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ABSTRACT

Reinforcement learning (RL) is a machine learning paradigm where an agent learns to interact
with an environment in the presence of a reward signal as feedback. Recent breakthroughs have
led to a renewed interest in building intelligent RL agents by combining the core RL algorithms
with the expressivity of deep function approximators and advances in computation via simulation.
Despite the recent advances, in most complex domains RL algorithms need a large amount of in-
teraction data in order to learn a good policy. As a result, recent theoretical research has focussed
on problems pertaining to the quantification and/or improvement of sample efficiency of RL under
various interaction protocols. These efforts are directed towards understanding the statistical as-
pects of reinforcement learning, which can be a key factor in making progress towards real world
applications, ranging from healthcare and robotics to control of large scale web systems.

The main theme of this thesis is the analysis of such information-theoretic aspects of RL in
terms of the structural complexity of the environment by using tools from the learning theory liter-
ature. In this thesis, we consider a spectrum of scenarios: ranging from tabular to rich observation
domains, single to multi-task settings and reward-specific to reward-free learning. Specifically, this
thesis presents theoretical results in the following settings: the 1st part studies the sample efficiency
of online learning in contextual Markov decision processes (MDPs) where the agent interacts with
a sequence of tabular environments and has access to a high-dimensional representation that de-
termines the dynamics of each MDP. The 2nd part studies the sample complexity of learning in
a structured model class where the true model of an arbitrarily large MDP can be approximated
using a feature-based linear combination of a known ensemble of models. The 3rd part investigates
the problem of learning in a low-rank MDP where I design and analyze the first provably efficient
model-free representation learning and exploration algorithm for reward-free learning. Lastly, in
the 4th part, I provide results for online multi-task learning in linear quadratic regulators, under the
assumption that the transition matrices for each system share a common basis.

A common thread running through all results in this thesis is the effect of a linear/low-rank
structure in the model on the sample efficiency of learning. Overall, this thesis proposes novel
provably efficient exploration and model selection algorithms under various linear model struc-
tures, and highlights the role of environment complexity in the statistical efficiency of reinforce-
ment learning.
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CHAPTER 1

Introduction

Reinforcement learning (RL) is a machine learning framework which can be used to model and
build artificially intelligent agents (Sutton and Barto, 2018). RL studies the problem of building
agents which can learn to make decisions in an environment in order to optimize a long-term
reward. This learning paradigm provides a natural and general framework which characterises a
range of applications scenarios, ranging from control of web systems (Li et al., 2010), learning
adaptive health interventions (Nahum-Shani et al., 2018), online tutoring platforms (Koedinger
et al., 2013), weather monitoring systems (Bellemare et al., 2020), to simulated or physical domains
like gameplay (Mnih et al., 2015), robotics (Mordatch et al., 2015) and many more.

The field of reinforcement learning has witnessed a resurgence in research and development, after
the recent empirical successes of RL algorithms on a range of domains like video/board games, and
simulated robotics environments. The resurgence can also be attributed to the advances in modern
deep learning architectures that provide highly expressive function approximation techniques, which
can then be combined effectively with core RL algorithms. However, owing to the generality of the
RL framework, such general learning approaches are often poor in terms of their statistical efficiency.
As such, majority of the recent breakthroughs have been observed in simulated environments, and
therefore, significant efforts are being made to improve RL algorithms and translate the empirical
breakthroughs from simulated domains to domains where high-fidelity simulation is not a good
design choice (eg. healthcare, web systems, education etc.). One aspect of this research endeavour
is to understand the fundamental statistical properties of different components of the RL framework
and employ such an understanding to design provably efficient algorithms. This thesis explores
questions motivated by the same principles and presents a set of theoretical results which aid to our
understanding of the statistical aspects of RL.

As a motivating example, consider any application domain where the goal is to design an intelli-
gent agent which learns optimal decision making policies while interacting with a heterogeneous set
of entities. Such scenarios arise in various domains like healthcare (heterogeneity among patients),
online advertising (users on the platform) and so on. Typically, for many such interactive domains,
neither a high-fidelity simulation model, nor an exhaustive interaction dataset, is available for the
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empirical advances to take effect. As a consequence, the agent has to interact with such entities in
the real world, take actions to collect interaction data and learn a good decision making policy for
the given domain. However, this data collection step is expensive in these high stake scenarios and
highlights the importance of designing sample efficient reinforcement learning algorithms.

The problem of studying the statistical aspects of reinforcement learning algorithms is a not
new and has been explored in previous literature as well. The nature of results ranges from early
asymptotic convergence results for core RL algorithms like TD-learning, Q-learning (Jaakkola et al.,
1994; Singh et al., 2000) to finite time statistical guarantees for online learning in RL environments
(Kearns and Singh, 2002; Jaksch et al., 2010; Dann and Brunskill, 2015). The latter problem deals
with the problem of efficient exploration-exploitation during learning in a given environment, and is
the main focus of this thesis. In an online RL problem, the agent has to adaptively collect interaction
data to quickly learn a policy by balancing exploration of new regions in the environment and
exploitation of already collected experience. This trade-off between exploration and exploitation is
crucial for RL and is a well-studied phenomenon. Until recently, the majority of results for efficient
exploration were given for simple environments which consist of finite state and action spaces.

On the other hand, much of the empirical success in RL has been achieved via expressive
function approximators which learn good representations of the environment. Contrary to this,
supervised learning has also witnessed huge breakthroughs in empirical results but, at the same
time, has a much advanced understanding of generalization and robustness issues via statistical and
online learning theories. A major component in supervised learning theory is the use of structural
complexity measures for quantifying the statistical rates of learning under both supervised and
online learning settings (Bousquet et al., 2003; Mohri et al., 2018). In this thesis, we will use these
tools from the learning theory literature and study how an underlying structure in the model of the
environment can be used to quantify the sample complexity of reinforcement learning under various
learning scenarios.

Specifically, we will study the effect of various linear/low-rank structures in the model of the
environment on the sample complexity of reinforcement learning under a range of problem settings:
tabular to rich-observation domains, single-task to multi-task problems, and reward-specific to
reward-free. In our results pertaining to all of these aspects in the reinforcement learning setting,
we utilize various tools from the learning theory literature, and, also highlight the challenges which
are unique to the the long-horizon decision making problem in RL. For instance, in Chapter 4 and
Chapter 5, we will show that feature selection, which is a well understood problem in supervised
learning, is a fundamentally hard problem in RL, and, therefore we need to exploit the problem
structure appropriately to design provably efficient exploration algorithms. Overall, in this thesis,
we investigate the problem of sample efficient learning in environments under various linear model
structures and interaction protocols. Our results across all formulations underscore the importance of
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environment structure in the statistical efficiency of RL and contribute towards the goal of designing
provably efficient RL algorithms.

1.1 Thesis Statement

By utilizing linear/low-rank structures in the underlying model of the environment, we can design
provably efficient reinforcement learning algorithms under a range of evaluation criteria for various
problem settings: tabular to rich-observation domains, single or multi-task problems, reward-specific
to reward-free learning and representation learning.

1.2 Contributions

In this section, we give a brief overview of the contributions of the thesis. In Chapter 2, we discuss
the preliminary background of the topics considered in this thesis: MDP basics, planning and
learning in MDPs, different efficiency criteria in online learning in MDPs and a brief background
on linear quadratic regulators. In Chapters 3, 4, 5 and 6, we discuss the new research contributions
in this thesis. Finally, in Chapter 7, we conclude with a summary and discussion on future work.

Online Learning in Contextual Markov Decision Processes (Chapter 3) In this chapter, we
consider an RL setting in which the agent interacts with a sequence of episodic MDPs. Our setting
is motivated by applications in healthcare, e-commerce and recommender systems where the agent
has to adaptively interact with a population of users instead of a single environment. We capture
this heterogeneity under the framework of contextual Markov decision processes (CMDPs) (Hallak
et al., 2015), where, at the start of each episode, the agent has access to some side-information
or context that determines the dynamics of the MDP for that episode. In the first part of this
chapter, we derive the first PAC mistake bound guarantees for smoothly varying CMDPs and
linearly parameterized CMDPs. These results demonstrate the hardness of learning in CMDPs under
the weaker assumption of smooth variation, thereby, motivating the linear structural assumption. In
the second part of this chapter, we extend the linear CMDP model using generalized linear models
and propose optimistic and randomized regret minimization algorithms. For all settings, we provide
a minimax lower bounds which further reflect the tradeoffs between the general smooth CMDP
setting and the stronger linear structure. This chapter is based on joint work with Nan Jiang, Ambuj
Tewari and Satinder Singh (Modi et al. (2018); Modi and Tewari (2020) published in ALT 2018 and
UAI 2020 respectively).
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Best Policy Identification in Linear Mixture MDPs (Chapter 4) In this chapter, we propose a
new structural assumption, wherein, the true model of the environment can be approximated using a
linear combination of a known ensemble of models, where the coefficients are determined by the
given state-action features and some unknown parameters. The structural assumption is motivated
by a setting where the agent has access to an ensemble of pre-trained and possibly inaccurate
simulators (models). We propose an oracle-efficient algorithm which provably learns a near-optimal
policy with a sample complexity polynomial in the number of unknown parameters, and incurs no
dependence on the size of the state (or action) space. Given that the algorithm requires access to an
expressive state-action feature, we also consider the more challenging problem of model selection,
where the state features are unknown and can be chosen from a large candidate set. We provide
exponential lower bounds that illustrate the fundamental hardness of this problem, and develop a
provably efficient algorithm under additional natural assumptions. This chapter is based on joint
work with Nan Jiang, Ambuj Tewari and Satinder Singh (Modi et al. (2020) published in AIStats
2020).

Model-Free Feature Learning and Exploration in Low-Rank MDPs (Chapter 5) In this chap-
ter, we study the problem of learning in a low-rank MDP, a model which has emerged as an important
setting for studying representation learning and exploration in reinforcement learning. With a known
representation, several model-free exploration strategies exist, starting from the initial results in
Yang and Wang (2019) and Jin et al. (2020). In contrast, all algorithms for the unknown represen-
tation setting are model-based, thereby requiring the ability to model the full dynamics. In this
chapter, we present the first model-free representation learning algorithms for low-rank MDPs.
The key algorithmic contribution is a new minimax representation learning objective, for which
we provide variants with differing tradeoffs in their statistical and computational properties. We
interleave this representation learning step with an exploration strategy to cover the state space in a
reward-free manner. The resulting algorithms are provably sample efficient and can accommodate
general function approximation to scale to complex environments. This chapter is based on joint
work with Jinglin Chen1, Akshay Krishnamurthy, Nan Jiang and Alekh Agarwal (Modi et al., 2021).

Provably Efficient Multi-Task Learning for Linear Quadratic Regulators (Chapter 6) In
previous chapters, we have studied the problem of learning in Markov decision processes under
varying structural assumptions. In reinforcement learning, MDPs are generally considered as
the core framework for modeling the interaction between an agent and the environment. In this
chapter, we consider a continuous control setting which has been studied extensively in the field
of optimal control theory. In recent literature, a renewed interest has been observed in developing

1The co-author contributed equally to the work.
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a non-asymptotic theory for linear-quadratic control, one of the fundamental problems in optimal
control. Motivated by various application domains, we study a multi-task setting where the goal is
to jointly learn (also known as multi-task learning) and control closely related linear time-invariant
dynamical systems (LTIDS) under quadratic costs (LQR). To our knowledge, such a multi-task
formulation hasn’t been explored in the literature. To that end, we develop a joint estimator for
learning the LTIDS’ transition matrices, under the assumption that they share common structure in
the form of common basis vectors. Further, we establish finite-time error bounds for this multi-task
problem that depend on the underlying LTIDS’ sample size, dimension, number of tasks and spectral
properties of the transition matrices. The results are obtained under mild regularity assumptions
and showcase the gains from pooling information across LTIDS, in comparison to using the data
from each system separately. We also study the impact of misspecifying the joint structure of the
transition matrices and show that the established results are robust in the presence of moderate
degrees of misspecification. For the control setting, we show that the joint estimator can then be
used in a certainty equivalence based no-regret learner and further analyze the multi-task finite
time regret for the algorithm. This chapter is based on joint work with Mohamad Kazem Shirani
Faradonbeh, Ambuj Tewari and George Michailidis.
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CHAPTER 2

Background

2.1 Markov Decision Processes

In reinforcement learning (RL), an agent (also referred to as learner) interacts repeatedly with an
environment in the presence of a feedback loop enabling it make decisions optimally to achieve any
given set of goals. This is largely formalized under the framework of a Markov Decision Process
(MDP) (Puterman, 2014), which can be specified using the following components:

• State space: State of the world as observed by the agent denoted by S.

• Action space: Set of actions available to the agent throughout the interaction, denoted by A.

• Transition dynamics: A Markov transition function dictating the dynamics of the environment:
P : S × A → ∆(S). Here, ∆(S) denotes the space of probability measures over the state
space S. Transition function can also depend on the episode timestep, in which case, we
denote it by Ph(·|sh, ah) and P ≡ {P0, P1, . . . , PH−1}.

• Reward function: The preference function given to the agent, R : S ×A → ∆([0, 1]) where
r(s, a) denotes the scalar reward received by the agent on taking action a ∈ A at state s ∈ S ,
sampled from distribution R(s, a). We will overload this notation to use R(·) for the mean
reward as well. This thesis only covers bounded rewards in MDPs. We use a similar notation
Rh(·) for time-dependent rewards.

• Horizon: The agent interacts with the environment for a fixed number of steps before the
world resets, denoted by H .

Below, we collect the common notation and setup used in this thesis and describe the basic tools
and concepts for learning and planning in MDPs.
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MDP notation We will denote an MDP M by the tuple (S,A, P, R,H, µ) and follow the follow-
ing basic interaction protocol for learning in MDPs: (1) the agent observes an initial state s0 ∼ µ

where µ is a fixed initial state distribution, (2) for any episode timestep h ∈ [H], the agent takes an
action ah ∈ A upon observing the state sh ∈ S and (3) observes the next state sh+1 ∼ P (·|sh, ah)
and reward rh(sh, ah) ∼ R(sh, ah). The episode terminates at the Hth timestep. The number of
states and actions, if finite, are denoted by S and A respectively. Wherever applicable, we will use
notation t to denote the episode index and total episodes by T . The tth trajectory will be denoted by
τt ≡ (st,0, at,0, rt,0, st,1 . . . , sk,H)1. If the policy is varies across episodes, we use the notation: πt
to denote the overall policy for episode t and πt,h(·) to denote the h-th step policy for episode k.
Further, for any quantity x, we use xh:h′ to denote the set {xh, xh+1, . . . , xh′}.

General notation We use [N ] to denote the set of intergers {0, 1, . . . N − 1} and [N ]+ to denote
set {1, 2, . . . , N}. For a matrix A ∈ Rd1×d2 , A′ denotes the transpose of A. For a square matrix A,
we use λmin(A) and λmax(A) to denote the smallest and largest eigenvalues (in magnitude), and
for symmetric matrices, λmax(A) = λ1(A) ≥ λ2(A) ≥ λd(A) = λmin(A). For singular values,
we will use σmin(A) and σmax(A). For any vector v ∈ Rd, we will use ||v||p to denote its `p norm.
Similarly, for a vector x ∈ Rd and a matrix A ∈ Rd×d, we define ‖x‖2

A := x>Ax. For matrices
W ∈ Rm×n and X ∈ Rn×n, we define ‖W‖2

X :=
∑m

i=1 ‖W (i)‖2
X where W (i) is the ith row of the

matrix. We use |||A|||γ→β to denote the operator norm defined as follows for β, γ ∈ (0,∞] and

A ∈ Cd1×d2: |||A|||γ→β = supv∈Cd2\{0}
||Av||β
||v||γ

. When γ = β, we simply write the operator norm as
|||A|||β. For any two matrices A,B ∈ Rd1×d2 , we define the inner product 〈A,B〉 = trA′B. Then,
define the Frobenius norm of matrices as ||A||F =

√
〈A,A〉. The sigma-field generated by random

variables X1, X2, . . . , Xn is denoted by σ(X1, X2, . . . Xn). We denote the i-th component of the
vector x ∈ Rd by x[i]. The notation ∆d−1 :=

{
x ∈ Rd : ||x||1 = 1, x ≥ 0

}
will be used to refer to

the simplex in dimension d. Finally, we use ∨ (∧) to denote the maximum (minimum).

2.1.1 Value function and policy

The agent’s decision making strategy is denoted by a mapping π : S → ∆(A). A policy can be
deterministic or randomized and can be stationary or time-dependent. In the latter case, we denote
it by πh and the action ah is chosen according to the policy πh (ah ∼ πh). When the environment is
too complex, we often consider a setting where the agent can act according to a class of policies
which we denote by Π (or Πh). For instance, the class of all deterministic policies in a tabular MDP2

is of size AS . In reinforcement learning, the agent’s goal is to maximize the long term utility for a
1However, as a mnemonic, if we sample trajectories for empirical estimates of quantities, we will use notation(

s
(i)
h , a

(i)
h

)
for pairs in i-th trajectory.

2When the state-action space S ×A is finite, we call it a tabular/finite MDP.
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policy π in an episode. We denote the value obtained by an agent using a policy π in MDP M as
follows:

vπM = E

[
H−1∑
h=0

rh(sh, ah)
∣∣∣s0 ∼ µ, sh+1 ∼ Ph(·|sh, ah), ah ∼ πh

]
. (2.1)

In addition to this scalar metric for evaluation, the notion of a policy’s value V π
M,h : S → [0, H]

when using policy π from step h at a state s is given as follows:

V π
M,h(s) = E

[
H−1∑
h′=h

rh′(sh′ , ah′)
∣∣∣sh = s, sh′+1 ∼ Ph(·|sh′ , ah′), ah′ ∼ πh′

]
. (2.2)

Since, we only consider bounded rewards r(s, a) ∈ [0, 1], the value function range is also bounded
in [0, H]. Similarly, we also define an action value function Qπ

M,h : S ×A → [0, H] as follows:

Qπ
M,h(s, a) = E

[
H−1∑
h′=h

rh′(sh′ , ah′)
∣∣∣sh = s, ah = a, sh′+1 ∼ Ph(·|sh′ , ah′), ah′ ∼ πh′

]
(2.3)

The policy which maximizes the value in an MDP M is denoted by π∗M (or π∗) and the optimal
value by v∗M (shorthand for vπ∗M ). The value functions associated with the optimal policy π∗ are
written as V ∗M,h(·) and Q∗M,h(·) (shorthand for V π∗

M,h and Qπ∗

M,h respectively). In subsequent notation,
if the MDP M is clear by context, we will eliminate the subscript for conciseness.

2.1.2 Bellman equations for MDPs

The value function of a given policy in an MDP can be expressed using a set of fixed point equations
derived from the principles of dynamic programming (Bellman, 1952; Bertsekas and Tsitsiklis,
1996). For V π

h : S → [0, H] and Qπ
h → [0, H], we have:

Qπ
h(s, a) = Es′∼Ph(·|s,a)

[
Rh(s, a) + V π

h+1(s′)
]

V π
h (s) = Ea∼πh(s) [Qπ

h(s, a)] . (2.4)

We will also use the shorthand Qπ
h(s, π′(s)) for the term Ea∼π′(s) [Qπ

h(s, a)]. The value function for
the termination timestep H is always set to 0: Qπ

H(s) = 0,∀s ∈ S, π.
From (2.4), we can see that the value function of a policy is governed by a system of linear

equations over the variables Qπ ∈ [0, H]SAH .
Similar to the case of policy evaluation, dynamic programming also allows us to express the
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optimal value function and policy as the solution of a set of fixed point equations:

Q∗h(s, a) = Es′∼Ph(·|s,a)

[
Rh(s, a) + V ∗h+1(s′)

]
V ∗h (s) = max

a∈A
Q∗h(s, a). (2.5)

The optimal policy can be shown as the greedy policy with respect to the optimal Q∗ value function:

π∗h(s) = argmax
a∈A

Q∗h(s, a). (2.6)

Since, we will use the greedy policy with respect to a function frequently, we use the notation
πf (s) = argmaxa∈A f(s, a) to denote the greedy policy with respect to an action-value function f .

The one-step update to the value function Qh+1 in the equations plays an important role in a
lot of methods, and for ease of exposition, we will denote the one-step backup of any function
f : S ×A → R by the Bellman optimality operator as follows:

(Thf)(s, a) = Rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′∈A

f(s′, a′)

]
. (2.7)

The Bellman optimality equation in (2.5) can then be succinctly written as Q∗h = ThQ∗h+1 for all
h ∈ [H]. Similarly, using the policy-specific Bellman equation in (2.4), we can also define a
Bellman operator T π:

(T πh f)(s, a) = Rh(s, a) + Es′∼Ph(·|s,a)
a′∼π(s′)

[f(s′, a′)] . (2.8)

In both cases, whenever clear by context, we remove the subscript h for succinctness.

2.1.3 Planning in an MDP

In this section, we review classical methods used to evaluate policies or computing optimal policies
and value functions for an MDP. For a more comprehensive and quick overview, the reader can refer
to the first part of the RL book by Sutton and Barto (2018). The planning problem in RL requires
the agent to compute the optimal policy π∗M for a given MDP M . Beginning with the problem
of policy evaluation, we will see that all of the following algorithms follows naturally from the
Bellman operators dictating the structure of the corresponding functions.

2.1.3.1 Policy evaluation

Policy evaluation is the problem of computing the value function V π or the value of a policy vπ for
an MDP M . We describe two common methods used for policy evaluation below:
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Monte-Carlo policy evaluation Monte-Carlo estimation is a direct method of estimating the
value function of a policy in a given MDP. We refer to it as the direct method as it doesn’t require
any knowledge of the model of the MDP and uses randomly sampled trajectories for the estimation.

Since the total reward an agent observes is a random variable dependent on the trajectory seen in
an episode, we can simply run the policy for different episodes for sufficient number of times and
average the total reward: For all states s ∈ S, h ∈ [H], we repeat the following procedure:

1. Collect n trajectories of length H − h starting from state s using policy π.

2. Estimate the value function estimate as V̂ π
h =

∑n
i=1

∑H−1
h′=h r

(i)
h .

The accuracy of the estimated value function maxs,h

∣∣∣V π
h (s)− V̂ π

h(s)
∣∣∣ can be established by using

standard concentration inequalities like Hoeffding’s bound (Theorem A.1) with the bounded random
variable in range [0, H]. In case we are only interested in vπ, we can simply simulate a number of
episodes with the initial state sampled from the initial state distribution µ. The key benefit of using
this direct estimation method is that we don’t need a sample set whose size scales polynomially
with the size of the MDP. We will utilize this fact at various points in this thesis.

Next, we review a class of methods which relies on the Bellman equations for estimating
value functions; an approach called bootstrapping in RL (estimating unknowns using estimates of
unknown quantities).

Iterative policy evaluation When the agent has full knowledge or an estimate of the model of the
MDP, we can use a dynamic programming algorithm to compute the value function in the backward
order from step H to 0 using operator T πh . For h = H − 1, H − 2 . . . , 0, we compute the value
function as follows:

Qπ
h = T πh Qπ

h+1. (2.9)

As the reader would note, performing an exact Bellman update requires full knowledge of the
reward function and the transition dynamics. When the agent does not have access to a full model
of the MDP, a sample based method can be used to compute an approximate value function Q̂π

h such
that: Q̂π

h = T̂ πh Q̂h+1. When we use such an estimate to compute/update value functions with an
approximate Bellman backup T̂ πh (bootstrapping), the accuracy of the computed estimate is also
affected by the error in performing the Bellman backup. The following result from Munos (2007)
shows how the worst case value error can be bounded in terms of the Bellman backup error:

Lemma 2.1 (Error propagation in policy evaluation (Munos, 2007)). Suppose that for each level

h ∈ [H], we have
∣∣∣∣∣∣T̂ πh Q̂π

h+1 − T πh Q̂π
h+1

∣∣∣∣∣∣
∞

= sups,a

∣∣∣(T̂ πh Q̂π
h+1

)
(s, a)−

(
T πh Q̂π

h+1

)
(s, a)

∣∣∣ ≤ ε,
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then for all h ∈ [H] we have: ∣∣∣∣∣∣Q̂π
h −Qπ

h

∣∣∣∣∣∣
∞
≤ (H − h)ε.

Proof. By definition, we know that
∣∣∣∣∣∣Q̂π

H −Qπ
H

∣∣∣∣∣∣
∞

= 0. Now, for any h ∈ [H], we have:

∣∣∣∣∣∣Q̂π
h −Qπ

h

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣Q̂π

h − T πh Q̂π
h+1

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣T πh Q̂π

h+1 − T πh Qh

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣T̂ πh Q̂π

h+1 − T πh Q̂π
h+1

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣Q̂π

h+1 −Qπ
h+1

∣∣∣∣∣∣
∞

≤ ε+
∣∣∣∣∣∣Q̂π

h+1 −Qπ
h+1

∣∣∣∣∣∣
∞
.

Therefore, by unrolling the recursion, we can establish the result for all h ∈ [H].

In a range of learning methods, where either an approximate model M̂ ≡ (R̂, P̂ ) is used or a
direct sample based backup is performed, we will employ this result to bound the approximation
error for any given policy.

2.1.3.2 Value iteration

We now move our attention to planning where the agent computes the optimal value function V ∗h
and the optimal policy π∗h. In value iteration, we again use dynamic programming from step H − 1

to step 0, but now apply the Bellman optimality operator in (2.7). Therefore, with Q∗H(·) = 0, for
h = H − 1, H − 2 . . . , 0, we compute the optimal value function as follows:

Q∗h = ThQ∗h+1. (2.10)

Similar to the policy evaluation problem, we can show an error bound when an approximate Bellman
optimality backup T̂h(·) is used instead of exact updates. By estimating the optimal value function
as Q̂∗, we can use the greedy policy with respect to this estimate as our behavior policy. In this case,
in addition to the approximation error in the value function, we also quantify the value loss when
the greedy policy π̂∗ = πQ̂∗ is used instead of π∗:

Lemma 2.2 (Error propagation and value loss in Q∗ (Singh and Yee, 1994; Munos, 2007)). In

approximate value iteration, if for all h ∈ [H], we have
∣∣∣∣∣∣T̂hQ̂∗h+1 − ThQ̂∗h+1

∣∣∣∣∣∣
∞
≤ ∞, then the

following holds: ∣∣∣∣∣∣Q̂∗h −Q∗h∣∣∣∣∣∣∞ ≤ (H − h)ε∣∣∣∣Qπ̂∗

h −Q∗h
∣∣∣∣
∞ ≤ (H − h)2ε.
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Proof. The first part follows similarly as the previous result in Lemma 2.1. For the second part,
note that T π̂∗h Q̂∗h+1 = ThQ̂∗h+1 as it is the greed operator. Thus, we get:

∣∣∣∣Qπ̂∗

h −Q∗h
∣∣∣∣
∞ ≤

∣∣∣∣∣∣T π̂∗h Q̂∗h+1 − ThQ∗h+1

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣T π̂∗h Qπ̂∗

h+1 − T π̂
∗

h Q̂∗h+1

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣Q̂∗h+1 −Q∗h+1

∣∣∣∣∣∣
∞

+
∣∣∣∣Qπ̂∗

h+1 −Q∗h+1

∣∣∣∣
∞ +

∣∣∣∣∣∣Q̂∗h+1 −Q∗h+1

∣∣∣∣∣∣
∞

≤
∣∣∣∣Qπ̂∗

h+1 −Q∗h+1

∣∣∣∣
∞ + 2(H − h− 1)ε

≤ (H − h)2ε.

In the reinforcement learning setting, we will repeatedly use an approximate model or simply a
regression based approximate Bellman backup to estimate Q∗. As such, Lemma 2.2 will be used
often in the subsequent text.

2.1.3.3 Policy Iteration

In policy iteration, we iterate in the policy space using a series of strict policy improvements.
Starting from an arbitrary policy π0 and iterate to improved policies as follows: for any policy
iterate πt, (1) compute the value function V t

h using any policy evaluation method, and (2) update
the policy to πt+1 := πV t . We are essentially performing greedy improvements in the policy space
using intermediate policy evaluation steps.

We know that if a greedy policy is chosen using the exact value function, then the policy improves
monotonically, i.e., V t+1

h (s) ≥ V t
h(s) for all state action pairs and the improvement is strict for at

least on (s, a) pair. Using this guarantee, we know that the policy iteration procedure terminates in
AS steps. For further details, refer to Bertsekas and Tsitsiklis (1996) and Scherrer (2016).

2.1.4 State-action representations in an MDP

The representation of the state-action space as used by the agent for learning in a given environment
has a strong impact on its sample efficiency. Depending on how the state-action space is processed
internally by the agent, the complexity (both computational and statistical) can scale according to
the actual size of the MDP, say O(poly(S,A,H)), or the effective size of the MDP as considered
by the agent (which can be much smaller than the environment size). Below, we describe the major
representational settings from the RL literature we consider in this paper.
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2.1.4.1 Tabular representation

When the state action space of a given MDP M is discrete and finite in size, the agent can use a
represent different quantities relevant to an MDP on a per state-action pair basis. As maintaining
such a set of values is akin to storing a table of inputs and outputs in a table of size poly(S,A),
these methods are referred to as tabular methods. In Section 2.2, we will see that the minimax
rates for learning in tabular environments scale polynomially with the size of the state-action space.
For the tabular case, we can characterize different learning algorithms in the following two broad
categories:

Model-based algorithms We call a method, model-based, when the learning agent builds an
estimate P̂ h(·|s, a) of the transition model of the MDP Ph((·|s, a)) for all s ∈ S, a ∈ A, h ∈ [H]

(and possibly the reward function for each (s, a) pair). In some cases, instead of maintaining a
direct estimate of the model, the agent can store proxy quantities which can be effectively used for
a model-based estimate later. In tabular MDPs, this can be simply expressed as a space complexity
condition that the agent stores O(SAH)-many quantities. A popular example for this approach
would be building a certainty-equivalent MDP where the agent stores the count of each transition
tuple seen so far: nh(s, a, s′) for each tuple (s, a, s′, h). Using this, we can build a CE estimate of
the MDP as:

P̂ h(s
′|s, a) =

nh(s, a, s
′)∑

s̄∈S nh(s, a, s̄)
.

In later sections and chapters, we will see that in addition to such a model, the agent can also
maintain a measure of uncertainty for each (s, a, s′) tuple to use that during learning. In this thesis,
we use such tabular model-based methods in Chapter 3.

Model-free algorithms Another approach for reinforcement learning in the tabular framework is
to directly work with a value function and/or a policy. In that case, the agent maintains a function
of form f : S × A → R which can be stored in a table of size O(SA). Prominent examples of
learning algorithms which use such a strategy are: Q-learning (Watkins and Dayan, 1992), sarsa
(Sutton, 1996) and policy gradient methods (Sutton et al., 2000).

Note We include the following brief points on model-based vs. model-free RL below:

(i) Until recently, the folklore assumption was that model-free methods are statistically inefficient
when compared to model-based methods, even under tabular settings. However, the recent
paper on optimistic Q-learning by Jin et al. (2018) shows that a version of Q-learning which
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uses uncertainty-based bonuses achieves near-optimal performance guarantees which had
been shown for model-based methods only.

(ii) Noting this recent result, Sun et al. (2019) state that the space complexity interpretation
of model-based vs model-free algorithms does not provide any insight in the case where
function approximation is used in learning instead of tabular estimates. Consequently, they
define model-free algorithms as a class of algorithms which do not access the states s ∈ S
directly but only through a functional interface of state-action function class G. For such cases,
they provide an exponential separation result for factored MDPs (Kearns and Koller, 1999)
between model-free and model-based algorithms. In this thesis, in model-based methods,
we will always build and use a transition model whereas for model-free algorithms, we will
directly operate in the value function space (Chapter 5).

(iii) In addition to purely model-based and model-free methods, hybrid methods have also been
studied in the literature. The most popular and representative example of such methods is
Dyna (Sutton, 1991).

2.1.4.2 State abstractions

When the state space for a given MDP is large, then a polynomial dependence on S is not plausible.
A direct way of handling large state spaces is to map the raw state space to a smaller finite abstract

state space. This map φ of clustering states into smaller finite groups is referred to as state abstraction
and has been studied extensively in the literature. Thus, for an agent using a state abstraction φ, any
function f : φ ◦ S → R is defined under the state abstraction and will have the same value for states
which map to the same abstract state, i.e., if φ(s1) = φs2 , then f(s1) = f(s2), where we overload
the notation for f to lift the mapping from S to φ ◦ S .

Clearly, the main benefit of using a state abstraction is the statistical advantage it brings in
via controlling the size of the abstract MDP. Noting the behavior of tabular methods, the sample
complexity of learning in the abstract MDP would now scale with the size of the abstraction
|{φ(s)}s∈S |. However, operating under the abstract MDP can lead to a loss of information and any
model, value function or state-action mapping that can be learnt in the abstract MDP will deviate
from the true function, thereby, affecting the agent’s value. Therefore, improving the statistical
efficiency by controlling estimation errors is in direct contrast with the approximation error suffered
under the abstraction.

Ideally, a state abstraction is a map which group states such that the difference in a quantity
of interest is sufficiently small. In Li et al. (2006), the author proposes a range of approximation
notions for state abstractions which preserve the optimal policy/value or value of all policies or the
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transition model and rewards of the MDP. The last notion, known as model-irrelevance abstraction
is the strongest notion of state abstraction and it defined as follows:

Definition 2.1 (Model-irrelevant abstraction). For an MDP M := (S,A, P, R,H), a state abstrac-

tion φ is considered to be (εr, εp)-approximately model-irrelevant if, ∀s1, s2 ∈ S with φ(s1) = φ(s2),

a ∈ A and x ∈ φ(S), we have:

|R(s1, a)−R(s2, a)| ≤ εr and

∣∣∣∣∣∣
∑

s′∈φ−1(x)

P (s′|s1, a)−
∑

s′∈φ−1(x)

P (s′|s2, a)

∣∣∣∣∣∣ ≤ εp.

This strong notion of model-irrelevance was first proposed by Givan et al. (2003) as bisimulation

(εr = εp = 0) and an approximate notion was studied later in Ferns et al. (2004). In Chapter 3
and Chapter 4, we use such abstractions in the analysis or show a hardness result about abstraction
selection from a given class. Further, in Chapter 5, we give another representation selection result
which implies a sample efficiency result where the agent to select a sufficiently accurate abstraction
from a given candidate abstraction class.

2.1.4.3 Finite dimensional features as a representation

Another method of handling large state in RL is to use an expressive feature map φ : S ×A → Rd

instead of the raw state action variables. For instance, a state abstraction can be equivalently
considered as a |φ(S)|-dimensional feature representation which represents each partition as a
one-hot encoding vector.3

Similar to the abstraction setting, for these finite dimensional features, depending on the structural
properties of the representation, we can learn in a sample efficient way and only pay a sample
complexity which depends on the dimension d instead of the actual cardinality of the state-action
space. However, the expressivity assumptions required for such a Euclidean feature representation
is quite different from abstractions, as the agent still needs to learn in a non-tabular MDP. The most
popular way to use a feature representation is to consider a class of value fuctionsF : φ◦(S×A)→
Rd or policy class Π : φ ◦ (S)→ ∆(A) during learning.

The simplest function approximation class that is considered in the literature is linear function

approximation. Given a feature map φ : S ×A → Rd, we can define a class of linear functions as
F = {f(s, a;w) = 〈φ(s, a), w〉 : w ∈ Rd, ||w||2 ≤ B} for some bounded set of parameters w ∈ Rd.
Using F , we can estimate the value function of a given policy or use iterative methods to learn a
sufficiently accurate approximation of the optimal value function. Reinforcement learning with
linear function approximation has been studied extensively over the years (including but not limited

3A tabular MDP simply uses an SA-dimensional one-hot encoding as feature representation during learning.
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to Bradtke and Barto (1996); Tsitsiklis and Van Roy (1997); Parr et al. (2008); Sutton et al. (2009))
and has garnered the attention of the RL theory community in the past few years.

For online learning in MDPs, depending on the quantity the agent is trying to estimate, we
can consider a hierarchy of expressivity assumptions for the representation φ during learning: (1)
φ can approximate the optimal value function Q∗ (or V ∗ or both) with small worst case error
minw ||〈φ(s, a), w〉 −Q∗(s, a)||∞ ≤ ε, (2) φ can approximate the value function Qπ of any policy
π with small worst case error minw maxπ ||〈φ(s, a), w〉 −Qπ(s, a)||∞ ≤ ε or stronger conditions
which imply more expressivity. A series of recent works (Du et al., 2019b) has shown that for online
learning in an MDP, just being able to approximate Qπ or Q∗ is not enough for sample efficient
RL as the agent has to incur a sample complexity which can be exponential in the dimension in
the worst case scenario. On the other hand, for planning Weisz et al. (2021b) recently showed that
query-efficient planning is possible with polynomial query complexity for O(1)-sized action space
whereas an exponential lower bound can be shown when A = O(poly(d,H)) (Weisz et al., 2021a).

In contrast to these negative results, a few structural assumptions have been proposed for learning
in MDPs wherein linear function approximation can be used to learn a near-optimal policy in a
sample efficient manner. A recent prominent example is that of a low-rank MDP which makes a
linear expressivity assumption in the model space instead of just the value function or policy:

Definition 2.2 (Yang and Wang (2019); Jin et al. (2020)). A given MDP is called a linear/low-rank

MDP with embedding dimension d if all the transition operators Ph : S × A → ∆(S) admits a

low-rank structure. A transition operator is said to admit a low rank representation if there exists a

feature map φ : S ×A → Rd and µ : S → Rd such that:

∀s, a ∈ S ×A, Ph(s
′|s, a) = 〈φ(s, a), µ(s′)〉 .

In Jin et al. (2020), the authors show that if the feature φ for a low-rank MDP is known to the
agent, their proposed algorithm LSVI-UCB can learn a near-optimal policy in a sample efficient
manner. The key result is that the agent only incurs a sample complexity which is polynomial in the
embedding dimension d which can be much smaller than the size of the state space. In Chapter 5,
we study a representation learning setting for low-rank MDPs where the agent is not given the true
feature φ∗ but a class of realizable representations Φ. Our work constitutes the first model-free
result in this representation learning setting.

Similar to low-rank MDPs, in Chapter 4 we propose another structural assumption, which is
now commonly studied under the umbrella term linear mixture MDPs. We propose and analyse a
sample efficient algorithm for this class of MDPs. In addition to these linearity assumptions in the
model space, a few other sufficient conditions are also known for sample efficient feature based RL.
We discuss another sufficiency condition in Section 2.2.4. For more details, we refer the reader to
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Du et al. (2019b).

2.1.5 Alternative MDP settings

Here, we discuss the aspects of the problem setup which are stylized/specific to this thesis and are
often formulated in an alternate manner:

Episodic vs infinite horizon Our definition of value function corresponds to an episodic setting
where the agent interacts with the environment in episodes of fixed lengths H . This can also be
used to characterize environments with a bounded horizon instead of a fixed one. A common
alternative choice is to consider a continuing setting where the agent interacts with the environment
for an infinite number of timesteps without any reset to a state sampled from an initial state
distribution. The value function for such scenarios can be defined as an average reward V π(s) :=

limT→∞
1
T

∑T
t=0 Eπ [rt(st, at)], or as a discounted value function V π(s) :=

∑T
t=0 Eπ [γtrt(st, at)]

where γ ∈ (0, 1) is a discount factor. The Bellman optimality and evaluation operators described in
the previous sections can be stated for the average reward criteria as well as the discounted reward
criteria. For average reward, in order to obtain learning guarantees, additional conditions on the
connectivity of the MDP, like ergodicity or communicating properties are required. Such alternative
criteria will not be considered in this thesis.

Reward distribution In our formalization for all chapters, we have assumed that the instantaneous
reward lies in the range [0, 1]. This is only used for the simplicity of the analysis and can be extended
to unbounded rewards with sub-Gaussian or sub-Weibull distributions.

Single reward maximization vs reward free learning In the reinforcement learning problem
that we have discussed so far, we only considered the definition of value functions for a single
reward and outlined the planning and approximation aspects for a single reward. However, in
many learning scenarios, the agent’s goal is to learn a sufficiently expressive representation of
the environment using exploration such that any reward function R(·) in a given class R can be
optimized later on. This reflects a many-goals setting for the agent and is applicable in many
practical scenarios. We refer to this setting as a reward-free learning setting and it will be the main
focus of Chapter 5.

States vs observations In this thesis, we consider environments which can be modeled as a MDP.
The main assumption here is that a perfect ‘state’ is observed by the agent such that the history
can be disregarded in decision making. However, in many scenarios, the environment can mimic a
controlled hidden Markov model where an underlying latent state space dictates the evolution of a
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given trajectory. The agent, instead of observing the states directly, observes an observation o ∈ O
which can depend on the underlying latent state. This setting has been studied in detail under the
framework of POMDPs, but will not be considered in this thesis. However, we will use a stylized
result about a latent state representation for a low-rank MDP in Chapter 5.

2.2 Interaction Protocols and Sample Efficiency Criteria

In this section, we discuss the reinforcement learning problem wherein the agent actively interacts
with an environment in order to maximize the utility after or even during the learning period. In the
planning problem discussed in the previous section, the agent had full knowledge of the MDP M or
access to a sampling sub-routine for (P,R) which allows access to the underlying model for (s, a)

pairs. Hence, the key challenge in the planning problem is computational where the agent does
not need to learn the model M ≡ (P,R). In this thesis, our focus will be on the learning problem
where the agent has to interact with the environment to learn a near-optimal policy.

Since the agent doesn’t know the model of the MDP M , in the different interaction protocols
that we discuss below, the agent has to adaptively collect data by choosing actions according to
some policy. This dissertation considers the statistical aspect of RL in which the desiderata is to
behave optimally or compute the optimal policy in this interactive setup in a sample efficient manner.
Central to the learning problem is the well known explore-exploit tradeoff: the agent has to collect
informative data which allows it to estimate the optimal policy and/or value function (read explore),
while simultaneously balancing it to exploit the collected data to behave near-optimally. We will
see that different interaction protocols motivate different evaluation metrics, which in turn, lead to
various explore-exploit paradigms.

Another key aspect of sample efficient RL is that of generalization and temporal credit assign-

ment. The generalization aspect arises when the environment that the agent interacts with is rich
enough that maintaining a tabular model and/or value function is no longer feasible. In such a
scenario, we can utilize any available structure in the state space and the model of the MDP to
establish a functional mapping for a policy π and its value function V π. The agent is then required
to generalize what it sees on a subset of states to the larger state space. In this thesis, we propose
and/or study a range of linear structures which allow us to use such function approximation schemes
in a statistically efficient manner.

Temporal credit assignment refers to the problem of attribution of the value obtained by the
agent in any episode to any (or a sequence of) action(s) taken in an episode. The framework of value
functions and dynamic programming allows provides us with the basic tools and techniques for this
aspect. During learning, the central challenge will be to adequately deal with the statistical and
approximation errors which arise when one uses bootstrapping or Monte-Carlo methods to learn
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(approximate) value functions. This is one of the two key aspects, in addition to explore-exploit
tradeoff, that separates reinforcement learning from other learning paradigms.

Below, we describe the different interaction protocols that we study in this thesis and the different
performance measures associated with them. For each criteria, along with the performance metric
and the problem setup, we also outline the general algorithmic approaches used to devise sample
efficient algorithms. As some of the use cases for the formal frameworks studied in this thesis are
based in personalized healthcare, we will take that as an example to provide an intuition behind
each efficiency criteria.

In subsequent chapters, we will build upon these basic templates to propose and analyze provably
sample efficient methods in varying problem settings.

2.2.1 Online learning in MDPs

The online interaction protocol is the most general interactive setting considered in the literature.
Here, the agent directly interacts with a given MDP M in a sequence of episodes with each episode
starting with a varying or a fixed initial state distribution. The key factor here is that the agent is
evaluated throughout this interaction and has to adaptively balance exploration and exploitation over
all episodes. Therefore, there is no distinction between a data collection phase and the evaluation
phase as is done in supervised learning. This evaluation metric models the over-arching goal of
RL where an agent situated in any environment can learn to optimally behave in the world without
incurring a large average cost. The learning protocol is as follows: For every episode t = 1, 2, . . .

1. Agent chooses a policy πt using previous trajectories τ1:t−1.

2. Using policy πt, obtain a trajectory τt = {(st,0, at,0, rt,0), (st,1, at,1, rt,1), . . . (st,H)}.

3. Obtain total reward
∑H−1

h=0 rt,h for the t-th episode.

We now describe the two common measures for online performance evaluation along with a
baseline algorithm below:

2.2.1.1 PAC-efficient online learning

The evaluation criteria for an agent under the online provably approximately correct (PAC) RL
framework is to consider the number of mistakes made by the agent during the interaction. For each
episode t, the agent is considered to have incurred a mistake if the value of the agent’s policy in that
episode vt ≡ vπtMt

is more than ε sub-optimal compared to the true value v∗t ≡ v∗Mt
, i.e., v∗t − vt ≥ ε.
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Definition 2.3 (PAC Mistake Bound). Given a sequence of MDPs Mt for t = 1, 2, . . ., an agent is

said to be statistically PAC efficient with mistake bound Mistake (T, ε, δ), if for every ε > 0, 0 <

δ < 1, the agent’s policies π1, . . . , πT satisfies the following:

T∑
t=1

1 [v∗t − vt ≥ ε] < Mistake (T, ε, δ)

with probability at least 1− δ.

The above measure has also been referred to as the sample complexity of reinforcement learning
in previous works (Kakade, 2003; Strehl and Littman, 2005) and is inspired by the notion of sample
complexity from the seminal paper on the algorithm E3 by Kearns and Singh (2002).

PAC mistake bounds in RL have been studied for tabular MDPs in the RL literature. A popular
algorithmic scheme for efficient learning is using the optimism under uncertainty principle. Under
the framework, the agent maintains confidence intervals for its estimates P̂ h(·) and R̂h(·) and uses
them to adaptively explore the important but uncertain state-action pairs. Some algorithms like E3

have a distinction between exploration and exploitation episodes while most algorithms like RMAX

(Brafman and Tennenholtz, 2002), MBIE-EB (Strehl and Littman, 2005), UBEV (Dann et al., 2017)
etc. redefine/perturb the reward optimistically to account for the planning error in value iteration.
The table below highlight the PAC bounds for influential algorithms from previous literature.4

Algorithm PAC-Bound Time Space

RMAX (Brafman and Tennenholtz, 2002) Õ
(
S2AH5

ε3

)
O (THS2A) O (S2A)MBIE-EB (Strehl and Littman, 2005) Õ

(
S2AH6

ε3

)
ORLC (Dann et al., 2019) Õ

(
SAH2

ε2

)
DELAYED Q-LEARNING (Strehl et al., 2006) Õ

(
SAH8

ε4

)
O (TH) O (SA)

Table 2.1: PAC mistake bounds for popular algorithms. The use of O(SA) space in DELAYED

Q-LEARNING shows the model-free nature of the method. Dann et al. (2017) showed that ORLC
allows near-optimal performance guarantees for all performance measures in this section. For more
details, refer to Section 2.2.3.

In Chapter 3, we will propose sample complexity bounds in RL for a multi-task setting with
RMAX as our base algorithm in the analysis. For a comparison between PAC and other efficiency
criteria, we refer the reader to Section 2.2.3.

4Until recently, PAC-RL bounds have been studied in the infinite horizon setting where a mistake is defined on a per
state-action pair basis. Specifically, it counts the number of (sh, ah) pairs encountered during the interaction such that
the agent’s policy at that time for the pair is sub-optimal: V πh(sh, ah) ≤ V ∗(sh, ah)− ε.
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2.2.1.2 Online regret minimization

The mistake bound criteria in the previous section counted the number of sub-optimal steps/episodes
as encountered by the agent during its interaction with the environment. Another ubiquitous
efficiency criteria from the online learning literature is the notion of regret. The total regret incurred
by an agent over a sequence of T episodes is the sum of optimality gaps across all episodes.
Formally, we can define regret as follows:

Definition 2.4 (Regret bound.). For t = 1, 2, . . ., given a sequence of MDPs Mt, an agent satisfies a

high-probability regret bound, f(T, δ), if for any 0 < δ < 1, the agent’s policies π1, . . . , πT satisfy

the following inequality:

Regret(T ) :=
T∑
t=1

v∗t − vt ≤ f(T, δ),

with probability at least 1− δ.

Regret minimization has been studied in the field of online for a long time for a range of full-
information feedback to partial-information feedback problems. For MDPs, the first regret like
setting was studied by Burnetas and Katehakis (1997) where their proposed approach, based on
index policies, was shown to incur an asymptotic regret proportional to log T . However, a major
advance in the regret analysis of MDPs is due to the seminal work in Jaksch et al. (2010) where the
authors propose and analyze the UCRL2 algorithm and show a O(SH3/2

√
AT ) regret bound for the

average reward criteria in the infinite horizon setting.5 Below, we describe the major algorithmic
approaches for regret minimization in reinforcement learning.

Optimism in the face of uncertainty (OFU) This approach is reminiscent of the UCB algorithm
for multi-armed bandits where a confidence interval is used for tackling the explore-exploit tradeoff.
The UCRL2 algorithm in Jaksch et al. (2010) is based on the OFU principle wherein, the agent
builds a confidence set Psa for the parameters P (·|s, a) for all state action pairs such that, with high
probability, P (·|s, a) ∈ Psa. Using this confidence set, the agent computes a policy π̂ such that
π̂ := π∗

M̂
where M̂ = argmaxM∈M v∗M . Here,M is the confidence set on the complete MDP built

by using the confidence set over the next state distributions and reward functions. This procedure is
usually referred to as optimistic planning.

Another approach to solve the optimistic planning problem is to add value function bonuses in a
value iteration scheme such that with high probability, the final value function Q̂h(s, a) ≥ Q∗h(s, a)

for all state-action pairs and levels. This technique has recently been used in recent minimax optimal

5In infinite horizon problems, a quantity known as the diameter of the MDP plays the effective role of the horizon.
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algorithms for tabular MDPs like Azar et al. (2017) with construction of improved confidence sets
on the value functions. Further, the OFU template has also been used in feature based exploration;
for instance, Jin et al. (2020) proposed the LSVI-UCB algorithm for linear MDPs using an elliptic
bonus based algorithm based on the OFU algorithms in contextual linear bandits.

Randomized exploration methods Another popular approach for efficient exploration is to
use sampling based approaches as first studied in Thompson (1933). For MDPs, Osband et al.
(2013) proposed the Posterior sampling in RL (PSRL) algorithm based on the Thompson sampling
approach. This Bayesian approach considers the case where the agent uses a prior distribution over
the MDP parameters during learning. Specifically, using the data collected in previous episodes, the
agent maintains a posterior distribution over MDP parameters. At the beginning of each episode, the
agent samples an MDP from this posterior and acts according to the optimal policy of the sampled
MDP. The analysis in Osband et al. (2013) shows that the algorithm suffers a Bayesian regret of
the same order as UCRL2. Here, the Bayesian regret measures the total sub-optimality across T
episodes and averages it according to the prior distribution.

Another approach for randomization, is to use randomized value bonuses instead of sampling
from a posterior. These randomized approaches are often considered to be better on an average
instance as they do not attempt to account for the worst case behavior during learning like OFU
algorithms. Recently, Russo (2019) showed that the randomized exploration algorithm RLSVI

incurs a regret of order Õ(
√
T ) in the worst case. This was the first worst-case regret bound for

randomized exploration methods in reinforcement learning. Below, we show regret bounds for
popular regret minimizing algorithms in Table 2.2.

Algorithm PAC-Bound Template

UCRL2 (Jaksch et al., 2010) Õ
(
H3/2S

√
AT
)

OFU

ORLC (Dann et al., 2019) Õ
(
H
√
SAT

)
OFU

UCB-VI (Azar et al., 2017) Õ
(
H
√
SAT

)
OFU

EULER (Zanette and Brunskill, 2019) Õ
(√
Q∗SAT

)
OFU

UCB-Q-Bernstein (Jin et al., 2018) Õ
(√

H3SAT
)

OFU

PSRL (Osband et al., 2013) Õ
(
H3/2S

√
AT
)

Posterior

RLSVI (Russo, 2019) Õ
(
H3S3/2

√
AT
)

Randomized bonus

Table 2.2: Regret guarantees for popular algorithms. In EULER, Q∗ denotes a conditional variance
term for the value function and can be much smaller than the horizon H in certain cases. The
guarantee for PSRL is a Bayesian regret bound.

We use these two approaches in Chapter 3 in this thesis for proposing regret minimizing al-
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gorithms. Specifically, in Section 3.4, we propose both optimistic and randomized exploration
algorithms with worst-case regret guarantees for contextual MDPs under generalized linear map-
pings.

2.2.2 Best policy identification à la the train-then-test paradigm

Another popular evaluation criteria for studying the sample efficiency of reinforcement learning
algorithm is inspired from the supervised learning literature. In the PAC framework for super-
vised learning, an algorithm is called PAC-efficient if the returned hypothesis for any sample
training dataset is ε-optimal with probability at least 1 − δ, for a sample size that is of order
O(poly(d, 1/ε, 1/δ)) (d is a problem relevant structural parameter). For MDPs, Fiechter (1994)
proposed the first supervised learning stype PAC analysis. In this thesis, we will define PAC criteria
as follows:

Definition 2.5 (PAC bound for RL). An algorithm is called PAC-efficient, if for any given MDP M ,

it returns a policy πT after T = O(poly(S,A,H, 1/ε, 1/δ)) episodes, such that, with probability at

least 1− δ, we have: vπT ≥ v∗ − ε.

When the size of the state space is large and a feature φ : S × A →∈ Rd is given to the agent
for learning, we desire a PAC bound which is polynomial in (d,H, 1/ε, 1/δ). In Chapter 4, we will
see that an expressive feature map coupled with an underlying linear structure, allows us to devise
exploration algorithms which are PAC efficient under this criteria. Below, we describe the PAC
guarantees for recent methods which have been proposed in the literature.

Algorithm PAC-Bound Template

UCFH (Dann and Brunskill, 2015) Õ
(
SAH2

ε2

)
Tabular

ORLC (Dann et al., 2019) Õ
(
SAH2

ε2

)
Tabular

OLIVE (Jiang et al., 2017) Õ
(
M2AH3

ε3

)
General function approximation

Table 2.3: PAC bounds for popular algorithms. For OLIVE, the authors proposed a structural
measure called Bellman rank which can be used to characterize the sample complexity for RL when
using general function approximation. For tabular MDPs, M = SA.

2.2.3 Translating one efficiency criteria to another

It is often desirable to have algorithms which guarantee efficiency for multiple evaluation criteria
instead of just one. In Dann et al. (2017), the author proposed the idea of uniform-PAC and studied
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the implication of performance guarantee under one criteria to another. Below, we briefly discuss
such conversions:

1. Mistake bounds vs. regret: An algorithm which has a regret guarantee, as described in the
previous section, cannot be converted to an algorithm with a mistake bound. Since only
the total regret is bounded under the regret criteria, the agent can encounter infinitely many
episodes such that the sub-optimality ∆t is higher than a given threshold ε.

On the other hand, if an algorithm has a finite mistake bound of O(ε−1), then it satisfies
a O(T 2/3) high-probability regret bound for a specific T = Θ(ε−3). Further, for expected
regret, a lower bound of Ω(T 2/3) can be shown.

2. Regret vs. PAC bounds: If an algorithm satisfies a PAC guarantee of O(ε−β), it can be
converted to a regret bound of O(T β/(1+β)) for fixed T . The idea here is to run the PAC
algorithm for T1 = ε−β episodes and then use the returned policy for the remaining T − T1

steps.

On the other hand, for an algorithm with a regret guarantee, we can not obtain a high-
probability PAC-efficient algorithm. However, the following guarantee can be given: suppose
the algorithm satisfies a regret guarantee of O(T 1−α). Now, if we run this algorithm for T
episodes and then select a policy at random from π1, . . . πT , with constant probability, we can
guarantee that the policy is O(T−α) optimal.

For more details, the reader can refer to the discussion in Dann et al. (2017) and Jin et al. (2018).

2.2.4 Learning from offline data in RL

In many application domains, it is infeasible to run an online algorithm directly in the environment
(for instance, healthcare domains). In such settings, we can however use any historical interaction
data which has already been collected to optimize and/or evaluate decision making policies. As such,
in these cases, instead of requiring an RL algorithm which actively interacts with the environment to
collect data and learn a good policy, we instead need sample-based evaluation and planning methods.
Formally, in these settings, we assume that a dataset Dh :=

{
s(i), a(i), r(i), s′(i)

}n
i=1

is given to
the agent for all levels. The desiderata is to evaluate and/or learn an optimal policy to sufficient
accuracy by using polynomially many samples. Note that, this setting is inherently different from
the three criteria discussed previously. Here, the exploration problem is essentially disregarded,
and therefore, does not share the same algorithmic structure as the exploration algorithms from the
previous sections.
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Policy evaluation using batch data Offline policy evaluation considers the problem of evaluating
the value of a policy πe when a dataset of trajectories collected from a behavior policy πb is given. If
the behavior policy πb is known, we can use importance sampling methods, where, the importance
ratios ρh = πe(ah|sh)/πb(ah|sh) are used. The step wise importance sampling estimator can be
then used as follows:

v̂e =
n∑
i=1

H−1∑
h=0

ρ
(i)
0:hr

(i)
h

where ρ(i)
0:h denotes the product of importance ratios from h = 0 to h for the i-th trajectory. These

IS estimators provide an unbiased estimate of the value of any evaluation policy. However, it is
well known that these importance sampling estimates suffer from high variance which can scale
exponentially with the horizon.

Another approach is to use regression based estimators, which use the Bellman policy evaluation
operator in (2.9) in a recursive manner based on the sampled dataset: let V̂ H = 0 and for h =

H − 1, . . . , 0, evaluate:

Q̂h(s, a) = ESTIMATE (EPh [Rh(s, a) + Vh+1(s′)])

Here, ESTIMATE can be any procedure based on applying function approximation to fit a model
(Jong and Stone, 2007), or approximate dynamic programming methods which directly fit a value
function using a chosen value function class (Dann et al., 2014). These estimators do not suffer from
an exponential variance issue, but do however, introduce statistical bias in the estimates. Recently a
range of methods which combine such function approximation methods with importance sampling
schemes have been studied (Jiang and Li, 2016; Thomas and Brunskill, 2016).

Sample-based planning In this case, the goal is to use the given dataset {Dh}h∈[H] to learn a near
optimal policy for the reward function. Here, we briefly describe fitted Q-iteration (FQI), which is
a sample based approximate dynamic programming method to compute the optimal value function
of a policy. The idea here is to evaluate the Bellman optimality operator recursively from h = H to
h = H − 1, . . . , 0. Specifically, let fh ∈ Fh be the estimate of the value function at step h, where
Fh is the function class being used for approximation. FQI solves for such a function iteratively by
minimizing the following squared loss:

LDh(f, fh+1) =
1

n

n∑
i=1

(
f
(
s(i), a(i)

)
− rh

(
s(i), a(i)

)
−max

a′
fh+1

(
s′(i), a′

))2
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In FQI, the agent estimates the value function as f̂h := argminf∈Fh LDh
(
f, f̂h+1

)
for all h ∈ [H].

Finally, it returns the greedy policy πf̂ with respect to the estimate f̂ .
For a finite sample analysis of such sample based approximations, various conditions are required

for near-optimality (Antos et al., 2008; Chen and Jiang, 2019). Specifically, the following three
assumptions are usually taken in the general case:

1. Realizability: For all levels h ∈ [H], the optimal value function lies in the hypothesis class:
Q∗h ∈ Fh.

2. Closedness: For all levels h ∈ [H], Thf ∈ Fh for any f ∈ Fh+1.

3. Exploratory dataset: The data set Dh is exploratory in nature such that if the sampling
distribution is µ, i.e. (sh, ah) ∼ µh, then there exists a constant C which satisfies: P

π
h(s,a)

µh(s,a)
≤ C

for any policy π and pair (s, a). Here, Pπh(s, a) denotes the probability of seeing pair (s, a) at
level h when using policy π. The constant C is referred to as the concentrability coefficient in
the literature.

Of the three conditions outlined above, realizability is the most natural one and is standard in
supervised learning theory as well. The second condition of closedness is something specific to
these approximate DP methods where we have to control the per iteration approximation error for f̂h
against the best possible fit of Thf̂h+1 (see Lemma 2.2). Lastly, the exploratory dataset is required
to guarantee that the approximation error at each level is small for any possible roll-in distribution
at level h. The stated condition is one of the strongest conditions assumed in the literature and
different variations also exist (see (Scherrer, 2014) for a comparison).

Finally, Chen and Jiang (2019) recently provided a simplified analysis which showed that an

ε-optimal policy can be learnt using FQI with probability at least 1− δ, by using O
(
H8C2 log

|F|
δ

ε4

)
samples. In addition to FQI, a range of approaches have been studied for different settings and
assumptions (see Uehara et al. (2021); Xie and Jiang (2021); Jin et al. (2021) and reference therein).

In Chapter 5, we will investigate a representation learning problem for low-rank MDPs where
we will use the described FQI algorithm as our main offline planning primitive.

Offline vs off-policy RL The term offline RL is often confused with off-policy RL which consti-
tutes a major class of learning algorithms in RL. In off-policy RL, the agent is not given a dataset
which has been collected offline, and instead, interacts with the environment by taking actions.
The ‘off-policy’ aspect here refers to the mismatch between the actions used in making updates
in the agent’s functions vs the actual actions taken by the current behavior policy. A popular
instance for this is the well-known Q-learning method where the update for the Q-value is given as
Qt+1(st, at) = (1− α)Qt(st, at) + α (rt(st, at) + γmaxa′∈AQt(st+1, a

′)). Here, instead of using
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the action at+1 taken by the agent at the next step, the update equation uses the greedy action, and
is hence, an off-policy update. Due to this commonly occurring misconception, offline RL is also
referred to as batch RL, fixed-dataset policy optimization or learning with offline data in the existing
literature.

2.3 Learning and Control in Linear Dynamical Systems

In the previous sections of this chapter, we have discussed the background and different learning
settings for fixed-horizon episodic MDPs. (Episodic) MDPs are considered the most basic and
fundamental model for reinforcement learning and as such have been a focus for the RL theory
community. On the empirical side, one of the key applications of RL has been in the domain of
robotics. In these robotics domains, the agent has to learn in a continuous control setting which
has been studied extensively in the field of optimal control theory. As such, the RL community has
shown a renewed interest in developing a non-asymptotic theory for linear-quadratic control, one of
the fundamental problems in optimal control. In Chapter 6, we consider an online learning problem
in a multi-task LQR problem. Here, we give a brief background on LQR and discuss recent results
on system identification (model-learning) and optimal adaptive control (online exploration) in LQR
systems.

Note The problem setting and results for LQR is substantially different from the MDP setting
discussed earlier. As such, for the background in this section and the main results in Chapter 6,
we use a different notation which conforms to the standard notation used in the optimal control
community.

2.3.1 A brief introduction to LQR

Optimal control deals with the problem of operating a dynamical system while incurring minimum
total cost. Linear quadratic control is the specialized instance where the dynamical system is
governed by a system of linear equations and the cost is a quadratic function of the state variable
and control inputs. We consider the problem of controlling a discrete time linear time-invariant
system where the system state x(t) ∈ Rdx evolves with time as follows:

x(t+ 1) = A∗x(t) +B∗u(t) + η(t+ 1), (2.11)

where u(t) ∈ Rdu is the control input and η(t) ∈ Rdx is the noise process. The pair of matrices
A∗ ∈ Rdx×dx and B∗ ∈ Rdx×du are referred to as system (or dynamics) matrices, which we briefly
denote as Θ∗ = [A∗|B∗].
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The systems matrices are unknown to the learning agent and the goal is to adaptively select the
control inputs u(t) to minimize the following average cost6:

min lim
T→∞

1

T
E

[
T∑
t=0

x(t)>Rxx(t) + u(t)>Ruu(t)

]
(2.12)

s.t. x(t+ 1) = A∗x(t) +B∗u(t) + η(t+ 1)

where Rx ∈ Rdx×dx and Ru ∈ Rdu×du are positive definite cost matrices for the problem. The
optimal control policy for this infinite horizon problem is obtained by solving the Hamilton-Jacobi-
Bellman equation and is given by a constant linear state feedback:

u(t) = K∞(A∗, B∗)x(t) whereK∞(A∗, B∗) = (Ru +B>∗ P∞(A∗, B∗)B∗)
−1B>∗ P∞(A∗, B∗)A∗

(2.13)

Here, P∞(A∗, B∗) ∈ Rdx×dx is obtained as the solution of the discrete algebraic Riccati equation
(DARE):

P = Rx + A>∗ PA∗ − A>∗ PB∗(Ru +B>∗ PB∗)
−1B>∗ PA∗ (2.14)

When the LQR system (A∗, B∗) is stabilizable (defined later), it is well-known (eg. Kučera
(1972)) that there exists a unique positive semi-definite solution P∞(A∗, B∗) to the DARE equation
in (2.14). The matrix P∞(A∗, B∗) also leads to the value function equation which is given by
J ∗(A∗, B∗) = minK JA∗,B∗(K) where JA∗,B∗(K) is the average cost when a state feedback K is
used.

