random vectors from the uniform

distribution, they are sub-Gaussian. That (Zt) are sub-Gaussian follows from argu-

ments as in Chapter 3.6.5 with Σ(·) set to be the identity operator in this case. So,

Assumption 12 holds.

To show that (Zt) satisfies Assumptions 10 and 13, we establish that (Zt) is geomet-

rically ergodic. To show the latter, we use Propositions 1 and 2 in Liebscher [2005]

together with the equivalence between (Zt) and (Z̃t) and Fact 7.

To apply Proposition 1 in Liebscher [2005], we check the three conditions one by

one. Condition (i) is immediate with m = 1, E = Rp, and µ is the Lebesgue

measure. For condition (ii), we set E = Rp, µ to be the Lebesgue measure, and m̄ =

dinfu∈C,v∈A ‖u− v‖2e the minimum “distance” between the sets C and A. Because

C is bounded and A Borel, m̄ is finite. Lastly, for condition (iii), we again let
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E = Rp, µ to be the Lebesgue measure, and now the function Q(·) = ‖·‖ and the set

K = {x ∈ Rp : ‖x‖ ≤ 2E‖Ẽt‖
c ε
} where c = 1−

∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣. Then,

• Recall from model assumption that
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣ < 1; hence,

E
[∥∥∥ Z̃t+1

∥∥∥ ∣∣∣Z̃t = z
]
<
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣ ‖z‖+ E(

∥∥∥Ẽt+1

∥∥∥) ≤
(

1− c

2

)
‖z‖ − ε,

for all z ∈ E\K

• For all z ∈ K,

E
[∥∥∥ Z̃t+1

∥∥∥ ∣∣∣Z̃t = z
]
<
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣ ‖z‖+ E(

∥∥∥Ẽt+1

∥∥∥) ≤
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣2E

∥∥∥Ẽt∥∥∥
cε

• For all z ∈ K,

0 ≤ ‖z‖ ≤
2E
∥∥∥Ẽt∥∥∥
cε

Now, by Proposition 1 in Liebscher [2005], (Z̃t) is geometrically ergodic; hence (Z̃t)

will be stationary. Once it reaches stationarity, by Proposition 2 in the same pa-

per, the sequence will be β-mixing with geometrically decaying mixing coefficients.

Therefore, Assumptions 10 and 13 hold.

VAR with Misspecification

Assumptions: Assumption 11 is immediate from model definitions. By the same

arguments as in Chapter 3.6.5, (Zt,Ξt) are stationary and so is the sub-process (Zt);

Assumption 10 holds. Again, (Zt,Ξt) satisfy Assumption 13 according to Chapter

3.6.5. By Fact 7, we have the same Assumptions hold for the respective sub-processes

(Zt) in both cases. Assumption 12 holds by the same reasoning as in Chapter 3.6.5.

To show that (Θ?)′ = AZZ +AZΞΣΞZ(0)(ΣZ(0))−1, consider the following arguments.

By Assumption 10, we have the auto-covariance matrix of the whole system (Zt,Ξt)

as
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Σ(Z,Ξ) =

 ΣX(0) ΣXΞ(0)

ΣΞX(0) ΣΞ(0)


Recall our Θ? definition from Eq. (3.2.1)

Θ? := arg min
B∈Rp×p

E
(
‖Zt −B′Zt−1‖2

2

)
Taking derivatives and setting to zero, we obtain

(3.6.9) (Θ?)′ = ΣZ(−1)(ΣZ)−1

Note that

ΣZ(−1) = Σ(Z,Ξ)(−1)[1 : p1, 1 : p1]

= E (AZZZt−1 + AZΞΞt−1 + EZ,t−1)Z ′t−1

= E
(
AZZZt−1Z

′
t−1 + AZΞΞt−1Z

′
t−1 + EZ,t−1Z

′
t−1

)
= AZZΣZ(0) + AZΞΣΞZ(0)

by Assumptions 10 and the fact that the innovations are iid.

Naturally,

(Θ?)′ = AZZΣZ(0)(ΣZ(0))−1 + AZΞΣΞZ(0)(ΣZ(0))−1 = AZZ + AZΞΣΞZ(0)(ΣZ(0))−1

Remark 14. Notice that AZΞ is a column vector and suppose it is 1-sparse, and AZZ

is p-sparse, then Θ? is at most 2p-sparse. So Assumption 9 can be built in by model

construction.

Remark 15. We gave an explicit model here where the left out variable Ξ was univari-

ate. That was only for convenience. In fact, whenever the set of left-out variables Ξ
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affect only a small set of variables Ξ in the retained system Z, the matrix Θ? is guar-

anteed to be sparse. To see that, suppose Ξ ∈ Rq and AZΞ has at most s0 non-zero

rows (and let AZZ to be s-sparse as always), then Θ? is at most (s0p+ s)-sparse.

Remark 16. Any VAR(d) process has an equivalent VAR(1) representation (Lutke-

pohl 2005). Our results extend to any VAR(d) processes.

ARCH

Verifying the Assumptions. To show that Assumption 13 holds for a process de-

fined by Eq. (3.4.2) we leverage on Theorem 2 from Liebscher [2005]. Note that the

original ARCH model in Liebscher [2005] assumes the innovations to have positive

support everywhere. However, this is just a convenient assumption to establish the

first two conditions in Proposition 1 (on which proof of Theorem 2 relies) from the

same paper. Our example ARCH model with innovations from the uniform distri-

bution also satisfies the first two conditions of Proposition 1 by the same arguments

in the Sub-Gaussian paragraph of Chapter 3.6.5.

Theorem 2 tells us that for our ARCH model, if it satisfies the following conditions,

it is guaranteed to be absolutely regular with geometrically decaying β-coefficients.

• Et has positive density everywhere on Rp and has identity covariance by con-

struction.

• Σ(z) = o(‖z‖) because m ∈ (0, 1).

• |||Σ(z)−1||| ≤ 1/(ac), |det (Σ(z)) | ≤ bc

• r(A) ≤ |||A||| < 1

So, Assumption 13 is valid here. We check other assumptions next.
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Mean 0 is immediate, so we have Assumption 11. When the Markov chain did not

start from a stationary distribution, geometric ergodicity implies that the sequence

is approaching the stationary distribution exponentially fast. So, after a burning

period, we will have Assumption 10 approximately valid here.

