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Introduction

Consider a reinforcement learning (RL) problem in which an agent
interacts with an unknown environment and the aim is to minimize
the cost.

Finding the optimal policy in an unknown environment brings the
difficulty of dealing with the exploration-exploitation trade-off.

Optimism in the face of uncertainty (OFU) and posterior sampling
(PS) are two popular methods to deal with this trade-off.
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Introduction

OFU method: Agent constructs confidence sets for the unknown
model parameters and finds the optimal policy based on the
optimistic estimates.

PS method: Agent imposes prior distributions over the unknown
model parameters and finds the optimal policy based on the estimates
of the unknown model parameters sampled from the prior
distributions.

Advantage of PS over OFU: In each episode, PS-based
reinforcement learning (PSRL) algorithms need to solve a sampled
MDP rather than solving all MDPs that lie within the confidence sets
(computationally more efficient).
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Literature on PSRL Algorithms

Osband et al. 2013: Proposed a PSRL algorithm for an episodic
problem with fixed-length episodes that admits a Bayesian regret of
Õ(τS

√
AT ), where T is time, τ is the episode length and S and A

are the sizes of the state and action spaces.

Many real-world problems are non-episodic with a continuing and
non-resetting nature (e.g., sequential recommendations).
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Literature on PSRL Algorithms

Ouyang et al. 2017b: Proposed a PSRL algorithm for a
non-episodic problem that admits a Bayesian regret of Õ(HS

√
AT ),

where S and A are the sizes of the state and action spaces, and H is
the bound of the span.

Agrawal an Jia, 2017: Proposed a PSRL algorithm for a
non-episodic problem that admits a high-probability regret of
Õ(D
√
SAT ) for any communicating MDP with S states, A actions

and diameter D.

Neither of them use generalization. That is, they learn separate
parameters corresponding to each state-action pair.

In such a non-parametric case, an observed feedback corresponding to a
state-action pair does not help to improve the estimations for other
state-action pairs.
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Literature on PSRL Algorithms

Theocharous et al. 2018: Considered a parametric setting in which
the structure of the MDP can be determined with an scalar
parameter. They Proposed a PSRL algorithm, called DS-PSRL, for a
non-episodic problem that admits a Bayesian regret bound of
Õ(C
√
C ′T ), which does not depend on the sizes of A and S .

We will discuss this algorithm and the proof sketch.
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High Level Description of DS-PSRL

Deterministic-schedule PRSL (DS-PSRL) Algorithm is episodic

Actual experience is one long trajectory:

(s1, a1, r1), (s2, s2, r2), . . . , (sT , aT , rT )

generated during interaction with a parametrized MDP (S,A, `,Pθ∗),
where the state and action sets S and A can be infinite or even
continuous.

The loss function `(s, a) is known and the transition function
P(s

′ |s, a, θ∗) is unknown.

The agent starts with a prior belief P0 on θ∗.
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High Level Description of Algorithm

In every episode beginning at time t:

Sample θ̃t from Pt (posterior distribution on θ∗ at time t).

Find the optimal policy based on θ̃t .

Follow the optimal policy until we switch to another episode.

Update Pt using the tuples (si , ai , si+1) obtained by interacting with
the MDP during the episode.

Switching Rule: If the length of the current episode is L, the length of the
next episode would be 2L.

This switching rule ensures that the total number of switches is controlled.
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Average Loss Criterion

The long term average loss

J(θ, π, s) = E

[
lim sup
T→∞

1

T

T∑
t=1

`(st , at)
∣∣∣s1 = s

]

The goal is to develop an algorithm that adaptively selects an action
at at every time step t based on the prior information and past
observations to minimize the long term average loss.

Mohammad Zhalechian PSRL for Parameterized MDP April, 2021 10 / 25



Optimality equation and Bayesian regret

The optimal J(θ∗, π∗) is well defined and independent of the starting
state under the mild weakly communicating assumption.

The optimal policy π∗ with state-independent J(θ∗, π∗) satisfies:

J(θ∗, π∗) + h(st) = `(st , at) +

∫
S
P(s|st , at , θ∗)h(s) ∀ s ∈ S,

where h is the bias function and st+1 ∼ P(.|st , at , θ∗).
The Bayesian regret RT can be computed as:

RT = E

[
T∑
t=1

(
`(st , at)− J(θ∗, π∗)

)]
.
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Policy π∗(s, θ̃t)

Within each episode k, the near-optimal action at time t can be
calculated as:

at ← π∗(s, θ̃t),

where θ̃t is the same for all time steps within the episode k .

The policy π∗(st , θ̃t) satisfies:

J(θ̃t) + ht(st) = `(st , at) + E
[
ht(s̃t+1)|Ft , θ̃t

]
.

where Ft is a filteration containing historic information until time t
and s̃t+1 ∼ P(.|st , at , θ̃t).
We assume that there exists H > 0 such that ht(s) ∈ [0,H].
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Assumptions

1 (Lipschitz Dynamics) The exists a constant C such that for any
state s and action a and parameters θ, θ′ ∈ Θ ⊂ R, we have:∥∥P(.|s, a, θ)− P(.|s, a, θ′)

∥∥
1
≤ C |θ − θ′|

This implies that dynamics are parameterized by a scalar parameter
and satisfy a smoothness condition.

