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Background

Our term project: the application of reinforcement learning model in Industry 4.0, 

mostly in human robot collaboration
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Background

Conditional 

Programming

Imitation 

Learning

Expectation: robot being able to 

execute by themselves while 

human supervise

Q: How to make robot learn 

human’s knowledge and skills?

Solutions:

Not for chaotic sites Versatile 

Today’s presentation: technical progress in imitation learning model 
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Motivation

Imitation learning (IL): learning from demonstrations for complex robot 

manipulation skills

Cons 1: models trained by IL can suffer from covariate shift.

→ re-label dataset samples (infeasible works for robotic tasks)

Cons 2: models cannot recover failure cases

In robot manipulation (6-DoF), small 

inaccuracies in the output actions can 

make IL agents susceptible to making 

mistakes.

Fig. 1: Human-in-the-loop policy 

learning with Human interventions
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Imitation Learning

1. Behavior Cloning: replicate expert policy, large amount of data needed and 

cause compounding errors;

2. Inverse Reinforcement Learning: learns expert reward function and use this 

model to train new agent, indirect and slow

3. Generative Adversarial Imitation Learning (GAIL): optimizes a policy directly 

from expert demonstrations without estimating the corresponding reward 

function, reduced compounding error
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GAIL – Notation and Intro

Model update: trust region policy optimization (TRPO) 

Policy 

generator

Policy 

discriminator Casula entropy, 

regularization

term of policy

Surrogate reward

function

• Generator: serves as a policy to imitate expert behavior by matching the 

state-action (s, a) distribution of demonstrations.

• Discriminator: plays a role of surrogate reward to measure the similarity 

between the generated data and demonstration data. 
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GAIL – Notation and Intro

Training Architecture

•The discriminator used the same architecture as the generator (policy).

•Two hidden layers of 100 units each with tanh nonlinearities in between.

•The networks were always initialized randomly at the start.

Model update: trust region policy optimization (TRPO) 
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Triple GAIL

Motivation:

1. Single modality of single GAIL models

2. Needs to involve real-time experience of agents
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Triple GAIL – Letter Notation

C (superscript) - drawn from expert data

e (superscript) – from encoder

g (superscript)  - from generator

c (normal letter) - label of skills

a – action

s - state

t - time sequences

𝑝𝜋𝐸 - distribution of expert data

All these data 

sequences are sent 

to the discriminator 

together with expert 

data 
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Triple GAIL – Color Notation

Blue line - drawn from expert data

Red line – drawn from inference model while training

Red block - conditional distribution of 𝑝𝐶𝛼

Blue block - conditional distribution of 𝑝𝜋𝜃
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Triple GAIL

• Three-player game, the generator and the selector work cooperatively against 

the discriminator

• Min-max optimization:
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Triple GAIL

Lemma 1. For any fixed generator and selector, the optimal form of the 

discriminator is denoted as:
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Triple GAIL

Lemma 2. The min-max game in Eqn. (4) can achieve the multiple equilibrium 

that 𝑝𝜋𝐸 = 𝑝𝑤 where variable w is a mixing coefficient between 𝑝𝐶𝛼 (s, a, c) and 

𝑝𝜋𝜃 (s, a, c) .
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Triple GAIL

Theorem 1. Eqn. (5) ensures the existence and uniqueness of the global 

equilibrium, which is achieved if and only if

𝑝𝜋𝜃(s; a; c) = 𝑝𝐶𝛼 (s; a; c) = 𝑝𝜋𝐸 (s; a; c).
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Triple GAIL – Training Procedure 
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Triple GAIL – Experiments and Results

Experiment: testing in driving learning and dense traffic driving

Fig. 2: The visualization of trajectories. The trajectories of lane change right, lane keeping and lane-

change left are represented by red, green and blue lines respectively. Dis. denotes displacement.
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Triple GAIL – Conclusion and Advantages

• Solved single modality problem

• Improved model performance by adding real-time experience to the training
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Outline – Model 2

A. Intervention-based Policy learning

B. Intervention-Weighted Regression (IWR)
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To sample equal size batches from the non-intervention and intervention 

datasets

→ Re-weight of the data distribution to reinforce intervention actions

s (states), a (actions), 

D (data samples),

R (Robot) and I (intervention)

Intervention

Training

Intervention
Fig. 3: Intervention Weighted Regression.