The sub-Gaussian constant of Σ(Zt−1)Et given Zt−1 = z is bounded as follows: for

every z,

‖Σ(z)Et‖ψ2
≤ |||Σ(z)||| ‖Et‖ψ2

by Lemma III.6

≤ C|||Σ(z)||| · ‖e′1Et‖ψ2

≤ C|||Σ(z)||| ·
∥∥∥U
(
−
√

3,
√

3
)∥∥∥

ψ2

≤ C ′cb =: KE

The second inequality follows since Et
iid∼ U

([
−
√

3,
√

3
]p)

and a standard result that

Fact 11. Let X = (X1, · · · , Xp) ∈ Rp be a random vector with independent, mean

zero, sub-Gaussian coordinates Xi. Then X is a sub-Gaussian random vector, and

there exists a positive constant C for which

‖X‖ψ2
≤ C ·max

i≤p
‖Xi‖ψ2

The forth inequality follows since the sub-Gaussian norm of a bounded random

variable is also bounded.

By the recursion for Zt, we have

‖Zt‖ψ2
≤ |||A||| ‖Zt−1‖ψ2

+KE.

which yields the bound ‖Zt‖ψ2
≤ KE/(1− |||A|||) <∞. Hence Assumption 12 holds.

We will show below that Θ? = A′. Hence, sparsity (Assumption 9) can be built in

when we construct our model 3.4.2.
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Recall Eq. 3.6.9 from Chapter 3.6.5 that

Θ? = ΣZ(−1)(ΣZ)−1

Now,

ΣZ(−1) = EZtZ ′t−1 by stationarity

= E (AZt−1 + Σ(Zt−1)Et)Z ′t−1 Eq. (3.4.2)

= AEZt−1Z
′
t−1 + EΣ(Zt−1)EtZ ′t−1

= AΣZ + E[c clipa,b (‖Zt−1‖m) EtZ ′t−1]

= AΣZ + E[cEtZ ′t−1clipa,b (‖Zt−1‖m)]

= AΣZ + cE [Et]E
[
Z ′t−1clipa,b (‖Zt−1‖m)

]
i.i.d. innovations

= AΣZ Et mean 0,

where clipa,b (x) := min{max{x, a}, b} for b > a.

Since ΣZ is invertible, we have (Θ?)′ = ΣZ(−1)(ΣZ)−1 = A.



CHAPTER IV

Lasso Guarantees for Gaussian Vector Autoregressive
Processes with Missing or Noisy Data

4.1 Introduction

The information age and scientific advances have led to explosions in large data

sets as well as new statistical methods and algorithms aimed at extracting valuable

information in them. On the data side, it is common to see massive dependent data

collected from, for example, micro-array experiments, social networks, mobile phone

usage, high frequency stock market trading, daily grocery sales, etc. At the same

time, the high speed Internet makes big data warehouses readily accessible.

The surge in big data has stimulated exciting developments in statistical models and

algorithms to exploit these data sets. Among the plethora of methods, the linear

parametric models remain highly popular thanks to its superiority in interpretabil-

ity, computational efficiency and the rich and sophisticated theoretical literature.

The vector autoregressive (VAR) models are a linear parametric family that allows

researchers to model interrelationships among variables that exhibit temporal de-

pendence. When we assume the innovations in VAR are Gaussian, observations

generated according to a VAR are also Gaussian. There are in general two objects of

interest in the estimation – inverse covariance matrix and transition matrices. The

97
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former amounts to estimating contemporaneous correlations between components

and the latter directed correlations between components at different time points.

We focus on the latter in this paper.

The main difficulty in high dimensional estimation of the VAR lies in the fact that

the number of parameters far out number that of the data points we usually have

at our disposal. As a result, consistent estimation is impossible without imposing

restrictions on the parameter space. Sparsity is a common and natural assumption

to make when we believe that evolution of variables do not depend on all the others.

This corresponds to an `0 constrain on the parameters which is non-convex and hence

poses serious challenges on the computational side. Researchers often relax it to the

closest convex `1 constraint. The `1 penalty on the parameters together with the

square error loss constitutes the (Lagrangian form) celebrated lasso procedure.

The literature of lasso, however, mainly focuses on the iid sample scenario, leaving

that of the dependent data case relatively sparse. This paper serves to provide

theoretical guarantees for lasso on VAR data when the data are either corrupted or

missing completely at random. The analysis crucially depends on the results from

the work of Basu and Michailidis [2015] and Loh and Wainwright [2012]. The set

of lasso guarantees presented here extends the previous work in two ways: (1) we

remove the restriction on operator norm of transition matrix being smaller than 1 as

in Loh and Wainwright [2012] and thus generalize the guarantees to any stationary

VAR(d) models, and (2) by incorporating the modified lasso framework from Loh

and Wainwright [2012], we generalize the results in Basu and Michailidis [2015] to

addressing cases of corrupted and missing data.
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We give a brief review of historical development of the lasso theory in VAR estimation

below.

Brief Review of Lasso Theory on VAR Several researchers [Bickel et al., 2009, Loh

and Wainwright, 2012, Negahban et al., 2012] have analyzed the lasso and established

consistency of it under sufficient conditions – restricted strong convexity(RSC) or

restricted eigenvalue (RE) for square error losses on the gram matrix X′X/N and

deviation bound (DB) on correlation between design matrix and error X′E/N (more

details in Section 4.2). Unfortunately, on fixed design matrices, it is in general NP-

hard to check RE-type assumptions.

To get around that Raskutti et al. [2010], Rudelson and Zhou [2013] have established

high probability guarantees of these conditions on random iid subgaussian data.

Negahban and Wainwright [2011], Loh and Wainwright [2012] provided a more in-

depth analysis and showed high probability validity for the RSC and DB conditions

for a VAR(1) process Xt = AXt−1 + εt under the assumption that operator norm of

transition matrix |||A||| < 1.

However, as pointed out by [Basu and Michailidis, 2015, see pg 11-13 in supple-

mentary], |||A||| < 1 is a stringent assumption and in general does not hold for any

VAR(d) model for d > 1. Basu and Michailidis [2015] took the spectral density route

in analyzing the VAR and provided the RE and DB guarantees in terms of stability

measure and fundamental properties of the process.

We build upon the work of Basu and Michailidis [2015] and Loh and Wainwright

[2012] to give high probabilistic lasso error bounds for general stable Gaussian VAR

with missing or corrupted data.
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4.2 Preliminaries

4.2.1 Matrix and Vector Notations

For a symmetric matrix M, let λmax(M) and λmin(M) denote its maximum and

minimum eigenvalues respectively. For any matrix let M, r(M), |||M|||, |||M|||∞, and

|||M|||F denote its spectral radius maxi {|λi(M)|}, operator norm
√
λmax(M′M), en-

trywise `∞ norm maxi,j |Mi,j|, and Frobenius norm
√

tr(M′M) respectively. For any

vector v ∈ Rp, ‖v‖q denotes its `q norm (
∑p

i=1 |vi|q)1/q. Unless otherwise specified,

we shall use ‖·‖ to denote the `2 norm. For any vector v ∈ Rp, we use ‖v‖0 and ‖v‖∞

to denote
∑p

i=1 1{vi 6= 0} and maxi{|vi|} respectively. Similarly, for any matrix M,

|||M|||0 = ‖vec(M)‖0 where vec(M) is the vector obtained from M by concatenating

the rows of M . We say that matrix M (resp. vector v) is s-sparse if |||M|||0 = s (resp.

