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Motivation

◼ For autonomous vehicles (AVs), how to 
model the interactive driving behaviors?
❑ Rule based model

◼ Interpretable, but not representative

❑ Learning-based model

◼ Powerful, but not interpretable

❑ Utility based model

◼ Interpretable, flexible, data-efficient

◼ E.g.: Game theory, optimal control

◼ However, how to determine the utility 
function of human drivers realistically?
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Motivation

◼ IRL: Learn the cost/reward functions from (human) demonstrations
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Given:

◼ State 𝑥 ∈ 𝒳, action 𝑢 ∈ 𝒰

◼ (sometimes) transitions 𝑝(𝑥′|𝑥, 𝑢)

◼ Reward function 𝑟 𝑥, 𝑢

Goal:

◼ To learn 𝜋∗ 𝑢|𝑥

Given:

◼ State 𝑥 ∈ 𝒳, action 𝑢 ∈ 𝒰

◼ (sometimes) transitions 𝑝(𝑥′|𝑥, 𝑢)

◼ Samples 𝜉𝑖 sampled from 𝜋∗(𝜉)

Goal:

◼ To learn 𝑟𝜃 𝑥, 𝑢

“Forward” reinforcement learning Inverse reinforcement learning

Reward 
parameters



Notation

◼ State 𝑥, Action/Input 𝑢

◼ Demonstration: 𝜉𝑖 ∈ 𝐷, 𝑖 ∈ 1… 𝐷

◼ Policy 𝜋

◼ Reward function: 𝑟 𝑥, 𝑢|𝜃 = 𝜃𝑇𝑓 𝑥, 𝑢 , 𝜃 as the parameter to learn

❑ 𝜃 can be Θ in some fomulation

◼ Cumulative reward function: 𝑅 𝑥, 𝑢

◼ Social value orientation (SVO) angle: 𝜙

◼ Time: 𝑡

◼ Optimization step: 𝑘
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Inverse reinforcement learning

◼ Demonstration: 𝐷 = {𝜉1, … 𝜉𝑛}

❑ Where 𝜉 = {𝑥0, 𝑢0, 𝑥1, 𝑢1, … , 𝑥𝑇 , 𝑢𝑇}

◼ To find a reward function 𝑅𝜃 𝜉 = σ𝑡 𝑟𝜃(𝑥𝑡, 𝑢𝑡) = 𝜃𝑇𝒇(𝜉)

◼ Ill-defined problem: many rewards can explain the same behavior

◼ One valid goal: feature matching

❑ Let 𝜋𝑟𝜃 be the optimal policy for 𝑟𝜃

❑ Pick 𝜃 such that 𝐸𝜋𝑡𝜃 𝒇 𝑥, 𝑢 = E𝜋∗ 𝒇 𝑥, 𝑢 ≈ σ𝑖=1
𝑛 𝒇 𝜉𝑖

Still ambiguous!

Expected feature 

value under 𝜋𝑟𝜃
Unknown optimal policy 

approximate using expert samples
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Max entropy IRL

◼ Out of all the feature-matching 𝜃, pick the one s.t. 𝜋𝑅𝜃 has max entropy

◼ Solution: 𝑃𝑅𝜃 𝜉 ∝ 𝑒𝛽𝑅𝜃 𝜉

❑ 𝑅 𝜉 = σ𝑡 𝑟(𝑥𝑡 , 𝑢𝑡)

❑ 𝛽 ↑, more greedy

◼ Max entropy IRL: 𝑃𝑅𝜃 𝜉 =
1

𝑍
𝑒𝛽𝑅𝜃(𝜉)

❑ Where normalization term 𝑍 = ׬ exp(𝛽𝑅𝜃 𝜉 𝑑𝜉)

◼ Goal: max
𝜃

𝐿 = σ𝜉∈𝐷 log 𝑃𝑅𝜃(𝜉)

Hard to compute
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How to compute 𝑍

1. Direct computation with DP

2. Sampling-based method

3. Guided cost learning

4. Laplace approximation
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max
𝜃

𝐿(𝜃) =෍
𝜉∈𝐷

log𝑃𝑅𝜽(𝜉)