Notation. We will z(t) ∈ Rdx+du to denote the concatenated vector z(t)> := [x(t)>|u(t)>]. We
use K(Θ∗) and P (Θ∗) for the matrices K∞(Θ∗) and P∞(Θ∗) for simplicity. For any square matrix
A ∈ Rn×n, ρ(A) denotes the spectral radius ρ(A) := max(|λ1|, . . . , |λn|) where λi ∈ C are the
eigenvalues.

In addition, we will frequently refer to the following properties of LQR system matrices in our
discussion:

Definition 2.6 (Stabilizability). The linear dynamical system Θ is called stabilizable if there exists

a state feedback K such that ρ(A+BK) < 1.

Definition 2.7 (Controllability). The linear dynamical system Θ is called controllable if the con-

trollability Grammian [A AB A2B . . . Adx−1B] has full row rank.
6Note that for infinite horizon stochastic LQR problem, we are considering an average reward criteria, which is

different than the total reward criteria in the episodic MDP setting. For more discussions, see Section 2.1.5.
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Intuitively, stabilizability implies that there exists a control policy which can prevent the state
variable from blowing up and can be used to drive the state down to a 0 value. Similarly, controlla-
bility implies that there for any target state x and T ≥ dx, there exists a sequence of control inputs
u(0), u(1), . . . , u(T −1) such that x(T ) = x. Note that stabilizability is weaker than controllability:
all controllable systems are stabilizable but the converse is not true.

2.3.2 System identification in LTI systems

A key problem in learning and control for LQR systems is to estimate the parameters of the
underlying open-loop (u(t) = 0) or closed loop system (A = A∗ + B∗K), usually referred to
as system identification. In the next section, we will see that a simple identification procedure
for estimating the system matrices (A∗, B∗) can be coupled with a perturbed controller to get
near-optimal finite time learning guarantees. Thus, in this section, we discuss the problem of system
identification for linear time-invariant dynamical systems (LTIDS) which evolves according to the
Vector Auto-regressive (VAR) process:

x(t+ 1) = Ax(t) + η(t+ 1). (2.15)

Above, A ∈ Rd×d denotes the transition matrix of the system and η(t + 1) is a mean zero noise
process. Note that the above setting includes systems that have longer memories and every state
vector depends on multiple previous states. That is thanks to the commonly used concatenation
technique that stacks state vectors in a larger new state which follows (6.4) (Faradonbeh et al.,
2018a). If there is a lag of size q in the memory of a system of dimension d0, then the new states
will be of dimension d = qd0.

The statistical aspects of a linear system as described in (2.15) is dictated by the Jordan forms
of matrix A. For matrix A, its Jordan decomposition is A = P−1ΛP , where Λ is a block diagonal
matrix; Λ = diag(Λ1, . . .Λq), and for i = 1, . . . q, each block Λi ∈ Cli×li is a Jordan matrix of the
eigenvalue λi. A Jordan matrix of size l for λ ∈ C is

λ 1 0 . . . 0 0

0 λ 1 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 λ 1

0 0 0 . . . 0 λ


∈ Cl×l.

The temporal evolution of LTIDS introduces a number of technical challenges, not present in
iid data. First, for the LTIDS to be able to operate for a decent time period, the state trajectories
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in (2.15) need to be non-explosive in the sense that the spectral radius of the transition matrix A
can be slightly larger than unit (Juselius et al., 2002). Further spectral properties of the transition
matrices such as block-sizes in the Jordan decomposition of A are important as well, as follows. In
Figure 2.1, we plot the logarithm of the magnitude of state vectors for linear systems of dimension
d = 32. The figure on the left depicts stable systems and indicates the effect of the block-sizes l in
the Jordan decomposition of the transition matrices for l = 2, 4, 8, 16. So, it demonstrates that the
state vector scales exponentially with l.

Moreover, the case of transition matrices with eigenvalues close to, or on the unit circle is
provided in the right panel in Figure 2.1. It illustrates that in the latter case, the state vectors grow
polynomially as a function of time T . Finally, the recursive nature of (2.15) introduces dependencies
between the observed data and the noise term, which require careful handling to establish the
theoretical results.

(a) λmax(A) < 1 (b) λmax(A) ≈ 1

Figure 2.1: Logarithm of the magnitude of the state vectors vs time, for different block-sizes (l) in
the Jordan forms of the transition matrices.

Algorithm 2.1 OLS algorithm for system identification
1: Input: Data z(0), . . . , z(T − 1), x(T ) for given LQR system.
2: return [Â, B̂] and Σ =

∑T−1
t=0 z(t)z(t)>, where

Â, B̂ := argmin
A,B

t−1∑
t=0

||x(t+ 1)− [A|B] z(t)||22 (2.16)
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2.3.3 Online adaptive control in LQR

During learning, the system matrices are unknown to the agent and the goal is to adaptively choose
cnotrol inputs U(t) and use the state observations over T rounds to minimize the incurred cost∑T−1

t=0 =
∑T−1

t=0 x(t)′Rxx(t) + u(t)′Ruu(t). The cost matrices Rx and Ru are known to the agent.
In an online stochastic LQR control problem, the goal of the agent is to minimize the regret incurred
by the agent as compared to the optimal linear controller:

Regret(A∗, B∗, T ) =

[
T−1∑
t=0

c(x(t), u(t))

]
− TJ ∗(A∗, B∗) (2.17)

In the subsequent portion of this section, we briefly outline the two major approaches to achieve
near-optimal regret guarantees for online adaptive control in LQR. The results of all discussed
papers are summarized in Table 2.4.

Work Regret Setting K0 Approach
Abbasi-Yadkori and Szepesvári (2011) (dx + du)

(dx+du)
√
T C No

OFUFaradonbeh et al. (2020d)
√
T S Yes

Lale et al. (2020) poly(d)
√
T S/C No

Faradonbeh et al. (2020c)
√
T S Yes

CEMania et al. (2019)
√

(dx + du)3T C Yes
Simchowitz and Foster (2020)

√
max(dx, d2

u)dxT S Yes

Table 2.4: Notable no-regret results for Online Adaptive LQR.
S := Stabilizable, C := Controllable, K0 := requires initial stabilizing controller.

2.3.3.1 Algorithms using optimism in the face of uncertainty

In early work on LQR systems, typically a forced exploration scheme was used where exploratory
actions are taken according to a fixed and appropriately designed schedule. Campi and Kumar (1996)
proposed an exploration method which they call Bet on the Best (BOB) principle where a high-
probability confidence set is built for the system parameters and an optimal controller for the pair
with the minimum cost is chosen. However, in their analysis, Campi and Kumar (1996) only show
an asymptotic result that the optimistic policy converges to the optimal policy in the limit. Using a
similar OFU principle, Abbasi-Yadkori and Szepesvári (2011) implement an optimistic controller
by constructing a high-probability confidence set similar to linear bandits and MDPs, as described
in Section 2.2.1.2. The confidence set is built by using techniques from self-normalized processes
(see Lemma A.4) to bound the least squares estimation error for the estimator in Algorithm 2.1.
Specifically, using the martingale bounds for a self-normalized martingale process Lemma A.4,
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Abbasi-Yadkori and Szepesvári (2011) derived a high probability confidence set of the following
form:

Ct(δ) =
{

Θ ∈ Rdx+du : tr
(

(Θ̂−Θ∗)
>Vt(Θ̂−Θ∗)

)
≤ βt(δ)

}
where Vt = λI +

∑t−1
s=0 z(s)z(s)> and we have P[Θ∗ ∈ Ct(δ), t = 1, 2, . . .] ≥ 1 − δ. Given this

confidence set, the control policy is selected optimistically: Θ̃t = argminΘ∈Ct(δ) J∗(Θ). Along
with the confidence set construction, the authors assume that the parameter Θ∗ belongs to a bounded
set and each system belonging to this set is controllable.

Faradonbeh et al. (2020d) also propose an optimism based online adaptive control algorithm but
enforce a weaker assumption of stabilizability instead of controllability. Another key difference
of the algorithm here is that instead of estimating A∗ and B∗ separately using least squares over
input-output pairs (z(t), x(t + 1)), the closed loop matrix Dt = A∗ + B∗K(Θ̃t) is estimated for

each round such that P
[∣∣∣∣∣∣∣∣V 1/2

t

(
D̂t −Dt

)>∣∣∣∣∣∣∣∣ ≥ βt(δ)

]
≤ δ with Vt =

∑t−1
s=0 x(s)x(s)>. In this

case, the confidence set is defined as the set Γt of all system matrices Θ such that the closed-loop
matrix A + BKt belongs to the confidence set. The overall confidence set is thus updated as
Ct(δ) = Ct−1(δ)∩Γt where Γt is the high-probability closed-loop matrix confidence set. The regret
result for this algorithm is again a high-probability regret bound of order Õ(

√
T ). In contrast to the

algorithm in Abbasi-Yadkori and Szepesvári (2011), the authors here require access to an initial
bounded stabilizing set C0 such that for every Θ ∈ C0, the system will be stable if the optimal
feedback K∞(Θ) is applied.

Finally, in a recent preprint Lale et al. (2020), the OFU principle is augmented by using
additional forced exploration leading to the algorithm EXPOPT. The authors show that EXPOPT

can get polynomial dimension dependence in the Õ(
√
T ) regret bound for both stabilizable and

controllable settings. The main idea in their algorithm is to add exploration to the optimistic
controller: u(t) = K(Θ̃t) + g(t) where gt ∼ N (0, σ2

g) is a Gaussian perturbation. This additional
persistent excitation is added to the policy for an initial exploration phase Tw leading to a regret
guarantee of Õ

(
(dx + du)

dx+du
√
Tw + poly(d)

√
T − Tw

)
. The exploration phase length doesn’t

scale with T , hence, the polynomial in dimension regret guarantee.

Episode schedule In the regret decomposition used in these papers, it has been shown that a large
number of changes to the policy Kt lead to larger total regret. As such, all these algorithms proceed
in epochs based on a doubling scheme. In Abbasi-Yadkori and Szepesvári (2011) and Lale et al.
(2020), the optimistic control policy is updated only when the determinant of the design matrix
Vt has doubled since the last controller update. It can be easily shown that the total number of
policy changes for such a doubling scheme scales as O (log T ). Similar to this, a simpler and direct
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doubling scheme is used in Faradonbeh et al. (2020d) where the length of epoch i scales as Õ (γi)

for a reinforcement rate γ which again implies logarithmic number of policy changes.

2.3.3.2 Certainty equivalent control with persistent excitation

In quite an exciting development, it has recently been shown that for LQR systems, careful explo-
ration via optimism or randomization is not required and one can instead get away with a more
straightforward approach: certainty equivalence. In a certainty equivalent controller, a model of the
system is fit to observed transition data and a control policy is designed by treating the estimate as
the truth.

The first Õ
(√

T
)

-regret result for a certainty equivalent controller was shown in Faradonbeh
et al. (2020c). The authors showed that certainty equivalent controller coupled with ε-greedy
exploration can achieve Õ

(√
T
)

regret when a stabilizing controller K0 is known apriori. In the
proposed perturbed greedy regulator, the control policy is set in epochs of doubling lengths such
that u(t) = K(Θ̂t) + g(t) where gt ∼ N (0, σ2

t I). Here, σ2
t ∝ 1

τ2t γ
τt/2

where τt is the epoch length.
A similar result for certainty equivalence was shown in Mania et al. (2019) where a perturbation

analysis for the solution to the DARE equation in (2.14) is made. Specifically, it is shown that if
the estimates (Â, B̂) for the system matrices (A∗, B∗) satisfy ‖Â− A∗‖ ≤ ε and ‖B̂B −B∗‖ ≤ ε

for some ε > 0, then the nominal controller K(Θ̂) achieves Ĵ − J∗ ≤ C(A∗, B∗, Rx, Ru)ε
2. The

aforementioned guarantee is obtained using the following two steps:

1. Perturbation (sensitivity) analysis of DARE solution: use Riccati perturbation theory to show
that if ‖Â − A∗‖ ≤ ε and ‖B̂ − B∗‖ ≤ ε, then the solutions to the Riccati equation satisfy
‖P̂ − P‖ ≤ f(ε) where f(ε) = Õ(ε).

2. Mismatch between nominal controller and optimal controller: using the perturbation bound
on P̂ , show that we also have ‖K̂ −K‖ ≤ Õ(f(ε)) which in turn implies J (K) − J∗ ≤
(dx + du)C(A∗, B∗, Rx, Ru)f(ε)2.

In the end-to-end learning algorithm, in each epoch, the agent checks if the estimates (Â, B̂) of the
system matrices are accurate enough for the Riccati perturbation bounds to come into effect. If true,
it can be shown that the certainty equivalent controller is stabilizing and incurs low regret. In case
of failure, the agent falls back to the stabilizing controller K0 for the epoch, and adds exploratory
noise with constant scale.

Finally, in Simchowitz and Foster (2020), the authors refine the perturbation analysis in Mania
et al. (2019) and show a bound on ‖P̂ − P‖ when the estimates satisfy ‖Â − A‖2

F ≤ ε and
‖B̂ − B‖2

F ≤ ε. Consequently, they also use a perturbed certainty equivalence controller to
show a regret bound of Õ

(√
max(dx, d2

u)dxT
)

and therefore show an improved dependence on
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the dimensions dx, du and horizon T (ignoring log factors) when du � dx
7. In addition to the

improved regret bound, their work also relaxes the controllability assumption in Mania et al. (2019)
to stabilizability.

In Chapter 6, we study a multi-task LQR control problem where we propose the first joint control
procedure for LQR systems, under the assumption that the transition matrices share a common basis.
Our control algorithm is based on the certainty equivalent controller, as proposed and analyzed by
Simchowitz and Foster (2020).

7This upper bound is for the case where the noise process wt is a martingale process and is not assumed to be
independent.
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CHAPTER 3

Online Learning in Contextual Markov Decision
Processes

Reinforcement learning is considered to be an ideal framework for tackling sequential decision
making problems with potential applications ranging from web advertising and portfolio opti-
mization, to healthcare applications like adaptive drug treatment. However, despite the empirical
success of RL in simulated domains such as boardgames and video games, it has seen limited
use in real world applications because of the inherent trial-and-error nature of the paradigm. In
addition to these concerns, for the applications listed above, we have to essentially design adaptive
methods for a population of users instead of a single system. In this chapter, we address these two
concerns in the following manner: (1) we model the interaction via a contextual Markov decision
processes framework which accounts for the heterogeneity in the population while utilizing a shared
structure and (2) we propose sample efficient online learning algorithms for a variety of structural
assumptions on how different environments in the population relate to each other. In this setting,
an RL agent interacts with multiple tasks in a sequence and the goal is to adaptively optimize the
behavior policy, in such a way that utilizes the shared structure across all tasks, while at the same
time, exploits the idiosyncratic properties to adapt to each task individually. We show formally
that an agent can utilize a task representation during learning under the assumption that the MDP
parameters share a structured mapping via this idiosyncratic representation. The chapter proposes
and analyzes provably efficient exploration algorithms under the PAC and regret criteria for varying
contextual mappings.

3.1 Introduction

Consider a basic sequential decision making problem in healthcare, namely that of learning a
treatment policy for patients to optimize some health outcome of interest. One could model the
interaction with every patient as a Markov Decision Process (MDP). In precision or personalized
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medicine, we want the treatment to be personalized to every patient. At the same time, the amount
of data available on any given patient may not be enough to personalize well. This means that
modeling each patient via a different MDP will result in severely suboptimal treatment policies.
The other extreme of pooling all patients’ data results in more data but most of it will perhaps not
be relevant to the patient we currently want to treat. We therefore face a trade-off between having a
large amount of shared data to learn a single policy, and, finding the most relevant policy for each
patient. A similar trade-off occurs in other applications in which the agent’s environment involves
humans, such as in online tutoring and web advertising.

A key observation is that in many personalized decision making scenarios, some side information
is available about individuals which might help in designing personalized policies and also help pool
the interaction data across the right subsets of individuals. Examples of such data include laboratory
data or medical history of patients in healthcare, user profiles or history logs in web advertising, and
student profiles or historical scores in online tutoring. The use of such side information can also be
found in RL literature: Ammar et al. (2014) developed a multi-task policy gradient method where
the context is used for transferring knowledge between tasks; Killian et al. (2016) used parametric
forms of MDPs to develop models for personalized medicine policies for HIV treatment.

Access to such side information should allow learning of better policies even with a limited
amount of interaction with individual users. We refer to this side-information as context and adopt
an augmented model called Contextual Markov Decision Process (CMDP) proposed by Hallak et al.
(2015). We assume that contexts are fully observed and available before the interaction starts for
each new MDP.1 In this chapter, we study the efficiency of learning in CMDPs when contexts can
potentially be generated adversarially. We consider two concrete settings of learning in a CMDP
with continuous contexts: (1) individual MDPs vary smoothly with the contexts and (2) a stronger
structural assumption, where the MDP parameters are obtained by a (generalized) linear function of
the context. Our results highlight the hardness of learning for the general assumption of smoothness
and shows that linearity, as a structural assumption, allows us to design provably efficient learning
methods for CMDPs.

Chapter outline The remaining chapter is organized as follows: Section 3.2 sets up the contextual
MDP problem formally along with preliminary background. In Section 3.3, we study the CMDP
setting under the mistake bound criteria (described in Section 2.2.1.1) for two structural assumptions:
(1) smoothly varying contextual mappings (Section 3.3.1), and, (2) linearly parameterized CMDPs
(Section 3.3.3). Section 3.4 studies the problem under the regret criteria (described in Section 2.2.1.2)
for a generalized linear setting and subsumes the linear case analyzed in Section 3.3.3. Finally, we

1Hallak et al. (2015) assumes latent contexts, which results in significant differences from our work in application
scenarios, required assumptions, and results. See detailed discussion in Section 3.5.
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conclude the chapter in Section 3.5 with a brief discussion of the results.

3.2 Problem Setup

In this section, we describe the problem formulation, followed by the interaction protocol between
the environment and the learner.

Problem setup and notation We consider a contextual episodic MDP problem where the agent
receives additional side information about the MDP dynamics before each episode. Below we
formally introduce the contextual model, inspired by Hallak et al. (2015):

Definition 3.1 (Contextual MDP). A contextual Markov Decision Process (CMDP) is defined as a

tuple (X ,S,A,M) where X is the context space (assumed to lie in some Euclidean space), S is

the state space, and A is the action space.M is a function which maps a context x ∈ X to MDP

parametersM(x) = {Px(·|·, ·), Rx(·, ·), µx(·)}.

The MDP for a context x is denoted by Mx. For simplification, the initial state distribution is
assumed to be the same irrespective of the context and rewards are assumed to be bounded between
0 and 1. We denote |S|, |A| by S,A respectively. We also assume that the context space is bounded,
and for any x ∈ X the `2 norm of x is upper bounded by some constant.

Protocol and Efficiency Criterion We consider the online learning scenario with the following
protocol: For t = 1, 2, . . .:

1. Observe context xt ∈ X .

2. Choose a policy πt (based on xt and previous episodes).

3. Experience an episode in Mt ≡Mxt using πt.

Note that we do not make any distributional assumptions over the context sequence. Instead, the
context sequence can be chosen in an arbitrary and potentially adversarial manner. For conciseness,
we will use the notation (Pt, Rt) to denote the contextual mappings Pxt , Rxt .

A natural criteria for judging the efficiency of the algorithm is to look at the number of episodes
where it performs sub-optimally. Therefore, we consider the PAC-mistake bound criteria that we
discussed in Section 2.2.1.1 and propose a sample complexity analysis for two structural assumptions
in Section 3.3. Although, we do give PAC bounds for the algorithms given below, the reader should
make note that, we have not made explicit attempts to achieve the tightest possible result. We use
the RMAX (Brafman and Tennenholtz, 2002) algorithm as the base of our construction to handle
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exploration-exploitation because of its simplicity. Our approach can also be combined with the other
PAC algorithms (Strehl and Littman, 2005; Dann and Brunskill, 2015) for improved dependence on
S, A and H .

Another way to evaluate an agent in this online CMDP setting would be to look at the regret
incurred by the agent (Section 2.2.1.2) and analyze the total suboptimality of the agent’s actions over
a sequence of T episodes. Hence, in Section 3.4, we consider a contextual MDP setting where the
underlying structure is parameterized by a generalized linear map. We propose and analyse provably
efficient optimistic/randomized exploration methods and generalize and improve the previously
analyzed linear CMDP algorithms.

3.3 Algorithms for CMDPs with Mistake Bound Guarantees

In this section, we consider two concrete settings of learning in a CMDP with continuous contexts.
In the first setting, the individual MDPs vary in an arbitrary but smooth manner with the contexts,
and we propose our COVER-RMAX algorithm in Section 3.3.1 with PAC mistake bounds. The
innate hardness of learning in this general case is captured by our lower bound construction in
Section 3.3.2. To show that it is possible to achieve significantly better sample complexity in more
structured CMDPs, we study the setting where contexts create linear combinations of a finite set
of fixed but unknown MDPs. We use the KWIK (Knows What It Knows) framework to devise the
KWIKLR-RMAX algorithm in Section 3.3.3 and also provide a PAC upper bound for the algorithm.

3.3.1 Mistake bounds for smooth contextual MDP

The key motivation for our contextual setting is that sharing information/data among different
contexts might be helpful. A natural way to capture this is to assume that the MDPs corresponding
to similar contexts will themselves be similar. This can be formalized by the following smoothness
assumption:

Definition 3.2 (Smoothness). Given a CMDP (X ,S,A,M) and a distance metric over the context

space dis(·, ·), if for any two contexts x1, x2 ∈ X , we have the following constraints:

||Px1(·|s, a)− Px2(·|s, a)||1 ≤ Lpdis(x1, x2)

|Rx1(s, a)−Rx2(s, a)| ≤ Lrdis(x1, x2)

then, the CMDP is referred as a smooth CMDP with smoothness parameters Lp and Lr.

Throughout this section, the distance metric and the constants Lp and Lr are assumed to be
known. This smoothness assumption allows us to use a modified version of RMAX (Brafman and
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Tennenholtz, 2002) and provide an analysis for smooth CMDPs similar to existing literature on PAC
bounds in MDPs (Kearns and Singh, 2002; Strehl et al., 2009; Strehl and Littman, 2005). Given the
transition dynamics and the expected reward functions for each state-action pair in a finite MDP,
computing the optimal policy is straightforward. The idea of RMAX is to distinguish the state-action
pairs as known or unknown: a state-action pair is known if it has been visited enough number of
times, so that the empirical estimates of reward and transition probabilities are near-accurate due
to sufficient data. A state s becomes known when (s, a) is known for all actions a. RMAX then
constructs an auxiliary MDP which encourages optimistic behaviour by assigning maximum reward
(hence the name RMAX) to the remaining unknown states. The optimal policy in the auxiliary MDP
ensures that one of the following must happen: 1) it achieves near-optimal value, or, 2) it visits
unknown states and accumulates more information efficiently.

Formally, for a set of known states K, we define an (approximate) induced MDP M̂K in the
following manner. Let n(s, a) and n(s, a, s′) denote the number of observations of state-action
pair (s, a) and transitions (s, a, s′) respectively. Also, let

∑n(s,a)
i=1 r(i)(s, a) denote the total reward

obtained from state-action pair (s, a). For each s ∈ K, define the values

PM̂K(s′|s, a) =
n(s, a, s′)

n(s, a)
,

RM̂K
(s, a) =

∑n(s,a)
i=1 r(i)(s, a)

n(s, a)
.

(3.1)

For each s /∈ K, define the values as PM̂K(s′|s, a) = 1{s′ = s} and RM̂K
(s, a) = 1.

RMAX uses the certainty equivalent policy computed for this induced MDP and performs
balanced wandering (Kearns and Singh, 2002) for unknown states. Balanced wandering ensures
that all actions are tried equally and fairly for unknown states. Assigning maximum reward to the
unknown states pushes the agent to visit these states and provides the necessary exploration impetus.
The generic template of RMAX is given in Algorithm 3.1.

Algorithm 3.1 RMAX Template for CMDP
1: INITIALIZE(S,A,X , ε, δ)
2: for each episode t = 1, 2, · · · do
3: Receive context xt ∈ X
4: Set K, M̂K using PREDICT(xt, s, a) for all (s, a). π ← π∗

M̂K
5: for h = 0, 1, · · ·H − 1 do
6: if sh ∈ K then
7: Choose ah := πh(sh)
8: else
9: Choose ah : (sh, ah) is unknown

10: UPDATE(xt, sh, ah, (sh+1, Rh))
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For the contextual case, there would be an infinite number of such MDPs. The idea behind our
algorithm is that, close enough contexts can be grouped together and be considered as a single
MDP. Utilizing the boundedness of the context space X , we can create a cover of X with finitely
many balls Br(oi) of radius r centered at oi ∈ Rd. The bias introduced by ignoring the differences
among the MDPs in the same ball can be controlled by tuning the radius r. Doing so allows us to
pool together the data from all MDPs in a ball, so that we avoid the difficulty of infinite MDPs and
instead only deal with finitely many of them. The size of the cover, i.e. the number of balls, can be
measured by the notion of covering numbers (see Section 5.1 in Wainwright (2019)), defined as

N (X , r) = min{|Y| : X ⊆ ∪y∈Y Br(y)}.

The resulting algorithm, COVER-RMAX, is obtained by using the subroutines in Algorithm 3.2, and
we state its sample complexity guarantee in Theorem 3.1.

Algorithm 3.2 COVER-RMAX

function INITIALIZE(S,A,X , ε, δ)
Create an r0-cover of X with r0 = min

(
ε

8HLp
, ε

8Lr

)
Initialize counts for all balls B(oi)

function PREDICT(x, s, a)
Find j such that x ∈ B(oj)
if nj(s, a) < m then

return P̂ x(·|s, a) and R̂x(s, a) using (3.1)
else

return unknown
function UPDATE(x, s, a, (s′, r))

Find j such that x ∈ B(oj)
if nj(s, a) < m then

Increment counts and rewards in B(oj)

Theorem 3.1 (PAC bound for COVER-RMAX). For any input values 0 < ε, δ ≤ 1 and a CMDP

with smoothness parameters Lp and Lr, with probability at least 1−δ, the COVER-RMAX algorithm

produces a sequence of policies {πt} which yield at most

O

(
NH4SA

ε3

(
S + ln

NSA

δ
ln
N

δ

))

non-ε-optimal episodes, where N = N (X , r0) and r0 = min
(

ε
8H2Lp

, ε
8HLr

)
.

Proof. We first of all carefully adapt the analysis of RMAX by Kakade (2003) to get the PAC bound
for an episodic MDP. Let m be the number of visits to a state-action pair after which the model’s
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estimate P̂ (·|s, a) for p(·|s, a) has an `1 error of at most ε/4H2 and reward estimate R̂(s, a) has an
absolute error of at most ε/4H . We can show that:

Lemma 3.2. Let M be an MDP with the fixed horizon H . If π̂ is the optimal policy for M̂K

as computed by RMAX, then for any starting state s0, with probability at least 1 − 2δ, we have

V π̂
M ≥ V ∗M − 2ε for all but O(mHSA

ε
ln 1

δ
) episodes.

Now instead of learning the model for each contextual MDP separately, the algorithm combines
the data within each ball. To control the bias induced by sharing data, the radius r for the cover
is set to be r ≤ r0 = min

(
ε

8H2Lp
, ε

8HLr

)
. Further, the value of m, which is the number of visits

after which a state becomes known for a ball, is set as m =
128(S ln 2+ln SA

δ
)H4

ε2
. This satisfies the

assumptions in Lemma 3.2, whereby, we obtain an upper bound on number of non-ε episodes in a
single ball (generated by COVER-RMAX) as O

(
H5SA
ε3

(
S + ln SA

δ
ln 1

δ

))
with probability at least

1− δ.
Setting the individual failure probability to be δ/N(X , r0) and using the union bound, we get

the stated PAC bound. A detailed proof can be found in Section 3.8.1.1.

The obtained PAC bound has linear dependence on covering number of the context space. In case
of a d-dimensional Euclidean metric space, the covering number is of the order O( 1

rd
). However,

we show in Section 3.3.2, that, the dependence on the covering number is at least linear in the worst
case and indicate the difficulty of optimally learning in such cases.

3.3.2 Hardness of online learning in smooth contextual MDPs

We prove a lower bound on the number of sub-optimal episodes for any learning algorithm in a
smooth CMDP which shows that a linear dependence on the covering number of the context space
is unavoidable. As far as we know, there is no existing way of constructing PAC lower bounds for
continuous state spaces with smoothness, so we cannot simply augment the state representation to
include context information. Instead, we prove our own lower bound in Theorem 3.3 which builds
upon the work of Dann and Brunskill (2015) on lower bounds for episodic finite MDPs and of
Slivkins (2014) on lower bounds for contextual bandits.

Theorem 3.3 (Lower bound for smooth CMDP). There exists constants δ0, ε0, such that for every

δ ∈ (0, δ0) and ε ∈ (0, ε0), any algorithm that satisfies a PAC guarantee for (ε, δ) and computes

a sequence of deterministic policies for each context, there is a hard CMDP (X ,S,A,M) with

smoothness constant Lp = 1, such that

E[B] = Ω

(
N (X , ε1)H2SA

ε2

)
(3.2)
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where B is the number of sub-optimal episodes and ε1 = 1280εe4

(H−2)
.

The overall idea is to embed multiple MDP learning problems in a CMDP, such that the agent
has to learn the optimal policy in each MDP separately and cannot generalize across them. We show
that the maximum number of problems that can be embedded scales with the covering number, and
the result follows by incorporating known PAC lower bound for episodic MDPs. We refer the reader
to Section 3.8.1.2 for the proof.

3.3.3 KWIKLR-RMAX: A PAC-efficient algorithm for linear CMDPs

From the previous section, it is clear that for a contextual MDP with just smoothness assumptions,
exponential dependence on context dimension is unavoidable. Further, the computational require-
ments of our COVER-RMAX algorithm scales with the covering number of the context space. As
such, in this section, we focus on a more structured assumption about the mapping from context
space to MDPs and show that we can achieve substantially improved sample and computational
efficiency.

The specific assumption we make in this section is that the model parameters of an individual
MDP Mx is the linear combination of the parameters of d base MDPs, i.e.,

Px(s
′|s, a) = x>


P 1(s′|s, a)

...
P d(s′|s, a)

 := x>P (s, a, s′),

Rx(s, a) = x>


R1(s, a)

...
Rd(s, a)

 := x>R(s, a).

(3.3)

We use P (s, a, s′) and R(s, a) as shorthand for the d× 1 vectors that concatenate the parameters
from different base MDPs for the same s, a (and s′). The parameters of the base MDPs (P i and
Ri) are unknown and need to be recovered from data by the learning agent, and the combination
coefficients are directly available which is the context vector x itself. This assumption can be
motivated in an application scenario where the user/patient responds according to her characteristic
distribution over d possible behavioural patterns.

A mathematical difficulty here is that for an arbitrary context vector x ∈ Rd, Px(·|·, ·) is not
always a valid transition function and may violate non-negativity and normalization constraints.
Therefore, we require that x ∈ ∆d−1, that is, x stays in the probability simplex so that Px(·|·, ·) is
always valid.
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3.3.3.1 KWIKLR-RMAX

We first explain how to estimate the model parameters in this linear setting, and then discuss how to
perform exploration properly.

Model estimation Recall that in Section 3.3.1, the COVER-RMAX algorithm treats the MDPs
whose contexts fall in a small ball as a single MDP, and estimates its parameters using data from
the local context ball. In this section, however, we have a global structure due to our parametric
assumption (d base MDPs that are shared across all contexts). This implies that data obtained at a
context may be useful for learning the MDP parameters at another context that is far away, and to
avoid the exponential dependence on d we need to leverage this structure and generalize globally
across the entire context space.

Due to the linear combination setup, we use linear regression to replace the estimation procedure
in (3.1): in an episode with context x, when we observe the state-action pair (s, a), a next-state
snext will be drawn from Px(·|s, a).2 Therefore, the indicator of whether snext is equal to s′ forms
an unbiased estimate of Px(s′|s, a), i.e., Esnext∼Px(·|s,a) [I[snext = s′]] = Px(s

′|s, a) = x>P (s, a, s′).

Based on this observation, we can construct a feature-label pair

(x, I[snext = s′]) (3.4)

whenever we observe a transition tuple (s, a, snext) under context x, and their relationship is governed
by a linear prediction rule with P (s, a, s′) being the coefficients. Hence, to estimate P (s, a, s′) from
data, we can simply collect the feature-label pairs that correspond to this particular (s, a, s′) tuple,
and run linear regression to recover the coefficients. The case for reward function is similar, hence,
not discussed.

If the data is abundant (i.e., (s, a) is observed many times) and exploratory (i.e., the design matrix
that consists of the c vectors for (s, a) is well-conditioned), we can expect to recover P (s, a, s′)

accurately. But how to guarantee these conditions? Since the context is chosen adversarially, the
design matrix can indeed be ill-conditioned.

Observe, however, when the matrix is ill-conditioned and new contexts lie in the subspace
spanned by previously observed contexts, we can make accurate predictions despite the inability to
recover the model parameters. An online linear regression (LR) procedure will take care of this
issue, and we choose KWIKLR (Walsh et al., 2009) as such a procedure.

The original KWIKLR deals with scalar labels, which can be used to decide whether the estimate
of Px(s′|s, a) is sufficiently accurate (known). A (s, a) pair then becomes known if (s, a, s′) is
known for all s′. This approach, however, generally leads to a loose analysis, because there is no

2Here we use snext to denote the random variable, and s′ to denote a possible realization.
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need to predict Px(s′|s, a) for each individual s′ accurately: if the estimate of Px(·|s, a) is close to
the true distribution under L1 error, the (s, a) pair can already be considered as known. We extend
the KWIKLR analysis to handle vector-valued outputs, and provide tighter error bounds by treating
Px(·|s, a) as a whole. Below we introduce our extended version of KWIKLR, and explain how to
incorporate the knownness information in RMAX skeleton to perform efficient exploration.
Identifying known (s, a) with KWIKLR
The KWIKLR-RMAX algorithm we propose for the linear setting still uses RMAX template (Al-
gorithm 3.1) for exploration: in every episode, it builds the induced MDP M̂K, and acts greedily
according to its optimal policy with balanced wandering. The major difference from COVER-RMAX

lies in how the set of known states K are identified and how M̂K is constructed, which we explain
below (see pseudocode in Algorithm 3.3).

At a high level, the algorithm works in the following way: when constructing M̂K, the algorithm
queries the KWIK procedure for estimates P̂ x(·|s, a) and R̂x(s, a) for every pair (s, a) using
PREDICT(x, s, a). The KWIK procedure either returns ⊥ (don’t know), or returns estimates that
are guaranteed to be accurate. If ⊥ is returned, then the pair (s, a) is considered as unknown and
s is associated with Rmax reward for exploration. Such optimistic exploration ensures significant
probability of observing (s, a) pairs on which the method predicts ⊥. If such pairs are observed
in an episode, KWIKLR-RMAX calls UPDATE with feature-label pairs formed via (3.4) to make
progress on estimating parameters for unknown state-action pairs.

Next we walk through the pseudocode and explain how PREDICT and UPDATE work in detail.
Then we prove an upper bound on the number of updates that can happen (i.e., the if condition
holds on line 7), which forms the basis of our analysis of KWIKLR-RMAX.

In Algorithm 3.3, matrices Q and W are initialized for each (s, a) using INITIALIZE(·) and are
updated over time. Let Xt(s, a) be the design matrix at episode t, where each row is a context cτ
such that (s, a) was observed in episode τ < t. By matrix inverse rules, we can verify that the update
rule on line 6 essentially yields Qt(s, a) = (I + X>t Xt)

−1, where Qt(s, a) is the value of Q(s, a)

in episode t. This is the inverse of the (unnormalized and regularized) empirical covariance matrix,
which plays a central role in linear regression analysis. The matrix W accumulates the outer product
between the feature vector (context) c and the one-hot vector label y = ({1[snext = s′]}∀s′∈S)>. It is
then obvious that Qt(s, a)Wt(s, a) is the linear regression estimate of P (s, a) using the data up to
episode t. When a new input vector xt comes, the algorithm checks whether ||Q(s, a)xt||2 is below
a predetermined threshold αS (line 3). Recall that Q(s, a) is the inverse covariance matrix, so a
small ||Q(s, a)xt||2 implies that the estimate Qt(s, a)Wt(s, a) is close to P (s, a) along the direction
of xt, so it predicts Pxt(·|s, a) = x>t P (s, a) ≈ x>t Q(s, a)W (s, a); otherwise returns ⊥. The KWIK

subroutine for rewards is similar hence omitted. To ensure that the estimated transition probability
is valid, the estimated vector is projected onto ∆S−1, which can be done efficiently using existing
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techniques (Duchi et al., 2008).
Below we state the KWIK bound for learning the transition function; the KWIK bound for

learning rewards is much smaller hence omitted here. We use the KWIK bound for scalar linear
regression from Walsh et al. (2009) and the property of multinomial samples to get our KWIK

bound.

Theorem 3.4 (KWIKLR bound for learning multinomial vectors). For any ε > 0 and

δ > 0, if the KWIKLR algorithm is executed for probability vectors Pt(·|s, a), with αS =

min
(
b1

ε2

d3/2
, b2

ε2√
d log(d2S/δ)

, ε
2
√
d

)
with suitable constants b1 and b2, then the number of ⊥’s where

updates take place (see line 7) will be bounded by O
(
d2

ε4
max

(
d2, S2 log2

(
d
δ′

)))
, and, with proba-

bility at least 1− δ, ∀xt where a non-“⊥” prediction is returned,
∣∣∣∣∣∣P̂ xt

t (·|s, a)− pxtt (·|s, a)
∣∣∣∣∣∣

1
≤ ε.

Proof. (See full proof in Section 3.8.1.3.) We provide a direct reduction to KWIK bound for learning
scalar values. The key idea is to notice that for any vector v ∈ RS:

||v||1 = sup
f∈{−1,1}S

v>f.

So conceptually we can view Algorithm 3.3 as running 2S scalar linear regression simultaneously,
each of which projects the vector label to a scalar by a fixed linear transformation f . We require
every scalar regressor to have (ε, δ/2S) KWIK guarantee, and the `1 error guarantee for the vector
label follows from union bound.

Algorithm 3.3 KWIK learning of Px(·|s, a)

function INITIALIZE(S, d, αS)
Q(s, a)← Id for all (s, a)
W (s, a)← {0}d×S for all (s, a)

function PREDICT(x, s, a)
if ||Q(s, a)x||1 ≤ αS then

return P̂ x(·|s, a) = x>Q(s, a)W (s, a)
else

return P̂ x(·|s, a) =⊥
function UPDATE(x, s, a, snext)

if ||Q(s, a)x||1 > αS (“⊥” prediction) then
Q(s, a)← Q(s, a)− (Q(s,a)x)(Q(s,a)x)>

1+x>Q(s,a)x

y ← ({1[snext = s′]}∀s′∈S)>

W (s, a)← W (s, a) + xy

With this result, we are ready to prove the formal PAC guarantee for KWIKLR-RMAX.
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Theorem 3.5 (PAC bound for KWIKLR-RMAX). For any input values 0 < ε, δ ≤ 1 and a linear

CMDP model with d number of base MDPs, with probability 1− δ, the KWIKLR-RMAX algorithm,

produces a sequence of policies {πt} which yield at most

O

(
d2H9SA

ε5
log

1

δ
max

(
d2, S2 log2 dSA

δ

))
non-ε-optimal episodes.

Proof. When the KWIK subroutine (Algorithm 3.3) makes non-“⊥” predictions P̂ x(s, a, s
′), we

require that ∣∣∣∣∣∣P̂ x(·|s, a)− Px(·|s, a)
∣∣∣∣∣∣

1
≤ ε/8H2.

After projection onto ∆S−1, we have:∣∣∣∣∣∣Π∆S−1
(P̂ x(s, a))− Px(·|s, a)

∣∣∣∣∣∣
1
≤ 2
∣∣∣∣∣∣P̂ x(·|s, a)− Px(·|s, a)

∣∣∣∣∣∣
1
≤ ε/4H2.

Further, the update to the matrices Q and W happen only when an unknown state action pair
(s, a) is visited and the KWIK subroutine still predicts ⊥ (line 6). The KWIK bound states that after
a fixed number of updates to an unknown (s, a) pair, the parameters will always be known with
desired accuracy. The number of updates m can be obtained by setting the desired accuracy in
transitions to ε/8H2 and failure probability as δ/SA in Theorem 3.4:

m = O

(
d2H8

ε4
max

(
d2, S2 log2

(
dSA

δ

)))
We now use Lemma 3.2 where instead of updating counts for number of visits, we look at the
number of updates for unknown (s, a) pairs. On applying a union bound over all state action pairs
and using Lemma 3.2, it is easy to see that the sub-optimal episodes are bounded by O

(
mSA
ε

ln 1
δ

)
with probability at least 1− δ. The bound in Theorem 3.5 is obtained by substituting the value of
m.

We see that for this contextual MDP, the linear structure helps us in avoiding the expo-
nential dependence in context dimension d. The combined dependence on S and d is now
O(max{d4S, d2S3}).

Computational complexity of KWIKLR-RMAX The KWIKLR-RMAX algorithm maintains
SA-many matrices of size O(d2). At the start of each episode, the algorithm requires a vector-
matrix multiplication for computing the knownness of each state-action pair, which takes a total
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of O(d2SA) operations (line 3). For known state-action pairs, computing P̂ x(·|s, a) requires a
projection step along with vector-matrix multiplications and takes O(d2SA + S2A) operations
(line 4)3. At the end of every episode, it performs rank-1 updates to the matrices Q and W for every
unknown state-action pair, each taking O(d2) operations (line 8 and line 10). We, therefore, observe
that the KWIKLR-RMAX algorithm takes O(SAmax{d2, S}) running time per episode.

3.4 No-regret Exploration in Generalized Linear CMDPs

In Section 3.3, we studied the online learning problem in contextual MDPs under the mistake
bound criteria. A key takeaway from the results from that section is that linearity as a structural
assumption allows us to design statistically and computationally efficient algorithms for efficient
exploration compared to the provably hard case of smoothly varying contextual mappings. In this
section, we generalize the linear CMDP structure studied in Section 3.3.3 for the contextual MDP
setting to allow a larger class of potentially non-linear maps. Using linear mappings further provides
interpretability and explainability properties which are very valuable in our motivating settings.
Hence, in this section, we study the class of generalized linear CMDPs defined below under the
regret criteria.

3.4.1 Generalized linear models for CMDPs

In this section, we define our structural assumption of generalized linear models for CMDPs and
formally state our assumptions. Specifically, we model the categorical output space (p(·|s, a)) in
a contextual MDP using generalized linear mappings. For each pair s, a ∈ S × A, there exists a
weight matrix Wsa ∈ W ⊆ RS×d whereW is a convex set. For any context xt ∈ Rd, the next state
distribution for the pair is specified by a GLM:

Pt(·|s, a) = ∇Φ(Wsaxt) (3.5)

where Φ(·) : RS → R is the link function of the GLM4. We will assume that this link function is
convex which is always the case for a canonical exponential family (Lauritzen, 1996). For rewards,
we assume that each mean reward is given by a linear function5 of the context: Rt(s, a) := θ>saxt

where θ ∈ Θ ⊆ Rd. In addition, we will make the following assumptions about the link function.

3The projection onto ∆S−1 takes O(S) operations per state-action pair.
4We abuse the term GLM here as we don’t necessarily consider a complementary exponential family model in (3.5)
5Similar results can be derived for GLM reward functions.
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Assumption 3.1. The function Φ(·) is α-strongly convex and β-strongly smooth, that is:

Φ(v) ≥ Φ(u) + 〈∇Φ(u), v − u〉+ α
2
||u− v||22 (3.6)

Φ(v) ≤ Φ(u) + 〈∇Φ(u), v − u〉+ β
2
||u− v||22 (3.7)

We will see that this assumption is critical for constructing the confidence sets used in our
algorithm. We make another assumption about the size of the weight matrices W ∗

sa and contexts xt:

Assumption 3.2. For all episodes t, we have ||xt||2 ≤ Bx and for all state-action pairs (s, a),∣∣∣∣∣∣W (i)
sa

∣∣∣∣∣∣
2
≤ Bp and ||θsa||2 ≤ Br. So, we have ||Wxt||∞ ≤ BpBx for all W ∈ W .

The following two contextual MDP models are special cases of our setting:

Example 3.1 (Multinomial logit model, Agarwal (2013)). Each next state is sampled from a

categorical distribution with probabilities6:

Px(si|s, a) =
exp(W

(i)
sa x)∑S

j=1 exp(W
(j)
sa x)

The link function for this case can be given as Φ(y) = log
(∑S

i=1 exp(yi)
)

which can be shown to

be strongly convex with α = 1
exp (BR)S2 and smooth with β = 1.

Example 3.2 (Linear combination of MDPs, Section 3.3.3). Each MDP is obtained by a lin-

ear combination of d base MDPs {(S,A, P i, Ri, H)}di=1. Here, xt ∈ ∆d−1, and Pt(·|s, a) :=∑d
i=1 xt[i]P

i(·|s, a). The link function for this can be shown to be:

Φ(y) = 1
2
||y||22

which is strongly convex and smooth with parameters α = β = 1. Moreover, Wsa here is the S × d
matrix containing each next state distribution in a column. We have, Bp ≤

√
d, ||Wsa||F ≤

√
d and

||Wsaxt||2 ≤ 1.

3.4.2 Online estimation of GLM parameters

In order to obtain a no-regret algorithm for our setting, we will follow the optimism in the face

of uncertainty (OFU) approach, described in Section 2.2.1.2, which relies on the construction of
confidence sets for MDP parameters at the beginning of each episode. We focus on deriving these

6Without loss of generality, we can set the last row W
(S)
sa of the weight matrix to be 0 to avoid an overparameterized

system.
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confidence sets for the next state distributions for all state action pairs. We assume that the link
function Φ and values α, B and R are known a priori. The confidence sets are constructed and
used in the following manner in the OFU template for MDPs: at the beginning of each episode
t = 1, 2, . . . , T :

• For each (s, a), compute an estimate of transition distribution P̂t(·|s, a) and mean reward
R̂t(s, a) along with confidence sets P andR such that Pt(·|s, a) ∈ P and Rt(s, a) ∈ R with
high probability.

• Compute an optimistic policy πt using the confidence sets and unroll a trajectory in Mt with
πt. Using observed transitions, update the estimates and confidence sets.

Therefore, in the GLM-CMDP setup, estimating transition distributions and reward functions is
the same as estimating the underlying parameters Wsa and θsa for each pair (s, a). Likewise,
any confidence setWsa for Wsa (Θsa for θsa) can be translated into a confidence set of transition
distributions.

In our final algorithm for GLM-CMDP, we will use the method from this section for estimating
the next state distribution for each state-action pair. The reward parameter θsa and confidence set
Θsa is estimated using the linear bandit estimator (Lattimore and Szepesvári (2020), Chap. 20).
Here, we solely focus on the following online estimation problem without any reference to the
CMDP setup. Specifically, given a link function Φ, the learner observes a sequence of contexts
xt ∈ X (t = 1, 2, . . .)7 and a sample yt drawn from the distribution pt ≡ ∇Φ(W ∗xt) over a finite
domain of size S. Here, we use W ∗ to denote the true parameter for the given GLM model. The
learner’s task is to compute an estimate Wt for W ∗ and a confidence setWt after any such t samples.
We frame this as an online optimization problem with the following loss sequence (based on the
negative log-likelihood):

lt(W ;xt, yt) = Φ(Wxt)− y>t Wxt (3.8)

where yt is the one-hot representation of the observed sample in round t. This loss function preserves
the strong convexity of Φ with respect to Wxt and is a proper loss function (Agarwal, 2013):

argmin
W

E [lt(W ;xt, yt)|xt] = W ∗ (3.9)

Since our aim is computational and memory efficiency, we carefully follow the Online Newton
Step (Hazan et al., 2007) based method proposed for 0/1 rewards with logistic link function in

7We overload the notation t here to refer to the context index for online optimization, and should not be confused
with the episode index.
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Zhang et al. (2016). While deriving the confidence set in this extension to GLMs, we use properties
of categorical vectors in various places in the analysis which eventually saves a factor of S. The
online update scheme is shown in Algorithm 3.4. Interestingly, note that for tabular MDPs, where
d = α = 1 and Φ(y) = 1

2
||y||22, with η = 1, we would recover the empirical average distribution

as the online estimate. Along with the estimate Wt+1, we can also construct a high probability

Algorithm 3.4 Online parameter estimation for GLMs
1: Input: Φ, α, η
2: Set W1 ← 0, Z1 ← λId
3: for t = 1, 2, . . . do
4: Observe xt and sample yt ∼ pt(·)
5: Compute new estimate Wt+1:

argmin
W∈W

||W−Wt||2Zt+1

2
+ η〈∇lt(Wtxt)x

>
t ,W −Wt〉 (3.10)

where Zt+1 = Zt + ηα
2
xtx
>
t .

confidence set as follows:

Theorem 3.6 (Confidence set for W ∗). In Algorithm 3.4, for all timesteps t = 1, 2, . . ., with

probability at least 1− δ, we have:

||Wt+1 −W ∗||Zt+1
≤ √γt+1 (3.11)

where

γt+1 = λB2 + 8ηBpBx + 2η
[
( 4
α

+ 8
3
BpBx)τt + 4

α
log det(Zt+1)

det(Z1)

]
(3.12)

with τt = log(2d2 logStet2/δ) and B = maxW∈W ||W ||F .

Any upper bound for ||W ∗||2F can be substituted for B the confidence width in (3.12). The term γt

depends on the size of the true weight matrix, strong convexity parameter 1
α

and the log determinant
of the covariance matrix. We will later show that the last term grows at a O(d log t) rate. Therefore,
overall γt scales as O(S + d

α
log2 t). The complete proof can be found in Section 3.8.2.1.

Algorithm 3.4 only stores the empirical covariance matrix and solves the optimization problem
in (3.10) for the current context. SinceW is convex, this is a tractable problem and can be solved via
any off-the-shelf optimizer up to desired accuracy. The total computation time for each context and
all (s, a) pairs is O(poly(S,A, d)) with no dependence on t. Furthermore, we only store SA-many
matrices of size S × d and covariance matrices of sizes d × d. Thus, both time and memory
complexity of the method are bounded by O(poly(S,A,H, d)) per episode.
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3.4.3 GLM-ORL: Optimistic exploration for GLM-CMDPs

In this section, we describe the OFU based online learning algorithm which leverages the confidence
sets as described in the previous section. Not surprisingly, our algorithm is similar to the algorithm
of Dann et al. (2019) and Abbasi-Yadkori and Neu (2014) and follows the standard format for
no-regret bounds in MDPs. In all discussions about CMDPs, we will again use xt ∈ X to denote the
context for episode t and use Algorithm 3.4 from the previous section to estimate the corresponding
MDP Mt. Specifically, for each state-action pair (s, a), we use all observed transitions to estimate
Wsa and θsa. We compute and store the quantities used in Algorithm 3.4 for each (s, a): we use
Ŵt,sa to denote the parameter estimate for Wsa at the beginning of the tth episode. Similarly, we use
the notation γt,sa and Zt,sa for the other terms. Using the estimate Ŵt,sa and the confidence set, we
compute the confidence interval for Pt(·|s, a):

ξ
(p)
t,sa :=

∣∣∣∣∣∣Pt(·|s, a)− P̂t(·|s, a)
∣∣∣∣∣∣

1
≤ β
√
S
∣∣∣∣∣∣Wsa − Ŵt,sa

∣∣∣∣∣∣
Zt,sa
||xt||Z−1

t,sa

≤ β
√
S
√
γt,sa||xt||Z−1

t,sa
(3.13)

where in the definition of γt,sa we use δ = δp. It is again easy to see that for tabular MDPs with
d = 1, we recover a similar confidence interval as used in Jaksch et al. (2010). For rewards, using
the results from linear contextual bandit literature (Lattimore and Szepesvári (2020), Theorem 20.5),
we use the following confidence interval:

ξ
(r)
t,sa :=

∣∣∣Rt(s, a)− R̂t(s, a)
∣∣∣ =

(√
λd+

√
1
4

log detZt,sa
δ2r detλI

)
︸ ︷︷ ︸

:=ζt,sa

||xt||Z−1
t,sa

(3.14)

In GLM-ORL, we use these confidence intervals to compute an optimistic policy (line 9 and line 15).
The computed value function is optimistic as we add the total uncertainty as a bonus (line 11) during
each Bellman backup. For any step h, we clip the optimistic estimate between [0, H − h] during
Bellman backups (line 13. After unrolling an episode using πt, we update the parameter estimates
and confidence sets for every observed (s, a) pair.

For any sequence of T contexts, we can guarantee the following regret bound:

Theorem 3.7 (Regret of GLM-ORL). For any δ ∈ (0, 1), if Algorithm 3.5 is run with the estimation

method Algorithm 3.4, then for all T ∈ N and with probability at least 1− δ, the regret Regret(T )

is:

Õ

((√
dmaxs,a ||Wsa||F√

α
+
d

α

)
βSH2

√
AT log

1

λδ

)
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If
∣∣∣∣W (i)

∣∣∣∣ is bounded by Bp, we get ||Wsa||2F ≤ SB2
p , whereas, for the linear case (Example 3.2),

||Wsa||2F ≤
√
d. Substituting the bounds on ||Wsa||2F , we get:

Corollary 3.8 (Multinomial logit model). For Example 3.1, we have ||W ||F ≤ B
√
S, α = 1

exp(BR)S2

and β = 1. Therefore, the regret bound of GLM-ORL is Õ(dS3H2
√
AT ).

Corollary 3.9 (Regret bound for linear combination case). For Example 3.2, with ||W ||F ≤
√
d, the

regret bound of GLM-ORL is Õ(dSH2
√
AT ).

Algorithm 3.5 GLM-ORL (GLM Optimistic Reinforcement Learning)
1: Input:S,A, H,Φ, d,W , λ, δ
2: δ′ = δ

2SA+SH
, Ṽt,H+1(s) = 0 ∀s ∈ S, t ∈ N

3: for t← 1, 2, 3, . . . do
4: Observe current context xt
5: for s ∈ S, a ∈ A do
6: P̂t(·|s, a)← ∇Φ(Ŵt,saxt)

7: R̂t(s, a)←
〈
θ̂t,sa, xt

〉
8: Compute conf. intervals using eqns. (3.13), (3.14)
9: for h← H,H − 1, · · · , 1, and s ∈ S do

10: for a ∈ A do
11: ϕ =

∣∣∣∣∣∣Ṽt,h+1

∣∣∣∣∣∣
∞
ξ

(p)
t,sa + ξ

(r)
t,sa

12: Q̃t,h(s, a) = P̂>t,saṼt,h+1 + R̂t(s, a) + ϕ

13: Q̃t,h(s, a) = 0 ∨
(
Q̃t,h(s, a) ∧ V max

h

)
14: πt,h(s) = argmaxa Q̃t,h(s, a)

15: Ṽt,h(s) = Q̃t,h(s, πt,h(s))
16: Unroll a trajectory in Mt using πt
17: Update Ŵsa and θ̂sa for observed samples.

In Corollary 3.9, the bound is worse by a factor of
√
H when compared to the Õ(HS

√
ATH)

bound of UCRL2 for tabular MDPs (d = 1). This factor is incurred while bounding the sum of
confidence widths in line 3.30 (in UCRL2 it is O(

√
SATH)).

3.4.3.1 Mistake bound for GLM-ORL

The regret analysis shows that the total value loss suffered by the agent is sublinear in T , and
therefore, goes to 0 on average. However, this can still lead to infinitely many episodes where the
sub-optimality gap is larger than a desired threshold ε, given that it occurs relatively infrequently. It
is still desirable, for practical purposes, to show a mistake bound result as discussed in Section 3.3.
For GLM-ORL, we can show the following mistake bound:
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Theorem 3.10 (Bound on the number of mistakes). For any number of episodes T , δ ∈ (0, 1) and

ε ∈ (0, H), with probability at least 1− δ, the number of episodes where GLM-ORL’s policy πt is

not ε-optimal is bounded by

O

(
dS2AH5 log(TH)

ε2

(
d log2(TH)

α
+ S

))
ignoring O(poly(log log TH)) terms.

We defer the proof to Section 3.8.2.4. Note that this term depends poly-logarithmically on T
and therefore increases with time. The algorithm doesn’t need to know the value of ε and result
holds for all ε. This differs from the standard mistake bound style PAC guarantees where a finite
upper bound is given. Dann et al. (2019) argued that this is due to the non-shrinking nature of the
constructed confidence sets. In order to obtain a finite PAC mistake bound for our setting, a more
involved data separation scheme needs to be used, as suggested by He et al. (2021) in their result
for contextual linear bandits and linear mixture MDPs.

3.4.4 GLM-RLSVI: Randomized exploration in GLM-CMDPs

Empirical investigations in bandit and MDP literature has shown that optimism based exploration
methods typically over-explore, often resulting in sub-optimal empirical performance. In contrast,
Thompson sampling based methods which use randomization during exploration have been shown
to have an empirical advantage with slightly worse regret guarantees. Recently, Russo (2019)
showed that even with such randomized exploration methods, one can achieve a worst-case regret
bound instead of the typical Bayesian regret guarantees. In this section, we show that the same is
true for GLM-CMDP where a randomized reward bonus can be used for exploration. We build
upon their work to propose an RLSVI style method (Algorithm 3.6) and analyze its expected regret.
The main difference between Algorithm 3.5 and Algorithm 3.6 is that instead of the fixed bonus ϕ
(line 11) in the former, GLM-RLSVI samples a random reward bonus in line 12 for each (s, a) from
the distribution N(0, HSϕ2). The variance term ϕ is set to a sufficiently high value, such that, the
resulting policy is optimistic with constant probability. We use a slightly modified version of the
confidence sets as follows:

ξ
(p)

t,sa := 2 ∧
(
β
√
S
√
γt,sa||xt||Z−1

t,sa

)
ξ

(r)

t,sa := BrR ∧
(
τt,sa||xt||Z−1

t,sa

)
The algorithm, thus, generates exploration policies by using perturbed rewards for planning. Sim-
ilarly to Russo (2019), we can show the following bound for the expected regret incurred by
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Algorithm 3.6 GLM-RLSVI

1: Input:S,A, H,Φ, d,W , λ
2: V t,H+1(s) = 0 ∀s ∈ S, t ∈ N
3: for t← 1, 2, 3, . . . do
4: Observe current context xt
5: for s ∈ S, a ∈ A do
6: P̂t(·|s, a)← ∇Φ(Ŵt,saxt)

7: R̂t(s, a)←
〈
θ̂t,sa, xt

〉
8: Compute conf. intervals using eqns. (3.13), (3.14)
9: for h← H,H − 1, · · · , 1, and s ∈ S do

10: for a ∈ A do
11: ϕ = (H − h)ξ

(p)

t,sa + ξ
(r)

t,sa

12: Draw sample bt,h(s, a) ∼ N(0, SHϕ)

13: Qt,h(s, a) = P̂>t,saV t,h+1 + R̂t(s, a) + bt,h(s, a)

14: πt,h(s) = argmaxaQt,h(s, a)

15: V t,h(s) = Qt,h(s, πt,h(s))
16: Unroll a trajectory in Mt using πt.
17: Update Ŵsa and θ̂sa for observed samples.

GLM-RLSVI:

Theorem 3.11. For any contextual MDP with given link function Φ, in Algorithm 3.6, if the

MDP parameters for Mt are estimated using Algorithm 3.4, with reward bonuses bt,h(s, a) ∼
N(0, SHϕt,h(s, a)) where ϕt,h(s, a) is defined in line 11, the algorithm satisfies:

Regret(T ) = E

[
T∑
t=1

V ∗t − V πt
t

]

= Õ

((√
dmaxs,a ||W ∗

sa||F√
α

+
d

α

)
β
√
H7S3AT

)

The proof of the regret bound is given in Section 3.8.2.3. Our regret bound is again worse by a
factor of

√
H when compared to the Õ(H3S3/2

√
AT ) bound from Russo (2019) for the tabular case.

Therefore, such randomized bonus based exploration algorithms can also be used in the CMDP
framework with similar regret guarantees as the tabular case.

3.4.5 Regret lower bound for GLM-CMDP

In this section, we show a regret lower bound by constructing a family of hard instances for the
GLM-CMDP problem. We build upon the construction of Osband and Van Roy (2016) and Jaksch
et al. (2010) for the analysis:
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Theorem 3.12. For any algorithm ALG, there exists CMDP’s with S states, A actions, horizon H

and T ≥ dSA for logit and linear combination case, such that the expected regret of ALG (for any

sequence of initial states ∈ ST ) after T episodes is:

E[R(T ; ALG,M1:T , s1:T )] = Ω(H
√
dSAT )

Proof. We start with the lower bound from Jaksch et al. (2010) adapted to the episodic setting.

Theorem 3.13 (Jaksch et al. (2010), Thm. 5). For any algorithm ALG′, there exists an MDP M

with S states, A actions, and horizon H , such that for T ≥ dSA, the expected regret of ALG after

T episodes is:

E[R(T ; ALG′, s,M)] = Ω(H
√
SAT )

Figure 3.1: Hard 2-state MDP for CMDP regret lower bound. (Osband and Van Roy, 2016)

The lower bound construction is obtained by concatenating dS/2e-copies of a bandit-like 2-state
MDP as shown in Figure 3.18. Essentially, state 1 is a rewarding state and all but one action take the
agent to state 0 with probability δ1. The remaining optimal action transits to state 0 with probability
δ1 − ε. This makes the construction similar to a hard Bernoulli multi-armed bandit instance which
leads to the lower bound. Now, we will construct a set of such hard instances with the logit link
function for transition probabilities. Since, the number of next states is 2, we use a GLM with
parameter vector w∗ of shape 1× d. Thus, for any context x, the next state probabilities are given
as:

P (1|1, a;x) =
exp(w∗ax)

1 + exp(w∗ax)
= φ(w∗ax)

8The two state MDP is built using A/2 actions with the rest used for concatenation. We ignore this as it only leads
to a difference in constants.
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If w∗ax = 0, the value turns out to be 1
2

which we choose as δ1 − ε. For making the probability
δ1 = 1

2
+ ε, we need to have w∗ax = φ−1(δ1) = c∗. We consider the case where for each index

i, all but one action has w∗a[i] = 0 and one action a∗i has w∗a∗ [i] = c∗. The sequence of contexts
given to the algorithm comprises of T/d indicator vectors with 1 at only one index. Therefore, for
each episode t, we get an MDP with Pt(0|1, a∗t%d) = 1/2 for one optimal action and 1/2 for all
other actions. Therefore, this is a hard instance as shown in Figure 3.1. The agent interacts with
each such MDP Ti ≈ T/d times. Further, these MDPs are decoupled as the context vectors are
non-overlapping. Therefore, we have:

E[R(T ; ALG,M1:T , s1:T )] =
d∑
i=1

E[R(Ti; ALG,M1:T , s1:T )]

≥
d∑
i=1

cH
√
SAT/d = cH

√
dSAT

Linear combination case Similar to the logit case, we need to construct the sequence of hard
instances in the linear combination case. It turns out that a similar construction works. Note that,
in the linear combination case, each parameter vector w∗a now directly contains the probability of
moving to the rewarding state. In other words, each index of this vector w∗a[i] corresponds to the
next state visitation probability for the base MDP Mi. Therefore, for each index, we again set one
action’s value to 1

2
+ ε and all others to 0. This maintains the independence argument and using

indicator vectors as contexts, we get the same sequence of MDPs. The same lower bound can
therefore be obtained for the linear combination case.

The lower bound has the usual dependence on MDP parameters in the tabular MDP case, with
an additional O(

√
d) dependence on the context dimension. Thus, our upper bounds have a gap of

O(H
√
dS) with the lower bound even in the arguably simpler case of Example 3.2.

