
Reinforcement Learning in Enormous Action Spaces

Varshant Dhar, Jack Weitze

March 30, 2021

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 1 / 37

Outline

1 The large action space problem and discrete action spaces

2 Generating Adjacency-Constrained Subgoals in Hierarchical
Reinforcement Learning (2020)

3 Q-Learning in Enormous Action Spaces Via Amortized Approximate
Maximization (2020)

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 2 / 37

Background: Atari and DQNs

Deep Q-Learning has been used to achieve human-level control in Atari
games.

Atari games have at most 18 actions.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 3 / 37

Background: Atari and DQNs

Deep Q-Learning has been used to achieve human-level control in Atari
games.

Atari games have at most 18 actions.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 3 / 37

The large action space problem

Many applications have large actions spaces:

Continuous control for robotics

Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

Training inefficiency in exploration of large action spaces.

Maximization of action-value over all possible actions.

Challenge: scale with action space size |A|

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 4 / 37

The large action space problem

Many applications have large actions spaces:

Continuous control for robotics

Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

Training inefficiency in exploration of large action spaces.

Maximization of action-value over all possible actions.

Challenge: scale with action space size |A|

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 4 / 37

The large action space problem

Many applications have large actions spaces:

Continuous control for robotics

Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

Training inefficiency in exploration of large action spaces.

Maximization of action-value over all possible actions.

Challenge: scale with action space size |A|

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 4 / 37

The large action space problem

Many applications have large actions spaces:

Continuous control for robotics

Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

Training inefficiency in exploration of large action spaces.

Maximization of action-value over all possible actions.

Challenge: scale with action space size |A|

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 4 / 37

The large action space problem

Many applications have large actions spaces:

Continuous control for robotics

Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

Training inefficiency in exploration of large action spaces.

Maximization of action-value over all possible actions.

Challenge: scale with action space size |A|

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 4 / 37

Why discrete action spaces?

Reinforcement Learning in continuous domains often resort to
parametric functions for a compact representation of distributions
over actions. Often these are Gaussian.

A discrete policy, in practice, can represent much more flexible
distributions than Gaussian when there are sufficient number of
atomic actions. Intuitively, a discrete policy can represent a
multi-modal action distribution while a Gaussian is by design
uni-modal.

A common argument against a discretized action space is that for an
action space with M dimensions, discretizing K atomic actions per
dimension leads to MK combinations of joint atomic actions: Curse
of Dimensionality.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 5 / 37

Why discrete action spaces?

Reinforcement Learning in continuous domains often resort to
parametric functions for a compact representation of distributions
over actions. Often these are Gaussian.

A discrete policy, in practice, can represent much more flexible
distributions than Gaussian when there are sufficient number of
atomic actions. Intuitively, a discrete policy can represent a
multi-modal action distribution while a Gaussian is by design
uni-modal.

A common argument against a discretized action space is that for an
action space with M dimensions, discretizing K atomic actions per
dimension leads to MK combinations of joint atomic actions: Curse
of Dimensionality.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 5 / 37

Why discrete action spaces?

Reinforcement Learning in continuous domains often resort to
parametric functions for a compact representation of distributions
over actions. Often these are Gaussian.

A discrete policy, in practice, can represent much more flexible
distributions than Gaussian when there are sufficient number of
atomic actions. Intuitively, a discrete policy can represent a
multi-modal action distribution while a Gaussian is by design
uni-modal.

A common argument against a discretized action space is that for an
action space with M dimensions, discretizing K atomic actions per
dimension leads to MK combinations of joint atomic actions: Curse
of Dimensionality.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 5 / 37

Hierarchical Reinforcement Learning

Hierarchical RL (HRL) works on decomposing the RL problem into
sub-problems where solving each of these is more powerful than
solving the entire problem.

HRL techniques use several forms of abstractions that have the ability
to handle the exponentially increasing number of parameters.

A well-designed reward function in the HRL setting can decrease the
number of impractical acts of exploration.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 6 / 37

Hierarchical Reinforcement Learning

Hierarchical RL (HRL) works on decomposing the RL problem into
sub-problems where solving each of these is more powerful than
solving the entire problem.

HRL techniques use several forms of abstractions that have the ability
to handle the exponentially increasing number of parameters.