‖v‖0 = s). We use v′ and M′ to denote the transposes of v and M respectively. For

a given vector v ∈ Rp, its i-th element is denoted v[i]. When we index a matrix, we

adopt the following conventions. For any matrix M ∈ Rp×q, for 1 ≤ i ≤ p, 1 ≤ j ≤ q,

we define M[i, j] ≡Mij := e′iMej, M[i, :] ≡Mi: := e′iM and M[:, j] ≡M:j := Mej

where ei is the vector with all 0s except for a 1 in the ith coordinate. The set of

integers is denoted by Z. Realizations x, y, x are written in lower case letters, random

variables and vectors X, Y, Z upper case letters, and random matrices X,Y,Z bold

upper case letters.

For a lag l ∈ Z, we define the auto-covariance matrix w.r.t. (Xt, Yt)t as Σ(l) =

Σ(X;Y )(l) := E[(Xt;Yt)(Xt+l;Yt+l)
′]. Note that Σ(−l) = Σ(l)′. Similarly, the auto-

covariance matrix of lag l w.r.t. (Xt)t is ΣX(l) := E[XtX
′
t+l], and w.r.t. (Yt)t is

ΣY (l) := E[YtY
′
t+l]. The cross-covariance matrix at lag l is ΣX,Y (l) := E[XtY

′
t+l].

Note the difference between Σ(X;Y )(l) and ΣX,Y (l): the former is a (p+ q)× (p+ q)
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matrix, the latter is a p × q matrix. Thus, Σ(X;Y )(l) is a matrix consisting of four

sub-matrices. Using Matlab-like notation, Σ(X;Y )(l) = [ΣX ,ΣX,Y ; ΣY,X ,ΣY ]. As per

our convention, at lag 0, we omit the lag argument l. For example, ΣX,Y denotes

ΣX,Y (0) = E[XtY
′
t ].

4.2.2 VAR

For a p-dimensional vector-valued stationary time series (Xt), a vector autoregres-

sive model of order d (VAR(d)) with independent Gaussian innovations admits the

following representation

Xt = A1Xt−1 + · · ·+ AdXt−d + εt, where

εt
iid∼ N (0,Σε), Cov(εt, ε

s) = 0 ∀ t 6= s

The class of VAR models provide a systemic way to model temporal and cross-

sectional correlations between variables. One way to interpret a Gaussian VAR

model is one via the directed graph. A non-zero entry in the transition matrix

Ak[i, j] can be understood as a directed link from Xt[j] to Xt+k[i]. An undirected

link between Xt[i] and Xt[j] indicates contemporary correlation between the variables

and is represented by the non-zero (i, j)th entry in Σ−1
ε since the errors are Gaussian.

We note a useful fact: any VAR(d) process has an equivalent VAR(1) representation.

Therefore, without loss of generality, we can focus on VAR(1). Consider writing a

VAR(d) model

Xt = A1Xt−1 + · · ·+ AdXt−d + εt

as a VAR(1):
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X̃t = ÃX̃ t−1 + ε̃t

where

X̃t =



Xt

Xt−1

...

Xt−d+1


dp× 1

Ã =



A1 A2 · · · Ad−1 Ad

Ip 0 · · · 0 0

0 Ip · · · 0 0

...
...

. . .
...

...

0 0 · · · Ip 0


dp× dp

ε̃t =



εt

0

...

0


dp×1

In particular, a process (Xt) is stable if and only if its equivalent representation (X̃t)

is stable.

We denote the cross-covariance matrix with respect to (X̃t) as ΓN
X̃

, such that ∀i, j ∈

{d+ 1, · · · , N},

ΓN
X̃

[i, j] := E
[
X̃i

(
X̃j

)′]
In particular, if we assume stationarity, the variance matrix of (X̃t) is ΣX̃ := E

[
X̃t(X̃t)

′
]
≡

ΓN
X̃

(i, i).

Stability of a stochastic process is an important concept in time series. Much of

the literature focus on the stable time series.

To gain some intuition about stability, note that the a VAR(1) process can be equiv-

alently represented, via backward substitution, as

X̃t = Ã
j+1
X̃ t−j−1 +

j∑
i=0

Ã
i
ε̃t−i
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Stability requires that the infinite sum

∞∑
i=1

Ãi ˜εt−i

exists in mean square.

Intuitively, we want |λi(Ã)| < 1 for all i. Equivalently, it can be shown that

the VAR(d) process is stable iff all the eigenvalues of the matrix valued reverse

characteristic polynomial A(z) = Ip −
∑d

t=1 Atzt are non-zero on the unit circle

{z ∈ C : |z| = 1}. I.e.

det(A(z)) = det(Ip −
d∑
t=1

Atzt) 6= 0, ∀ |z| ≤ 1.

As such, stability is a qualitative, all-or-none concept. Basu and Michailidis [2015]

defined a quantitative measures of stability for a VAR process:

Stability of the process guarantees that all the eigenvalues of the Hermitian matrix

A∗(z)A(z) are positive, whenever |z| = 1. Hence, we can take the minimum eigen-

value of A∗(z)A(z) evaluated at |z| = 1 as a measure of stability of the VAR(d)

process:

µmin(A) = min
|z|=1

Λmin(A∗(z)A(z))

And, a related quantity:

µmax(A) = max
|z|=1

Λmax(A∗(z)A(z))

Note that µmin(A) and µmax(A) are well-defined because of the continuity of eigen-

values and compactness of the unit circle {z ∈ C : |z| = 1}. Further, these are

positive if the corresponding process is stable.
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This is useful because it plays a central role in bounding the eigenvalues of the auto-

covariance matrices of a VAR(d) process. Using these quantities, Basu and Michai-

lidis [2015] established bounds of the auto-covariance matrices (Proposition IV.1) in

terms of the fundamental properties of the underlying process. This result together

with application of the Hansen-Wright inequality constitute the crux in proving our

lasso guarantees.

Proposition IV.1 (Eigenvalues of a Block Toeplitz Matrix). Consider a p-dimensional

stable Gaussian VAR(d) process {Xt} with characteristic polynomial A(z) and error

covariance matrix Σε. Denote the covariance matrix of the np-dimensional ran-

dom vector {(Xn)′, (Xn−1)′, · · · , (X1)′} by ΓAn = [Γ(r − s)p×p]1≤r,s≤n, where Γ(h) =

E[Xt(Xt+h)
′] is the auto-covariance matrix of order h of the process {Xt}. Then

Λmin(Σε)

µmax(A)
≤ Λmin(ΓAn ) ≤ Λmax(ΓAn ) ≤ Λmax(Σε)

µmin(A)

This result is provides a bound on the dependence across observations at different

time points of a VAR process. This is crucial in our analysis.