= ෍

𝜉∈𝐷

log
1

𝑍
exp 𝑅𝜃 𝜉

= ෍

𝜉∈𝐷

𝑅𝜃 𝜉 − 𝐷 log𝑍

= ෍

𝜉∈𝐷

𝑅𝜃 𝜉 − 𝐷 log෍

𝜉

exp 𝑅𝜃 𝜉

∇𝜃𝐿 𝜃 = ෍

𝜉∈𝐷

𝑑𝑅𝜃 𝜉

𝑑𝜃
−

𝐷

σ𝜉 exp 𝑅𝜃 𝜉
෍

𝜉

exp 𝑅𝜃 𝜉
𝑑𝑅𝜃 𝜉

𝑑𝜃

Max entropy IRL

◼ Goal:

Expected feature value

Empirical feature value: σ𝑖=1
𝑀 𝑓(𝜏𝑖)
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෍

𝜉

𝑃 𝜉 𝜃
𝑑𝑅𝜃 𝜉

𝑑𝜃

෍

𝑠

𝑃 𝑠 𝜃
𝑑𝑟𝜃 𝜉

𝑑𝜃



Method [1]: compute gradient directly

◼ Computationally expensive

◼ Cannot handle continuous state/action & high-dimension problems.

Algorithm:

1. Initialize 𝜃, gather demonstrations 𝐷

2. Solve for optimal policy 𝜋 𝑎 𝑠 w.r.t. reward 𝑟𝜃
3. Solve for state visitation frequencies 𝑃 𝑠 𝜃

4. Compute gradient ∇𝜃𝐿 = −
1

𝐷
σ𝜉∈𝐷

𝑑𝑟𝜃

𝑑𝜃
𝜉 − σ𝑠 𝑝 𝑠|𝜃

𝑑𝑟𝜃

𝑑𝜃
𝑠

5. Update 𝜃 with one gradient step using ∇𝜃𝐿
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Method [2]: inverse optimal control

◼ Iteratively, approximate 𝑍 with the current set of optimal trajectories

❑ 𝑍𝑗 = 𝑒
𝛽𝑅𝜃𝑗

(𝜉𝑗
∗)

◼ Algorithm

1. Compute the empirical feature vector over all demos ෨𝒇 = σ𝑖=1
𝑛 𝒇(𝜉𝑖)

2. Initialize 𝜃

3. For each demo, find an optimized trajectory w.r.t current 𝜃: 𝜉1
𝜃 …𝜉𝑛

𝜃, and 𝒇𝜽 =
1

𝑛
σ𝑖=1
𝑛 𝑓(𝜉𝑖

𝜃)

4. Compute the gradient of likelihood:∇𝜃𝐿 𝜃 ≈ 𝒇𝜽 − ෨𝒇 and, use it to update 𝜃

5. Repeat from 3.

◼ Efficient, but the computation of 𝑍 might be biased.

𝑍 = නexp(𝛽𝑅𝜃 𝜉 𝑑𝜉)
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Method [3]: approximate 𝑍 by sampling

◼ 𝑍𝜉𝑖 ≈ σ𝑚=1
𝐾 𝑒𝛽𝑅 𝜏𝑚

𝑖 ,𝜃

◼ In a sampling setting, the gradient becomes
❑

◼ A key step: after sampling with some scheme, redistribute samples s.t. they are 
(almost) uniform in the feature space

∇𝜃𝐿 =
𝛽

𝑀
෍

𝑖=1

𝑀

𝒇 𝜉𝑖 − ෨𝒇 𝜉𝑖

෨𝒇 𝜉𝑖 = ෍

𝑚=1

𝐾
𝑒𝛽𝑅 𝜏𝑚

𝑖 ,𝜃

σ𝑚=1
𝐾 𝑒𝛽𝑅 𝜏𝑚

𝑖 ,𝜃
𝒇 𝜏𝑚

𝑖
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◼ Sample adaptively to estimate 𝑍 by constructing a policy

Another sampling method: Guided cost learning [4]
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The method we pick: Continuous inverse optimal control (CIOC):