A well-designed reward function in the HRL setting can decrease the
number of impractical acts of exploration.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 6 / 37

Hierarchical Reinforcement Learning

Hierarchical RL (HRL) works on decomposing the RL problem into
sub-problems where solving each of these is more powerful than
solving the entire problem.

HRL techniques use several forms of abstractions that have the ability
to handle the exponentially increasing number of parameters.

A well-designed reward function in the HRL setting can decrease the
number of impractical acts of exploration.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 6 / 37

Hierarchical Reinforcement Learning

Goal-conditioned Hierarchical RL comprises of a high-level policy that
breaks the original task into a series of subgoals and a low-level policy
that aims to reach those subgoals.

Varshant Dhar, Jack Weitze Reinforcement Learning in Enormous Action Spaces 7 / 37

Generating Adjacency-Constrained Subgoals in
Hierarchical Reinforcement Learning

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng Chen

June 2020

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 8 / 37

Generating Adjacency-Constrained Subgoals in Hierarchical
Reinforcement Learning (2020)

The subgoals are interpreted as high-level actions allowing direct
training of the meta-controller to generate subgoals using external
rewards as supervision.

Problem: Training inefficiency in large goal spaces for the
meta-controller. Controller training also suffers as the agent tries to
reach every possible subgoal produced by the meta-controller.

Proposal: The high-level action space can be restricted to a k-step
adjacent region centered at the current state.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 9 / 37

Generating Adjacency-Constrained Subgoals in Hierarchical
Reinforcement Learning (2020)

The subgoals are interpreted as high-level actions allowing direct
training of the meta-controller to generate subgoals using external
rewards as supervision.

Problem: Training inefficiency in large goal spaces for the
meta-controller. Controller training also suffers as the agent tries to
reach every possible subgoal produced by the meta-controller.

Proposal: The high-level action space can be restricted to a k-step
adjacent region centered at the current state.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 9 / 37

Generating Adjacency-Constrained Subgoals in Hierarchical
Reinforcement Learning (2020)

The subgoals are interpreted as high-level actions allowing direct
training of the meta-controller to generate subgoals using external
rewards as supervision.

Problem: Training inefficiency in large goal spaces for the
meta-controller. Controller training also suffers as the agent tries to
reach every possible subgoal produced by the meta-controller.

Proposal: The high-level action space can be restricted to a k-step
adjacent region centered at the current state.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 9 / 37

Preliminaries: Notation

Consider a finite-horizon goal conditioned MDP defined as a tuple
(S,G,A,P,R, γ), where S is a state set, G is a goal set and A is an
action set.

P : S ×A× S → R is the state transition function, R : S ×A → R
is a reward function, γ ∈ [0, 1) is a discount factor and Ψ : S → G is
a known mapping function.

Meta-controller with policy πhθh(g |s), controller with policy πlθl (a|s, g)
comprising a two-level hierarchy.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 10 / 37

Thesis

Distant subgoals can be substituted by
closer subgoals, as long as they drive the
controller to move towards the same
“direction”.

The meta-controller policy only needs to
explore in a subset of subgoals covering
states that the controller can possibly reach
within k steps.

For the controller, adjacent subgoals
provide a stronger learning signal as the
agent can be intrinsically rewarded with a
higher frequency for reaching these
subgoals.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 11 / 37

Thesis

Distant subgoals can be substituted by
closer subgoals, as long as they drive the
controller to move towards the same
“direction”.

The meta-controller policy only needs to
explore in a subset of subgoals covering
states that the controller can possibly reach
within k steps.

For the controller, adjacent subgoals
provide a stronger learning signal as the
agent can be intrinsically rewarded with a
higher frequency for reaching these
subgoals.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 11 / 37

Thesis

Distant subgoals can be substituted by
closer subgoals, as long as they drive the
controller to move towards the same
“direction”.

The meta-controller policy only needs to
explore in a subset of subgoals covering
states that the controller can possibly reach
within k steps.

For the controller, adjacent subgoals
provide a stronger learning signal as the
agent can be intrinsically rewarded with a
higher frequency for reaching these
subgoals.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 11 / 37

Shortest Transition Distance

Definition 1. Let s1, s2 ∈ S . Then, the shortest transition distance from
s1 to s2 is defined as:

dst(s1, s2) := min
π∈Π

E [Ts1s2 |π] = min
π∈Π

∞∑
t=0

tP(Ts1s2 = t|π)

where Π is the complete policy set and Ts1s2 denotes the first hit time
from s1 to s2.

