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Introduction: The Self-Play Problem

Multi-agent sequential decisions

Standard RL: model (maybe implicit) → gather data →
optimize

What if multiple users adopt your algorithm?
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Repeated Games

1 2
1 10, 10 0, 9

2 9, 0 2, 2

Stag Hunt

Each player i = 1, ..., n has reward tensor Ri , action space Ai

Each round, simultaneously choose distributions πi over Ai

Nash equilibrium: Tuple (π∗1, ..., π
∗
n) such that for any i , πi :

E(π∗
1 ,...,π

∗
n )Ri ≥ E(π∗

1 ,...π
∗
i−1,πi ,π

∗
i+1,...,π

∗
n )Ri

Security value: maxπi min(π1,...,πi−1,πi+1,...,πn) E(π1,...,πn)Ri

Repetition ⇒ players adapt πi to past history
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Balancing Several Goals

Powers and Shoham [2004] criteria:

1 Targeted Optimality: optimal policy for target class (e.g.
stationary)

2 Safety: achieve no worse than security value
3 Compatibility: achieve value of an NE in self-play

Challenge: Tradeoff betw adaptation (1) and stability (2, 3)
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State of the Art

Barely any theory so far!

Mostly stateless games, asymptotics rather than regret...

...Or only self-play at expense of other goals [Tossou et al.,
2020]
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The AWESOME Algorithm
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AWESOME: Key Attributes1

1 Learn to play optimally against eventually stationary
opponents.

2 Convergence to Nash Equilibrium in self-play.

1See [Conitzer and Sandholm, 2006]
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Detecting Non-stationarity

Suppose that your opponent is playing a stationary strategy if and
only if:

max
ai∈Ai

|paihi − pai
hprevi
| < εs

where Ai is the set of actions for the i th player, hprevi gives the
previous distribution from the last “epoch” of the game.

In a similar way, we detect if someone is playing the equilibrium.
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Convergence

How do we get theoretical convergence results and not get stuck in
a loop?

Definition

A schedule {εte , εts ,Nt}t∈N is a called valid if

1 εte , ε
t
s decrease monotonically to zero,

2 Nt ↗∞,

3 Πt∈N(1− |A|Σ
[
Nt(εt+1

s )2
]−1

) > 0,

4 Πt∈N(1− |A|Σ
[
Nt(εte)2

]−1
) > 0.

Theorem

A valid schedule exists.
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AWESOME: Upshot of Valid Schedule

Theorem

Under a valid schedule, AWESOME converges to a Nash
Equilibrium in self-play with probability 1.

Instead if opponents are eventually stationary, then AWESOME
converges to a best response with probability 1.
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CMLeS: Adaptive Opponents and Safety Guarantee

C D
C 3, 3 0, 4

D 4, 0 1, 1

Prisoner’s Dilemma and “Tit-for-Tat” strategy

Problem with AWESOME: non-stationary agents

Condition on “state” given by past K joint actions
⇒ Opponents are an “Adversary-Induced MDP”
Stage game NE not necessarily “optimal”

Chakraborty and Stone [2010]: Convergence with Model
Learning and Safety
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High Level

Credit: Peter Stone
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CMLeS Details

1 Play NE for an epoch

2 If action frequencies suggest
not playing the same NE:

Signal (with counter C):
guaranteed to detect
memory-bounded
If all players signaled,
recompute an NE and
return to (1)

3 Solve Adversary-Induced
MDP with R-max

At any step, if rewards less
than security:
arg maxπi min(π1,...,πi−1,πi+1,...,πn) E(π1,...,πn)Ri

Credit: Peter Stone
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A Hidden Question

The set up of the two previous algorithms begs the question: what
is a “good” way to compute a Nash equilibrium?
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Optimistic Nash Value Iteration (Nash-VI)

The overall strategy is:

1 Value iteration with “double” optimism to obtain a greedy
policy π.

2 Execute π, collect samples, and reassess.

Even this sharp-ish algorithm gets complexity:

O
(

Πi∈IAi ·
H3S

ε2

)
where H is the number of steps in each epsiode, S is the number of states, Ai

is the number of actions for player i , and ε is a parameter of closeness to
estimate the equilibrium.2

2See [Liu et al., 2021].
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Complexity Issue

What are some known ways to solve complexity issues?

1 Make additional assumptions.

2 Mean field games (self-play adapts nicely here).
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