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Background

Our term project: the application of reinforcement learning model in Industry 4.0,

mostly in human robot collaboration

The Four Industrial Revolutions

dh &5 T o

t roduction of steam assembly lines using compute s, IT-s! ystems Autonomous systems,

M chanization and the Mass production Automated production The Smart Factory.
nd water power electrical power nd robotic \ 16T, machine learning
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Background

Expectation: robot being able to

Solutions:

execute by themselves while

human supervise

Conditional Imitation
Programming Learning

Q: How to make robot learn

human’s knowledge and skills? Not for chaotic sites Versatile

Today’s presentation: technical progress in imitation learning model
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Imitation learning (IL): learning from demonstrations for complex robot
manipulation skills

@ Cons 1: models trained by IL can suffer from covariate shift.
—> re-label dataset samples (infeasible works for robotic tasks)

@ Cons 2: models cannot recover failure cases

Policy Policy Human Intervenes Policy Resumes
Execution Failure Remotely Task Execution
T T L) T;

-

COE

@ |n robot manipulation (6-DoF), small

i '
inaccuracies in the output actions can ? 2
make IL agents susceptible to making v - -
mistakes.
C—
&- — T

Fig. 1: Human-in-the-loop policy New Policy
learning with Human interventions

Dataset
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Imitation Learning

1. Behavior Cloning: replicate expert policy, large amount of data needed and

cause compounding errors;

2. Inverse Reinforcement Learning: learns expert reward function and use this
model to train new agent, indirect and slow

3. Generative Adversarial Imitation Learning (GAIL): optimizes a policy directly
from expert demonstrations without estimating the corresponding reward

function, reduced compounding error
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GAIL - Notation and Intro

« Generator: serves as a policy to imitate expert behavior by matching the
state-action (s, a) distribution of demonstrations.
« Discriminator: plays a role of surrogate reward to measure the similarity

between the generated data and demonstration data.

Policy Surrogate reward

discriminator Ifunction Casula entropy,
— rﬁ max E, log D(s.a) regularization
Policy x J|Dg(0,1) term of pofity
generator +Erp; [log (1 — D(s,a))] — XH)(7)

Model update: trust region policy optimization (TRPO)
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GAIL - Notation and Intro

@ Training Architecture
*The discriminator used the same architecture as the generator (policy).

*Two hidden layers of 100 units each with tanh nonlinearities in between.

*The networks were always initialized randomly at the start.

@ Model update: trust region policy optimization (TRPO)
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Triple GAIL

Motivation:
1. Single modality of single GAIL models

2. Needs to involve real-time experience of agents
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Triple GAIL - Letter Notation

C (superscript) - drawn from expert data
e (superscript) - from encoder

g (superscript) - from generator

c (normal letter) - label of skills

a - action

S - state

t - time sequences

—_— e — o — — — — - —_———— e —— — ————

Selectm IDlS(‘l iminator

'{St Jitr Ob—k—1:t— 1}“ $ e
g g C C C
J “t—k—1-t—1}’ C—~cg "pist.a%cf)

t—k:t’

All these data

sequences are sent
to the discriminator
together with expert

data
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Triple GAIL - Color Notation

== Blue line - drawn from expert data
— Red line — drawn from inference model while training
— Red block - conditional distribution of p.,

wmm Blue block - conditional distribution of p,g

—_—— e — — — — —_———— e —— — ————

Selectm IDlS(‘l iminator _
'{St it Gkt $ T

g
St—k:t’
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Triple GAIL

« Three-player game, the generator and the selector work cooperatively against
the discriminator

* Min-max optimization:

where K., . E,. and E.  denote E(S,C,a)mpw(s,c‘a),

min maAXE?TE []‘Dg (1 - DUL‘ (S a C))]