2 (Concentrating Posterior) Let Nk be one plus the number of steps
in the first k episodes. Let θ̃k be sampled from the posterior at the
current episode k . Then, there exists a constant C ′ such that:

max
k

E
[
Nk−1

∣∣∣θ∗ − θ̃k ∣∣∣2] ≤ C ′ log(T )

This implies that the variance of the posterior decreases given more
data (i.e., the problem is learnable).
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Decomposing the regret term

RT =
T∑
t=1

E
[(
`(st , at)− J(θ∗, π∗)

)]
=

T∑
t=1

E
[(
`(st , at)− J(θ̃t , π

∗)
)]

by E[g(θ∗)|Ft ] = E[g(θ̃t)|Ft ]

=
T∑
t=1

E
[
ht(st)− E

[
ht(s̃t+1|Ft , θ̃t)

]]
by optimality equation

=
T∑
t=1

E [ht(st)− ht(s̃t+1)]

= E [h1(s1)− hT+1(s̃T+1)]︸ ︷︷ ︸
≤H since h1(s1) ≤ H

+
T∑
t=1

E [ht+1(st+1)− ht(s̃t+1)] .
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Decomposing the regret term

RT ≤
T∑
t=1

E [ht+1(st+1)− ht(s̃t+1)] + H

=
T∑
t=1

E [ht+1(st+1)− ht(st+1)]︸ ︷︷ ︸
Term (I)

+
T∑
t=1

E [ht(st+1)− ht(s̃t+1)]︸ ︷︷ ︸
Term (II)

+H.
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Bounding term (I)

This term is related to sequential changes in ht+1 − ht .

Note that ht+1 − ht = 0 as long as t + 1 and t belong to the same
episode.

It is already controlled by following the switching rule.

Let At be the event that the algorithm has changed its policy at time
t. Thus, we have:

T∑
t=1

E [ht+1(st+1)− ht(st+1)] ≤ H
T∑
t=1

E[1{At}]

T∑
t=1

1{At} ≤ log2(T )⇒
T∑
t=1

E[1{At}] ≤ log2(T ).
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Bounding term (II)

Let K be the total number of episodes up to time T .

Claim 1: Under Assumption 1, the following can be shown (proof is
given in the Appendix):

E

[
T∑
t=1

(
ht(st+1)− ht(s̃t+1)

)]
≤ CH

√√√√TE

[
K∑

k=1

Mk

∣∣∣θ∗ − θ̃k ∣∣∣2
]
,

where Mk is the number of steps in the kth episode.

Claim 2: Under Assumption 2, the following can be shown:

E

[
K∑

k=1

Mk

∣∣∣θ∗ − θ̃k ∣∣∣2
]
≤ 2C ′ log2(T ).
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Bayesian regret bound

RT ≤
T∑
t=1

E [ht+1(st+1)− ht(st+1)]︸ ︷︷ ︸
Term (I)

+
T∑
t=1

E [ht(st+1)− ht(s̃t+1)]︸ ︷︷ ︸
Term (II)

+H

≤ H log2(T )︸ ︷︷ ︸
Term (I)

+CH

√
2C ′T log2(T )︸ ︷︷ ︸
Term (II)

+H .

Theorem

Under Assumptions 1 and 2, the Bayesian regret of DS-PSRL is bounded:

RT = O
(
CH
√
C ′T log(T )

)
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Numerical Results

RiverSwim problem

An agent is swimming in a river and can choose to swim either left or
right (two actions). The river current is from right to left.

The MDP consists of K = 50 states. The agent starts from the
leftmost state (s = 1).

Reward function:

r(1, left) = 5; r(50, right) = 10, 000; r(s, a) = 0 otherwise.

Transition function:

If the agent decides to move left (toward the river current), the agent
is always successful.
If the agent decides to move right (against the river current), the agent
may fail (there is a fail probability).
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Benchmarks

Using simulation, the average reward of different benchmarks are
evaluated.

Four benchmarks are considered:

DS-PSRL: The algorithm we discussed today.
TSDE: A non-parametric PSRL algorithm proposed by Ouyang et al.
2017.
t-mod-1: A policy that switches the action every time-step.
Optimal: The optimal policy obtained using the ground truth model.
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Average reward

The DS-PSRL algorithm outperforms TSDE and t-mod-1, and it performs
comparably to the optimal policy.
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Questions?
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Appendix: Proof of claim 1

First, we have:

T∑
t=1

(
ht(st+1)− ht(s̃t+1)

)

≤

√√√√T
T∑
t=1

(
ht(st+1)− ht(s̃t+1)

)2
by Cauchy-Schwarz .

Next, we have:

ht(st+1)− ht(s̃t+1) ≤
∥∥∥P(.|st , at , θ∗)− P(.|st , at , θ̃t)

∥∥∥
1
‖ht‖∞

≤ CH|θ∗ − θ̃t | by Assumption 1.
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Appendix: Proof of claim 1

Recall that θ̃t+1 = θ̃t as long as t + 1 and t belong to the same episode k.
Let Tk be the length of episode k. Accordingly, we have:

T∑
t=1

(
ht(st+1)− ht(s̃t+1)

)
≤

√√√√T
T∑
t=1

(
CH|θ∗ − θ̃t |

)2

= CH

√√√√T
K∑

k=1

Tk∑
s=1

|θ∗ − θ̃k |2

= CH

√√√√T
K∑

k=1

Mk |θ∗ − θ̃k |2.

Taking expectation on both sides:

E

[
T∑
t=1

(
ht(st+1)− ht(s̃t+1)

)]
≤ CH

√√√√TE

[
K∑

k=1

Mk |θ∗ − θ̃k |2
]
.
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