4.2.3 Lasso Estimation Procedure For Transition Matrix

We focus on estimating the transition matrices. In high dimensional settings, the

number of parameters scales as p2d. Therefore, consistent estimation is impossible

without regularization. In particular, we assume that {A1, · · · ,Ad} are sparse and

impose `1 penalty in our estimation.

Regression Notation We are interested in estimating the transition matrices via

minimizing a least squares objective. Before stating the optimization problem, we

collect the matrix representations of the data here for reader’s convenience:
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For a sequence of samples {Zt}Mt=1, we can write the autoregressive of order d rela-

tionship in regression form

Y = XB + E

where

Y =


(ZM)′

...

(Zd)
′


(M−d+1)×p

X =


(ZM−1)′ · · · (ZM−d)

′

...
. . .

...

(Zd−1)′ · · · (Z0)′


(M−d+1)×(pd)

B =


A′1

...

A′d


(pd)×p

E =


(εM)′

...

(εd)′


(M−d+1)×p

Modified Lasso Framework We introduce the modified lasso framework proposed

by [Loh and Wainwright, 2012] here.

Given a sequence of duples (Xt, Yt), the target parameter matrix we are after is

B∗ = arg min
B∈Rpd×p

E‖Yt −X ′tB‖2
F

The corresponding estimator from the samples is

B̂ = arg min
B∈Rpd×p

‖Y−XB‖2
F(4.2.1)

It can be written equivalently, upon expanding the squares,as

B̂ = arg min
B∈Rpd×p

‖Y−XB‖2
F

= arg min
B∈Rpd×p

−Tr(2Y′XB) + Tr(B′X′XB)
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If we believe that B∗ is sparse, we can encourage sparsity in B̂ by penalizing the least

squares objective with `1 norm of the parameters and obtain the penalized version

of the lasso:

B̂ = arg min
B∈Rpd×p

‖Y−XB‖2
F + λN‖ vec (B)‖1

= arg min
B∈Rpd×p

−Tr(2Y′XB) + Tr(B′X′XB) + λN‖ vec (B)‖1

Observe that if we replace the cross products EX′X and EY′X by their unbiased and

consistent estimators Γ̂ and γ̂, the above program remains consistent for B∗. This

gives rise to the modified lasso framework proposed by Loh and Wainwright [2012]:

B̂ = arg min
B∈Rpd×p

−Tr(2γ̂B) + Tr(B′Γ̂B) + λN‖ vec (B)‖1(4.2.2)

This opens the door to designing Γ̂ and γ̂ when we are faced with real data application

issues such as missing data or data corruption. Denote the “effective” sample size

as T = M − d+ 1.

4.3 Theoretical Guarantees

4.3.1 Lasso Consistency and Sufficient Conditions

We shall start with what we call a “master theorem” that provides non-asymptotic

guarantees for lasso estimation and prediction errors under two well-known condi-

tions, viz. the restricted eigenvalue (RE) and the deviation bound (DB) conditions.

Note that in the classical linear model setting (see, e.g., Hayashi [2000, Ch 2.3])

where sample size is larger than the dimensions (T > p), the conditions for consis-

tency of the ordinary least squares(OLS) estimator are as follows: (a) the empirical
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covariance matrix X′X/T
P→ Q and Q invertible, i.e., λmin(Q) > 0, and (b) the

regressors and the noise are asymptotically uncorrelated, i.e., X′W/T → 0.

In high-dimensional regimes, Bickel et al. [2009], Loh and Wainwright [2012] and Ne-

gahban and Wainwright [2012] have established similar consistency conditions for

lasso. The first one is the restricted eigenvalue (RE) condition on X′X/T (which

is a special case, when the loss function is the squared loss, of the restricted strong

convexity (RSC) condition). The second is the deviation bound (DB) condition on

X′W/T . The following lower RE and DB definitions are adopted from Loh and

Wainwright [2012].

Definition 9 (Lower Restricted Eigenvalue). A symmetric matrix Γ ∈ Rp×p satisfies

a lower restricted eigenvalue condition with curvature α > 0 and tolerance τ(T, p) > 0

if,

∀v ∈ Rp, v′Γv ≥ α ‖v‖2
2 − τ(T, p) ‖v‖2

1 .

Definition 10 (Deviation Bound). Consider the random matrices Γ̂ ∈ Rpd×pd, γ̂ ∈

Rp×pd, and B∗ ∈ Rp×pd defined above. They are said to satisfy the deviation bound

condition if there exist a deterministic multiplier function Q(X,B∗) and a rate of

decay function R(p, d, T ) such that,

1

T

∣∣∣∣∣∣∣∣∣γ̂ − (B∗)′Γ̂
∣∣∣∣∣∣∣∣∣
∞
≤ Q(X,Θ?)R(p, d, T ).

We now present a master theorem that provides guarantees for the `2 parameter

estimation error and the (in-sample) prediction error. The proof, given in Appendix

A of Wong et al. [2017], builds on existing result of the same kind [Bickel et al., 2009,

Loh and Wainwright, 2012, Negahban and Wainwright, 2012] and we make no claims

of originality for either the result or for the proof.
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Theorem IV.2 (Estimation and Prediction Errors). Consider the lasso estimator

B̂ defined in (4.2.2). Suppose that Γ̂ satisfies the lower RE(α, τ) condition with α ≥

32sτ and (Γ̂, γ̂) satisfies the deviation bound. Then, for any λT ≥ 4Q(X,B∗)R(p, d, T ),

we have the following guarantees:∥∥∥vec(B̂−B∗)
∥∥∥ ≤ 4

√
sλT/α,(4.3.1) ∣∣∣∣∣∣∣∣∣(B̂−B∗)′Γ̂(B̂−B∗)

∣∣∣∣∣∣∣∣∣2
F
≤ 32λ2

T s

α
.(4.3.2)

With this master theorem at our disposal, we just need to establish the validity of

the restricted eigenvalue (RE) condition and deviation bound (DB) conditions for

VAR processes when there are (1) data corruption or (2) missing data.

4.3.2 Missing and Corrupted Data

We study lasso estimation on stable Gaussian VAR data under two simple noisy and

missing data scenarios. We state the corresponding Γ̂ and γ̂ in each case below

Data Corruption Instead of observing the complete data matrix X, we see Z =

X + W where W is a random matrix independent of X, with each row Wi: sampled

i.i.d. from N (0,ΣW ). Assume ΣW is known.

Define the matrices of noises as

W =


(WM−1)′ . . . (WM−d)′

...
. . .

...

(W d−1)′ . . . (W 0)′


T×dp

ω =


(WM)′

...

