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Overview

Motivation and challenges

Traffic congestion is a very serious problems today, and it is also a
complex problem which is hard to solve.

Intelligence Transportation System is playing an important role in
optimizing fuel efficiency, reducing delays and enhancing driving
experience

Current traffic light control policies are based on historical data and
adapted in daily pattern, and the traffic light control systems based
on real-time conditions is far more effective.

Some technical challenges arise in analyzing real-time data.
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Overview

Aim of our project

Improve current traffic flow scenarios to reflect real world
transportation problem better.

Find traffic light control policies that will not cause any traffic
accident.

Optimize traffic light control policies based on some RL algorithms to
minimize the waiting time.

Visualization
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Overview

Prior work and approach

Traditional light control
Preprogramed cycles
No dependence on detailed states

”Smart control”–classical MDP framework
State: # cars, # lights
Action: light switching(GG, RR, R-Y-G, G-Y-R)
Cost(negative reward): waiting time at the intersection
Bellman optimality equation:

Q∗(s, a) = R(s, a) +
∑
s′∈S

T (s, a, s ′) max
a′∈A

Q∗(s ′, a′), (1)

where Q∗(s, a), R(s, a) and
∑

s′∈S T (s, a, s ′) maxa′∈A Q∗(s ′, a′)
represents quality of state-action pair Q(s, a), current reward and
future reward resp.

Drawbacks:
Requires prior knowledge of state transition matrix (not model free)
State space grows exponentially with # intersections (not scalable)

Our solution: Use deep-Q network
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Problem Formulation

Single Road intersection

Figure: Single road intersection

The state S(t) of the system at the beginning of time slot t may be
described by the three-tuple (X1(t),X2(t),Y (t)) with Xi (t) denoting the
number of vehicles of traffic flow i waiting to cross the intersection and
Y (t) ∈ {0, 1, 2, 3} indicating the configuration of the traffic lights:

”0”: green light for direction 1 and hence red light for direction 2.

”1”: yellow light for direction 1 and hence red light for direction 2.

”2”: green light for direction 2 and hence red light for direction 1.

”3”: yellow light for direction 2 and hence red light for direction 1.
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Problem Formulation

Single road intersection

Observe for each configuration k, we can either continue in the next time
or switch to natural subsequent configuration (k + 1) mod 4.

This is determined by action A(t) =

{
0 for continue

1 for switch
as:

Y (t + 1) = (Y (t) + A(t)) mod 4 (2)

Figure: State Transition Graph
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Problem Formulation

Single road intersection

The evolution of the quene state over time is governed by the recursion:

(X1(t+1),X2(t+1)) = (X1(t)+C1(t)−D1(t),X2(t)+C2(t)−D2(t)), (3)

Ci (t): number of vehicles of traffic flow i appearing at the
intersection during time slot t,

Di (t): number of departing vehicles of traffic flow i crossing the
intersection during time slot t.
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Problem Formulation

Single road intersection

Assumption: If one of the two traffic flows is granted the green light, then
exactly one waiting vehicle of that traffic flow, if any, will cross the
intersection during that time slot, i.e.,

D1(t) =

{
min{1,X1(t)} if Y (t) = 0

0 if Y (t) 6= 0
(4)

D2(t) =

{
min{1,X2(t)} if Y (t) = 2

0 if Y (t) 6= 2
(5)
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Problem Formulation

Linear road scenario

Figure: Linear bidirectional road network

The state S(t) is described as 5N tuple –
(Xn1(t),Xn2(t),Xn3(t),Xn4(t);Yn(t))n=1,··· ,N with directions 1 and 2
corresponding to East-West direction and North-South direction.
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Problem Formulation

Linear road scenario

Evolution of configuration

Yn(t + 1) = (Yn(t) + An(t)) mod 4 (6)

Evolution of states

Xni (t + 1) = Xni (t) + Cni (t)− Dni (t) (7)

Cni (t): the number of vehicles in direction i appearing at the nth
intersection during time slot t
Dni (t): the number of vehicles crossing the nth intersection in direction
i during time slot t
Cn+1,1(t + u) = Dn1(t) and Cn3(t + u) = Dn+1,3(t)
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Problem Formulation

Linear road scenario

Assumption:

Dn1(t) =

{
min{1,Xn1(t)} if Yn(t) = 0

0 if Yn(t) 6= 0
(8)

Dn3(t) =

{
min{1,Xn3(t)} if Yn(t) = 0

0 if Yn(t) 6= 0
(9)

Similarly for Dn2(t) and Dn4(t) depending on whether Yn(t) = 2 or not.
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Problem Formulation

Some Generalizations–pedestrians and vehicles
intersection

Figure: Pedestrian and vehicles
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Problem Formulation

Some Generalizations–grid network case

Figure: Grid network case
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Algorithm

Optimization Goal

Assume that the ”congestion cost” in time slot t is a function
F (X (t))

Single-intersection scenario: X (t) = (X1(t),X2(t))
Linear road case: X (t) = (Xn1(t),Xn2(t),Xn3(t),Xn4(t))

Want to find a dynamic control policy to minimize the long-term
expected discounted cost E[

∑∞
t=1 γ

tF (X (t))], with γ ∈ (0, 1)
representing a discount factor.
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Algorithm

Algorithm Design

Denote Q(s, a) as the maximum achievable expected discounted
reward.

Under optimal policy starting from state s = (X ,Y ) when action a is
taken,

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s, s ′; a) max
a′∈A

Q(s ′, a′) (10)

= r(s, a) + γE[max
a′∈A

Q(s ′, a′)] (11)

S: state space and A: action space
r(s, a) = F (X ) denotes the congestion cost in queue state X
p(s, s ′; a) denotes the transition probability from state s to state s ′

when action a is taken
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Algorithm

Algorithm Design

Observe that the values V (s) = maxa′∈A satisfy the Bellman optimality
equations

V (s) = max
a′∈A
{r(s, a) + γ

∑
s′∈S

p(s, s ′; a)V (s ′)} (12)

= max
a′∈A
{r(s, a) + γE[V (s ′)]} (13)
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Algorithm

Algorithm Design

Deep Q-network:

System state S serve as input for both target and evaluation network

Equation (10) provides basis for deriving the target Q-values at each
time step

Q-learning update for the neural approximator in the i th iteration is
calculated based on:

`(θ) = Es,a,r ,s′∼memory [(r + γmax(qtarget(s
′, a′; θ′i ))− qeval(s, a; θi ))2]

(14)

r : reward in current step
s ′ and a′: state and action in the next step
θi : parameters of the i th evaluate Q-network
θ′i : parameters of the tth target Q-network
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Algorithm

Algorithm Design

Deep Q-network basic idea:

The DQN algorithm sample from and train on data collected in
memory

The online samples are stored in memory for further learning

A warm-up period of k0 time steps is applied before the learning
operations are initiated,

The evaluate network is updated with AdamOptimizer,
gradient-descent and ε-greedy policy.
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Algorithm

Algorithm Design
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Results

Single Road Intersection

Figure: Traffic flow on one intersection
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Results

Single Road Intersection

Figure: Performance of DQN on single intersection
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Results

Crosswalk

Figure: Traffic flow on a crosswalk
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Results

Crosswalk

Figure: Performance of DQN on a crosswalk
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Results

Linear road scenario

Figure: Traffic flow on linear bidirectional road network (with N = 2)
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Results

Linear road scenario

Figure: Performance of DQN on linear bidirectional road network (with N = 2)
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Results

Grid Network Intersections

Figure: Traffic flow on Grid Network Intersections (2× 2)
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Results

Grid Network Intersections

Figure: Performance of DQN on Grid Network Intersections (2× 2)
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Conclusion

Conclusion

We have explored the scope for Deep Q-Networks (DQN) to optimize
real-time traffic light control policies in emerging large-scale Intelligent
Transportation Systems.
With Deep Q-Networks, the traffic light system on the intersections can
make the number of vehicles remains low.
Deep Q-Networks also do will on handling the ”green-wave” situation,
where the number of cars on a road grow unexpectedly. DQN can react to
”green-wave” and reduce the number of cars on a certain road.
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Future Works

Future Works

In the future, we can explore the application of Reinforcement Learning on
Intelligent Transportation Systems by considering more scenarios such as
intersection turning lanes, vehicles of different shapes and sizes, etc. We
can also apply multi-agent on an intersection to find out some strategies.
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