An optimal (deterministic) goal-conditioned policy π∗ : S × G → A is:

π∗(s, g) ∈ argmina∈A
∑
s′∈S

P(s ′|s, a)dst(s
′,Ψ−1(g))

∀s ∈ S ,∀g ∈ G

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 12 / 37

Shortest Transition Distance

Definition 1. Let s1, s2 ∈ S . Then, the shortest transition distance from
s1 to s2 is defined as:

dst(s1, s2) := min
π∈Π

E [Ts1s2 |π] = min
π∈Π

∞∑
t=0

tP(Ts1s2 = t|π)

where Π is the complete policy set and Ts1s2 denotes the first hit time
from s1 to s2.

An optimal (deterministic) goal-conditioned policy π∗ : S × G → A is:

π∗(s, g) ∈ argmina∈A
∑
s′∈S

P(s ′|s, a)dst(s
′,Ψ−1(g))

∀s ∈ S , ∀g ∈ G

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 12 / 37

k-Step Adjacent Region

Definition 2. Let s ∈ S . Then, the k-step adjacent region of s is defined
as:

GA(s, k) = {g ∈ G |dst(s,Ψ−1(g)) ≤ k}

Consider a goal-conditioned hierarchical policy where the controller is
required to reach the subgoals within k limited steps.

In deterministic MDPs, given an optimal controller policy πl∗ = π∗,
subgoals that fall in the k-step adjacent region of the current state
can represent all optimal subgoals in the whole goal space.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 13 / 37

k-Step Adjacent Region

Definition 2. Let s ∈ S . Then, the k-step adjacent region of s is defined
as:

GA(s, k) = {g ∈ G |dst(s,Ψ−1(g)) ≤ k}

Consider a goal-conditioned hierarchical policy where the controller is
required to reach the subgoals within k limited steps.

In deterministic MDPs, given an optimal controller policy πl∗ = π∗,
subgoals that fall in the k-step adjacent region of the current state
can represent all optimal subgoals in the whole goal space.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 13 / 37

k-Step Adjacent Region

Definition 2. Let s ∈ S . Then, the k-step adjacent region of s is defined
as:

GA(s, k) = {g ∈ G |dst(s,Ψ−1(g)) ≤ k}

Consider a goal-conditioned hierarchical policy where the controller is
required to reach the subgoals within k limited steps.

In deterministic MDPs, given an optimal controller policy πl∗ = π∗,
subgoals that fall in the k-step adjacent region of the current state
can represent all optimal subgoals in the whole goal space.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 13 / 37

Using closer surrogate subgoals

Theorem 1: Let s ∈ S , g ∈ G and let π∗ be an optimal goal-conditioned
policy. Under a deterministic MDP with strongly connected states, for all
k ∈ N+ satisfying k ≤ dst(s,Ψ

−1(g)) there exists a surrogate goal g̃ such
that:

g̃ ∈ GA(s, k)

π∗(si , g̃) = π∗(si , g)

∀si ∈ τ(i 6= k) where τ := (s0, s1, · · · , sk) is the k-step trajectory starting
from state s0 = s under π∗ and g .

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 14 / 37

Meta-Controller Optimizing Objective

This suggests that the k-step action sequence generated by an
optimal controller policy conditioned on a distant subgoal can be
induced using a subgoal that is closer.

In the deterministic setting they constrain the meta-controller’s action
space to state-wise k-step adjacent regions without a loss of
optimality.

Employing relaxation methods they derive the following optimizing
objective:

max
θh

Eπθh

T−1∑
t=0

[γtrhkt − ηH(dst(skt ,Ψ
−1(gkt)), k)],

where rhkt is the reward for the meta-controller’s policy,
H(x , k) = max(x/k − 1, 0) is a hinge loss function, and η is a balancing
coefficient.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 15 / 37

Meta-Controller Optimizing Objective

This suggests that the k-step action sequence generated by an
optimal controller policy conditioned on a distant subgoal can be
induced using a subgoal that is closer.

In the deterministic setting they constrain the meta-controller’s action
space to state-wise k-step adjacent regions without a loss of
optimality.