(W d)′


T×p

Define

Γ̂ :=
(X + W)′(X + W)

T
− ΣW, and

γ̂ := (1/T )(X + W)′(Y + ω)
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Note that Γ̂ defined this way is negative definite since (X+W)′(X+W)
T

is positive semi-

definite containing zero eigenvalue(s) and ΣW is positive definite.

Missing Data Instead of observing complete data matrix X, we have Z = X�W

where W is a random matrix independent of X, with each element Wij sampled

i.i.d. from Ber(ρ), for some positive parameter ρ.

Define

Γ̂ :=
(X�W)′(X�W)�M

T
, and

γ̂ :=
(X�W)′(Y� ω)

Tρ2

where M := E(W′W) satisfies

Mij =


ρ2, if i 6= j

ρ, othewrwise .

We can check (see the proof in the Appendix) that the Γ̂ and γ̂ defined as such

are unbiased and consistent for X′X and Y′X respectively. Next, we state the high

probability guarantees for the RE and DB conditions below under each scenario.

4.3.3 High Probabilistic Guarantees for Additive Data Corruption Case

Consider a stable Gaussian VAR process. For the Γ̂ and γ̂ defined in Section 4.3.2

pertaining to the corrupted data scenario, we have the following guarantees

Lemma IV.3 (RE Bound for Corrupted Data). There exists constant c > 0 such

that, for sample size T ≥ 42e·k log(pd)
c·min{η,η2} , with probability at least 1−exp

{
− cT

2
min{η, η2}

}
,
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we have

Γ̂ ∼ RE(α, τ)

where

α =
Λmin(Σε)

2µmax(A)
, τ =

2 log(pd)α

T min{η, η2}
, and

η =
1

54

Λmin(Σε)

µmax(A)

(
Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ )

)−1

Lemma IV.4 (DB Bound for Corrupted Data). There exist constant C > 0 such

that, for sample size T ≥ log(d2p2), with probability at least 1− 14(dp)−C, we have

1

T

∣∣∣∣∣∣∣∣∣γ̂ − (B∗)′Γ̂
∣∣∣∣∣∣∣∣∣

max
≤
√

log(d2p2)

T
Q(B∗,ΣW̃ ,Σε)

where

Q(B∗,ΣW̃ ,Σε) =

[
Λmax(ΣW̃ )

(
3 + 2 max

j

∥∥B∗:j∥∥1
+ |||B∗|||2

)
+

(
Λmax(Σε)

(
2 +

2

µmin(Ã)
+
µmax(A)

µmin(Ã)

))]

4.3.4 High Probabilistic Guarantees for Multiplicative Noise Case

Consider a stable Gaussian VAR process. For the Γ̂ and γ̂ defined in Section 4.3.2

pertaining to the missing data scenario, we have the following guarantees.

Lemma IV.5 (RE Bound for Missing Data). There exist constants ci such that,

with probability at least 1− c1 exp{−c2T min{1, Λmin(Σε)2

ξ4
}} we have

Γ̂ ∼ RE(α, τ)
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where

α =
Λmin(Σε)

2µmax(A)
,

τ = c0
log(pd)

T
α ·max

{(
1

ρ

)4
λmax(Σε)µmax(A)

λmin(Σε)µmin(Ã)
, 1

}
, and

ξ2 =
1

ρ2

Λmax(Σε)

µmin(Ã)

Lemma IV.6 (DB Bound for Missing Data). There exist constants ci such that,

with probability at least 1− c1 exp{−c2 log(pd)}

1

T

∣∣∣∣∣∣∣∣∣γ̂ − (B∗)′Γ̂
∣∣∣∣∣∣∣∣∣

max
≤ c0ξ

2 max
i
‖B∗:i‖

2
1

√
log(pd)

T

where

ξ2 =
1

ρ2

Λmax(Σε)

µmin(Ã)

4.4 Proofs of Corrupted Data Case

To better differentiate the Γ̂ and γ̂ in the corrupted and missing data case in the

proofs, we match the notation Γ̂ ≡ Gcor
Z̃

and γ̂ ≡ Rcor. Also, N ≡ T denote the

sample size. Let Z = X + W. We begin by stating a variant of the Hansen-Weight

inequality which serves as the basis of the proofs.

4.4.1 Variant of Hanson-Wright Inequality

The general statement of the Hanson-Wright inequality can be found in the paper

by [Rudelson and Vershynin, 2013, Theorem 1.1]. We use a form of the inequality

which is derived in the proof of Proposition 2.4 of Basu and Michailidis [2015] as an

easy consequence of the general result. We state the modified form of the inequality

and the proof below for completeness.
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Lemma IV.7 (Variant of Hanson-Wright Inequality). If Y ∼ N (0n×1,Qn×n), then

there exists universal constant c > 0 such that for any η > 0,

(4.4.1) P
[

1

n

∣∣‖Y ‖2
2 − E ‖Y ‖2

2

∣∣ > η|||Q|||
]
≤ 2 exp

[
−cnmin

{
η, η2

}]
.

Proof. The lemma easily follows from Theorem 1.1 in Rudelson and Vershynin [2013].

Write Y = Q1/2X, where X ∼ N (0, I) and (Q1/2)′(Q1/2) = Q. Note that each

component Xi of X is independent N (0, 1), so that ‖Xi‖ψ2
≤ 1. Then, by the above

theorem,

P
[

1

n

∣∣‖Y ‖2
2 − Tr(Q)

∣∣ > η|||Q|||
]

= P
[

1

n
|X ′QX − EX ′QX| > η|||Q|||

]
≤ 2 exp

[
−cmin

{
n2η2|||Q|||
|||Q|||2F

,
nη|||Q|||
|||Q|||

}]

≤ 2 exp
[
−cmin

{
η, η2

}]
since |||Q|||2F ≤ n|||Q|||2

Lastly, note that Tr(Q) = Tr(EY Y ′) = ETr(Y Y ′) = ETr(Y ′Y ) = ETr ‖Y ‖2 =

E ‖Y ‖2.

4.4.2 Proof of Restricted Eigenvalue Guarantees

Goal: Show Gcor
Z̃

pd×pd
:= Z′Z/N − ΣW̃ ∼ RE(α, τ) for some α, τ > 0.

1. Show Gcor
Z̃

is unbiased for ΣX̃ := X′X/N

E[Gcor
Z̃

] = E[ (X+W)′(X+W)
N

] − ΣW̃ . But X |= W and E(X) = E(W) = 0. There-

fore,

E[Gcor
Z̃

] =
1

N
E [X′X + EW′W]− ΣW̃ = ΣX̃ .

