Real-time Update in Robot Imitation Learning

Park-Yu

Real-time Update in Robot Imitation Learning

Outline

- Background
- Motivation
- Model 1 Triple GAIL
- Model 2– Human-in-the-loop IL
- Conclusion

Real-time Update in Robot Imitation Learning

Our term project: the application of reinforcement learning model in Industry 4.0, mostly in human robot collaboration

The Four Industrial Revolutions

Park-Yu

Real-time Update in Robot Imitation Learning

Background

Today's presentation: technical progress in imitation learning model

Park-Yu

Real-time Update in Robot Imitation Learning

Outline

- Background
- Motivation
- Model 1 Triple GAIL
- Model 2– Human-in-the-loop IL
- Conclusion

Park-Yu

Imitation learning (IL): learning from demonstrations for complex robot manipulation skills

- Cons 1: models trained by IL can suffer from covariate shift.
 → re-label dataset samples (infeasible works for robotic tasks)
- Cons 2: models cannot recover failure cases

 In robot manipulation (6-DoF), small inaccuracies in the output actions can make IL agents susceptible to making mistakes.

Outline

Park-Yu

- Background
- Motivation
- Model 1 Triple GAIL
- Model 2– Human-in-the-loop IL
- Conclusion

Park-Yu

- 1. Behavior Cloning: replicate expert policy, large amount of data needed and cause compounding errors;
- Inverse Reinforcement Learning: learns expert reward function and use this model to train new agent, indirect and slow
- Generative Adversarial Imitation Learning (GAIL): optimizes a policy directly from expert demonstrations without estimating the corresponding reward function, reduced compounding error

GAIL - Notation and Intro

Park-Yu

- **Generator:** serves as a policy to imitate expert behavior by matching the state-action (s, a) distribution of demonstrations.
- **Discriminator:** plays a role of surrogate reward to measure the similarity between the **generated data** and **demonstration data**.

Model update: trust region policy optimization (TRPO)

STATS 701 Pre #p/#p

Real-time Update in Robot Imitation Learning

• Training Architecture

- •The discriminator used the same architecture as the generator (policy).
- •Two hidden layers of 100 units each with *tanh* nonlinearities in between.
- •The networks were always initialized randomly at the start.
- Model update: trust region policy optimization (TRPO)

Real-time Update in Robot Imitation Learning

Motivation:

- 1. Single modality of single GAIL models
- 2. Needs to involve real-time experience of agents

Park-Yu

Real-time Update in Robot Imitation Learning

Triple GAIL - Letter Notation

- C (superscript) drawn from expert data
- e (superscript) from encoder
- g (superscript) from generator
- c (normal letter) label of skills
- a action
- s state
- t time sequences
- $p_{\pi E}$ distribution of expert data

Selector $\begin{cases} s_{t-k:t}^{e}, a_{t-k-1:t-1}^{e} \\ \{s_{t-k:t}^{g}, a_{t-k-1:t-1}^{g} \} \\ f \\ s_{t-k:t}^{e}, a_{t-k-1:t-1}^{e} \\ f \\ s_{t-k:t}^{e}, a_{t-k-1:t-1}^{e} \\ f \\ s_{t-k:t}^{e}, a_{t-k-1:t-1}^{e} \\ f \\ s_{t-k-1:t-1}^{e} \\ f \\ s_{t-k-1:t-1}^$

All these data sequences are sent to the discriminator together with expert data

Park-Yu

Real-time Update in Robot Imitation Learning

Triple GAIL - Color Notation

- → Blue line drawn from expert data
- Red line drawn from inference model while training
- **—** Red block conditional distribution of $p_{C\alpha}$
 - Blue block conditional distribution of $p_{\pi\theta}$

Park-Yu

Real-time Update in Robot Imitation Learning

 Three-player game, the generator and the selector work cooperatively against the discriminator

(4)