Employing relaxation methods they derive the following optimizing
objective:

max
θh

Eπθh

T−1∑
t=0

[γtrhkt − ηH(dst(skt ,Ψ
−1(gkt)), k)],

where rhkt is the reward for the meta-controller’s policy,
H(x , k) = max(x/k − 1, 0) is a hinge loss function, and η is a balancing
coefficient.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 15 / 37

Meta-Controller Optimizing Objective

This suggests that the k-step action sequence generated by an
optimal controller policy conditioned on a distant subgoal can be
induced using a subgoal that is closer.

In the deterministic setting they constrain the meta-controller’s action
space to state-wise k-step adjacent regions without a loss of
optimality.

Employing relaxation methods they derive the following optimizing
objective:

max
θh

Eπθh

T−1∑
t=0

[γtrhkt − ηH(dst(skt ,Ψ
−1(gkt)), k)],

where rhkt is the reward for the meta-controller’s policy,
H(x , k) = max(x/k − 1, 0) is a hinge loss function, and η is a balancing
coefficient.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 15 / 37

Aggregated Adjacency Matrix and Adjacency Network

Instead of a perfect shortest transition
distance between states, a discriminator of
k-step adjacency is needed.

Use the agent’s trajectories to construct
and update an aggregate binary k-step
adjacency matrix.

However, the adjacency matrix has a tough
time generalizing to newly-visited sets of
states and is non-differentiable.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 16 / 37

Aggregated Adjacency Matrix and Adjacency Network

Instead of a perfect shortest transition
distance between states, a discriminator of
k-step adjacency is needed.

Use the agent’s trajectories to construct
and update an aggregate binary k-step
adjacency matrix.

However, the adjacency matrix has a tough
time generalizing to newly-visited sets of
states and is non-differentiable.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 16 / 37

Aggregated Adjacency Matrix and Adjacency Network

Instead of a perfect shortest transition
distance between states, a discriminator of
k-step adjacency is needed.

Use the agent’s trajectories to construct
and update an aggregate binary k-step
adjacency matrix.

However, the adjacency matrix has a tough
time generalizing to newly-visited sets of
states and is non-differentiable.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 16 / 37

Aggregated Adjacency Matrix and Adjacency Network

Employ an adjacency network, Φφ with parameter φ, that learns a
mapping from the goal space to an adjacency space ensuring a binary
relation for implementing the adjacency constraint.

Ex: ||Φφ(g1)− Φφ(g2)||2 > εk for dst(s1, s2) > k and
||Φφ(g1)− Φφ(g2)||2 < εk for dst(s1, s2) < k .

The adjacency network is trained by minimizing an objective that
penalizes adjacent state embeddings with large Euclidean distances in
the adjacency space and non-adjacent state embeddings with small
Euclidean distances.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 17 / 37

Aggregated Adjacency Matrix and Adjacency Network

Employ an adjacency network, Φφ with parameter φ, that learns a
mapping from the goal space to an adjacency space ensuring a binary
relation for implementing the adjacency constraint.

Ex: ||Φφ(g1)− Φφ(g2)||2 > εk for dst(s1, s2) > k and
||Φφ(g1)− Φφ(g2)||2 < εk for dst(s1, s2) < k .

The adjacency network is trained by minimizing an objective that
penalizes adjacent state embeddings with large Euclidean distances in
the adjacency space and non-adjacent state embeddings with small
Euclidean distances.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 17 / 37

Aggregated Adjacency Matrix and Adjacency Network

Employ an adjacency network, Φφ with parameter φ, that learns a
mapping from the goal space to an adjacency space ensuring a binary
relation for implementing the adjacency constraint.

Ex: ||Φφ(g1)− Φφ(g2)||2 > εk for dst(s1, s2) > k and
||Φφ(g1)− Φφ(g2)||2 < εk for dst(s1, s2) < k .

The adjacency network is trained by minimizing an objective that
penalizes adjacent state embeddings with large Euclidean distances in
the adjacency space and non-adjacent state embeddings with small
Euclidean distances.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 17 / 37

Updated Meta-Controller Objective

With a learned adjacency network, Φφ, they incorporate the adjacency
constraint into the goal-conditioned HRL framework.

They minimize the following objective for the meta-controller:

L(θh) = −Eπθh

T−1∑
t=0

[γtrhkt − ηLadj]

where Ladj(θh) ∝ max(||Φφ(Ψ(skt))− Φφ(gkt)||2 − εk , 0) is defined as an
adjacency loss and gkt ∼ πhθh(gkt |s).

