Inverse Reinforcement Learning and its application on calibration of human driver models

Yuanxin Zhong, Xinpeng Wang

Outline

Motivation

Review of Inverse Reinforcement Learning (IRL) based on Max-Entropy

2

- Problem Formulation
- Data Processing and Experiment Setup
- Preliminary Results
- Ongoing and Future Work

Motivation

- For autonomous vehicles (AVs), how to model the interactive driving behaviors?
 - Rule based model
 - Interpretable, but not representative
 - Learning-based model
 - Powerful, but not interpretable
 - Utility based model
 - Interpretable, flexible, data-efficient
 - E.g.: Game theory, optimal control
- However, how to determine the utility function of human drivers realistically?

Motivation

IRL: Learn the cost/reward functions from (human) demonstrations

"Forward" reinforcement learning

Given:

- State $x \in \mathcal{X}$, action $u \in \mathcal{U}$
- (sometimes) transitions p(x'|x, u)
- Reward function r(x, u)

Goal:

• To learn $\pi^*(u|x)$

```
Inverse reinforcement learning Given:
```

- State $x \in \mathcal{X}$, action $u \in \mathcal{U}$
- (sometimes) transitions p(x'|x, u)
- Samples $\{\xi_i\}$ sampled from $\pi^*(\xi)$ Goal:

Notation

- State *x*, Action/Input *u*
- **Demonstration**: $\xi_i \in D, i \in 1 \dots |D|$
- Policy π
- **Reward function**: $r(x, u|\theta) (= \theta^T f(x, u)), \theta$ as the parameter to learn
 - **\Box** θ can be Θ in some fomulation
- Cumulative reward function: R(x, u)
- **Social value orientation** (SVO) angle: ϕ
- **Time**: *t*
- Optimization step: k

Inverse reinforcement learning

- Demonstration: $D = \{\xi_1, \dots, \xi_n\}$
 - Where $\xi = \{x_0, u_0, x_1, u_1, ..., x_T, u_T\}$
- To find a reward function $R_{\theta}(\xi) = \sum_{t} r_{\theta}(x_{t}, u_{t}) (= \theta^{T} f(\xi))$
- Ill-defined problem: many rewards can explain the same behavior

- One valid goal: feature matching
 - Let $\pi^{r_{\theta}}$ be the optimal policy for r_{θ}
 - Pick θ such that $E_{\pi^t \theta}[f(x, u)] = E_{\pi^*}[f(x, u)] \approx \sum_{i=1}^n f(\xi_i)$

Expected feature value under $\pi^{r_{\theta}}$

Unknown optimal policy approximate using expert samples

Still ambiguous!

Max entropy IRL

- Out of all the feature-matching θ , pick the one s.t. $\pi^{R_{\theta}}$ has max entropy
- Solution: $P_{R_{\theta}}(\xi) \propto e^{\beta R_{\theta}(\xi)}$
 - $\square \quad R(\xi) = \sum_t r(x_t, u_t)$
 - \square β \uparrow , more greedy
- Max entropy IRL: $P_{R_{\theta}}(\xi) = \frac{1}{Z} e^{\beta R_{\theta}(\xi)}$
 - Where normalization term $Z = \int \exp(\beta R_{\theta}(\xi) d\xi)$ Hard to compute

• Goal: $\max_{\theta} L = \sum_{\xi \in D} \log P_{R_{\theta}}(\xi)$

How to compute Z

- 1. Direct computation with DP
- 2. Sampling-based method
- 3. Guided cost learning
- 4. Laplace approximation