3.5 Related Work and Comparison

Transfer in RL with latent contexts The general definition of CMDPs captures the problem of
transfer in RL and multi-task RL. See Taylor and Stone (2009) and Lazaric (2011) for surveys of
empirical results. Recent papers have also advanced the theoretical understanding of transfer in RL.
For instance, Brunskill and Li (2013) and Hallak et al. (2015) analyzed the sample complexity of
CMDPs where each MDP is an element of a finite and small set of MDPs, and the MDP label is
treated as the latent (i.e., unseen) context. Mahmud et al. (2013) consider the problem of transferring
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the optimal policies of a large set of known MDPs to a new MDP. All of these recent papers assume
that the MDP label (i.e., the context) is not observed. Hence, their methods have to initially explore
in every new MDP to identify its label, which requires the episode length to be substantially longer
than the planning horizon. This can be a problematic assumption in our motivating scenarios, where
we interact with a patient / user / student for a limited period of time and the data in a single episode
(whose length H is the planning horizon) is not enough for identifying the underlying MDP. In
contrast to prior work, we propose to leverage observable context information to perform more
direct transfer from previous MDPs, and our algorithm works with arbitrary episode length H .

RL in metric space For smooth CMDPs (Section 3.3.1), we pool observations across similar
contexts and reduce the problem to learning policies for finitely many MDPs. An alternative
approach is to consider an infinite MDP whose state representation is augmented by the context, and
apply PAC-MDP methods for metric state spaces (e.g., C-PACE proposed by Pazis and Parr (2013)).
However, doing so might increase the sample and computational complexity unnecessarily, because
we no longer leverage the structure that a particular component of the (augmented) state, namely
the context, remains the same in an episode. Concretely, the augmenting approach needs to perform
planning in the augmented MDP over states and contexts, which makes its computational/storage
requirement worse than our solution: we only perform planning in MDPs defined on S, whose
computational characteristics have no dependence on the context space. In addition, we allow the
context sequence to be chosen in an adversarial manner. This corresponds to adversarially chosen
initial states in MDPs, which is usually not handled by PAC-MDP methods.

Another line of recent work on RL in metric spaces, has analyzed the regret of model-free
exploration algorithms. Song and Sun (2019) adapt the Q-learning with Bernstein bonus algo-
rithm from Jin et al. (2018) with an ε-net of the state-action space, to show a regret guarantee of
O
(
H5/2K

d+1
d+2

)
. Improving upon this, Sinclair et al. (2019) show that adaptive discretization can

be used in the Q-learning algorithm to only refine those partitions which the agent frequently visits,
hence, saving on space and time complexity. Along the same lines, Cao and Krishnamurthy (2020)
show a gap-dependent regret analysis and show a dependence on the zooming dimension instead of
the covering number of the state-action space.

Contextual MDP To our knowledge, Hallak et al. (2015) first used the term contextual MDPs and
studied the case when the context space is finite and the context is not observed during interaction.
They propose CECE, a clustering based learning method and analyze its regret. In Section 3.3, we
generalized the CMDP framework and proved the PAC exploration bounds under smoothness and
linearity assumptions over the contextual mapping. The PAC bound is incomparable to the regret
bounds in Section 3.4 as a no-regret algorithm can make arbitrarily many mistakes ∆t ≥ ε as long
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as it does so sufficiently less frequently.
Our work in Section 3.4 can be best compared with Abbasi-Yadkori and Neu (2014) and Dann

et al. (2019) who propose regret minimizing methods for CMDPs. Abbasi-Yadkori and Neu (2014)
consider an online learning scenario where the values Pt(s′|s, a) are parameterized by a GLM.
The authors give a no-regret algorithm which uses confidence sets based on Abbasi-Yadkori et al.
(2012). However, their next state distributions are not normalized which leads to invalid next state
distributions. Due to these modelling errors, their results cannot be directly compared with our
analysis. Even if we ignore their modelling error, in the linear combination case, we get an Õ(S

√
A)

improvement. Similarly, Dann et al. (2019) proposed an OFU based method ORLC-SI for the linear
combination case. Their regret bound is Õ(

√
S) worse than our bound for GLM-ORL. In addition,

the work also showed that obtaining a finite mistake bound guarantees for such CMDPs requires a
non-trivial and novel confidence set construction. In this paper, we show that a poly(log T ) mistake
bound can still be obtained. For a quick comparison, Table 3.1 shows the results from the two
papers.

Algorithm RegretLinear(T ) RegretLogit(T ) ||Px||1 = 1

Alg 1 (Abbasi-Yadkori and Neu, 2014) Õ(dH3S2A
√
T ) 7 7

ORLC-SI (Dann et al., 2019) Õ(dH2S3/2
√
AT ) 7 7

GLM-ORL (this work) Õ(dH2S
√
AT ) Õ(dH2S3

√
AT ) 3

Table 3.1: Comparison of regret guarantees for CMDPs. Last column denotes whether the transition
dynamics Px(·|s, a) are normalized in the model or not.

3.6 Discussion

In this chapter, we formalized an RL setting where the agent interacts with a sequence of envi-
ronments whose dynamics are parameterized by an observable context vector. The use of such
side-information for multi-task or sequential interaction protocols have also been explored in the
empirical RL literature (Lee et al., 2020; Benjamins et al., 2021; Klink et al., 2020a). However, the
utility of such contextual information may not be directly visible and we discuss the a few insights
below:

Contextual MDP vs context-augmented state In the contextual MDP setting that we consider,
the context sequence breaks the overall interaction into a sequence of static (no variation in next-
state dynamics and rewards) MDPs for each episode. Similarly, a general setting can be considered
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Figure 3.2: Generic context-dependent learning scheme.

where the context (representation of the current dynamics and reward function) evolves with time
and can vary smoothly between and within episodes. Such contextual formalization can be quite
helpful in building multi-task or continual learning settings as shown in Figure 3.2. In our setting,
the context encoder is not needed as we assume that contexts are observed. In various settings,
context encoders are learnt (Lee et al., 2020; Sodhani et al., 2021) and can also be framed under the
meta-learning framework for quickly encoding the episode context using few-shot learning (Ritter
et al., 2018). Further, the planning component essentially operates on a per-episode basis as the
context stays constant over the fixed horizon episode and therefore, only computes the (optimistic)
policy at the beginning of an episode.

The key factor here is to utilize the context representation to generalize across the tasks and
utilize the specific heterogeneity across them by conditioning the model or value function estimates
on the context. In our algorithms and analysis, we highlight another key component in contextual
RL as described below.

Context dependent exploration In almost all context-dependent RL works (for instance, Lee
et al. (2020); Benjamins et al. (2021); Klink et al. (2020a); Sodhani et al. (2021)), the context-
dependent exploration component is absent. This follows the typical theory-vs-practice gap where
sophisticated and provably efficient exploration schemes have been proposed for learning in MDPs
but, in practice, simple tricks like epsilon-greedy exploration schemes are used due to computational
concerns and mismatch in assumptions. In our work, we study the theoretical aspects of utilizing
the context representation for adaptive exploration in an online learning setting. In the smooth
CMDP case, we essentially show that maintaining separate counts for different clusters of contexts
allows us to directly use known PAC-efficient algorithms. In practice, it would be interesting to see
if the count-based exploration schemes can be extended to more general environments. On a more
technical side, we show that if the agent has some prior knowledge about the mapping between the
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context and MDP parameters, we can use the degree of uncertainty while learning that mapping
to guide exploration and efficiently explore across heterogeneous environments. For empirically
feasible algorithms, we can use well-known tricks like: learning context-dependent exploration
noise (Klink et al., 2020b), ensemble based techniques for uncertainty estimation can be used. Our
work provides a novel theoretical study of this framework and we hope that this can motivate further
practical and sample efficient exploration schemes for generalization across tasks.

3.7 Summary

In this chapter, we presented a general setting involving the use of side information, or context, for
learning near-optimal policies in a large and potentially infinite number of MDPs. We proposed
PAC and regret efficient algorithms for contextual mappings which (1) vary smoothly with the
context and (2) are (generalized) linear functions of the context. The results in this chapter also
outline potential future directions: close the regret gap for tabular CMDPs, devise an efficient and
sparsity aware regret bound when the underlying parameters follow a structured sparsity prior and
investigate whether a near-optimal mistake and regret bound can be obtained simultaneously. Lastly,
extension of the framework to non-tabular MDPs is an interesting problem for future work.

3.8 Proofs of Main Results

In this section, we provide the proofs of the main results provided in this chapter. In Section 3.8.1,
we provide the formal proofs for the results in Section 3.3 and in Section 3.8.2, we provide a formal
analysis for the results in Section 3.4.

3.8.1 Proofs of mistake bound results

3.8.1.1 Proofs of mistake bound of COVER-RMAX

In this section, we provide a formal analysis for normalized value functions V π
M,h(s) =

1
H

∑H−1
h′=h Eπ [rh′ ]. The results in Section 3.3 can be simply obtained by rescaling the error threshold

for next state distributions and rewards by a factor of 1/H (see Lemma 3.14).

Proof of Lemma 3.2 We adapt the analysis in Kakade (2003) for the episodic case which results
in the removal of a factor ofH , since complete episodes are counted as mistakes and we do not count
every sub-optimal action in an episode. The detailed analysis is reproduced here for completeness.
For completing the proof of Lemma 3.2, firstly, we will look at a version of simulation lemma
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from Kearns and Singh (2002). Also, for the complete analysis we will assume that the rewards lie
between 0 and 1.

Definition 3.3 (Induced MDP). Let M be an MDP with K ⊆ S being a subset of states. Given,

such a set K, we define an induced MDP MK in the following manner. For each s ∈ K, define the

values

PMK(s′|s, a) = PM(s′|s, a)

RMK(s, a) = RM(s, a)

For all s /∈ K, define PMK(s′|s, a) = 1{s′ = s} and RMK(s, a) = 1.

Lemma 3.14 (Simulation lemma for episodic MDPs). Let M and M ′ be two MDPs with the same

state-action space. If the transition dynamics and the reward functions of the two MDPs are such

that

||PM(·|s, a)− PM ′(·|s, a)||1 ≤ ε1 ∀s ∈ S, a ∈ A

|RM(s, a)−RM ′(s, a)| ≤ ε2 ∀s ∈ S, a ∈ A

then, for every (non-stationary) policy π the two MDPs satisfy this property:

|V π
M − V π

M ′ | ≤ ε2 +Hε1

Proof. Consider Th to be the set of all trajectories of length h and let P π
M(τ) denote the probability

of observing trajectory τ in M with the behaviour policy π. Further, let UM(τ) the expected average
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reward obtained for trajectory τ in MDP M .

|V π
M − V π

M ′ | =

∣∣∣∣∣∑
τ∈TH

(P π
M(τ)UM(τ)− P π

M ′(τ)UM ′(τ))

∣∣∣∣∣
≤

∣∣∣∣∣∑
τ∈TH

(P π
M(τ)UM(τ)− P π

M(τ)UM ′(τ) + P π
M(τ)UM ′(τ)− P π

M ′(τ)UM ′(τ))

∣∣∣∣∣
≤

∣∣∣∣∣∑
τ∈TH

(P π
M(τ)(UM(τ)− UM ′(τ)))

∣∣∣∣∣+

∣∣∣∣∣∑
τ∈TH

(UM ′(τ)(P π
M(τ)− P π

M ′(τ)))

∣∣∣∣∣
≤

∣∣∣∣∣∑
τ∈TH

P π
M(τ)

∣∣∣∣∣ ε2 +

∣∣∣∣∣∑
τ∈TH

(P π
M(τ)− P π

M ′(τ))

∣∣∣∣∣
≤ ε2 +

∣∣∣∣∣∑
τ∈TH

[P π
M(τ)− P π

M ′(τ)]

∣∣∣∣∣
The bound for the second term follows from the proof of Lemma 8.5.4 in Kakade (2003). Combining
the two expressions, we get the desired result.

Lemma 3.15 (Induced inequalities). Let M be an MDP with K being the set of known states. Let

MK be the induced MDP as defined in Definition 3.3 with respect to K and M . We will show that

for any (non-stationary) policy π, all states s ∈ S,

V π
MK

(s) ≥ V π
M(s)

and

V π
M(s) ≥ V π

MK
(s)− PπM [Escape to an unknown state|s0 = s]

where V π
M(s) denotes the value of policy π in MDP M when starting from state s.

Proof. See Lemma 8.4.4 from Kakade (2003).

Corollary 3.16 (Implicit Explore and Exploit). Let M be an MDP with K as the set of known states

and MK be the induced MDP. If π∗MK and π∗M be the optimal policies for MK and M respectively,

we have for all states s:

V
π∗MK
M (s) ≥ V ∗M(s)− PπM [Escape to an unknown state|s0 = s]

Proof. Follows from Lemma 8.4.5 from Kakade (2003).

Proof. of Lemma 3.2 Let π∗M be the optimal policy for M . Also, using the assumption about m,
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we have an ε/2-approximation of MK as the MDP M̂K. RMAX computes the optimal policy for
M̂K which is denoted by π̂. Then, by Lemma 3.14,

V π̂
MK

(s) ≥ V π̂
M̂K

(s)− ε/2

≥ V
π∗M
M̂K

(s)− ε/2

≥ V
π∗M
MK

(s)− ε

Combining this with Lemma 3.15, we get

V π̂
M(s) ≥ V π̂

MK
(s)− PπM [Escape to an unknown state|s0 = s]

≥ V
π∗M
MK

(s)− ε− PπM [Escape to an unknown state|s0 = s]

≥ V ∗M(s)− ε− PπM [Escape to an unknown state|s0 = s]

If this escape probability is less than ε, then the desired relation is true. Therefore, we need to bound
the number of episodes where this expected number is greater than ε. Note that, due to balanced
wandering, there can be at most mSA visits to unknown states for the RMAX algorithm. In the
execution, the agent may encounter an extra H − 1 visits as the estimates are updated only after the
termination of an episode.

Whenever this quantity is more than ε, the expected number of exploration steps in mSA/ε such
episodes is at least mSA. By the Hoeffding’s inequality, for N episodes, with probability, at least
1− δ, the number of successful exploration steps is greater than

Nε−
√
N

2
ln

1

δ

Therefore, if N = O(mSA
ε

ln 1
δ
), with probability at least 1 − δ, the total number of visits to an

unknown state is more than mSA. Using the upper bound on such visits, we conclude that these
many episodes suffice.

Proof of Theorem 3.1 We now need to compute the required resolution of the cover and the
number of transitions m which will guarantee the approximation for the value functions as required
in the previous lemma. The following is a key result:

Lemma 3.17 (Cover approximation). For a given CMDP and a finite cover, i.e., X = ∪N(X ,r)
i=1 Bi

such that ∀i, ∀x1, x2 ∈ Bi :

||Px1(·|s, a)− Px2(·|s, a)||1 ≤ ε/8H
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and

|Rx1(s, a)−Rx2(s, a)| ≤ ε/8

if the agent visit every state-action pair m =
128(S ln 2+ln SA

δ
)H2

ε2
times in a ball Bi summing observa-

tions over all x ∈ Bi, then, for any policy π and with probability at least 1− 2δ, the approximate

MDP M̂ i corresponding to Bi computed using empirical averages will satisfy

|V π
Mc
− V π

M̂ i
| ≤ ε/2

for all x ∈ Bi.

Proof. With each visit to a state action pair (s, a), a transition to some s′ ∈ S is observed for
context xt ∈ Bi in tth visit with probability Pxt(s, a). Let us encode this by an S-dimensional vector
It with 0 at all indices except s′. After observing m such transitions, the next state distribution for
any x ∈ Bi is esitmated as PM̂ i

(·|s, a) = 1
m

∑m
t=1 It. Now for all x ∈ Bi,

∣∣∣∣PM̂ i
(·|s, a)− Px(·|s, a)

∣∣∣∣
1
≤

∣∣∣∣∣
∣∣∣∣∣PM̂ i

(·|s, a)− 1

m

m∑
t=1

Pxt(·|s, a)

∣∣∣∣∣
∣∣∣∣∣
1

+ ε/8H

For bounding the first term, we use the Hoeffding’s bound:

P

[ ∣∣∣∣∣
∣∣∣∣∣PM̂ i

(·|s, a)− 1

m

m∑
t=1

Pxt(·|s, a)

∣∣∣∣∣
∣∣∣∣∣
1

≥ ε

]

= P

[
max
s′∈A⊆S

(P
M̂ i

(s′ ∈ A|s, a)− 1

m

m∑
t=1

Pxt(s
′ ∈ A|s, a)) ≥ ε/2

]

≤
∑

s′∈A⊆S
P

[
(P

M̂ i
(s′ ∈ A|s, a)− 1

m

m∑
t=1

Pxt(s
′ ∈ A|s, a)) ≥ ε/2

]
≤ (2S − 2) exp(−mε2/2)

Therefore, with probability at least 1− δ/2, for all s ∈ S, a ∈ A, we have:

∣∣∣∣PM̂ i
(·|s, a)− Px(·|s, a)

∣∣∣∣
1
≤
√

2(S ln 2 + ln 2SA/δ)

m
+ ε/8H

Ifm =
128(S ln 2+ln SA

δ
)H2

ε2
, the error becomes ε/4H . One can easily verify using similar arguments

that, the error in rewards for any context x ∈ Bi is less than ε/4.
By using the simulation Lemma 3.14, we get the desired result.
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Figure 3.3: Hard instance for mistake lower bound for smooth CMDPs. ((Dann and Brunskill,
2015)) The initial state 0 moves to a uniform distribution over states 1 to n regardless of the action,
and states +/− are absorbing with 1 and 0 rewards respectively. States 0 to n have 0 reward for all
actions. Each state i ∈ [n] essentially acts as a hard bandit instance, whose A actions move to +
and − randomly. Action a0 satisfies p(+|i, a0) = 1

2
+ ε′

2
and there is at most one other action ai

with p(+|i, ai) = 1
2

+ ε′. Any other action aj satisfies p(+|i, aj) = 1
2
.

3.8.1.2 Lower bound analysis

The key construction in the proof is to embed multiple MDP learning problems in a CMDP, such
that the agent has to learn the optimal policy in each MDP separately. We start with the lower
bound for learning in episodic MDPs. See Figure 3.3 and its caption for details. The construction
is due to Dann and Brunskill (2015) and we adapt their lower bound statement to our setting in
Theorem 3.18.

Theorem 3.18 (Lower bound for episodic MDP (Dann and Brunskill, 2015)). There exists constants

δ0, ε0, such that for every δ ∈ (0, δ0) and ε ∈ (0, ε0), any algorithm that satisfies a PAC guarantee

for (ε, δ) and computes a sequence of deterministic policies, there is a hard instance Mhard so that

E[B] = Ω
(
H2SA
ε2

)
, where B is the number of sub-optimal episodes. The constants can be chosen

as δ0 = e−4

80
, ε0 = H−2

640e4
.

Now we discuss how to populate the context space with these hard MDPs. Note in Figure 3.3
that, the agent does not know which action is the most rewarding (ai), and the adversary can choose
i to be any element of [A] (which is essentially choosing an instance from a family of MDPs). In our
scenario, we would like to allow the adversary to choose the MDP independently for each individual
packing point to yield a lower bound linear in the packing number. However, this is not always
possible due to the smoothness assumption, as committing to an MDP at one point may restrict the
adversary’s choices at another point.

To deal with this difficulty, we note that any pair of hard MDPs differ from each other by O(ε′)

in transition distributions. Therefore, we construct a packing of X with radius r = 8ε′, defined as a
set of points Z such that any two points in Z are at least r away from each other. The maximum
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size of such Z is known as the packing number:

D(X , r) = max{|Z| : Z is an r-packing of X},

which is related to the covering number as N(X , r) ≤ D(X , r). The radius r is chosen to be
O(ε′) so that arbitrary choices of hard MDP instances at different packing points always satisfy the
smoothness assumption (recall that Lp = 1). Once we fix the MDPs for all x ∈ Z, the MDP for
x ∈ X \ Z is specified as follows: for state i and action a,

Px(+|i, a) = max
x′∈Z

max(1/2, Px′(+|i, a)− dis(x, x′)/2).

Essentially, as we move away from a packing point, the transition to +/− become more uniform.
We can show that:

Claim 3.19. The CMDP defined above is satisfies Definition 3.2 with constant Lp = 1.9

Proof. We need to prove that the defined contextual MDP, satisfies the constraints in Definition 3.2.
Let us assume that the smoothness assumption is violated for a context pair (x1, x2). The smoothness
constraints for rewards are satisfied trivially for any value of Lr as they are constant. This implies
that there exists state i ∈ [n] and action a such that

||Px1(·|i, a)− Px2(·|i, a)||1 > dis(x1, x2)

⇒ 2|Px1(+|i, a)− Px2(+|i, a)| > dis(x1, x2)

We know that, Pc(+|i, a) ∈ [1/2, 1/2 + ε′], which shows that dis(x1, x2) < 2ε′. Without loss of
generality, assume Px1(+|i, a) > Px2(+|i, a) which also leads to

Px1(+|i, a) > 1/2

⇒ ∃x0 ∈ Z such that dis(x1, x0) < 2ε′

By triangle inequality, we have

dis(x2, x0) < 4ε′

9The reward function does not vary with context, hence, reward smoothness is satisfied for all Lr ≥ 0.
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Now, ∀x′0 ∈ Z, such that dis(x′0, x0) ≥ 8ε′, by triangle inequality, we have

dis(x′0, x1) > 6ε′

dis(x′0, x2) > 4ε′

This simplifies the definition of Pc(+|i, a) for c = x1, x2 to

Pc(+|i, a) = max(1/2, Px0(+|i, a)− dis(x0, c)/2)

Now,

|Px1(+|i, a)− Px2(+|i, a)| = Px1(+|i, a)− Px2(+|i, a)

= Px0(+|i, a)− dis(x0, x1)/2

−max (1/2, Px0(+|i, a)− dis(x0, x2)/2)

≤ Px0(+|i, a)− dis(x0, x1)/2− (Px0(+|i, a)− dis(x0, x2)/2)

=
1

2
(dis(x0, x2)− dis(x0, x1)) ≤ dis(x1, x2)/2

which leads to a contradiction.

We choose the context sequence given as input to be repetitions of an arbitrary permutation of Z.
Therefore, our construction populates a set of packing points in the context space with hard MDPs.
We claim that these instances are independent of each other from the algorithm’s perspective. To
formalize this statement, let Z be the 8ε′-packing as before. The adversary makes the choices of
the instances at each context x ∈ Z, as follows: Select an MDP from the family of hard instances
described in Figure 3.3 where the optimal action from each state in [n]+ is chosen randomly and
independently from the other assignments. The parameter ε′ deciding the difference in optimality
of actions in Figure 3.3 is taken as 160εe4

(H−2)
. The expression is obtained by using the construction of

Theorem 3.18.
We denote these instances by the set I and an individual instance by Iz. Let z ={

z1, z2, . . . , z|Z|
}

be the random vector denoting the optimal actions chosen for the MDPs
corresponding to the packing points. By construction, we have a uniform distribution Γ ≡
Γ1 × Γ2 × . . .Γ|Z| over these possible set of instances Iz. From Claim 3.19, any assignment
of optimal actions to these packing points would define a valid smooth contextual MDP. Further, the
independent choice of the optimal actions makes MDPs at each packing point at least as difficult
as learning a single MDP. Formally, let the sequence of transitions and rewards observed by the
learning agent for all packing points be T ≡

{
τ1, τ2, . . . , τ|Z|

}
. Due to the independence between

67



individual instances, we can see that:

PΓ[ τ1|τ2, τ3, . . . , τ|Z| ] ≡ PΓ1 [ τ1 ]

where PΓ[τi] denotes the distribution of trajectories τi. Thus, we cannot deduce anything about
the optimal actions for one point by observing trajectories from MDP instances at other packing
points. With respect to this distribution, learning in the contextual MDP is equivalent to or worse
than simulating a PAC algorithm for a single MDP at each of these packing points. For any given
contextual MDP algorithm ALG, we have:

EΓ[Bi] = EΓ−i [EΓi,ALG [Bi|T−i]] ≥ EΓ−i [EΓ1,ALG*[Bi]]

where ALG* is an optimal single MDP learning algorithm. The expectation is with respect to the
distribution over the instances Iz and the algorithm’s randomness. From Theorem 3.18, we can
lower bound the expectation on the right hand side of the inequality by Ω

(
H2SA
ε2

)
.

The total number of mistakes is lower bounded as:

EΓ

 |Z|∑
i=1

Bi

 =

|Z|∑
i=1

EΓ[Bi] ≥ Ω

(
|Z|H2SA

ε2

)

Setting |Z| = D(X , ε1) ≤ N (X , ε1) gives the stated lower bound with ε1 = 8ε′.

3.8.1.3 Proof of mistake bound in Theorem 3.4

In this section, we present the proof of our KWIK bound for learning transition probabilities. Our
proof uses a reduction technique that reduces the vector-valued label setting to the scalar setting,
and combines the KWIK bound for scalar labels given by Walsh et al. (2009).

Proof. Fix a state action pair (s, a). Consider a sequence of contexts x1, x2, ... for which the
transitions were observed for pair (s, a). Given a new context x, we want to estimate:

Px(·|s, a) = x>P (s, a)

In our KWIKLR algorithm, this is estimated as:

P̂x(·|s, a) = x>Q(s, a)W (s, a)

where Q(s, a) and W (s, a) are as described in Section 3.3.3.1.
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We wish to bound the `1 error between P̂x(·|s, a) and Px(·|s, a) for all x for which a prediction
is made. We know that∣∣∣∣∣∣Px(·|s, a)− P̂x(·|s, a)

∣∣∣∣∣∣
1

= sup
f∈{−1,1}S

(Px(·|s, a)− P̂x(·|s, a))f. (3.15)

This representation of `1-norm can be used to prove a tighter KWIK bound for learning transition
probabilities. For every fixed f ∈ {−1, 1}S , we formulate a new linear regression problem with
feature-label pair:

(x, yf).

Recall that y = ({1[snext = s′]}∀s′∈S)> is the vector label of real interest, and f projects y to a
scalar value. Algorithm 3.3 can be viewed as implicitly running this regression thanks to linearity:
since Q only depends on input contexts and W is linear in y, P̂x(·|s, a)f is simply equal to the
linear regression prediction for the problem (x, yf). As a result, the KWIK bound for the problem
(x, yf) (which we establish below) automatically applies as a property of P̂x(·|s, a)f . Taking union
bound over all f ∈ {−1, 1}S yields the desired `1 error guarantee for P̂x(·|s, a) thanks to (3.15).

Now we establish the KWIK guarantee for the new regression problem. The groundtruth
(expected) label is

Px(·|s, a)f = x>(P (s, a)f) := x>θf . (3.16)

The noise in the label is then

ηf := (y − Px(·|s, a))f. (3.17)

This noise has zero-mean and constant magnitude: |ηf | ≤ ||y − Px(·|s, a)||1||f ||∞ ≤ 2.
With the above conditions, we can invoke the KWIK bound for scalar linear regression from

Walsh et al. (2009):

Theorem 3.20 (KWIK bound for linear regression (Walsh et al., 2009)). Suppose the observation

noise in a noisy linear regression problem has zero-mean and its absolute value is bounded by β.

Let M be an upper bound on the `2 norm of the true linear coefficients. For any δ′ > 0 and ε > 0, if

the KWIK linear regression algorithm is executed with α0 = min
(
b1

ε2

dM
, b2

ε2

M log(d/δ′)
, ε

2M

)
, with

suitable constants b1 and b2, then the number of ⊥’s will be O
(
M2 max

(
d3

ε4
, d log2(d/δ′)

ε4

))
, and

with probability at least 1− δ′, for each sample xt for which a prediction is made, the prediction is

ε-accurate.
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For our purpose, β = 2 as |ηf | ≤ 2 and M =
√
d as

∣∣∣∣θf ∣∣∣∣
2

= ||P (s, a)f ||2 ≤
√
d.

Now set δ′ = δ
2S

in Theorem 3.20. In the KWIK linear regression algorithm, the known status for
a context c is checked in the same manner as done in line 3 in Algorithm 3.3. Therefore

P
[∣∣∣∣∣∣Px(·|s, a)− P̂x(·|s, a)

∣∣∣∣∣∣
1
≥ ε
]

= P

[
sup

f∈{−1,1}S
(Px(·|s, a)− P̂x(·|s, a))f ≥ ε

]
(Equation (3.15))

≤
∑

f∈{−1,1}S
P
[
(Px(·|s, a)− P̂x(·|s, a))f ≥ ε

]
(union bound)

=
∑

f∈{−1,1}S
P
[
x>θf − x>Q(s, a)(W (s, a)f) ≥ ε

]
(regression w.r.t. f implicitly run)

≤
∑

f∈{−1,1}S
δ/2S = δ.

Substituting the values of M and δ′ in Theorem 3.20, we get:

αS = min

{
b1

ε2

d3/2
, b2

ε2√
d log(d/2Sδ′)

,
ε

2
√
d

}
and number of ⊥’s is bounded as

O

(
max

{
d4

ε4
,
d2S2 log2(d/δ′)

ε4

})
.

3.8.2 Proofs of main regret bounds

3.8.2.1 Proof of estimation error bounds in Theorem 3.6

We closely follow the analysis from Zhang et al. (2016) and use properties of the categorical output
space to adapt it to our case. The analysis is fairly similar, but carefully manipulating the matrix
norms saves a factor of O(S) in the confidence widths. For notation, we use ∇lt(Wt) to refer to
the derivative with respect to the matrix for loss lt and∇lt(Wtxt) for the derivative with respect to
the projection Wtxt. Bp denotes the upper bound on the `2-norm of each row W (i) and Bx is the
assumed bound on the context norm ||x||2. Recall that, we are overloading the notation for t here
to denote the sample timestep in the online optimization setup described in Section 3.4.2. Thus, it
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should not be confused with the episode index in the chapter. Now, using the strong convexity of
the loss function lt with respect to Wtxt, for all t, we have:

lt(Wt)− lt(W ∗) ≤ 〈∇lt(Wtxt),Wtxt −W ∗xt〉 − α
2
||W ∗xt −Wtxt||22︸ ︷︷ ︸

:=bt

Taking expectation with respect to the categorical sample yt, we get:

0 ≤ Eyt [lt(Wt)− lt(W ∗)] ≤ Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]− α
2
bt

≤ Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉]− α
2
bt (3.18)

where the lhs is obtained by using the calibration property from (3.9). Now, for the first term on
rhs, we have:

Eyt [〈∇lt(Wtxt),Wtxt −W ∗xt〉] = Eyt [〈∇Φ(Wtxt)− yt,Wtxt −W ∗xt〉]

= (p̃t − pt)>(Wt −W ∗)xt

= (p̃t − yt)>(Wt −W ∗)xt︸ ︷︷ ︸
:=I

+ (yt − pt)>(Wt −W ∗)xt︸ ︷︷ ︸
:=ct

(3.19)

where p̃t = ∇Φ(Wtxt) and E[yt] = pt = ∇Φ(W ∗xt). We bound the term I using the following
lemma:

Lemma 3.21.

〈∇lt(Wtxt),Wtxt −W ∗xt〉 ≤
||Wt −W ∗||Zt+1

2η
−
||Wt+1 −W ∗||Zt+1

2η
+ 2η||xt||2Z−1

t+1
(3.20)

Proof. To prove this, we go back to the update rule in (3.10) which has the following form:

Y = argmin
W∈W

||W −X||2M
2

+ ηa>Wb

with Y = Wt+1, X = Wt, a = ∇lt(Wtxt) = p̃t − yt, b = xt and M = Zt+1. For a solution to any
such optimization problem, by the first order optimality conditions, we have:

〈
(Y −X)M + ηab>,W − Y

〉
≥ 0

or (Y −X)MW ≥ (Y −X)MY − ηa>(W − Y )b
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Using this first order condition, we have

||X −W ||2M − ||Y −W ||
2
M =

S∑
i=1

X iMX i +W iMW i − Y iMY i −W iMW i

+ 2(Y i −X i)MW i

≥ ||X − Y ||2M − 2ηa>(W − Y )b

= ||X − Y ||2M + 2ηa>(Y −X)b− 2ηa>(W −X)b

≥ argmin
A∈RS×d

||A||2M + 2ηa>Ab− 2ηa>(W −X)b (3.21)

Noting that a = p̃t − yt, we get

argmin
A∈RS×d

||A||2M + 2ηa>Ab ≥
S∑
i=1

−η2a2
i ||b||

2
M−1 ≥ −4η2||b||2M−1

Substituting this and W = W ∗ along with other terms in (3.21) proves the stated lemma in
(3.20).

Thus, from eqs. (3.18), (3.19) and (3.20), we have

||Wt+1 −W ∗||Zt+1
≤ ||Wt −W ∗||Zt −

ηα

2
bt + 2ηct + 4η2||xt||2Z−1

t+1
(3.22)

Bounding the first term on the rhs similarly, and telescoping the sum, we get:

||Wt+1 −W ∗||Zt+1
+
ηα

2

t∑
i=1

bi ≤ ||W ∗||Z1
+ 2η

t∑
i=1

ci + 4η2

t∑
i=1

||xi||2Z−1
i+1

≤ λ||W ∗||2F + 2η
t∑
i=1

ci + 4η2

t∑
i=1

||xi||2Z−1
i+1

(3.23)

We will now bound the sum
∑t

i=1 ci in (3.23) using Bernstein’s inequality for martingales in the
same manner as Zhang et al. (2016):

Lemma 3.22. With probability at least 1− δ, we have:

t∑
i=1

ci ≤ 4BpR +
α

4

t∑
i=1

bi +

(
4

α
+

8BpR

3

)
τt (3.24)

where τt = log(2d2 logStet2/δ).

Proof. The result can be easily derived from the proof of Lemma 5 in Zhang et al. (2016). We
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provide the key steps here for completeness.
We first note that ct is a martingale difference sequence with respect to filtration Ft induced by

the first t rounds including the next context xt+1:

E
[
(yt − pt)>(Wt −W ∗)xt|Ft−1

]
= E [(yt − pt)|Ft−1]> (Wt −W ∗)xt = 0

Further, each term in this martingale series can be bounded as:

|ct| = (yt − pt)>(Wt −W ∗)xt ≤ ||(yt − pt)||1||(Wt −W ∗)xt||∞
≤ 4BpR

Similarly, for martingale Ct :=
∑t

i=1 ci, we bound the conditional variance as

Σ2
t =

t∑
i=1

Eyi
[(

(yt − pt)>(Wt −W ∗)xt
)2
]
≤

t∑
i=1

Eyi
[(
y>t (Wt −W ∗)xt

)2
]

≤
t∑
i=1

||(Wt −W ∗)xt||22︸ ︷︷ ︸
:=At

Thus, we have a natural upper bound for the conditional variance which is Σ2
t ≤ 4B2

pR
2St. Now,

consider two scanarios: CASE I: At ≥ 4B2
pR

2/St and CASE II: 4B2
pR

2/St ≤ At ≤ 4B2
pR

2St.
CASE I: Here, we directly bound the sum as

xt ≤
t∑
i=1

|ci| ≤ 2
t∑
i=1

||(Wt −W ∗)xt||2

≤ 2

√√√√t
t∑
i=1

||(Wt −W ∗)xt||22 ≤ 4BpR

CASE II: We directly use the expression after applying Bernstein’s inequality along with the
peeling technique from Zhang et al. (2016). Using that, we have:

P

[
Ct ≥ 2

√
Atτt +

8BpRτt
3

]
≤

m∑
j=− logS

P

[
Ct ≥ 2

√
Atτt +

8BpRτt
3

,
4BpR

22j

t
≤ At ≤

4BpR
22j+1

t

]
≤ m′e−τt
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where m = logSt2 and m′ = m + logS = logS2t2. We set τt = log 2m′t2

δ
, we get that with

probability at least 1− δ/2t2, we have:

Ct ≤ 2
√
Atτt +

8BpRτt
3

Taking a union bound over t ≥ 0 and substituting At =
∑t

i=1 bi, with probability at least 1− δ, for
all t ≥ 0, we get:

t∑
i=1

ci ≤ 4BpR + 2

√√√√τt

t∑
i=1

bi + 8BpR

3
τt

Using the RMS-AM inequality, we get the desired expression:

t∑
i=1

ci ≤ 4BpR +
α

4

t∑
i=1

bi +

(
4

α
+

8BpR

3

)
τt

Substituting the high probability upper bound over
∑t

i=1 ci in (3.23), we get:

||Wt+1 −W ∗||Zt+1
≤ λ||W ∗||2F + 2η

[
4BpR +

(
4

α
+

8

3
BpR

)
τt

]
+ 4η2

t∑
i=1

||xt||2Z−1
t+1

(3.25)

For getting the final result, we now bound the elliptic potential using the following Lemma from
Zhang et al. (2016):

Lemma 3.23 (Lemma 6 (Zhang et al., 2016)). The elliptic potential term can be bounded as follows:

t∑
i=1

||xt||2Z−1
t+1
≤ 2

ηα
log

det(Zt+1)

det(Z1)

3.8.2.2 Proof of regret bound for GLM-ORL (Theorem 3.7)

We now provide a complete proof of Theorem 3.7.
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Failure events and bounding failure probabilities To begin with, we write the important failure
events for the algorithm F = F (r) ∪ F (p) ∪ F (O) where each sub-event is defined as follows:

F (O) :=

{
∃T ∈ N :

∑
t,h,s,a

(Pt[sh, ah = s, a|st,1]− 1[st,h = s, at,h = a]) ≥ SH
√
T log 6 log(2T )

δ1

}

F (p) :=

{
∃ s ∈ S, a ∈ A, t ∈ N :

∣∣∣∣∣∣Wsa − Ŵt,sa

∣∣∣∣∣∣
Zt,sa
≥ √γt,sa

}
F (r) :=

{
∃ s ∈ S, a ∈ A, t ∈ N :

∣∣∣∣∣∣θsa − θ̂t,sa∣∣∣∣∣∣
Zt,sa
≥ ζt,sa

}
Using high-probability guarantees for parameter estimation and concentration of measure, we have
the guarantee that:

Lemma 3.24. The probabilities for failure events F (O), F (p) and F (r) are bounded bounded by

SHδ1, SAδp and SAδr respectively.

Proof. The guarantee for F (p) follows from Theorem 3.6 in Section 3.4.2. The failure probability
P (F (r)) can be bounded by using Theorem 20.5 from Lattimore and Szepesvári (2020).

Lastly, the failure probability P (F (O)) is directly taken from Lemma 23 of Dann et al. (2019).

Regret incurred outside failure events

Lemma 3.25 (Optimism). If all the confidence intervals as computed in Algorithm 3.5 are valid for

all episodes t, then outside of failure event F , for all t and h ∈ [H] and s, a ∈ S ×A, we have:

Q̃t,h(s, a) ≥ Q∗t,h(s, a)

Proof. For every episode, the lemma is true trivially for H + 1. Assume that it is true for h + 1.
For h, we have:

Q̃t,h(s, a)−Q∗t,h(s, a)

=
(
P̂t(s, a)>Ṽt,h+1 + R̂t(s, a) + ϕt,h(s, a)

)
∧ V max

h − Pt(s, a)>V ∗t,h+1 −Rt(s, a)

= R̂t(s, a)−Rt(s, a) + P̂t(s, a)>
(
Ṽt,h+1 − V ∗t,h+1

)
+ ϕt,h(s, a)−

(
Pt(s, a)− P̂t(s, a)

)>
V ∗t,h+1

≥ −
∣∣∣R̂t(s, a)−Rt(s, a)

∣∣∣+ ϕt,h(s, a)−
∣∣∣∣∣∣Pt(s, a)− P̂t(s, a)

∣∣∣∣∣∣
1

∣∣∣∣∣∣Ṽt,h+1

∣∣∣∣∣∣
∞
≥ 0

In the second equality step, we use the fact that when Q̃t,h(s, a) = V max
h , the requirement is trivially

satisfied. When Q̃t,h(s, a) < V max
h , the step follows by definition. The last step uses the guarantee

on confidence intervals and the inductive assumption for h+ 1. Therefore, the estimated Q-values
are optimistic by induction.
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Therefore, using the optimism guarantee, we can bound the instantaneous regret ∆t in episode t
as: V ∗t,1(s)− V πt

t,1 (s) ≤ Ṽt,1(s)− V πt
t,1 (s). Thus, we have:

∆t ≤ Ṽt,1(s)− V πt
t,1 (s)

≤
(
P̂t(s, a)>Ṽt,2 + R̂t(s, a) + ϕ

)
∧ V max

1 − Pt(s, a)>V πt
t,2 −Rt(s, a)

≤
(
ϕ+

(
P̂t(s, a)− Pt(s, a)

)>
Ṽt,2 + R̂t(s, a)−Rt(s, a)

)
∧ V max

1

+ Pt(s, a)>
(
V πt
t,2 − Ṽt,2

)
≤ 2ϕ ∧ V max

1 + Pt(s, a)>
(
V πt
t,2 − Ṽt,2

)
≤
∑
h,s,a

Pt[sh, ah = s, a|st,1] (2ϕ(s, a) ∧ V max
h ) (3.26)

Using Lemma 3.24, we can show the following result:

Lemma 3.26. Outside the failure event F (O), i.e., with probability at least 1 − SHδ1, the total

regret R(T ) can be bounded by

Regret(T ) ≤ SH2
√
T log 6 log 2T

δ1
+

T∑
t=1

H∑
h=1

1t,h(s, a) · (2ϕt,h(st,h, at,h) ∧ V max
h ) (3.27)

Proof.

∆t ≤
∑
h,s,a

Pt [sh, ah = s, a|st,1] (2ϕ(s, a) ∧ V max
h )

≤
T∑
t=1

H∑
h=1

∑
s,a

(Pt[sh, ah = s, a|st,1]− 1t,h(s, a)) (2ϕ(st,h, at,h) ∧ V max
h )

+
T∑
t=1

H∑
h=1

1t,h(s, a)(2ϕ(st,h, at,h) ∧ V max
h )

where 1t,h(s, a) is the indicator function 1[st,h = s, at,h = a]. From Lemma 3.24, we know that the
first term is bounded by SH

√
T log 6 log 2T

δ1
with probability at least 1− SHδ1.

Before bounding the second term in (3.27), we state the following Lemma from Abbasi-Yadkori
et al. (2011) which is used frequently in our analysis:

Lemma 3.27 (Determinant-Trace inequality). SupposeX1, X2, . . . , Xt ∈ Rd and for any 1 ≤ s ≤ t,
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||Xs||2 ≤ L. Let Vt := λI +
∑t

s=1XsX
>
s for some λ ≥ 0. Then, we have:

det(Vt) ≤
(
λ+ tL2/d

)d
The second term in (3.27) can now be bounded as follows:

T∑
t=1

H∑
h=1

(2ϕ(st,h, at,h) ∧ V max
h ) ≤

T∑
t=1

H∑
h=1

(
2ξ

(r)
t,st,h,at,h

∧ V max
h

)
+

T∑
t=1

H∑
h=1

(
2V max

h+1 ξ
(p)
t,st,h,at,h

∧ V max
h

)
(3.28)

We ignore the reward estimation error in (3.28) as it leads to lower order terms. The second
expression can be again bounded as follows:

T∑
t,2

H∑
h=1

(2V max
h+1 ξ

(p)
t,st,h,at,h

∧ V max
h ) ≤ 2

∑
t,h

V max
h

(
1 ∧ β

√
Sγt(st,h, at,h)||xt||Z−1

t,sa,h

)
(3.29)

Using Lemma 3.27, we see that

γt(s, a) := fΦ(t, δp) +
8η

α
log

det(Zt,sa)
det(Z1,sa)

≤ ηα

2S
+ fΦ(TH, δp) +

8η

α
log

det(ZT+1,sa)

det(Z1,sa)

≤ ηα

2S
+ fΦ(TH, δp) +

8ηd

α
log

(
1 +

THR2

λd

)
We use fΦ(t, δp) to refer to the Zt independent terms in (3.12). Setting γ̄T to the last expression
guarantees that 2Sγ̄T

ηα
≥ 1. We can now bound the term in (3.29) as:

2βV max
1

√
2Sγ̄T
ηα

∑
t,h

(
1 ∧

√
ηα

2
||xt||Z−1

t,sa,h

)
≤ 2βV max

1

√
2Sγ̄TTH

ηα

√∑
t,h

(
1 ∧ ηα

2
||xt||2Z−1

t,sa,h

)
(3.30)

Ineq. line 3.30 follows by using Cauchy-Schwarz inequality. We now bound the elliptic potential
term inside the square root in line 3.30:
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Lemma 3.28. For any T ∈ N, we have:

∑
t,h

(
1 ∧ ηα

2
||xt||2Z−1

t,sa,h

)
≤ 2H

∑
s,a

log

(
detZt+1,sa

detZt,sa

)

Proof. Note that, instead of summing up the weighted operator norm with changing values of Zt,h
for each observed transition of a pair (s, a), we keep the matrix same for all observations in an
episode. Note that, Zt denotes the matrix at the beginning of episode t and therefore, does not
include the terms xtx>t . Thus, for any episode t:

H∑
h=1

(
1 ∧ ηα

2
||xt||2Z−1

t,sa,h

)
≤ 2

∑
s,a

H∑
h=1

1t,h(s, a) log
(

1 +
ηα

2
||xt||2Z−1

t,sa

)
= 2

∑
s,a

Nt(s, a) log
(

1 +
ηα

2
||xt||2Z−1

t,sa

)
≤ 2

∑
s,a

Nt(s, a) log
(

1 +Nt(s, a)
ηα

2
||xt||2Z−1

t,sa

)
= 2H

∑
s,a

log

(
detZt+1,sa

detZt,sa

)

where in the last step, we have used the following:

Zt+1 = Z
1/2
t

(
1 +

ηα

2
NtZ

−1/2
t xtx

>
t Z
−1/2
t

)
Z

1/2
t

and then bound the determinant ratio using

detZt+1 = detZt

(
1 +Nt

ηα

2
||xt||2Z−1

t

)

Finally, by using Lemma 3.27, we can bound the term as

T∑
t=1

H∑
h=1

(2V max
h+1 ξ

(p)
t,st,h,at,h

∧ V max
h ) ≤ 4βV max

1

√
2Sγ̄TTH

ηα

√
2HSAd log

(
1 +

THR2

λd

)

Now, we set each individual failure probabilityδ1 = δp = δr = δ/(2SA + SH). Upon taking a
union bound over all events, we get the total failure probability as δ. Therefore, with probability at
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least 1− δ, we can bound the regret of GLM-ORL as

Regret(T ) = Õ

((√
dmaxs,a ||W ∗

sa||F√
α

+
d

α

)
βSH2

√
AT

)

where maxs,a ||W ∗
sa||F is replaced by the problem dependent upper bound assumed to be known

apriori.

3.8.2.3 Proof of regret bound for GLM-RLSVI (Theorem 3.11)

Our analysis will closely follow the proof from Russo (2019). We start by writing the concentration
result for estimating MDP Mt by using Algorithm 3.4 and the linear bandit estimators. For notation,
we use M̂t to denote the MDP constructed using the estimates Ŵt and θ̂t. The perturbed MDP used
in the algorithm is denoted by M t and M̃t will denote an MDP constructed using another set of i.i.d.

reward bonuses as M t. Specifically, we have:

Lemma 3.29. LetMt be the following set of MDPs:

Mt := {(P ′, R′) : ∀(h, s, a), |(R′(s, a)−Rt(s, a)) + 〈P ′(s, a)− Pt(s, a), Vt,h+1〉| ≤ ϕt,h(s, a)}

where ϕ2
t,h(s, a) =

(
β
√
Sγt,sa(H − h) + ζt,sa

)
||xt||Z−1

t,sa
. If we choose δp = δr = π2/SA, then, we

have: ∑
t∈N

P
[
M̂t /∈Mt

]
≤ π2

6

Proof. The proof follows from the analysis in Section 3.8.2.2 where the union bound over all (s, a)

pairs gives the total failure probability to be π2

6
.

Given the concentration result, Lemma 4 from Russo (2019) directly applies to the CMDP setting
in the following form:

Lemma 3.30. Let π∗t be the optimal policy for MDP Mt. If M̂t ∈ Mt and reward bonuses

bt,h(s, a) ∼ N(0, HSϕ2
t,h(s, a)), then we have

P
[
vπt
Mt
≥ vπ

∗

Mt
|Ht−1

]
≥ F(−1)

where M̂t is the estimated MDP, M t is the MDP obtained after perturbing the rewards and F(·) is

the cdf for the standard normal distribution.

In a similar fashion, the following result can also be easily verified:
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Lemma 3.31. For an absolute constant c = F(−1)−1 ≤ 6.31, we have:

Regret(T ) := EALG

[
T∑
t=1

v∗t (st,1)− vπtt (st,1)

]

≤ (c+ 1)E

[
T∑
t=1

∣∣∣vπt
Mt
− vπtMt

∣∣∣]+ cE

[
T∑
t=1

∣∣∣vπt
M̃t
− vπtMt

∣∣∣]+H
π2

6

We will now bound the first term on the rhs of Lemma 3.31 to get the final regret bound. The
second term can be bounded in the same manner. For each episode, the summand in the first term
can be written as:

vπt
M

(st,1)− vπtMt
(st,1)

=E

[
H∑
h=1

(〈
Pt(st,h, at,h)− P̂t(st,h, at,h), V t,h+1

〉) ∣∣Ht−1

]

+ E

[
H∑
h=1

(
R̂t(st,h, at,h)−Rt(st,h, at,h) + bt,h(st,h, at,h)

) ∣∣Ht−1

]

≤E

[
H∑
h=1

〈
Pt(st,h, at,h)− P̂t(st,h, at,h), V t,h+1

〉]
+ E

[
H∑
h=1

Rt(st,h, at,h)− R̂t(st,h, at,h)|Ht−1

]

+ E

[
H∑
h=1

|bt,h(st,h, at,h)|
∣∣Ht−1

]
(3.31)

where V t,h+1 denotes the hth-step value of policy πt in M t. We will now bound each term
individually where we ignore the reward term and the variance component due to reward un-
certainty as both lead to lower order terms. Specifically, we directly consider ϕ2

t,h(s, a) =

2
(
β
√
Sγt,sa(H − h)

)
||xt||Z−1

t,sa
. For the last expression in (3.31), we focus on the first and third

terms (the reward bonuses lead to lower order terms in the final regret bound).

Lemma 3.32. We have:

E

[
T∑
t=1

H∑
h=1

|bt,h(st,h, at,h)|
∣∣Ht−1

]
= Õ

((√
dmaxs,a ||W ∗

sa||F√
α

+
d

α

)
βS3/2H5/2

√
AT

)

Proof. We write bt,h(st,h, at,h) =
√
HSϕt,h(st,h, at,h)ξt,h(st,h, at,h) where ξt,h(st,h, at,h) ∼ N(0, 1).
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Therefore, by using Holder’s inequality, we have:

E

[
T∑
t=1

H∑
h=1

|bt,h(st,h, at,h)|
∣∣Ht−1

]
≤ E

[
max
t,h,s,a

ξt,h(s, a)

]
E

[
T∑
t=1

H∑
h=1

√
HSϕt,h(st,h, at,h)

]

By using (sub)-Gaussian maximal inequality, we know that

E
[

max
t,h,s,a

ξt,h(s, a)

]
= O (log(HSAT )) (3.32)

For the second expression, we have:

E

[
T∑
t=1

H∑
h=1

√
HSϕt,h(st,h, at,h)

]
≤
√
HSE

[
T∑
t=1

H∑
h=1

ϕt,h(st,h, at,h)

]

≤ 2H3/2
√
SE

[
T∑
t=1

H∑
h=1

1 ∧
(
β
√
S
√
γt,sa||xt||Z−1

t,sa

)]

where we used the definition of ξ
(p)

t,h used in Section 3.4.4. Using the upper bound above along with
Lemma 3.27 and Lemma 3.28, we obtain the bound:

E

[
T∑
t=1

H∑
h=1

√
HSϕt,h(st,h, at,h)

]
= O

(
βH5/2S3/2

√
dAγ̄TT

ηα

√
log

(
1 +

THR2

λd

))
(3.33)

We get the final bound on the term by combining eqs. (3.32) and (3.33).

We now bound the first term in (3.31):

Lemma 3.33. With the ONS estimation method and the used randomized bonus, we have:

E

[∑
t,h

∣∣∣〈Pt(st,h, at,h)− P̂t(st,h, at,h), V t,h+1

〉∣∣∣]

= Õ

((√
dmaxs,a ||W ∗

sa||F√
α

+
d

α

)
β
√
H7S3AT

)

Proof. We first rewrite the expression:

E

[∑
t,h

∣∣∣〈Pt(st,h, at,h)− P̂t(st,h, at,h), Vt,h+1

〉∣∣∣] ≤ E[∑
t,h

||εpt (st,h, at,h)||1||Vt,h+1||∞

]

where εpt (st,h, at,h) = Pt(st,h, at,h)− P̂t(st,h, at,h). Using Cauchy-Schwarz inequality, we rewrite
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this as: √√√√E[∑
t,h

||εpt (st,h, at,h)||
2
1

]√√√√E[∑
t,h

||Vt,h+1||2∞

]

For bounding the sum of values under the second square root, we can directly use the Lemma 8
from Russo (2019): √√√√E[∑

t,h

||Vt,h+1||2∞

]
= Õ(H3

√
ST ) (3.34)

For bounding the expected estimation error, we consider two events: F (p) when the confidence
widths are incorrect and (F (p))x when the confidence intervals are valid for all (s, a), t and h.
Therefore, we have:

E

[∑
t,h

||εpt (st,h, at,h)||
2
1

]
= E

[∑
t,h

||εpt (st,h, at,h)||
2
1|F

(p)

]
P (F (p))

+ E

[∑
t,h

||εpt (st,h, at,h)||
2
1|(F

(p))x

]
P ((F (p))x)

Setting δp = 1/TH , we can bound the sum under failure event to a constant. For the other term, we
see that it is equivalent to:

E

[∑
t,h

||εpt (st,h, at,h)||
2
1|(F

(p))x

]
P ((F (p))x) ≤ E

[∑
t,h

(
1 ∧ β

√
Sγt(st,h, at,h)||xt||Z−1

t,sa,h

)2
]

≤ 2β2Sγ̄T
ηα

E

[∑
t,h

(
1 ∧ ηα

2
||xt||2Z−1

t,sa,h

)]

= Õ

((
dmaxs,a ||W ∗

sa||
2
F

α
+
d2

α2

)
β2S2AH

)
(3.35)

Combining eqs. (3.34) and (3.35), we get the desired result.

The final regret guarantee can be obtained by adding terms from Lemma 3.32 and Lemma 3.33.
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3.8.2.4 Proof of Mistake Bound of GLM-ORL

In order to prove the mistake bound, we need to bound the number of episodes where the policy’s
value is more than ε-suboptimal. We start with the inequality in (3.26):

V ∗t,1(s)− V πt
t,1 (s) ≤

∑
h,s,a

Pt[sh, ah = s, a|st,1](2ϕt,h(s, a) ∧ V max
h )

We note that if ϕt,h(s, a) ≤ ε
2H

for all t, h and (s, a), then we have

V ∗t,1(s)− V πt
t,1 (s) ≤

∑
h,s,a

Pt[sh, ah = s, a|st,1]
ε

H
≤ ε

In order to satisfy the constraint, we bound each error term as: ξ(p) ≤ ε
4H2 and ξ(r) ≤ ε

4H
.

We bound the number of episodes where this constraint is violated. For simplicity, we consider
that the rewards are known and only consider the transition probabilities in the analysis:∑

t∈[T ]+

1

[
∃(s, a) s.t. ξ(p)

t,sa ≥
ε

4H2

]
≤
∑
t∈[T ]+

∑
s,a

1

[
β
√
S
√
γt,sa||xt||Z−1

t,sa
≥ ε

4H2

]
≤
∑
t∈[T ]+

∑
s,a

16β2SH4γt,sa
ε2

||xt||2Z−1
t,sa

≤ 16β2SH4γT+1

ε2

∑
t∈[T ]+

∑
s,a

||xt||2Z−1
t,sa

≤ 16β2H4γT+1

ε2

∑
s,a

∑
t∈[T ]+

||xt||2Z−1
t,sa

(3.36)

where in the intermediate steps, we have used the nature of the indicator function and the fact that
minimum is upper bounded by the average. Assuming that Nt,sa denotes the number of visits to
pair (s, a) in episode t, we rewrite the inner term as:

||xt||2Z−1
t+1,sa

= x>t (Zt +Nt,saxtx
>
t )−1xt

= x>t Zt,saxt −
Nt,sax

>
t Z
−1
t,saxtx

>
t Z
−1
t,saxt

1 +Nt,sax>t Z
−1
t,saxt

= ||xt||2Z−1
t,sa
−

Nt||xt||4Z−1
t,sa

1 +Nt,sa||xt||2Z−1
t,sa
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With this setup, we get:

||xt||2Z−1
t,sa

=
||xt||2Z−1

t+1,sa

1−Nt,sa||xt||2Z−1
t+1,sa

≤ λ+H

λ
||xt||2Z−1

t+1,sa

≤ λ+H

λ
〈Z−1

t+1,sa, Nt,saxtx
>
t 〉

Using Lemma 11 from Hazan et al. (2007), the inner sum in (3.36), can be bounded as:

λ+H

λ

∑
t∈[T ]+

||xt||2Z−1
t+1
≤ d log

(
R2TH

λ
+ 1

)

Combining all these bounds, we get:

∑
t∈[T ]+

1

[
∃(s, a) s.t. ξ(p)

t,sa ≥
ε

4H2

]
≤ 16(λ+H)β2dS2AH4γT+1

λε2
log

(
R2TH

λ
+ 1

)

Noting that γT+1 = O
(
d log2 TH

α
+ S

)
, we get the final mistake bound as:

O

(
dS2AH5 log TH

ε2

(
d log2 TH

α
+ S

))
ignoring O(poly(log log TH)) terms.
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CHAPTER 4

Best Policy Identification in Linear Mixture MDPs

In the previous chapter, we considered a multi-task RL problem where the agent interacts with
a sequence of tabular environments. One of the main results considered a linear setting where
an MDP in a given sequence is obtained as a linear combination of set of basis models and the
combination coefficients parameterized the tasks. Our results showed that such a structure can
be exploited to behave near-optimally in an online learning scenario by iteratively learning the
underlying basis. In this chapter, we consider the flip of the structural assumption for a single task
where the environment can be complex but can be expressed as linear combination of basis models.

Specifically, in this chapter, we consider a setting where we have access to an ensemble of
models, which can be thought of as pre-trained and possibly inaccurate simulators (models). We
approximate the real environment (which can be arbitrarily complex) using a state-dependent linear
combination of the ensemble, where the coefficients are determined by the given state features and
some unknown parameters. Our proposed algorithm provably learns a near-optimal policy with a
sample complexity polynomial in the number of unknown parameters, and incurs no dependence
on the size of the state (or action) space. As an extension, we also consider the more challenging
problem of model selection, where the state features are unknown and can be chosen from a large
candidate set. We provide exponential lower bounds that illustrate the fundamental hardness of this
problem, and develop a provably efficient algorithm under additional natural assumptions.

4.1 Introduction

A common aspect in many of the success stories of RL, for instance, games (Mnih et al., 2015; Silver
et al., 2016), simulated control problems (Todorov et al., 2012; Lillicrap et al., 2015; Mordatch
et al., 2016) and a range of robotics tasks (Christiano et al., 2016; Tobin et al., 2017), is the use of
simulation. Arguably, given a simulator of the real environment, it is possible to use RL to learn
a near-optimal policy from (usually a large amount of) simulation data. If the simulator is highly
accurate, the learned policy should also perform well in the real environment.
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Apart from some cases where the true environment and the simulator coincide (e.g., in game
playing) or a nearly perfect simulator can be created from the law of physics (e.g., in simple
control problems), in general we will need to construct the simulator using data from the real
environment, making the overall approach an instance of model-based RL1. As the algorithms for
learning from simulated experience mature (which is what the RL community has mostly focused
on), the bottleneck has shifted to the creation of a good simulator. How can we learn a good model

of the world from interaction experiences?

A possible approach for meeting this challenge, is to learn using a wide variety of simulators,
which imparts robustness and adaptivity to the learned policies. Recent works have demonstrated
the benefits of using such an ensemble of models, which can be used to either transfer policies
from simulated to real-world domains, or to simply learn robust policies (Andrychowicz et al.,
2020; Tobin et al., 2017; Rajeswaran et al., 2017). Borrowing the motivation from these empirical
works, we notice that the process of learning a simulator inherently includes various choices like
inductive biases, data collection policy, design aspects etc. As such, instead of relying on a sole
approximate model for learning in simulation, interpolating between models obtained from different
sources can provide better approximation of the real environment. From a statistical perspective
too, incorporating these different design choices in building the set of models allows us to adapt to
differing sizes of available interaction data. Previous works like Buckman et al. (2018); Lee et al.
(2019); Kurutach et al. (2018) have also demonstrated the effectiveness of using an ensemble of
models for decreasing modelling error, or its effect thereof, during learning.

In this chapter, we consider building an approximate model of the real environment from
interaction data using a set (or ensemble) of possibly inaccurate models, which we will refer to as
the base models. The simplest way to combine the base models is to take a weighted combination,
but such an approach is rather limited. For instance, each base model might be accurate in certain
regions of the state space, in which case it is natural to consider a state-dependent mixture. We
consider the problem of learning in such a setting, where one has to identify an appropriate
combination of the base models through real-world interactions, so that the induced policy performs
well in the real environment. The data collected through interaction with the real world can be a
precious resource and, therefore, we need the learning procedure to be sample-efficient. Our main
result is an algorithm that enjoys polynomial sample complexity guarantees, where the polynomial
has no dependence on the size of the state and action spaces. We also study a more challenging
setting where the featurization of states for learning the combination is unknown and has to be
discovered from a large set of candidate features.

1Model-free RL agorithms provide an approach to circumvent the issue of learning a near-accurate model, but are
marred with sample efficiency issues in practice. Hence, we focus on a theoretical model which utilizes model-based
structural assumptions.
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Outline. We formally set up the problem and notation in Section 4.2. The main algorithm is
introduced in Section 4.3, together with its sample complexity guarantees. We then proceed to
the feature selection problem in Section 4.4 and show a fundamental hardness of learning in the
unknown feature case. In Section 4.9, we provide a detailed proof of the main result, and finally,
conclude in Section 4.6 with a brief discussion of related work and results.

4.2 Problem Setup

In this chapter, we consider a setting where the agent interacts with an episodic MDP with arbitrarily
large state-action spaces. The agent is given access to a set of K base MDPs {M1, . . . ,MK} which
share the same S,A, H, P1, and only differ in P andR. In addition, a feature map φ : S×A → ∆d−1

is given which maps state-action pairs to d-dimensional real vectors. Given these two objects, we
consider the class of all models which can be obtained from the following state-dependent linear
combination of the base models:

Definition 4.1 (Linear Combination of Base Models). For given model ensemble {M1, . . . ,MK}
and the feature map φ : S×A → ∆d−1, we consider models parameterized byW with the following

transition and reward functions:

PW (·|s, a) =
K∑
k=1

(Wφ(s, a)) [k] · P k(·|s, a),

RW (·|s, a) =
K∑
k=1

(Wφ(s, a)) [k] ·Rk(·|s, a).

We will use M(W ) to denote such a model for any parameter W ∈ W withW0 ≡ {W ∈ [0, 1]K×d :∑K
i=1Wij = 1 for all j ∈ [d]+}.

For now, let’s assume that there exists some W ∗ such that M∗ = M(W ∗), i.e., the true environ-
ment can be captured by our model class; we will relax this assumption shortly. For notation, we
use “sh:H ∼M” to imply that the sequence of states are generated according to the dynamics of M .
A policy is said to be optimal for M if it maximizes the value vπM . We denote such a policy as πM
and its value as vM . We use π∗ and v∗ as shorthand for πM∗ and vM∗ , respectively.

To develop intuition, consider a simplified scenario where d = 1 and φ(s, a) ≡ 1. In this case,
the matrix W becomes a K × 1 stochastic vector, and the true environment is approximated by a
linear combination of the base models.

Example 4.1 (Global convex combination of models). If the base models are combined using a set

of constant weights w ∈ ∆K−1, then this is a special case of Definition 4.1 where d = 1 and each
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state’s feature vector is φ(s, a) ≡ 1.