• Min-max optimization:

$$\begin{split} \min_{\alpha,\theta} \max_{\psi} \mathbb{E}_{\pi_E} \left[\log \left(1 - D_{\psi}(s, a, c) \right) \right] \\ + \omega \mathbb{E}_{\pi_{\theta}} \left[\log D_{\psi}(s, a, c) \right] \\ + (1 - \omega) \mathbb{E}_{C_{\alpha}} \left[\log D_{\psi}(s, a, c) \right] - \lambda_H H \left(\pi_{\theta} \right) \end{split}$$

where \mathbb{E}_{π_E} , $\mathbb{E}_{\pi_{\theta}}$ and $\mathbb{E}_{C_{\alpha}}$ denote $\mathbb{E}_{(s,c,a)\sim p_{\pi_E}(s,c,a)}$, $\mathbb{E}_{(s,c,a)\sim p_{\pi_{\theta}}(s,c,a)}$, $\mathbb{E}_{(s,c,a)\sim p_{C_{\alpha}}(s,c,a)}$ respectively, $\omega \in (0,1)$ is a hyper-parameter that balances the weights of policy generation and skill selection, and $H(\pi_{\theta})$ is the policy casual entropy defined as $\mathbb{E}_{\pi_{\theta}}[-\log \pi_{\theta}(a|s,a)]$ with hyperparameter $\lambda_H > 0$.

Park-Yu

Real-time Update in Robot Imitation Learning

Lemma 1. For any fixed generator and selector, the optimal form of the discriminator is denoted as:

$$D_{\psi^*} = \frac{\omega p_{\pi_\theta} + (1-\omega) p_{C_\alpha}}{p_{\pi_E} + \omega p_{\pi_\theta} + (1-\omega) p_{C_\alpha}} = \frac{p_\omega}{p_{\pi_E} + p_\omega}$$
(6)

where p_{π_E} , $p_{\pi_{\theta}}$ and $p_{C_{\alpha}}$ denote $p_{\pi_E}(s, a, c)$, $p_{\pi_{\theta}}(s, a, c)$ and $p_{C_{\alpha}}(s, a, c)$ respectively, and p_{ω} is defined as $\omega p_{\pi_{\theta}} + (1 - \omega)p_{C_{\alpha}}$.

Real-time Update in Robot Imitation Learning

STATS 701 Pre #p/#p

Park-Yu

Park-Yu

Lemma 2. The min-max game in Eqn. (4) can achieve the multiple equilibrium that $p_{\pi E} = p_w$ where variable w is a mixing coefficient between $p_{C\alpha}$ (s, a, c) and $p_{\pi\theta}$ (s, a, c). $R_E = \mathbb{E}_{\pi_E} \left[-\log p_{C_{\alpha}}(c|s, a) \right]$

$$R_E = \mathbb{E}_{\pi_E} \left[-\log p_{C_\alpha}(c|s, a) \right]$$
$$\approx -\frac{1}{N} \sum_{i=0}^N \frac{1}{T} \sum_{t=1}^T c_{i,t}^e \log p_{C_\alpha} \left(c_{i,t}^c | s_{i,t}^e, a_{i,t-1}^e \right)$$
(7)

$$R_{G} = \mathbb{E}_{\pi_{\theta}} \left[-\log p_{C_{\alpha}}(c|s, a) \right]$$
$$\approx -\frac{1}{N} \sum_{i=0}^{N} \frac{1}{T} \sum_{t=1}^{T} c_{i,t}^{g} \log p_{C_{\alpha}} \left(c_{i,t}^{c} | s_{i,t}^{g}, a_{i,t-1}^{g} \right)$$
(8)

Real-time Update in Robot Imitation Learning

Park-Yu

Theorem 1. Eqn. (5) ensures the existence and uniqueness of the global equilibrium, which is achieved if and only if

 $p_{\pi\theta}(s; a; c) = p_{C\alpha}(s; a; c) = p_{\pi E}(s; a; c).$

$$\min_{\alpha,\theta} \max_{\psi} \mathbb{E}_{\pi_E} \left[\log \left(1 - D_{\psi}(s, a, c) \right) \right] \\
+ \omega \mathbb{E}_{\pi_{\theta}} \left[\log D_{\psi}(s, a, c) \right] \\
+ (1 - \omega) \mathbb{E}_{C_{\alpha}} \left[\log D_{\psi}(s, a, c) \right] \\
+ \lambda_E R_E + \lambda_G R_G - \lambda_H H \left(\pi_{\theta} \right)$$
(5)

where λ_E and λ_G weigh the relative importance of two supervised loss.