A. Intervention-based Policy learning
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s (states), a (actions), 

D (data samples),

R (Robot) and I (intervention)

Intervention

Training

Intervention
Fig. 3: Intervention Weighted Regression.

Reinforcement learning objective:

* Eq. (1) can be maximized via Expectation-Maximization.

𝐽 𝜃, 𝑞 = 𝔼𝑞 𝜏 log𝑅 𝜏 + log𝑝𝜋𝜃 𝜏 − log 𝑞(𝜏) (1)  

𝜃 = argmax𝔼 𝑠,𝑎 ~𝑞(𝜏) log 𝜋𝜃( ȁ𝑎 𝑠) (3)

Human intervention:

𝑞 𝜏 = argmax𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

A. Intervention-based Policy learning
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s (states), a (actions), 

D (data samples),

R (Robot) and I (intervention)

Intervention

Training

Intervention
Fig. 3: Intervention Weighted Regression.

Reinforcement learning objective to find a policy 𝜋𝜃:

𝐽 𝜃, 𝑞 = 𝔼𝑞 𝜏 log𝑅 𝜏 + log 𝑝𝜋𝜃 𝜏 − log 𝑞(𝜏) (1)

* Eq. (1) can be maximized via Expectation-Maximization.  

𝜃: policy parameters

𝜏: a trajectory of states and actions

𝑞(𝜏): dataset sample distribution

𝑝𝜋𝜃 𝜏 : the distribution of trajectories induced by policy 𝜋𝜃

A. Intervention-based Policy learning
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s (states), a (actions), 

D (data samples),

R (Robot) and I (intervention)

Intervention

Training

Intervention
Fig. 3: Intervention Weighted Regression.

𝑞 𝜏 = argmax𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

𝐽 𝜃, 𝑞 = 𝔼𝑞 𝜏 log𝑅 𝜏 + log𝑝𝜋𝜃 𝜏 − log 𝑞(𝜏) (1)  

Human intervention:

Reinforcement learning objective to find a policy 𝜋𝜃:

A. Intervention-based Policy learning
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s (states), a (actions), 

D (data samples),

R (Robot) and I (intervention)

Intervention

Training

Intervention
Fig. 3: Intervention Weighted Regression.

𝑞 𝜏 = argmax 𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

𝐽 𝜃, 𝑞 = 𝔼𝑞 𝜏 log 𝑅 𝜏 + log 𝑝𝜋𝜃 𝜏 − log 𝑞(𝜏) (1)  

Human intervention:

Dataset sample 

distribution

• 𝑅 𝜏  Human tries to maximize return via interventions

• 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏  On-policy regularization

*𝐾𝐿 𝑞 ∥ 𝑝 denotes the Kullback-Leibler diverence between q (the variational trajectory distribution) 

and p (the one induced by the current policy).

Reinforcement learning objective to find a policy 𝜋𝜃:

A. Intervention-based Policy learning
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s (states), a (actions), 
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Fig. 3: Intervention Weighted Regression.

𝑞 𝜏 = argmax 𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

𝐽 𝜃, 𝑞 = 𝔼𝑞 𝜏 log 𝑅 𝜏 + log 𝑝𝜋𝜃 𝜏 − log 𝑞(𝜏) (1)  

Human intervention:

Dataset sample 

distribution

Reinforcement learning objective to find a policy 𝜋𝜃:

𝜃 = argmax𝔼 𝑠,𝑎 ~𝑞(𝜏) log 𝜋𝜃( ȁ𝑎 𝑠) (3)Policy 

parameters

A. Intervention-based Policy learning
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A. Intervention-based Policy learning

s (states), a (actions), 

D (data samples),

R (Robot) and I (intervention)

Intervention

Training

Intervention
Fig. 3: Intervention Weighted Regression.