In the more general case of d > 1, we allow the combination weights to be a linear transforma-
tion of the features, which are Wφ(s, a), and hence obtain more flexibility in choosing different
combination weights in different regions of the state-action space. A special case of this more
general setting is when φ corresponds to a partition of the state-action space into multiple groups,
and the linear combination coefficients are constant within each group.

Example 4.2 (State space partition). Let S ×A =
⋃
i∈[d]+

Xi be a partition (i.e., {Xi} are disjoint).

Let φi(s, a) = 1[(s, a) ∈ Xi] for all i ∈ [d]+ where 1[·] is the indicator function. This φ satisfies the

condition that φ(s, a) ∈ ∆d−1, and when combined with a set of base models, forms a special case

of Definition 4.1.

Goal. We consider the best policy identification problem (described in Section 2.2.2) in this
chapter: with probability at least 1− δ, the algorithm should output a policy π with value vπM∗ ≥
v∗ − ε by collecting poly (d,K,H, 1/ε, log(1/δ)) episodes of data. Importantly, here the sample
complexity is not allowed to depend on |S| or |A|. However, the assumption that M∗ lies the class
of linear models can be limiting and, therefore, we will allow some approximation error in our
setting as follows:

θ := min
W∈W

sup
(s,a)∈S×A

∥∥P ∗(·|s, a)− PW (·|s, a)
∥∥

1
+
∣∣R∗(·|s, a)−RW (·|s, a)

∣∣ (4.1)

We denote the optimal parameter attaining this value by W ∗. The case of θ = 0 represents the
realizable setting where M∗ = M(W ∗) for some W ∗ ∈ W . When θ 6= 0, we cannot guarantee
returning a policy with the value close to v∗, and will have to pay an additional penalty term
proportional to the approximation error θ, as is standard in RL theory.

Further Notations Let πW be a shorthand for πM(W ), the optimal policy in M(W ). When
referring to value functions and state-action distributions, we will use the superscript to specify
the policy and use the subscript to specify the MDP in which the policy is evaluated. For example,
we will use V W

W ′,h to denote the value of πW (the optimal policy for model M(W )) when evaluated
in model M(W ′) starting from timestep h. The term dWW ′,h denotes the state-action distribution
induced by policy πW at timestep h in the MDP M(W ′). Furthermore, we will write V W

M∗,h and
dWM∗,h when the evaluation environment is M∗. For conciseness, VW,h and QW,h will denote the
optimal (state- and Q-) value functions in model M(W ) at step h (e.g., VW,h(s) ≡ V W

W,h(s)). The
expected return of a policy π in model M(W ) is defined as:

vπW = Es∼P0

[
V π
M(W ),0(s)

]
. (4.2)
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We assume that the total reward
∑H−1

h=0 rh lies in [0, 1] almost surely in all MDPs of interest and
under all policies. Further, whenever used, any value function at step H (e.g., V π

W,H) evaluates to 0

for any policy and any model.

4.3 Algorithm and Main Result

In this section we introduce the main algorithm that learns a near-optimal policy in the aforemen-
tioned setup with a poly(d,K,H, 1/ε, log(1/δ)) sample complexity. We will first give the intuition
behind the algorithm, and then present the formal sample complexity guarantees. The complete
detailed analysis is deferred to Section 4.9. For simplicity, we will describe the intuition for the
realizable case with θ = 0 (P ∗ ≡ PW ∗). The pseudocode (Algorithm 4.1) and the results are,
however, stated for the general case of θ 6= 0.

At a high level, our algorithm proceeds in iterations t = 1, 2, . . ., and gradually refines a
version space Wt of plausible parameters. Our algorithm follows an explore-or-terminate tem-
plate and in each iteration, either chooses to explore with a carefully chosen policy or termi-
nates with a near-optimal policy. For exploration in the t-th iteration, we collect n trajectories{(
s

(i)
0 , a

(i)
0 , r

(i)
0 , s

(i)
1 , . . . , s

(i)
H−1, a

(i)
H−1, r

(i)
H−1

)}
i∈[n]

following some exploration policy πt (line 7).

A key component of the algorithm is to extract knowledge about W ∗ from these trajectories. In
particular, for every h, the bag of samples

{
s

(i)
h+1

}
i∈[n]

may be viewed as an unbiased draw from the

following distribution

1

n

n∑
i=1

PW ∗
(
·|s(i)

h , a
(i)
h

)
. (4.7)

The situation for rewards is similar and will be omitted in the discussion. So in principle we could
substitute W ∗ in (4.7) with any candidate W , and if the resulting distribution differs significantly
from the real samples

{
s

(i)
h+1

}
h∈[H],i∈[n]

, we can assert that W 6= W ∗ and eliminate W from the

version space. However, the state space can be arbitrarily large in our setting, and comparing state
distributions directly can be intractable. Instead, we project the state distribution in (4.7) using a
(non-stationary) discriminator function {ft,h}H−1

h=0 (which will be chosen later) and consider the
following scalar property

1

n

n∑
i=1

H−1∑
h=0

E
r∼RW∗

(
·|s(i)h ,a

(i)
h

)
,

s′∼PW∗
(
·|s(i)h ,a

(i)
h

) [r + ft,h+1(s′)] , (4.8)
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Algorithm 4.1 PAC Algorithm for Linear Model Ensembles
1: Input: {M1, . . .MK} , ε, δ, φ(·, ·),W0

2: for t→ 1, 2, . . . do
3: Compute optimistic model Wt and set πt to πWt

Wt ← argmax
W∈Wt−1

VW

4: Estimate the value of πt using neval trajectories:

v̂t :=
1

neval

H−1∑
h=0

r
(i)
h (4.3)

5: if vWt − v̂t ≤ 3ε/4 + (3
√
dK + 1)Hθ then

6: Terminate and output πt
7: Collect n trajectories using πt : ah ∼ πt(sh)

8: Estimate the matrix Ẑt and ŷt as

Ẑt :=
1

n

n∑
i=1

H−1∑
h=0

V t,h

(
s

(i)
h , a

(i)
h

)
φ
(
s

(i)
h , a

(i)
h

)>
(4.4)

ŷt :=
1

n

n∑
i=1

H−1∑
h=0

r
(i)
h+1 + Vt,h+1

(
s

(i)
h+1

)
(4.5)

9: Update the version space toWt as the set:{
W ∈ Wt−1 :

∣∣∣ŷt − 〈W, Ẑt〉∣∣∣ ≤ ε
12
√
dK

+Hθ
}

(4.6)

which can be effectively estimated by

1

n

n∑
i=1

H−1∑
h=0

(
r

(i)
h + ft,h+1

(
s

(i)
h+1

))
. (4.9)

Since we have projected states onto R, (4.9) is the average of scalar random variables and enjoys
state-space-independent concentration. Now, in order to test the validity of a parameter W in a
given version space, we compare the estimate in (4.9) with the prediction given by M(W ), which
is:

1

n

n∑
i=1

H−1∑
h=0

E
r∼RW

(
·|s(i)h ,a

(i)
h

)
,

s′∼PW
(
·|s(i)h ,a

(i)
h

) [r + ft,h+1(s′)] . (4.10)
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As we consider a linear model class, by using linearity of expectations, (4.10) may also be written
as:

1

n

n∑
i=1

H−1∑
h=0

[
Wφ

(
s

(i)
h , a

(i)
h

)]> [
V t,h

(
s

(i)
h , a

(i)
h

)]
=

〈
W,

1

n

n∑
i=1

H−1∑
h=0

V t,h

(
s

(i)
h , a

(i)
h

)
φ
(
s

(i)
h , a

(i)
h

)>〉
, (4.11)

where 〈A,B〉 denotes tr(A>B) for any two matrices A and B. In (4.11), V t,h is a function that
maps (s, a) to a K dimensional vector with each entry being

[
V t,h(s, a)

]
k

:= Er∼Rk(·|s,a),

s′∼Pk(·|s,a)

[r + ft,h+1(s′)] . (4.12)

The intuition behind (4.11) is that for each fixed state-action pair
(
s

(i)
h , a

(i)
h

)
, the expectation

in (4.8) can be computed by first taking expectation of r + ft,h+1(s′) over the reward and tran-
sition distributions of each of the K base models—which gives V h—and then aggregating the
results using the combination coefficients. Rewriting lhs of (4.11) as its rhs, we see that (4.8)
can also be viewed as a linear measurement of W ∗, where the measurement matrix is again
1
n

∑n
i=1

∑H−1
h=0 V h

(
s

(i)
h , a

(i)
h

)
φ
(
s

(i)
h , a

(i)
h

)>
. Therefore, by estimating this measurement matrix

and the outcome in (4.9), we obtain an approximate linear equality constraint overWt−1 and can
eliminate any candidate W that violates such constraints. By using a finite sample concentration
bound over the inner product, we get a linear inequality constraint to update the version space ( see
(4.6)).

The remaining concern is to choose the exploration policy πt and the discriminator function
{ft,h} to ensure that the linear constraint induced in each iteration is significantly different from the
previous ones and induces deep cuts in the version space. We guarantee this by choosing πt := πWt

and ft,h := VWt,h
2, where Wt is the optimistic model as computed in line 3. That is, Wt predicts

the highest optimal value among all candidate models inWt−1. Following a terminate-or-explore
argument, we show that as long as πt is suboptimal, the linear constraint induced by our choice of πt
and {ft,h} will significantly reduce the volume of the version space, and the iteration complexity can
be bounded as poly(d,K) by an ellipsoid argument similar to that of Jiang et al. (2017). Similarly,
the sample size needed in each iteration only depends polynomially on d and K and incurs no
dependence on |S| or |A|, as we have summarized high-dimensional objects such as ft,h (function
over states) using low-dimensional quantities such as V t,h (vector of length K).

The bound on the number of iterations and the number of samples needed per iteration leads to

2We use the simplified notation Vt,h for VWt,h.
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the following sample complexity result:

Theorem 4.1 (PAC bound for Algorithm 4.1). In Algorithm 4.1, if neval := 32H2

ε2
log 4T

δ
and n =

1800d2KH2

ε2
log 8dKT

δ
where T = dK log 2

√
2KH
ε

/ log 5
3
, with probability at least 1− δ, the algorithm

terminates after using at most

Õ

(
d3K2H2

ε2
log

1

δ

)
(4.13)

trajectories and returns a policy πT with a value vT ≥ v∗ − ε− (3
√
dK + 2)Hθ.

By setting d and K to appropriate values, we obtain the following sample complexity bounds as
corollaries:

Corollary 4.2 (Sample complexity for partitions). Since the state-action partitioning setting (Ex-

ample 4.2) is subsumed by the general setup, the sample complexity is again:

Õ

(
d3K2H2

ε2
log

1

δ

)
(4.14)

Corollary 4.3 (Sample complexity for global convex combination). When base models are com-

bined without any dependence on state-action features (Example 4.1), the setting is special case of

the general setup with d = 1. Thus, the sample complexity is:

Õ

(
K2H2

ε2
log

1

δ

)
(4.15)

Our algorithm, therefore, satisfies the requirement of learning a near-optimal policy without any
dependence on the |S| or |A|. Moreover, we can also account for the approximation error θ but
also incur a cost of (3

√
dK + 1)Hθ in the performance guarantee of the final policy. As we use

the projection of value functions through the linear model class, we do not model the complete
dynamics of the environment. This leads to an additive loss of 3

√
dKHθ in value in addition to the

best achievable value loss of 2Hθ (see Corollary 4.8 in Section 4.9).

Optimality of the bound. Our main result in Theorem 4.1 shows an upper bound of Õ
(
d3K2

ε2

)
where the 1/ε2 is the expected dependence similar to other minimax-optimal bounds. For the
dimension dependence, compared to a supervised learning based upper bound of O(dK), we
incur additional factors of O(dK) due to the exploration setting (O(d) vs. O(d2) in linear bandit
problems) and an additional O(d) term due to the size of the parameter W ∗.
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Comparison to OLIME (Sun et al., 2019) Our Algorithm 4.1 shares some structural similarity
with the OLIME algorithm proposed by Sun et al. (2019), but there are also several important
differences. First of all, OLIME in each iteration will pick a time step and take uniformly random
actions during data collection, and consequently incur polynomial dependence on |A| in its sample
complexity. In comparison, our main data collection step (line 7) never takes a random deviation,
and we do not pay any dependence on the cardinality of the action space. Secondly, similar to how
we project the transition distributions onto a discriminator function (see (4.7) and (4.8)), OLIME
projects the distributions onto a static discriminator class and uses the corresponding integral
probability metric (IPM) as a measure of model misfit. In our setting, however, we find that the
most efficient and elegant way to extract knowledge from data is to use a dynamic discriminator
function, VWt,h, which changes from iteration to iteration and depends on the previously collected
data. Such a choice of discriminator function allows us to make direct cuts on the parameter space
W , whereas OLIME can only make cuts in the value prediction space.

Computational Characteristics In each iteration, our algorithm computes the optimistic policy
within the version space. Therefore, we rely on access to the following optimistic planning oracle:

Assumption 4.1 (Optimistic planning oracle). We assume that when given a version spaceWt, we

can obtain the optimistic model through a single oracle call for Wt = argmaxW∈Wt
VW .

It is important to note that any version spaceWt that we deal with is always an intersection of
half-spaces induced by the linear inequality constraints. Therefore, one would hope to solve the
optimistic planning problem in a computationally efficient manner given the nice geometrical form
of the version space. However, even for a finite state-action space, we are not aware of any efficient
solutions as the planning problem induces bilinear and non-convex constraints despite the linearity
assumption. Many recently proposed algorithms also suffer from such a computational difficulty
(Jiang et al., 2017; Dann et al., 2018; Sun et al., 2019).

Further, we also assume that for any given W , we can compute the optimal policy πW and its
value function: our elimination criteria in (4.6) uses estimates Ẑt and ŷt which in turn depend on
the value function. This requirement corresponds to a standard planning oracle, and aligns with
the motivation of our setting, as we can delegate these computations to any learning algorithm
operating in the simulated environment with the given combination coefficient. Our algorithm,
instead, focuses on careful and systematic exploration to minimize the sample complexity in the
real world.
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4.4 Feature Selection for Linear Model Ensembles

In the previous section we showed that a near-optimal policy can be PAC-learned under our modeling
assumptions, where the feature map φ : S × A → [0, 1] is given along with the approximation
error θ. In this section, we explore the more interesting and challenging setting where a realizable
feature map φ is unknown, but we know that the realizable φ belongs to a candidate set {φi}Ni=1,
i.e., the true environment satisfies our modeling assumption in Definition 4.1 under φ = φi∗ for
some i∗ ∈ [N ] with θi∗ = 0. Note that Definition 4.1 may be satisfied by multiple φi’s; for example,
adding redundant features to an already realizable φi∗ still yields a realizable feature map. In such
cases, we consider φi∗ to be the most succinct feature map among all realizable ones, i.e., the one
with the lowest dimensionality. Let di denote the dimensionality of φi, and d∗ = di∗ .

One obvious baseline in this setup is to run Algorithm 4.1 with each φi and select the best
policy among the returned ones. This leads to a sample complexity of roughly

∑N
i=1 d

3
i (only the

dependence on {di}Ni=1 is considered), which can be very inefficient: When there exists j such that
d∗ � dj , we pay for d3

j which is much greater than the sample complexity of d∗; When {di} are
relatively uniform, we pay a linear dependence on N , preventing us from competing with a large set
of candidate feature maps.

So the key result we want to obtain is a sample complexity that scales as (d∗)3, possibly with a
mild multiplicative overhead dependence on d∗ and/or N (e.g., log d∗ and logN ).

4.4.1 Hardness result for unstructured partitions

Unfortunately, we show that this is impossible when {φi} is unstructured via a lower bound. In
the lower bound construction, we have an exponentially large set of candidate feature maps, all of
which are state space partitions. Each of the partitions has trivial dimensionalities (di = 2, K = 2),
but the sample complexity of learning is exponential, which can only be explained away as Ω(N).

Proposition 4.1. For the aforementioned problem of learning an ε-optimal policy using a candidate

feature set of size N , no algorithm can achieve poly(d∗, K,H, 1/ε, 1/δ,N1−α) sample complexity

for any constant 0 < α < 1.

On a separate note, besides providing formal justification for the structural assumption we will
introduce later, this proposition is of independent interest as it also sheds light on the hardness of
model selection with state abstractions. We discuss the further implications in Section 4.5.

Proof of Proposition 4.1. We construct a linear class of MDPs with two base models M1 and M2 in
the following way: Consider a complete tree of depth H with a branching factor of 2. The vertices
forming the state space of M1 and M2 and the two outgoing edges in each state are the available

94



actions. Both MDPs share the same deterministic transitions and each non-leaf node yields 0 reward.
Every leaf node yields +1 reward in M1 and 0 in M2. Now we construct a candidate partition set
{φi} of size 2H : for φi, the i-th leaf node belongs to one equivalence class while all other leaf
nodes belong to the other. (Non-leaf nodes can belong to either class as M1 and M2 agree on their
transitions and rewards.)

Observe that the above model class contains a finite family of 2H MDPs, each of which only
has 1 rewarding leaf node. Concretely, the MDP whose i-th leaf is rewarding is exactly realized
under the feature map φi, whose corresponding W ∗ is the identity matrix: the i-th leaf yields +1

reward as in M1, and all other leaves yield 0 reward as in M2. Learning in this family of 2H MDPs
is provably hard (Krishnamurthy et al., 2016), as when the rewarding leaf is chosen adversarially,
the learner has no choice but to visit almost all leaf nodes to identify the rewarding leaf as long as
ε is below a constant threshold. The proposition follows from the fact that in this setting d∗ = 2,
K = 2, 1/ε is a constant, N = 2H , but the sample complexity is Ω(2H).

This lower bound shows the necessity of introducing structural assumptions in {φi}. Below,
we consider a particular structure of nested partitions that is natural and enables sample-efficient
learning. Similar assumptions have also been considered in the state abstraction literature (e.g.,
Jiang et al., 2015).

4.4.2 Nested partitions as a structural assumption

Consider the case where every φi is a partition. W.l.o.g. let d1 ≤ d2 ≤ . . . ≤ dN . We assume {φi}
is nested, meaning that ∀(s, a), (s′, a′),

φi(s, a) = φi(s
′, a′) =⇒ φj(s, a) = φj(s

′, a′), ∀i ≤ j.

While this structural assumption almost allows us to develop sample-efficient algorithms, it is
still insufficient as demonstrated by the following hardness result.

Proposition 4.2. Fixing K = 2, there exist base models M1 and M2 and nested state space

partitions φ1 and φ2, such that it is information-theoretically impossible for any algorithm to obtain

poly (d∗, H,K, 1/ε, 1/δ) sample complexity when an adversary chooses an MDP that satisfies our

environmental assumption (Definition 4.1) under either φ1 or φ2.

Proof. We will again use an exponential tree style construction to prove the lower bound. Specifi-
cally, we construct two MDPs M and M ′ which are obtained by combining two base MDPs M1 and
M2 using two different partitions φ1 and φ2. The specification of M1 and M2 is exactly the same
as in the proof of Proposition 4.1. We choose φ1 to be a partition of size d1 = 1, where all nodes
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are grouped together. φ2 has size d2 = 2H , where each leaf node belongs to a separate group. (As
before, which group the inner nodes belong to does not matter.) φ1 and φ2 are obviously nested.
We construct M that is realizable under φ2 by randomly choosing a leaf and setting the weights
for the convex combination as (1/2 + 2ε, 1/2− 2ε) for that leaf; for all other leafs, the weights are
(1/2, 1/2). This is equivalent to randomly choosing M from a set of 2H MDPs, each of which has
only one good leaf node yielding a random reward drawn from Ber(1/2 + 2ε) instead of Ber(1/2).
In contrast, M ′ is such that all leaf nodes yield Ber(1/2) reward, which is realizable under φ1 with
weights (1/2, 1/2).

Observe that M and M ′ are exactly the same as the constructions in the proof of the multi-
armed bandit lower bound by (Auer et al., 2002) (the number of arms is 2H), where it has been
shown that distinguishing between M and M ′ takes Ω(2H/ε2) samples. Now assume towards
contradiction that there exists an algorithm that achieves poly (d∗, H,K, 1/ε, 1/δ) complexity; let
f be the specific polynomial in its guarantee. After f(1, H, 2, 1/ε, 1/δ) trajectories are collected,
the algorithm must stop if the true environment is M ′ to honor the sample complexity guarantee
(since d∗ = 1, K = 2), and proceed to collect more trajectories if M is the true environment
(since d∗ = 2H). Making this decision essentially requires distinguishing between M ′ and M using
f(1, H, 2, 1/ε, 1/δ) = poly(H) trajectories, which contradicts the known hardness result from Auer
et al. (2002). This proves the statement.

Essentially, the lower bound creates a situation where d1 � d2, and the nature may adversarially
choose a model such that either φ1 or φ2 is realizable. If φ1 is realizable, the learner is only allowed
a small sample budget and cannot fully explore with φ2, and if φ1 is not realizable the learner
must do the opposite. The information-theoretic lower bound shows that it is fundamentally hard
to distinguish between the two situations: Once the learner explores with φ1, she cannot decide
whether she should stop or move on to φ2 without collecting a large amount of data.

This hardness result motivates our last assumption in this section, that the learner knows the
value of v? (a scalar) as side information. This way, the learner can compare the value of the
returned policy in each round to v? and effectively decide when to stop. This naturally leads to
our Algorithm 4.2 that uses a doubling scheme over {di}, with the following sample complexity
guarantee.

Theorem 4.4. When Algorithm 4.2 is run with the input v∗, with probability at least 1− δ, it returns

a near-optimal policy π with vπ ≥ v∗ − ε using at most Õ
(
d∗3K2H2

ε2
log d∗ log N

δ

)
samples.

Proof. In Algorithm 4.2, for each partition i, we run Algorithm 4.1 until termination or until the
sample budget is exhausted. By union bound it is easy to verify that with probability at least 1− δ,
all calls to Algorithm 4.1 will succeed and the Monte-Carlo estimation of the returned policies will
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Algorithm 4.2 Model Selection with Nested Partitions
Input:{φ1, φ2, . . . , φN}, {M1, . . . ,MK}, ε, δ, v?.
i→ 0
while True do

Choose φi such that di is the largest among {dj : dj ≤ 2i}.
Run Algorithm 4.1 on Φi with εi = ε

2
and δi = δ

2N
.

Terminate the sub-routine if t > diK log 2
√

2KH
ε

/ log 5
3
.

Let πi be the returned policy (if any). Let v̂i be the estimated return of πi using neval =
9

2ε2
log 2N

δ
Monte-Carlo trajectories.

if v̂i ≥ v∗ − 2ε
3

then
Terminate with output πi.

be (ε/3)-accurate, and we will only consider this success event in the rest of the proof. When the
partition under consideration is realizable, we get vπiM∗ ≥ v∗ − ε/3, therefore

v̂i ≥ vπi − ε
3
≥ v∗ − 2ε

3
,

so the algorithm will terminate after considering a realizable φi. Similarly, whenever the algorithm
terminates, we have vπi ≥ v∗ − ε. This is because

vπi ≥ v̂i − ε
3
≥ v∗ − ε,

where the last inequality holds thanks to the termination condition of Algorithm 4.2, which relies
on knowledge of v?. The total number of iterations of the algorithm is at most O(log d∗). Therefore,
by taking a union bound over all possible iterations, the sample complexity is

J∑
i=1

Õ

(
d3
iK

2H2

ε2

)
≤ Õ

(
d∗3K2H2

ε2

)
.

Discussion. Model selection in online learning—especially in the context of sequential decision
making—is generally considered very challenging. There has been relatively limited work in the
generic setting until recently for some special cases. For instance, Foster et al. (2019) consider
the model selection problem in linear contextual bandits with a sequence of nested policy classes
with dimensions d1 < d2 < . . .. They consider a similar goal of achieving sub-linear regret bounds
which only scale with the optimal dimension dm∗ . In contrast to our result, they do not need to know
the achievable value in the environment and give no-regret learning methods in the knowledge-free

setting. However, this is not contradictory to our lower bound: Due to the extremely delayed reward
signal, our construction is equivalent to a multi-armed bandit problem with 2H arms. Our negative
result (Proposition 4.2) shows a lower bound on sample complexity which is exponential in horizon,
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therefore eliminating the possibility of sample efficient and knowledge-free model selection in
MDPs.

4.5 The Implication of Proposition 4.1 on the Hardness of
Learning State Abstractions

Here we show that the proof of Proposition 4.1 can be adapted to show a related hardness result for
learning with state abstractions. A state abstraction is a mapping φ that maps the raw state space S
to some finite abstract state space Sφ, typically much smaller in size. When an abstraction φ with
good properties (e.g., preserving reward and transition dynamics) is known, one can leverage it
in exploration and obtain a sample complexity that is polynomial in |Sφ| instead of |S|. Among
different types of abstractions, bisimulation (Whitt, 1978; Givan et al., 2003) is a very strict notion
that comes with many nice properties (Li et al., 2006).

An open problem in state abstraction literature has been whether it is possible to perform model
selection over a large set of candidate abstractions, i.e., designing an algorithm whose sample
complexity only scales sublinearly (or ideally, logarithmically) with the cardinality of the candidate
set. Using the construction from Proposition 4.1, we show that this is impossible without further
assumptions:

Proposition 4.3. Consider a learner in an MDP that is equipped with a set of state abstractions,

{φ1, φ2, . . . , φN}. Each abstraction φi maps the raw state space S to a finite abstract state space

Sφi . Even if there exists i∗ ∈ [N ] such that φ∗ = φi is a bisimulation, no algorithm can achieve

poly (|Sφ∗|, |A|, H, 1/ε, 1/δ,N1−α) sample complexity for any α > 0.

Proof. Following the proof of Proposition 4.1, we consider the family of MDPs that share the same
deterministic transition dynamics with a complete tree structure, where each MDP only has one
rewarding leaf. Let N = 2H be the number of leaves, and let the MDPs be {Mi} where the index
indicates the rewarding leaf. We then construct a set of N abstractions where one of them will
always be a bisimulation regardless of which MDP we choose from the family. Consider the i-th
abstraction, φi. At each level h, φi aggregates the state on the optimal path in its own equivalence
class, and aggregates all other states together. It does not aggregate states across levels. It is easy
to verify that φi is a bisimulation in MDP Mi, and |Sφi | = 2H . If the hypothetical algorithm
existed, it would achieve a sample complexity sublinear in N , as N = 2H and all other relevant
parameters (e.g., |Sφi | and H) are at most polynomial in H . However, the set of abstractions {φi}
is uninformative in this specific problem and does not affect the Ω(2H) sample complexity, which
completes the proof.
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4.6 Related Work

Related structural assumptions In this chapter, we studied how a linear mixture assumption in
the model space can be utilized to design provably efficient exploration algorithms. As a follow-up
to our work, the structural assumption in Definition 4.1 has been studied extensively under the
name ‘linear-mixture MDP’. Firstly, the algorithmic scheme we propose in Algorithm 4.1 has been
generalized under the regret framework in Ayoub et al. (2020). The authors show that an optimistic
value targeted regression algorithm, UCRL-VTR, guarantees near-optimal regret for model classes
with bounded Eluder dimension (which includes Definition 4.1). Further, extensions of results to
different settings (Zhou et al., 2021b) and improvements have also been proposed (Zhou et al.,
2021a).

A closely related structured model is the class of low-rank MDPs, have been considered by
Yang and Wang (2019); Jin et al. (2020). As described in Definition 2.2, in low-rank MDPs, the
transition matrices admit a low-rank factorization, and the left matrix in the factorization are known
to the learner as state-action features (corresponding to our φ). Their environmental assumption is a
special case of ours, where the transition dynamics of each base model P k(·|s, a) is independent of
s and a, i.e., each base MDP can be fully specified by a single density distribution over S. This
special case enjoys many nice properties, such as the value function of any policy is also linear
in state-action features, and the linear value-function class is closed under the Bellman update
operators, which are heavily exploited in their algorithms and analyses. In contrast, none of these
properties hold under our more general setup, yet we are still able to provide sample efficiency
guarantees. That said, we do note that the special case allows these recent works to obtain stronger
results: their algorithms are both statistically and computationally efficient (ours is only statistically
efficient), and some of these algorithms work without knowing the K base distributions.3

Model ensembles in practice On the empirical side, the closest work to our setting is the multiple
model-based RL (MMRL) architecture proposed by Doya et al. (2002) where they also decom-
pose a given domain as a convex combination of multiple models. However, instead of learning
the combination coefficients for a given ensemble, their method trains the model ensemble and
simultaneously learns a mixture weight for each base model as a function of state features. Their
experiments demonstrate that each model specialized for different domains of the state space where
the environment dynamics is predictable, thereby, providing a justification for using convex com-
bination of models for simulation. Further, the idea of combining different models is inherently
present in Bayesian learning methods where a posterior approximation of the real environment is

3In our setting, not knowing the base models immediately leads to hardness of learning, as it is equivalent to learning
a general MDP without any prior knowledge even when d = K = 1. This requires Ω(|S||A|) sample complexity (Azar
et al., 2012), which is vacuous as we are interested in solving problems with arbitrarily large state and action spaces.
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iteratively refined using interaction data. For instance, Rajeswaran et al. (2017) introduce the EPOpt
algorithm which uses an ensemble of simulated domains to learn robust and generalizable policies.
During learning, they adapt the ensemble distribution (convex combination) over source domains
using data from the target domain to progressively make it a better approximation. Similarly, Lee
et al. (2019) combine a set of parameterized models by adaptively refining the mixture distribution
over the latent parameter space. Here, we study a relatively simpler setting where a finite number of
such base models are combined and give a frequentist sample complexity analysis for our method.

Results on model-selection The problem of model selection in the bandit literature has received
a lot of recent attention, in a range of results from linear to general stochastic contextual bandits
(Agarwal et al., 2017; Foster et al., 2019; Pacchiano et al., 2020b; Bibaut et al., 2020; Pacchiano et al.,
2020a; Arora et al., 2021). In many such algorithms, the idea is to run a master algorithm which
manages different instances of a base algorithm with the different hypothesis classes. The model
selection subroutine uses the sample efficiency guarantees for the base algorithm as a hypothesis
test and eliminates bad hypothesis classes. On the other hand, for reinforcement learning, devising
model selection algorithms is a problem of current interest and hasn’t seen much work. In one
instance, Pacchiano et al. (2020a) show regret guarantees for learning in linear MDPs with a given
set of features classes. However, the final result depends polynomially on the number of candidate
features which was not the desired guarantee in Section 4.4. Motivated by this, in the next chapter,
we consider a representation learning problem for linear MDPs and show a sample complexity
bound which depends logarithmicaly on the size of the candidate feature class.

Computational efficiency Lastly, in this chapter, we study the statistical efficiency of learning
under a linear combination assumption for arbitrarily large MDPs. We, however, disregard the com-
putational complexity of learning in such MDPs by using an oracle assumption in Assumption 4.1.
For the regret criteria, the algorithm proposed by Zhou et al. (2021a) uses elliptic potential based
bonuses in addition to least-squares value iteration as the algorithmic template. Similar procedures
can be used to devise PAC-efficient algorithms via a regret to PAC conversion method described in
Section 2.2.3.

4.7 Discussion

The main motivation considered in this was the use of multiple simulators of varying fidelity for
simulation purposes. In our structural model, we studied the case where a linear combination of
such models can be used to learn a more-accurate model. Although the main results in this chapter
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are stylized for the linear structure, there are various fundamental insights which potentially carry
over to more general cases:

Sufficiency of small Bellman error for exploration In our exploration scheme in Algorithm 4.1,
our main idea is to use the error in predicting Bellman backups of a sequence of discriminator
functions as constraints for updating the version space of plausible models. This has two key
benefits which can be used in practice as well: (1) instead of learning a model which has small
error in the next-state distributions, we can easily restrict ourselves to models which have small
prediction error for value functions, hence, leading to a regression based model learning objective
compared to likelihood-based objectives and (2) the set of these value functions can be chosen
optimistically by choosing the optimal value functions of the best model in the current version
space. Using a value function based model learning objective also allows us to combine hybrid
approaches where both model and value function approximation is used. Specifically, this can be
seen as an instance of value-aware model learning (Farahmand et al., 2017) where the objective is
the Bellman error for value functions in a given class. For provable correctness of our algorithmic
setup, we need to solve the optimistic planning problem which is computationally hard and we
assume access to an oracle solution. However, in practice, such problems can be approximately
solved by look-ahead based planning and tree-based search like MCTS with optimistic model
selection on each branching step. For one step, the problem can be reduced to a simpler constrained
optimisation objective which is linear in our case. Further, instead of maintaining all sets of value
functions and optimistic policies, we can simply the algorithmic setup by using a replay buffer as is
typical in most deep reinforcement learning algorithms. Lastly, it will be an interesting question for
numerical simulations when multiple models are also learnt as described below.

Learning with model ensembles As described in the previous related work section, model
ensembles are used in practice in different forms. The cited works of Doya et al. (2002), Rajeswaran
et al. (2017) and Lee et al. (2019) use model ensembles for robust and generalizable RL. These
techniques are typically motivated from a Bayesian perspective whereas we take a frequentist
route via our linear structural assumption. However, our main techniques can also be explored in
their setting by using a setup similar to other bootstrap sampling techniques Osband et al. (2016).
Specifically, randomization in the training data, learning rates, internal algorithmic choices can be
used to learn multiple models and then later be combined using a feature based linear combination.
This will increase the overall expressivity of the parameterized model where the base models can be
trained at a slower timescale (or frozen after learning a coarse model) with faster updates for the
last linear combination coefficients. In general, we anticipate that using an optimistic combination
of models can be much more efficient for exploration as compared to randomized or bootstrap
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schemes.

Model selection The final part of this chapter considers a feature selection problem and highlights
a challenging and intriguing nature of RL problems. In the hardness results we have shown, the
construction outlines a setting where the agent has to identify whether the current environment
is a simple environment (hence a structurally simpler policy/model/value function) or a complex
one (hence complex policy/model/value function). However, this aspect of identification forces the
agent to test for the possibility of a complex environment as well, thereby, increasing the necessary
sample size. This is in direct contrast with the supervised learning setting as learning with iid data
enables us to directly evaluate performance of any learner using empirical risk, unlike RL. Our
sample efficient solution requires additional prior knowledge for such a test but further work is
required to address this challenging and important question under weaker assumptions.

4.8 Summary

In this chapter, we proposed a sample efficient model based algorithm which learns a near-optimal
policy by approximating the true environment via a feature dependent convex combination of a
given ensemble. Our algorithm offers a sample complexity bound which is independent of the size
of the environment and only depends on the number of parameters being learnt. In addition, we also
consider a model selection problem, show exponential lower bounds and then give sample efficient
methods under natural assumptions. The proposed algorithm and its analysis relies on a linearity
assumption and shares this aspect with existing exploration methods for rich observation MDPs.
Lastly, our work also revisits the open problem of coming up with a computational and sample
efficient model based learning algorithm.

4.9 Proof of Main Result

In this section, we provide a detailed proof and the key ideas used in the analysis. The proof uses an
optimism based template which guarantees that either the algorithm terminates with a near-optimal
policy or explores in the environment. We can show a polynomial sample complexity bound as the
algorithm explores for a bounded number of iterations and the number of samples required in each
iteration is polynomial in the desired parameters. We start with the key lemmas used in the analysis
in Section 4.9.1 with the final proof of the main theorem in Section 4.9.2.

Notation. As in the main text, we use 〈X, Y 〉 for tr(X>Y ). The notation ||A||F denotes the
Frobenius norm tr(A>A). For any matrix A = (A1A2 . . . An) in Rm×n with columns Ai ∈ Rm, we
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will use ||A||p,q as the group norm:
∣∣∣∣∣∣(||A1||p, ||A2||p, . . . , ||An||p)

∣∣∣∣∣∣
q
.

4.9.1 Key lemmas used in the analysis

For our analysis, we first define a term E(W,h) for any parameter W which intuitively quantifies
the model error at step h as follows:

EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM∗ [rh + VW,h+1(sh+1)
∣∣sh, ah]] (4.16)

We start with the following lemma which allows us to express the value loss by using a model
M(W ) in terms of these per-step quantities.

Lemma 4.5 (Value decomposition). For any W ∈ W , we can write the difference in two values:

vW − vWM∗ = E(W ) :=
H−1∑
h=0

E(W,h) (4.17)

Proof. We start with the value difference on the lhs:

vW − vWM∗ = EdW
M∗,0

[
EM(W )

[
r0 + VW,1(s1)

∣∣s0, a0

]
− EM∗

[
r0 + V W

M∗,1(s1)
∣∣s0, a0

]]
= EdW

M∗,0

[
EM(W )

[
r0 + VW,1(s1)

∣∣s0, a0

]]
− EdW

M∗,0

[
EM∗

[
r0 + VW,1(s1)− VW,1(s1) + V W

M∗,1(s1)
∣∣s0, a0

]]
= EdW

M∗,0

[
EM(W )

[
r0 + VW,1(s1)

∣∣s0, a0

]
− EM∗

[
r0 + VW,1(s1)

∣∣s0, a0

]]
+ EdW

M∗,1

[
VW,1(s1)− V W

M∗,1(s1)
]

= E(W, 0) + EdW
M∗,2

[
EM(W )

[
r1 + VW,2(s2)

∣∣s1, a1

]
− EM∗

[
r1 + V W

M∗,2(s2)
∣∣s1, a1

]]
Unrolling the second expected value similarly till H leads to the desired result.

At various places in our analysis, we will use the well-known simulation lemma to compare the
value of a policy π across two MDPs:

Lemma 4.6 (Simulation Lemma (Kearns and Singh, 2002; Modi et al., 2018)). Let M1 and M2 be

two MDPs with the same state-action space. If the transition dynamics and reward functions of the

two MDPs are such that:

∣∣∣∣P 1(·|s, a)− P 2(·|s, a)
∣∣∣∣

1
≤ εp ∀s ∈ S, a ∈ A∣∣R1(·|s, a)−R2(·|s, a)
∣∣ ≤ εr ∀s ∈ S, a ∈ A
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then, for every policy π, we have:

∣∣vπM1
− vπM2

∣∣ ≤ Hεp + εr (4.18)

Now, we will first use the assumption about linearity to prove the following key lemma of our
analysis:

Lemma 4.7 (Decomposition of E(W )). If θ is the approximation error defined in (4.1), then the

quantity E(W ) can be bounded as follows:

E(W ) ≤

〈
W −W ∗,

H−1∑
h=0

EdW
M∗,h

[
V W,h(sh, ah)φ(sh, ah)

>]〉+Hθ (4.19)

where V W,h(sh, ah) ∈ [0, 1]K is a vector with the kth entry as EMk

[
rh + VW,h+1(sh+1)

∣∣sh, ah].
Proof. Using the definition of E(W,h) from (4.16), we rewrite the term as:

E(W ) =
H−1∑
h=0

E(W,h)

= EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM∗ [rh + VW,h+1(sh+1)
∣∣sh, ah]]

=
H−1∑
h=0

EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM(W ∗)

[
rh + VW,h+1(sh+1)

∣∣sh, ah]]
+ EdW

M∗,h

[
EM(W ∗)

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM∗ [rh + VW,h+1(sh+1)
∣∣sh, ah]]

≤
H−1∑
h=0

EdW
M∗,h

[
EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah]− EM(W ∗)

[
rh + VW,h+1(sh+1)

∣∣sh, ah]]
+ EdW

M∗,h
[θ]

Here, we rewrite the inner expectation as:

EM(W )

[
rh + VW,h+1(sh+1)

∣∣sh, ah] =
K∑
k=1

(Wφ(sh, ah)) [k]EMk

[
rh + VW,h+1(sh+1)

∣∣sh, ah]
= EdW

M∗,h

[〈
W,φ(sh, ah), V W,h(sh, ah)

〉]
=
〈
W,EdW

M∗,h

[
V W,h(sh, ah)φ(sh, ah)

>]〉
where V W,h(sh, ah) ∈ [0, 1]K is a vector with the kth entry as EMk

[rh + VW,h+1(sh+1)|sh, ah].
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Therefore, we can finally upper bound E(W ) by:

E(W ) ≤

〈
W −W ∗,

H−1∑
h=0

EdW
M∗,h

[
V W,h(sh, ah)φ(sh, ah)

>]〉+Hθ

For conciseness, we use the notation Vt,h for the vector VWt,h. We write the matrix∑H−1
h=0 EdWM∗,h

[
V W,h(sh, ah)φ(sh, ah)

>] as ZW and further use Zt for ZWt which results in the
bound:

E(W ) ≤ 〈W −W ∗, ZW 〉+Hθ

Further, using Lemma 4.6, one can easily see the following result which we later use in
Lemma 4.9:

Corollary 4.8. For the true environment and the MDP M(W ∗), we have:

E(W ∗) ≤
∣∣vW ∗ − vW ∗M∗

∣∣ ≤ Hθ (4.20)

vW
∗

M∗ ≥ v∗ − 2Hθ (4.21)

Proof. Equation (4.20) directly follows through from the assumption and Lemma 4.6. For (4.21),
we have:

vW
∗

M∗ ≥ vW ∗ −Hθ

≥ vπ
∗

W ∗ −Hθ

≥ v∗ − 2Hθ

By Lemma 4.5, we see that if the model-misfit error is controlled at each timestep, we can
directly get a bound on the value loss incurred by using the greedy policy πW . In Algorithm 4.1, we
choose the optimistic policy Wt as the exploration policy which has the following property:

Lemma 4.9 (Explore-or-terminate). If the estimate v̂t from (4.3) satisfies the following inequality:

∣∣v̂t − vWt
M∗

∣∣ ≤ ε
4

(4.22)
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throughout the execution of the algorithm and W ∗ is not eliminated from anyWt (version space is

valid), then either of these two statements hold:

(i) the algorithm terminates with output πt such that vπtW ∗ ≥ v∗ − (3
√
dK + 2)Hθ − ε

(ii) the algorithm does not terminate and

E(Wt) ≥
ε

2
+ 3
√
dKHθ +Hθ

Proof. If the algorithm doesn’t terminate, then by the condition on line 5 and the assumption, we
know that:

E(Wt) = vWt − vWt
W ∗ ≥ vWt − v̂t − ε

4
≥ ε

2
+ 3
√
dKHθ +Hθ

If the algorithm does terminate at step T , we have:

vπTM∗ ≥ v̂t − ε/4 (4.22)

≥ vWT
− (3
√
dK + 1)Hθ − ε Algorithm 4.1, line 5)

≥ vW ∗ − (3
√
dK + 1)Hθ − ε (Optimism)

≥ v∗ − (3
√
dK + 2)Hθ − ε (Corollary 4.8)

Lemma 4.9 shows that either the algorithm terminates with a (near-)optimal policy or guarantees
large model-misfit error for Wt. For bounding the number of iterations, we use a volumetric
argument similar to Jiang et al. (2017). We will use the following Lemma to show the exponential
rate of reduction in the volume of the version space:

Lemma 4.10 (Volume reduction for MVEE, (Jiang et al., 2017)). Consider a closed and bounded

set V ⊂ Rp and a vector a ∈ Rp. Let B be any enclosing ellipsoid of V that is centered at the

origin, and we abuse the same symbol for the symmetric positive definite matrix that defines the

ellipsoid, i.e., B = {v ∈ Rp : v>B−1v ≤ 1}. Suppose there exists u ∈ V with |a>u| ≥ κ and

define B+ as the minimum volume enclosing ellipsoid of {v ∈ B : |a>v| ≤ γ}. If γ/κ ≤ 1/
√
p, we

have

vol(B+)

vol(B)
≤ √pγ

κ

(
p

p− 1

)(p−1)/2(
1− γ2

κ2

)(p−1)/2

(4.23)

Further, if γ/κ ≤ 1
3
√
p
, the RHS of (4.23) is less than 0.6.
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In the following lemma, we now show that the exploration step can happen only a finite number
of times:

Lemma 4.11 (Bounding the number of iterations). If the estimates Ẑt and ŷt in (4.4) and (4.5)
satisfy:∣∣∣∣∣ŷt −

H−1∑
h=0

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]]
∣∣∣∣∣+
∣∣∣〈W, Ẑt〉− 〈W,Zt〉∣∣∣ ≤ ε

12
√
dK

(4.24)

for all W ∈ W , for all iterations in Algorithm 4.1, then W ∗ is never eliminated. Moreover, the

number of exploration iterations of Algorithm 4.1 is at most T = dK log 2d
√
KH
ε

/ log 5
3
.

Proof. By definition, W ∗ ∈ W0. We first show that W ∗ is never eliminated from the version
space Wt. Let αt :=

∑H−1
h=0 EdWt

M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]] and by definition, we have

〈W ∗, Zt〉 :=
∑H−1

h=0 EdWt
M∗,h

[
EM(W ∗)

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]]. Then, we have

∣∣∣ŷt − 〈W ∗, Ẑt

〉∣∣∣ ≤ ∣∣∣ŷt − αt + αt − 〈W ∗, Zt〉+ 〈W ∗, Zt〉 −
〈
W ∗, Ẑt

〉∣∣∣
≤ ε

12
√
dK

+ |αt − 〈W ∗, Zt〉|

≤ ε

12
√
dK

+Hθ

Therefore, W ∗ always satisfies the update in (4.6) and is never eliminated.
Now, we argue that the volume of the version space decreases at an exponential rate with each

exploration iteration. To set up the volume reduction analysis, we first notice that:

||W −W ∗||F ≤

√√√√ d∑
i=1

||W i −W ∗i||22

≤
√

2d

Therefore, the initial volume of a ball covering the space of flattened vectors in W0 is at most
cdK(
√

2d)dK . We will now use Lemma 4.10 by considering the flattened versions of the parameter
matrices W in the dimension p = dK4. Firstly, in each iteration until termination, we find a matrix
Wt such that E(Wt) ≥ ε

2
+ (3
√
dK + 1)Hθ. From Lemma 4.7, we have:

〈Wt −W ∗, Zt〉 ≥ E(Wt)−Hθ

≥ ε

2
+ 3
√
dKHθ

4For avoiding ambiguity, we will directly use the matrix notations for inner products and norms.
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We will apply Lemma 4.10 with Wt −W ∗ as the vector u and Zt as the direction vector a. For the
updated version space,Wt, we have:

|〈W −W ∗, Zt〉| =
∣∣∣yt − ŷt +

〈
W,Zt − Ẑt

〉
+ Ẑt − ŷt

∣∣∣
≤ ε

12
√
dK

+Hθ +
ε

12
√
dK

≤ ε

6
√
dK

+Hθ

Denoting Bt−1 as the MVEE of the version spaceWt−1, we consider the MVEE B′t of the set of
vectorsW ′t ≡

{
W ∈ Bt−1 : |〈W −W ∗, Zt〉| ≤ ε/6

√
dK +Hθ

}
. Clearly, we haveWt−1 ⊆ Bt−1,

and hence,Wt ⊆ W ′t. By setting κ = ε
2

and γ = ε
3
√
dK

in Lemma 4.10, we have:

vol(Bt)

vol(Bt−1)
≤ vol(B′t)

vol(Bt−1)
≤ 0.6

This shows that the volume of the MVEE of the version spacesWt decreases with at least a constant
rate. We now argue that the procedure stops after reaching a version space with sufficiently small
volume.

For any W ∈ Wt and (s, a) ∈ S ×A we have:

∣∣∣∣PW (·|s, a)− PW ∗(·|s, a)
∣∣∣∣

1
≤

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

[(W −W ∗)φ(s, a)]k P
k(·|s, a)

∣∣∣∣∣
∣∣∣∣∣
1

≤ ||(W −W ∗)φ(s, a)||1
≤
√
K||(W −W ∗)φ(s, a)||2

≤
√
dK||W −W ∗||F

Also, using Lemma 4.6, if the worst case error in next state transition estimates is bounded by
ε

2H
+ θ, the optimistic value V πW

W ∗ is ε+Hθ-optimal. Therefore, we only need to identify the matrix
W to within ε

2H
√
dK

distance of W ∗. Consequently, the terminating MVEE BT satisfies:

BT ⊇
{
W : ||W −W ∗||F ≤

ε

2
√
dKH

}

108



Therefore, we have vol(BT ) ≥ cdK

(
ε/2
√
dKH

)dK
, and :

cdK

(
ε/2
√
dKH

)dK
cdK

(√
2d
)dK ≤ vol(BT )

vol(B0)
≤ 0.6T

By solving for T , we get that:

dK log
2
√

2KH

ε
≥ T log

5

3

T ≤ dK log
2
√

2KH

ε
/ log

5

3
(4.25)

We now derive the number of trajectories required in each step to satisfy the validity requirements
in Lemma 4.9 and Lemma 4.11:

Lemma 4.12 (Concentration for MC estimate v̂t). For any Wt ∈ W with probability at least 1− δ1,

we have:

∣∣v̂t − vWt
M∗

∣∣ ≤ ε
4

(4.26)

if we set neval ≥ 8
ε2

log 2
δ1

.

Proof. Note that v̂t is an unbiased estimate of vWt
M∗ . From our assumption on the expected sum

of rewards, the return of each trajectory is bounded by 1 for all policies. Thus, the range of
each summand for the estimate v̂t is [0, 1]. Then, the result follows from standard application of
Hoeffding’s inequality.

Lemma 4.13 (Concentration of the model misfit error). If n ≥ 1800d2KH2

ε2
log 4dK

δ2
in Algorithm 4.1,

then for a given t, each W ∈ W and with probability at least 1− δ2, we have:∣∣∣∣∣ŷt −
H−1∑
h=0

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]]
∣∣∣∣∣+
∣∣∣〈W,Zt − Ẑt〉∣∣∣ ≤ ε

12
√
dK

(4.27)

Proof. To bound the first term, we note that ŷt is an unbiased estimate of∑H−1
h=0 EdWt

M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]] and is bounded between [0, H]. Applying
Hoeffding’s inequality on the estimand ŷt when using n trajectories, with probability at least 1− δ′,
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we get: ∣∣∣∣∣ŷt −
H−1∑
h=0

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]]
∣∣∣∣∣ ≤ H

√
1

2n
log

2

δ′

For bounding the second term, using Holder’s inequality with matrix group norm (Agarwal et al.,
2008), we first see: ∣∣∣〈W, Ẑt〉− 〈W,Zt〉∣∣∣ ≤ ||W ||1,∞∣∣∣∣∣∣Ẑt − Zt∣∣∣∣∣∣∞,1

≤
∣∣∣∣∣∣Ẑt − Zt∣∣∣∣∣∣

∞,1

We will now bound the estimation error for Ẑt:∣∣∣∣∣∣Ẑt − Zt∣∣∣∣∣∣
∞,1

=

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

H−1∑
h=0

V t,h

(
s

(i)
h , a

(i)
h

)
φ
(
s

(i)
h , a

(i)
h

)>
− E

[
H−1∑
h=0

V t,h(sh, ah)φ(sh, ah)
>

]∣∣∣∣∣
∣∣∣∣∣
∞,1

=
d∑
j=1

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

H−1∑
h=0

V t,h

(
s

(i)
h , a

(i)
h

)
φ
(
s

(i)
h , a

(i)
h

)
[j]− E

[
H−1∑
h=0

V t,h(sh, ah)φ(sh, ah)[j]

]∣∣∣∣∣
∣∣∣∣∣
∞

We can consider each trajectory as a random sample from the distribution of trajectories induced by
πt. Therefore, by definition, each summand in the estimate of Ẑt over n trajectories is an unbiased
estimate of Zt. Moreover, we know that each term in the entry Ẑt[i, j] of the matrix Ẑt is bounded
by H . Using Bernstein’s inequality for each term in the error matrix, and a union bound over all
entries, with probability at least 1− δ′, for all i, j we have:

∣∣∣Ẑt[i, j]− Zt[i, j]∣∣∣ ≤
√√√√2Var

[∑H−1
h=0 V t,h[i]φ(sh, ah)[j]

]
log 2dK

δ′

n
+

2H log 2dK
δ′

n
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Summing up the maximum elements ij of each column, we have:

normẐt − Zt∞,1 ≤
d∑
j=1

√√√√2Var
[∑H−1

h=0 V t,h[ij]φ(sh, ah)[j]
]

log 2dK
δ′

n
+

2dH log 2dK
δ′

n

=
d∑
j=1

√√√√√2E
[(∑H−1

h=0 φ(sh, ah)[j]
)2
]

log 2dK
δ′

n
+

2dH log 2dK
δ′

n

≤

√√√√√2dE
[∑d

j=1

(∑H−1
h=0 φ(sh, ah)[j]

)2
]

log 2dK
δ′

n
+

2dH log 2dK
δ′

n

≤

√√√√√2dE
[(∑d

j=1

∑H−1
h=0 φ(sh, ah)[j]

)2
]

log 2dK
δ′

n
+

2dH log 2dK
δ′

n

≤ H

√
2d log 2dK

δ′

n
+

2dH log 2dK
δ′

n

Here, for the first step, we have used the property that V t,h[ij] ≤ 1, the fact that variance is bounded
by the second moment. The next step can be obtained by using Cauchy-Schwartz inequality. The
last second step uses that property that for non-negative aj ,

∑
j a

2
j ≤ (

∑
j aj)

2. Now, if
2d log 2

δ′
n
≤ 1,

the above is bounded by 2

√
2d log 2

δ′
n

.
Therefore, summing up the two terms with δ′ = δ2/2, with probability at least 1− δ2 and for all

W ∈ W , we have:∣∣∣∣∣ŷt −
H−1∑
h=0

E
d
Wt
M∗,h

[
EM∗

[
rh + Vt,h+1(sh+1)

∣∣sh, ah]]
∣∣∣∣∣+
∣∣∣〈W,Zt − Ẑt〉∣∣∣ ≤

√
8dH2 log 4dK

δ2

n

+

√
H2 log 4

δ2

2n

With some algebra, it can be verified that setting n = 1800d2KH2

ε2
log 4dK

δ2
makes the total error

bounded by ε
12
√
dK

with failure probability δ2.

4.9.2 Proof of Theorem 4.1

Proof. With the key lemmas in Section 4.9.1, we can now prove the main result. For the main
theorem, we need to ensure that the requirements in Lemma 4.9 and Lemma 4.11 are satisfied.
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Since, our method maintains a version space of plausible weights, the validity of each iteration
depends on every previous iteration being valid. Therefore, for a total failure probability of δ for the
algorithm, we assume:

(i) Estimation of Ê(Wt) for all iterations: total failure probability δ/2

(ii) Updating the version spaceWt: total failure probability δ/2

We set δ1 = δ/2T and δ2 = δ/2T in Lemma 4.12 and Lemma 4.13 respectively with T =

dK log 2
√

2KH
ε

/ log 5
3
. By taking a union bound over maximum number of iterations, the total

failure probability is bounded by δ. Thus, the total number of trajectories unrolled by the algorithm
is:

T (neval + n) ≤

(
dK log

2
√

2KH

ε
/ log

5

3

)(
8

ε2
log

4T

δ
+

1800d2KH2

ε2
log

8dKT

δ

)
= Õ

(
d3K2H2

ε2
log

1

δ

)
Therefore, by the termination guarantee in Lemma 4.9, we arrive at the desired upper bound on the
number of trajectories required to guarantee a policy with value vπM∗ ≥ v∗ − (3

√
dK + 1)Hθ.
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CHAPTER 5

Model-Free Feature Learning and Exploration in
Low-Rank MDPs

In the previous chapters, we have explored how an underlying linear structure can be used to
efficiently explore in a multi-task contextual setting or an arbitrarily complex domain. Similar to
Section 4.4 of Chapter 4, in this chapter, we investigate a model selection problem for another linear
model setting, specifically, the low-rank MDP setting (also known as linear MDP). In this chapter,
we consider a problem setting where the agent is given a representation class Φ which contains the
true feature for the underlying linear MDP. We propose the first model-free representation learning
algorithms, wherein, we learn a representation from the given class and collect an exploratory dataset.
Our main result shows that the learnt representation can be used to compute a near-optimal policy for
any reward in a given class using the fitted Q-iteration method described in Section 2.2.4. As such,
in this chapter, we propose a provably efficient representation learning and exploration algorithm
for the reward-free setting. In addition, we discuss and analyze variants of the main procedure
with varying computational and statistical tradeoffs. The resulting algorithms are provably sample
efficient and can accommodate general function approximation to scale to complex environments.

5.1 Introduction

A key driver of recent empirical successes in machine learning is the use of rich function classes
for discovering transformations of complex data, a sub-task referred to as representation learning.
For example, when working with images or text, it is standard to train extremely large neural
networks in a self-supervised fashion on large datasets, and then fine-tune the network on supervised
tasks of interest. The representation learned in the first stage is essential for sample-efficient
generalization on the supervised tasks. Can we endow Reinforcement Learning (RL) agents with
a similar capability to discover representations that provably enable sample efficient learning in
downstream tasks?
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In the empirical RL literature, representation learning often occurs implicitly simply through
the use of deep neural networks, for example in DQN (Mnih et al., 2015). Recent work has also
considered more explicit representation learning via auxiliary losses like inverse dynamics (Pathak
et al., 2017), the use of explicit latent state space models (Hafner et al., 2019; Sekar et al., 2020),
and via bisimulation metrics (Gelada et al., 2019; Zhang et al., 2020). Crucially, these explicit
representations are again often trained in a way that they can be reused across a variety of related
tasks, such as domains sharing the same (latent state) dynamics but differing in reward functions.

While these works demonstrate the value of representation learning in RL, theoretical understand-
ing of such approaches is limited. Indeed obtaining sample complexity guarantees is quite subtle as
recent lower bounds demonstrate that various representations are not useful or not learnable (Modi
et al., 2020; Du et al., 2019b; Van Roy and Dong, 2019; Lattimore and Szepesvari, 2020; Hao et al.,
2021). Despite these lower bounds, some prior theoretical works do provide sample complexity
guarantees for non-linear function approximation (Jiang et al., 2017; Sun et al., 2019; Osband and
Van Roy, 2014; Wang et al., 2020b; Yang et al., 2020), but these approaches do not obviously enable
generalization to related tasks.

More direct representation learning approaches were recently studied in Du et al. (2019a); Misra
et al. (2020); Agarwal et al. (2020b), who develop algorithms that provably enable sample efficient
learning in any downstream task that shares the same dynamics.

In this chapter, our work builds on the most general of the direct representation learning ap-
proaches, namely the FLAMBE algorithm of Agarwal et al. (2020b), that finds features under which
the transition dynamics are nearly linear. The main limitation of FLAMBE is the assumption that the
dynamics can be described in a parametric fashion. In contrast, we take a model-free approach to
this problem, thereby accommodating much richer dynamics.

Concretely, we study the low-rank MDP setting (also called linear MDP, factored linear MDP,
etc.), which we described in Section 2.1.4. For model-free representation learning, we assume
access to a function class Φ containing the underlying feature map φ∗. This is a much weaker
inductive bias than prior work in the “known features” setting where φ∗ is known in advance (Jin
et al., 2020; Yang and Wang, 2020; Agarwal et al., 2020a) and the model-based setting (Agarwal
et al., 2020b) that assumes realizability for both µ∗ and φ∗.

While our model-free setting captures richer MDP models, addressing the intertwined goals
of representation learning and exploration is much more challenging. In particular, the forward
and inverse dynamics prediction problems used in prior works are no longer admissible under
our weak assumptions. Instead, we address these challenges with a new representation learning
procedure based on the following insight: for any function f : X → R, the Bellman backup of f is
a linear function in the feature map φ∗. This leads to a natural minimax objective, where we search
for a representation φ̂ that can linearly approximate the Bellman backup of all functions in some

114



“discriminator” class F . Importantly, the discriminator class F is induced directly by the class Φ, so
that no additional realizability assumptions are required. We also provide an incremental approach
for expanding the discriminator set, which leads to a more computationally practical variant of our
algorithm.

The two algorithms reduce to minimax optimization problems over non-linear function classes.
While such problems can be solved empirically with modern deep learning libraries, they do not
come with rigorous computational guarantees. To this end, we investigate the special case of finite
feature classes (|Φ| < ∞). We show that when Φ is efficiently enumerable, our optimization
problems can be reduced to eigenvector computations, which leads to provable computational
efficiency. The results in this chapter represent the first statistically and computationally efficient
model-free algorithms for representation learning in RL.

5.2 Problem Setup

In this chapter, we consider an episodic MDP setting under the low rank structure defined in
Definition 2.2. In this chapter, we assume that the size of the action space A is finite and derive
sample complexity bounds which depend polynomially on A. We use πh denotes an h-step policy
that chooses actions a0, . . . , ah. We also use Eπ[·] and Pπ[·] to denote the expectations over states
and actions and probability of an event respectively, when using policy π inM. Below, we redefine
the low-rank MDP with additional details as required in our analysis for this chapter:

Definition 5.1. An operator P : S × A → ∆(S) admits a low-rank decomposition of dimension

d if there exists functions φ∗ : S × A → Rd and µ∗ : S → Rd such that: ∀s, s′ ∈ S, a ∈
A : P (s′|s, a) = 〈φ∗(s, a), µ∗(s′)〉, and additionally ‖φ∗(s, a)‖2 ≤ 1 and for all g : S → [0, 1],

‖
∫
g(s)µ∗(s)ds‖2 ≤

√
d. We assume thatM is low-rank with embedding dimension d, i.e., for

each h ∈ [H], the transition operator Ph admits a rank-d decomposition.

We denote the embedding for Ph by φ∗h and µ∗h. In addition to the low-rank representation, we
also consider a latent variable representation ofM, as defined in Agarwal et al. (2020b), as follows:

Definition 5.2. The latent variable representation of a transition operator P : S × A → ∆(S)

is a latent space Z along with functions ψ : S × A → ∆(Z) and ν : Z → ∆(S), such that

P (·|s, a) =
∫
ν(·|z)ψ(z|s, a)dz. The latent variable dimension of P , denoted dLV is the cardinality

of smallest latent space Z for which P admits a latent variable representation. In other words, this

representation gives a non-negative factorization of the transition operator P .

When state space S is finite, all transition operators Ph(·|s, a) admit a trivial latent variable
representation. More generally, the latent variable representation enables us to augment the trajectory
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τ as: τ = {s0, a0, z1, s1, . . . , zH−1, sH−1, aH−1, zH , sH}, where zh+1 ∼ ψh(·|sh, ah) and sh+1 ∼
νh(·|zh+1). In general we neither assume access to nor do we learn this representation, and it is
solely used to reason about the following reachability assumption:

Assumption 5.1 (Reachability). There exists a constant ηmin > 0, such that ∀h ∈ [H], z ∈ Zh+1 :

maxπ Pπ [zh+1 = z] ≥ ηmin.

Assumption 5.1 posits that in MDPM, for each factor (latent variable) at any level h, there
exists a policy which reaches it with a non-trivial probability. This generalizes the reachability of
latent states assumption from prior block MDP results (Du et al., 2019a; Misra et al., 2020). Note
that, exploring all latent states is still non-trivial, as a policy which chooses actions uniformly at
random may hit these latent states with an exponentially small probability.

Representation learning in low-rank MDPs We consider MDPs where the state space S is
large and the agent must employ function approximation to conduct effective learning. Given
the low-rank MDP assumption, we grant the agent access to a class of representation functions
mapping a state-action pair (s, a) to a d-dimensional embedding. Specifically, the feature class is
Φ = {Φh : h ∈ [H]}, where each mapping φh ∈ Φh is a function φh : S × A → Rd. The feature
class can now be used to learn φ∗1 and exploit the low-rank decomposition for efficient learning.
We assume that our feature class Φ is rich enough:

Assumption 5.2 (Realizability). For each h ∈ [H], we have φ∗h ∈ Φh. Further, we assume that

∀φh ∈ Φh,∀(s, a) ∈ S ×A, ‖φh(s, a)‖2 ≤ 1.

Learning goal We focus on the problem of representation learning (Agarwal et al., 2020b) in
low-rank MDPs where the agent tries to learn good enough features that enable offline optimization
of any given reward in downstream tasks instead of optimizing a fixed and explicit reward signal.
We consider a model free setting and we provide this reward-free learning guarantee for any
reward function R in a bounded reward classR. Specifically, for such a bounded reward function
R : S × A → [0, 1], the learned features {φ̄h}h∈[H] and the collected data should allow the agent
to compute a near-optimal policy πR, such that vπRR ≥ v∗R − ε.2 We desire (w.p. ≥ 1− δ) sample
complexity bounds which are poly(d,H,A, 1/ηmin, 1/ε, log |Φ|, log |R|, log(1/δ)).