2. Show the result for one fixed µ ∈ Rpd
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Let SZ := Z′Z
N

. Then, Gcor
Z̃
−ΣX̃ = SZ −ΣZ̃ . Our goal is to control for all fixed

test vector µ ∈ Rq,

µ(Sz − ΣZ̃)µ =
1

N
[(Zµ)′(Zµ)−Nµ′ΣZ̃µ]

to be positive for the set of “sparse” vectors.

Essentially, we aim to show that the sample covariance matrix of the vectors

Zµ ∈ RN satisfies the “RE” condition for a single vector in the unit `2 ball.

First of all, note that Zµ ∼ N(0, Q), where Q
∆
= E[(Zµ)(Zµ)′] ∈ RN×N .

Now,

Qij = E[(Zµ)(Zµ)′]ij

= E((Zi:)µ)′((Zj:)µ)

= µ′(EZ̃iZ̃ ′j)µ

= µ′(EX̃iX̃
′
j)µ+ µ(EW̃iW̃

′
j)µ

= µ′ΓN
X̃

[i, j]µ+ µΓN
W̃

[i, j]µ

= µ′ΓN
Z̃

[i, j]µ

To apply Lemma IV.7, we need to take a closer look at the two quantities (1)

Tr(Q) and (2) |||Q|||.

It is easy to see that Tr(Q) = µ′
∑N

i=1 ΓN
Z̃

(i, i)µ = Nµ′ΣZ̃µ.
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To control |||Q|||, we will invoke IV.1. Fix u ∈ RN , with ‖u‖2 = 1

u′Qu =
N∑
r=1

N∑
s=1

urusQrs

=
N∑
r=1

N∑
s=1

urusµ
′ΓN
Z̃

[s, r]µ

= (µ⊗ u)′ΓN
Z̃

(µ⊗ u)

≤ Λmax(ΓN
Z̃

) since ‖µ⊗ u‖ = 1

(4.4.2)

It remains to bound Λmax(ΓN
Z̃

).

But

Λmax(ΓN
Z̃

) = Λmax(ΓN
X̃

+ ΓN
W̃

) since X̃ t |= W̃ s, ∀t, s

≤ Λmax(ΓN
X̃

) + Λmax(ΓN
W̃

)

Recall that {X̃n}Nn=1 is a VAR(1) process in Rdp; i.e. X̃n+1 = ÃX̃n + ε̃n. Also,

{X̃n}Nn=1 is stable since is stable. So, {X̃n}Nn=d+1 has the reverse characteristic

polynomial, for any test vector u ∈ Rdp

Ã(u) = I
dp×dp

− Ã
dp×dp

u
dp×1

Similarly for {W̃ n}Nn=d+1.

Therefore, by Proposition IV.1,

Λmax

(
ΓN
Z̃

)
≤ ΛmaxΣε̃

µmin(Ã)
+

ΛmaxΣW̃

µmin(I)

Because of the structure of ε̃ and W̃ , Λmax(Σε̃) = Λmax(Σε) and Λmax(ΣW̃ ) =

Λmax(ΣW ). Also, µmin(I) = 1. Thus, we can simply the above bound as

Λmax(ΓNZ ) ≤
Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ )
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Now, we are ready to apply Lemma IV.7, ∀η > 0,

P[|µ′(Gcor
Z̃
− ΣX̃)µ| > η(

Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ ))]

= P[|µ′(SZ − ΣZ̃)µ| > η(
Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ ))]

≤ 2 exp
[
−cN min{η, η2}

]
3. Extending the result from one fixed µ ∈ Rpd to a uniform bound over a 2s−sparse

net.

Define κ(2s) := {µ ∈ Rpd : ‖µ‖2 ≤ 1, ‖µ‖0 ≤ 2s}, for some integer 2s ≥ 1.

Applying Lemma F.2 in Basu and Michailidis [2015], for some constant C > 0,

P

[
sup

µ∈κ(2s)

|µ′(Gcor
Z̃
− ΣX̃)µ| > η(

Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ ))

]

≤ 2 exp

(
−CN min{η, η2}+ 2s min

(
log(pd), log

(
21epd

2s

)))
4. Getting the lower-RE condition

To simplify notation, let

∆ :=
(

Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ )

)
; Ξ := −CN min{η, η2}+2s min

(
log(pd), log

(
21epd

2s

))

We can establish, for all natural number s ≥ 1

sup
ν∈κ(2s)

|ν ′(Gcor
Z̃
− ΣX̃)ν| ≥ η∆ w.p. ≤ 2 exp Ξ

−→ sup
ν∈κ(2s)

|ν ′(Gcor
Z̃
− ΣX̃)ν| ≤ η∆ w.p. ≥ 1− 2 exp Ξ

−→ |ν ′(Gcor
Z̃
− ΣX̃)ν| ≤ 27η∆

(
‖ν‖2

2 +
1

s
‖v‖2

1

)
∀s > 1, ∀ν, w.p. ≥ 1− 2 exp Ξ

−→ ν ′Gcor
Z̃
ν ≥ [Λmin(ΣX̃)− 27η∆] ‖ν‖2

2 −
27η∆

s
‖ν‖2

1 , ∀ν, w.p. ≥ 1− 2 exp Ξ

where the second last inequality follows from Lemma 12 in supplement of Loh

and Wainwright [2012].
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5. Choose η and s

Now, we want

Λmin(ΣX̃)− 27η∆ ≥ 0

Choose η such that

27η∆ ≤ Λmin(ΣX̃) −→ η ≤ 1

27
Λmin(ΣX̃)

1

∆

Hence, we can choose η ≤ 1
54

Λmin(ΣX̃) 1
∆

. Note that η > 0 since Σε is positive

definite by assumption. Again by Proposition IV.1, we can set η = 1
54∆

Λmin(Σε)
µmax(A)

.

Now, we have, by result 2, w.p. ≥ 2 exp
(
−CN min{η, η2}+ 2s min

(
log(pd), log

(
21epd

2s

)))
.

νGcor
Z̃
ν ≥ α ‖ν‖2

2 − τ ‖ν‖
2
1

where α = Λmin(Σε)
2µmax(A)

, τ = α
s

To obtain the right coverage probability, we choose

s =
Ncmin{η, η2}

2 log(pd)

6. The final guarantee on RE.

This gives us that for sample size

N ≥ 42e · k log(pd)

c ·min{η, η2}

with probability at least

1− exp

{
−cN

2
min{η, η2}

}
that

Gcor
Z̃
∼ RE(α, τ)
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where

α =
Λmin(Σε)

2µmax(A)
, τ =

2 log(pd)α

N min{η, η2}
, and η =

1

54

Λmin(Σε)

µmax(A)

(
Λmax(Σε)

µmin(Ã)
+ Λmax(ΣW̃ )

)−1

4.4.3 Deviation Bound

Recall that

Gcor
Z̃

:=
Z′Z

N
− ΣW̃ ; Rcor :=

1

N
Z′(Y + E)

First, we will establish unbiasedness of Rcor. Due to independence of W and X

E[Gcor
Z̃
B∗ −Rcor] = ΣX̃B

∗ − ΣX̃B
∗ = 0

To establish the deviation bound boils down to controlling, with high probability,∣∣∣∣∣∣Rcor −Gcor
Z̃
B∗
∣∣∣∣∣∣

max
.

