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Motivation

m For autonomous vehicles (AVs), how to
model the interactive driving behaviors?
Rule based model
m Interpretable, but not representative

Learning-based model
m  Powerful, but not interpretable

Utility based model /

m Interpretable, flexible, data-efficient
m E.g.: Game theory, optimal control

m However, how to determine the utility
function of human drivers realistically?
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Motivation

m [RL: Learn the cost/reward functions from (human) demonstrations

“Forward” reinforcement learning

Given:

m Statex € X, actionu € U

m (sometimes) transitions p(x'|x, u)
m Reward function r(x, u)

Goal:

m Tolearn w*(u|x)
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Inverse reinforcement learning

Given:

m Statex € X, actionu € U

m (sometimes) transitions p(x'|x, u)
s Samples {¢;} sampled from % (§)
Goal:

m Tolearnrg(x,u)

t\ Reward
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Notation

m State x, Action/Input u

s Demonstration: {; € D,i € 1...|D|

m Policyn

s Reward function: r(x, u|6)(= o7 f(x, u)), 0 as the parameter to learn
6 can be O in some fomulation

s Cumulative reward function: R(x, u)

m Social value orientation (SVO) angle: ¢

m Time:t

m Optimization step: k
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Inverse reinforcement learning

m Demonstration: D = {{;, ...&,,}

Where & = {xq, Ug, X1, Uq, -, X7, UT}

= To find a reward function Rg(&) = X 19 (xp, up) (= 0T F(8))
m |ll-defined problem: many rewards can explain the same behavior

m One valid goal: feature matching

Let "6 be the optimal policy for ry
Pick 8 such that E_¢o[f(x, w)] = Ep+[f(x,u)] = Xi2; (&)

/

Expected feature Unknown optimal policy
value under "¢ approximate using expert samples
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Max entropy IRL

= Out of all the feature-matching 8, pick the one s.t. mR¢ has max entropy
= Solution: Py, (&) o eFReE)

R($) = Xer(xe, ur)
B T, more greedy

= Max entropy IRL: P, (&) = %eﬁRe(f)

Where normalization term Z = [ exp(BRg(€)dé)  Hard to compute
m Goal: mgaxL = zep 10g Pr, ($)
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How to compute Z

Direct computation with DP
Sampling-based method
Guided cost learning

W

Laplace approximation
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Max entropy IRL

m Goal: meaxL(B) = 25@ log Pg,($)
1
= Z logE exp(Rg(f))
¢eD
= ) Re(§) Dl logZ
£€D
= > Ro(§) = DI logE exp(Ro (£))
¢eD
N dRe(§) D] e(f)
Vol(6) = Z o ¥ exp(Rg (5))2 exp(Ro (£))
£eD - W, dRg($)
Y ) PGl —
I Expected feature value : 1
d
Empirical feature value: ¥, f(z;) ZP(slH) rsf)
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Method [1]: compute gradient directly

Algorithm:
1. Initialize 8, gather demonstrations D
2. Solve for optimal policy m(als) w.r.t. reward ry

1 3. Solve for state visitation frequencies P(s|6)

. 1 d d
4. Compute gradient VoL = —HZ&D% &) — Y. p(s|6) % (s)
¥ 5. Update @ with one gradient step using VyL

m Computationally expensive
m Cannot handle continuous state/action & high-dimension problem:s.
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Method [2]: inverse optimal control

m lteratively, approximate Z with the current set of optlmal trajectories

BR 0 (&7)
zj= e’ z = [ exp(BRo(©)d5)
m Algorithm
Compute the empirical feature vector over all demos f Y f(&D
Initialize 6
For each demo, find an optimized trajectory w.r.t current 8: &2 ...&¢, and f¢ = = 1f(€l )

Compute the gradient of likelihood:VyL(6) = fe — f and, use it to update 6
Repeat from 3.