1Sometimes we drop h in the subscript for brevity.
2Here, vπR = Eπ

[∑H−1
h=0 Rh(sh, ah)

]
is the expected value of policy π and v∗R is the optimal value.
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5.3 MOFFLE: Main Algorithm

In this section, we describe the overall algorithmic framework that we propose for representation
learning for low-rank MDPs. A key component in this general framework, which specifies how
to recover a good representation once exploratory data has been acquired, is left unspecified in
this section and instantiated with two different choices in the subsequent sections. We also present
sample complexity guarantees for each choice in the corresponding sections.

At the core of our model-free approach is the following well-known property of a low-rank MDP
due to Jin et al. (2020). We provide a proof in Appendix B.2.1 for completeness.

Lemma 5.1 (Jin et al. (2020)). For a low-rank MDP M with embedding dimension d, for any

f : S → [0, 1], we have: E [f(sh+1)|sh, ah] = 〈φ∗h(sh, ah), θ∗f〉, where θ∗f ∈ Rd and ‖θ∗f‖2 ≤
√
d.

We turn this property into an algorithm by finding a feature map in our class Φ which can verify
this condition for a rich enough class of functions F . The key insight in our algorithm is that this
property depends solely on φ∗, so we do not require additional modeling assumptions.

Before turning to the algorithm description, we clarify useful notation for h step policies. An
h-step policy ρh chooses actions a0, . . . , ah, consequently inducing a distribution over (sh, ah, sh+1).
We routinely append several random actions to such a policy, and we use ρ+i

h to denote the policy
that chooses a0:h according to ρh and then takes actions uniformly at random for i steps, inducing a
distribution over (sh+i, ah+i, sh+i+1). As an edge case, for i ≥ j ≥ 0, ρ+i

−j takes actions a0, . . . , ai−j

uniformly. The mnemonic is that the last action taken by ρ+i
j is ai+j .

Algorithm 5.1 MOFFLE (R,Φ, ηmin, ε, δ):
Model-Free Feature Learning and Exploration

1: Set D ← ∅, εapx ← ε2/(16H4κA).
2: Compute the exploratory policy cover:{

ρ+3
h−3

}
h∈[H]

← EXPLORE
(
Φ, ηmin,

δ
2

)
.

3: for h ∈ [H] do
4: Collect dataset Drep

h of size nrep using
ρ+3
h−3.

5: Learn representation φ̄h by solving (5.8)
(or calling Algorithm 5.4) with class V =

Gh+1, dataset Drep
h and tolerance εapx.

6: Collect datasetDh of size nfqi using ρ+3
h−3.

7: Set D ← D ∪ {Dh}.
8: return D, φ̄0:H−1.

Algorithm 5.2 EXPLORE (Φ, ηmin, δe)
1: Set Dell

h ← ∅ for each h ∈ [H].
2: for h = 0, . . . , H − 1 do
3: Set exploratory policy for step h to ρ+3

h−3.
4: Collect dataset Dexp

h of size nexp using
ρ+3
h−3.

5: Learn representation φ̂h for timestep h by
solving (5.8) (or calling Algorithm 5.4)
with class Fh+1, dataset Dexp

h and toler-
ance εreg.

6: Collect dataset Dell
h of size nell using ρ+3

h−3.

7: Call planner (Algorithm 5.3) with features
φ̂, dataset Dell

0:h and β to obtain policy ρh.
8: return Exploratory policies

{
ρ+3
h−3

}
h∈[H]

.
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Our algorithm, Model Free Feature Learning and Exploration (MOFFLE) shown in Algorithm 5.1,
takes as input a feature set Φ, a reward classR, and some parameters related to the final accuracy
desired. It outputs a feature map and a dataset such that Fitted Q-Iteration (FQI) (Section 2.2.4),
using linear functions of the returned features, can be run with the returned dataset to obtain a
near-optimal policy for any reward function inR. The algorithm runs in two stages:

Designing Exploratory Policies In line 2 of MOFFLE, we use the EXPLORE sub-routine (Algo-
rithm 5.2) to compute exploratory policies ρ+3

h−3 for each timestep h ∈ [H].
Algorithm 5.2 uses a step-wise forward exploration scheme similar to FLAMBE (Agarwal et al.,

2020b). The algorithm proceeds in stages where for each h, we first use an exploratory policy ρ+3
h−3

(line 5) to learn features φ̂h by calling a feature learning sub-routine (discussed in the sequel).
The feature φ̂h is computed to approximate the property in Lemma 5.1 for the discriminator

function class Fh+1 ⊂ (S → [0, 1]) that contains all functions f of the form of f(sh+1) =

clip[0,1](Eunif(A) 〈φh+1(sh+1, a), θ〉) where φh+1 ∈ Φh+1 and ‖θ‖2 ≤ B for some B ≥
√
d. Using

the policy ρ+3
h−3, we also collect the exploratory dataset Dell

h for step h (line 6). With the collected
datasets3 Dell

0:h and features φ̂h we call an offline “elliptical” planning subroutine (Algorithm 5.3)
to compute the policy ρh. This planning algorithm is inspired by techniques used in reward-free
exploration (Wang et al., 2020a; Zanette et al., 2020) and is analyzed in Section 5.10.6.

Algorithm 5.3 FQI based Elliptical Planner
1: input: Exploratory dataset D := D0:H̃ and β > 0.
2: Initialize Γ0 = Id×d.
3: for t = 1, 2, . . . , do
4: Using Algorithm B.1, compute

πt = FQI

(
D, RH̃ =

∥∥∥φ̂H̃(s, a)
∥∥∥2

Γ−1
t−1

)
.

5: If the estimated objective is at most 3β
4

, halt and output ρ := unif({πτ}τ<t).
6: Estimate feature covariance matrix Σ̂πt using nplan rollouts from policy πt as:

1

nplan

nplan∑
i=1

φ̂H̃

(
s

(i)

H̃
, a

(i)

H̃

)
φ̂H̃

(
s

(i)

H̃
, a

(i)

H̃

)>
.

7: Update Γt ← Γt−1 + Σ̂πt .

3For a dataset Dh, subscript h denotes that it is a collection of tuples (sh, ah, sh+1).
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Representation learning We subsequently learn a feature φ̄h for each level—again by invoking
the representation learning subroutine—that allows us to use FQI to plan for any reward R ∈ R
afterwards. Here, we use a discriminator function class Gh+1 ⊂ (S → [0, H]) which is the set of
functions g(s′) = clip[0,H] (maxa (R(s′, a) + 〈φh+1(s′, a), θ〉)) with R ∈ R, φh+1 ∈ Φh+1, ‖θ‖2 ≤
B and B ≥ H

√
d. Note that the class Gh+1, while still derived from Φ is quite different from the

class Fh+1 used to learn features inside the exploration module.
Finally, MOFFLE returns the computed features φ̄0:H−1 and the exploratory dataset D0:H−1.

Planning in downstream tasks For downstream planning with any reward R ∈ R, we use FQI
(Chen and Jiang, 2019) with the following Q function class defined using the features φ̄0:H−1:

Qh(φ̄, R) =
{

clip[0,H]

(
Rh(s, a) + 〈φ̄h(s, a), w〉

)
: ‖w‖2 ≤ B

}
. (5.1)

Note that the features φ̄h are computed to approximate the backup of candidate functions of this
form (class Gh+1), and thus, satisfy the conditions stated in Chen and Jiang (2019) for using FQI as
discussed in Section 2.2.4.

5.3.1 Understanding the design choices in MOFFLE

In this section, we provide some intuition behind the design choices in MOFFLE and give a sketch
of the proof of the main results. Similar to the algorithm description, we divide the proof sketch in
two stages: establishing the exploratory nature of the policies ρ+3

h−3 and approximation power of
features φ̄h for all levels h ∈ [H].

Computing exploratory policies To understand the intuition behind Algorithm 5.2, it is helpful
to consider how we can discover a policy cover over the latent state space Zh+1. If we knew the
mapping to latent states, we could create the reward functions 1{zh+1 = z} for all z ∈ Zh+1 and
compute policies to optimize such rewards, but we do not have access to this mapping. Additionally,
we do not have access to the features φ∗ to enable tractable planning even for the known rewards.
Algorithm 5.2 tackles both of these challenges. For the first challenge, we note that by Definition 5.2
of the latent variables and Lemma 5.1, there always exists f such that

E[1{zh+1 = z}| sh−1, ah−1] = E[f(sh, ah)| sh−1, ah−1] = 〈φ∗h−1(sh−1, ah−1), θ∗f〉.

119



The feature learning step in Algorithm 5.2 learns φ̂h−2 so that for all appropriately bounded θ, there
is a w such that

E[〈φ∗h−1(sh−1, ah−1), θ〉| sh−2, ah−2] ≈ 〈φ̂h−2(sh−2, ah−2), w〉. (5.2)

Given this property, we prove that coverage over Zh+1 can be ensured using coverage of all the
reachable directions under φ̂h−2 in the MDP followed by two uniform actions. Thus, we use a cover
over Zh to learn features φ̂h satisfying (5.2), and then plan in the previously learned features φ̂h−2

to obtain a cover over Zh+1. This way, planning trails feature learning like FLAMBE, but with an
additional step of lag due to differences between model-free and model-based reasoning.

For feature learning, we choose the class Fh−1 inspired by our desideratum in (5.2) and learn
features φ̂h−2 (line 5) such that, for some fixed scalar B,

max
f∈Fh−1

b err
(
ρ+3
h−3, φ̂h−2, f ;B

)
≤ εreg. (5.3)

For learning a policy ρh−2 that effectively covers all directions spanned by φ̂h−2, we employ the
“elliptical planner” technique for reward-free exploration (Wang et al., 2020a; Zanette et al., 2020)
and optimize reward functions that are quadratic in the learnt features φ̂h−2. To do so, we repeatedly
invoke an FQI subroutine with a function class comprising of all linear functions of φ ∈ Φ. We
provide a complete description and analysis for the elliptic planner in Section 5.10.6. The reason
for planning at h− 2 is precisely based on our earlier intuition, formalizing which, we show that
the policy ρ+2

h−2 = ρh−2 ◦ unif(A) ◦ unif(A) is exploratory and hits all latent states in z ∈ Zh+1:

max
π
Pπ [zh+1 = z] ≤ κPρ+2

h−2
[zh+1 = z] , (5.4)

where κ > 0 is a constant we specify later. Taking the action ah+1 uniformly at random inductively
returns an exploratory policy ρ+3

h−2 for state-action pairs (sh+1, ah+1). Note that for the first step
h = 0, the null policy ρ+2

−3 satisfies the exploration guarantee in (5.4).
We provide the following result for the policies returned by Algorithm 5.2 with details in

Section 5.10.1.

Theorem 5.2. Fix δ ∈ (0, 1) and consider the setup in Theorem 5.4. If the features φ̂h learned in

line 5 in Algorithm 5.2 satisfy the condition in (5.3) for B ≥
√
d, and εreg = Θ̃

(
η3min

d2A9 log2(1+8/β)

)
,

then with probability at least 1 − δe, the sub-routine EXPLORE collects an exploratory mixture

policy ρ+3
h−3 for each level h such that:

∀π,∀f : S ×A → R+, we have Eπ[f(sh, ah)] ≤ κAEρ+3
h−3

[f(sh, ah)], (5.5)

120



where κ = 64dA4 log(1+8/β)
ηmin

. The total number of episodes used in line 7 by Algorithm 5.2 is:

Õ

(
H5d6A13B4 log(|Φ|/δe)

η5
min

+
Hd6A12B6 log(|Φ|/δe)

η6
min

)
,

with β chosen to satisfy β log (1 + 8/β) ≤ η2
min/128dA4B2.

The precise dependence on parameters d,H,A, and ηmin is likely improvable. The exponent
on A arises from multiple importance sampling steps over the uniform action choice and can be
improved when the features φ(s, a) ∈ ∆(d) for all s, a, and φ ∈ Φ (Section 5.10.1.2). Improving
these dependencies further is an interesting avenue for future progress.

Representation learning for downstream tasks For showing planning guarantees using FQI,
we need to ensure that the following requirements stated in Chen and Jiang (2019) are satisfied: (1)
(concentrability) we have adequate coverage over the state space, (2) (realizability) we can express
Q∗ with our function class, and (3) (completeness) our class is closed under Bellman backups. The
first condition is implied by Theorem 5.2. For (2) and (3), we learn features φ̄0:H−1 ∈ Φ such that
φ̄h satisfies

max
g∈Gh+1

b err
(
ρ+3
h−3, φ̄h, g;B

)
≤ εapx, (5.6)

where Gh+1 is the discriminator class containing all candidate Q-value functions of form (5.1)
(which in turn includes the true Q∗ value function). The discriminator class Gh+1 is similar to Fh+1

in (5.3), where we clip f in [0, 1], set R(x′, a) = 0 and take expectation with respect to a ∼ unif(A)

instead of a maximum. The main conceptual difference over (5.3) is that the discriminator class
Gh+1 now incorporates reward information, which enables downstream planning. Using (5.6) and
the low-rank MDP properties, we show that this function class satisfies approximate realizability and
approximate completeness, so we can invoke results for FQI and obtain the following representation
learning guarantee:

Theorem 5.3. Fix δ ∈ (0, 1) and consider the setup in Theorem 5.4. If the features φ̄0:H−1 learnt

by MOFFLE satisfy the condition in (5.6) for all h with εapx = Õ
(
ε2ηmin

dH4A5

)
, then for any reward

function R ∈ R, running FQI with the value function class Q(φ̄, R) in (5.1) and an exploratory

dataset D, returns a policy π̂, which satisfies vπ̂R ≥ v∗R − ε with probability at least 1− δ. The total

number of episodes collected by MOFFLE in line 6 is:

Õ

(
H7d2A5 log(|Φ||R|B/δ)

ε2ηmin

)
.
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5.4 Min-max-min representation learning

In this section, we describe our novel representation learning objective used to learn φ̂h and φ̄h. The
key insight is that the low-rank property of the MDPM can be used to learn a feature map φ̂ which
can approximate the Bellman backup of all linear functions under feature maps φ ∈ Φ, and that
approximating the backups of these functions enables subsequent near-optimal planning.

We present the algorithm with an abstract discriminator class V ⊂ (S → [0, L]) that is instanti-
ated either with Fh+1 (with L = 1) or Gh+1 (with L = H) defined previously. In order to describe
our objective, it is helpful to introduce the shorthand

b err (πh, φh, v;B) = min
‖w‖2≤B

Eπh
[
(〈φh(sh, ah), w〉 − E [v(sh+1)|sh, ah])2] (5.7)

for any policy πh, feature φh, function v, and constant B, which we set so that B ≥ L
√
d. This

is the error in approximating the conditional expectation of v(sh+1) using linear functions in the
features φh(sh, ah). For approximating backups of all functions v ∈ V , we seek feature φ̂h which
minimizes maxv∈V b err

(
ρ+3
h−3, φ̂h, v;B

)
up to an error of εtol.

Unfortunately, the quantity b err (·) contains a conditional expectation inside the square loss, so
we cannot estimate it from samples (sh, ah, sh+1) ∼ ρ+3

h−3. This is an instance of the well-known
double sampling issue (Baird, 1995; Antos et al., 2008). Instead, we introduce the loss function:

Lρ+3
h−3

(φh, w, v) = Eρ+3
h−3

[
(〈φh(sh, ah), w〉 − v(sh+1))2] ,

which is amenable to estimation from samples. However this loss function contains an unde-
sirable conditional variance term, since via the bias-variance decomposition: Lρ+3

h−3
(φh, w, v) =

b err
(
ρ+3
h−3, φh, v;B

)
+ Eρ+3

h−3
[V [v(sh+1) | sh, ah]]. This excess variance term can lead the agent

to erroneously select a bad feature φ̂h, since discriminators v ∈ V with low conditional variance will
be ignored. However, via Lemma 5.1, we can rewrite the conditional variance as Lρ+3

h−3
(φ∗h, θ

∗
v, v)

for some ‖θ∗v‖2 ≤ L
√
d. Therefore, with LD as an empirical estimate of Lρ+3

h−3
using dataset D, we

optimize the following objective which includes a variance correction term:

argmin
φ∈Φh

max
v∈V

{
min
‖w‖2≤B

LD(φ,w, v)− min
φ̃∈Φh,‖w̃‖2≤L

√
d
LD(φ̃, w̃, v)

}
. (5.8)

where we set the constant B ≥ L
√
d.

We now state our first result which is an information-theoretic result and assumes that an oracle
solution to the objective in (5.8) is available while running MOFFLE. The overall sample complexity
of MOFFLE with oracle access is as follows:
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Theorem 5.4. Fix δ ∈ (0, 1) and consider an MDPM that satisfies Definition 5.1 and Assump-

tion 5.1, Assumption 5.2 hold. If an oracle solution to (5.8) is available, then with probability at

least 1− δ and appropriate values for each constant, MOFFLE returns an exploratory dataset D
s.t. for any R ∈ R, running FQI with value function class Q(φ̄, R) returns an ε-optimal policy for

MDPM. The total number of episodes used by the algorithm is:

Õ

(
H6d8A13 log(|Φ|/δ)

η5
min

+
Hd9A12 log(|Φ|/δe)

η6
min

+
H7d3A5 log(|Φ||R|/δ)

ε2ηmin

)
.

We provide a complete proof of the result in Section 5.10.3.

5.5 Iterative greedy representation learning

The min-max-min objective in the previous section in (5.8) is not provably computationally tractable
for non-enumerable and non-linear function classes. However, recent empirical work (Lin et al.,
2020) has considered a heuristic approach for solving similar min-max-min objectives by alternating
between updating the outer min and inner max-min components. In this section, we show that
a similar iterative approach that alternates between a squared loss minimization problem and a
max-min objective in each iteration can be used to provably solve our representation learning
problem.

This iterative procedure is displayed in Algorithm 5.4. Given the discriminator class V , the
algorithm grows finite subsets V1,V2, . . . ⊂ V in an incremental and greedy fashion with V1 = {v1}
initialized arbitrarily. In the tth iteration, we have discriminator class V t and we estimate a feature
φ̂t,h which has low total squared loss with respect to all functions in V t (line 6). Importantly the total
square loss (sum) avoids the double sampling issue that arises with the worst case loss over class V t

(max), so no correction term is required. Next, we try to certify that φ̂t,h is a good representation
by searching for a witness function vt+1 ∈ V for which φ̂t,h has large excess square loss (line 7).
The optimization problem in (5.9) does require a correction term to address double sampling,
but since φ̂t,h is fixed, it can be written as a simpler max-min program, when compared with the
oracle approach. If the objective value here is smaller than some threshold, then our certification
successfully verifies that φ̂t,h can approximate the Bellman backup of all functions in V , so we
terminate and output φ̂t,h. On the other hand, if the objective is large, we add the witness vt+1 to our
growing discriminator class and advance to the next iteration.

One technical point worth noting is that in (5.9) we relax the norm constraint on w to allow it to
grow with

√
t. This is required by our iteration complexity analysis which shows that the procedure

provably terminates in finitely many iterations with a polynomial sample complexity. We state the
iteration complexity result below:
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Lemma 5.5. Fix δ1 ∈ (0, 1). If the greedy feature selection algorithm (Algorithm 5.4) is

run with a sample D of size n = Õ
(
L6d7 log(|Φh||Φh+1||R|/δ)

ε3tol

)
, then with B =

√
13L4d3

εtol
, it

terminates after T = 52L2d2

εtol
iterations and returns a feature φ̂h such that for V ⊂ (S →

[0, L]) := {v(sh+1) = clip[0,L](Eah+1∼πh+1(sh+1)[R(sh+1, ah+1)+ 〈φh+1(sh+1, ah+1), θ〉]) : φh+1 ∈
Φh+1, ‖θ‖2 ≤ L

√
d,R ∈ R}, we have:

max
v∈V

b err
(
ρ+3
h−3, φ̂h, v;B

)
≤ εtol.

Algorithm 5.4 Feature Selection via Greedy Improvement
1: input: Feature class Φh, discriminator class V , dataset D and tolerance εtol.
2: Set V0 ← ∅ and choose v1 ∈ V arbitrarily.
3: Set ε0 ← εtol/52d2, t← 1 and l←∞.
4: repeat
5: Set V t ← V t−1 ∪ {vt}.
6: (Fit feature) Compute φ̂t,h as: φ̂t,h,Wt = argminφ∈Φh,W∈Rd×t

‖W‖2,∞≤L
√
d

∑t
i=1 LD(φ,W i, vi).

7: (Find witness) Find test witness function:

vt+1 = argmax
v∈V

max
φ̃∈Φh,‖w̃‖2≤L

√
d

(
min

‖w‖2≤L
√
dt

2

LD(φ̂t,h, w, v)− LD(φ̃, w̃, v)
)
. (5.9)

8: Set test loss l to the objective value in (5.9).
9: until l < 24d2ε0 + ε2

0.
10: return Feature φ̂T,h from last iteration T .

We now state a polynomial sample complexity result for MOFFLE when Algorithm 5.4 is used as
the feature learning sub-routine:

Theorem 5.6. Fix δ ∈ (0, 1) and consider the setup in Theorem 5.4. If (5.8) is solved via Algo-

rithm 5.4, then with probability at least 1− δ and appropriate values for each constant, MOFFLE

returns an exploratory datasetD s.t. for any R ∈ R, running FQI with value function classQ(φ̄, R)

returns an ε-optimal policy for MDPM. The total number of episodes used by the algorithm is:

Õ

(
H6d16A31 log(|Φ|/δ)

η11
min

+
Hd17A40 log(|Φ|/δ)

η15
min

+
H19d10A15 log(|Φ||R|/δ)

ε6η3
min

)
.

While using Algorithm 5.4 does degrade the overall sample complexity when compared to the
oracle approach, it leads to a more computationally viable algorithm. We provide a detailed analysis
for the result in Section 5.10.4.
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5.6 Enumerable feature class: A computionally tractable in-
stance

In this section, we show that when Φ is a finite class and is efficiently enumerable, we can use
Algorithm 5.2 to compute an exploratory policy cover in a computationally tractable manner. Note
that the finite/enumerable feature class still leads to a value function class of infinite size (all linear
functions of φ ∈ Φ). We show that for finite Φ, in Algorithm 5.2, we can learn φ̂ using a slightly
different min-max-min objective:

min
φ∈Φh

max
f∈Fh+1,φ̃∈Φh,‖w̃‖2≤B

{
min
‖w‖2≤B

LD(φ,w, f)− LD(φ̃, w̃, f)

}
, (5.10)

where Fh+1 is now the discriminator class that contains all unclipped functions f in form of
f(sh+1) = Eunif(A) [〈φh+1(sh+1, a), θ〉] where φh+1 ∈ Φh+1 and ‖θ‖2 ≤

√
d.

We derive a ridge regression based reduction of the min-max-min objective to eigenvector
computation problems. To that end, consider the min-max-min objective where we fix φ, φ̃ ∈ Φh.
Rewriting the objective for a sample of size n, we get the following updated objective:

max
f∈Fh+1

min
‖w‖2≤

√
d
‖Xw − f(D)‖2

2 − min
‖w̃‖2≤

√
d
‖X̃w̃ − f(D)‖2

2

where X, X̃ ∈ Rn×d are the covariate matrices for features φ and φ̃ respectively. We overload the
notation and use f(D) ∈ Rn to denotes the value of any f ∈ F on the n samples. Now, instead of
solving the constrained least squares problem, we use a ridge regression solution with regularization
parameter λ. Thus, for any target f in the min-max objective, for feature φ, we get:

wf =
(

1
n
X>X + λId×d

)−1 ( 1
n
X>f(D)

)
‖Xw − f(D)‖2

2 = ‖X
(

1
n
X>X + λId×d

)−1 ( 1
n
X>f(D)

)
− f(D)‖2

2 = ‖A(φ)f(D)‖2
2

where Y (φ) = In×n −X
(

1
n
X>X + λId×d

)−1 ( 1
n
X>
)
. In addition, any regression target f can be

rewritten as f = X ′θ for a feature φ′ ∈ Φh+1 and ‖θ‖2 ≤
√
d. Thus, for a fixed φ′, φ and φ̃, the

maximization problem for Fh+1 is the same as:

max
‖θ‖2≤

√
d
θ>X ′>

(
Y (φ)>Y (φ)− Y (φ̃)>Y (φ̃)

)
X ′θ. (5.11)

where X ′ ∈ Rn×d is again the sample matrix defined using φ′ ∈ Φh+1. For each tuple of (φ, φ̃, φ′),
the maximization problem reduces to an eigenvector computation. As a result, we can efficiently
solve the min-max-min objective in (5.10) by enumerating over each candidate feature in (φ, φ̃, φ′)
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to solve

min
φ∈Φh

max
φ̃∈Φh,φ

′∈Φh+1,‖θ‖2≤
√
d
θ>X ′>

(
Y (φ)>Y (φ)− Y (φ̃)>Y (φ̃)

)
X ′θ. (5.12)

While the analysis is more technical, (5.12) still allows us to plan using φ̂h in Algorithm 5.2 to
guarantee that the policies ρ+3

h−3 are exploratory. We summarize the overall result in the following
theorem:

Theorem 5.7. Fix δ ∈ (0, 1) and consider the setup in Theorem 5.4. In Algorithm 5.2, if φ̂h is

learned using the eigenvector formulation (5.12), then MOFFLE returns an exploratory dataset D
such that for any R ∈ R, running FQI with the collected dataset and the value function class in

(5.1) returns an ε-optimal policy with probability at least 1− δ. The total number of episodes used

by the algorithm is poly(d,H,A, 1/ηmin, 1/ε, log |Φ|, log |R|, log(1/δ)).

A detailed and formal theorem statement with its proof can be found in Section 5.10.5.

5.7 Related Work and Comparisons

Much recent attention has been devoted to linear function approximation (c.f., Jin et al., 2020; Yang
and Wang, 2020). These results provide important building blocks for our work. In particular, the
low-rank MDP model we study is from Jin et al. (2020) who assume that the feature map φ∗ is
known in advance. However, as we are focused on nonlinear function approximation, it is more apt
to compare to related nonlinear approaches, which can be categorized in terms of their dependence
on the size of the function class:

Polynomial in |Φ| approaches Many approaches, while not designed explicitly for our setting,
can yield sample complexity scaling polynomially with |Φ| in our setup. Note, however, that
polynomial-in-|Φ| scaling can be straightforwardly obtained by concatenating all of candidate
feature maps and running the algorithm of Jin et al. (2020). This is the only obvious way to apply
Eluder dimension results here (Osband and Van Roy, 2014; Wang et al., 2020b; Ayoub et al., 2020),
and it also pertains to work on model selection (Pacchiano et al., 2020a; Lee et al., 2021). Indeed,
the key observation that enables a logarithmic-in-|Φ| sample complexity is that all value function
are in fact represented as sparse linear functions of this concatenated feature map.

However, exploiting sparsity in RL (and in contextual bandits) is quite subtle. In both settings,
it is not possible to obtain results scaling logarithmically in both the ambient dimension and the
number of actions (Lattimore and Szepesvári, 2020; Hao et al., 2021). That said, it is possible to
obtain results scaling polynomially with the number of actions and logarithmically with the ambient
dimension, as we do here.
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Logarithmic in |Φ| approaches For logarithmic-in-|Φ| approaches, the assumptions and results
vary considerably. Several results focus on the block MDP setting (Du et al., 2019a; Misra et al.,
2020; Foster et al., 2020), where the dynamics are governed by a discrete latent state space, which
is decodable from the observations. This setting is a special case of our low-rank MDP setting.
Additionally, these works make stronger function approximation assumptions than we do. As such
our work can be seen as generalizing and relaxing assumptions, when compared with existing block
MDP results.

Most closely related to our work are the OLIVE and FLAMBE algorithms (Jiang et al., 2017;
Agarwal et al., 2020b). OLIVE is a model-free RL algorithm that can be instantiated to produce
a logarithmic-in-|Φ| sample complexity guarantee in precisely our setting (it also applies more
generally). However, it is not computationally efficient even in tabular settings (Dann et al., 2018).
In contrast, our algorithm involves a more natural minimax optimization problem that we show is
computationally tractable in the “abstraction selection” case, which is even more general than the
“known feature” setting (Section 5.6).

FLAMBE is computationally efficient, but it is model-based, so the function approximation
assumptions are stronger than ours. Thus the key advancement is our weaker model-free function
approximation assumption which does not require modeling µ∗ whatsoever. On the other hand,
FLAMBE does not require reachability assumptions as we do.

Related algorithmic approaches Central to our approach is the idea of embedding plausible
futures into a “discriminator” class and using this class to guide the learning process. Bellemare
et al. (2019) also propose a min-max representation learning objective using a class of adversarial

value functions, but their work only empirically demonstrates its usefulness as an auxiliary task
during learning and does not study exploration. Similar ideas of using a discriminator class have
been deployed in model-based RL in Chapter 4 and in Farahmand et al. (2017); Sun et al. (2019);
Ayoub et al. (2020), but the application to model-free representation learning and exploration is
novel to our knowledge.

5.8 Discussion

Representation learning is a critical component of recent machine learning approaches and is also
the backbone of many deep RL algorithms. Representation learning has been addressed in practice
for RL via various methods as we discussed in the introduction: via auxiliary losses like inverse
dynamics (Pathak et al., 2017), the use of explicit latent state space models (Hafner et al., 2019;
Sekar et al., 2020), via bisimulation metrics (Gelada et al., 2019; Zhang et al., 2020), and contrastive
learning (Laskin et al., 2020). All these methods use different underlying principles for learning
representations but the questions of what representations are sufficient for planning has not been

127



answered precisely in previous literature. Here, we have addressed the question for the specific
setting of linear MDPs using the following ideas.

Value-aware representation learning As highlighted in the previous chapter, the ability to
estimate Bellman backups of value functions is often sufficient for computing near-optimal policies.
In our case, we use the low-rank structure in the MDP to ensure this property for all possible value
functions which are linear in the true feature representation. This idea, and thus the representation
learning objective, can be extended to general value function classes to learn a representation under
the min-max-min objective. Thus, the idea of value-function aware model learning in Farahmand
et al. (2017) can also be used to derive novel representation learning objective for different settings
(we use FQI in our framework).

Using feature based exploration In addition to representation learning, our work also addresses
exploration by carefully combining the two algorithmic components. As such, we conjecture that
our ideas can be used to improve and extend existing algorithms for exploration. For instance, in
Pathak et al. (2017), the authors use prediction errors for the next state as a bonus for exploration.
More similar to our work, Burda et al. (2018) uses prediction errors in random functions as bonuses
for encouraging the agent to visit unexplored regions in the state space. Our work suggests that an
adversarial choice of such functions from a sufficiently rich discriminator class allows the agent to
learn provably useful representations. We leave the empirical study of such algorithms to future
work.

Further, in our exploration scheme, we use an elliptic planner which explores all directions in the
learnt feature. To our knowledge, such a bonus based algorithm has not been studied in the literature,
as most methods simply add the prediction error as a reward bonus. Our proposed approach directly
optimizes visitation in the feature space and can allow more efficient exploration. We leave the
empirical study for this heuristic to future work as well.

5.9 Summary

In this chapter, we present, MOFFLE, a new model-free algorithm for representation learning and
exploration in low-rank MDPs. We develop several representation learning schemes that vary in
their computational and statistical properties, each yielding a different instantiation of the overall
algorithm. Importantly MOFFLE can leverage a general function class Φ for representation learning,
which provides it with the expressiveness and flexibility to scale to rich observation environments
in a provably sample-efficient manner.
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5.10 Proofs of Main Results

In this section, we give a detailed proof for the main results. We start by proving the results about the
two basic components of MOFFLE and then show specific corollaries for each specific representation
learning algorithm. In all our proofs, we will frequently use results about FQI planning, which we
state for completeness in Appendix B.1.

5.10.1 Exploration and sample complexity results for Algorithm 5.2

5.10.1.1 Proof of Theorem 5.2

Theorem (Restatement of Theorem 5.2). Fix δ ∈ (0, 1). Consider an MDP M that admits

a low-rank factorization in Definition 5.1 and Assumption 5.1, Assumption 5.2 hold. If the

features φ̂h learnt in line 5 of Algorithm 5.2 satisfy the condition in (5.3) for B ≥
√
d and

εreg = Θ̃
(

η3min

d2A9 log2(1+8/β)

)
, then with probability at least 1− δe, the sub-routine EXPLORE collects

an exploratory mixture policy ρ+3
h−3 for each level h such that:

∀π : Eπ[f(sh, ah)] ≤ κAEρ+3
h−3

[f(sh, ah)] (5.13)

for any f : S ×A → R+ and κ = 64dA4 log(1+8/β)
ηmin

. The total number of episodes used in line 7 by

Algorithm 5.2 is:

Õ

(
H5d6A13B4 log(|Φ|/δe)

η5
min

+
Hd6A12B6 log(|Φ|/δe)

η6
min

)
.

The value of β is chosen such that β log (1 + 8/β) ≤ η2min

128dA4B2 .

Proof We will now prove the result assuming that the following condition from (5.3) is satisfied
by φ̂h for all h ∈ [H] with probability at least 1− δe/2:

max
f∈Fh+1

min
‖w‖2≤B

Eρ+3
h−3

[(〈
φ̂h(sh, ah), w

〉
− E [f(sh+1)|sh, ah]

)2
]
≤ εreg. (5.14)

Now, let us turn to the inductive argument to show that the constructed policies ρ+3
h−3 are

exploratory for every h. For our analysis, we will assume Lemma 5.15 stated in Section 5.10.6. We
will establish the following inductive statement for each timestep h:

∀z ∈ Zh+1 : max
π
Pπ [zh+1 = z] ≤ κPρ+2

h−2
[zh+1 = z] . (5.15)
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Assume that the exploration statement is true for all timesteps h′ ≤ h. We first show an error
guarantee similar to (5.13) under distribution shift:

Lemma 5.8. If the inductive assumption in (5.15) is true for all h′ ≤ h, then for all v : S×A → R+

we have:

∀π : Eπ[v(sh, ah)] ≤ κAEρ+3
h−3

[v(sh, ah)] (5.16)

Proof. Consider any timestep h and non-negative function v. Using the inductive assumption, we
have:

Eπ [v(sh, ah)] =
∑
z∈Zh

Pπ[zh = z] ·
∫
Eπh [v(sh, ah)]ν

∗(sh|z)d(sh)

≤ κ
∑
z∈Zh

Pρ+2
h−3

[zh = z] ·
∫
Eπh [v(sh, ah)]ν

∗(sh|z)d(sh)

= κEρ+2
h−3

[Eπh [v(sh, ah)]]

≤ κAEρ+3
h−3

[v(sh, ah)]

Therefore, the result holds for any policy π, timestep h′ ≤ h, and non-negative function v.

As a result of Lemma 5.8, we have the same guarantee for the following squared-loss term for
pair (sh, ah) for some f ∈ Fh+1:

v(sh, ah) = Eπh

[(〈
φ̂h(sh, ah), w

〉
− E [f(sh+1)|sh, ah]

)2
]
.

Thus, using the feature learning guarantee in (5.14) along with (5.16), we have:

∀f ∈ Fh+1 : min
‖w‖2≤B

Eπ
[(〈

φ̂h(sh, ah), w
〉
− E [f(sh+1)|sh, ah]

)2
]
≤ κAεreg.

We now outline our key argument to establish exploration: Fix a latent variable z ∈ Zh+1 and let
π := πh be the policy which maximizes Pπ[zh+1 = z]. Thus, with f(sh, ah) = P[zh+1 = z|sh, ah]
we have:

Eπ [f(sh, ah)] ≤ A2Eπh−2◦ unif(A)◦ unif(A) [f(sh, ah)]

= A2Eπh−2

[
Eunif(A) [g(xh−1, ah−1)|xh−2, ah−2]

]
≤ A2Eπh−2

[∣∣∣〈φ̂h−2(xh−2, ah−2), wg〉
∣∣∣]+

√
κA5εreg. (5.17)

The first inequality follows by using importance weighting on timesteps h − 1 and h, where
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we choose actions uniformly at random among A. In the next step, we define g(xh−1, ah−1) =

Eunif(A)[f(sh, ah)|xh−1, ah−1] =
〈
φ∗h−1(xh−1, ah−1), θ∗f

〉
with ‖θ∗f‖2 ≤

√
d. For (5.17), we use the

result from Lemma 5.8 that φ̂h−2 has small squared loss for the regression target specified by g(·)
for a vector wg with ‖wg‖2 ≤ B. We further use the weighted RMS-AM inequality in the same step
to bound the mean absolute error using the squared error bound.

Lemma 5.9. If the FQI planner (Algorithm 5.3) is called with a sample of size nell :=

Õ
(
H4d3κ log(|Φ|H/δe)

β2

)
and total rollouts T · nplan := Õ

(
d3 log 1

δe

β3 + H4d3κA log(|Φ|/δe)
β2

)
, then for

all h ∈ [H], we have:

Eπh−2

[∣∣∣〈φ̂h−2(xh−2, ah−2), wg〉
∣∣∣] ≤ α

2
Eρh−2

[(
〈φ̂h−2(xh−2, ah−2), wg〉

)2
]

+
Tβ

2α

+
α‖wg‖2

2

2T
+
αβ‖wg‖2

2

2
.

Proof. Applying Cauchy-Schwarz inequality followed by AM-GM, for any matrix Σ̂, we have:

Eπh−2

[∣∣∣〈φ̂h−2(xh−2, ah−2), wg〉
∣∣∣] ≤ Eπh−2

[∥∥∥φ̂h−2(xh−2, ah−2)
∥∥∥

Σ̂−1
· ‖wg‖Σ̂

]
≤ 1

2α
Eπh−2

[∥∥∥φ̂h−2(xh−2, ah−2)
∥∥∥2

Σ̂−1

]
+
α

2
‖wg‖2

Σ̂ .

Here, we choose Σ̂ to be the (normalized) matrix returned by the elliptic planner in Algo-
rithm 5.3. As can be seen in the algorithm pseudocode, Σ̂ is obtained by summing up a
(normalized) identity matrix and the empirical estimates of the population covariance matrix
Σπτ = Eπτ φ̂h−2(xh−2, ah−2)φ̂h−2(xh−2, ah−2)> where {πτ}τ≤T are the T policies computed by the
planner. Noting that ρh−2 is a mixture of these T policies, we consider the following empirical and
population quantities:

Σρh−2
=

1

T

T∑
t=1

Σπt , Σ = Σρh−2
+

1

T
Id×d, Σ̂ =

1

T
ΓT =

1

T

T∑
i=1

Σ̂πi +
1

T
Id×d.

Now, we use the termination conditions satisfied by the elliptic planner (shown in Lemma 5.15) in
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the following steps:

Eπh−2

[∣∣∣〈φ̂h−2(xh−2, ah−2), wg〉
∣∣∣]

≤ 1

2α
Eπh−2

[∥∥∥φ̂h−2(xh−2, ah−2)
∥∥∥2

Σ̂−1

]
+
α

2
‖wg‖2

Σ̂ (5.18)

≤ Tβ

2α
+
α

2
‖wg‖2

Σ̂

≤ Tβ

2α
+
α

2
‖wg‖2

Σ +
α

2
β‖wg‖2

2 (5.19)

=
Tβ

2α
+
α

2
Eρh−2

[(
〈φ̂h−2(xh−2, ah−2), wg〉

)2
]

+
α‖wg‖2

2

2T
+
αβ‖wg‖2

2

2
.

For the second inequality, note that 1
T

∥∥∥φ̂h−2(xh−2, ah−2)
∥∥∥2

Σ̂−1
is the reward function optimized by

the FQI planner in the last iteration. Let VT (π) denote the expected value of a policy π for this
reward function and MDPM. From the termination condition and the results for the FQI planner
in Lemma 5.15, we get:

max
π

VT (π) ≤ VT (πT ) + β/8 ≤ V̂T (πT ) + β/4 ≤ β.

Therefore, the first term on the rhs in (5.18) can be bounded by Tβ/2α. In step (5.19), we use the
estimation guarantee for Σ = ΓT/T for the FQI planner shown in Lemma 5.15. Then, in the last
equality step, we expand the norm of wg using the definition of Σ to arrive at the desired result.

The sample size requirements directly follow from the result in Lemma 5.15.

Using Lemma 5.9 in (5.17), we get:

Eπ [f(sh, ah)] ≤
αA2

2
Eρ+2

h−2

[(
〈φ̂h−2(xh−2, ah−2), wg〉

)2
]

+
βA2T

2α
+
αA2‖wg‖2

2

2T

+
αβA2‖wg‖2

2

2
+
√
κA5εreg (5.20)

≤ αA2Eρ+2
h−2

[(
〈φ∗h−2(xh−2, ah−2), θ∗g〉

)2
]

+ ακA3εreg +
A2Tβ

2α
+
αA2‖wg‖2

2

2T

+
αβA2‖wg‖2

2

2
+
√
κA5εreg. (5.21)

The next inequality in (5.21) again uses the approximation guarantee for features φ̂ in (5.14) along
with the inequality (a + b)2 ≤ 2a2 + 2b2. Finally, we note that the inner product inside the
expectation is always bounded between [0, 1] which allows use to use the fact that f(s)2 ≤ f(s) for
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f : S → [0, 1]. Substituting the upper bound for ‖wg‖2, we get:

Eπ [f(sh, ah)]

≤ αA2Eρ+2
h−2

[〈
φ∗h−2(xh−2, ah−2), θ∗g

〉]
+ ακA3εreg +

√
κA5εreg

+
βA2T

2α
+
αβA2B2

2
+
αA2B2

2T

= αA2Pρ+2
h−2

[zh+1 = z] + ακA3εreg +
√
κA5εreg +

βA2T

2α
+
αβA2B2

2
+
αA2B2

2T
. (5.22)

The equality step (5.22) follows by the definition of the function g(·).
We now set κ ≥ 2αA2 in (5.22). Therefore, if we set the parameters α, β, εreg such that

max

{
ακA3εreg +

√
κA5εreg,

βA2T

2α
,
αβA2B2

2
,
αA2B2

2T

}
≤ ηmin/8, (5.23)

(5.22) can be re-written as:

max
π
Pπ [zh+1 = z] ≤ κ

2
Pρ+2

h−2
[zh+1 = z] +

ηmin

2
≤ κPρ+2

h−2
[zh+1 = z]

where in the last step, we use Assumption 5.1. Hence, we prove the exploration guarantee in
Theorem 5.2 by induction.

To find the feasible values for the constants, we first note that T ≤ 8d log (1 + 8/β) /β

(Lemma 5.15). We start by setting βA2T
2α

= ηmin/8 which gives α/T = 4βA2

ηmin
. Using the up-

per bound on T , we get α ≤ 32dA2 log(1+8/β)
ηmin

. Next, we set the term ακA3εreg +
√
κA5εreg ≤ ηmin/8.

Using the value of κ = 2αA2 we get:

2α2A5εreg +
√

2αA7εreg ≤ ηmin/8,

which is satisfied by εreg = Θ
(

η3min

d2A9 log2(1+8/β)

)
.

Lastly, we will consider the term αβA2B2

2
and by setting it less than ηmin/8, we get:

β log (1 + 8/β) ≤ η2
min

128dB2A4
.

One can verify that under this condition we also have αA2B2

2T
≤ ηmin/8, and setting β =

Õ
(

η2min

dB2A4

)
satisfies the feasibility constraint for β. Here, we assume that B only has a poly log

dependence on β and show later that this is true for all our feature selection methods. Notably, the
only cases when B depends on β in our results is when B = O

(
1
εcreg

)
for a constant c = {1/2, 1}

which has a log2(1 + 8/β) term.
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Substituting the value of κ and β in Lemma 5.9 with an additional factor of H to account for
all h gives us the final sample complexity bound in Theorem 5.2. Finally, the change of measure
guarantee follows from the result in Lemma 5.8.

5.10.1.2 Improved sample complexity bound for simplex features

We can obtain more refined results when the agent instead has access to a latent variable fea-
ture class {Ψh}h∈[H] with ψh : S × A → ∆(dLV). We call this the simplex features set-
ting and show the improved results in this section. In order to achieve this improved result,
we make two modifications to EXPLORE: 1) We use a smaller discriminator function class
Fh+1 := {f(sh+1, ah+1) = φh+1(sh+1, ah+1)[i] : φh+1 ∈ Φh+1, i ∈ [dLV]} and 2) in EXPLORE,
instead of calling the planner with learnt features φ̂h−2 and taking three uniform actions, we plan for
the features φ̂h−1 and add two uniform actions to collect data for feature learning in timestep h. The
key idea here is that instead of estimating the expectation of any bounded function f , we only need
to focus on the expectation of coordinates of φ∗ as included in class Fh+1. Further, since φ∗h+1[i] is
already a linear function of the feature φ∗h+1, we take only one action at random at timestep h.

Theorem 5.10 (Exploration with simplex features). Fix δ ∈ (0, 1). Consider an MDPM which

admits a low-rank factorization with dimension d in Definition 5.1 and satisfies Assumption 5.1. If

Assumption 5.2 holds, the features φ̂h learnt in line 5 in Algorithm 5.2 satisfy the condition in (5.3)
for B ≥

√
d, and εreg = Θ̃

(
η3min

d2A5 log2(1+8/β)

)
, then with probability at least 1− δe, the sub-routine

EXPLORE collects an exploratory mixture policy ρ+3
h−3 for each level h such that:

∀π : Eπ[f(sh, ah)] ≤ κAEρ+3
h−3

[f(sh, ah)] (5.24)

for any f : S ×A → R+ and κ = 64dA2 log(1+8/β)
ηmin

. The total number of episodes used in line 7 by

Algorithm 5.2 is:

Õ

(
H5d6A7B4 log(|Φ|/δe)

η5
min

+
Hd6A6B6 log(|Φ|/δe)

η6
min

)
.

The value of β is chosen such that β log (1 + 8/β) ≤ η2min

128dA2B2 .

Proof. For simplex features, the key observation is that for any latent state z ∈ Zh+1, the function
f(sh) = Eunif(A) [Pr[zh+1 = z|sh, ah]] is already a member of the discriminator function class
Fh := {f(sh) = Eunif(A) [φh(sh, ah)[i]] : φh ∈ Φh, i ∈ [dLV]}. Thus, when we rewrite the term
Eπ[f(sh, ah)] as a linear function, we only need to backtrack one timestep to use the feature selection
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guarantee:

Eπ [f(sh, ah)] ≤ AEπh−1◦unif(A) [f(sh, ah)]

= AEπh−1
[g(xh−1, ah−1)]

≤ AEπh−1

[∣∣∣〈φ̂h−1(s, a), wg〉
∣∣∣]+

√
κA3εreg, (5.25)

where we define g(xh−1, ah−1) = Eunif(A)[f(sh, ah)|xh−1, ah−1]. Therefore, the new value of κ
becomes 2αA and by shaving off this A factor in the chain of inequalities, we get the following
constraint set for the parameters:

max

{
ακA2εreg +

√
κA3εreg,

βAT

2α
,
αβAB2

2
,
αAB2

2T

}
≤ ηmin/8, (5.26)

Thus, the values of these parameters for the simplex features case are as follows:

α

T
=

4βA

ηmin

, α ≤ 32dA log(1 + 8/β)

ηmin

, εreg = Θ̃

(
η3

min

d2A5 log2(1 + 8/β)

)
.

Hence, the updated constraint for β is:

β log (1 + 8/β) ≤ η2
min

64dB2A2
.

Other than the values for these parameters, the algorithm remains the same. Therefore, substituting
the new values of κ and β in Lemma 5.9 as before, we get the improved sample complexity
result.

5.10.2 Proof of downstream lanning guarantee

We show that after obtaining the exploratory policies ρ+3
h−3 for all h ∈ [H] using MOFFLE, we can

collect a dataset D to learn a feature φ̄h ∈ Φh for all levels and use FQI to plan for any reward
function R ∈ R. Specifically, we use the sub-routine LEARNREP to compute a feature φ̄h ∈ Φh

such that:

max
g∈Gh+1

min
‖w‖2≤B

Eρ+3
h−3

[( 〈
φ̄h(sh, ah), w

〉
− E [g(sh+1)|sh, ah]

)2
]
≤ εapx, (5.27)

where Gh+1 ⊂ (S → [0, H]) is the set of functions

g(s′) = clip[0,H]

(
max
a

(R(s′, a) + 〈φh+1(s′, a), θ〉)
)
,
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with R ∈ R, φh+1 ∈ Φh+1, ‖θ‖2 ≤ B and B ≥ H
√
d. Using φ̄0:H−1, we define the value function

class Q = {Qh(φ̄, R)}H−1
h=0 for any given reward R ∈ R. For a level h ∈ [H], Qh(·) is defined as

the set of following functions:

Qh(s, a) = clip[0,H]

(
Rh(s, a) + 〈φ̄h(s, a), w〉

)
The learnt feature serves two purposes as discussed in the main text:

• (realizability) The optimal value function for any timestep h + 1 and reward Rh+1 ∈ R,
is defined as V ∗h+1(s′) = maxa

(
Rh+1(s′, a) + E[Q∗h+2(·)|s′, a]

)
= maxa

(
Rh+1(s′, a) +

〈φ∗h+1, θ
∗
h+1〉

)
. Thus, we have realizability as V ∗h+1 ∈ Gh+1, which in turn implies that

∃f ∈ Qh, s.t. f ≈ Rh + E[V ∗h+1(·)].

• (completeness) For completeness, note that Gh+1 contains the Bellman backup of all possible
Qh+1(·) value functions we may encounter while running FQI with Q as defined above.
Therefore, for any such Qh+1, we have that ∃f ∈ Qh, s.t. f ≈ T Qh+1.

Thus, the final sample complexity result for offline planning using FQI with value function class
Q(φ̄, R) is as follows:

Theorem (Restatement of Theorem 5.3). Fix δ ∈ (0, 1). Consider an MDP M that admits a

low-rank factorization in Definition 5.1 and Assumption 5.1, Assumption 5.2 hold. If the features

φ̄h learnt by MOFFLE satisfy the condition in (5.6) for all h with εapx = Õ
(
ε2ηmin

dH4A5

)
, then for any

reward function R ∈ R, running FQI with the value function class Q(φ̄, R) and an exploratory

dataset D, returns a policy π̂ which satisfies vπ̂R ≥ v∗R − ε with probability at least 1− δ. The total

number of episodes collected by MOFFLE in line 6 is:

Õ

(
H7d2A5 log(|Φ||R|B/δ)

ε2ηmin

)
.

Proof. We run FQI with the learnt representation φ̄h using the value function class Qh(φ̄h, Rh)

defined for each h ∈ [H]. Lemma B.6 shows that when (5.27) is satisfied with an error εapx, running
FQI using a total of nh = Õ

(
H6dκA log(|R|B/δ′)

β2

)
episodes collected from each exploratory policy

{ρ+3
h−3} returns a policy π̂ which satisfies:

Eπ̂

[
H−1∑
h=0

Rh(sh, ah)

]
≥ max

π
Eπ

[
H−1∑
h=0

Rh(sh, ah)

]
− β − 2H2

√
κAεapx

with probability at least 1− δ′. Then union bounding over all possible φ̄, and setting δ = δ′/|Φ|,
β = ε/2, εapx = ε2

16H4κA
, we get the final planning result with a value error of ε and probability at
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least 1− δ. Substituting κ = Õ
(

32dA4

ηmin

)
, we get nh = Õ

(
H6d2A5 log(|Φ||R|B/δ)

ε2ηmin

)
. The final sample

complexity is thus n = Õ
(
H7d2A5 log(|Φ||R|B/δ)

ε2ηmin

)
where we sum up the collected episodes across all

levels.

5.10.3 Proofs for oracle representation learning

In this section, we present the sample complexity result for MOFFLE when a computational oracle
FLO is available. Since we need to set B ≥ L

√
d in the min-max-min objective ((5.8)), we assume

FLO solves (5.8) with B = L
√
d. The computational oracle is defined as follows:

Definition 5.3 (Minimax optimization oracle). Given a feature class Φh and an abstract discrimina-

tor class V ⊂ (S → [0, L]), we define the minimax Feature Learning Oracle (FLO) as a subroutine

that takes a dataset D of tuples (sh, ah, sh+1) and returns a solution to the following objective:

φ̂h = argmin
φ∈Φh

max
v∈V

{
min

‖w‖2≤L
√
d
LD(φ,w, v)− min

φ̃∈Φh,‖w̃‖2≤L
√
d
LD(φ̃, w̃, v)

}
. (5.28)

After defining FLO, we start by showing a sample complexity result for the min-max-min
objective against a general discriminator function class V consisting of the set of functions

v(sh+1) = clip[0,L](Eah+1∼πh+1(sh+1)[R(sh+1, ah+1) + 〈φh+1(sh+1, ah+1), θ〉])

where φh+1 ∈ Φh+1, ‖θ‖2 ≤ L
√
d,R ∈ R for any policy πh+1 over sh+1. Note that, Fh in the main

text uses a singleton reward class R(sh+1, ah+1) = 0 with L = 1 and πh+1 = unif(A). Similarly,
Gh uses L = H with πh+1 as the greedy arg-max policy.

Lemma 5.11 (Deviation bound for FLO). If the min-max feature learning objective is solved

by the FLO for a sample of size n, then for V ⊂ (S → [0, L]) := {v(sh+1) =

clip[0,L](Eah+1∼πh+1(sh+1)[R(sh+1, ah+1)+ 〈φh+1(sh+1, ah+1), θ〉]) : φh+1 ∈ Φh+1, ‖θ‖2 ≤
L
√
d,R ∈ R}, with probability at least 1− δ, we have:

max
v∈V

b err
(
ρ+3
h−3, φ̂h, v;L

√
d
)
≤ 512L2d2 log(2n|Φh||Φh+1||R|/δ)

n
.

Proof. Firstly, note the term b err
(
ρ+3
h−3, φ̂h, v;L

√
d
)

is a shorthand for

min
‖w‖2≤L

√
d
Lρ+3

h−3
(φ̂h, w, v)− Lρ+3

h−3
(φ∗h, θ

∗
v, v)

where θ∗v = argmin‖θ‖2≤L
√
d Lρ+3

h−3
(φ∗h, θ, v).
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Now, using the result in Lemma B.8 from Appendix B.2 and denoting Lρ+3
h−3

(·) as L(·), with
probability at least 1− δ, we have:

|L(φ,w, v)− L(φ∗, θ∗v, v)− (LD(φ,w, v)− LD(φ∗, θ∗v, v))|

≤ 1

2
(L(φ,w, v)− L(φ∗, θ∗v, v)) +

128L2d2 log(2n|Φh||Φh+1||R|/δ)
n

for all ‖w‖2 ≤ L
√
d (B = L

√
d), φ ∈ Φh and v ∈ V .

By the definition of FLO, for any v ∈ V , we know that there exists θ∗v such that (φ∗, θ∗v) is the
population minimizer argminφ̃∈Φh,‖w̃‖2≤L

√
d L(φ̃, w̃, v). Using this and the concentration result, for

all v ∈ V , with (φ̃v, w̃v) as the solution of the innermost min in (5.28), we have:

LD(φ∗, θ∗v, v)− LD(φ̃v, w̃v, v)

≤ 3

2

(
L(φ∗, θ∗v, v)− L(φ̃v, w̃v, v)

)
+

128L2d2 log(2n|Φh||Φh+1||R|/δ)
n

≤ 128L2d2 log(2n|Φh||Φh+1||R|/δ)
n

.

Now, for the oracle solution φ̂, for all v ∈ V , we have:

LD(φ̂, ŵv, v)− LD(φ̃v, w̃v, v)

= LD(φ̂, ŵv, v)− LD(φ∗, θ∗v, v) + LD(φ∗, θ∗v, v)− LD(φ̃v, w̃v, v)

≥ 1

2

(
L(φ̂, ŵv, v)− L(φ∗, θ∗v, v)

)
− 128L2d2 log(2n|Φh||Φh+1||R|/δ)

n
.

Combining the two chains of inequalities, we get:

L(φ̂, ŵv, v)− L(φ∗, θ∗v, v)

≤ 2
(
LD(φ̂, ŵv, v)− LD(φ̃v, w̃v, v)

)
+

256L2d2 log(2n|Φh||Φh+1||R|/δ)
n

≤ 2 max
g∈V

(
LD(φ̂, ŵg, g)− LD(φ̃g, w̃g, g)

)
+

256L2d2 log(2n|Φh||Φh+1||R|/δ)
n

≤ 2 max
g∈V

(
LD(φ∗, θ∗g , g)− LD(φ̃g, w̃g, g)

)
+

256L2d2 log(2n|Φh||Φh+1||R|/δ)
n

≤ 512L2d2 log(2n|Φh||Φh+1||R|/δ)
n

.

Hence, we have proved the desired result.

Here, we explicitly give a result for the discriminator function classes used by MOFFLE. However,
a similar result can be easily derived for a general discriminator class V with the dependence logN
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where N is either the cardinality or an appropriate complexity measure of V .

5.10.3.1 Proof of Theorem 5.4

Theorem (Restatement of Theorem 5.4). Fix δ ∈ (0, 1). Consider an MDPM that admits a low-

rank factorization in Definition 5.1 and Assumption 5.1, Assumption 5.2 hold. If the LEARNREP

sub-routine to learn features φ̂h in Algorithm 5.2 and φ̄h in Algorithm 5.1 is implemented using the

oracle FLO, MOFFLE returns an exploratory dataset D such that for any R ∈ R, running FQI with

value function class Q(φ̄, R) returns an ε-optimal policy with probability at least 1− δ. The total

number of episodes used by the algorithm is:

Õ

(
H6d8A13 log(|Φ|/δ)

η5
min

+
Hd9A12 log(|Φ|/δe)

η6
min

+
H7d3A5 log(|Φ||R|/δ)

ε2ηmin

)
.

Proof. In MOFFLE, we call the sub-routine LEARNREP twice for discriminator classes F and G
with L = 1 and L = H respectively. Similarly, the error threshold given as input to LEARNREP are
εreg and εapx.

Firstly, we consider learning φ̂h that satisfies (5.3) so that we can collect a exploratory dataset.
Let R = {0} and L = 1 (i,e. consider V = F), for any level h, applying Lemma 5.11, we know
that if

n ≥ 512d2 log(2n|Φh||Φh+1||R|/δ/(3H))

εreg

,

then condition (5.3) holds with probability at least 1− δ/(3H). Setting εreg = Θ̃
(

η3min

d2A9 log2(1+8/β)

)
we get:

nexp = Õ

(
d2 log(|Φh||Φh+1||R|/δ)

εreg

)
= Õ

(
d4A9 log(|Φ|/δ)

η3
min

)
.

Substituting the value B =
√
d in Theorem 5.2, we get the sample complexity for the elliptic

planner as:

nell + T · nplan = Õ

(
H5d6A13B4 log(|Φ|/δ)

η5
min

+
Hd6A12B6 log(|Φ|/δe)

η6
min

)
= Õ

(
H5d8A13 log(|Φ|/δ)

η5
min

+
Hd9A12 log(|Φ|/δe)

η6
min

)
.

Then we consider learning φ̄h that satisfies (5.6). Let L = H and consider originalR (i.e. consider
V = G). Similarly, for any level h, setting εapx = Õ

(
ε2ηmin

dH4A5

)
and applying Lemma 5.11, we know
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that if

nrep = Õ

H6d3A5 log
(
|Φ||R|
δ/(3H)

)
ε2ηmin

 = Õ

H6d3A5 log
(
|Φ||R|
δ

)
ε2ηmin

 ,

then condition (5.6) is satisfied with prob ability at least 1− δ/3H .
Notice that (5.6) holds and we collect an exploratory dataset by applying Theorem 5.2. Then

Theorem 5.3 implies the required sample complexity for offline FQI planning with φ̄0:H−1 to
guarantee ε error with probability at least 1− δ/(3H) is:

nfqi = Õ

(
H6d2A5 log(|Φ||R|/δ)

ε2ηmin

)
.

Finally, union bounding over h ∈ [H], the final sample complexity is H(nexp +nell +nrep +nfqi).
Reorganizing these terms completes the proof.

5.10.4 Proofs for greedy representation learning method

We again start by showing a sample complexity result for the feature learning (line 6) and witness
computation (line 7) steps in Algorithm 5.4 for a general discriminator class. We will later use the
result to show a feature selection guarantee for Algorithm 5.4 in Lemma 5.5.

Lemma 5.12 (Deviation bounds for Algorithm 5.4). Let ε̃ = 64d(B+L
√
d)2 log(2n|Φh||Φh+1||R|/δ)

n
.

If Algorithm 5.4 is called with a dataset D of size n and termination loss cutoff 3ε1/2 + ε̃,

then with probability at least 1 − δ, for all v ∈ V ⊂ (S → [0, L]) := {v(sh+1) =

clip[0,L](Eah+1∼πh+1(sh+1)[R(sh+1, ah+1)+ 〈φh+1(sh+1, ah+1), θ〉]) : φh+1 ∈ Φh+1, ‖θ‖2 ≤
L
√
d,R ∈ R} and t ≤ T , we have:

∑
i≤t

Eρ+3
h−3

[(
φ̂t,h(sh, ah)

>wt,i − φ∗h(sh, ah)>θ∗i
)2
]
≤ tε̃

Eρ+3
h−3

[(
φ̂t,h(sh, ah)

>w − φ∗h(sh, ah)>θ∗t+1

)2
]
≥ ε1

for all ‖w‖2 ≤ Bt where wt,i = argmin‖w̃‖≤Bt LD(φ̂t,h, w̃, vi) and θ∗i =

argmin‖w̃‖2≤L
√
d Lρ+3

h−3
(φ∗h, w̃, vi) where Bt = L

√
dt

2
in Algorithm 5.4.

Further, at termination, the learnt feature φ̂T,h satisfies:

max
v∈V

b err
(
ρ+3
h−3, φ̂T,h, v;B

)
≤ 3ε1 + 4ε̃.
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Proof. We again denote Lρ+3
h−3

(·) as L(·) and set ε̃ = 64d(B+L
√
d)2 log(2n|Φh||Φh+1||R|/δ)

n
. Further, we

remove the subscript h for simplicity unless not clear by context. We begin by using the result in
Lemma B.8 such that, with probability at least 1− δ, for all ‖w‖2 ≤ B (B ≥ L

√
d), φ ∈ Φh and

v ∈ V , we have

|L(φ,w, v)− L(φ∗, θ∗v, v)− (LD(φ,w, v)− LD(φ∗, θ∗v, v))| ≤ 1

2
(L(φ,w, v)− L(φ∗, θ∗v, v)) +

ε̃

2
.

Thus, for the feature fitting step in line 6 of Algorithm 5.4 in iteration t, with probability at least
1− δ we have:

∑
vi∈Vt

E
[(
φ̂>t wt,i − φ∗>θ∗i

)2
]

=
∑
vi∈Vt

(
L(φ̂t, wt,i, vi)− L(φ∗, θ∗i , vi)

)
≤
∑
vi∈Vt

2
(
LD(φ̂t, wt,i, vi)− LD(φ∗, θ∗i , vi)

)
+ |V t|ε̃

≤ tε̃,

which means the first inequality in the lemma statement holds.
For the adversarial test function at iteration t with Bt ≤ B, let w̄ :=

argmin‖w‖2≤Bt LD(φ̂t, w, vt+1). Using the same sample size for the adversarial test function at
each non-terminal iteration with loss cutoff c, for any vector w ∈ Rd with ‖w‖2 ≤ Bt we get:

E
[(
φ̂>t w − φ∗>θ∗t+1

)2
]

= L(φ̂t, w, vt+1)− L(φ∗, θ∗t+1, vt+1)

≥ 2

3

(
LD(φ̂t, w, vt+1)− LD(φ∗, θ∗t+1, vt+1)

)
− ε̃

3

≥ 2

3

(
LD(φ̂t, w̄, vt+1)− LD(φ∗, θ∗t+1, vt+1)

)
− ε̃

3

≥ 2c

3
+

2

3

(
min

φ̃∈Φh,‖w̃‖2≤L
√
d
LD(φ̃, w̃, vt+1)− LD(φ∗, θ∗t+1, vt+1)

)
− ε̃

3

≥ 2c

3
+

1

3

(
L(φ̃t+1, w̃t+1, vt+1)− L(φ∗, θ∗t+1, vt+1)

)
− 2ε̃

3

≥ 2c

3
− 2̃ε

3
.

In the first inequality, we invoke Lemma B.8 to move to empirical losses. In the third inequality, we
add and subtract the ERM loss over (φ,w) pairs along with the fact that the termination condition is
not satisfied for vt+1. In the next step, we again use Lemma B.8 for the ERM pair (φ̃t+1, w̃t+1) for
vt+1.