𝑞 𝜏 = argmax 𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

𝐽 𝜃, 𝑞 = 𝔼𝑞 𝜏 log 𝑅 𝜏 + log 𝑝𝜋𝜃 𝜏 − log 𝑞(𝜏) (1)  

Human intervention:

Dataset sample 

distribution

Reinforcement learning objective to find a policy 𝜋𝜃:

𝜃 = argmax𝔼 𝑠,𝑎 ~𝑞(𝜏) log 𝜋𝜃( ȁ𝑎 𝑠) (3)Policy 

parameters

𝜃𝑖+1 𝜏  argmax 𝐽(𝜃, 𝑞𝑖+1) = argmax 𝔼 𝑠,𝑎 ~𝑞(𝜏) log 𝜋𝜃( ȁ𝑎 𝑠)
𝜃

𝑞𝑖+1 𝜏  argmax 𝐽(𝜃𝑖 , 𝑞)
𝑞
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B. Intervention Weighted Regression

Optimization in Eq (2)

Excluding on-policy samples in the dataset distribution can cause the policy 

trained in the next round to change substantially from the current policy.

→ Human-curated distribution 𝑞(𝜏) consists of a set of intervention data samples 

𝐷𝐼 and on-policy data samples collected by the robot 𝐷𝑅.

𝑞 𝜏 = argmax𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)
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B. Intervention Weighted Regression

Intervention Weighted Regression (IWR): To assume that the human is 

specifying 𝑞(𝜏) by re-weighting the distribution of data with a parameter 𝛼.

𝑞 𝜏 = argmax𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

𝑞 𝑠, 𝑎 ∝ 𝛼𝜌𝐼(𝑠, 𝑎) + 𝜌𝑅 𝑠, 𝑎

𝜌𝐼 𝑠, 𝑎 : the state-action distributions for the intervention

𝜌𝑅 𝑠, 𝑎 : the state-action distributions for the non-intervention
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B. Intervention Weighted Regression

Intervention Weighted Regression (IWR): To assume that the human is 

specifying 𝑞(𝜏) by re-weighting the distribution of data with a parameter 𝛼.

𝑞 𝜏 = argmax𝔼𝑞 𝜏 log𝑅 𝜏 − 𝐾𝐿 𝑞 𝜏 ∥ 𝑝𝜋𝜃 𝜏 (2)

𝑞 𝑠, 𝑎 ∝ 𝛼𝜌𝐼(𝑠, 𝑎) + 𝜌𝑅 𝑠, 𝑎

𝜌𝐼 𝑠, 𝑎 : the state-action distributions for the intervention

𝜌𝑅 𝑠, 𝑎 : the state-action distributions for the non-intervention

In this paper, 𝑞 𝑠, 𝑎 samples from 𝜌𝐼 𝑠, 𝑎 and 𝜌𝑅 𝑠, 𝑎 are in equal proportion by 

choosing 𝛼 = 𝐷𝑅 / 𝐷𝐼 .
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B. Intervention Weighted Regression

Tasks: Threading and Coffee Machine

Baselines: 

IWR (This paper)

IWR-NB: No dataset balancing takes place.

HG-Dagger: Only the samples where the user was intervening are added to the 

dataset, while the policy samples are discarded.

Full Demos: A human operator collects full task demonstrations instead of 

interventions
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B. Intervention Weighted Regression

Experiment setting: initial dataset (30 task demonstrations) and  all policies (2-

layer LSTMs)

IWR vs Full Demos: Intervention-based data collection can produce higher quality 

policies with fewer human-annotated samples.

IWR vs HG-DAGGER: the method IWR is able to leverage intervention data to 

outperform the Full Demos baseline.

➔ IWR intelligently leverage both the human intervention and non-intervention 

samples for learning.
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B. Intervention Weighted Regression
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B. Intervention Weighted Regression

Experiment setting: initial dataset (30 task demonstrations) and  all policies (2-

layer LSTMs)

IWR method consistently outperforms other baselines on their collected 

datasets

IWR method can reach a level of performance close to its own collected 

dataset.

➔ Other baselines do not fail purely due to lower quality data or wore base 

policies at each iteration, but due to the way they leverage the data.
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Conclusion

Contribution

1. Development of a system that enables remote teleoperation for 6-DoF 

robot control

2. Introduction of Interaction Weighted Regression (IWR): a simple but 

effective method to learn from human interventions that encourages the 

policy to learn how to traverse bottlenecks through the interventions.

3. Evaluation on two challenging contact-rich manipulation tasks.
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Conclusion

• Solved single modality problem

• Improved model performance by adding real-time experience to the training
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