B Efficient, but the computation of Z might be biased.
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Method [3]: approximate Z by sampling

" Zg ® Ym—1 e PR(7m?)

m In a sampling setting, the gradient becomes

M
WL = 2> (£ G0~ F&0)
i=1

K .
5 ePR(tm.0) ,
FE&= D s ()
m=1

m A key step: after sampling with some scheme, redistribute samples s.t. they are
(almost) uniform in the feature space

joE==== sE=ss=s=sy--s.-- Y TETEEEEEIrTTEETmETEYTT"ETTT
. . 1 e ! : e
i I
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Another sampling method: Guided cost learning [4]

m Sample adaptively to estimate Z by constructing a policy

guided cost learning algorithm
(Finn et al. ICML

initial 16) human
policy i demonstrations

generate policy
samples from m

| 2 Q’i)_ ............ q:) /
Update reward using

samples & demos

update mm w.r.t. reward l
policym take 1 policy opt.step reward r

Update reward in inner loop of policy optimization

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

K 4

13



The method we pick: Continuous inverse optimal control (CIOC):

m Assumption:
Expert demonstrations are locally optimal

4 & T OR ~ T 92R = |
B R@(f) ~ Re(¢ép) + ('f - S;D) 25, + (S( - €D) %(f — &ép) — Taylor expansion
m  Then, we can approximate the likelihood of any trajectory:
Pro(¢) = %eﬁRG(g) - eBRG(E)(f eXp(Re(T)dT))_l

-1
[ ot e g 004 4]

1. Ty-1 1 _dy Z becomes Gaussian Integral
— 28 H g|—H|2(2n) 2 9

— dy
m L= %gTH lg +%log(det(—H)) — 7log 2 (1)

OR d%R
Whereng,Hzﬁ
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The algorithm of continuous inverse optimal control (CIOC)[5]:

m Algorithm*:
1. Gather demonstration D, compute feature counts f($)
An extra regularizing feature f,- and weight 6,. to secure a positive det(—H)
2. Compute L(0) & Z—g approximately according to (1)
3. Solve méaxL(H) using augmented Lagrangian methods

Drive 8,, = 0 while maximizing £(8) with gradient-based optimization

m Pros:
Compute the likelihood of demos analytically: no need to sample/ solving an MDP
Efficient for higher-dimensional problems & continuous problems
Demos only need to be “locally optimal”
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Problem Formulation: Learn a human driver model

m  Goal: Using IRL, learn a universal utility function for driving, that also incorporate individual driving
styles of human drivers

r(x,ul 0, ¢) « Zagents g(x,ul@)g¢(¢)
/ N

Shared Personal

g, ul®) « 0T f(x,u) |. ff

m Target scenario: Roundabout entering

Start with 2-vehicle interaction

X = [xego: Xotherr Vego» vother]

u= [aegm aother]
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Problem Formulation: Feature Design

m Driving smoothness
For ego: fi = g0 (t)?
For other: f, = ayener (t)?

m Target speed
2
For ego: f3 = (Uego (t) — Vtarget)

2
For other: f, = (vother(t) — vtarget)

m Predicted gap at conflict point

__exp(axego(t)) . Xego
f5 — where Dpred(t) = Xother — 2 Vother

(preat®)” ego

m  Dyeq: Projected distance when Ego reaches the conflict point
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Social Value Orientation!®!

m Characterize the value preference on benefits for ego versus others

m Reward formulation:
T T

Tego = Yego cos(@) + Gother SIN(P) + Gsnarea, P € [— Er}]

Reward for other

Altruistic

Pt

Cooperative

Reward for ego

O
go
mE O=|0
other Masochistic
G)shared
— nT T
u gego_gego[f1:f3]

B YJother — G’(I;ther[fZJ f4]T

_nT
B OJshared = ®shared 5

Sadomasochistic

m Goal: Use IRL to learn a universal 0, while
estimating a personalized ¢ for each demonstration

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Sadistic

Egoistic

Competitive

Interpretation of SVO angle

Y



Combining SVO and IRL cno.
m Previous methods either learned a universal r(x, u)[5,6], or used 0,6_: :‘fi
part of demos to learn different r(x, u)[7].
m Our goal: to learn personalized reward functions while fully " / \
utilizing all demos. 02- v . N ;
m  Key objective: maximize the likelihood of given demonstration %ffﬁ/ ,,,,, \ I\,\fj\f:
over both 0, d = {qbl, ...,¢|D|} - . _E .
ID| ”
maxP(D|,®) = | | P16, ¢
=1
m High-level ideas: 4 ;
Based on Algorithm™* (CIOC)
Maintain a probabilistic estimate for each ¢; 7aio tio
Update O and ¢; iteratively . o s