Thus, if we set the cutoff c for test loss to 3ε1/2 + ε̃, for a non-terminal iteration t, for any
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w ∈ Rd with ‖w‖2 ≤ Bt, we have:

E
[(
φ̂>t w − φ∗>θ∗t+1

)2
]
≥ ε1, (5.29)

which implies the second inequality in the lemma statement holds.
At the same time, for the last iteration, for all v ∈ V , the feature φ̂T satisfies:

min
‖w‖2≤B

E
[(
φ̂>Tw − φ∗>θ∗v

)2
]

≤ 2
(
LD(φ̂T , ŵv, v)− LD(φ∗, θ∗v, v)

)
+ ε̃

≤ 2
(
LD(φ̂T , ŵv, v)− LD(φ̃v, w̃v, v) + LD(φ̃v, w̃v, v)− LD(φ∗, θ∗v, v)

)
+ ε̃

≤ 2
(
LD(φ̂T , ŵv, v)− LD(φ̃v, w̃v, v)

)
+ ε̃

≤ 3ε1 + 4ε̃.

This gives us the third inequality in the lemma, thus completes the proof.

5.10.4.1 Proof of Lemma 5.5

Lemma (Restatement of Lemma 5.5). Fix δ1 ∈ (0, 1). If the greedy feature selection algorithm

(Algorithm 5.4) is run with a sample D of size n = Õ
(
L6d7 log(|Φh||Φh+1||R|/δ)

ε3tol

)
, then with B =√

13L4d3

εtol
, it terminates after T = 52L2d2

εtol
iterations and returns a feature φ̂h such that for V ⊂ (S →

[0, L]) := {v(sh+1) = clip[0,L](Eah+1∼πh+1(sh+1)[R(sh+1, ah+1)+ 〈φh+1(sh+1, ah+1), θ〉]) : φh+1 ∈
Φh+1, ‖θ‖2 ≤ L

√
d,R ∈ R}, we have:

max
v∈V

b err
(
ρ+3
h−3, φ̂h, v;B

)
≤ εtol.

Proof. For ease of notation, we will not use the subscript ρ+3
h−3 in the expectations below

(L(·) := Lρ+3
h−3

(·)). Similarly, we will use φt to denote feature φt,h(sh, ah) of iteration t and
(s′, a′) for (sh+1, ah+1) unless required by context. Further, for any iteration t, let Wt =

[wt,1 | wt,2 | . . . | wt,t] ∈ Rd×t be the matrix with columns W i
t as the linear parameter

wt,i = argmin‖w‖2≤L
√
d LD(φ̂t,h, w, vi). Similarly, let At = [θ∗1 | θ∗2 | . . . | θ∗t ].

In the proof, we assume that the total number of iterations T does not exceed 52L2d2

εtol
and set

parameters accordingly. We later verify that this assumption holds. Further, let ε̃ =
ε2tol

2704L2d3
and

ε0 = Tmax · ε̃ = εtol
52d

.
To begin, based on the deviation bound in Lemma 5.12, we note that if the sample D in

Algorithm 5.4 is of size n = Õ
(
L6d7 log(|Φh||Φh+1||R|/δ)

ε3tol

)
and the termination loss cutoff set to
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3ε1/2 + ε̃ such that, with probability at least 1− δ1, for all non-terminal iterations t we have:

∑
vi∈Vt

E
[(
φ̂>t W

i
t − φ∗>Ait

)2
]
≤ tε̃ ≤ ε0, (5.30)

E
[(
φ̂>t w − φ∗>θ∗t+1

)2
]
≥ ε1 (5.31)

where ε̃ is an error term dependent on the size of D and w is any vector with ‖w‖2 ≤ Bt ≤ B.
Further, when the algorithm does terminate, we get the loss upper bound to be 3ε1 + 4ε̃.

Using (5.30) and (5.31), we will now show that the maximum iterations in Algorithm 5.4 is
bounded.

At round t, for functions v1, . . . , vt ∈ V in Algorithm 5.4, let θ∗i = θ∗vi as before and further let
Σt = AtA

>
t + λId×d. Using the linear parameter θ∗t+1 of the adversarial test function vt+1, define

ŵt = WtA
>
t Σ−1

t θ∗t+1. For this ŵt, we can bound its norm as:

‖WtA
>
t Σ−1

t θ∗t+1‖2 ≤ ‖Wt‖2‖A>t Σ−1
t ‖2‖θ∗t+1‖2 ≤ L2d

√
t

4λ
.

Here ‖Wt‖2 ≤ L
√
dt and ‖θ∗t+1‖2 ≤ L

√
d. Applying SVD decomposition and the property of

matrix norm, ‖A>t Σ−1
t ‖2 can be upper bounded by maxi≤d

√
λi

λi+λ
≤ 1√

4λ
, where λi are the eigenvalues

of AtA>t . Then noticing AM-GM inequality, we get ‖A>t Σ−1
t ‖2 ≤

√
1/4λ.

Setting Bt = L2d
√

t
4λ

, from (5.31), we have

ε1 ≤ E
[(
φ̂>t ŵt − φ∗>θ∗t+1

)2
]

= E
[(
φ̂>t WtA

>
t Σ−1

t θ∗t+1 − φ∗>ΣtΣ
−1
t θ∗t+1

)2
]

≤ ‖Σ−1
t θ∗t+1‖2

2 · E
[
‖φ̂>t WtA

>
t − φ∗>Σt‖2

2

]
≤ 2‖Σ−1

t θ∗t+1‖2
2 · E

[
‖φ̂>t WtA

>
t − φ>t AtA>t ‖2

2 + λ2‖φ∗>‖2
2

]
≤ 2‖Σ−1

t θ∗t+1‖2
2 ·
(
σ2

1(At)E
[
‖φ̂>t Wt − φ∗>At‖2

2

]
+ λ2

)
≤ 2‖Σ−1

t θ∗t+1‖2
2 ·
(
L2dtε0 + λ2

)
.

The second inequality uses Cauchy-Schwarz. The last inequality applies the upper bound σ1(At) ≤
L
√
dt and the guarantee from (5.30). Using the fact that t ≤ T , this implies that

‖Σ−1
t θ∗t+1‖2 ≥

√
ε1

2(L2dTε0 + λ2)
.

We now use the generalized elliptic potential lemma from Carpentier et al. (2020) to upper bound
the total value of ‖Σ−1

t θ∗t+1‖2. From Lemma B.9 in Appendix B.2.3, if λ ≥ L2d and we do not
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terminate in T rounds, then

T

√
ε1

2(L2dTε0 + λ2)
≤

T∑
t=1

‖Σ−1
t θ∗t+1‖2 ≤ 2

√
Td

λ
.

From this chain of inequalities, we can deduce

Tε1 ≤ 8(d/λ)
(
L2dTε0 + λ2

)
,

therefore

T ≤ 8dλ

ε1 − 8L2d2ε0/λ
. (5.32)

Now, if we set ε1 = 16L2d2ε0/λ in the above inequality, we can deduce that

T ≤ λ2

L2dε0

.

Putting everything together, for input parameter εtol, the termination threshold for the loss l is
set such that 48L2d2ε0

λ
+

4L2dε20
λ2
≤ εtol which is satisfied for ε0 = λεtol

52L2d2
. In addition, with λ = L2d,

we set the constants for Algorithm 5.4 as follows:

T ≤ 52L2d2

εtol

, ε0 =
εtol

52d
, Bt :=

√
L2dt

4
, B :=

√
13L4d3

εtol

.

Further, for Lemma 5.12, we set ε̃ to ε0/T = O
(
ε2tol
L2d3

)
.

5.10.4.2 Proof of Theorem 5.6

Theorem (Restatement of Theorem 5.6). Fix δ ∈ (0, 1). Consider an MDPM that admits a low-

rank factorization in Definition 5.1 and Assumption 5.1, Assumption 5.2 hold. If the LEARNREP

sub-routine to learn features φ̂h in Algorithm 5.2 and φ̄h in Algorithm 5.1 is implemented using

Algorithm 5.4, MOFFLE returns an exploratory dataset D such that for any R ∈ R, running FQI
with value function class Q(φ̄, R) returns an ε-optimal policy with probability at least 1− δ. The

total number of episodes used by the algorithm is:

Õ

(
H6d16A31 log(|Φ|/δ)

η11
min

+
Hd17A40 log(|Φ|/δ)

η15
min

+
H19d10A15 log(|Φ||R|/δ)

ε6η3
min

)
.

Proof. In MOFFLE, we call the sub-routine LEARNREP twice for discriminator classes F and G
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with L = 1 and L = H respectively. Similarly, the error threshold given as input to LEARNREP are
εreg and εapx. Using the result in Lemma 5.5, we know that for an approximation error of εtol, we
need to set the sample size in Algorithm 5.4 to n = Õ

(
L6d7 log(|Φ||R|/δ)

ε3tol

)
.

Setting the values of the parameter εtol = εreg = Θ̃
(

η3min

d2A9 log2(1+8/β)

)
from Theorem 5.2 with

|R| = 1 and L = 1, we get the number of episodes per h ∈ [H] for learning φ̂h that satisfies (5.3)
as:

nexp = Õ

(
L6d7 log(|Φ||R|/δ)

ε3
reg

)
= Õ

(
d13A27 log(|Φ|/δ)

η9
min

)
.

Substituting the value B =
√

13d3

εreg
in Theorem 5.2, we get the sample complexity for the elliptic

planner as

nell + T · nplan = Õ

(
H5d6A13B4 log(|Φ|/δ)

η5
min

+
Hd6A12B6 log(|Φ|/δe)

η6
min

)
= Õ

(
H5d16A31 log(|Φ|/δ)

η11
min

+
Hd17A40 log(|Φ|/δ)

η15
min

)
.

Similarly, for learning φ̄h that satisfies (5.6), we set εtol = εapx = Õ
(
ε2ηmin

dH4A5

)
. Then, applying

Lemma 5.12 with L = H , we get the number of episodes per h ∈ [H] for learning φ̄h as:

nrep = Õ

(
L6d7 log(|Φ||R|/δ)

ε3
apx

)
= Õ

(
H18d10A15 log(|Φ||R|/δ)

ε6η3
min

)
.

Notice that (5.6) holds and we collect an exploratory dataset by applying Theorem 5.2. Then
Theorem 5.3 implies the required sample complexity for offline FQI planning with φ̄0:H−1 is

nfqi = Õ

(
H6d2A5 log(|Φ||R|/δ)

ε2ηmin

)
.

The final result in the theorem statement is obtained by setting the bound to H(nexp + nell + nrep +

nfqi).

5.10.5 Results for enumerable representation class

We first show that using the ridge estimator for an enumerable feature class as described in
Section 5.6, discriminator class Fh+1 and an appropriately set value of λ still allows us to establish
a feature approximation result similar to FLO and greedy feature selection:

Lemma 5.13. For the features selected via the ridge estimator, with λ = Θ̃
(

1
n1/3

)
for any function
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f ∈ Fh+1, with probability at least 1− δ, we have:

max
f∈Fh+1

Lρ+3
h−3

(φ̂h, ŵf , f)− Lρ+3
h−3

(φ∗h, θ
∗
f , f) ≤ Õ

(
d2 log(|Φh||Φh+1|/δ)

n1/3

)
where the discriminator function class Fh+1 := {f(sh+1) = Eunif(A) [〈φh+1(sh+1, a), θ〉] : φh+1

∈ Φh+1, ‖θ‖2 ≤
√
d}.

Proof. We again denote Lρ+3
h−3

(·) as L(·), Fh+1 as F . Firstly, as the discriminator function class F
is defined without clipping, we now have: E[f(s′)|s, a] = 〈φ∗(s, a), θ∗f〉 with ‖θ∗f‖2 ≤ d. Also, the
scale of the ridge estimator wf =

(
1
n
X>X + λId×d

)−1 ( 1
n
X>f

)
now scales as 1

λ
. Now, similar to

Lemma B.8, for all φ ∈ Φh, ‖w‖2 ≤ 1/λ and f ∈ F , we have:

∣∣L(φ,w, f)− L(φ∗, θ∗f , f)−
(
LD(φ,w, f)− LD(φ∗, θ∗f , f)

)∣∣
≤ 1

2

(
L(φ,w, f)− L(φ∗, θ∗f , f)

)
+

32d(1/λ+ d)2 log(2n|Φh||Φh+1|/δ)
n

.

Now, let w∗f denote the population ridge regression estimator for target f ∈ F for features φ∗.
Assume λ ≤ 1/d, which upper bounds the second term in the rhs above as γ := 128d log(2n|Φh||Φh+1|/δ)

λ2n
.

For the selected feature φ̂, we have:

LD(φ̂, ŵf , f)− LD(φ̃f , w̃f , f)

= LD(φ̂, ŵf , f)− LD(φ∗, θ∗f , f) + LD(φ∗, θ∗f , f)− LD(φ̃f , w̃f , f)

≥ 1

2

(
L(φ̂, ŵf , f)− L(φ∗, θ∗f , f)

)
+ LD(φ∗, θ∗f , f)− LD(φ̃f , w̃f , f)− γ

≥ 1

2

(
L(φ̂, ŵf , f)− L(φ∗, θ∗f , f)

)
+ LD(φ∗, θ∗f , f)− LD(φ∗, w∗f , f)− γ.

Thus, with the feature selection output, we have:
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L(φ̂, ŵf , f)− L(φ∗, θ∗f , f)

≤ 2
(
LD(φ̂, ŵf , f)− LD(φ̃f , w̃f , f)

)
+ 2

(
LD(φ∗, w∗f , f)− LD(φ∗, θ∗f , f)

)
+ 2γ

≤ 2 max
g∈F

(
LD(φ̂, ŵg, g)− LD(φ̃g, w̃g, g)

)
+ 3

(
L(φ∗, w∗f , f)− L(φ∗, θ∗f , f)

)
+ 4γ

≤ 2 max
g∈F

(
LD(φ∗, w∗g , g)− LD(φ̃g, w̃g, g)

)
+ 3

(
L(φ∗, w∗f , f)− L(φ∗, θ∗f , f)

)
+ 4γ

≤ 2 max
g∈F

(
LD(φ∗, w∗g , g)− LD(φ∗, θ∗g , g)

)
+ 2 max

g∈F

(
LD(φ∗, θ∗g , g)− LD(φ̃g, w̃g, g)

)
+ 3

(
L(φ∗, w∗f , f)− L(φ∗, θ∗f , f)

)
+ 4γ

≤ 2 max
g∈F

(
LD(φ∗, w∗g , g)− LD(φ∗, θ∗g , g)

)
+ 3

(
L(φ∗, w∗f , f)− L(φ∗, θ∗f , f)

)
+ 6γ

≤ 6 max
g∈F

(
L(φ∗, w∗g , g)− L(φ∗, θ∗g , g)

)
+ 8γ.

The third inequality uses the fact that φ̂ is the solution of the ridge-regression based feature selection
objective. Further, in all steps, we repeatedly apply the deviation bound from Lemma B.8 to move
from LD(·) to L(·).

Now, for ridge regression estimate w∗g , we can bound the bias term on the rhs as follows:

L(φ∗, w∗g , g)− L(φ∗, θ∗g , g) = E
[(〈

φ∗, w∗g
〉
−
〈
φ∗, θ∗g

〉)2
]

= ‖w∗g − θ∗g‖2
Σ∗ =

d∑
i=1

λi
〈
vi, w

∗
g − θ∗g

〉2

=
d∑
i=1

λi

(
λi

λ+ λi

〈
vi, θ

∗
g

〉
−
〈
vi, θ

∗
g

〉)2

=
d∑
i=1

λiλ
2
〈
vi, θ

∗
g

〉2

(λi + λ)2
≤ λ

4
‖θ∗g‖2

2 ≤
λd2

4
,

where (λi, vi) denote the i-th eigenvalue-eigenvector pair of the population covariance matrix Σ∗

for feature φ∗. In the derivation above, we use the fact that w∗g = (Σ +λI)−1E[φ∗g] = λi
λ+λi

〈
vi, θ

∗
g

〉
.

Therefore, the final deviation bound for φ̂ is:

L(φ̂, ŵf , f)− L(φ∗, θ∗f , f) ≤ 3λd2

2
+

1024d log(2n|Φh||Φh+1|/δ)
λ2n

.

Thus, setting λ = Õ
(

1
n1/3

)
gives the final result.
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5.10.5.1 Sample complexity of MOFFLE for enumerable feature class

Now that we have a feature selection guarantee assumed by the analysis of MOFFLE in Section 5.10.1,
we show an overall sample complexity result for this version of MOFFLE as follows:

Theorem 5.14 (Restatement of Theorem 5.7). Fix δ ∈ (0, 1). Consider an MDPM that admits a

low-rank factorization in Definition 5.1 and Assumption 5.1, Assumption 5.2 hold. In Algorithm 5.2,

if φ̂h is learned using the eigenvector formulation (5.12), then MOFFLE returns an exploratory

dataset D such that for any R ∈ R, running FQI using the full representation class Φ returns an

ε-optimal policy with probability at least 1− δ. The total number of episodes used by the algorithm

is:

Õ

(
H6d22A49 log5(|Φ|/δ)

η17
min

+
Hd30A67 log7(|Φ|/δ)

η24
min

+
H7d3A3 log(|Φ||R|/δ)

ε2ηmin

)
.

Proof. In MOFFLE, we now use the eigenvector formulation for discriminator class F with the error
threshold εreg. Setting the values of the parameter εreg = Θ̃

(
η3min

d2A9 log2(1+8/β)

)
from Theorem 5.2

and the deviation bound in Lemma 5.13, we get the number of episodes per h ∈ [H] for learning φ̂h
as:

nexp = Õ

(
d6 log3(|Φh||Φh+1|/δ)

ε3
reg

)
= Õ

(
d12A27 log3(|Φ|/δ)

η9
min

)
.

Now, substituting the value B = 1/λ = Θ̃
(
n

1/3
exp

)
in Theorem 5.2, we get the sample complexity

for the elliptic planner as:

nell + T · nplan = Õ

(
H5d6A13B4 log(|Φ|/δ)

η5
min

+
Hd6A12B6 log(|Φ|/δe)

η6
min

)
= Õ

(
H5d22A49 log5(|Φ|/δ)

η17
min

+
Hd30A67 log7(|Φ|/δ)

η24
min

)
.

Finally, using Corollary B.2 from Appendix B.1.2, the number of episodes collected for running
FQI with the full representation class Φ can be bounded by:

nfqi = Õ

(
H6d2κA log(|Φ||R|/δ)

ε2

)
= Õ

(
H6d3A3 log(|Φ||R|/δ)

ε2ηmin

)
.

The final result in the theorem statement is obtained by setting the bound toH(nexp+nell)+nfqi.
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5.10.6 The analysis of FQI based elliptical planner

In this section, we show the iteration complexity and the estimation guarantee for FQI based
elliptical planner (Algorithm 5.3). The analysis follows a similar approach as Agarwal et al. (2020b),
while the major difference here is that we apply FQI for the policy optimization step.

Lemma 5.15 (Estimation and iteration guarantees for Algorithm 5.3). If Algorithm 5.3 is run with

a dataset of size nell = Õ
(
H4d3κA log(|Φ|/δ)

β2

)
for a fix β > 0, δ ∈ (0, 1), then upon termination, it

outputs a matrix ΓT and a policy ρ that with probability at least 1− δ:

∀π : Eπ
[
φ̂H̃−1(sH̃−1, aH̃−1)> (ΓT )−1 φ̂H̃−1(sH̃−1, aH̃−1)

]
≤ O(β),∥∥∥∥ΓT

T
−
(
Eρ
[
φ̂H̃−1(sH̃−1, aH̃−1)φ̂H̃−1(sH̃−1, aH̃−1)>

]
+
Id×d
T

)∥∥∥∥
op

≤ O(β/d).

Further, the iteration complexity is also bounded T ≤ 8d
β

log
(

1 + 8
β

)
. The total number of rollouts

used by the algorithm is then T · nplan := Õ
(
d3 log 1

δ

β3

)
.

Proof. Since the policy optimization step (Algorithm B.1) is performed via an application
of Lemma B.4, we can find an β/8-suboptimal policy πt for the reward function induced by
Γt−1. Then we use the sampling subroutine to estimate the value of this policy, which we de-
note V̂t(πt). As before, we terminate if V̂t(πt) ≤ 3β/4. If we terminate in round t, we output
ρ = unif({πi}t−1

i=1) and we also output Γt. As notation, we use Vt(π) to denote the value for
policy π on the reward function used in iteration t, which is induced by Γt−1. We also denote the
(element-wise) expectation of matrix Σ̂πt as Σπt .

With O (poly (d,H,A, T, 1/ηmin, log |Φ|, 1/β, log(1/δ))) sample complexity, we can show that
with probability at least 1− δ:

max
t∈[T ]

max

{
d ·
∥∥∥Σ̂πt − Σπt

∥∥∥
op
,
∣∣∣V̂t(πt)− Vt(πt)∣∣∣ ,max

π
Vt(π)− Vt(πt)

}
≤ β/8. (5.33)

For the first two terms in (5.33), we need to re-sample data in each iteration of the elliptic planner.
As such, for each iteration, we can use standard concentration bounds to derive the per-iteration
sample complexity to ensure the require estimation guarantees. Since the first term dominates the
second term, we will only focus on that. Using standard concentration argument we can show the
following guarantee:

Corollary 5.16 (Cor. 6.20 in Wainwright (2019)). If the number of trajectories nplan collected in
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each iteration by the elliptic planner in Algorithm 5.3 satisfies the following:

nplan := Õ

(
d2 log T

δ

β2

)
,

then with probability at least 1− δ/2, for all t ≤ T , the estimates satisfy:

max
t∈[T ]

max

{
d ·
∥∥∥Σ̂πt − Σπt

∥∥∥
op
,
∣∣∣V̂t(πt)− Vt(πt)∣∣∣} ≤ β/8. (5.34)

The result follows directly from the concentration result, the fact that ||φ(s, a)|| ≤ 1 and taking a
union bound over all T iterations.

We now compute the number of samples used during FQI planning for the required error
tolerance. Lemma B.4 states that for a sample of size n, the computed policy is sub-optimal by

a value difference of order upto Õ
(√

H4d3κA log(|Φ|/δ)
n

)
. Setting the failure probability of FQI

planning to be δ/2HT for each level h ∈ [H] and T iterations, and setting the planning error to
β/8, we conclude that the total number of episodes nell used by Algorithm 5.3 for each timestep h
is Õ

(
H4d3κA log(T |Φ|/δ)

β2

)
.

The accuracy guarantee for the covariance matrix ΓT is straightforward, since each Σ̂πt is Õ(β/d)

accurate and ΓT
T
− Id×d

T
is the average of such matrices.

Then, we turn to the iteration complexity. Now, if we terminate in iteration t, we know that
V̂t(πt) ≤ 3β/4. This implies

max
π

Vt(π) ≤ Vt(πt) + β/8 ≤ V̂t(πt) + β/4 ≤ β.

Similarly to the above inequality, we have

T (3β/4− β/4) ≤
T∑
t=1

V̂t(πt)− β/4 ≤
T∑
t=1

Vt(πt)− β/8

=
T∑
t=1

E
[
φ̂>
H̃

Γ−1
t−1φ̂H̃ | πt

]
− β/8 =

T∑
t=1

tr(ΣπtΓ
−1
t−1)− β/8

≤
T∑
t=1

tr(Σ̂πtΓ
−1
t−1) ≤ 2d log

(
1 +

T

d

)
.

In the last step, we apply elliptical potential lemma (e.g. Lemma 26 of Agarwal et al. (2020b)).
Reorganizing the equation yields T ≤ 4d

β
log
(
1 + T

d

)
. Further, if T ≤ 8d

β
log
(

1 + 8
β

)
, then we
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have

T ≤ 4d

β
log

(
1 +

T

d

)
≤ 4d

β
log

1 +
8 log

(
1 + 8

β

)
β


≤ 4d

β
log

(
1 +

(
8

β

)2
)
≤ 8d

β
log

(
1 +

8

β

)
.

Therefore, we obtain an upper bound on T by this set and guess approach.
Thus, the total sample complexity of the elliptic planner is: T · nplan + nell =

Õ
(
d3 log 1

δ

β3 + H4d3κA log(|Φ|/δ)
β2

)
.
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CHAPTER 6

Provably Efficient Multi-Task Learning for Linear
Quadratic Regulators

In the previous chapters of this thesis, we have considered different learning settings for fixed-
horizon episodic MDPs. A common theme in the previous chapters was the use of feature rep-
resentations of state and actions and an underlying linear structure in the underlying dynamics
model. Both these components are naturally present in the field of optimal control. Optimal control
has been influential in a range of applications, with a prominent example being robotics, where
the underlying task has dynamics which are naturally determined by a (locally) linear dynamics
function. Therefore, concurrent to the progress in learning in MDPs, we have also seen a flurry
of non-asymptotic results for linear-quadratic control which is one of the fundamental problems
in optimal control. In this chapter, we study a problem of concurrent and online adaptive control
in multiple linear quadratic regulator systems. Following the main theme of this thesis, we again
consider a structural assumption, where each LQR system is obtained as a linear function of a shared
basis of dynamics matrices. Under this structural assumption, we first propose a joint estimator for
the transition matrices of a linear time-invariant dynamical system and then build upon that result to
propose and analyze a certainty equivalence based multi-task control algorithm for multiple LQR
systems.

6.1 Introduction

The problem of adaptively controlling a given linear dynamical system represents a canonical
problem in optimal control. Consequently, there has been a lot of work focused on this learning
instance, ranging from the earlier work on stability and convergence (Ioannou and Sun, 2012; Krstic
et al., 1995) to the recent works on finite time regret guarantees in online stochastic LQR control
(Abbasi-Yadkori and Szepesvári, 2011; Faradonbeh et al., 2020b; Dean et al., 2018; Simchowitz
and Foster, 2020). The problem of identifying the underlying transition matrices of the controlled
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linear dynamical system is a key component in most adaptive control methods and has also been
studied extensively in the literature. Recent works establish finite-time rates for accurately learning
the dynamics in different online and offline settings (Faradonbeh et al., 2018a; Simchowitz et al.,
2018; Sarkar and Rakhlin, 2019). The existing results are established assuming that the goal is to
identify the transition matrix of a single dynamical system.

However, in many areas where LTIDS models (as in (6.1) below) are used, such as macroeco-
nomics (Stock and Watson, 2016), functional genomics (Fujita et al., 2007), and neuroimaging
(Seth et al., 2015), one observes multiple dynamical systems and needs to estimate the transition
matrices for all of them jointly. Further, the underlying dynamical systems share commonalities,
but also exhibit heterogeneity. For example, (Skripnikov and Michailidis, 2019a) analyze economic
indicators of US states whose local economies share a strong manufacturing base. Moreover, in time
course genetics experiments, one is interested in understanding the dynamics and drivers of gene
expressions across related animal or cell line populations (Basu et al., 2015), while in neuroimaging,
one has access to data from multiple subjects that suffer from the same disease (Skripnikov and
Michailidis, 2019b).

In all these settings, there are remarkable similarities in the dynamics of the systems, but some
degree of heterogeneity is also present. Hence, it becomes natural to pursue a joint learning and
control strategy, by pooling the data of the underlying systems. This strategy should be particularly
beneficial in settings, wherein the available data are limited (e.g., state trajectories are short), or
the dimension of the systems is relatively large. The problem of joint learning (also referred to as
multi-task learning) aims to study system identification methods that leverage similarities across
systems. Similarly, pooling the data together across different systems can provide an improvement
in the statistical efficiency of adaptive control.

In this chapter, we will consider an instance of such a multi-task estimation and control problem
where the system matrices for each individual LQR system shares a common basis (see Assump-
tion 6.1). This is analogous to the commonly used assumption in joint learning problems that all
tasks share a common representation in the form of linear combinations of unknown parameters.
The theoretical analysis presented in this chapter contributes to the understanding of joint learning
for dynamical systems and provides novel results for a joint estimator for the system matrices, and
finite time regret bounds for an adaptive controller which uses the joint estimator. In addition to
these results, our work highlights the impact of the spectral properties of transition matrices on the
estimation error for joint learning, and demonstrates a fundamental difference between settings
with independent observations vs sequentially generated data (as applicable to linear dynamical
systems).

Chapter outline. The rest of the chapter is organized as follows: In Section 6.2, we formally set
up the problem and state the learning goal and assumptions. In the first part of this chapter, starting
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in Section 6.3, we study the joint estimation problem for linear time-invariant dynamical systems
and study the per-system estimation error, and provide the roles of various key quantities. Further,
in Section 6.3.2, we investigate the impact of violations of the shared structure and then provide
numerical illustrations in Section 6.3.3. In the second part, in Section 6.4, we study the adaptive
control problem for our multi-task LQR setting and provide a certainty equivalence based adaptive
controller with formal regret guarantees. Finally, we conclude with discussions and related work
in Section 6.5. The detailed proofs for the formal results are provided in Section 6.8 (regret) and
Section 6.9 (estimation).

6.2 Problem Setup: Shared Linear Basis

In this chapter, we study the problem of jointly controlling multipl linear quadratic regulator (LQR)
systems. Specifically, in our multi-task setting, we consider a set of M LQR systems with states
xm(t) ∈ Rdx , such that each system m ∈ [M ]+ evolves in the following manner:

xm(t+ 1) = Amxm(t) +Bmum(t) + ηm(t+ 1) (6.1)

where Am ∈ Rdx×dx is the open loop system matrix and Bm ∈ Rdx×du is the gain matrix for control
inputs um(t) ∈ Rdu . The sequence ηm(t) is a zero-mean noise process. Our main goal here is to
study how a shared structure between these M systems can allow efficient online control across
these M systems. To this end, we make the following assumption on how the system matrices
[Am|Bm] relate to each other:

Assumption 6.1 (Shared Basis for Control). For each system m ∈ [M ]+, the system matrices Am
and Bm can be expressed as a linear combination of a shared basis as follows:

Θm =
[
Am Bm

]
=

k∑
i=1

βm[i]Wi (6.2)

where {Wi}ki=1 form a shared basis of matrices in Rdx×d and βm ∈ Rk is the task-specific mixture

coefficient1.

Intuitively, we can see that if the size of the shared basis k is small enough, the effective
dimensionality of the multi-task system is O(kM + (dx + du)dxk) which can be significantly
smaller than (dx + du)dxM . Therefore, an efficient joint learning and control procedure will exploit
this low-dimensional representation and the shared structure, such that, for each system, the effective
sample size increases by a factor of M for the shared components. In this chapter, we will propose

1Recall that we use d = dx + du.

154



a certainty equivalence based online control procedure for the multi-task setting under the following
assumption:

Assumption 6.2. For each system, a stabilizing controller Km,0 is given as an input to the agent.

The controller Km,0 can be arbitrarily sub-optimal compared to K(Θm).

This requirement of having access to a stabilizing controller is not restrictive, and is common
in the statistical results on online optimal control (Dean et al., 2018; Simchowitz and Foster,
2020). Further, offline strategies for obtaining such stabilizing controllers have been provided in
Faradonbeh et al. (2018b).

The main goal for online multi-task learning in LQR will again be minimizing the average regret
incurred across the M systems as compared to the optimal linear controller (see Section 2.3):

Regret
(
{Θm}Mm=1 , T

)
=

1

M

M∑
m=1

Regret (Θm, T ) (6.3)

where Regret(Θm, T ) is defined in (2.17). Recall that regret for an individual system is defined as
follows:

Regret(Θ, T ) =

[
T−1∑
t=0

c(x(t), u(t))

]
− J ∗(A,B)

where c(x, u) = x>Rxx+ u>Ruu. We make the following assumptions for our regret analysis:

Assumption 6.3. The noise process ηm(t) ∈ Rdx is drawn iid as ηm(t) ∼ N (0, 1) for all systems

m ∈ [M ]+ and t > 0. We assume that each system (Am, Bm) is stabilizable as defined in

Definition 2.6. Further, without loss of generality, we assume Ru = I and Rx � I .

For simplicity of notation, we will use the shorthand Pm := P∞(Am, Bm) and Km :=

K∞(Am, Bm) and use Jm := J ∗(Am, Bm) for the optimal cost. In Section 6.4, we will present our
main guarantee as a multi-task regret bound which is based on our novel system identification anal-
ysis (see Section 6.3), combined with the certainty equiqualence based template from Simchowitz
and Foster (2020). In the following sections, we formally study the different components of our
algorithm and state the final guarantee in Section 6.4.

6.3 Joint Learning for Linear Time-Invariant Dynamical Sys-
tems

In this section, we will study the rates of jointly learning multiple linear time-invariant dynamical
systems (LTIDS). Later on, we will show that similar results can be established for a multi-task
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linear system in presence of control inputs. For simplicity, we will look at a closed loop system
with states xm(t) ∈ Rd.

Specifically, here, the data consists of state trajectories of length T fromM different systems. Let
xm(t) ∈ Rd, m ∈ [M ]+, t = 0, 1, . . . , T , denote the state trajectory of the m-th system, m ∈ [M ]+,
that evolves according to the Vector Auto-regressive (VAR) process:

xm(t+ 1) = Amxm(t) + ηm(t+ 1). (6.4)

Above, Am ∈ Rd×d denotes the transition matrix of the m-th system and ηm(t+ 1) is a mean zero
noise process. Moreover, the transition matrices Am are related as specified in Assumption 6.6.

The theoretical analysis presented in Section 6.3.1 shows that the specific issues pertaining to
the Jordan forms of the transition matrices Am are consequential for joint estimation of transition
matrices in LTIDS and lead to major differences from multi-task learning with independent data.

6.3.1 Joint learning of LTIDS

We consider the problem of joint learning of M LTIDS, whose dynamic evolution is according to
(6.4).

Assumption 6.4. For all m ∈ [M ]+, the linear system Am is non-explosive. That is, we have

λ1(Am) ≤ 1 + ρ/T , where ρ > 0 is a fixed constant independent of T .

For succinctness, we use Θ∗ to denote the set of M true transition matrices {Am}Mm=1.
To proceed, let Ft := σ(η1, η2, . . . , ηt, x0, x1, . . . xt) denote the filtration generated by the noise

vectors and states variables until time t. Based on this, we impose the following assumption on the
noise sequences2.

Assumption 6.5. For every m ∈ [M ]+, the noise sequence {ηm(t)}∞t=1 is a martingale difference

sequence; ηt is Ft−-measurable, E [ηt|Ft−1] = 0, and E
[
ηm(t)ηm(t)>|Ft−1

]
= C. Further, ηm(t)

is sub-Gaussian; E [exp(〈λ, ηm(t)〉)|Ft−1] ≤ exp(||λ||2σ2/2), for all λ ∈ Rd.

We denote by c2 = max(σ2, λmax(C)). The above assumption is widely-used in the finite-sample
analysis of statistical learning methods for time evolving systems (Abbasi-Yadkori et al., 2011;
Faradonbeh et al., 2020c). It includes normally distributed martingale difference sequences such that
Assumption 6.5 is satisfied with σ2 = λmax(Σ)/2. Moreover, whenever the components ηm(t)[i]

are mutually independent (given the filtration Ft) and have sub-Gaussian distributions with constant
σi, it suffices to let σ2 =

∑d
i=1 σ

2
i .

2We establish the system identification results under a more general assumption of martingale noise and later
simplify it to independent Gaussian noise for the control setting. The control results can be obtained for general
martingale noise as well, which we don’t write here for simplicity.
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For a single LTIDS, its underlying transition matrices Am can be individually identified from its
own state trajectory data by using the least squares estimator (Faradonbeh et al., 2018a; Sarkar and
Rakhlin, 2019). As mentioned in Section 6.2, we are interested in jointly learning the transition
matrices of M systems, under the assumption that they share some common structure. For LTIDS,
the analogous assumption can be states as follows:

Assumption 6.6 (Shared Basis). Each transition matrix Am can be expressed as

Am =
k∑
i=1

β∗m[i]W ∗
i , (6.5)

where {W ∗
i }ki=1 are common matrices in Rd×d and β∗m ∈ Rk contains the idiosyncratic coefficients

for the m-th system.

Later on in Section 6.3.2, we consider violations of the structure in (6.5) by allowing idiosyncratic
additive factors for each system m ∈ [M ]+.

Based on the parameterization in (6.5), we solve for W = {Wi}ki=1 and B = [β1|β2| · · · βM ] ∈
Rk×M , as follows:

Ŵ, B̂ := argmin
W,B

L(Θ∗,W, B),

where L(Θ∗,W, B) is the averaged squared loss across all M systems:

1

MT

M∑
m=1

T∑
t=0

∣∣∣∣∣
∣∣∣∣∣xm(t+ 1)−

(
k∑
i=1

βm[i]Wi

)
xm(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

. (6.6)

The objective function in the minimization problem in (6.6) is non-convex and in the analysis,
we assume that we have oracle access to the minimizer. Similar explicit parameterizations in least
squares loss functions are studied in the non-convex optimization literature. It is shown that gradient
descent (Ge et al., 2017) and alternating methods (Jain and Kar, 2017) converge to near-optimal
minima. In the sequel, we establish key identification rates for the joint estimator in (6.6) and

show that
∑M

m=1

∣∣∣∣∣∣Am − Âm∣∣∣∣∣∣2
F
→ 0, at a certain rate, with high probability. This generalizes recent

results on multi-task learning in settings involving iid data (Du et al., 2020; Hu et al., 2021).
We focus on the estimation error utilizing the structure in Assumption 6.6. For ease of presenta-

tion, we rewrite the problem as a univariate regression one. To that end, we introduce some notation
to express each transition matrix in vector form and rewrite (6.6), as follows.

First, for each state vector xm(t) ∈ Rd, we create d different covariates of size Rd2 . So, for
j = 1, · · · , d, the vector x̃m,j(t) ∈ Rd

2 contains xm(t) in the j-th block of size d and 0′s elsewhere.
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Then, we express the system matrix Am ∈ Rd×d as a vector Ãm ∈ Rd
2 . Similarly, the concate-

nation of all vectors Ãm can be coalesced into the matrix Θ̃ ∈ Rd2×M . Analogously, η̃m(t) will
denote the concatenated dt dimensional vector of noise vectors for system m. Thus, the structural
assumption in (6.16) can be written as:

Ãm = W ∗β∗m, (6.7)

where W ∗ ∈ Rd2×k and β∗m ∈ Rk. Similarly, the overall parameter set can be factorized as
Θ̃∗ = W ∗B∗, where the matrix B∗ = [β∗1 |β∗2 | · · · β∗M ] ∈ Rk×M contains the true weight vectors β∗m.

Thus, expressing the system matrices Am in this manner leads to a low rank structure in (6.7), so
that the matrix Θ̃∗ is of rank k. Using the vectorized parameters, the evolution for the components
j ∈ [d]+ of all state vectors xm(t) can be written as:

xm(t+ 1)[j] = Ãmx̃m,j(t) + ηm(t+ 1)[j]. (6.8)

For each system m ∈ [M ]+, we therefore have a total of dT samples, where the statistical depen-
dence now follows a block structure: d covariates of xm(1) are all constructed using xm(0), next d
using xm(1) and so forth. To estimate the parameters, we solve the following optimization problem:

Ŵ , {β̂m}Mm=1 := argmin
W,{βm}Mm=1

∑
m,t

d∑
j=1

(xm(t+ 1)[j]− 〈Wβm, x̃m,j(t)〉)2

︸ ︷︷ ︸
L(W,β)

= argmin
W,{βm}Mm=1

M∑
m=1

∥∥∥ym − X̃mWβm

∥∥∥2

2
, (6.9)

where ym ∈ RTd contains all T state vectors stacked vertically and X̃m ∈ RTd×d
2 contains the

corresponding matrix input. We denote the covariance matrices by Σm =
∑T−1

t=0 Xm(t)Xm(t)> and
Σ̃m =

∑T−1
t=0 X̃m(t)X̃m(t)>, for the vectorized matrices.

The analysis relies on high probability bounds on the sample covariance matrices Σm. Techni-
cally, we utilize the Jordan forms of matrices, as described in Section 2.3. In this section, for matrix
Am, its Jordan decomposition is written as Am = P−1

m ΛmPm, where Λm is a block diagonal matrix;
Λm = diag(Λm,1, . . .Λm,qm), and for i = 1, . . . qm, each block Λm,i ∈ Clm,i×lm,i is a Jordan matrix
of the eigenvalue λm,i. Further, we denote the size of each Jordan block by lm,i, for i = 1, · · · , qm,
and the size of the largest Jordan block for system m by l∗m. Using this notation, we first define the
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following quantity:

α(Am) :=

|||P−1
m |||∞→2 |||Pm|||∞ f(Λm) λm,1 < 1,

|||P−1
m |||∞→2 |||Pm|||∞ eρ+1 λm,1 ≤ 1 + ρ

T
,

(6.10)

where
f(Λm) = e1/|λm,1|

[
l∗m − 1

− log |λm,1|
+

(l∗m − 1)!

(− log |λm,1|)l
∗
m,1

]
.

For some δC > 0 that will be determined later on, for system m define b̄m = bT (δC/3) +

||xm(0)||∞, where bT (δ) =
√

2σ2 log (2dMTδ−1). Then, we establish the following high probability
bounds on Σm.

Lemma 6.1 (Bounds on sample covariance matrices). For each system m, let Σm = λmI and

Σ̄m = λ̄mI , where λm := 4−1λmin(C)T , and

λ̄m :=

α(Am)2b̄2
mT, if λm,1 < 1,

α(Am)2b̄2
mT

2l∗m+1, if λm,1 ≤ 1 + ρ
T
.

Then, there is T0, such that for m ∈ [M ]+ and T ≥ T0:

Pr
[
0 ≺ Σm � Σm � Σ̄m

]
≥ 1− δC . (6.11)

Henceforth, we use EC to refer to the event
{

0 ≺ Σm � Σm � Σ̄m

}
. Moreover, we use the

notation λ̄ = maxm λ̄m, λ = minm λm, κm = λ̄m/λm, κ = maxm κm and κ∞ = λ̄/λ. Note that
κ∞ > κ.

Proving the above high probability bound involves tools from existing work on identification of
LTIDS. Specifically, we leverage the truncation-based arguments of Faradonbeh et al. (2018a) to
establish upper-bounds using the constant α(Am) that captures the effect of the spectral properties
of the transition matrices on the state trajectory. Further, we use strategies based on self-normalized
martingales, similar to the works of Abbasi-Yadkori et al. (2011) and Sarkar and Rakhlin (2019). A
complete and detailed proof of the above lemma is provided in Section 6.9.2.

Lemma 6.1 provides a tight characterization of the sample covariance matrix for each system
m ∈ [M ]+, in terms of the magnitude of eigenvalues of Am, as well as the size of the Jordan
matrices in the decomposition of Am. Specifically, the upper bounds demonstrate that λ̄m grows
exponentially with the dimension d whenever l∗m = Ω(d). Further, if Am has eigenvalues with
magnitudes close to 1, then scaling with the time T can be as large as T d. Note that, the two
expressions for λ̄m are not contradictory as the first bound for λm,1 < 1 can be tighter, whereas
the second one is sharper for the case when λm,1 → 1. Our upper bounds in Lemma 6.1 are
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more general and can be used to calculate the term tr
∑T

t=0A
t
mA
>
m
t which appears in previous

analyses (Sarkar and Rakhlin, 2019; Simchowitz et al., 2018).
Next, we state the main estimation error rate result for the the joint estimator in (6.6):

Theorem 6.2. Under Assumption 6.6, the estimator in (6.6) returns Âm for each system m ∈ [M ]+,

such that with probability at least 1− δ, the following holds:

1

M

M∑
m=1

∣∣∣∣∣∣Âm − Am∣∣∣∣∣∣2
F
.
c2
(
k logκ∞ + d2k

M
log κdT

δ

)
λ

. (6.12)

Hence, by Lemma 6.1, the estimation error per system is

c2k logκ∞
λmin(C)T

+
c2d2k log κdT

δ

Mλmin(C)T
. (6.13)

Equation (6.13) demonstrates the effects of pooling data across the systems. The first term
c2k logκ∞
λmin(C)T

on the RHS can be interpreted as the error in estimating the idiosyncratic components
βm for each system. The convergence rate is O

(
k
T

)
, as each βm is a k-dimensional parameter and

for each system, we have a trajectory of length T . More importantly, the second term c2d2k log κdT
δ

Mλmin(C)T

indicates that the joint estimator in (6.6) effectively increases the sample size for the shared
components {Wi}ki=1 by pooling the data of all systems. Therefore, the error decays at the rate
O( d

2k
MT

), indicating that the effective sample size for W ∗B∗ is MT .
In contrast, for LTI systems with general martingale noise, the individual estimation error rate is

∣∣∣∣∣∣Âm − Am∣∣∣∣∣∣2
F
.
c2d2 log α(Am)T

δ

λmin(C)T

(Faradonbeh et al., 2018a, 2020a; Sarkar and Rakhlin, 2019; Simchowitz et al., 2018). Thus, when
the largest block-sizes l∗m are not too large, the joint estimation error rate significantly improves
when

k � d2 and k �M. (6.14)

Note that if l∗m is large, the rates are again similar for both joint and individual learning methods
(as the error is O(logα(Am))). Further, the conditions in (6.14) are as expected, as the ensuing
discussion shows. First, when k ≈ d2, the idiosyncratic components in Assumption 6.6 do not
provide any reduction in the effective dimension of the unknown transition matrices. That is, the
absence of any shared structure in case k ≈ d2 prevents joint learning from being any different
than individual learning. On the other hand, k ≈ M indicates that the systems {Am}Mm=1 are too
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heterogeneous to allow any improvement under joint estimation.
Importantly, when the largest block-size l∗m varies significantly across the M systems, a higher

degree of shared structure is needed to improve the joint estimation error for all systems. Since
κ and κ∞ depend exponentially on l∗m (Lemma 6.1) and l∗m can be as large as d, it holds that
logκ∞ = logκ = Ω(d). Hence, we incur an additional dimension dependence in the error of
the joint estimator. This leads to the following constraints on k for obtaining improved rates:
k � d and kd�M . Therefore, our analysis highlights the effects of the largest block-size in the
Jordan form of the transition matrices of systems on joint estimation. This is an inherent difference
between independent observations and sequentially dependent data generated by (6.4).

Moreover, an estimation error result can be obtained for the joint stochastic matrix regression
setting

ym(t) = Amxm(t) + ηm(t), (6.15)

wherein the regressor xm(t) for task m is drawn from some distribution Dm, and ym is the response
of task m. In this case, the sample covariance matrix Σm for each task is independent of Am. Hence,
the error for the joint estimator is not affected by the block-sizes in the Jordan decomposition of
Am. Therefore, in this setting, joint learning always leads to improved per-task error rates when
k � d2 and k �M .

Finally, it is worth noting that one does not need to solve the minimization problem in (6.6)
to global optimality and can account for a moderate degree of optimization error. For instance,
suppose that the optimization problem is solved up to an error of ∆ from the global optimum. It can
be shown that an additional term of magnitude O (∆/λmin(C)) arises in the per-system estimation
error in Theorem 6.2, due to this optimization error.

6.3.2 Impact of Misspecification on Estimation Error

In Theorem 6.2, we showed that the structure in Assumption 6.6 can be utilized for obtaining an
improved estimation error by jointly learning the M systems.

Next, we consider what is the impact on the estimation error if the shared data generation
mechanism in Assumption 6.6 is misspecified.

Formally, we consider the case where the dynamics of each system m ∈ [M ]+ follows a
misspecified version of Assumption 6.6, as follows:
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Assumption 6.7. For each system m ∈ [M ]+, we have

Am =

(
k∑
i=1

β∗m[i]W ∗
i

)
+Dm, (6.16)

such that ||Dm||F ≤ ζm. Further, let ζ̄2 =
∑M

m=1 ζ
2
m.

Indeed, Dm ∈ Rd×d is the deviation of system m from the shared structure of linear combination
and ζ̄2 captures the total misspecification. Under Assumption 6.7, we show the following result for
the joint estimation error.

Theorem 6.3. Under Assumption 6.7, the estimator in (6.6) returns Âm for each system m ∈ [M ]+,

such that with probability at least 1− δ, we have:

1

M

M∑
m=1

∣∣∣∣∣∣Âm − Am∣∣∣∣∣∣2
F
.
c2
(
k logκ∞ + d2k

M
log κdT

δ

)
λ

+
(κ∞ + 1) ζ̄2

M
. (6.17)

The proof of Theorem 6.3 can be found in Section 6.9.3. In (6.17), we observe that the addition
of ζ̄2 imposes an additional error of (κ∞ + 1)ζ̄2 for jointly learning all M LTIDS. Hence, to obtain
accurate estimates of the transition matrices, we need the total misspecification ζ̄2 to be small. The
discussion following Theorem 2 indicates that in order to have acccurate estimates, the number of
the shared bases k must be small as well. Specifically, compared to individual learning, the joint
estimation error improves despite model misspecification, if:

κ∞ζ̄
2

M
� d2

T
. (6.18)

The condition in (6.18) shows that when when the total misspecification is proportional to the
number of systems ζ̄∗ = Ω(M), we pay a constant factor proportional to κ∞ on the per-system
estimation error. Note that in case that all systems are stable, according to Lemma 6.1, κ∞ can
be exponentially large in d (if l∗m = Ω(d)), but does not grow with T . On the other hand, when a
transition matrix Am has eigenvalues close to the unit circle, the factor κ∞ can grow polynomially
with T . Thus, misspecification nullifies the benefits of joint learning.

More generally, if for the total misspecification we have ζ̄2 = O(M1−a) for some a > 0, joint
estimation improves over the individual estimators, as long as κ∞

Ma � d2

T
. Hence, when all systems

are stable, the joint estimation error rate improves when the number of systems satisfies M � T 1/a.
Further, the impact of ζ̄2 is amplified when the transition matrices Am have eigenvalues close to

the unit circle. Indeed, letting l∗ be the size of the largest block in the Jordan forms of the matrices
Am, the joint estimation error improves over the individual estimator when d2Ma � T 2l∗+2. Thus,
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(a) System matrices Am are stable (b) System matrices Am have a unit root

Figure 6.1: Per-system estimation error vs. number of systems M . OLS refers to the least squares
estimator for learning linear dynamical systems.

when l∗ = Ω(d), the number of systems needs to be as large as d2T (2d+2)/a.
In contrast, the joint estimation error for a stochastic matrix regression problem in (6.15) incurs

an additive factor of O(1/Ma) and does not need to scale exponentially in d as in the unit root
case for linear systems. Hence, Theorem 6.3 further highlights the stark difference between joint

estimation rates for independent observations and sequentially dependent data.

6.3.3 Numerical Study

We complement our theoretical results with a set of numerical experiments which demonstrate the
benefit of using the joint estimator for learning LTIDS. To that end, we compare the estimation
error for the joint estimator in (6.6) against the ordinary least-squares estimates of the transition
matrices for each system individually. For solving (6.6), we use a minibatch gradient descent based
implementation in PyTorch (Paszke et al., 2019) and choose Adam (Kingma and Ba, 2015) as the
optimization algorithm.

For generating the transition matrices, we consider settings with the number of bases
k = 10, dimension d = 25, trajectory length T = 200, and the number of systems M ∈
{1, 10, 20, 50, 100, 200}. We simulate two cases: (i) the largest magnitude of the eigenvalues of all
systems are in the range [0.7, 0.9], and (ii) all systems have at least one eigenvalue of magnitude 1.

The matrices {Wi}10
i=1 are generated randomly, such that each entry of Wi is sampled indepen-

dently from the standard normal distribution N(0, 1). Using these matrices, we generate M systems
by randomly generating the idiosyncratic components βm from a standard normal distribution. Each
matrix is then rescaled to ensure that the magnitude of the largest eigenvalue lies in the range
[0.7, 0.9] or is equal to 1. For generating the data of state trajectories, the noise vectors are isotropic
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(a) System matrices Am are stable (b) System matrices Am have a unit root

Figure 6.2: Per-system estimation error vs. number of systems M for varying proportions of
misspecified systems (a ∈ {0, 0.25, 0.5}) averaged across 20 runs.

Gaussian random vectors with variance 4.
We simulate the joint learning problem in both cases with and without model misspecification.

For the latter, deviations from the shared structure are simulated by the components Dm, which
are added with probability 1/Ma for a ∈ {0, 0.25, 0.5}. The matrices Dm are generated from a
N(0, 0.01) distribution.

In our simulations, for each value of M , we average the errors from 10 random replicates (20 for
Figure 6.2) and plot the standard deviation as the error bar. Figure 6.1 depicts the estimation errors
for both stable and unit-root transition matrices versus different values of M . It can be seen that the
joint estimator exhibits the expected improvement against the individual ordinary least-squares one.

More interestingly, in Figure 6.2(a), we observe that for stable systems the joint estimator is
worse than the least squares one, when a violation occurs in all systems (i.e., a = 0). Note that it is
consistent with Theorem 6.3, since in this case the total misspecification ζ̄2 scales linearly with M .
However, if the proportion of systems which violates the structure in Assumption 6.6 decreases, the
joint estimation error also improves as expected (a = 0.25, 0.5).

Figure 6.2(b) depicts the estimation error for the joint estimator under misspecification for
systems which have an eigenvalue on the unit circle in the complex plane. Our theoretical results
suggest that the number of systems needs to be much larger in this case to circumvent the cost of
misspecification in joint learning. The Figure corroborates this result, wherein we observe that
the joint estimation error is worse than the least squares error for a = 0.25, in contrast to the
improvement in the stable case. Decreasing the total misspecification further to a = 0.5 starts
showing improvement for such systems as well.
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6.4 Certainty Equivalence: From System Identification to Re-
gret Minimization

In this section, we build upon the recent result of Simchowitz and Foster (2020) to show a finite
time regret bound using the multi task assumption in (6.1) with the joint estimator shown in
Algorithm 6.1. Recall that for the regret results, we will again use the iid Gaussian noise assumption
stated in Assumption 6.3. Our analysis will rely on this independence assumption in order to use the
Hanson-Wright inequality to bound quadratic functions of the states and control inputs which arise
in the regret decomposition (Section 6.8). Similar results can be obtained for the general noise case
via the truncation based method used in Section 6.3. Further, since we only consider strictly stable
systems, we will not resort to the Jordan forms of the closed loop matrices Am +BmK to analyze
the formal guarantees, as we did for joint estimation in Section 6.3. Note that, we only consider
stable systems here, and for the final bounds, ignore the additional dimension dependencies which
might arise due to the sizes of the Jordan forms.

Algorithm 6.1 MT-OLS algorithm for joint system identification
1: Input: Data zm(τj−1), . . . , zm(τj − 1), xm(τj) for each system m ∈ [M ]+.

2: return
[
Âm,j, B̂m,j

]
=
∑k

i=1 β̂m[i]Ŵ i and Σm,j , where

{
Ŵ i

}k
i=1

,
{
β̂m

}M
m=1

:= argmin
W,βm

M∑
m=1

τj−1∑
t=τj−1

∣∣∣∣∣
∣∣∣∣∣xm(t+ 1)−

(
k∑
i=1

βm[i]Wi

)
zm(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

(6.19)

6.4.1 Algorithm: A perturbed certainty equivalent controller

We now formally describe the main multi-task control algorithm, Algorithm 6.2. Later, we will
show a regret guarantee for Algorithm 6.2 in Theorem 6.4. The algorithm is a multi-task variant
of the certainty equivalence algorithm proposed by Simchowitz and Foster (2020). Similar to
their proposed CE setup, Algorithm 6.2 also takes as input a stabilizing controller for each system
m ∈ [M ]+. Note that, the controller Km,0 can be arbitrarily sub-optimal for each system. The key
idea behind the algorithm is the use of the perturbation bounds on the cost of CE controllers as
shown by Simchowitz and Foster (2020) (which we state in Theorem 6.6). The algorithm proceeds
in epochs j = 1, 2 . . . of doubling length: τj − τj−1 = τj−1, τ1 = 1. We divide the multi-task
algorithm into two stages as follows:

1. Individual burn-in phase At the beginning of each epoch, for each system m ∈ [M ], the
algorithm uses an ordinary least squares estimate (see Algorithm 2.1 in Section 2.3.2) to form
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an estimate
(
Âm,j, B̂m,j

)
using the data collected in the previous epoch. In the next step

(line 9), the algorithm checks if the estimates for all system dynamics matrices
(
Âm,j, B̂m,j

)
are sufficiently close to the (Am, Bm), for the perturbation bounds in Theorem 6.6 to take
effect. If the test fails, the algorithm continues to use the stabilizing controller for each system
while adding exploratory noise at a constant scale. If the test is successful, Simchowitz
and Foster (2020) showed that a controller computed using any pair (A,B) ∈ Confmsafe (a
confidence set obtained via Algorithm 6.3) stabilizes the system and has low regret. Thereafter,
the algorithm uses a certainty equivalent controller based on the joint estimates for the system
matrices.

2. Certainty equivalent controller using joint estimation When the test in the first phase
succeeds for all systems, the algorithm computes the certainty equivalent controller
K∞(Âm,j, B̂m,j) where (Âm,j, B̂m,j) are now estimated using the joint estimator3 in (6.19).
The certainty equivalent controller is used for the remainder of the epoch where we add
exploratory noise to our control inputs, whose scale is carefully chosen in the following
analysis.

In the algorithm and analysis, we use the following defined quantities:

Csafe(A,B) := 54 |||P∞(A,B)|||5 , Cest(A,B) := 142 |||P∞(A,B)|||8 ,

ΨB,m := max(1, |||Bm|||), Ψm = max(1, |||Am||| , |||Bm|||),

and the set used for projecting into the safe set:

Bop(ε, A0, B0) = {(A,B) : |||A0 − A||| ∨ |||B0 −B||| ≤ ε}

When the joint estimation procedure in Algorithm 6.1 is used in Algorithm 6.2, we can show the
following regret bound:

Theorem 6.4 (Multi-task regret bound for Algorithm 6.2). If Algorithm 6.2 is invoked with stabiliz-

ing controllersKm,0 along with the joint estimation procedure (Algorithm 6.1), then with probability

at least 1−Mδ, the average regret incurred across the M LQR systems over T rounds is bounded

3Recall that we use z(t) = [x(t), u(t)].
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Algorithm 6.2 Multi-task Certainty Equivalent Control for LQR
1: Input: Stabilizing controllers for each system Km.0, confidence parameter δ.
2: Initialize safe← False.
3: For each m ∈ [M ]+, play um(0) ∼ N(0, I).
4: for j = 2, 3, . . . do
5: Let τj ← 2j .
6: if safe = False then
7: Set

(
Âm,j, B̂m,j,Σm,j

)
← OLS(j) for each m ∈ [M ]+.

8: Confm,j ← 6λmin(Σm,j)
−1 (d log 5 + log (4j2 det(3Σm,j/δ))).

9: if Σm,j � I and 1/Confm,j ≥ 9Csafe

(
Âm,j, B̂m,j

)
for all m ∈ [M ]+ then

10: safe← True and jsafe = j.
11: Bmsafe, σ

2
m ← SAFEROUNDINIT

(
Âm,j, B̂m,j,Confm,j, δ

)
.

12: else
13: for t = τj, . . . , 2τj − 1 do
14: For each system, play um(t) = Km,0xm(t) + gm(t), where gm(t) ∼ N(0, I).
15: else
16: Set

(
Âm,j, B̂m,j,Σm,j

)
← MT-OLS(j) for each m ∈ [M ]+.

17: Let (Am, Bm) be the Euclidean projection of
(
Âm,j, B̂m,j

)
onto Bmsafe.

18: K̂m,j ← K∞(Am, Bm) for each m ∈ [M ]+.
19: for t = τj, . . . , 2τj − 1 do
20: For each system, play um(t) = K̂m,jxm(t) + σm,jgm(t), where gm(t) ∼ N(0, I) and

σ2
m,j := min

(
1, σ2

mτ
−1/2
j

)
.

as follows:

Regret
(
{Θm}Mm=1 , T

)
.

√
T max

m
|||Pm|||9 Ψ2

B,m log
|||Pm|||
δ

(
k logκ +

ddxk

M
log

dκ

δ

)
+
√
T

1

M

M∑
m=1

(
duΨ

3
B,m |||Pm|||

11/2 +
√
d log 1

δ
|||Pm|||4

)

+
1

M

M∑
m=1

d2Ψ2
B,mPm,0 log

1

δ

(
max

m∈[M ]+
(1 + |||Km,0|||2) |||Pm|||10 log

Ψ2
B,mJm,0
δ

)
, (6.20)

ignoring the poly-logarithmic terms.4

In (6.20), κ = maxm∈[M ]+ d log
((

1 + 2|||Pm|||
σ2
m

) (
dΨ2

B,m |||Pm|||
4 log 1

δ

))
.

4The terms |||Pm||| and Pm,0 hide the dependence on the Jordan forms of the closed loop matrices Lm,j in Algo-
rithm 6.2, and therefore, do not contradict the claims of such dependencies discussed in detail in Section 6.3.
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Algorithm 6.3 SAFEROUNDINIT
(
Âm,j, B̂m,j,Conf, δ

)
1: Input: Stabilizable pair

(
Âm,j, B̂m,j,Conf, δ

)
.

2: return Bmsafe := Bop

(
Conf;Âm,j, B̂m,j

)
and

σ2
m :=

∣∣∣∣∣∣∣∣∣P∞ (Âm,j, B̂m,j

)∣∣∣∣∣∣∣∣∣9/2 max
(

1,
∣∣∣∣∣∣∣∣∣B̂m,j

∣∣∣∣∣∣∣∣∣)√log
|||P∞(Âm,j ,B̂m,j)|||

δ
.

We defer the proof of Theorem 6.4 to Section 6.8. The regret bound in Theorem 6.4 has three
terms which can be interpreted as follows:

1. The first term signifies the main contribution of the joint estimator in Algorithm 6.2. This
term is proportional to the average estimation error summed over all epochs across systems
and has an improved dependence on the dimensionality. We discuss this in detail later.

2. The second term has two components: the first part can be thought of as the penalty paid
for injecting random exploration noise which is proportional to σ2

m for each system. The
second expression arises while bounding the random fluctuations in cost due to the system
noise process ηm(t) and gm(t). While the second term is unavoidable, the first term can be
appropriately bounded by tuning the value of σ2

m.

3. The third term is independent of T and accounts for the burn-in phase of the algorithm. Note
that this term also depends on the cost of the initial controller Jm,0 which can be arbitrarily
large.

To compare the result in Theorem 6.4 against adaptive control of a single system, note that,
Simchowitz and Foster (2020) showed the following finite time regret for a certainty equivalent
based adaptive controller:√
d2
udxT ·Ψ2

B |||P |||
11 log 1/δ + max

(
1,
du
dx

)
d2 · P0Ψ6

B |||P |||
1 1
(
1 + |||K0|||2

)
log

dΨBP0

δ
log2 1

δ

(6.21)

The first thing to compare between the two regret bounds is the factor arising due to the random
fluctuations and the noise used for random exploration. Specifically, the random fluctuation due
to the inherent noise of the system leads to the same term of order

√
T ·
√
d |||P |||8 log 1

δ
for both

controllers. However, for the term arising due to persistent excitation, we can show a slight
advantage as follows: for the single task case, the penalty scales as

√
T
√
d2
udx whereas the multi-

task controller incurs a penalty of O
(√

d2
u · T

)
. Thus, when dx � 1, this component of the regret

bound improves significantly.
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More importantly, in the term arising due to the estimation errors in the system matrices,
we can again claim a multi-task improvement under the assumption that the multiplicities of
the Jordan blocks of closed loop matrices Lm,j are not too large for all m and j. Specifically,

the two expressions for the single vs multi-task controllers are: O

(√
T · d2

udx |||Pm|||
11

)
vs

O

((
k + k(du+dx)dx

M

)√
T · |||Pm|||9

)
. Therefore, the joint rate improves significantly when:

k �
√
d2
udx

k

M
�

√
d2
u

dx(du + dx)2

Thus, when du < dx, we can reduce the two conditions to k � d
3/2
u and k/M �

√
du/d3

x as a
sufficient condition for the multi-task rate to improve. On the other hand, when dx ≤ du, having
k � d

3/2
x and k/M �

√
1/dx suffices to guarantee improvement. Therefore, for a large number of

systems M and a sufficiently small size for the shared basis k, we can show an improvement in this
component of the regret bound.

Note Despite the improvement in the two factors arising due to random exploration and certainty
equivalence, we cannot show a significant improvement in the overall high-probability regret bound
as the inherent stochasticity of the systems adds a penalty which is of the same order for both
controllers. For an expected regret guarantee, we can circumvent the dependence on these natural
random fluctuations by modifying the method in the two following ways: (1) account for the event
when the states grow too large by aborting the adaptive controller and falling back to the stabilizing
controller Km,0 if the states grow too large, (2) ensure exploration by either injecting exploratory
noise, or ensuring that the controller K̂m,j satisfies K̂m,jK̂

>
m,j � µ0I , such that exploration is

ensured even when noise is not added, and (3) setting failure probability of all events to O(T−2).
For this case, we can set σm = O(1) while ensuring that the total incurred expected regret is
O(log T ). For more details, the reader can refer to the work of Cassel et al. (2020).