Max entropy IRL

• Goal:

$$\max_{\theta} L(\theta) = \sum_{\xi \in D} \log P_{R_{\theta}}(\xi)$$

$$= \sum_{\xi \in D} \log \frac{1}{Z} \exp(R_{\theta}(\xi))$$

$$= \sum_{\xi \in D} R_{\theta}(\xi) - |D| \log Z$$

$$= \sum_{\xi \in D} R_{\theta}(\xi) - |D| \log \sum_{\xi} \exp(R_{\theta}(\xi))$$

$$\nabla_{\theta} L(\theta) = \sum_{\xi \in D} \frac{dR_{\theta}(\xi)}{d\theta} - \frac{|D|}{\sum_{\xi \in D} (R_{\theta}(\xi))} \sum_{\xi} \exp(R_{\theta}(\xi)) \frac{dR_{\theta}(\xi)}{d\theta}$$

$$= \sum_{\xi \in D} P(\xi|\theta) \frac{dR_{\theta}(\xi)}{d\theta}$$
Empirical feature value: $\sum_{i=1}^{M} f(\tau_{i})$

$$\sum_{s} P(s|\theta) \frac{dr_{\theta}(\xi)}{d\theta}$$

Method [1]: compute gradient directly

Algorithm:

- 1. Initialize θ , gather demonstrations D
- 2. Solve for optimal policy $\pi(a|s)$ w.r.t. reward r_{θ}
- 3. Solve for state visitation frequencies $P(s|\theta)$

4. Compute gradient
$$\nabla_{\theta} L = -\frac{1}{|D|} \sum_{\xi \in D} \frac{dr_{\theta}}{d\theta}(\xi) - \sum_{s} p(s|\theta) \frac{dr_{\theta}}{d\theta}(s)$$

[▶] 5. Update θ with one gradient step using $∇_θ L$

- Computationally expensive
- Cannot handle continuous state/action & high-dimension problems.

Method [2]: inverse optimal control

• Iteratively, approximate Z with the current set of optimal trajectories

$$\Box \quad Z_j = e^{\beta R_{\theta_j}(\xi_j^*)}$$

- Algorithm
 - 1. Compute the empirical feature vector over all demos $\tilde{f} = \sum_{i=1}^{n} f(\xi_i)$
 - 2. Initialize θ
 - 3. For each demo, find an optimized trajectory w.r.t current $\theta: \xi_1^{\theta} \dots \xi_n^{\theta}$, and $f^{\theta} = \frac{1}{n} \sum_{i=1}^n f(\xi_i^{\theta})$

 $Z = \int \exp(\beta R_{\theta}(\xi) d\xi)$

- 4. Compute the gradient of likelihood: $\nabla_{\theta} L(\theta) \approx f^{\theta} \tilde{f}$ and, use it to update θ
- 5. Repeat from 3.
- Efficient, but the computation of Z might be biased.

Method [3]: approximate Z by sampling

- $Z_{\xi_i} \approx \sum_{m=1}^{K} e^{\beta R(\tau_m^i, \theta)}$
- In a sampling setting, the gradient becomes

$$\nabla_{\theta} L = \frac{\beta}{M} \sum_{i=1}^{M} \left(f(\xi_i) - \tilde{f}(\xi_i) \right)$$
$$\tilde{f}(\xi_i) = \sum_{m=1}^{K} \frac{e^{\beta R(\tau_m^i, \theta)}}{\sum_{m=1}^{K} e^{\beta R(\tau_m^i, \theta)}} f(\tau_m^i)$$

 A key step: after sampling with some scheme, redistribute samples s.t. they are (almost) uniform in the feature space

Another sampling method: Guided cost learning [4]

• Sample adaptively to estimate *Z* by constructing a policy

The method we pick: Continuous inverse optimal control (CIOC):

- Assumption:
 - Expert demonstrations are locally optimal

•
$$R_{\Theta}(\tilde{\xi}) \approx R_{\Theta}(\xi_D) + (\tilde{\xi} - \xi_D)^T \frac{\partial R}{\partial \xi_D} + (\tilde{\xi} - \xi_D)^T \frac{\partial^2 R}{\partial \xi_D^2} (\tilde{\xi} - \xi_D) - \text{Taylor expansion}$$

Then, we can approximate the likelihood of any trajectory:

The algorithm of continuous inverse optimal control (CIOC)[5]:

- Algorithm*:
- 1. Gather demonstration D, compute feature counts $f(\xi)$
 - An extra regularizing feature f_r and weight θ_r to secure a positive det $(-\mathbf{H})$
- 2. Compute $\mathcal{L}(\Theta) \& \frac{\partial \mathcal{L}}{\partial \Theta}$ approximately according to (1)
- 3. Solve $\max_{\alpha} \mathcal{L}(\theta)$ using augmented Lagrangian methods
 - Drive $\theta_r \to 0$ while maximizing $\mathcal{L}(\theta)$ with gradient-based optimization