Real-time Update in Robot Imitation Learning

Triple GAIL - Training Procedure

Algorithm 1 The Training Procedure of Triple-GAIL

Input: The multi-intention trajectories of expert τ_E ; **Parameter**: The initial parameters θ_0 , α_0 and ψ_0

- 1: for $i = 0, 1, 2, \cdots$ do
- 2: **for** $j = 0, 1, 2, \cdots, N$ **do**
- 3: Reset environments by the demonstration episodes with fixed label c_i ;
- 4: Run policy $\pi_{\theta}(\cdot|c_j)$ to sample trajectories: $\tau_{c_j} = (s_0, a_0, s_1, a_1, \dots, s_{T_j}, a_{T_j}|c_j)$
- 5: end for
- 6: Update the parameters of π_{θ} via TRPO with rewards: $r_{t_i} = -\log D_{\psi}(s_{t_i}, a_{t_i}, c_j)$
- 7: Update the parameters of D_{ψ} by gradient ascending with respect to:

$$\nabla_{\psi} \frac{1}{N_e} \sum_{n=1}^{N_e} \log(1 - D_{\psi}\left(s_n^e, a_n^e, c_n^e\right)) + \frac{1}{N} \sum_{j=1}^{N} \left[\frac{\omega}{T_j} \sum_{t=1}^{T_j} \log D_{\psi}\left(s_t^g, a_t^g, c_j^g\right) + \frac{1 - \omega}{T_j} \sum_{t=1}^{T_j} \log D_{\psi}\left(s_t^e, a_t^c, c_j^e\right) \right]$$
(9)

8: Update the parameters of C_{α} by gradient descending with respect to:

$$\nabla_{\alpha} \frac{1}{N} \sum_{j=1}^{N} \left[\frac{1-\omega}{T_{j}} \sum_{t=1}^{T_{j}} \log D_{\psi} \left(s_{t}^{c}, a_{t}^{c}, c_{j}^{c}\right) - \frac{\lambda_{E}}{T_{j}} \sum_{t=1}^{T_{j}} c_{j}^{e} \log p_{C_{\alpha}} \left(c_{t}^{c} | s_{t}^{e}, a_{t-1}^{e}\right) - \frac{\lambda_{G}}{T_{j}} \sum_{t=1}^{T_{j}} c_{j}^{e} \log p_{C_{\alpha}} \left(c_{t}^{c} | s_{t}^{e}, a_{t-1}^{e}\right) \right]$$
(10)

9: end for

Park-Yu

Real-time Update in Robot Imitation Learning

Experiment: testing in driving learning and dense traffic driving

Algorithms	Success Rate (%)	Mean Distance (m)	KL Divergence		
6			Lane-change Left	Lane-keeping	Lane-change Right
BC GAIL CGAIL Triple-GAIL	$\begin{array}{c} 6.8 \pm 3.2 \\ 73.9 \pm 1.3 \\ 65.5 \pm 0.9 \\ \textbf{80.9} \pm \textbf{1.2} \end{array}$	81.7 ± 3.1 168.4 ± 5.2 149.8 ± 7.2 179.6 ± 3.6	3827 ± 358 1764 ± 279 1297 ± 255 447 ± 122	4008 ± 486 1893 ± 378 1892 ± 279 685 ± 214	2581 ± 371 606 ± 278 977 ± 109 392 ± 127
Expert	100	210 ± 2.1	0	0	0

TABLE I: The Success Rate, Mean Distance and KL Divergence of different algorithms.

Fig. 2: The visualization of trajectories. The trajectories of lane change right, lane keeping and lanechange left are represented by red, green and blue lines respectively. Dis. denotes displacement.