6.5 Related Work

Multi-task learning The problem of joint learning in multiple systems has been studied in the
statistical learning literature for a long time. Various joint learning algorithms have been proposed
in the literature (Caruana, 1997) and their theoretical guarantees are established for supervised
learning and online settings (Ando and Zhang, 2005; Maurer, 2006; Maurer et al., 2016; Alquier
et al., 2017).

169



Joint learning with linear functions The closest to our work on multi-task adaptive control
would be the recent results on provably efficient few-shot learning as established in Du et al. (2020);
Jin et al. (2020). In these works, the authors consider a multi-task regression problem where the
regression parameters can be written using a low-dimensional representation (of size k) and a shared
projection matrix (of size d× k). The analysis, thereof, shows that a given set of tasks can be learnt
at a faster rate if a joint estimator is used, given that, the number of tasks M � T where T is the
sample size per task and k � d. Our analysis borrows key elements from Du et al. (2020) and
then shows that the sequential setting has fundamental differences in the joint estimation properties
compared to the iid univariate regression setting. Similarly, Hu et al. (2021); Lu et al. (2021) have
recently studied a multi-task representation learning setting for linear contextual bandits and linear
MDPs.

Related structural assumptions We note that the the shared basis assumption is similar to the
linear CMDP setting (Example 3.2) and the model ensemble setting (Definition 4.1). For episodic
LQR systems, Du et al. (2019c) considered an online contextual control setting with a linear
structural assumption where the context is observed at the beginning of each episode. Using this
observed context, the authors propose a simple modification of the algorithm by Abbasi-Yadkori
and Szepesvári (2011) to show efficient regret bounds. However, a key difference between these and
the structure in Assumption 6.1 is that both the combination coefficients and the shared parameters
are unobserved and need to be learnt.

6.6 Discussion

Multi-task sequential decision making is a practically relevant problem and is important for ex-
panding the application scenarios where reinforcement learning can be feasibly deployed. In this
chapter, we have taken one step in this direction by giving the first (to our knowledge) finite time
regret analysis for a multi-task LQR setting. However, as this is still in the nascent stages, below we
outline a few missing pieces yet to be filled in the multi-task control problem:

Per-task estimation error rates In the first part of this chapter, we analyzed a joint estimator for
system identification which builds upon the recent results of Du et al. (2020) and Tripuraneni et al.
(2021). In our main estimation error result, we showed an improved rate for the average error across
the given M tasks. However, it is desirable to have an improved estimation error rate result for each
task individually as it can further improve the end-to-end online control scheme. For instance, in
Algorithm 6.2 we use the ordinary least squares estimator in the first phase, so that the perturbation
results in Theorem 6.6 can be invoked for each system individually. Establishing such per-task
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guarantees will likely require additional and potentially strong assumptions (see assumptions in
Tripuraneni et al. (2021) for instance) and we leave this for future work.

Adaptive multi-task stabilization Despite the recent flurry of recent works in adaptive optimal
control for LQR, learning a stabilizing controller hasn’t been studied much (see Faradonbeh et al.
(2018b)). As such, most provably efficient algorithms use an assumption of access to a stabilizing
controller in their algorithms. Addressing the same issue for stabilizable systems in the multi-task
setting will require a careful analysis of the estimation error along with adaptive choices of control
inputs in the stabilization phase. At this point, we are not certain if an improved rate without strong
assumptions can be obtained and therefore further investigation is required.

Optimal dimension dependence Finally, the multi-task regret result shown in Theorem 6.4
improves over the single-task rates when the basis size k is small and the number of tasks M is
large. The optimal rates for our setting has not been derived and we further don’t have a lower
bound to complete the picture. Both of these are interesting and challenging problems which are
left to future work.

6.7 Summary

In this chapter, we studied the problem of joint learning and control in LTI dynamical systems with
quadratic costs, under the assumption that their transition matrices can be expressed using a shared
basis. Our finite time analyses for the joint estimator show that pooling data across systems can
provably improve over individual estimators, even in presence of moderate misspecifications. Our
results highlight the critical role of the spectral properties of the linear systems, along with the size
of the basis, in the efficiency of joint estimation and formally illustrate a fundamental difference
between joint estimation for independent observations and sequentially dependent data. Further, our
regret result shows that the joint estimator can be used in a certainty equivalence based procedure to
adaptively and concurrently control multiple LQR systems with better finite time regret guarantees.

Considering different structural assumptions and extensions to explosive systems, high-
dimensional settings and non-linear dynamical systems are interesting avenues for future work and
this work paves the road towards them. Further, there are many open questions which remain to be
addressed for multi-task control and are left for future work.
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6.8 Proof of Main Regret Bound

Preliminaries In this section, we will not use the Jordan normal forms of the matrices for our
analysis. Instead, we will reference standard control theory results using the following discrete time
Lyapunov operator:

Definition 6.1. Let Y ∈ Rd×d be a symmetric matrix and X ∈ Rd×d have ρ(X) < 1. Then, we

define the following quantity:

dlyap (X, Y ) :=
∞∑
i=0

(
X>
)i
Y X i.

Also, define P∞(K;A,B) := dlyap
(
A+BK,Rx +K>RuK

)
for any stable closed loop

matrix A + BK. With this definition, we can state the following bounds on the discrete time
Lyapunov operator from Simchowitz and Foster (2020):

Lemma 6.5. The following bounds hold:

1. If Y � Z and A is stable, then dlyap (A,X) � dlyap (A, Y ). Similarly, for Y � 0, we have

dlyap (A, Y ) � Y .

2. Suppose Rx � I and A+BK is stable. Then:

±dlyap (A+BK, Y ) � dlyap (A+BK, I) |||Y ||| � |||Y ||| · P∞(K;A,B).

3. When Rx � I , dlyap (A+BK, I) � P∞(K;A,B) and I � dlyap (A+BK∞(A,B), I) �
P∞(A,B).

4. If A∗, B∗ is stabilizable and A∗ +B∗K is stable, then

P∞(K;A∗, B∗) � P∞(A∗, B∗) = P∞(K∗;A∗, B∗).

Further, JK(A∗, B∗) = trP∞(K;A∗, B∗). Therefore, JK(A∗, B∗) ≥ J ∗(A∗, B∗) ≥ dx.

Similarly, we use the following notation in the arguments below:

Pm,j = P∞

(
K̂j;Am, Bm

)
, Pm,0 :=

Jm,0
dx
≤ |||P∞(Km,0;Am, Bm)||| ,

Jm,j = JK̂m,j
(Am, Bm), Jm,0 = JKm,0(Am, Bm).

For the closed loop system matrices, we will use the notation, Lm := Am + BmKm, Lm,j :=

Am +BmK̂m,j and Lm,0 := Am +BmKm,0.
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Define To begin, we first state the following result directly taken from Simchowitz and Foster
(2020):

Theorem 6.6 (Corectness of Perturbations). On the event

Esafe :=
{∣∣∣∣∣∣∣∣∣Âm,jsafe − Am∣∣B̂m,jsafe −Bm

∣∣∣∣∣∣∣∣∣ ≤ Confm,jsafe ,∀m ∈ [M ]+

}
,

the following bounds hold for all j ≥ jsafe and m ∈ [M ]+:

1. For the second phase, we have

Jm,j − Jm ≤ Cest(Am, Bm)

(∣∣∣∣∣∣Âm,j − Am∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣B̂m,j −Bm

∣∣∣∣∣∣2
F

)
. |||Pm|||8

(∣∣∣∣∣∣Âm,j − Am∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣B̂m,j −Bm

∣∣∣∣∣∣2
F

)

2. Jm,j . Jm and |||Pm,j||| . |||Pm|||.

3.
∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2 ≤ 21
20
|||Pm|||.

4. ||Lm,j||H∞ . ||Lm||H∞ . |||Pm|||3/2.

5. L>m,jdlyap (Lm, I)Lm,j �
(
1− 1

2
|||dlyap (Lm)|||−1), where 0 � dlyap (Lm) � Pm.

6. σ2
m = Θ

(
|||Pm|||9/2 ΨB,m

√
log |||Pm|||

δ

)
.

6.8.1 Regret incurred in initial rounds

In Algorithm 6.2, for the first phase, we use the same steps based on the stabilizing controllers as
used in Simchowitz and Foster (2020), for each system m ∈ [M ]+. Therefore, in the following
result, we show that their analysis can be easily adapted to the multi-task case. The key difference
here would be to account for the possibly different value of jsafe in the multi-task case compared to
the individual controller results established in Simchowitz and Foster (2020).

Lemma 6.7. The event Esafe holds with probability 1− Mδ
2

, and the following event Ereg,init holds

with probability 1− Mδ
8

:

τjsafe−1∑
t=0

xm(t)>Rxxm(t) + um(t)>Ruut

. d2Ψ2
B,mPm,0 log

1

δ

(
max

m∈[M ]+
(1 + |||Km,0|||2) |||Pm|||10 log

Ψ2
B,mJm,0
δ

)
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Proof. Since, the algorithm in the first phase is exactly the same as the certainty equivalent controller
in Simchowitz and Foster (2020), we directly use their results in the proof while accounting for the
discrepancy in τjsafe . The proof of the results we use rely on the fact that in the complete first phase,
the stabilizing controller Km,0 is used. Thus, we can use the same results despite the difference
between the eventual upper bound on jsafe in the multi-task and single task case.

The first part of the lemma, about Esafe, follows directly from Lemma G.8 from Simchowitz and
Foster (2020) with a union bound over the M systems.

For showing the regret upper bound, we start with the following result for each system which
was shown in Simchowitz and Foster (2020) by using Hanson-Wright inequality in the regret
decomposition:

Lemma 6.8 (Lemma G.9, Simchowitz and Foster (2020)). For δ ≤ 1/T , the following holds with

probability 1−Mδ for all m ∈ [M ]+:

τjsafe−1∑
t=0

xm(t)>Rxxm(t) + um(t)>Ruut . dτjsafeΨ
2
B,mPm,0 log

1

δ

This above result can be proven similarly as Lemma G.9 in Simchowitz and Foster (2020) with
an additional step for taking a union bound. Now, we state the upper bound on τjsafe , as follows. To
begin, we state the following result:

Lemma 6.9 (Lemma G.10, Simchowitz and Foster (2020)). Suppose Esafe holds. Then, for all

j < jsafe for which Σm,j � I , we must have that Confm,j & εsafe, where εsafe = |||Pm|||−10.

The above result indicates that, for all ε ∈ (0, 1)

if τj ≥
d(1 + |||Km,0|||2)

ε
log

Ψ2
B,mJm,0
δ

, then Confm,j ≤ ε,Σm,j � I

with probability at least 1−O(δ). Thus, using the result, we know that τjsafe . maxm∈[M ]+ d(1 +

|||Km,0|||2) |||Pm|||10 log
Ψ2
B,mJm,0

δ
. Substituting this upper bound on τjsafe in Lemma 6.8 gives the

desired result which now holds with probability 1−M/8δ.

6.8.2 Regret incurred in safe rounds

We again begin with a decomposition of the algorithm’s regret which holds when conditioned on
the event Esafe:

Lemma 6.10 (Lemma 5.2, Simchowitz and Foster (2020)). There is an event Ereg which holds with

probability at least 1−Mδ/6 such that, on Ereg ∩ Esafe, the following bound holds for each system
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m ∈ [M ]:

T∑
t=τjsafe

(c(xm(t), um(t))− Jm) .
log T∑
j=jsafe

τj (Jm,j − Jm) + log T max
j≤log T

||xm(τj)||22

+
√
T

(
duσ

2
mΨ2

B,m |||Pm|||+
√
d log 1

δ
|||Pm|||4

)
+ log2 1

δ

(
1 +
√
dσ2

mΨ2
B,m

)
|||Pm|||4 . (6.22)

In (6.22), the first term
∑log T

j=jsafe
τj (Jm,j − Jm) quantifies the sub-optimality of the controllers

K̂m,j selected in each epoch j. We tackle this term by using the perturbation bound from 1. in

Theorem 6.6, in terms of the estimation error
∣∣∣∣∣∣Âm,j − Am∣∣∣∣∣∣2

F
+
∣∣∣∣∣∣B̂m,j −Bm

∣∣∣∣∣∣2
F

. The next term,

log T maxj≤log T ||xm(τj)||22, quantifies the effect of switching controllers at each epoch and appears
in the analysis of most regret minimizing algorithms (Abbasi-Yadkori and Szepesvári, 2011; Dean
et al., 2018; Simchowitz et al., 2018). The third term which is proportional to

√
T appears due to the

effect of the exploratory noise added to the certainty equivalent controller as well as the deviation
from the expected cost due to the random noise processes. Lastly, the last term is of lower order
(poly(log T )).

For the analysis of the joint estimator (Algorithm 6.1) and for bounding the second term in
(6.22), we will use the following lemma:

Lemma 6.11 (Lemma 5.3, Simchowitz and Foster (2020)). There is an event Ebound which holds

with probability at least 1−Mδ/6 such that, conditioned on Esafe ∩ Ebound,

∣∣∣∣xτj ∣∣∣∣ ≤√xm(τj)>dlyap (Lm, I)xm(τj) .

√
ΨB,mJm,0 log

1

δ
|||Pm|||3/2 , ∀j ≥ jsafe

Now, we will show the main result which bounds the estimation error across the M systems for
the joint estimator in (6.19):

Theorem 6.12 (Corollary of Theorem 6.2). Under Assumption 6.1, and for epochs j such that

τj & max

((
d log

((
1 +

2 |||Pm|||
σ2
m

)(
dΨ2

B,m |||Pm|||
4 log

1

δ

)))
,Jm,0 |||Pm|||3 , σ4

mΨ4
B,m

)
,

the estimator in (6.19) returns (Âm,j, B̂m,j) for each system m ∈ [M ] and epoch j, such that with

probability at least 1−Mδ/6, the following holds:

1

M

M∑
m=1

(∣∣∣∣∣∣Âm,j − Am∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣B̂m,j −Bm

∣∣∣∣∣∣2
F

)
. max

m∈[M ]+

(
σ2
m,j + 2 |||Pm|||

) (
k logκ + ddxk

M
log dκ

δ

)
σ2
m,jτj
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where κ = maxm∈[M ]+ d log
((

1 + 2|||Pm|||
σ2
m

) (
dΨ2

B,m |||Pm|||
4 log 1

δ

))
.

A complete and detailed proof is deferred to Section 6.9.4. Further, we will denote the lower
bound on τj , as required for the joint estimation error to take effect as τje. Now, combining the
results in Lemma 6.10 and Lemma 6.11, we get:

1

M

M∑
m=1

T∑
t=τjsafe

(c(xm(t), um(t))− Jm) .
1

M

M∑
m=1

(
log T∑
j=jsafe

τj (Jm,j − Jm)

)

+ log T
1

M

M∑
m=1

√
ΨB,mJm,0 log

1

δ
|||Pm|||3/2

+
√
T

1

M

M∑
m=1

(
duσ

2
mΨ2

B,m |||Pm|||+
√
d log 1

δ
|||Pm|||4

)

+
1

M

M∑
m=1

log2 1

δ

(
1 +
√
dσ2

mΨ2
B,m

)
|||Pm|||4 .

We first unfold the first term using Theorem 6.6 and Theorem 6.12 as follows:

1

M

M∑
m=1

(
log T∑
j=jsafe

τj (Jm,j − Jm)

)

=
1

M

M∑
m=1

∑
j>τje

τj (Jm,j − Jm)

+
1

M

M∑
m=1

Jm
∑
j≤cτje

τj

≤
∑
j>τje

max
m∈[M ]+

|||Pm|||8
(
σ2
m,j + 2 |||Pm|||

) (
k logκ + ddxk

M
log dκ

δ

)
σ2
m,jτj

+
1

M

M∑
m=1

Jmτje.

Substituting σ2
m,j := σ2

mτ
−1/2
j gives:

1

M

M∑
m=1

(
log T∑
j=jsafe

τj (Jm,j − Jm)

)

.
∑
j>τje

max
m∈[M ]+

|||Pm|||9
(
k logκ

σ2
m
√
τj

+
ddxk log dκ

δ

σ2
m
√
τj

)
+

1

M

M∑
m=1

Jmτje

≤
√
T max
m∈[M ]+

(
|||Pm|||9

σ2
m

(
k logκ + ddxk log

dκ

δ

))
+

1

M

M∑
m=1

Jmτje
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6.8.3 Final regret bound for the multi-task certainty equivalent controller

In this section, we finally combine the bounds for the initial and the safe rounds as follows:

1

M

M∑
m=1

T∑
t=0

(cm(xm(t), um(t))− Jm)

=
1

M

M∑
m=1

τjsafe−1∑
t=0

(cm(xm(t), um(t))− Jm) +
1

M

M∑
m=1

∑
t>τjsafe

(cm(xm(t), um(t))− Jm)

.
1

M

M∑
m=1

d2Ψ2
B,mPm,0 log

1

δ

(
max

m∈[M ]+
(1 + |||Km,0|||2) |||Pm|||10 log

Ψ2
B,mJm,0
δ

)

+
√
T max
m∈[M ]+

(
|||Pm|||9

σ2
m

(
k logκ + ddxk log

dκ

δ

))
+

1

M

M∑
m=1

Jmτje

+ log T
1

M

M∑
m=1

√
ΨB,mJm,0 log

1

δ
|||Pm|||3/2

+
√
T

1

M

M∑
m=1

(
duσ

2
mΨ2

B,m |||Pm|||+
√
d log 1

δ
|||Pm|||4

)

+
1

M

M∑
m=1

log2 1

δ

(
1 +
√
dσ2

mΨ2
B,m

)
|||Pm|||4 .

Collecting the
√
T terms, we get:

Regret
(
{Θm}Mm=1 , T

)
.
√
T max
m∈[M ]+

(
|||Pm|||9

σ2
m

(
k logκ + ddxk log

dκ

δ

))

+
√
T

1

M

M∑
m=1

(
duσ

2
mΨ2

B,m |||Pm|||+
√
d log 1

δ
|||Pm|||4

)

Substituting σ2
m ≈ |||Pm|||

9/2 ΨB,m

√
log |||Pm|||

δ
, we get:

Regret
(
{Θm}Mm=1 , T

)
.

√
T max

m
|||Pm|||9 Ψ2

B,m log
|||Pm|||
δ

(
k logκ +

ddxk

M
log

dκ

δ

)
+
√
T

1

M

M∑
m=1

(
duΨ

3
B,m |||Pm|||

11/2 +
√
d log 1

δ
|||Pm|||4

)

The total failure probability can be bounded by accounting for events Esafe, Ebounded, Ereg and the
estimation error bound in Theorem 6.12: Mδ

2
+ Mδ

6
+ Mδ

6
+ Mδ

6
= Mδ.
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6.9 Proof of Joint Learning Results

6.9.1 Preliminary inequalities and supporting lemmas

Here, we outline the some probabilistic inequalities and intermediate results which will be used for
proving the main results of the paper.

Proposition 6.1 (Bounding the noise sequence). For T = 0, 1, . . ., and 0 < δ < 1, let Ebdd be the

event

Ebdd(δ) :=

{
max

1≤t≤T,m∈[M ]+
||ηm(t)||∞ ≤

√
2σ2 log

2dMT

δ

}
. (6.23)

Then, we have P[Ebdd] ≥ 1− δ. For simplicity, we denote the aboove upper-bound by bT (δ).

Proof. Let ei be the i-th member of the standard basis of Rd. Using the sub-Gaussianity of the
random vector ηm(t) given the sigma-field Ft−1, we have

P

[
|〈ei, ηm(t)〉| >

√
2σ2 log

2

δ′

]
≤ δ′.

Therefore, taking a union bound over all basis vectors i = 1, · · · , d, all systems m ∈ [M ]+,
and all time steps t = 1, · · · , T that ηm(t) >

√
2σ2 log 2

δ′
, we get the desired result by letting

δ′ = δ(dMT )−1.

Proposition 6.2 (Noise covariance concentration). For T = 0, 1, . . . and 0 < δ < 1, let Eη be the

event

Eη(δ) :=

{
3λmin(C)

4
I � 1

T

T∑
t=1

ηm(t)ηm(t)> � 5λmax(C)

4
I

}
.

Then, we have P[Ebdd(δ) ∩ Eη(δ)] ≥ 1− 2δ.

Proof. Here, we will bound the largest eigenvalue of the deviation matrix
∑T

t=1 ηm(t)ηm(t)>−TC.
For the spectral norm of this matrix, using Lemma 5.4 from Vershynin (2018), we have:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

ηm(t)ηm(t)> − TC

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ 1

1− 2τ
sup
v∈Nτ

∣∣∣∣∣v>
(

T∑
t=1

ηm(t)ηm(t)> − TC

)
v

∣∣∣∣∣ ,
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where Nτ is a τ -cover of the unit sphere Sd−1. Now, it holds that |Nτ | ≤ (1 + 2/τ)d. Thus, we get:

P

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

ηm(t)ηm(t)> − TC

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≥ ε

]
≤ P

[
sup
v∈Nτ

∣∣∣∣∣v>
(

T∑
t=1

ηm(t)ηm(t)> − TC

)
v

∣∣∣∣∣ ≥ (1− 2τ)ε

]

Using some martingale concentration arguments, we first bound the probability on the RHS for a
fixed vector v ∈ Nτ . Then, taking a union bound over all v ∈ Nτ will lead to the final result.

For a given t, since ηm(t)>v is conditionally sub-Gaussian with parameter σ, the quantity
v>ηm(t)ηm(t)>v − v>Cv is a conditionally sub-exponential martingale difference. Using Theorem
2.19 of Wainwright (2019), for small values of ε, we have

P

[∣∣∣∣∣v>
(

T∑
t=1

ηm(t)ηm(t)> − TC

)
v

∣∣∣∣∣ ≥ (1− 2τ)ε

]
≤ 2 exp

(
−cη(1− 2τ)2ε2

Tσ2

)
,

where cη is some universal constant. Taking a union bound, setting total failure probability to δ, and
letting τ = 1/4, we obtain that with probability at least 1− δ, it holds that

λmax

(
T∑
t=1

ηm(t)ηm(t)> − TC

)
≤ cησ

√
T log

(
2 · 9d
δ

)
.

According to Weyl’s inequality, for T ≥ Tη(δ) := cηdσ2

λmin(C)2
log 18/δ, we have:

3λmin(C)

4
I � 1

T

T∑
t=1

ηm(t)ηm(t)> � 5λmax(C)

4
I.

Recall, that in the main text, we define Z ∈ RdT×M as the pooled noise matrix as follows:

Z = [η̃1(T )|η̃2(T ) · · · |η̃M(T )] , (6.24)

with each column vector ηm(T ) ∈ RdT as the concatenated noise vector (ηm(1), ηm(2), . . . , ηm(T ))

for the m-th system.

Proposition 6.3 (Bounding total magnitude of noise). For the joint noise matrix Z ∈ RdT×M

defined in (6.24), with probability at least 1− δ, we have:

||Z||2F ≤MT trC + log
2

δ
.

We denote the above event by EZ(δ).
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Proof. For each system m, we know that E[ηm(t)[i]2|Ft−1] = C2
ii. Similar to the previous proof,

we know that ηm(t)[i]2 follows a conditionally sub-exponential distribution given Ft−1. Using the
sub-exponential bound for martingale difference sequences, for large enough T we get:

||Z||2F =
M∑
m=1

T∑
t=1

||ηm(t)||2 ≤MT trC + log
2

δ
,

with probability at least 1− δ.

The following self-normalized martingale bound shows a result similar to Lemma A.4 for vector
valued noise processes.

Proposition 6.4. For the system in (6.4), for any 0 < δ < 1 and system m ∈ [M ]+, with probability

at least 1− δ, we have:

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣V̄ −1/2
m (T − 1)

T−1∑
t=0

Xm(t)ηm(t+ 1)>

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ σ

√√√√8d log

(
5 det

(
V̄m(T − 1)

)1/2d
det (V )−1/2d

δ1/d

)
,

where V̄m(s) =
∑s

t=0Xm(t)Xm(t)> + V and V is a deterministic positive definite matrix.

Proof. We first state the following discretization-based concentration bound shown in Vershynin
(2018) for random matrices:

Proposition 6.5. Let M be a random matrix. For any ε < 1, let Nε be an ε-net of Sd−1 such that

for any w ∈ Sd−1, there exists w̄ ∈ Nε with ||w − w̄|| ≤ ε. Then for any ε < 1, we have:

P [|||M |||2 > z] ≤ P
[

max
w̄∈Nε

||Mw̄|| > (1− ε)z
]

For the partial sum Sm(t) =
∑t

s=0Xm(s)ηm(s+ 1)>, using Proposition 6.5 with ε = 1/2, we
get:

P
[∣∣∣∣∣∣V̄ −1/2

m (T − 1)Sm(T − 1)
∣∣∣∣∣∣

2
≥ y
]
≤
∑
w̄∈Nε

P
[∣∣∣∣V̄ −1/2

m (T − 1)Sm(T − 1)w̄
∣∣∣∣2 ≥ y2

4

]

where w̄ is a fixed unit norm vector in Nε. We can now apply Lemma A.4 with the σ sub-Gaussian
noise sequence η>t w to get the final high probability bound.

Lemma 6.13 (Covering number for low-rank matrices, (Du et al., 2020)). Let Od×d′ be the set of

matrices with orthonormal columns (d > d′). Then there exists a subset Nε ⊂ Od×d′ that forms an

ε-net of Od×d′ in Frobenius norm such that |Nε| ≤ (6
√
d′

ε
)dd
′
, i.e., for every V ∈ Od×d′ , there exists

V ′ ∈ Nε and ‖V − V ′‖F ≤ ε.
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6.9.2 Proof of bounds on covariance matrix

We show high probability bounds for each LTIDS’ covariance matrix Σm = Σm(T ) =∑T
t=0 Xm(t)Xm(t)>.

6.9.2.1 An upper bound on LTIDS covariance matrix

In order to prove an upper bound on each system covariance matrix, we can use the technique
proposed for general LTI systems by Faradonbeh et al. (2018a). Recall, that for any system Am, we
use l∗m to denote the size of the largest Jordan block in the Jordan form of Am. Using this, we first
define the following quantity:

α(Am) :=

|||P
−1
m |||∞→2 |||Pm|||∞ e1/|λm,1|

[
l∗m−1

− log |λm,1| + (l∗m−1)!

(− log |λm,1|)
l∗m,1

]
, if |λ1(Am)| < 1

|||P−1
m |||∞→2 |||Pm|||∞ eρ+1, if |λ1(Am)| ≤ 1 + ρ

T
.

(6.25)

Using this definition, the first step is to bound the sizes of all state vectors under the event Ebdd(δ)

in Proposition 6.1.

Proposition 6.6 (Bounding ||xm(t)||). For all t ∈ [T ],m ∈ [M ]+, under the event Ebdd(δ), with

probability at least 1− δ we have:

||xm(t)|| ≤

α(Am) (bT (δ) + ||xm(0)||∞) , if |λm,1| < 1,

α(Am) (bT (δ) + ||xm(0)||∞) tl
∗
m , if |λm,1| ≤ 1 + ρ

T

. (6.26)

Proof. As stated before, each transition matrix Am admits a Jordan normal form as follows:
Am = P−1

m ΛmPm, where Λm is a block-diagonal matrix Λm = diag (Λm,q, . . . ,Λm,q). Each Jordan
block Λm,i is of size lm,i. To begin, note that for each system, each state vector satisfies:

xm(t) =
t∑

s=1

At−sm ηm(s) + Atmxm(0)

=
t∑

s=1

P−1
m Λt−s

m Pmηm(s) + P−1
m Λt

mPxm(0).

Now, letting bT (δ) be the same as in Proposition 6.1, we can bound the 2-norm of the state vector as
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follows:

||xm(t)|| ≤
∣∣∣∣∣∣P−1

m

∣∣∣∣∣∣
∞→2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

t∑
s=1

Λt−s
m

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

|||Pm|||∞ bT (λ) +
∣∣∣∣∣∣P−1

m

∣∣∣∣∣∣
∞→2

∣∣∣∣∣∣Λt
m

∣∣∣∣∣∣
∞ |||Pm|||∞ ||xm(0)||∞

≤
∣∣∣∣∣∣P−1

m

∣∣∣∣∣∣
∞→2

(
t∑

s=0

∣∣∣∣∣∣Λt−s
m

∣∣∣∣∣∣
∞

)
|||Pm|||∞ (bT (δ) + ||xm(0)||∞) .

For any matrix, the `∞ norm is equal to the maximum row sum. Since the powers of a Jordan matrix
will follow the same block structure as the original one, we can bound the operator norm |||At−sm |||∞
by the norm of each block. For any Jordan matrix of size l and eigenvalue λ, we have:

Λs =


λs

(
s
1

)
λs−1 . . .

(
s
l−1

)
λs−l+1

0 λs . . .
(
s
l−2

)
λs−l+2

...
... . . . ...

0 0 . . . λs

 ,

Thus, the maximum row sum for the s-th power of a Jordan block is:
∑l−1

j=0

(
s
j

)
λs−j . Using this, we

will bound the size of each state vector for the case when

(I) the spectral radius of Am satisfies λ1(Am) < 1 and,

(II) when λ1(Am) ≤ 1 + ρ
T

for some constant ρ > 0.

Case I When the Jordan block for a system matrix has eigenvalues strictly less than 1, we can
state the following bound:

t∑
s=0

∣∣∣∣∣∣Λt−s
m

∣∣∣∣∣∣
∞ ≤ max

i∈[qm]

t∑
s=0

lm,i−1∑
j=0

(
s

j

)
λs−jm,i ≤

t∑
s=0

l∗m−1∑
j=0

(
s

j

)
λs−jm,1

≤
t∑

s=0

λsm,1

l∗m−1∑
j=0

sj

j!
λ−jm,1 ≤

t∑
s=0

λsm,1s
l∗m−1

l∗m−1∑
j=0

λ−jm,1
j!

≤ e1/|λm,1|
t∑

s=0

λsm,1s
l∗m−1 ≤ e1/|λm,1|

∞∑
s=0

λsm,1s
l∗m−1

. e1/|λm,1|
[

l∗m − 1

− log |λm,1|
+

(l∗m − 1)!

(− log |λm,1|)l∗m

]
.

Thus, for this case, the magnitude of each state vector can be upper bounded as ||xm(t)|| ≤
α(Am) (bT (δ) + ||xm(0)||∞).

When the matrix Am is diagonalizable, each Jordan block is of size 1, which leads to the
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upper-bound
∑t

s=0 |||Λt−s
m |||∞ ≤

1
1−λ1 , for all t ≥ 0. Therefore for diagonalizable Am, we can let

α(Am) =
|||P−1

m |||∞→2
|||Pm|||∞

1−λ1 .

Case II When |λm,1| ≤ 1 + ρ
T

, we get |λm,1|t ≤ eρ, for all t ≤ T . Therefore, with l∗m as the
largest multiplicity of the (near)-unit root, we have:

t∑
s=0

∣∣∣∣∣∣Λt−s
m

∣∣∣∣∣∣
∞ ≤

t∑
s=0

l∗m−1∑
j=0

(
s

j

)
λs−jm,1 ≤ eρ

t∑
s=0

l∗m−1∑
j=0

(
s

j

)

≤ eρ
t∑

s=0

l∗m−1∑
j=0

sj/j! ≤ eρ
t∑

s=0

sl
∗
m−1

l∗m−1∑
j=0

1/j!

≤ eρ+1

t∑
s=0

sl
∗
m−1

. eρ+1tl
∗
m .

Therefore, the magnitude of each state vector grows polynomially with t and further depends on the
multiplicity of the unit root. When the matrix Am is diagonalizable, the Jordan block for the unit
root is of size 1 which bounds the term as

∑t
s=0 |||Λt−s

m |||∞ ≤ eρt.
Therefore, for system matrices with unit roots, the bound on each state vector is ||xm(t)|| ≤

α(Am) (bT (δ) + ||xm(0)||∞) tl
∗
m .

Using the high probability upper bound on the size of each state vector, we can upper bound the
covariance matrix for each system as follows:

Lemma 6.14 (Upper bound on Σm). For all m ∈ [M ]+, under the event Ebdd(δ), with probability

at least 1− δ and m ∈ [M ]+, the sample covariance matrix Σm of system m can be upper bounded

as follows:

(I) When all eigenvalues of the matrix Am are strictly less than 1 in magnitude (|λm,i| < 1), we

have

λmax(Σm) ≤ α(Am)2 (bT (δ) + ||xm(0)||∞)2 T.

(II) When some eigenvalues of the matrix Am are close to 1, i.e. |λ1(Am)| ≤ 1 + ρ
T

, we have:

λmax(Σm) ≤ α(Am)2 (bT (δ) + ||xm(0)||∞)2 T 2lm,1+1.
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Proof. First note that we have:

λmax(Σm) = |||Σm|||2 =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
T∑
t=0

xm(t)xm(t)>

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
T∑
t=0

||xm(t)||22.

Therefore, when all eigenvalues of Am are strictly less than 1, we have:

λmax(Σm) ≤
T∑
t=0

||xm(t)||22 ≤ Tα(Am)2 (bT (δ) + ||xm(0)||∞)2 .

For the case when λ1(Am) ≤ 1 + ρ
T

, we get:

λmax(Σm) ≤
T∑
t=0

||xm(t)||22 ≤ α(Λm)2

T∑
t=0

t2lm,1 ≤ α(Am)2 (bT (δ) + ||xm(0)||∞)2 T 2lm,1+1.

6.9.2.2 Lower bound for covariance matrix of each LTIDS

A lower bound result for the idiosyncratic covariance matrices can be derived using the inequalities
in Section 6.9.1 and the proof outline used in Proposition 10.1 in the work of Sarkar and Rakhlin
(2019). We provide a detailed proof below.

Lemma 6.15 (Covariance lower bound.). For all m ∈ [M ]+ and b̄m := bT (δ) + ||xm(0)||∞, if the

sample size per system is large enough such that:

T ≥

 dσ2

λmin(C)2
max

(
cη log 18

δ
, 16

(
log
(
α(Am)2b̄2

m + 1
)

+ 2 log 5
δ

))
, if λm,1 < 1

dσ2

λmin(C)2
max

(
cη log 18

δ
, 16

(
log
(
α(Am)2b̄2

mT
2l∗m + 1

)
+ 2 log 5

δ

))
, if λm,1 ≤ 1 + ρ

T
,

then with probability at least 1−3δ, the sample covariance matrix Σm for system m can be bounded

from below as follows: Σm(T ) � Tλmin(C)
4

I .

Proof. We bound the covariance matrix under the events Ebdd(δ), Eη(δ), and when the event in
Proposition 6.4 holds. As we consider a bound for all systems, we drop the system subscript m here.
Under Ebdd(δ), by Proposition 6.2, with probability at least 1− δ, we have:

Σ(T ) � AΣ(T − 1)A> +
T−1∑
t=0

(
Ax(t)η(t+ 1)> + η(t+ 1)x(t)>A>

)
+

T∑
t=1

η(t)η(t)>

� AΣ(T − 1)A> +
T−1∑
t=0

(
Ax(t)η(t+ 1)> + η(t+ 1)x(t)>A>

)
+

3λmin(C)T

4
.
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Thus, for any vector u ∈ Sd−1, we have

u>Σ(T )u � u>AΣ(T − 1)A>u+
T−1∑
t=0

u>
(
Ax(t)η(t+ 1)> + η(t+ 1)x(t)>A>

)
u+

3λd(C)T

4
.

Now, in Proposition 6.4, with V = T · I , we can show the same result for martingale term∑T−1
t=0 AmXm(t)ηm(t+1)> and V̄m(s) :=

∑s
t=0 AmXm(t)Xm(t)>A>m+V . Hence, with probability

at least 1− δ, we have:∣∣∣∣∣
∣∣∣∣∣
T−1∑
t=0

Ax(t)η(t+ 1)>u

∣∣∣∣∣
∣∣∣∣∣

≤
√
u>AΣ(T − 1)A>u+ T

√√√√8dσ2 log

(
5 det

(
V̄m(T − 1)

)1/2d
det (TI)−1/2d

δ1/d

)
.

Thus, we get:

u>Σ(T )u � u>AΣ(T − 1)A>u+
3λmin(C)T

4

−
√
u>AΣ(T − 1)A>u+ T

√
16dσ2 log

(
λmax(V̄ (T − 1))

T

)
+ 32dσ2 log

5

δ
.

Hence, we have:

u>
Σ(T )

T
u � u>

AΣ(T − 1)A>

T
u−

√
u>
AΣ(T − 1)A>

T
u+ 1

λmin(C)

2
+

3λmin(C)

4

� λmin(C)

4
,

whenever

T ≥ 16dσ2

λmin(C)2

(
log

(
λmax(V̄ (T − 1))

T

)
+ 2 log

5

δ

)

=
16dσ2

λmin(C)2

log

λmax

(∑T−1
t=0 AX(t)X(t)>A>

)
T

+ 1

+ 2 log
5

δ

 .

Using the upper bound analysis in Lemma 6.14, we show that it suffices for T to be lower bounded
as

T ≥ 16dσ2

λmin(C)2

(
log
(
α(A)2 (bT (δ) + ||x(0)||∞)2 + 1

)
+ 2 log

5

δ

)
,
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when A is strictly stable and

T ≥ 16dσ2

λmin(C)2

(
log
(
α(A)2 (bT (δ) + ||x(0)||∞)2 T 2l∗ + 1

)
+ 2 log

5

δ

)
,

when λ1(A) ≤ 1 + ρ
T

. Since, both these quantities on the RHS grow at most logarithmically with T ,
there exists T0 such that it holds for all T ≥ T0. Combining the failure probability for all events, we
get the desired result.

6.9.3 Proof of estimation error results

In this section, we provide a detailed analysis of the average estimation error across the M systems
for the estimator in (6.6) in presence of misspecifications Dm ∈ Rd×d:

Am =

(
k∑
i=1

β∗m[i]W ∗
i

)
+Dm, where ||Dm||F ≤ ζm

In the presence of misspecifications, we have ∆ := Θ̃∗ − Θ̂ = V R + D where V ∈ Od2×2k is
an orthonormal matrix, R ∈ R2k×M and D ∈ Rd2×M is the misspecification error. The result in
Theorem 6.2 can be obtained by simply substituting ζm = ζ̄ = 0 for all m ∈ [M ]+.

We start by fact that (Ŵ , B̂) minimize the squared loss in (6.6). However, in this case, we get an
additional term dependent on the misspecifications Dm as follows:

1

2

M∑
m=1

∣∣∣∣∣∣X̃m(W ∗β∗m − Ŵ β̂m)
∣∣∣∣∣∣2

2

≤
M∑
m=1

〈
η̃m, X̃m

(
Ŵ β̂m −W ∗β∗m

)〉
+

M∑
m=1

2
〈
X̃mD̃m, X̃m

(
Ŵ β̂m −W ∗β∗m

)〉
. (6.27)

We can rewrite Ŵ β̂m −W ∗β∗m = Urm, for all m ∈ [M ]+, where rm ∈ R2k is an idiosyncratic
projection vector for system m. We now show that the term on the RHS can be decomposed as
follows:

Lemma 6.16. Under Assumption 6.7, for any fixed orthonormal matrix Ū ∈ Rd2×2k, the low rank
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part of the total squared error can be decomposed as follows:

1

2

M∑
m=1

∣∣∣∣∣∣X̃m(W ∗β∗m − Ŵ β̂m)
∣∣∣∣∣∣2
F

≤

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√2
M∑
m=1

∣∣∣∣∣∣X̃m(W ∗β∗m − Ŵ β̂m)
∣∣∣∣∣∣2

2
+

M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉

+

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√2
M∑
m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2+2
√
λ̄ζ̄

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m

(
Ŵ β̂m −W ∗β∗m

)∣∣∣∣∣∣2
2

(6.28)

Proof. We first define Σ̃m,up and Σ̃m,dn as the block diagonal matrices in Rd2×d2 , with each d× d
block of Σ̃m,up and Σ̃m,dn containing Σ̄m and Σm, respectively. Let Vm = U>Σ̃mU + U>Σ̃m,dnU

be the regularized covairance matrix of projected covariates X̃mU . For any orthonormal matrix
Ū ∈ Rd2×2k, we define V̄m = Ū>Σ̃mŪ + Ū>Σ̃m,dnŪ , and proceed as follows:

1

2

M∑
m=1

∣∣∣∣∣∣X̃m(W ∗β∗m − Ŵ β̂m)
∣∣∣∣∣∣2

2

≤
M∑
m=1

〈
η̃m, X̃m

(
Ŵ β̂m −W ∗β∗m

)〉
+

M∑
m=1

2
〈
X̃mD̃m, X̃m

(
Ŵ β̂m −W ∗β∗m

)〉
≤

M∑
m=1

〈
η̃m, X̃mŪrm

〉
+

M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉
+

M∑
m=1

2
〈
X̃mD̃m, X̃m

(
Ŵ β̂m −W ∗β∗m

)〉
≤

M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣
V̄ −1
m

||rm||V̄m+
M∑
m=1

2
∣∣∣∣∣∣X̃mD̃m

∣∣∣∣∣∣
2

∣∣∣∣∣∣X̃m

(
Ŵ β̂m −W ∗β∗m

)∣∣∣∣∣∣
2

+
M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉

≤

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√ M∑
m=1

||rm||2Vm+2

√√√√ M∑
m=1

∣∣∣∣∣∣X̃mD̃m

∣∣∣∣∣∣2
2

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m

(
Ŵ β̂m −W ∗β∗m

)∣∣∣∣∣∣2
2

+

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√ M∑
m=1

(
||rm||V̄m − ||rm||Vm

)2
+

M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉
.

The first equality uses the fact that the error matrix is low rank upto a misspecification term. The
first inequality and last inequaliteis follow by using Cauchy-Schwarz inequality. Now, we can
rewrite the error as:
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1

2

M∑
m=1

∣∣∣∣∣∣X̃m(W ∗β∗m − Ŵ β̂m)
∣∣∣∣∣∣2

2

≤

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√2
M∑
m=1

||Urm||2Σ̃m +
M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉

+

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2

+2
√
λ̄mζ2

m

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m

(
Ŵ β̂m −W ∗β∗m

)∣∣∣∣∣∣2
2

≤

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√2
M∑
m=1

∣∣∣∣∣∣X̃m(W ∗β∗m − Ŵ β̂m)
∣∣∣∣∣∣2

2
+

M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉

+

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2+2
√
λ̄ζ̄

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m

(
Ŵ β̂m −W ∗β∗m

)∣∣∣∣∣∣2
2
.

We will now bound each term individually. For the matrix Ū , we choose it to be an element of
Nε which is an ε-cover of the set of orthonormal matrices in Rd2×2k. Therefore, for any U , there
exists Ū such that

∣∣∣∣Ū − U ∣∣∣∣
F
≤ ε. We can bound the size of such a cover using Lemma 6.13 as

|Nε| ≤
(

6
√
d
ε

)2d2k

.

Proposition 6.7 (Bounding
∑M

m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2). Under Assumption 6.7, for the noise pro-

cess {ηm(t)}∞t=1 defined for each system, with probability at least 1− δZ , we have:

M∑
m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2 . κε2
(
MT trC + σ2 log

2

δZ
+λ̄ζ̄2

)
. (6.29)

Proof. In order to bound the term above, we use the squared loss inequality in (6.27) and Assump-
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tion 6.7 as follows:∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

≤ 2
〈
Z,X (W ∗B∗ − Ŵ B̂)

〉
+2

M∑
m=1

〈
X̃mD̃m, X̃m

(
W ∗β∗m − Ŵ β̂m

)〉

≤ 2||Z||F
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

+2

√√√√ M∑
m=1

∣∣∣∣∣∣X̃mD̃m

∣∣∣∣∣∣2
2

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

≤ 2||Z||F
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

+2

√√√√ M∑
m=1

λ̄m||Dm||2F
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

≤ 2||Z||F
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

+2

√
λ̄ζ̄2

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F
,

which leads to the inequality
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F
≤ 2||Z||F+2

√
λ̄ζ̄2. Using the concentration

result in Proposition 6.3, with probability at least 1− δZ , we get

‖Z‖F .

√
MT trC + σ2 log

1

δZ
.

Thus, we have
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F
. 2
√
MT trC + σ2 log 1

δZ
+2
√
λ̄ζ̄2 with probability at least

1− δZ . We now use this to bound the initial term:

M∑
m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2 ≤ M∑
m=1

∣∣∣∣∣∣X̃m

∣∣∣∣∣∣2∣∣∣∣Ū − U ∣∣∣∣2||rm||2
≤

M∑
m=1

λ̄mε
2||rm||2 =

M∑
m=1

λ̄mε
2||Urm||2

≤
M∑
m=1

λ̄mε
2

∣∣∣∣∣∣X̃mUrm

∣∣∣∣∣∣2
λm

≤ κε2
M∑
m=1

∣∣∣∣∣∣X̃mUrm

∣∣∣∣∣∣2
= κε2

M∑
m=1

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

. κε2
(
MT trC + σ2 log

1

δZ
+λ̄ζ̄2

)
.

Proposition 6.8 (Bounding
∑M

m=1

〈
η̃m, X̃m(U − Ū)rm

〉
). Under Assumption 6.5, Assumption 6.6
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and Assumption 6.7, with probability at least 1− δZ we have:

M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉
.
√
κε

(
MT trC + σ2 log

1

δZ

)
+
√

κλ̄

√
MT trC + σ2 log

1

δZ
εζ̄.

(6.30)

Proof. Using Cauchy-Schwarz inequality, we bound the term as follows:

M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉
≤

√√√√ M∑
m=1

||η̃m||2
√√√√ M∑

m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2
.

√
MT trC + σ2 log

1

δZ

√
κε2

(
MT trC + σ2 log

1

δZ
+λ̄ζ̄2

)
.
√
κε

(
MT trC + σ2 log

1

δZ

)
+
√

κλ̄

√
MT trC + σ2 log

1

δZ
εζ̄.

Bounding
∑M

m=1

∥∥∥z>mX̃mŪ
∥∥∥2

V̄ −1
m

: Now, we will show a martingale concentration result similar
to Lemma A.4, but with a projection step to a low-rank subspace.

Proposition 6.9 (Multi-task self-normalized martingale bound). For an arbitrary orthonormal

matrix Ū ∈ Rd2×2k in the ε-cover Nε defined in Lemma 6.13, let Σ ∈ Rd2×d2 be a positive definite

matrix, and define Sm(τ) = η̃m(τ)>X̃m(τ)Ū , V̄m(τ) = Ū>
(

Σ̃m(τ) + Σ
)
Ū , and V0 = Ū>ΣŪ .

Then, consider the following event:

E1(δU) :=

{
ω ∈ Ω :

M∑
m=1

||Sm(T )||2V̄ −1
m (T ) ≤ 2σ2 log

(
ΠM
m=1 det(V̄m(T )) det(V0)−1

δU

)}
.

For E1(δU), we have:

P [E1(δU)] ≥ 1−

(
6
√

2k

ε

)2d2k

δU . (6.31)

Proof of Proposition 6.9 First, using the vectors x̃m,j(t) defined in Section 6.3, for the
matrix Ū , define x̄m,j(t) = Ū>x̃m,j(t) ∈ R2k. It is straightforward to see that V̄m(t) =∑t

s=1

∑d
j=1 x̄m,j(s)x̄m,j(s)

> + V0.
Now, we show that the result can essentially be stated as a corollary of the following result of

Hu et al. (2021) for stated for a univariate regression setting
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Lemma 6.17 (Lemma 2 of Hu et al. (2021)). Consider a fixed matrix Ū ∈ Rp×2k and let V̄m(t) =

Ū>(
∑t

s=0 xm(s)xm(s)>)Ū + Ū>V0Ū . Consider a noise process wm(t + 1) ∈ R adapted to the

filtration Ft = σ(wm(1), . . . , wm(t), Xm(1), . . . , Xm(t)). If the noise wm(t) is conditionally sub-

Gaussian for all t: E [exp (λ · wm(t+ 1))] ≤ exp (λ2σ2/2), then with probability at least 1 − δ,
for all t ≥ 0, we have:

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣

t∑
s=0

wm(s+ 1)Ū>xm(s)

∣∣∣∣∣
∣∣∣∣∣
2

V̄ −1
m (t)

≤ 2 log

(
ΠM
m=1

(
det(V̄m(t))

)1/2 (
Ū>V0Ū

)−1/2

δ

)

In order to use the above result in our case, we consider the martingale sum∑T
t=0

∑d
j=1 η̃m,j(t)Ū

>x̃m,j(t). Under Assumption 6.5, we can use the same argument as in the
proof of Lemma 2 in Hu et al. (2021) as:

exp

(
d∑
j=1

ηm(t+ 1)[j]

σ
〈λ, x̄m,j(t)〉

)
≤ exp

(
d∑
j=1

1

2
〈λ, x̄m,j(t)〉2

)
.

Thus, for a fixed matrix Ū and T ≥ 0, with probability at least 1− δU ,

M∑
m=1

||Sm(T )||2V̄ −1
m (T ) ≤ 2σ2 log

(
ΠM
m=1 det(V̄m(T )) det(V0)−1

δU

)

Finally, we take a union bound over the ε-cover set of orthonormal matrices Rd2×2k to bound the

total failure probability by |Nε| δU =
(

6
√

2k
ε

)2d2k

δU .

Proof of Theorem 6.3 We now use the bounds we have shown for each term before and give the
final steps by using the error decomposition in Lemma 6.16 as follows:

Proof. From Lemma 6.16, with a we have:∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

≤

√√√√2
M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+
M∑
m=1

〈
η̃m, X̃m(U − Ū)rm

〉

+

√√√√ M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

√√√√ M∑
m=1

∣∣∣∣∣∣X̃m(Ū − U)rm

∣∣∣∣∣∣2+2
√
λ̄ζ̄
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F
.
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Now, substituting the termwise bounds from Proposition 6.7, Proposition 6.8 and Proposition 6.9,
with probability at least 1− |Nε| δU − δZ we get:

1

2

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

.

√
σ2 log

(
ΠM
m=1 det(V̄m(t)) det(V0)−1

δU

)∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+
√
λ̄ζ̄
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

+

√
σ2 log

(
ΠM
m=1 det(V̄m(t)) det(V0)−1

δU

)√
κε2

(
MT trC + σ2 log

1

δZ
+λ̄ζ̄2

)
+
√
κε

(
MT trC + σ2 log

1

δZ

)
+
√

κλ̄

√
MT trC + σ2 log

1

δZ
εζ̄. (6.32)

In the definition of V0, we now substitute Σ = λId2 thereby implying det(V0)−1 = det(1/λI2k) =

(1/λ)2k. Similarly, for matrix V̄m(T ), we get det(V̄m(T )) ≤ λ̄2k. Thus, substituting δU = δ/3 |N |ε
and δC = δ/3 (in Lemma 6.1), with probability at least 1− 2δ/3, we get:

M∑
m=1

∣∣∣∣∣∣η̃>mX̃mŪ
∣∣∣∣∣∣2
V̄ −1
m

≤ σ2 log

(
ΠM
m=1 det(V̄m(t)) det(V0)−1

δU

)

≤ σ2 log

(
λ̄

λ

)2Mk

+ σ2 log

(
18k

δε

)2d2k

. σ2Mk logκ∞ + σ2d2k log
k

δε
.
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Substituting this in (6.32) with δZ = δ/3, with probability at least 1− δ we have:

1

2

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

.

√
σ2Mk logκ∞ + σ2d2k log

k

δε

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+
√
λ̄ζ̄
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

+

√
σ2Mk logκ∞ + σ2d2k log

k

δε

√
κε2

(
MT trC + σ2 log

1

δ
+λ̄ζ̄2

)
+
√
κε

(
MT trC + σ2 log

1

δ

)
+
√

κλ̄

√
MT trC + σ2 log

1

δ
εζ̄

.

√
c2Mk logκ∞ + c2d2k log

k

δε

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+
√
λ̄ζ̄
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣
F

+

√
c2Mk logκ∞ + c2d2k log

k

δε

√
κε2

(
c2dMT + c2 log

1

δ
+λ̄ζ̄2

)
+
√
κε

(
c2dMT + c2 log

1

δ

)
+
√
κλ̄

√
c2dMT + c2 log

1

δ
εζ̄.

Noting that k ≤ d and log 1
δ
. d2k log k

δε
, by setting ε = k√

κdT
we have:

1

2

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

.

(√
c2Mk logκ∞ + c2d2k log

k

δε
+
√
λ̄ζ̄

)∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+

√
c2Mk logκ∞ + c2d2k log

k

δε

√
κε2

(
c2dMT + c2d2k log

k

δε
+λ̄ζ̄2

)

+
√
κε

(
c2dMT + c2d2k log

k

δε

)
+

√(
c2dMT + c2d2k log

k

δε

)
κλ̄ε2ζ̄2

.

(√
c2Mk logκ∞ + c2d2k log

κdT

δ
+
√
λ̄ζ̄

)∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+

√
c2Mk logκ∞ + c2d2k log

κdT

δ

√
c2

(
k2M

dT
+
k3

T 2
log

κdT

δ
+
λ̄k2ζ̄2

d2T 2

)

+ c2

(
Mk +

dk2

T
log

κdT

δ

)
+

√
c2

(
k2M

dT
+
k3

T 2
log

κdT

δ

)
λ̄ζ̄2,
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which gives the simplified bound:

1

2

∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣2
F

.

(√
c2

(
Mk logκ∞ + d2k log

κdT

δ

)
+
√
λ̄ζ̄

)∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)
∣∣∣∣∣∣
F

+ c2

(
Mk logκ∞ +

d2k

T
log

κdT

δ

)
+c

√
λ̄ζ̄2

T

(
Mk logκ∞ +

d2k

T
log

κdT

δ

)
.

The quadratic inequality for the prediction error
∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣2
F

implies the following bound
with probability at least 1− δ:∣∣∣∣∣∣X (W ∗B∗ − Ŵ B̂)

∣∣∣∣∣∣2
F
. c2

(
Mk logκ∞ + d2k log

κdT

δ

)
+ λ̄ζ̄2.

Since λ = minm λm, we can convert the prediction error bound to an estimation error bound as
follows: ∣∣∣∣∣∣W ∗B∗ − Ŵ B̂

∣∣∣∣∣∣2
F
.
c2
(
Mk logκ∞ + d2k log κdT

δ

)
λ

+ κ∞ζ̄
2,

which finally implies the estimation error bound for the solution of (6.6):

M∑
m=1

∣∣∣∣∣∣Âm − Am∣∣∣∣∣∣2
F
.
c2
(
Mk logκ∞ + d2k log κdT

δ

)
λ

+ (κ∞ + 1)ζ̄2.

6.9.4 Incorporating control inputs in joint system identification

We will now show an estimation error result similar to Theorem 6.2 when for estimating (A,B)

matrices when the linear time-series in (6.1) is used to generate the data. In the second phase of
Algorithm 6.2, we use the controllers K̂m,j for each epoch, i.e., um(t) = K̂m,jxm(t) + σm,jgm(t)

where gm(t) ∼ N(0, I). Using zm(t) to denote the concatenated state-input vector, we study the
following linear system for any epoch j:

xm(t+ 1) =
[
A B

]
zm(t) + ηm(t+ 1). (6.33)

In this section, our main goal in this section will be to show an analogue of Lemma 6.1 for the con-
catenated linear system. To that end, redefine the covariance matrix as Σm :=

∑τj−1
t=τj−1

zm(t)zm(t)>.
We prove the upper bounds and lower bounds for Σm below:
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6.9.4.1 An upper bound on the covariance matrix

For the upper bound, we note that the overall system can be written down as:

xm(t) = Amxm(t− 1) +Bmum(t− 1) + ηm(t), um(t) = K̂m,jxm(t) + σm,jgm(t) (6.34)

where ηm(t) ∼ N(0, Idx) (Assumption 6.3) and gm(t) ∼ N(0, Idu). To bound the covariance
matrix, we directly use the following result from Simchowitz and Foster (2020):

Lemma 6.18 (Corollary of Lemma G.1, Simchowitz and Foster (2020)). If K̂m,j is a stabilizing

controller, then for all τj−1 ≥ max
(
Jm,0 |||Pm|||3 , σ4

mΨ4
B,m

)
, with probability 1− δ, we have:

τj+1−1∑
s=τj

||xm(s)||22 + ||um(s)||22 . τjd |||Pm||| log
1

δ
+ σ2

mΨ2
B,m |||Pm|||

4 log
1

δ
(6.35)

which implies the upper bound on Σm,j � λm,jI where λm,j is the expression on the RHS of (6.35).

Proof. We first state the result of Lemma G.1 from Simchowitz and Foster (2020). From the
perturbation bounds on the controller, we firstly know that for all systems m ∈ [M ]+, the controllers
K̂m,j are stabilizing. For such stabilizing controllers, say K, the 2nd result in Lemma G.1 states
that with probability at least 1− δ, we have:

t∑
s=1

x(s)>x(s) + u(s)>u(s)

≤ tfK + 2σ2
udt
(
1 + |||B|||2 |||PK |||

)
+ 2x(1)>PKx(1)

+O

(√
dt log

1

δ
+ log

1

δ

)(
(1 + σ2

u |||B|||
2)
∣∣∣∣∣∣I +K>K

∣∣∣∣∣∣ |||A+BK|||2H∞ + σ2
u

)
We will now substitute the value for each expression in the RHS of the above inequality for each
system m in any epoch j:

1. fK := tr(dlyap
(
Am +BmK̂m,j, I

)
). For this term, by using Lemma 6.5 and Theorem 6.6,

we have:

tr(dlyap
(
Am +BmK̂m,j, I

)
) ≤ tr

(
P∞(K̂m,j;Am, Bm)

)
. dx |||Pm|||

2. By using Theorem 6.6, we have 1 + |||Bm|||2 |||Pm,j||| . Ψ2
B,m |||Pm|||.
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3. Again, using Theorem 6.6, we have

(1 + σ2
m,j |||Bm|||2)

∣∣∣∣∣∣∣∣∣I + K̂>m,jK̂m,j

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣Am +BmK̂m,j

∣∣∣∣∣∣∣∣∣2
H∞

. (1 + σ2
m,j |||Bm|||2)(1 +

∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2) |||Pm|||3

. (1 + σ2
m,j |||Bm|||2) |||Pm|||4

4. Lastly, the term xm(τj)
>Pm,jxm(τj) can be bounded as follows:

xm(τj)
>Pm,jxm(τj) ≤ ||xm(τj)||22 |||Pm,j|||

. ||xm(τj)||22 |||Pm|||

. ΨB,mJm,0 |||Pm|||4 log
1

δ

Thus, by simnplifying the expressions, the covariance matrix can be bounded by the expression:

2τj−1∑
s=τj

xm(s)>xm(s) + um(s)>um(s) . τj−1 log
1

δ
d
(
|||Pm|||+ σ2

m,jΨ
2
B,m |||Pm|||

)
+ ΨB,mJm,0 |||Pm|||4 log

1

δ
+ σ2

mΨ2
B,m |||Pm|||

4 log
1

δ

Thus, if τj ≥ Jm,0 |||Pm|||3 and τj ≥ σ4
mΨ4

B,m, then, we can simplify the upper bound to:

2τj−1∑
s=τj

xm(s)>xm(s) + um(s)>um(s) . τjd |||Pm||| log
1

δ
+ σ2

mΨ2
B,m |||Pm|||

4 log
1

δ

6.9.4.2 Lower bounding the concatenated covariance matrix

We show that the covariance matrix can be lower bounded by using Lemma E.4 in Simchowitz and
Foster (2020). Firstly, note that the linear system on the complete state vector can be written as
follows:

zm(t+ 1) =

[
Idx

K̂m,j

] [
A B

]
zm(t) +

[
Idx 0

K̂m,j σm,jIdu

][
ηm(t+ 1)

gm(t+ 1)

]
(6.36)
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For this system, we can use the aforementioned result with the noise η̄m(t) :=[
Idx 0

K̂m,j σm,jIdu

][
ηm(t+ 1)

gm(t+ 1)

]
and the upper bound on the covariance matrix stated in Lemma 6.18.

Lemma 6.19 (Corollary of Lemma 6.15). For all m ∈ [M ], if the epoch size per system is large

enough such that:

τj & max

((
d log

((
1 +

2 |||Pm|||
σ2
m

)(
dΨ2

B,m |||Pm|||
4 log

1

δ

)))
,Jm,0 |||Pm|||3 , σ4

mΨ4
B,m

)
then with probability at least 1 − 3Mδ, the sample covariance matrix Σm,j for system m can be

bounded from below as follows: Σm,j �
σ2
m,jτj

σ2
m,j+2|||K̂m,j|||2

I .

Proof. To begin, we state Lemma E.4 from Simchowitz and Foster (2020) below:

Lemma 6.20 (Lemma E.4, Simchowitz and Foster (2020)). Suppose that zt|Ft−1 ∼ N(z̄t, Ct),

where zt ∈ Rd and Ct ∈ Rd×d are Ft−1-measurable and Ct � C � 0. Let E be any event for which

Σ̄T := E [Σ1(E)] satisfies tr(Σ̄T ) ≤ TJ for some J ≥ 0. Then, for

T ≥ 2000

9

(
2d log

100

3
+ d log

J

λmin(C)

)
,

it holds that, for Σ0 := 9T
1600

Σ

P
[{

Σ �
9T

1600
Σ

}
∩ E
]
≤ 2 exp

(
− 9

2000(d+ 1)
T

)
We will use this result for zt := zm(t) and ΣT =

∑2τj−1
t=τj

zm(t)zm(t)> where Σt =[
Idx K̂>m,j

K̂m,j K̂m,jK̂
>
m,j + σ2

m,jIdu

]
. In order to apply the Lemma, we need:

(1) Lower bound on the smallest eigenvalue of the second moment of the noise vector η̄m(t).

(2) Upper bound on the term λmax

(
E
[∑2τj−1

t=τj
Zm(t)Zm(t)>

])
used in the self-normalized

bound in the proof.

For (1), note that both ηm(t) and gm(t) are iid Gaussian vectors. Therefore, for the lower bound,

we simply need to lower bound the smallest eigenvalue of

[
Idx K̂>m,j

K̂m,j K̂m,jK̂
>
m,j + σ2

m,jIdu

]
. By using

Lemma F.6 of Dean et al. (2018), we can show that the least eigenvalue can be bounded as:

λmin

([
Idx K̂>m,j

K̂m,j K̂m,jK̂
>
m,j + σ2

m,jIdu

])
≥ σ2

m,j min

1

2
,

1

σ2
m,j + 2

∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2
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For (2), we can use the same upper bound as shown in Lemma 6.18 for the expectation of the matrix
Σm,j as follows:

tr
(
Σ̄m,j

)
≤ τj

(
d |||Pm||| log

1

δ
+ σ2

mΨ2
B,m |||Pm|||

4 log
1

δ

)

when τj ≥ Jm,0 |||Pm|||3 and τj ≥ σ4
mΨ4

B,m. We will now substitute the upper bound on
∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2
from Theorem 6.6. Thus, using the upper bound on the value tr

(
Σ̄m,j

)
, for τj & d log 1

δ
and

τj ≥
2000

9

2d log
100

3
+ d log

(
σ2
m,j + 2

∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2)(dΨ2
B,m |||Pm|||

4 log 1
δ

)
τjσ2

m,j


&

2000

9

(
2d log

100

3
+ d log

((
1 +

2 |||Pm|||
σ2
m

)(
dΨ2

B,m |||Pm|||
4 log

1

δ

)))
,

with probability at least 1−Mδ:

λmin (Σm,j) &
τjσ

2
m,j

σ2
m,j + 2

∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2
which is the desired result.

6.9.4.3 Final estimation error bound for joint system identification

As described before, the structural assumption in Assumption 6.1 allows us to use the same
estimation error upper bound where we simply replace d2 by (dx + du)du, λ̄m by λm,j and λm by

τj

8+8|||K̂m,j|||2
. Therefore, we get the final result as follows:

Theorem (Corollary of Theorem 6.2). Under Assumption 6.1, and for epochs j such that

τj & max

((
d log

((
1 +

2 |||Pm|||
σ2
m

)(
dΨ2

B,m |||Pm|||
4 log

1

δ

)))
,Jm,0 |||Pm|||3 , σ4

mΨ4
B,m

)
,

the estimator in (6.19) returns (Âm,j, B̂m,j) for each system m ∈ [M ] and epoch j, such that with

probability at least 1−Mδ/8, the following holds:

1

M

M∑
m=1

(∣∣∣∣∣∣Âm,j − Am∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣B̂m,j −Bm

∣∣∣∣∣∣2
F

)
. max

m

(
σ2
m,j + 2 |||Pm|||

) (
k logκ + ddxk

M
log dκ

δ

)
σ2
m,jτj
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where κ = maxm d log
((

1 + 2|||Pm|||
σ2
m

) (
dΨ2

B,m |||Pm|||
4 log 1

δ

))
.