◼ Assumption:
❑ Expert demonstrations are locally optimal

◼ 𝑅Θ ሚ𝜉 ≈ 𝑅Θ 𝜉𝐷 + ሚ𝜉 − 𝜉𝐷
𝑇 𝜕𝑅

𝜕𝜉𝐷
+ ሚ𝜉 − 𝜉𝐷

𝑇 𝜕2𝑅

𝜕𝜉𝐷
2 ( ሚ𝜉 − 𝜉𝐷) – Taylor expansion

◼ Then, we can approximate the likelihood of any trajectory:

❑ 𝑃𝑅Θ
ሚ𝜉 =

1

𝑍
𝑒𝛽𝑅Θ(

෨𝜉) = 𝑒𝛽𝑅Θ
෨𝜉 ׬ exp 𝑅Θ 𝜏 𝑑𝜏

−1

= ׬ 𝑒−
1
2𝐠

𝑇𝐇−1𝐠+
1
2 𝐇 ෥𝑢−𝑢 +𝐠 𝑇𝐇−1 𝐇 ෥𝑢−𝑢 +𝐠 𝑑෤𝑢

−1

= 𝑒
1
2
𝐠𝑇𝐇−1𝐠 −𝐇

1
2 2𝜋 −

𝑑𝑢
2

◼ ℒ =
1

2
𝐠𝑇𝐇−1𝐠 +

1

2
log det −𝐇 −

𝑑𝐮

2
log 2𝜋 (1)

❑ Where 𝐠 =
𝜕𝑅

𝜕𝜉𝐷
, 𝐇 =

𝜕2𝑅

𝜕𝜉𝐷
2

Z becomes Gaussian Integral
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The algorithm of continuous inverse optimal control (CIOC)[5]:

◼ Algorithm*:
1. Gather demonstration 𝐷, compute feature counts 𝒇(𝜉)

❑ An extra regularizing feature 𝑓𝑟 and weight 𝜃𝑟 to secure a positive det(−𝐇)

2. Compute ℒ(Θ) & 
𝜕ℒ

𝜕Θ
approximately according to (1)

3. Solve max
𝜃

ℒ(𝜃) using augmented Lagrangian methods

❑ Drive 𝜃𝑟 → 0 while maximizing ℒ(𝜃) with gradient-based optimization

◼ Pros:
❑ Compute the likelihood of demos analytically: no need to sample/ solving an MDP

❑ Efficient for higher-dimensional problems & continuous problems

❑ Demos only need to be “locally optimal”
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Problem Formulation: Learn a human driver model

◼ Goal: Using IRL, learn a universal utility function for driving, that also incorporate individual driving 
styles of human drivers

❑ 𝑟 𝑥, 𝑢 Θ , 𝜙) ← σ𝑎𝑔𝑒𝑛𝑡𝑠 𝑔 𝑥, 𝑢 Θ 𝑔𝜙 𝜙

❑ 𝑔 𝑥, 𝑢 Θ ← 𝜃𝑇𝑓 𝑥, 𝑢

PersonalShared

◼ Target scenario: Roundabout entering

❑ Start with 2-vehicle interaction

❑ 𝑥 = 𝑥𝑒𝑔𝑜, 𝑥𝑜𝑡ℎ𝑒𝑟, 𝑣𝑒𝑔𝑜, 𝑣𝑜𝑡ℎ𝑒𝑟

❑ 𝑢 = 𝑎𝑒𝑔𝑜, 𝑎𝑜𝑡ℎ𝑒𝑟
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Other

Ego

𝑣𝑒𝑔𝑜

𝑣𝑜𝑡ℎ𝑒𝑟



Problem Formulation: Feature Design

◼ Driving smoothness

❑ For ego: 𝑓1 = 𝑎𝑒𝑔𝑜 𝑡 2

❑ For other: 𝑓2 = 𝑎𝑜𝑡ℎ𝑒𝑟 𝑡 2

◼ Target speed

❑ For ego: 𝑓3 = 𝑣𝑒𝑔𝑜 𝑡 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡
2

❑ For other: 𝑓4 = 𝑣𝑜𝑡ℎ𝑒𝑟 𝑡 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡
2