Rcor −Gcor
Z̃
B∗ =

1

N
{W′(E + E) + X′(E −WB∗) + X′E + (NΣW̃ −W′W)B∗}

We will control each term separately, and then apply the triangle inequality. The

general strategies:

• (NΣW̃ −W ′W )B∗, apply Lemma IV.7.

• X′E taken care of as in Basu and Michailidis [2015].

• W |= E, X |= E and X |= W. We can handle these terms similarly.
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Control |||(NΣW̃ −W ′W )B∗|||
max

Define A := NΣW̃ −W′W ∈ Rpd×pd. For all i, j, let ei ∈ Rdp and ẽj ∈ Rp denote

the canonical basis vectors. We have,

|||(NΣW̃ −W′W)B∗|||max = |||AB∗|||max

= max
i,j
|e′iABẽj|

≤ max
j

∥∥B∗:j∥∥1
(max
i,j
|e′iAej|)

≤ 1

2
max
j

∥∥B∗:j∥∥1
max
i,j
{|(ei + ej)

′A(ei + ej)|+ |e′iAei|+ |e′iAej|}

Note each of the three terms above are of the form v′Av. So, we will derive a general

recipe to control such a quadratic form. This is accomplished in two steps – first

using concentration bound, followed by applying the union bound and lastly choosing

η = C
√

log(p)
N

, for some constant C.

1. First, control v′Av using Lemma IV.7. For a unit vector v ∈ Rpd

A = NΣW̃ −W′W

v′Av = N(v′ΣW̃v − (Wv)′(Wv))

Let Y = Wv ∈ RN . We have Y follows a normal distribution with mean

E(Y ) = 0. Define Q := EY Y ′

Then, using similar arguments as in Chapter 4.4.2, we know

Tr(Q) = Nv′ΣW̃v

Also,

‖Q‖op ≤ Λmax(ΓN
W̃

)

≤ Λmax(ΣW̃ )

µmin(I)
= Λmax(ΣW̃ ) by Proposition IV.1
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Now,

‖Y ‖2
2 = Y ′Y = (Wv)′(Wv)

Tr(Y ) = Nv′ΣW̃v

So, | ‖Y ‖2
2 − Tr(Q)| = |v′(W′W−NΣW̃ )v | = |v′Av|.

2. Apply Lemma IV.7

For any η > 0 and constant C > 0,

P{ 1

N
|v′Av| > η|||Q|||} ≤ 2 exp(−cN min{η, η2})

⇒ P{ 1

N
|v′Av| > ηΛmax(ΣW̃ )} ≤ 2 exp(−cN min{η, η2})

⇒ P{ 1

N
|e′iAej| > ηΛmax(ΣW̃ )} ≤ 2 exp(−cN min{η, η2})

⇒ P{ 1

N
max
j

∥∥B∗:j∥∥1
|e′iAej| > 2 max

j

∥∥B∗:j∥∥1
ηΛmax(ΣW̃ )} ≤ exp(−cN min{η, η2})

Let η =
√

log(p2d2)
N

. For N ≥ 2(log(p) + log(d), 0 < η < 1 and min{η, η2} = η2.

Therefore,

P{ 1

N
max
j

∥∥B∗:j∥∥1
|e′iAej| > max

j

∥∥B∗:j∥∥1

√
log(p2d2)

N
Λmax(ΣW̃ )} ≤ 2 exp(−cN η2)

(4.4.3)

3. Take union bound over 1 ≤ i, j ≤ pd.

P

(
1

N
max
j

∥∥B∗:j∥∥1
max
i,j
|e′iAej| > max

j

∥∥B∗:j∥∥1

√
log(p2d2)

N
Λmax(ΣW̃ )

)
≤ 2

p2d2

(p2d2)c

In all, for N > log(p2d2)

P

(
1

N
‖NΣW̃ −W′W)B∗‖max ≤

√
log(p2d2)

N
Q2(B∗,W)

)
≥ 1− 2(pd)2C

where Q2(B∗,W) = maxj
∥∥B∗:j∥∥1

Λmax(ΣW̃ )
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Controlling interaction
∣∣∣∣∣∣X′E∣∣∣∣∣∣

max

This follows from Eq.(2.11) in Basu and Michailidis [2015]. With positive constants

c1–c2, we have with probability at least 1− 6 exp{−c1 log(pd)}, ∀ei, ej

e′i |X′E| ej ≤ c2

√
log(pd)

N

[
Λmax(Σε)

(
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

)]
(4.4.4)

Controlling maximum norm of interaction between independent matrices

We first derive a concentration for interaction between Gaussian random vectors.

We isolate it as a lemma.

Lemma IV.8. Given Gaussian random matrices C,D ∈ RN×q such that C |= D.

Then, we have the following guarantees: ∀η > 0

P
[∣∣∣∣ 1

N
(Cu)′(Dv)

∣∣∣∣ > η (|||ΣCu|||+ |||ΣDv|||)
]
≤ 6 exp

(
−cN min{η, η2}

)
Proof of Lemma IV.8. For unit test vectors u, v of the right dimensions, because

C |= D,

(Cu)′(Dv) =
1

2

[(
‖Cu+Dv‖2 −NE ‖Cu+Dv‖2)

−
(
‖Cu‖2 −NE ‖Cu‖2)

−
(
‖Dv‖2 −NE ‖Dv‖2)]

=
1

2

[(
‖Cu+Dv‖2 − Tr(ΣCu+Dv)

)
−
(
‖Cu‖2 − Tr(ΣCu)

)
−
(
‖Dv‖2 − Tr(ΣDv)

)]
We apply Lemma IV.7 on each of the three summand above with their corresponding

|||Σ|||. Then we invoke Proposition IV.1 to get an upper bound on the corresponding
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|||Σ|||.