The result follows by upper bounding
∣∣∣∣∣∣∣∣∣K̂m,j

∣∣∣∣∣∣∣∣∣2 by |||Pm||| using Theorem 6.6.
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CHAPTER 7

Concluding Remarks

In Chapter 1, we outlined the goal of this thesis as studying the effect of linear/low-rank structures
in the model of an environment on the sample efficiency of reinforcement learning. As stated in the
beginning, we examine such structural assumptions in various problem settings and highlight the
utility of such environment structure in efficient exploration, multi-task learning, and representation
learning for MDPs. In particular, we presented sample complexity results in the following settings:

1. In Chapter 3, for contextual MDPs, we presented PAC mistake bounds for contextual mappings
which (1) vary smoothly with the context and (2) are linear functions of the context. Our
analysis showed that under the weaker assumption of smoothness, the sample complexity can
be exponential in the context dimension. On the other hand, for linear structures, we proposed
PAC-efficient and regret minimizing algorithms which are provably efficient, both statistically
and computationally.

2. In Chapter 4, we studied the sample complexity of RL in complex environments when the
true model can be expressed as a feature based linear combination of a known basis set of
models. Our sample complexity bounds scale with the dimension of the feature representation
and do not scale with the size of the environment. We also showed hardness results for feature
selection in our linear model ensemble setting.

3. Next, in Chapter 5, we study a representation learning problem for low-rank MDPs. We
proposed the algorithm MOFFLE, which is the first model-free representation learning and ex-
ploration algorithm for low-rank MDPs. The key contribution here is the novel representation
learning objective which utilizes the low-rank structure in the underlying transition dynamics
of the environment.

4. Lastly, we considered a multi task LQR problem where the system’s transition matrices
share a common linear basis. We first proposed a joint estimator for the transition matrices
of LTIDS and showed finite time estimation error bounds for the joint estimator. We then
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used this joint estimator in a certainty equivalence based controller and analyzed its regret
behavior. Our results showed the improvement in estimation error and regret bounds when
data is pooled across multiple systems under the structural assumption.

7.1 Discussion and Future work

In this section, we discuss the limitations and potential future work directions for this thesis.

Contextual MDPs In Chapter 3, we considered the problem of learning in a sequence of tabular
MDPs where a context representation is given to the agent at the beginning of each episode. There
are many future directions which we can consider in this setting, which we discuss below. Firstly,
our PAC and regret guarantees have been established for (generalized) linear mappings. Similar
results can be shown for contextual mappings which are non-linear but have a bounded structural
complexity, like bounded Eluder dimension (Russo and Van Roy, 2013). Further, our algorithms
show that the contextual representation can be efficiently used for sharing data across tasks, but
only hold for tabular domains. Extending these ideas to non-tabular state spaces is an interesting
problem, and we can start by looking at large but structured state spaces like the block MDP setting
(Du et al., 2019a). Finally, in many applications, the contextual information is present but often
latent to the agent. As such, it is important to study scenarios where the latent representation can
be quickly identified from few-shot interaction data, in order to quickly adapt to the environment.
Recent results like Kwon et al. (2021) have made progress in this direction.

Representation learning In Chapter 4 and Chapter 5, we considered two different feature se-
lection/learning problems. In the former, we showed that selecting among features at different
resolutions can be information-theoretically difficult in the absence of additional prior knowledge.
In order to resolve this issue, we showed positive results when the agent knows the optimal value for
the given MDP. It is an interesting problem to consider other possible algorithmic schemes based
on weaker prior knowledge assumptions. In Chapter 5, we proposed the MOFFLE algorithm for
representation learning in low-rank MDPs. Our work currently has two weaknesses: the algorithm
is not provably computationally efficient and requires the reachability assumption for statistical
efficiency (it effectively implies a small non-negative rank for the transition matrix). Hence, coming
up with more efficient algorithms, removing reachability and studying the phenomenon empirically
are all important threads for future work. Lastly, our learnt representation in MOFFLE can only be
used for downstream planning for the same MDP. The key utility of representation learning is to
transfer the representation to other tasks which share a similar structure. Thus, it will be interesting
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to consider a multi-task or continual learning setting where a common feature φ∗ is shared among
MDPs and investigate if representation learning can be used for efficient learning.

Multi-task control In Chapter 6, we considered a multi-task adaptive control problem where the
transition matrices of different systems shared a common linear basis. In the first part, we established
system identification results for non-explosive systems and showed improved rates. However, our
analysis showed estimation error bounds under the Frobenius norm and ignores any matrix structure
which is present in the LTIDS setting. It will be important to explore a general estimator, and
analysis thereof, such that estimation error bounds can be given for explosive, non-explosive as
well as system matrices which have both sub-unit and explosive eigenvalues. In the second part,
we proposed and analysed a multi-task controller where we observed that the improvement can
only be seen for the components of the regret analysis which do not depend on the inherent random
fluctuations of the systems. It will be interesting to see if another notion of regret (expected regret)
can be studied, and show that the rates improve substantially for the multi-task case. Lastly, in
the single task LQR problem, the problem of adaptive stabilization has been previously studied in
Faradonbeh et al. (2018b) and can be used in the initial exploration phases of various algorithms.
However, the problem of showing improved rates of stabilization for our multi-task setting is an
open problem and is left for future work.
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APPENDIX A

Basic Probabilistic Inequalities

In this chapter, we review the major probabilistic inequalities used in this thesis.

Theorem A.1 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be mean-zero independent real-valued

random variables with Xj ∈ [aj, bj] and Y :=
∑n

j=1 Xj . For any ε ≥ 0, we have:

P [|Y | ≥ ε] ≤ 2 exp

(
−2n2ε2∑n

j=1(bj − aj)2

)
. (A.1)

As one can note, Hoeffding’s bound uses the bounds on the random variables to give a high-
probability concentration result. However, when the variances of the random variables are small,
we can get a sharper bound as follows:

Theorem A.2 (Bernstein’s inequality). Let X1, X2, . . . , Xn be mean-zero independent real-valued

random variables with |Xi| ≤ c for all i and let σ2 := 1
n

∑n
i=1 Var[Xi]. Denote Y :=

∑n
j=1Xj .

For any ε ≥ 0, we have:

P [|Y | ≥ ε] ≤ 2 exp

(
−2nε2

2σ2 + 2cε/3

)
. (A.2)

Therefore, for random variables with small variance, the Bernstein’s inequality can be sharper
than Hoeffding’s.

The above results are for iid random variables. Below, we state the commonly used concentration
result for martingales:

Theorem A.3 (Azuma-Hoeffding’s inequality). Let X1, X2, . . . , Xn be martingale sequence with

|Xi −Xi−1| ≤ ci for all i. Then for any positive N any ε ≥ 0, we have:

P [|XN −X0| ≥ ε] ≤ 2 exp

(
−2nε2

2
∑N

i=1 c
2
i

)
. (A.3)
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Next, we state a concentration inequality for self-normalized martingales, which is Lemma 8 and
Lemma 9 in the work of Abbasi-Yadkori et al. (2011). More details about self-normalized process
can be found in the work of Victor et al. (2009).

Lemma A.4. Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real valued stochastic process such that

ηt is Ft measurable and ηt is conditionally σ-sub-Gaussian for some R > 0, i.e.,

∀λ ∈ R,E [exp(ληt)|Ft−1] ≤ e
λ2σ2

2

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft measurable. Assume that V is a

d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +
t∑

s=1

XsX
>
s , St =

t∑
s=1

ηs+1Xs.

Then with probability at least 1− δ, for all t ≥ 0 we have

||St||2V̄ −1
t
≤ 2σ2 log

(
det
(
V̄t
)1/2

det (V )−1/2

δ

)
.
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APPENDIX B

Missing Results for Chapter 5

B.1 FQI Planning Results

In this appendix, we provide various FQI (Fitted Q-iteration) planning results. In Appendix B.1.1,
we provide the general framework of FQI algorithms. In Appendix B.1.2, we show the sample
complexity of FQI-FULL-CLASS that handles the offline planning for a class of rewards. In Ap-
pendix B.1.3, we provide the sample complexity guarantee for planning for the elliptical reward
class. In Appendix B.1.4, we discuss the sample complexity result of planning with the learned
feature φ̄. We want to mention that we abuse some notations in this section. For example, Fh,
Gh would have different meanings from the main text. However, they should be clear within the
context.

B.1.1 FQI planning algorithm

In this part, we present a general framework of FQI planner. Algorithm B.1 subsumes three different
algorithms: FQI-FULL-CLASS, FQI-REPRESENTATION, and FQI-ELLIPTICAL. FQI-FULL-CLASS

and FQI-REPRESENTATION will be used to plan for a finite deterministic reward class, while FQI-
ELLIPTICAL is specialized in planning for the elliptical reward class. This leads to the different
bounds of parameters in the Q-value function classes and different clipping thresholds of the state-
value functions. In addition, for FQI-FULL-CLASS and FQI-ELLIPTICAL, we use all features in Φ

to construct the Q-value function classes, while in FQI-REPRESENTATION we only utilize the the
learnt representation φ̄. The details can be found below.
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Algorithm B.1 FQI: Fitted Q-Iteration
input: (1) exploratory dataset {D}0:H−1 sampled from ρ+3

h−3 (or {Do}0:H−1 sampled from ρ+2
h−2),

(2) reward function R = R0:H−1 : S × A → [0, 1], (3) function class: (i) for FQI-FULL-
CLASS, Fh(Rh) := {Rh + 〈φh, wh〉 : ‖wh‖2 ≤ H

√
d, φh ∈ Φh}, h ∈ [H]; (ii) for FQI-

REPRESENTATION, Fh(Rh) := {Rh + clip[0,H]

(
〈φ̄h, wh〉

)
: ‖wh‖2 ≤ B}, h ∈ [H]; (iii) for

FQI-ELLIPTICAL, Fh(Rh) := {Rh + 〈φh, wh〉 : ‖wh‖2 ≤
√
d, φh ∈ Φh}, h ∈ [H].

Set V̂H(s) = 0.
for h = H − 1, . . . , 0 do

Pick n samples
{

(s
(i)
h , a

(i)
h , s

(i)
h+1)

}n
i=1

from the exploratory dataset Dh.
Solve least squares problem:

f̂h,Rh ← argmin
fh∈Fh(Rh)

LDh,Rh(fh, V̂h+1), (B.1)

where LDh,Rh(fh, V̂h+1) :=
∑n

i=1

(
fh(s

(i)
h , a

(i)
h )−Rh(s

(i)
h , a

(i)
h )− V̂h+1(s

(i)
h+1)

)2

Define π̂h(s) = argmaxa f̂h,Rh(s, a).
Define V̂h(s) = clip[0,H]

(
maxa f̂h,Rh(s, a)

)
for FQI-FULL-CLASS and FQI-

REPRESENTATION, while define V̂h(s) = clip[0,1]

(
maxa f̂h,Rh(s, a)

)
for FQI-ELLIPTICAL.

return π̂ = (π̂0, . . . , π̂H−1).

Unlike the regression problem in the main text, the objective here includes an additional reward
function component. Therefore, we define a new loss function LDh,Rh , and will use Lρ+3

h−3,Rh
to

denote its population version. Notice that the function class Fh(Rh) in Algorithm B.1 also depends
on the reward function R. If we pull out the reward term from f̂h,Rh , we can obtain an equivalent
solution of the least squares problem (B.1) as below:

f̂h,Rh = Rh + argmin
fh∈Fh(0)

LDh(fh, V̂h+1), LDh(fh, V̂h+1) :=
n∑
i=1

(
fh(s

(i)
h , a

(i)
h )− V̂h+1(s

(i)
h+1)

)2

.

Intuitively, the reward function Rh only makes the current least squares solution offset the original
(reward-independent) least squares solution by Rh.

B.1.2 Planning for a reward class with full representation class

In this part, we first establish the sample complexity of planning for a deterministic reward function
R in Lemma B.1. We will choose FQI-FULL-CLASS as the planner, where the Q-value function class
consists of linear function of all features in the feature class with reward appended. Specifically,
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we have Fh(Rh) := {Rh + 〈φh, wh〉 : ‖wh‖2 ≤ H
√
d, φh ∈ Φh}, h ∈ [H]. Equipped with this

lemma, we also provide the sample complexity of planning for a finite deterministic reward classR
in Corollary B.2.

Lemma B.1 (Planning for a known reward with full representation class). Assume that we have the

exploratory dataset {D}0:H−1 (collected from ρ+3
h−3 and satisfies (5.5) for all h ∈ [H]). For a known

deterministic reward function R = R0:H−1 : S ×A → [0, 1] and δ ∈ (0, 1), if we set

n ≥ 512H6d2κA

β2
log

(
256H6d2κA

β2

)
+

512H6d2κA

β2
log
(

2|Φ|H
δ

)
,

then with probability at least 1− δ, the policy π̂ returned by FQI-FULL-CLASS satisfies

Eπ̂

[
H−1∑
h=0

Rh(sh, ah)

]
≥ max

π
Eπ

[
H−1∑
h=0

Rh(sh, ah)

]
− β.

Proof. For notation simplicity, we will drop the Rh subscript of f̂h,Rh throughout the proof. Note
that, this conflicts with the notation in later lemma statements (e.g. Lemma B.3 where we put
back the subscript), and we reserve it for the reward-augmented function class for clarity in this
proof. We first bound the difference in cumulative rewards between π̂ := π̂0:H−1 and the optimal
policy π∗ for the given reward function. Recall that π̂0 is greedy w.r.t. f̂0, which implies that
f̂0(x0, π̂0(x0)) ≥ f̂0(x0, π

∗(x0)) for all x0. Hence, we have

V ∗ − V π̂ = Eπ∗ [R0(x0, a0) + V ∗(x1)]− Eπ̂
[
R0(x0, a0) + V π̂(x1)

]
≤ Eπ∗

[
R0(x0, a0) + V ∗(x1)− f̂0(x0, a0)

]
− Eπ̂

[
R0(x0, a0) + V π̂(x1)− f̂0(x0, a0)

]
= Eπ∗

[
R0(x0, a0) + V ∗(x1)− f̂0(x0, a0)

]
− Eπ̂

[
R0(x0, a0) + V ∗(x1)− f̂0(x0, a0)

]
+ Eπ̂

[
V ∗(x1)− V π̂(x1)

]
= Eπ∗

[
Q∗0(x0, a0)− f̂0(x0, a0)

]
− Eπ̂

[
Q∗0(x0, a0)− f̂0(x0, a0)

]
+ Eπ̂

[
V ∗(x1)− V π̂(x1)

]
.

Continuing unrolling to h = H − 1, we get

V ∗ − V π̂ ≤
H−1∑
h=0

Eπ̂0:h−1◦π∗
[
Q∗h(sh, ah)− f̂h(sh, ah)

]
−

H−1∑
h=0

Eπ̂0:h
[
Q∗h(sh, ah)− f̂h(sh, ah)

]
.

Now we bound each of these terms. The two terms only differ in the policies that generate the
data and can be handled similarly. Therefore, in the following, we focus on just one of them.
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For any function Vh+1 : S → R, we introduce Bellman backup operator (ThVh+1)(sh, ah) :=

Rh(sh, ah) + E [Vh+1(sh+1) | sh, ah]. Let’s call the roll-in policy π and drop the dependence on h.
This gives us∣∣∣Eπ [Q∗(s, a)− f̂(s, a)

]∣∣∣ =
∣∣∣Eπ [R(s, a) + E [V ∗(s′) | s, a]− f̂(s, a)

]∣∣∣
≤ Eπ

[∣∣∣R(s, a) + E [V ∗(s′) | s, a]− f̂(s, a)
∣∣∣]

≤ Eπ
[∣∣∣E [V ∗(s′) | s, a]− E

[
V̂ (s′) | s, a

]∣∣∣+
∣∣∣R(s, a) + E

[
V̂ (s′) | s, a

]
− f̂(s, a)

∣∣∣]
≤ Eπ

[∣∣∣V ∗(s′)− V̂ (s′)
∣∣∣+
∣∣∣(T V̂ )(s, a)− f̂(s, a)

∣∣∣] ,
where the last inequality is Jensen’s inequality.

From the definition of V̂ (s′), we have

Eπ
[∣∣∣V ∗(s′)− V̂ (s′)

∣∣∣] ≤ Eπ [∣∣∣max
a
Q∗(s′, a)−max

a′
f̂(s′, a′)

∣∣∣]
≤ Eπ◦π̃

[∣∣∣Q∗(s′, a′)− f̂(s′, a′)
∣∣∣] .

In the last inequality, we define π̃ to be the greedy one between two actions, that is we set
π̃(s′) = argmaxa′ max{Q∗(s′, a′), f̂(s′, a′)}. This expression has the same form as the initial one,
while at the next timestep. Keep unrolling yields

Eπ
[
Q∗(sh, ah)− f̂h(sh, ah)

]
≤

H−1∑
τ=h

max
πτ
Eπτ

[∣∣∣(Tτ V̂τ+1)(xτ , aτ )− f̂τ (xτ , aτ )
∣∣∣]

≤
H−1∑
τ=h

max
πτ

√
Eπτ

[[
(Tτ V̂τ+1)(xτ , aτ )− f̂τ (xτ , aτ )

]2
]

≤
H−1∑
τ=h

√
κAEρ+3

τ−3

[[
(Tτ V̂τ+1)(xτ , aτ )− f̂τ (xτ , aτ )

]2
]
, (B.2)

where the last inequality is due to condition (5.5).
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Further, we have that with probability at least 1− δ,

Eρ+3
τ−3

[(
(Tτ V̂τ+1)(xτ , aτ )− f̂τ (xτ , aτ )

)2
]

= Eρ+3
τ−3

[(
Rτ (xτ , aτ ) + V̂τ+1(xτ+1)− f̂τ (xτ , aτ )

)2

−
(
Rτ (xτ , aτ ) + V̂τ+1(xτ+1)− (Tτ V̂τ+1)(xτ , aτ )

)2
]

= E
[
LDτ ,Rτ (f̂τ , V̂τ+1)

]
− E

[
LDτ ,Rτ (Tτ V̂τ+1, V̂τ+1)

]
≤ 256H2d2 log(2n|Φ|H/δ)

n
. (Step (*), Lemma B.3)

Plugging this back into the overall value performance difference, the bound is

V ∗ − V π̂ ≤ H2
√
κA

√
256H2d2 log(2n|Φ|H/δ)

n
.

Setting RHS to be less than β and reorganize, we get

n ≥ 256H6d2κA log(2n|Φ|H/δ)
β2

.

A sufficient condition for the inequality above is

n ≥ 512H6d2κA

β2
log

(
256H6d2κA

β2

)
+

512H6d2κA

β2
log
(

2|Φ|H
δ

)
,

which completes the proof.

Corollary B.2 (Planning for a reward class with full representation class). Assume that we have

the exploratory dataset {D}0:H−1 (collected from ρ+3
h−3 and satisfies (5.5) for all h ∈ [H]), and we

are given a finite deterministic reward classR ⊂ (S ×A → [0, 1]). For δ ∈ (0, 1) and any reward

function R ∈ R, if we set

n ≥ 512H6d2κA

β2
log

(
256H6d2κA

β2

)
+

512H6d2κA

β2
log
(

2|Φ||R|H
δ

)
,

then with probability at least 1− δ, the policy π̂ returned by FQI-FULL-CLASS satisfies

Eπ̂

[
H−1∑
h=0

Rh(sh, ah)

]
≥ max

π
Eπ

[
H−1∑
h=0

Rh(sh, ah)

]
− β.
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Proof. For any fixed reward R ∈ R, we apply Lemma B.1 and get that with probability 1− δ′,

Eπ̂

[
H−1∑
h=0

Rh(sh, ah)

]
≥ max

π
Eπ

[
H−1∑
h=0

Rh(sh, ah)

]
− β,

if we set

n ≥ 512H6d2κA

β2
log

(
256H6d2κA

β2

)
+

512H6d2κA

β2
log
(

2|Φ|H
δ′

)
.

Union bounding over R ∈ R and setting δ = δ′/|R| gives us the desired result.

Lemma B.3 (Deviation bound for Lemma B.1). Given a deterministic reward function R(=

R0:H−1 : S × A → [0, 1]) and a dataset {D}0:H−1 (collected from ρ+3
h−3) or {Do}0:H−1 (collected

from ρ+2
h−2), whereDh orDo

h is {s(i)
h , a

(i)
h , s

(i)
h+1}ni=1. With probability at least 1−δ, ∀h ∈ [H], Vh+1 ∈

Vh+1(Rh+1), we have

∣∣∣E [LDh,Rh(f̂h,Rh , Vh+1)
]
− E [LDh,Rh(ThVh+1, Vh+1)]

∣∣∣ ≤ 256H2d2 log(2n|Φ|H/δ)
n

,

or ∣∣∣E [LDo
h,Rh

(f̂h,Rh , Vh+1)
]
− E

[
LDo

h,Rh
(ThVh+1, Vh+1)

]∣∣∣ ≤ 256H2d2 log(2n|Φ|H/δ)
n

.

Here, Vh+1(Rh+1) := {clip[0,H] (maxa fh+1(sh+1, a)) : fh+1 ∈ Fh+1(Rh+1)} for h ∈ [H − 1] and

VH = {0} is the clipped state-value function class, and Fh(Rh) := {Rh + 〈φh, wh〉 : ‖wh‖2 ≤
H
√
d, φh ∈ Φh} for h ∈ [H − 1] is the Q-value function class.

Recall the definition, we get f̂h,Rh = Rh + f̂h, where f̂h = argminfh∈Fh(0) LDh(fh, Vh+1),
Fh(0) := {〈φh, wh〉 : ‖wh‖2 ≤ H

√
d, φh ∈ Φh}, and LDh(fh, Vh+1) :=

∑n
i=1(fh(s

(i)
h , a

(i)
h ) −

Vh+1(s
(i)
h+1))2. Therefore we have the following: LDh,Rh(f̂h,Rh , Vh+1) = LDh(f̂h, Vh+1) and

LDh,Rh(ThVh+1, Vh+1) = LDh(ThVh+1 − Rh, Vh+1) = LDh(〈φ∗h, θ∗Vh+1
〉, Vh+1). We can similarly

define the notation for Do
h.

Proof. We only present the proof for Dh and the proof for Do
h follows the same steps by changing

ρ+3
h−3 and Dh to ρ+2

h−2 and Do
h respectively.

Firstly, we fix h ∈ [H]. Noticing the structure of Fh(0), we can associate any fh ∈ Fh(0) with
φh ∈ Φh and wh that satisfies ‖wh‖2 ≤ H

√
d. Therefore, we can equivalently write LDh(fh, Vh+1)

as LDh(φh, wh, Vh+1). Also noticing the structure of Vh+1(Rh+1), we can directly apply Lemma B.8
with ρ = ρ+3

h−3, Φ′ = Φh, Φ′′ = Φh+1, B = H
√
d, L = H ,R = {R}, and π′ to be the greedy policy

π′(sh+1) = argmaxa′(R(sh+1, a
′) + 〈φ′(sh+1, a

′), θ〉).
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This implies that for all ‖wh‖2 ≤ H
√
d, φh ∈ Φh, and Vh+1 ∈ Vh+1(Rh+1), with probability at

least 1− δ′, we have∣∣∣Lρ+3
h−3

(φh, wh, Vh+1)− Lρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
∣∣∣

≤ 2
(
LDh(φh, wh, Vh+1)− LDh(φ∗h, θ

∗
Vh+1

, Vh+1)
)

+
128H2d log(2/δ′)

n
.

From the definition, we have f̂h = argminfh∈Fh(0) LDh(fh, Vh+1). Noticing the structure of Fh(0),
we can write f̂h = 〈φ̂h, ŵh〉, where φ̂h, ŵh = argminφh∈Φh,‖wh‖2≤H

√
d LDh(φh, wh, Vh+1) (here we

abuse the notation of φ̂h, which is reserved for the learnt feature).
Since φ∗h ∈ Φh and ‖θ∗Vh+1

‖2 ≤ H
√
d from Lemma 5.1, we get

∣∣∣Lρ+3
h−3

(φ̂h, ŵh, Vh+1)− Lρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
∣∣∣ ≤ 128H2d log(2/δ′)

n
.

Perform the same union bound as Lemma B.8, and additionally union bound over h ∈ [H], and
set δ = δ′/

(
|Φ|2|Wh||Θh|H

)
, with probability at least 1− δ, we have

∣∣∣Lρ+3
h−3

(φ̂h, ŵh, Vh+1)− Lρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
∣∣∣ ≤ 128H2d log(2|Φ|2H(2n)2d/δ)

n
. (B.3)

Finally, relaxing the rhs in the inequality above and noticing by definition E
[
LDh(f̂h, Vh+1)

]
=

Lρ+3
h−3

(φ̂h, ŵh, Vh+1) and E [LDh,Rh(ThVh+1, Vh+1)] = Lρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1), we complete the
proof.

B.1.3 Elliptical planner

In this part, we show the sample complexity of elliptical planner (FQI-ELLIPTICAL), which is
specialized in planning for the elliptical reward class defined in Lemma B.4. The Q-value function
class consists of linear function of all features in the feature class with reward appended. Specifically,
we have Fh(Rh) := {Rh + 〈φh, wh〉 : ‖wh‖2 ≤

√
d, φh ∈ Φh}, h ∈ [H]. We still use the full

representation class, but with a different bound on the norm of the parameters when compared with
FQI-FULL-CLASS.

Lemma B.4 (Elliptical planner). Assume that we have the exploratory dataset {D}0:H−1 (collected

from ρ+3
h−3 and satisfies (5.5) for all h ∈ [H]). For δ ∈ (0, 1) and any deterministic elliptical

reward function R ∈ R, where R := {R0:H−1 : R0:H−2 = 0, RH−1 ∈ {φ>H−1Γ−1φH−1 : φH−1 ∈
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ΦH−1,Γ ∈ Rd×d, λmin(Γ) ≥ 1}}, if we set

n ≥ 584H4d3κA

β2
log

(
292H4d3κA

β2

)
+

584H4d3κA

β2
log
(

2|Φ|H
δ

)
,

then with probability at least 1− δ, the policy π̂ returned by FQI-ELLIPTICAL satisfies

Eπ̂

[
H−1∑
h=0

Rh(sh, ah)

]
≥ max

π
Eπ

[
H−1∑
h=0

Rh(sh, ah)

]
− β.

Remark: notice that the elliptical reward function only has a non-zero value at timestep H − 1.

Proof. The proof follows the same steps in Lemma B.1. Since we consider a deterministic elliptical
reward function class here, we apply Lemma B.5 instead of Lemma B.3 in Step (*). Then following
a similar calculation gives us the result immediately.

Lemma B.5 (Deviation bound for Lemma B.4). Consider the deterministic elliptical reward

function classes R := {R0:H−1 : R0:H−2 = 0, RH−1 ∈ RH−1 := {φ>H−1Γ−1φH−1 : φH−1 ∈
ΦH−1,Γ ∈ Rd×d, λmin(Γ) ≥ 1}}, an exploratory dataset Dh := {(s(i)

h , a
(i)
h , x

(i)
h+1)}ni=1 collected

from ρ+3
h−3, h ∈ [H]. With probability at least 1 − δ, ∀R ∈ R, h ∈ [H − 1], Vh+1 ∈ Vh+1(Rh+1),

we have ∣∣∣E [LDh,Rh(f̂h,Rh , Vh+1)
]
− E [LDh,Rh(ThVh+1, Vh+1)]

∣∣∣ ≤ 292d3 log(2n|Φ|H/δ)
n

.

Here, Vh+1(Rh+1) := {clip[0,1] (maxa fh+1(sh+1, a)) : fh+1 ∈ Fh+1(Rh+1)} for h ∈ [H − 1] and

VH = {0} is the clipped state-value function class, and Fh(Rh) := {Rh + 〈φh, wh〉 : ‖wh‖2 ≤√
d, φh ∈ Φh} for h ∈ [H − 1] is the reward dependent Q-value function class.

Proof. First, from Lemma B.10, we know that there exists a γ-cover CRH−1
for the reward class

RH−1. From the definition ofR, we know that CR := {R0:H−1 : R0:H−2 = 0, RH−1 ∈ CRH−1
} is a

γ-cover of reward classR and |CR| = |CRH−1
|.

For any fixed R̃ ∈ CR, we can follow the same steps in Lemma B.3 to get a concentration result
like (B.3). The only differences are that the norm of wh is now bounded by

√
d instead of H

√
d

and we clip to [0, 1]. Therefore, for this fixed R̃, with probability at least 1 − δ′, we have that
∀h ∈ [H − 1], Ṽh+1 ∈ Vh+1(R̃h+1),

∣∣∣E [LDh,R̃h(f̂h,R̃h , Ṽh+1)
]
− E

[
LDh,R̃h(ThVh+1, Vh+1)

]∣∣∣ ≤ 128 log(|Φ|2|(2n)2dH/δ′)

n
.
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Union bounding over all R̃ ∈ CR and set δ = δ′/|CR|, with probability at least 1− δ, we have

∣∣∣E [LDh,R̃h(f̂h,R̃h , Vh+1)
]
− E

[
LDh,R̃h(ThṼh+1, Ṽh+1)

]∣∣∣ ≤ 128d log(|Φ|2|(2n)2d|CR|H/δ)
n

.

Notice that CR is a γ-cover ofR, for any R ∈ R, there exists R̃ ∈ CR, so that ‖Rh− R̃h‖∞ ≤ γ.
Therefore ∀fh ∈ Fh(Rh) and Vh ∈ Vh(Rh), there exists some f̃h ∈ F(R̃h) and Ṽh ∈ V(R̃h) that
satisfies ‖f̃h − fh‖∞ ≤ γ and ‖Ṽh − Vh‖∞ ≤ γ. Hence, for any R ∈ R, with probability at least
1− δ, ∣∣∣E [LDh,Rh(f̂h,Rh , Vh+1)

]
− E [LDh,Rh(ThVh+1, Vh+1)]

∣∣∣
≤
∣∣∣E [LDh,R̃h(f̂h,R̃h , Ṽh+1)

]
− E

[
LDh,R̃h(ThṼh+1, Ṽh+1)

]∣∣∣+ 36
√
dγ

≤ 128d log(|Φ|2|(2n)2d|CR|H/δ)
n

+ 36
√
dγ

≤ 292d3 log(2n|Φ|H/δ)
n

.

The last inequality is obtained by choosing γ =
√
d
n

and noticing |CR| = |ΦH−1|(2
√
d/γ)d

2 ≤
|Φ|(2n)d

2 . This completes the proof.

B.1.4 Planning for a reward class with learnt representation function

In this part, we will show that the learnt feature φ̄ enables the downstream policy optimization
for a finite deterministic reward class R. The sample complexity is shown in Lemma B.6. We
will choose FQI-REPRESENTATION as the planner, where the Q-value function class only consists
of linear function of learnt feature φ̄ with reward appended. Specifically, we have Fh(Rh) :=

{Rh + clip[0,H]

(
〈φ̄h, wh〉

)
: ‖wh‖2 ≤ B}, h ∈ [H]. In addition to constructing the function class

with learnt feature itself, we also perform clipping in Fh(Rh). This clipping variant helps us avoid
the poly(B) dependence in the sample complexity bound. Notice that clipped Q-value function
classes also work for FQI-FULL-CLASS and FQI-ELLIPTICAL, and would save d factor. We only
introduce this variant here because B is much larger than H

√
d or d.

Lemma B.6 (Planning for a reward class with a learnt representation function). Assume that we

have the exploratory dataset {D}0:H−1 (collected from ρ+3
h−3 and satisfies (5.5) for all h ∈ [H]),

a learned feature φ̄h that satisfies the condition in (5.6), and a finite deterministic reward class

R ⊂ (S ×A → [0, 1]). For δ ∈ (0, 1) and any reward function R ∈ R, if we set

n ≥ 200H6dκA

β2
log

(
100H6dκA

β2

)
+

200H6dκA

β2
log
(

2|R|B
δ

)
,
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then with probability at least 1− δ, the policy π̂ returned by FQI-REPRESENTATION satisfies

Eπ̂

[
H−1∑
h=0

Rh(sh, ah)

]
≥ max

π
Eπ

[
H−1∑
h=0

Rh(sh, ah)

]
− β − 2H2

√
κAεapx.

Proof. Following similar steps in the proof of Lemma B.1 and replacing Lemma B.3 with
Lemma B.7 in Step(*), with probability at least 1− δ, we have

V ∗ − V π̂ ≤H2
√
κA

√
100H2d log(2n|R|B/δ)

n
+ 3εapx

≤H2
√
κA

√
100H2d log(2n|R|B/δ)

n
+ 2H2

√
κAεapx.

Setting rhs to be less than β + 2H2
√
κAεapx and reorganize, we get the condition

n ≥ 100H6dκA log(2n|R|B/δ)
β2

.

A sufficient condition for the inequality above is

n ≥ 200H6dκA

β2
log

(
100H6dκA

β2

)
+

200H6dκA

β2
log
(

2|R|B
δ

)
,

which completes the proof.

Lemma B.7 (Deviation bound for Lemma B.6). Assume that we have an exploratory dataset

Dh :=
{

(s
(i)
h , a

(i)
h , x

(i)
h+1)

}n
i=1

collected from ρ+3
h−3, h ∈ [H], a learned feature φ̄h that satisfies the

condition in (5.6), and a finite deterministic reward class R ⊂ (S × A → [0, 1]). Then, with

probability at least 1− δ, ∀R ∈ R, h ∈ [H], Vh+1 ∈ Vh+1(Rh+1), we have

∣∣∣E [LDh,Rh(f̂h,Rh , Vh+1)
]
− E [LDh,Rh(ThVh+1, Vh+1)]

∣∣∣ ≤ 100H2d log(2n|R|B/δ)
n

+ 3εapx.

Here Vh+1(Rh+1) := {clip[0,H] (maxa fh+1(sh+1, a)) : fh+1 ∈ Fh+1(Rh+1)} for h ∈ [H − 1], and

VH = {0} is the clipped state-value function class and Fh(Rh) := {Rh + clip[0,H]

(
〈φ̄h, wh〉

)
:

‖wh‖2 ≤ B} for h ∈ [H − 1] is the reward dependent Q-value function class.

Recall the definition, we have f̂h,Rh = Rh + f̂h, where f̂h = argminfh∈Fh(0) LDh(fh, Vh+1),

LDh(fh, Vh+1) :=
∑n

i=1

(
fh(s

(i)
h , a

(i)
h )− Vh+1(s

(i)
h+1)

)2

, and Fh(0) := {clip[0,H]

(
〈φ̄h, wh〉

)
:

‖wh‖2 ≤ B}. Therefore we get the following: LDh,Rh(f̂h,Rh , Vh+1) = LDh(f̂h, Vh+1) and
LDh,Rh(ThVh+1, Vh+1) = LDh(ThVh+1 −Rh, Vh+1) = LDh(〈φ∗h, θ∗Vh+1

〉, Vh+1).
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Proof. First, we show that condition (5.6) implies following condition for all h ∈ [H]: Vh+1 ∈
{clip[0,H] (maxa(Rh+1(sh+1, a) + clip[0,H] (〈φh+1(sh+1, a), θ〉))) : φh+1 ∈ Φh+1, ‖θ‖2 ≤ B,R ∈
R}. Let w̄Vh+1

= argmin‖wh‖2≤B LDh(φ̄h, wh, Vh+1) with B ≥ H
√
d, we have

Eρ+3
h−3

[(〈
φ̄h(sh, ah), w̄Vh+1

〉
− E [Vh+1(sh+1)|sh, ah]

)2
]
≤ εapx.

This is due to the order of taking max and clipping doesn’t matter:

clip[0,H]

(
max
a

(
Rh+1(sh+1, a) + clip[0,H] (〈φh+1(sh+1, a), θ〉)

))
= clip[0,H]

(
max
a

(Rh+1(sh+1, a) + 〈φh+1(sh+1, a), θ〉)
)
.

Then we follow the similar structure as Lemma B.8. We fix R ∈ R, h ∈ [H], ‖wh‖2 ≤ B, and
Vh+1 ∈ Vh+1(Rh+1) (equivalently wh+1). We also fix θ̃Vh+1

, where θ̃Vh+1
satisfies ‖θ̃Vh+1

‖2 ≤ B

and for all (sh, ah),
∣∣〈φ∗h(sh, ah), θ̃Vh+1

〉
−E[V (sh+1)|sh, ah]

∣∣ =
∣∣〈φ∗h(sh, ah), θ̃Vh+1

− θ∗Vh+1

〉∣∣ ≤ γ.
Then we show a high probability bound on the following deviation term: |Lc

ρ+3
h−3

(φ̄h, wh, Vh+1)−

Lc
ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)− (Lc

Dh(φ̄h, wh, Vh+1)− Lc
Dh(φ∗h, θ̃Vh+1

, Vh+1))|.
Since we apply clipping here, we define Lc

ρ+3
h−3

(φh, wh, Vh+1) := Eρ+3
h−3

[(clip[0,H] (〈φh, wh〉) −
Vh+1)2] and Lc

Dh as its empirical version.

Let gh(sh, ah) = clip[0,H]

(〈
φ̄h(sh, ah), wh

〉)
and g̃h(sh, ah) = clip[0,H]

(〈
φ∗h(sh, ah), θ̃Vh+1

〉)
.

For random variable variable Y := (gh(sh, ah)− Vh+1(sh+1))2 − (g̃h(sh, ah)− Vh+1(sh+1))2, we
have:

E[Y ] = E
[
(gh(sh, ah)− Vh+1(sh+1))2 − (g̃h(sh, ah)− Vh+1(sh+1))2]

= E [(gh(sh, ah) + g̃h(sh, ah)− 2Vh+1(sh+1)) (gh(sh, ah)− g̃h(sh, ah))]

= E
[
(gh(sh, ah)− g̃h(sh, ah))2]
− 2E [(E[Vh+1(sh+1)|sh, ah)]− g̃h(sh, ah)) (gh(sh, ah)− g̃h(sh, ah))] .

Here the expectation is taken over ρ+3
h−3.

Noticing the approximation assumption of θ̃Vh+1
, and gh(sh, ah) and g̃h(sh, ah) are bounded by

[0, H], we have

∣∣E[Y ]− E
[
(gh(sh, ah)− g̃h(sh, ah))2]∣∣≤2 |[E[Vh+1(sh+1)|sh, ah)]− g̃h(sh, ah)]| ‖gh − g̃h‖∞

≤2H
∥∥∥〈φ∗h, θ∗Vh+1

〉
−
〈
φ∗h, θ̃Vh+1

〉∥∥∥
∞
≤ 2Hγ.

Next, for the variance of the random variable, notice that gh(sh, ah) and g̃h(sh, ah) are bounded by
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[0, H], we have:

V[Y ] ≤ E
[
Y 2
]

= E
[
(gh(sh, ah) + g̃h(sh, ah)− 2Vh+1(sh+1))2 (gh(sh, ah)− g̃h(sh, ah))2]

≤ 4H2E
[
(gh(sh, ah)− g̃h(sh, ah))2]

≤ 4H2 (E [Y ] + 2Hγ) .

Noticing Y ∈ [−4H2, 4H2] and applying Bernstein’s inequality, with probability at least 1− δ′, we
can bound the deviation term above as:∣∣∣Lc

ρ+3
h−3

(φ̄h, wh, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)

−
(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ∗h, θ̃Vh+1
, Vh+1)

) ∣∣∣
≤
√

2V[Y ] log(2/δ′)

n
+

4H2 log(2/δ′)

3n

≤
√

(8H2E[Y ] + 16H3γ) log(2/δ′)

n
+

4H2 log(2/δ′)

3n

≤
√

8H2E[Y ] log(2/δ′)

n
+

√
16H3γ log(2/δ′)

n
+

4H2 log(2/δ′)

3n

≤ 1

2
E[Y ] +

4H2 log(2/δ′)

n
+

4H2 log(2/δ′)

n
+

4H2 log(2/δ′)

3n
,

where we set γ = H
n

.
Substituting the definition of Y into this equation and reorganize, we obtain∣∣∣Lc

ρ+3
h−3

(φ̄h, wh, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)

−
(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ∗h, θ̃Vh+1
, Vh+1)

) ∣∣∣
≤ 1

2

(
Lc
ρ+3
h−3

(φ̄h, wh, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)

)
+

10H2 log(2/δ′)

n
.

Further, consider a finite point-wise cover of the function class Gh := {gh(sh, ah) =

〈φ̄h(sh, ah), wh〉 : ‖wh‖2 ≤ B}. Note that, with a `2-cover Wh of Wh = {‖wh‖2 ≤ B} at
scale γ, we have for all (sh, ah), there exists w̃h ∈ Wh, ‖〈φ̄h, wh − w̃h〉‖∞ ≤ γ. Similarly,
for any Vh+1 ∈ Vh+1(Rh+1), we know that E[Vh+1(sh+1)|sh, ah] =

〈
φ∗h(sh, ah), θ

∗
Vh+1

〉
for some

‖θ∗Vh+1
‖2 ≤ B. Thus, we choose Wh+1 as an `2-cover of the set {wh+1 ∈ Rd : ‖wh+1‖2 ≤ B}

at scale γ. For all Vh+1(·) = clip[0,H]

(
maxa

(
Rh+1(·, a) +

〈
φ̄h+1(·, a), wh+1

〉))
∈ Vh+1(Rh+1),

there exists w̃h+1 ∈ Wh+1 such that ‖w̃h+1 − wh+1‖2 ≤ γ. This implies that for Ṽh+1(·) =

clip[0,H]

(
maxa

(
Rh+1(·, a) +

〈
φ̄h+1(·, a), w̃h+1

〉))
, we have ‖Vh+1 − Ṽh+1‖∞ ≤ γ. Therefore,

for θ̃Vh+1
= θ∗

Ṽh+1
, we have

∣∣〈φ∗h(sh, ah), θ̃Vh+1

〉
− E[V (sh+1)|sh, ah]

∣∣ =
∣∣E[Ṽ (sh+1)|sh, ah] −
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E[V (sh+1)|sh, ah]
∣∣ ≤ γ. Via standard argument, we can set |Wh+1| =

(
2B
γ

)d
and |Wh| =

(
2B
γ

)d
,

which implies |Wh+1| ≤
(

2nB
H

)d and |Wh| ≤
(

2nB
H

)d.
Thus, applying a union bound over elements inWh,Wh+1, with probability 1− |Wh||Wh+1|δ′,

for all wh ∈ Wh and Vh+1 ∈ Vh+1(Rh+1), we have:

Lc
ρ+3
h−3

(φ̄h, wh, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)

≤
∣∣∣Lc

ρ+3
h−3

(φ̄h, wh, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
∣∣∣

≤
∣∣∣Lc

ρ+3
h−3

(φ̄h, wh, Vh+1)− Lc
ρ+3
h−3

(φ̄h, w̃h, Vh+1)
∣∣∣

+
∣∣∣Lc

ρ+3
h−3

(φ̄h, w̃h, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)

∣∣∣
+
∣∣∣Lc

ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)− Lc

ρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
∣∣∣

≤ 2Hγ + 2
(
Lc
Dh(φ̄h, w̃h, Vh+1)− Lc

Dh(φ∗h, θ̃Vh+1
, Vh+1)

)
+

10H2 log(2/δ′)

n
+ 2Hγ

≤ 4Hγ +
10H2 log(2/δ′)

n
+ 2

(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ∗h, θ̃Vh+1
, Vh+1)

)
+ 4Hγ

= 8Hγ +
10H2 log(2/δ′)

n
+ 2

(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ̄h, w̃Vh+1
, Vh+1)

)
+ 2

(
Lc
Dh(φ̄h, w̃Vh+1

, Vh+1)− Lc
Dh(φ∗h, θ̃Vh+1

, Vh+1)
)

≤ 8Hγ +
10H2 log(2/δ′)

n
+ 2

(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ̄h, w̃Vh+1
, Vh+1)

)
+ 3

(
Lc
ρ+3
h−3

(φ̄h, w̃Vh+1
, Vh+1)− Lc

ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)

)
+

20H2 log(2/δ′)

n

≤ 8Hγ +
30H2 log(2/δ′)

n
+ 2

(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ̄h, w̃Vh+1
, Vh+1)

)
+ 3

(
Lc
ρ+3
h−3

(φ̄h, w̃Vh+1
, Vh+1)− Lc

ρ+3
h−3

(φ̄h, w̄Vh+1
, Vh+1)

)
+ 3

(
Lc
ρ+3
h−3

(φ̄h, w̄Vh+1
, Vh+1)− Lc

ρ+3
h−3

(φ∗h, θ̃Vh+1
, Vh+1)

)
≤ 8Hγ +

30H2 log(2/δ′)

n
+ 2

(
Lc
Dh(φ̄h, wh, Vh+1)− LDh(φ̄h, w̃Vh+1

, Vh+1)
)

+ 6Hγ + 3
(
Lc
ρ+3
h−3

(φ̄h, w̄Vh+1
, Vh+1)− Lc

ρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
)

+ 6Hγ

≤ 20Hγ +
30H2 log(2/δ′)

n
+ 2

(
Lc
Dh(φ̄h, wh, Vh+1)− Lc

Dh(φ̄h, w̃Vh+1
, Vh+1)

)
+ 3εapx.

In the second last inequality, the construction ofWh tells us that there exists w̃Vh+1
∈ Wh satisfies
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‖w̃Vh+1
− w̄Vh+1

‖2 ≤ γ. In the last inequality, we notice that

Eρ+3
h−3

[(
clip[0,H]

(〈
φ̄h(sh, ah), w̄Vh+1

〉)
− E [Vh+1(sh+1)|sh, ah]

)2
]

≤ Eρ+3
h−3

[(〈
φ̄h(sh, ah), w̄Vh+1

〉
− E [Vh+1(sh+1)|sh, ah]

)2
]
≤ εapx

From the definition, we have f̂h = argminfh∈Fh(0) Lc
Dh(fh, Vh+1). Noticing the structure of Fh(0),

we can write f̂h = clip[0,H]

(
〈φ̄h, ŵh〉

)
, where ŵh = argmin‖wh‖2≤B L

c
Dh(φ̄h, wh, Vh+1). This

implies Lc
Dh(φ̄h, ŵh, Vh+1)− Lc

Dh(φ̄h, w̃Vh+1
, Vh+1) ≤ 0.

Union bounding over h ∈ [H] and R ∈ R, and set δ = δ′/
(
|Wh||Wh+1||R|H

)
, we get that

with probability at least 1− δ,

∣∣∣Lc
ρ+3
h−3

(φ̄h, ŵh, Vh+1)− Lc
ρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1)
∣∣∣ ≤ 100H2d log 2nB|R|

δ

n
+ 3εapx.

Finally, noticing the property that E
[
LDh(f̂h, Vh+1)

]
= Lc

ρ+3
h−3

(φ̄h, ŵh, Vh+1) and
E [LDh,Rh(ThVh+1, Vh+1)] = Lρ+3

h−3
(φ∗h, θ

∗
Vh+1

, Vh+1) = Lc
ρ+3
h−3

(φ∗h, θ
∗
Vh+1

, Vh+1), we complete
the proof.

B.2 Auxiliary Lemmas for Chapter 5

B.2.1 Proof of Lemma 5.1

In this part, we provide the proof of Lemma 5.1 for completeness. This result is widely used
throughout the paper.

Lemma (Restatement of Lemma 5.1). For a low-rank MDPM with embedding dimension d, for

any function f : S → [0, 1], we have:

E [f(sh+1)|sh, ah] =
〈
φ∗h(sh, ah), θ

∗
f

〉
where θ∗f ∈ Rd and we have ‖θ∗f‖2 ≤

√
d. A similar linear representation is true for

Ea∼πh+1
[f(sh+1, a)|sh, ah] where f : S ×A → [0, 1] and a policy πh+1 : S → ∆(A).

218



Proof. For state-value function f , we have

E [f(sh+1)|sh, ah] =

∫
f(sh+1)Th(sh+1|sh, ah)d(sh+1)

=

∫
f(sh+1) 〈φ∗h(sh, ah), µ∗h(sh+1)〉 d(sh+1)

=

〈
φ∗h(sh, ah),

∫
f(sh+1)µ∗h(sh+1)d(sh+1)

〉
=
〈
φ∗h(sh, ah), θ

∗
f

〉
,

where θ∗f :=
∫
f(sh+1)µ∗h(sh+1)d(sh+1) is a function of f . Additionally, we obtain ‖θ∗f‖2 ≤

√
d

from Definition 5.1.
For Q-value function f , we similarly have

Ea∼πh+1
[f(sh+1, a)|sh, ah] =

〈
φ∗h(sh, ah), θ

∗
f

〉
,

where θ∗f :=
∫ ∫

f(sh+1, ah+1)π(ah+1|sh+1)µ∗h(sh+1)d(sh+1)d(ah+1) and ‖θ∗f‖2 ≤
√
d.

B.2.2 Deviation bound for regression with squared loss

In this section, we derive a generalization error bound for squared loss for a class F which subsumes
the discriminator classes Fh and Gh in the main text. When we apply Lemma B.8, (s(i), a(i), s′(i))

tuples usually stands for (s
(i)
h , a

(i)
h , s

(i)
h+1) tuples, and function classes Φ and Φ′ usually refers to Φh

and Φh+1. In the proof of Lemma B.8, we abuse the notation of F , G, and Φ, and they are different
from Fh, Gh, and Φ in the main text.

Lemma B.8. For a dataset D :=
{

(s(i), a(i), s′(i))
}n
i=1
∼ ρ, finite feature classes Φ and Φ′ and

finite reward function classR : S ×A → [0, 1], we can show that, with probability at least 1− δ:

∣∣Lρ(φ,w, f)− Lρ(φ∗, θ∗f , f)−
(
LD(φ,w, f)− LD(φ∗, θ∗f , f)

)∣∣
≤ 1

2

(
Lρ(φ,w, f)− Lρ(φ∗, θ∗f , f)

)
+

32d(B + L
√
d)2 log(2n|Φ||Φ′||R|/δ)

n

for all φ ∈ Φ, ‖w‖2 ≤ B and function f : S → [0, 1] in class F := {f(s′) =

clip[0,L](Ea′∼π′(s′)[R(s′, a′)+ 〈φ′(s′, a′), θ〉]) : φ′ ∈ Φ′, ‖θ‖2 ≤ B,R ∈ R} for any policy π′

over s′.

Proof. Consider a function f ∈ F such that f(s′) = clip[0,L]

(
E[R(s′, a)+〈φ′(s′, a), θ〉]

)
. Applying

Lemma 5.1, we know that for every such f , there exists some θ∗f , s.t. E[f(s′)|s, a] =
〈
φ∗(s, a), θ∗f

〉
and ‖θ∗f‖ ≤ L

√
d.
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To begin, we introduce notation for the discriminator class with a single reward function R as
F(R) := {f(s′) = clip[0,L](Ea∼π′(s′) [R(s′, a′) + 〈φ′(s′, a′), θ〉]) : φ′ ∈ Φ′, ‖θ‖2 ≤ B}. Then we
fix R ∈ R, φ ∈ Φ, ‖w‖2 ≤ B, f ∈ F(R), and θ̃f , where θ̃f satisfies ‖θ̃f‖2 ≤ L

√
d and for all

(s, a), ∣∣∣〈φ∗(s, a), θ̃f

〉
− E[f(s′|s, a)]

∣∣∣ =
∣∣∣〈φ∗(s, a), θ̃f

〉
− 〈φ∗(s, a), θ∗f〉

∣∣∣ ≤ γ.

We first give a high probability bound on the following deviation term:∣∣∣Lρ(φ,w, f)− Lρ(φ∗, θ̃f , f)−
(
LD(φ,w, f)− LD(φ∗, θ̃f , f)

)∣∣∣ .
Let g(s, a) = 〈φ(s, a), w〉 and g̃(s, a) =

〈
φ∗(s, a), θ̃f

〉
. For the random variable Y :=

(g(s, a)− f(s′, a′))2 − (g̃(s, a)− f(s′, a′))2, we have:

E[Y ] = E
[
(g(s, a)− f(s′, a′))

2 − (g̃(s, a)− f(s′, a′))
2
]

= E [(g(s, a) + g̃(s, a)− 2f(s′, a′)) (g(s, a)− g̃(s, a))]

= E
[(
g(s, a) + g̃(s, a)− 2

(〈
φ∗, θ∗f

〉
+ noise(s, a, s′, a′)

))
(g(s, a)− g̃(s, a))

]
= E

[(
g(s, a)− g̃(s, a)− 2

(〈
φ∗, θ∗f

〉
− g̃(s, a) + noise(s, a, s′, a′)

))
(g(s, a)− g̃(s, a))

]
= E

[
(g(s, a)− g̃(s, a))2 − 2

(〈
φ∗, θ∗f

〉
− g̃(s, a)

)
(g(s, a)− g̃(s, a))

]
.

Here the expectation is taken according to the distribution ρ. In the third equality, for sample
(s, a, s′, a′), we denote f(s′, a′)− E[(f(s′, a′|s, a)] as noise(s, a, s′, a′). The last equality is due to
the fact that

E[noise(s, a, s′, a′) (g(s, a)− g̃(s, a))] =Es,a[Es′,a′|s,a[noise(s, a, s′, a′)(g(s, a)− g̃(s, a)]] = 0.

Noticing the approximation assumption of θ̃f , and g(s, a) and g̃(s, a) is bounded by [B,B] and
[−L
√
d, L
√
d] respectively, we have

∣∣E[Y ]− E
[
(g(s, a)− g̃(s, a))2]∣∣ ≤ 2 ‖g − g̃‖∞

∥∥〈φ∗, θ∗f〉− g̃∥∥∞ ≤ 2(B + L
√
d)γ. (B.4)

Next, for the variance of the random variable, we have:

V[Y ] ≤ E
[
Y 2
]

= E
[
(g(s, a) + g̃(s, a)− 2f(s′, a′))

2
(g(s, a)− g̃(s, a))2

]
≤ 4(B + L

√
d)2E

[
(g(s, a)− g̃(s, a))2]

≤ 4(B + L
√
d)2E[Y ] + 8(B + L

√
d)3γ.

Noticing Y ∈ [−(B + L
√
d)2, (B + L

√
d)2] and applying Bernstein’s inequality, with probability
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at least 1− δ′, we can bound the deviation term above as:∣∣∣Lρ(φ,w, f)− Lρ(φ∗, θ̃f , f)−
(
LD(φ,w, f)− LD(φ∗, θ̃f , f)

)∣∣∣
≤
√

2V[Y ] log(2/δ′)

n
+

4(B + L
√
d)2 log(2/δ′)

3n

≤

√√√√(8(B + L
√
d)2E[Y ] + 16(B + L

√
d)3γ

)
log(2/δ′)

n
+

4(B + L
√
d)2 log(2/δ′)

3n

≤

√
8(B + L

√
d)2E[Y ] log(2/δ′)

n
+

√
16(B + L

√
d)3γ log(2/δ′)

n
+

4(B + L
√
d)2 log(2/δ′)

3n

≤

√
8(B + L

√
d)2E[Y ] log(2/δ′)

n
+

4(B + L
√
d)2 log(2/δ′)

n
+

4(B + L
√
d)2 log(2/δ′)

3n
,

where in the last inequality is obtained by choosing γ = (B+L
√
d)

n
.

Further, consider a finite point-wise cover of the function class G := {g(s, a) = 〈φ(s, a), w〉 :

φ ∈ Φ, ‖w‖2 ≤ B}. Note that, with a `2-cover W of W = {‖w‖2 ≤ B} at scale γ, we
have for all (s, a) and φ ∈ Φ, there exists w̄ ∈ W , |〈φ(s, a), w − w̄〉| ≤ γ. Similarly, for any
f ∈ F(R), we cover the linear term in F(R). We again choose Θ as an `2-cover of the set
{θ ∈ Rd : ‖θ‖2 ≤ B} at scale γ. For all f ∈ F(R), we know that there exists some φ′ so
that f(·) = clip[0,L] (Ea′∼π′ [R(·, a′) + 〈φ′(·, a′), θ〉]) ∈ F(R). Since there exists θ̃ ∈ Θ such

that
∥∥∥θ̃ − θ∥∥∥

2
≤ γ, we know that we can pick f̃ = clip[0,L]

(
Ea′∼π′

[
R(·, a′) +

〈
φ′(·, a′), θ̃

〉])
(which is in our covering set) and get

∣∣∣〈φ∗(s, a), θ̃f − θ∗f
〉∣∣∣ =

∣∣∣E[f(s′|s, a)]− E[f̃(s′|s, a)]
∣∣∣ ≤∥∥∥f̃ − f∥∥∥

∞
≤ γ (here, we use θ̃f = θ∗

f̃
). Via standard argument, we can set |Θ| =

(
2B
γ

)d
and

|W| =
(

2B
γ

)d
, which implies |Θ| ≤ (2n)d and |W| ≤ (2n)d.

Thus, applying a union bound over elements in W , Θ, Φ, Φ′ and R, with probability 1 −
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|Φ||Φ′||W||Θ||R|δ′, for all w ∈ W , φ ∈ Φ and f ∈ F , we have:

∣∣Lρ(φ,w, f)− Lρ(φ∗, θ∗f , f)−
(
LD(φ,w, f)− LD(φ∗, θ∗f , f)

)∣∣
≤
∣∣∣Lρ(φ, w̄, f)− Lρ(φ∗, θ̃f , f)−

(
LD(φ, w̄, f)− LD(φ∗, θ̃f , f)

)∣∣∣+ 4(B + L
√
d)γ

=
∣∣∣Lρ(φ, w̄, f)− Lρ(φ∗, θ̃f , f)−

(
LD(φ, w̄, f)− LD(φ∗, θ̃f , f)

)∣∣∣+
4(B + L

√
d)2

n

≤

√
8(B + L

√
d)2E[Yw̄] log 2

δ′

n
+

4(B + L
√
d)2 log 2

δ′

n
+

4(B + L
√
d)2 log 2

δ′

3n
+

4(B + L
√
d)2

n

≤ 1

2
E[Yw̄] +

4(B + L
√
d)2 log(2/δ′)

n
+

(4 + 4 + 4/3)(B + L
√
d)2 log(2/δ′)

n

≤ 1

2
E[Yw] +

2(B + L
√
d)2

n
+

4(B + L
√
d)2 log(2/δ′)

n
+

(4 + 4 + 4/3)(B + L
√
d)2 log(2/δ′)

n

≤ 1

2

(
Lρ(φ,w, f)− Lρ(φ∗, θ∗f , f)

)
+

16(B + L
√
d)2 log(2/δ′)

n
,

where we add subscript to Y to distinguish Yw̄ := (〈φ(s, a), w̄〉 − f(s′, a′))2− (g̃(s, a)− f(s′, a′))2

from Yw := (〈φ(s, a), w〉 − f(s′, a′))2 − (g̃(s, a)− f(s′, a′))2.
Finally, setting δ = δ′/

(
|Φ||Φ′||W||Θ||R|

)
, we get log(2/δ′) ≤ log(2(2n)2d|Φ||Φ′||R|/δ) ≤

2d log(2n|Φ||Φ′||R|/δ). This completes the proof.

B.2.3 Generalized elliptic potential lemma

Lemma B.9 (Generalized elliptic potential lemma, adapted from Proposition 1 of Carpentier et al.
(2020)). For any sequence of vectors θ∗1, θ

∗
2 . . . , θ

∗
T ∈ Rd×T where ‖θ∗i ‖ ≤ L

√
d, for λ ≥ L2d, we

have:

T∑
t=1

‖Σ−1
t θ∗t+1‖2 ≤ 2

√
dT

λ
.

Proof. Proposition 1 from Carpentier et al. (2020) shows that for any bounded sequence of vectors
θ∗1, θ

∗
2, . . . , θ

∗
T ∈ Rd×T , we have:

T∑
t=1

‖Σ−1
t θ∗t ‖2 ≤

√
dT

λ
.

Now, we have:

Σt = Σt−1 + θ∗t θ
∗>
t � Σt−1 + λId×d � 2Σt−1
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where we use the fact that ‖θ∗t θ∗>t ‖2 ≤ L2d ≤ λ. Using this relation, we can show the property that
for any vector x ∈ Rd, 4x>Σ−2

t x ≥ x>Σ−2
t−1x.

First noticing the above p.s.d. dominance inequality, we have Id×d/2 � Σ
−1/2
t Σt−1Σ

−1/2
t .

Therefore, all the eigenvalues of Σ
−1/2
t Σt−1Σ

−1/2
t (thus Σ−1

t Σt−1) are no less than 1/2. Applying
SVD decomposition, we can get all eigenvalues of matrix Σt−1Σ−2

t Σt−1 = (Σ−1
t Σt−1)>(Σ−1

t Σt−1)

are no less than 1/4. Then consider any vector y ∈ Rd, we have 4y>Σt−1Σ−2
t Σt−1y ≥ y>y. Let

x = Σ−1
y−1y, we get this property.

Applying the above result, we finally have the following:

T∑
t=1

‖Σ−1
t θ∗t+1‖2 ≤ 2

T∑
t=1

‖Σ−1
t θ∗t ‖2 ≤ 2

√
dT

λ
.

B.2.4 Covering lemma for the elliptical reward class

In this part, we provide the statistical complexity of the elliptical reward class. The result is used
when we analyze the elliptical planner.

Lemma B.10 (Covering lemma for the elliptical reward class). For the elliptical reward class

Rh := {φ>h Γ−1φh : φh ∈ Φh,Γ ∈ Rd×d, λmin(Γ) ≥ 1}, where h ∈ [H], there exists a γ-cover CRh
of size |Φh|(2

√
d/γ)d

2
.

Proof. Firstly, for any Γ ∈ Rd×d with λmin(Γ) ≥ 1, applying matrix norm inequality yields
‖Γ‖F ≥

√
d. Further, we have

‖Γ−1‖F ≤
‖Id×d‖F

‖Γ‖F
≤
√
d.

Next, consider the matrix class Ā := {A ∈ Rd×d : ‖A‖F ≤
√
d}. From the definition of the

Frobenius norm, for any A ∈ Ā and any (i, j)-th element, we have |Aij| ≤
√
d. Applying the

standard covering argument for each of the d2 elements, there exists a γ-cover of Ā, whose size is
upper bounded by (2

√
d/γ)d

2 . Denote this γ-cover as Āγ . For any Γ ∈ Rd×d with λmin(Γ) ≥ 1, we
can pick some A ∈ Āγ so that ‖Γ−1 − AΓ‖F ≤ γ. Then for any φh ∈ Φh, we have

|φ>h Γ−1φh − φ>hAΓφh| ≤ sup
v:‖v‖2≤1

|v>(Γ−1 − AΓ)v| ≤ ‖Γ−1 − AΓ‖F ≤ γ.

This implies that CRh := {φ>hAφh : φh ∈ Φh, A ∈ Āγ} is a γ-cover of Rh, which completes the
proof.
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bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011. 76,
156, 159, 204

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and
application to sparse stochastic bandits. In Artificial Intelligence and Statistics, pages 1–9, 2012.
58

Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Interna-
tional Conference on Machine Learning, pages 1220–1228, 2013. 48, 49

Alekh Agarwal, Alexander Rakhlin, and Peter Bartlett. Matrix regularization techniques for online
multitask learning. Technical Report UCB/EECS-2008-138, EECS Department, University
of California, Berkeley, Oct 2008. URL http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-138.html. 110

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of
bandit algorithms. In Conference on Learning Theory, pages 12–38. PMLR, 2017. 100

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. PC-PG: Policy cover directed
exploration for provable policy gradient learning. In Advances in Neural Information Processing
Systems, 2020a. 114

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complex-
ity and representation learning of low rank mdps. Advances in Neural Information Processing
Systems, 2020b. 114, 115, 116, 118, 127, 149, 150

Pierre Alquier, Massimiliano Pontil, et al. Regret bounds for lifelong learning. In Artificial
Intelligence and Statistics, pages 261–269. PMLR, 2017. 169

224

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-138.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-138.html


Haitham B Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task learning
for policy gradient methods. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1206–1214, 2014. 36

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–1853, 2005. 169

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020. 86
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