◼ Predicted gap at conflict point

❑ 𝑓5 =
exp(𝛼𝑥𝑒𝑔𝑜(𝑡))

𝐷𝑝𝑟𝑒𝑑 𝑡
2 , where 𝐷𝑝𝑟𝑒𝑑 𝑡 = 𝑥𝑜𝑡ℎ𝑒𝑟 −

𝑥𝑒𝑔𝑜

𝑣𝑒𝑔𝑜
𝑣𝑜𝑡ℎ𝑒𝑟

◼ 𝐷𝑝𝑟𝑒𝑑: Projected distance when Ego reaches the conflict point
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Social Value Orientation[6]

◼ Characterize the value preference on benefits for ego versus others

◼ Reward formulation:

❑ 𝑟𝑒𝑔𝑜 = 𝑔𝑒𝑔𝑜 cos 𝜙 + 𝑔𝑜𝑡ℎ𝑒𝑟 sin 𝜙 + 𝑔𝑠ℎ𝑎𝑟𝑒𝑑, 𝜙 ∈ [−
𝜋

2
,
𝜋

2
]

◼ Θ =

Θ𝑒𝑔𝑜
Θ𝑜𝑡ℎ𝑒𝑟
Θ𝑠ℎ𝑎𝑟𝑒𝑑

◼ 𝑔𝑒𝑔𝑜 = Θ𝑒𝑔𝑜
𝑇 𝑓1, 𝑓3

𝑇

◼ 𝑔𝑜𝑡ℎ𝑒𝑟 = Θ𝑜𝑡ℎ𝑒𝑟
𝑇 𝑓2, 𝑓4

𝑇

◼ 𝑔𝑠ℎ𝑎𝑟𝑒𝑑 = Θ𝑠ℎ𝑎𝑟𝑒𝑑
𝑇 𝑓5

◼ Goal: Use IRL to learn a universal Θ, while
estimating a personalized 𝜙 for each demonstration

Interpretation of SVO angle

18[6] Schwarting, W., et al. (2019). Social behavior for autonomous vehicles. Proceedings of the National Academy 

of Sciences of the United States of America, 116(50), 2492–24978. 



Combining SVO and IRL 

◼ Previous methods either learned a universal 𝑟(𝑥, 𝑢)[5,6], or used 
part of demos to learn different 𝑟(𝑥, 𝑢)[7].

◼ Our goal: to learn personalized reward functions while fully 
utilizing all demos.

◼ Key objective: maximize the likelihood of given demonstration 

over both Θ,Φ = 𝜙1, … , 𝜙 𝐷

max
Θ,Φ

𝑃(𝐷|Θ,Φ) =ෑ

𝑖=1

|𝐷|

𝑃(𝜉𝑖|Θ, 𝜙𝑖)

◼ High-level ideas:
❑ Based on Algorithm* (CIOC)

❑ Maintain a probabilistic estimate for each 𝜙𝑖
❑ Update Θ and 𝜙𝑖 iteratively

Prior for 𝜙𝑖: von-Mises distribution
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Combining SVO and IRL: the workflow

1. Assume a prior distribution of all 𝜙𝑖 : 𝜙𝑖~𝑣𝑀(0, 𝜅), pick 𝜙𝑖
0 = 0

2. At step k, compute optimal Θk using Algorithm*

❑ Θ𝑘 = argmax
Θ

ς𝑖=1
𝐷 𝑃(𝜉|𝜙𝑖

𝑘−1, Θ)

3. Based on Θ𝑘, update the posterior of 𝜙𝑖:

❑ 𝑃 𝜙𝑖 𝜉𝑖 , Θ
𝑘 ∝ 𝑃 𝜉𝑖 𝜙𝑖 , Θ

𝑘 𝑃(𝜙𝑖|Θ
𝑘) (Bayes update)

❑ Assuming 𝑃 𝜙𝑖 Θ
𝑘 = 𝑃(𝜙𝑖|Θ

𝑘−1, 𝜉𝑖) (use posterior of last step as prior of this step)

4. Select 𝜙𝑖
𝑘 = argmax

𝜙𝑖

𝑃(𝜙𝑖|Θ
𝑘 , 𝜉𝑖)