Real-time Update in Robot Imitation Learning

Park-Yu

Triple GAIL - Conclusion and Advantages

- Solved single modality problem
- Improved model performance by adding real-time experience to the training

Park-Yu

Real-time Update in Robot Imitation Learning

Outline

- Background
- Motivation
- Model 1 Triple GAIL
- Model 2– Human-in-the-loop IL
- Conclusion

Real-time Update in Robot Imitation Learning

Outline - Model 2

- A. Intervention-based Policy learning
- B. Intervention-Weighted Regression (IWR)

Park-Yu

Human-in-the-loop imitation learning (2020)

To sample equal size batches from the non-intervention and intervention datasets

\rightarrow **Re-weight** of the data distribution to reinforce intervention actions

Human-in-the-loop imitation learning (2020)

Park-Yu

Fig. 3: Intervention Weighted Regression.

Reinforcement learning objective:

$$J(\theta, q) = \mathbb{E}_{q(\tau)} \Big[\log R(\tau) + \log p_{\pi_{\theta}}(\tau) - \log q(\tau) \Big]$$
(1)

* Eq. (1) can be maximized via Expectation-Maximization.

Human intervention:

$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)}[\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)

$$\theta = \arg \max \mathbb{E}_{(s,a) \sim q(\tau)} [\log \pi_{\theta}(a|s)]$$
(3)

STATS 701 Pre #p/#p

Park-Yu

Human-in-the-loop imitation learning (2020)

• Reinforcement learning objective to find a policy π_{θ} :

Park-Yu

$$J(\theta, q) = \mathbb{E}_{q(\tau)} \Big[\log R(\tau) + \log p_{\pi_{\theta}}(\tau) - \log q(\tau) \Big]$$
(1)

 θ : policy parameters τ : a trajectory of states and actions $q(\tau)$: dataset sample distribution $p_{\pi_{\theta}}(\tau)$: the distribution of trajectories induced by policy π_{θ}

* Eq. (1) can be maximized via Expectation-Maximization.

Human-in-the-loop imitation learning (2020)

- Reinforcement learning objective to find a policy π_{θ} : $J(\theta, q) = \mathbb{E}_{q(\tau)} \Big[\log R(\tau) + \log p_{\pi_{\theta}}(\tau) - \log q(\tau) \Big]$ (1)
- Human intervention:

Park-Yu

$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)}[\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)

Human-in-the-loop imitation learning (2020)

Fig. 3: Intervention Weighted Regression.

• Reinforcement learning objective to find a policy π_{θ} :

$$J(\theta, q) = \mathbb{E}_{q(\tau)} \Big[\log R(\tau) + \log p_{\pi_{\theta}}(\tau) - \log q(\tau) \Big]$$
(1)

• Human intervention:

Park-Yu

Dataset sample
distribution
$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)} [\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)

- $R(\tau) \leftarrow$ Human tries to maximize return via interventions
- $KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)] \leftarrow \text{On-policy regularization}$

 $*KL[q \parallel p]$ denotes the Kullback-Leibler diverence between q (the variational trajectory distribution) and p (the one induced by the current policy).

Human-in-the-loop imitation learning (2020)

Fig. 3: Intervention Weighted Regression. 0

Reinforcement learning objective to find a policy π_{θ} :

$$J(\theta, q) = \mathbb{E}_{q(\tau)} \left[\log R(\tau) + \log p_{\pi_{\theta}}(\tau) - \log q(\tau) \right]$$
(1)

Human intervention: 0

Park-Yu

Dataset sample
distribution
$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)} [\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
 (2)
Policy
parameters $\theta = \arg \max \mathbb{E}_{(s,a) \sim q(\tau)} [\log \pi_{\theta}(a|s)]$ (3)

Human-in-the-loop imitation learning (2020)

s (states), a (actions), D (data samples), R (Robot) and I (intervention)

Fig. 3: Intervention Weighted Regression.
 Reinforcement learning objective to find a policy π_θ:

$$J(\theta, q) = \mathbb{E}_{q(\tau)} \Big[\log R(\tau) + \log p_{\pi_{\theta}}(\tau) - \log q(\tau) \Big]$$
(1)

• Human intervention:

Dataset sample
distribution
$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)} [\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)Policy
parameters $\theta = \arg \max \mathbb{E}_{(s,a) \sim q(\tau)} [\log \pi_{\theta}(a|s)]$ (3) $q^{i+1}(\tau) \leftarrow \arg \max_{q} J(\theta^{i}, q)$
 $\theta^{i+1}(\tau) \leftarrow \arg \max_{q} J(\theta, q^{i+1}) = \arg \max \mathbb{E}_{(s,a) \sim q(\tau)} [\log \pi_{\theta}(a|s)]$ (3)Park-YuHuman-in-the-loop imitation learning (2020)STATS 701 Pre #p/#p

$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)}[\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)

Optimization in Eq (2)

Park-Yu

- Excluding on-policy samples in the dataset distribution can cause the policy trained in the next round to change substantially from the current policy.
- \rightarrow Human-curated distribution $q(\tau)$ consists of a set of intervention data samples D_I and on-policy data samples collected by the robot D_R .

Human-in-the-loop imitation learning (2020)

$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)}[\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)

• Intervention Weighted Regression (IWR): To assume that the human is specifying $q(\tau)$ by re-weighting the distribution of data with a parameter α .

$$q(s,a) \propto \alpha \rho_I(s,a) + \rho_R(s,a)$$

 $\rho_I(s, a)$: the state-action distributions for the intervention $\rho_R(s, a)$: the state-action distributions for the non-intervention

Human-in-the-loop imitation learning (2020)

Park-Yu

$$q(\tau) = \arg \max \mathbb{E}_{q(\tau)}[\log R(\tau)] - KL[q(\tau) \parallel p_{\pi_{\theta}}(\tau)]$$
(2)

• Intervention Weighted Regression (IWR): To assume that the human is specifying $q(\tau)$ by re-weighting the distribution of data with a parameter α .

 $q(s,a) \propto \alpha \rho_I(s,a) + \rho_R(s,a)$

 $\rho_I(s, a)$: the state-action distributions for the intervention $\rho_R(s, a)$: the state-action distributions for the non-intervention

• In this paper, q(s, a) samples from $\rho_I(s, a)$ and $\rho_R(s, a)$ are in equal proportion by choosing $\alpha = |D_R|/|D_I|$.

Park-Yu

Human-in-the-loop imitation learning (2020)

• Tasks: Threading and Coffee Machine

(a) Threading

(b) Coffee Machine

Baselines:

- IWR (This paper)
- **IWR-NB**: No dataset balancing takes place.
- **HG-Dagger**: Only the samples where the user was intervening are added to the dataset, while the policy samples are discarded.
- Full Demos: A human operator collects full task demonstrations instead of interventions

Park-Yu

Human-in-the-loop imitation learning (2020)

 Experiment setting: initial dataset (30 task demonstrations) and all policies (2layer LSTMs)

TABLE I: Single-Operator Results on the Threading Task

Model	Round 1	Round 2	Final
Base	-	-	58.0 ± 9.2
Full Demos	-	-	76.7 ± 2.3
HG-DAGGER	57.3 ± 9.5	62.7 ± 5.0	75.3 ± 8.1
IWR-NB	76.0 ± 6.9	72.0 ± 3.5	74.7 ± 1.2
IWR (Ours)	84.0 ± 5.3	90.7 ± 3.1	87.3 ± 5.0

Park-Yu

TABLE II: Multi-Operator Results on the Coffee Machine Task

Model	Round 1	Round 2	Final
Base	-	-	52.0 ± 3.5
Full Demos	-	-	64.9 ± 8.3
HG-DAGGER	70.2 ± 15.3	71.1 ± 9.7	69.6 ± 10.1
IWR (Ours)	79.6 ± 8.9	79.5 ± 11.7	87.5 ± 9.4

- IWR vs Full Demos: Intervention-based data collection can produce higher quality policies with fewer human-annotated samples.
- IWR vs HG-DAGGER: the method IWR is able to leverage intervention data to outperform the Full Demos baseline.
- IWR intelligently leverage both the human intervention and non-intervention samples for learning.