Pros:

- Compute the likelihood of demos analytically: no need to sample/ solving an MDP
- Efficient for higher-dimensional problems & continuous problems
- Demos only need to be "locally optimal"

Problem Formulation: Learn a human driver model

 Goal: Using IRL, learn a universal utility function for driving, that also incorporate individual driving styles of human drivers

□
$$r(x,u| \Theta, \phi) \leftarrow \sum_{agents} g(x,u|\Theta) g_{\phi}(\phi)$$

Shared Personal

- $\Box g(x,u|\Theta) \leftarrow \theta^T f(x,u)$
- Target scenario: Roundabout entering
 - Start with 2-vehicle interaction

$$\Box \quad x = [x_{ego}, x_{other}, v_{ego}, v_{other}]$$

$$\square \quad u = [a_{ego}, a_{other}]$$

Problem Formulation: Feature Design

- Driving smoothness
 - For ego: $f_1 = a_{ego}(t)^2$
 - For other: $f_2 = a_{other}(t)^2$
- Target speed
 - For ego: $f_3 = (v_{ego}(t) v_{target})^2$
 - For other: $f_4 = (v_{other}(t) v_{target})^2$
- Predicted gap at conflict point

•
$$f_5 = \frac{\exp(\alpha x_{ego}(t))}{\left(D_{pred}(t)\right)^2}$$
, where $D_{pred}(t) = x_{other} - \frac{x_{ego}}{v_{ego}}v_{other}$

D_{pred}: Projected distance when Ego reaches the conflict point

17

Social Value Orientation^[6]

estimating a personalized ϕ for each demonstration

18

Reward for other

Combining SVO and IRL

- Previous methods either learned a universal r(x, u)[5,6], or used _{0.6}part of demos to learn different r(x, u)[7].
- Our goal: to learn personalized reward functions while fully utilizing all demos.
- Key objective: maximize the likelihood of given demonstration over both Θ , $\Phi = \{\phi_1, \dots, \phi_{|D|}\}$

$$\max_{\Theta,\Phi} P(D|\Theta,\Phi) = \prod_{i=1}^{|D|} P(\xi_i|\Theta,\phi_i)$$

- High-level ideas:
 - Based on Algorithm* (CIOC)
 - Maintain a probabilistic estimate for each ϕ_i
 - Update Θ and ϕ_i iteratively

Prior for ϕ_i : von-Mises distribution

Combining SVO and IRL: the workflow

- 1. Assume a prior distribution of all $\phi_i : \phi_i \sim vM(0, \kappa)$, pick $\phi_i^0 = 0$
- 2. At step k, compute optimal Θ^k using Algorithm*
 - $\Theta^k = \arg \max_{\Theta} \prod_{i=1}^{|D|} P(\xi | \phi_i^{k-1}, \Theta)$
- 3. Based on Θ^k , update the posterior of ϕ_i :
 - $\square P(\phi_i | \xi_i, \Theta^k) \propto P(\xi_i | \phi_i, \Theta^k) P(\phi_i | \Theta^k) \text{ (Bayes update)}$
 - Assuming $P(\phi_i | \Theta^k) = P(\phi_i | \Theta^{k-1}, \xi_i)$ (use posterior of last step as prior of this step)
- 4. Select $\phi_i^k = \arg \max_{\phi_i} P(\phi_i | \Theta^k, \xi_i)$
- 5. Repeat 2,3 until convergence

Proof of improvement: a sketch

- Let $l_i(\phi_i, \Theta) = P(\xi_i | \phi_i, \Theta); L(\Phi, \Theta) = \prod_{i=1}^{|D|} P(\xi_i | \phi_i, \Theta)$ **Goal**: to prove that $L(\phi^k, \Theta^k) \ge L(\phi^{k-1}, \Theta^{k-1})$ **On one hand (from step2)**:
- $\Theta^k = \arg \max_{\Theta} L(\Phi^{k-1}, \Theta)$, so we have $L(\Phi^{k-1}, \Theta^k) \ge L(\Phi^{k-1}, \Theta^{k-1})$