5. Repeat 2,3 until convergence
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Proof of improvement: a sketch

◼ Let 𝑙𝑖(𝜙𝑖 , Θ) = 𝑃(𝜉𝑖|𝜙𝑖 , Θ); 𝐿 Φ, Θ = ς𝑖=1
𝐷 𝑃(𝜉𝑖|𝜙𝑖 , Θ)

Goal: to prove that 𝐿 𝜙𝑘 , Θ𝑘 ≥ 𝐿 𝜙𝑘−1, Θ𝑘−1

On one hand (from step2): 

◼ Θ𝑘 = argmax
Θ

𝐿(Φ𝑘−1, Θ), so we have 𝐿 Φ𝑘−1, Θ𝑘 ≥ 𝐿 Φ𝑘−1, Θ𝑘−1

On the other hand (from step4): 

◼ 𝜙𝑖
𝑘 = argmax

𝜙
𝑃 𝜙 Θ𝑘 , 𝜉𝑖 = argmax

𝜙
𝑙𝑖 𝜙, Θ

𝑘 𝑃 𝜙 Θ𝑘−1, 𝜉𝑖

◼ While 𝜙𝑖
𝑘−1 = argmax

𝜙
𝑃 𝜙 Θ𝑘−1, 𝜉𝑖

◼ Therefore, 

❑ if 𝜙𝑖
𝑘 ≠ 𝜙𝑖

𝑘−1, then 𝑙𝑖 𝜙𝑖
𝑘 , Θ𝑘 > 𝑙𝑖 𝜙𝑖

𝑘−1, Θ𝑘

❑ If 𝜙𝑖
𝑘 = 𝜙𝑖

𝑘−1, then 𝑙𝑖 𝜙𝑖
𝑘 , Θ𝑘 = 𝑙𝑖 𝜙𝑖

𝑘−1, Θ𝑘

◼ Taking product of all 𝑙𝑖, we have: 𝐿 Φ𝑘 , Θ𝑘 ≥ 𝐿 Φ𝑘−1, Θ𝑘

Therefore, We have 𝐿 𝜙𝑘 , Θ𝑘 ≥ 𝐿 𝜙𝑘−1, Θ𝑘−1 . ∎
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Datasets

Traffic scenario datasets:

◼ INTERnational, Adversarial and Cooperative moTION Dataset (INTERACTION)
❑ Naturalistic motions of various traffic participants

❑ HD-Map is provided

◼ HighD
❑ Traffic data recorded by drones at German highways

◼ RounD
❑ Traffic data recorded by drones at German roundabouts
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Trajectory Separation

◼ Select roundabout scenarios for finding interactions between two road users

◼ Procedure to generate each demonstration
1. Select ego vehicle

2. Find the timestamp 𝑡 when ego vehicle is entering the roundabout

3. Find the other vehicle currently inside roundabout with proper angle difference

4. Collect the trajectory of the two vehicles between 𝑡 − 4𝑠 and 𝑡 + 2𝑠

5. The trajectory will be finally converted to Frenet coordinate along reference path

time 𝑡 in step 2

Frenet coordinate system
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Demonstrations Visualization

◼ 500 extracted demonstrations from DR_DEU_Roundabout_OF sequence in 
INTERACTION dataset 

time step 

(×0.1s)
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Interaction Generation

◼ Each demonstration is associated with reference paths for ego and the other vehicle

time step

Demonstration samples from 

5 types of ego vehicle routes
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Demonstration for Experiment

◼ Time horizon is truncated to 3s (Ts = 0.1s)

◼ Only trajectories where the other vehicle enters just before ego vehicle are selected

Ego from west: 50 demosEgo from west: 25 demosEgo from south: 35 demos

3 types of trajectories used for IRL
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Preliminary Results

▪ Results are plotted in polar coordinate based on 𝜙

Final posterior 

distribution of 𝜙𝑖

Histogram of 𝜙𝑖
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Future work

◼ Use estimated 𝜃 and 𝜙 to predict the vehicle trajectory

◼ Test the algorithm in other maps of INTERACTION
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Thank you

Any question is welcome!
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