. e ].E(s,c,a)mp,re (s,c.a)® ]E(s,c,a)m;pg_-,vCz (s,c,a) respecti.vely, w e (011)
is a hyper-parameter that balances the weights of policy
_|_,»_J_;IE:‘ilr [log DT.-"J (33 a. C)] (4) generation and skill selection, and H (mg) is the policy
? casual entropy defined as E., [—log my(als,a)] with hyper-
+(1 — QJ)ECQ [ng Dﬁ,(S,(l, C)] — Ay H (mg) parameter Ay > 0.
Selector ""__: Discriminator
| Stk k-1 B i rp |
SRAY IR ISR +CE Loss| | t
g g ﬂ c c Cl o i
{s t—k:t’ at—k—1:t—1}' C~c =pis.abc) —F
S5 q
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Triple GAIL

Lemma 1. For any fixed generator and selector, the optimal form of the
discriminator is denoted as:

T ]-_ w
Dy = — Pt zwpo, P

Prg —l_wpﬂe =+ (]- T W)pCa Prg —l_pw

where pr ., Dr, and pc., denote p . (s, a,c), pr,(s,a,c) and
pc.. (8, a,c) respectively, and p,, is defined as wpr, + (1 —

w)pc...
Selectm |Dls criminator
..... b :
' {St—k it A1 t—1}" 4 |
g C 'ﬂ s¢,a, cc}-
| {S‘—k-c at—k—1-r—1}' ¢~ t | { } “"F
St |
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Triple GAIL

Lemma 2. The min-max game in Egn. (4) can achieve the multiple equilibrium

that p

Pro (S’ a, C) .

= p,, Where variable w is a mixing coefficient between p., (s, a, ¢) and

Rp = Ex, [~logpc, (c]s,a)]

N

e LS LS s
~ Ni:OTt:I i,t 'OBPC,

(7)

Cf,t't’f,ta af,t—l)

Reg=E., [— logpc (c[s,a)]

N

—%Z Zc logp(;

(8)

Ci t|3?,taaf,t—1)
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Triple GAIL

Theorem 1. Egn. (5) ensures the existence and uniqueness of the global

equilibrium, which is achieved if and only if

Pro(S; @; C) = pPeq (S; @; C) = prg (S; @; C).

min m$XEwE log (1 — Dy (s,a,c))]

a,f
+ wEx, [log Dy (s, a, ¢)] 5)
+ (1 = w)Ec, [log Dy (s, a.c)]
+ AeRe + A¢Re — Mg H (mp)

where Ap and A\g weigh the relative importance of two
supervised loss.
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Triple GAIL - Training Procedure

Algorithm 1 The Training Procedure of Triple-GAIL
Input: The multi-intention trajectories of expert 7z
Parameter: The initial parameters fp, ag and v

I: for:=0,1.2,--- do

22 for y=0,1,2,--- . N do

3: Reset environments by the demonstration episodes with fixed label c¢;;

4 Run policy 7 (+|c;) to sample trajectories: 7., = (80, (g, 51,01, ...5T; . AT, \cj)
5. end for
6
7

Update the parameters of g via TRPO with rewards: 1y, = —log Dy, (stj, at; cj)
Update the parameters of Dy, by gradient ascending with respect to:

N, N T; T;
1 = 1 w 1 —w
Vwﬁe?;bg(l—l% (5n:an-cn)) + ; T g log Dy, (s, af,¢]) + —— B EIOng (s.ag.c5) )
8:  Update the parameters of (', by gradient descending with respect to:
1 Y & B A6 &
E
N Z Z ogD¢ St,ag. c 3 T 1OgIDC Ct|9taat 1) Z CJ log pe., (Lt‘st ag_ 1) (10)
j=1 t=1 T t=1 T; t=1

9: end for
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Triple GAIL - Experiments and Results

Experiment: testing in driving learning and dense traffic driving

Algorithms Success Rate (%) Mean Distance (m) KL Divergence

Lane-change Left Lane-keeping Lane-change Right
BC 6.8+ 3.2 81.7+ 3.1 3827 £ 358 4008 £ 486 2581 £ 371
GAIL 73.9+1.3 168.4 + 5.2 1764 4+ 279 1893 + 378 606 £+ 278
CGAIL 65.5 + 0.9 149.8 £ 7.2 1297 4 255 1892 4+ 279 977 £ 109
Triple-GAIL 80.9+1.2 179.6 £ 3.6 447 + 122 685 + 214 392 + 127
Expert 100 210 £ 2.1 0 0 0

TABLE I: The Success Rate, Mean Distance and KL Divergence of different algorithms.