On the other hand (from step4):

- $\phi_i^k = \arg \max_{\phi} P(\phi | \Theta^k, \xi_i) = \operatorname*{argmax}_{\phi} l_i(\phi, \Theta^k) P(\phi | \Theta^{k-1}, \xi_i)$
- While $\phi_i^{k-1} = \arg \max_{\phi} P(\phi | \Theta^{k-1}, \xi_i)$
- Therefore,
 - if $\phi_i^k \neq \phi_i^{k-1}$, then $l_i(\phi_i^k, \Theta^k) > l_i(\phi_i^{k-1}, \Theta^k)$
 - If $\phi_i^k = \phi_i^{k-1}$, then $l_i(\phi_i^k, \Theta^k) = l_i(\phi_i^{k-1}, \Theta^k)$
- Taking product of all l_i , we have: $L(\Phi^k, \Theta^k) \ge L(\Phi^{k-1}, \Theta^k)$

Therefore, We have $L(\phi^k, \Theta^k) \ge L(\phi^{k-1}, \Theta^{k-1})$.

Datasets

Traffic scenario datasets:

- INTERnational, Adversarial and Cooperative motion Dataset (INTERACTION)
 - Naturalistic motions of various traffic participants
 - HD-Map is provided
- HighD
 - Traffic data recorded by drones at German highways
- RounD
 - Traffic data recorded by drones at German roundabouts

Trajectory Separation

- Select roundabout scenarios for finding interactions between two road users
- Procedure to generate each demonstration
 - 1. Select ego vehicle
 - 2. Find the timestamp t when ego vehicle is entering the roundabout
 - 3. Find the other vehicle currently inside roundabout with proper angle difference
 - 4. Collect the trajectory of the two vehicles between t 4s and t + 2s
 - 5. The trajectory will be finally converted to Frenet coordinate along reference path

Frenet coordinate system

Demonstrations Visualization

500 extracted demonstrations from DR_DEU_Roundabout_OF sequence in INTERACTION dataset

Interaction Generation

Each demonstration is associated with reference paths for ego and the other vehicle

Demonstration for Experiment

- Time horizon is truncated to 3s (Ts = 0.1s)
- Only trajectories where the other vehicle enters just before ego vehicle are selected

3 types of trajectories used for IRL

Preliminary Results

• Results are plotted in polar coordinate based on ϕ

27

Future work

- Use estimated θ and ϕ to predict the vehicle trajectory
- Test the algorithm in other maps of INTERACTION

References

- 1. Ziebart, B. D., Maas, A., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement learning. In *Proceedings of the National Conference on Artificial Intelligence* (Vol. 3, pp. 1433–1438). Retrieved from www.aaai.org
- Kuderer, M., Gulati, S., & Burgard, W. (2015). Learning driving styles for autonomous vehicles from demonstration. *Proceedings - IEEE International Conference on Robotics and Automation*, 2015-June(June), 2641–2646. https://doi.org/10.1109/ICRA.2015.7139555
- 3. Wu, Z., Sun, L., Zhan, W., Yang, C., & Tomizuka, M. (2020). Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning with Application to Autonomous Driving. *ArXiv*, *5*(4), 5355–5362.
- 4. Finn, Chelsea, Sergey Levine, and Pieter Abbeel. "Guided cost learning: Deep inverse optimal control via policy optimization." International conference on machine learning. PMLR, 2016.
- 5. Levine, S., & Koltun, V. (2012). Continuous inverse optimal control with locally optimal examples. *Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 1,* 41–48.
- 6. Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., & Rus, D. (2019). Social behavior for autonomous vehicles. *Proceedings of the National Academy of Sciences of the United States of America*, *116*(50), 2492–24978.
- 7. Sun, L., Wu, Z., Ma, H., & Tomizuka, M. (2020). Expressing diverse human driving behavior with probabilistic rewards and online inference. *IEEE International Conference on Intelligent Robots and Systems*, 2020–2026.

Thank you

Any question is welcome!