Human-in-the-loop imitation learning (2020)

 Experiment setting: initial dataset (30 task demonstrations) and all policies (2layer LSTMs)

TABLE I: Single-Operator Results on the Threading Task

Model	Round 1	Round 2	Final
Base	-	-	58.0 ± 9.2
Full Demos	-	-	76.7 ± 2.3
HG-DAGGER	57.3 ± 9.5	62.7 ± 5.0	75.3 ± 8.1
IWR-NB	76.0 ± 6.9	72.0 ± 3.5	74.7 ± 1.2
IWR (Ours)	84.0 ± 5.3	90.7 ± 3.1	87.3 ± 5.0

Park-Yu

TABLE II: Multi-Operator Results on the Coffee Machine Task

Model	Round 1	Round 2	Final
Base	-	-	52.0 ± 3.5
Full Demos	-	-	64.9 ± 8.3
HG-DAGGER	70.2 ± 15.3	71.1 ± 9.7	69.6 ± 10.1
IWR (Ours)	79.6 ± 8.9	79.5 ± 11.7	87.5 ± 9.4

- IWR vs Full Demos: Intervention-based data collection can produce higher quality policies with fewer human-annotated samples.
- IWR vs HG-DAGGER: the method IWR is able to leverage intervention data to outperform the Full Demos baseline.
- IWR intelligently leverage both the human intervention and non-intervention samples for learning.

Human-in-the-loop imitation learning (2020)

 Experiment setting: initial dataset (30 task demonstrations) and all policies (2layer LSTMs)

TABLE III: Single-Operator Comparison across Final Threading Datasets Collected by Each Method

	Final Dataset		
Model	HG-DAgger	IWR-NB	IWR (Ours)
HG-DAGGER	75.3 ± 8.1	72.0 ± 5.3	81.3 ± 4.2
IWR-NB	80.0 ± 1.4	74.7 ± 1.2	86.0 ± 4.0
IWR (Ours)	87.3 ± 6.4	84.7 ± 6.4	87.3 ± 5.0

TABLE IV: Multi-Operator Comparison across Final Coffee Machine Datasets Collected by Each Method

	Final Dataset		
Model	HG-DAgger	IWR (Ours)	
HG-DAGGER	69.6 ± 10.1	71.6 ± 16.1	
IWR (Ours)	85.6 ± 6.5	87.5 ± 9.4	

- IWR method consistently outperforms other baselines on their collected datasets
- IWR method can reach a level of performance close to its own collected dataset.
- Other baselines do not fail purely due to lower quality data or wore base policies at each iteration, but due to the way they leverage the data.

Park-Yu

Human-in-the-loop imitation learning (2020)

Contribution

Park-Yu

- 1. Development of a system that enables remote teleoperation for 6-DoF robot control
- 2. Introduction of Interaction Weighted Regression (IWR): a simple but effective method to learn from human interventions that encourages the policy to learn how to traverse bottlenecks through the interventions.
- 3. Evaluation on **two challenging contact-rich manipulation tasks**.

Human-in-the-loop imitation learning (2020)

Outline

Park-Yu

- Background
- Motivation
- Model 1 Triple GAIL
- Model 2– Human-in-the-loop IL
- Conclusion

Conclusion

- Solved single modality problem
- Improved model performance by adding real-time experience to the training

Real-time Update in Robot Imitation Learning

- Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. *arXiv* preprint arXiv:1606.03476.
- Fei, C., Wang, B., Zhuang, Y., Zhang, Z., Hao, J., Zhang, H., ... & Liu, W. (2020). Triple-GAIL: a multi-modal imitation learning framework with generative adversarial nets. *arXiv preprint arXiv:2005.10622*.
- Mandlekar, Ajay, et al. (2020). "Human-in-the-Loop Imitation Learning using Remote Teleoperation." *arXiv preprint arXiv:2012.06733.*
- Paine, Tom Le, et al. (2018)."One-shot high-fidelity imitation: Training largescale deep nets with rl." *arXiv preprint arXiv:1810.05017.*
- Popov, Ivaylo, et al. (2017). "Data-efficient deep reinforcement learning for dexterous manipulation." *arXiv preprint arXiv:1704.03073.*

Park-Yu

Real-time Update in Robot Imitation Learning