3nl2

Prior for ¢;: von-Mises distribution
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Combining SVO and IRL: the workflow

1. Assume a prior distribution of all ¢; : ¢;~vM (0, k), pick ¢? = 0
2. At step k, compute optimal OK using Algorithm*

0" = argmax[;2} P(¢|¢F ", 0)
3. Based on ©F, update the posterior of ¢;:

P(;|¢:, 0%) oc P(&;|p;, ©%)P(¢p;]0%) (Bayes update)
Assuming P(cpi |G)k) = P(gbl-|®k_1, &) (use posterior of last step as prior of this step)

4. Select ¥ = arg max P(¢;10%, &)

5. Repeat 2,3 until convergence
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Proof of improvement: a sketch

= Letli(¢;,0) = P(§l¢, 0); L(®,0) = 1,2 P(&i1¢:, ©)
Goal: to prove that L(c/)k, @") > L(qbk—l, @k—l)

On one hand (from step?2):

m OF =arg max L(®*71,0), so we have L(®F1, 0F) > L(Dk~1 0k-1)
On the other hand (from step4):

s ¢F =arg max P(p|0%, ;) = arg;bnax L;i(¢p, 00)P(p|0* 1, ¢;)

s While pf ! = arg mdz);le(gb|®k_1,€i)

m Therefore,

if X # X1, then [;(pF,0%) > 1;(pF, 0F)

If pF = pF~1, then [;(pF,0%) = 1;(pF7, 0F)
m Taking product of all [;, we have: L(Cbk, @k) > L(dbk‘l, @k)
Therefore, We have L(¢*,0%) > L(¢*~1, 0% 1). m
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Datasets

Traffic scenario datasets:
m INTERnational, Adversarial and Cooperative moTION Dataset (INTERACTION

Naturalistic motions of various traffic participants
HD-Map is provided
m HighD
Traffic data recorded by drones at German highways
= RounD

Traffic data recorded by drones at German roundabouts
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Trajectory Separation

m Select roundabout scenarios for finding interactions between two road users

m Procedure to generate each demonstration
Select ego vehicle
Find the timestamp t when ego vehicle is entering the roundabout
Find the other vehicle currently inside roundabout with proper angle difference
Collect the trajectory of the two vehicles betweent —4s and t + 2s
The trajectory will be finally converted to Frenet coordinate along reference path

Frenet coordinate system
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Demonstrations Visualization

m 500 extracted demonstrations from DR_DEU_Roundabout_OF sequence in
INTERACTION dataset
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Interaction Generation

m Each demonstration is associated with reference paths for ego and the other vehicle

Demonstration samples from
5 types of ego vehicle routes
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Demonstration for Experiment

m Time horizon is truncated to 3s (Ts = 0.15s)
m Only trajectories where the other vehicle enters just before ego vehicle are selected

Ego from south: 35 demos Ego from west: 25 demos Ego from west: 50 demos

1020 1020 1020
1015 1015 1015
1010 1010 1010
1005 1005 1005
1000 1000 1000
E o995 E 995 E 995
= = N
990 990 990 |
985 985 985
980 [ 980 980
9751 o75 1 975
970 - L L L 970 L L L L L L 970 L L L L L L
970 980 990 1000 1010 1020 1030 1040 970 980 990 1000 1010 1020 1030 1040 970 980 990 1000 1010 1020 1030 1040
x [m] x[m] x [m]

3 types of trajectories used for IRL
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Preliminary Results

= Results are plotted in polar coordinate based on ¢

ml2 w2 /2
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Future work

m Use estimated 8 and ¢ to predict the vehicle trajectory
m Test the algorithm in other maps of INTERACTION
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Thank you

Any question is welcome!
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