= —Right = __ —Right - — Right _

E. —Keeping E’ 4 —Keeping E 4 —Keeping | E*

22 —Left £2 —Left 42 42

2y Zo - =X =R

52 S22 EE £

= < o o

kR — 4 4 — T4

50 75 100 125 150 175 200 225 5075 100 125 150 175 200 225 =~ 50 75 100 125 150 175 200 225 ~ S0 75 100 135 150 175 200 235
Longitudinal Dis. (m) Longitudinal Dis. (m) Longitudinal Dis. (m) Longitudinal Dis. (m)

a) BC b) GAIL .
(@) ®) (¢) CGAIL (d) Triple-GAIL

Fig. 2: The visualization of trajectories. The trajectories of lane change right, lane keeping and lane-
change left are represented by red, green and blue lines respectively. Dis. denotes displacement.
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Triple GAIL - Conclusion and Advantages

« Solved single modality problem

« Improved model performance by adding real-time experience to the training
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Outline - Model 2

@ A Intervention-based Policy learning

@ B. Intervention-Weighted Regression (IWR)
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A. Intervention-based Policy learning

Intervention

---------------------

-----------------------------

s (states), a (actions),
D (data samples),

l '3’ . 0| 52 | & R (Robot) and I (intervention)
T

T * Intervention
Fig. 3: Intervention Weighted Regression.

L e

o™ E EE DS DS DS E N,

@ To sample equal size batches from the non-intervention and intervention
datasets

- Re-weight of the data distribution to reinforce intervention actions
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A. Intervention-based Policy learning

Intervention

---------------------

-----------------------------

I ﬁ (Sg aR) ;' D : ~ ﬁ _:T s (states), a (actions),
I ' h - D (data samples),

l '3’ ’ | : 1| 87 || a R (Robot) and I (intervention)
‘q__L _____ i ------------------_--f‘
M bosaiic

--------------------- * Intervention
Fig. 3: Intervention Weighted Regression.

L e

o™ E EE DS DS DS E N,

@ Reinforcement learning objective:
J(0,q) = Egp)[log R(7) + logpy, (7) — logq(v)] (1)

* Eqg. (1) can be maximized via Expectation-Maximization.

@ Human intervention:
q(v) = argmax Eq(p[log R(D)] — KL[q(2) Il pr, (7)) (2)

0 = argmax E; g)~q(r) llog mg(als)] (3)
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A. Intervention-based Policy learning

Intervention

---------------------

,‘ﬁ % Training

: TV T = — _

: I ﬁ (Sg-ag) ! Dp' ~ s = ap| . S (states), a (actions),

. I (s 1)) 0 E . e $ ¢ — — ' D(datasamples),

-‘DI ' ~ s, ¢ e a - R (Robot) and I (intervention)
[ ] ‘q-_L _____ e - ’

— i

T * Intervention

Fig. 3: Intervention Weighted Regression.
@ Reinforcement learning objective to find a policy my:
J(8,9) = Eyy[log R(x) + logpy, (T) — log q(7)] (1)

6: policy parameters

T: a trajectory of states and actions

q(t): dataset sample distribution

P, (7): the distribution of trajectories induced by policy g

* Eq. (1) can be maximized via Expectation-Maximization.
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A. Intervention-based Policy learning

Intervention

---------------------

E I 1’ (Sg» ag) E'DRE o :LTI: e :;; ‘E s (states), a (actions),
: (spa) ' : — — ¢ 3 00— — + D (data samples),
. - Dy i Ul 57 ® e || a - R (Robot) and I (intervention)
! ih iompoliey T
T * Intervention
Fig. 3: Intervention Weighted Regression.
@ Reinforcement learning objective to find a policy my:
J(6,q) = Eq(p[log R(7) +logpy, (1) —logq(7)] (1)
@ Human intervention:
q(1) = argmax Eq(5)[log R(1)] — KL|q(2) Il pry(0)] (2)
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A. Intervention-based Policy learning