P
[∣∣∣∣ 1

N
(Cu)′(Dv)

∣∣∣∣ > η (|||ΣCu|||+ |||ΣDv|||)
]
≤ 6 exp

(
−cN min{η, η2}

)
We apply Lemma IV.8 to each of W,E, X, E and X,W pairs followed by Proposi-

tion IV.1 to obtain ∀ei, ej

P
[

1

N
|e′iW′(E + E)ej| > η (Λmax(Σε) + 2Λmax(ΣW̃ ))

]
≤ 4 exp

(
−cN min{η, η2}

)(4.4.5)

We know

|||ΣX̃ ||| ≤
Λmax(Σε)

µmin(A)
,

and

|||ΣE−WB∗||| ≤ |||ΣW̃ |||+ |||ΣW̃B∗|||

≤ Λmax(ΣW̃ ) + |||B∗|||2Λmax(ΣW̃ ) operator norm sub-multiplicative

= Λmax(ΣW̃ )
(
1 + |||B∗|||2

)
Hence,

P
[

1

N
|e′iX′(E −WB∗)ej| > η

(
Λmax(ΣW̃ )

(
1 + |||B∗|||2

)
+

Λmax(Σε)

µmin(A)

)]
≤ 4 exp

(
−cN min{η, η2}

)(4.4.6)

Combinging the inequalities

Combining equations (4.4.3),(4.4.4), (4.4.5) and (4.4.6), we have wp less than

14 exp{−cN min{η, η2}}



122

e′i
∣∣Rcor −Gcor

Z̃
B∗
∣∣ej

> η

[
Λmax(ΣW̃ )

(
1 + |||B∗|||2

)
+

Λmax(Σε)

µmin(A)

+ (Λmax(Σε) + 2Λmax(ΣW̃ ))

+

(
Λmax(Σε)

(
1 +

1

µmin(A)
+
µmax(A)

µmin(A)

))
+2 max

j

∥∥B∗:j∥∥1
Λmax(ΣW̃ )}

]
= η

[
Λmax(ΣW̃ )

(
3 + 2 max

j

∥∥B∗:j∥∥1
+ |||B∗|||2

)
+

(
Λmax(Σε)

(
2 +

2

µmin(A)
+
µmax(A)

µmin(A)

))]

Choose η =
√

log(d2p2)
N

. Then, for N ≥ log(d2p2), for constant C > 0, with probability

at least 1− 14(dp)−C that

∣∣∣∣∣∣Gcor
Z̃
− (B∗)′Rcor

∣∣∣∣∣∣
max
≤
√

log(d2p2)

N
Q(B∗,ΣW̃ ,Σε)

where

Q(B∗,ΣW̃ ,Σε) =

[
Λmax(ΣW̃ )

(
3 + 2 max

j

∥∥B∗:j∥∥1
+ |||B∗|||2

)
+

(
Λmax(Σε)

(
2 +

2

µmin(A)
+
µmax(A)

µmin(A)

))]

4.5 Proofs of Missing Data Case

We will modify Lemma 17 in Loh and Wainwright [2012] for the missing data case

with a different bound on the operator norm(Eq. (G.6) in Loh and Wainwright

[2012]). The rest of the proofs for RE and DB bounds follow similarly as in Loh and

Wainwright [2012].
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Given a realization of U = U , we write the random matrix XU := X�U . Similarly,

denote Z̃U
i = Z̃i � Ũi. For any unit test vector µ, XUµ is a zero mean mixture of

Gaussians. Its covariance matrix is such that its (i, j)th component is

Qij = E[(XUµ)(XUµ)′]ij

= E((XU
i: )µ)′((XU

j:)µ)

= Eµ′Z̃U
i µ
′Z̃U
j

= Eµ′1Z̃iµ′2Z̃j

= µ′1E
[
Z̃iZ̃j

]
µ2

= µ′1ΓN
X̃

[i, j]µ2

where µ1 and µ2 are vectors µ with 0’s in the positions corresponding to those of Z̃U
i

and Z̃U
j respectively. Note that their magnitudes are at most 1.

Hence, by a similar argument as in Eq.(4.4.2) and using Proposition IV.1 on ΓN
X̃

, we

arrive at

|||Q||| ≤ Λmax(Σε)

µmin(A)

The rest will follow from similar logic as in the Proof of Corollary 4 in Loh and

Wainwright [2012].



CHAPTER V

Future Directions

The previous chapters have laid out the theoretical guarantees of the RE and DB

conditions for data satisfying either (1) the VAR model, or (2) geometrically mixing

processes. In the former, we have provided lasso consistency for data corrupted

with Gaussian noise or when we have data missing completely at random. In the

latter, we have results for full spectrum of geometrically α and β-mixing processes

with subweibull observations. As illustrations of the theory, we have also given

examples satisfying the subweibull and geometrically mixing assumptions. These

include nonlinear time series (autoregressive conditionally heteroscedastic model),

misspecified and non-Markovian model (VAR with endogenous variable left out),

heavy-tailed time series (subweibull VAR).

I conclude my thesis by listing a few plans for future directions of research here.

Lasso guarantees for general mixing processes observed with noise and/or missingness

The key mathematical tool in the analysis of Section IV is the Hansen-Wright

inequality for Gaussian vectors. The proof scheme follows discretization of the pa-

rameter space, extension to a sparse net, and finally to any vectors in the space.

The same proof strategies can be employed to extend the lasso guarantees to α and

124
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β-mixing subweibull stationary time series as in Sections II-III. In general, given a

concentration inequality, and any unbiased consistent estimators for X′X and X′W,

we can establish high probabilistic guarantees for the RE and DB conditions per-

taining to the modified lasso.

Provably efficient streaming estimator for time series data In the large data era,

when we receive new data points sequentially in time, it is computationally costly to

update the batch estimator upon each new sample. For example, even with the simple

OLS estimator, we have to invert an N × N gram matrix each time we recalculate

it. It will be expensive if the sample size N is, say, in the order of millions.

One way around it is to update the estimator incrementally with the new sample

instead of the whole set of data. We call this an online, aka streaming, estimator.

This is useful if we can establish that, when sample size approaches infinity, the

online estimator converges to a limit which is close to that of its batch counterpart

within accuracy of statistical error.

In particular, the online mirror descent (OMD) algorithm, with appropriate choice

of Bregman divergence, can achieve regret error bounds with graceful dimension

scaling (logarithmic). We can hope to obtain an average loss (less that evaluated at

optimal) with respect to the iterate average from the OMD algorithm to be roughly

in the order of the lasso. Following the work of Duchi et al. [2012, 2010], we can

contemplate a “slow rate” of lasso convergence under a specific setting of AR model

with respect to the squared losses.

Guarantees for Other Regularized Estimators on Mixing Processes A large body of

the literature in high dimensional statistics rely on establishing sufficient conditions
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similar to the RE(or RSC) and DB ones. Most of the theoretical analysis has been

done under the iid assumption. We expect similar proof strategies can be employed

to establish consistency guarantees for regularized estimating procedures under the

context of geometrically mixing subweibull stationary time series. For example, Loh

and Wainwright [2013] has established that under a suitable RSC condition and

proper scaling on the sup norm of the gradient of the loss function, the estimation

error bounds of SCAD and MCP scale roughly in the same order as the lasso. Ne-

gahban et al. [2012] has provided a unified framework for some class of decomposable

penalties under the sufficient conditions of appropriate forms of RSC on the loss and

DB on the gradient.
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