Intervention

,‘ﬁ % Training

: STV T =TT — _

: I ﬁ (Sg-ag) ! Dp' ~ s = ap| . S (states), a (actions),

. I (s 1)) 0 E . e $ ¢ — — ' D(datasamples),

-‘DI ' ~ s, ¢ e a - R (Robot) and I (intervention)
[ ] ‘q-_L _____ e - ’

— i

T * Intervention

Fig. 3: Intervention Weighted Regression.
@ Reinforcement learning objective to find a policy my:

J(0,9) = Eyp[log R(T) + log pr, () — log q(7)] (1)

@ Human intervention:

Dataset sample _ E 1 _E(L ] ,
distribution argmax Eq(p)[log R (7)) [a(®) I pry (O] (2)

* R(t) € Human tries to maximize return via interventions
« KL[q@) I Pr, (7)] € On-policy regularization

*KL[q |l p] denotes the Kullback-Leibler diverence between q (the variational trajectory distribution)
and p (the one induced by the current policy).
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A. Intervention-based Policy learning

Intervention

---------------------

,‘ﬁ % Training

I 1’ (Sg-ag) ! DRE ~ __:LT; .o i s (states), a (actions),

(@) p . N —_ — ° $ ¢ — — ' D{(datasamples), |

: e : Ul s ° lley @ R (Robot) and I (intervention)
[ Yeecblem oo ) _____________________,'

— i

T * Intervention
Fig. 3: Intervention Weighted Regression.
@ Reinforcement learning objective to find a policy my:

J(0,9) = Eyp[log R(T) + log pr, () — log q(7)] (1)

@ Human intervention:

Dataset sample _ E 1 _E(L ] ,
distribution argmax Eq(p)[log R (7)) [a(®) I pry (O] (2)

;Ijgrlil%/eters = arg max [E(s,a)~q(r) [log mg(als)] (3)
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A. Intervention-based Policy learning

Intervention

---------------------

,‘ﬁ % Training

I 1’ (Sg-ag) ! DRE ~ __:LT; .o :Z; s (states), a (actions),

(@) p L = — % s e —= - D (data samples), |

: e : Ul s ° a @ R (Robot) and I (intervention)
[ ""-.L _____ e s’

— i

T * Intervention
Fig. 3: Intervention Weighted Regression.
@ Reinforcement learning objective to find a policy my:

J(6,9) = Egp)[log R(T) + log pr, () — log q(7)] (1)

@ Human intervention:

Dataset sample _ E 1 _E(L J ,
distribution arg max Eq(5)[log|R (7)) [q (@ Png(T)] (2)

Egrlil%/eters = arg max [E(s,a)~q(r) [log mg(als)] (3)
q'*t1(r) € argmaxJ(64q)
q

0*1(7) € arg maxg](@, g'*1) = arg max E(s,a)~q(rlog mg(als)]
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B. Intervention Weighted Regression

q(1) = argmax Eg)[log R(0)] — KL|q(7) |l pr, (7)] (2)

Optimization in Eq (2)

@ Excluding on-policy samples in the dataset distribution can cause the policy
trained in the next round to change substantially from the current policy.

@ - Human-curated distribution g(z) consists of a set of intervention data samples
D; and on-policy data samples collected by the robot Dy.
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B. Intervention Weighted Regression

q(t) = argmax Eg)[log R(0)] — KL|q(7) Il pr, (7)] (2)

@ Intervention Weighted Regression (IWR): To assume that the human is
specifying q(t) by re-weighting the distribution of data with a parameter «.

q(s,a) < ap;(s,a) + pgr(s,a)

p; (s, a): the state-action distributions for the intervention
pr (s, a): the state-action distributions for the non-intervention
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B. Intervention Weighted Regression

q(t) = argmax Eg(p[log R(0)] — KL|q(7) Il pry (D] (2)

@ Intervention Weighted Regression (IWR): To assume that the human is
specifying q(t) by re-weighting the distribution of data with a parameter «.

CI(S, Cl) X (X,DI(S,Cl) +pR(Sr a)

p; (s, a): the state-action distributions for the intervention
pr (s, a): the state-action distributions for the non-intervention

@ |n this paper, q(s,a) samples from p;(s,a) and py (s, a) are in equal proportion by
choosing a = |Dg|/|Dy|.
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B. Intervention Weighted Regression

Tasks: Threading and Coffee Machine

(a) Threading

(b) Coffee Machine

Baselines:

IWR (This paper)

IWR-NB: No dataset balancing takes place.

HG-Dagger: Only the samples where the user was intervening are added to the
dataset, while the policy samples are discarded.

Full Demos: A human operator collects full task demonstrations instead of
interventions
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B. Intervention Weighted Regression

@ Experiment setting: initial dataset (30 task demonstrations) and all policies (2-
layer LSTMs)

TABLE I: Single-Operator Results on the Threading Task TABLE II: Multi-Operator Results on the Coffee Machine Task
Model Round 1 Round 2 Final Model Round 1 Round 2 Final
Base - - 58.0+9.2 Base - 52.0+3.5
Full Demos - - 76.7+2.3 Full Demos - 64.9+8.3
HG-DAGGER 57.3+9.5 62.7+50 753+8.1 HG-DAGGER 70.2+15.3 71.14+9.7 69.610.1
IWR-NB 76.0+£69 72.0+£35 747+1.2 IWR (Ours) 79.6+8.9 79.5+11.7 87.5+94
IWR (Ours) 84.0+53 907+31 87.3+5.0

@ IWR vs Full Demos: Intervention-based data collection can produce higher quality
policies with fewer human-annotated samples.

@ |WR vs HG-DAGGER: the method IWR is able to leverage intervention data to
outperform the Full Demos baseline.

@ = IWR intelligently leverage both the human intervention and non-intervention
samples for learning.
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B. Intervention Weighted Regression

@ Experiment setting: initial dataset (30 task demonstrations) and all policies (2-
layer LSTMs)

TABLE I: Single-Operator Results on the Threading Task TABLE II: Multi-Operator Results on the Coffee Machine Task
Model Round 1 Round 2 Final Model Round 1 Round 2 Final
Base - - 58.0+9.2 Base - 52.0+3.5
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@ |WR vs Full Demos: Intervention-based data collection can produce higher quality
policies with fewer human-annotated samples.

@ [IWR vs HG-DAGGER: the method IWR is able to leverage intervention data to
outperform the Full Demos baseline.

@ = IWR intelligently leverage both the human intervention and non-intervention
samples for learning.
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B. Intervention Weighted Regression

@ Experiment setting: initial dataset (30 task demonstrations) and all policies (2-

layer LSTMs)

TABLE III: Single-Operator Comparison across Final Threading TABLE IV: Multi-Operator Comparison across Final Coffee Machine

Datasets Collected by Each Method

Final Dataset

Datasets Collected by Each Method

Final Dataset

Model HG-DAGGER IWR-NB  IWR (Ours)
HG-DAGGER 75.3+8.1 72.0+5.3 81.3+4.2
IWR-NB 80.0x1.4 74.7+£1.2 86.0+4.0
IWR (Ours) 87.3+£64 84.7+6.4 87.3£50

Model HG-DAGGER  IWR (Ours)
HG-DAGGER 69.6+10.1 71.6+16.1
IWR (Ours) 85.6+6.5 87.5+94

@ [WR method consistently outperforms other baselines on their collected
datasets

@ IWR method can reach a level of performance close to its own collected

dataset.

@ =>» Other baselines do not fail purely due to lower quality data or wore base
policies at each iteration, but due to the way they leverage the data.

Park-Yu

Human-in-the-loop imitation learning (2020)
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Conclusion

Contribution

@ 1. Development of a system that enables remote teleoperation for 6-DoF
robot control

@ 2. Introduction of Interaction Weighted Regression (IWR): a simple but
effective method to learn from human interventions that encourages the
policy to learn how to traverse bottlenecks through the interventions.

@ 3. Evaluation on two challenging contact-rich manipulation tasks.
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Conclusion

« Solved single modality problem

« Improved model performance by adding real-time experience to the training
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