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 18 / 37

Updated Meta-Controller Objective

With a learned adjacency network, Φφ, they incorporate the adjacency
constraint into the goal-conditioned HRL framework.

They minimize the following objective for the meta-controller:

L(θh) = −Eπθh

T−1∑
t=0

[γtrhkt − ηLadj]

where Ladj(θh) ∝ max(||Φφ(Ψ(skt))− Φφ(gkt)||2 − εk , 0) is defined as an
adjacency loss and gkt ∼ πhθh(gkt |s).

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 18 / 37

Limitations

A ”k” constraint is manually defined as a hyper-parameter. Thus,
extension of this procedure to various settings, that may require a
different constraint, is resolved through simulation and
cross-validation.

The theorems are derived in the context of the deterministic MDP.
They empirically show that their method is robust to certain types of
stochasticity.

For applications with vast state spaces, constructing a complete
adjacency matrix will be problematic.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 19 / 37

Limitations

A ”k” constraint is manually defined as a hyper-parameter. Thus,
extension of this procedure to various settings, that may require a
different constraint, is resolved through simulation and
cross-validation.

The theorems are derived in the context of the deterministic MDP.
They empirically show that their method is robust to certain types of
stochasticity.

For applications with vast state spaces, constructing a complete
adjacency matrix will be problematic.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 19 / 37

Limitations

A ”k” constraint is manually defined as a hyper-parameter. Thus,
extension of this procedure to various settings, that may require a
different constraint, is resolved through simulation and
cross-validation.

The theorems are derived in the context of the deterministic MDP.
They empirically show that their method is robust to certain types of
stochasticity.

For applications with vast state spaces, constructing a complete
adjacency matrix will be problematic.

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng ChenGenerating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning 19 / 37

Q-Learning in Enormous Action Spaces Via Amortized
Approximate Maximization

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr Mnih

Deepmind. Jan 2020

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 20 / 37

Q-Learning Flexibility and Complexity

Why doesn’t Q-learning scale? Recall Q-learning update:

Maximization over action space A.

Q(st , at)← Q(st , at) + α

(
rt + γmax

a∈A
Q(st+1, a)− Q(st , at)

)

Computing max on discrete A has complexity ∝ |A|.
Unable to maximize over continuous or hybrid A.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 21 / 37

Q-Learning Flexibility and Complexity

Why doesn’t Q-learning scale? Recall Q-learning update:

Maximization over action space A.

Q(st , at)← Q(st , at) + α

(
rt + γmax

a∈A
Q(st+1, a)− Q(st , at)

)
Computing max on discrete A has complexity ∝ |A|.
Unable to maximize over continuous or hybrid A.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 21 / 37

Extend DQN to Large Action Spaces

Challenge: traditional DQN cannot extend to large (continuous) action
spaces.

Goal:

Reduce computational cost dependence on |A|.
Possibility of continuous/discrete action spaces.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 22 / 37

Extend DQN to Large Action Spaces

Challenge: traditional DQN cannot extend to large (continuous) action
spaces.

Goal:

Reduce computational cost dependence on |A|.
Possibility of continuous/discrete action spaces.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 22 / 37

DQN Review

Parameterize state-value function using a neural network Qθ.

Usual case: network maps state input to (action, value) pairs.

Qθ : S → A× V
parameters |θ| roughly grows with |A|.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 23 / 37

DQN Review: State, Action → Value

Can we reduce dependence of network size on action space?

Yes! Redefine Qθ to map (state, actions) to values.

Qθ : S ×A → V.

No explicit size dependence on |A|.
Forward pass for each action to compute max value.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 24 / 37

DQN Review: State, Action → Value

Can we reduce dependence of network size on action space?

Yes! Redefine Qθ to map (state, actions) to values.

Qθ : S ×A → V.

No explicit size dependence on |A|.
Forward pass for each action to compute max value.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 24 / 37

Amortized Q-Learning (AQL)

Q-learning with cost less dependent on |A|.

Main idea: learn to search for good candidate actions.

Only estimate value for candidate actions.

Maximize over (much smaller) proposed set.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 25 / 37

Amortized Q-Learning (AQL)

Q-learning with cost less dependent on |A|.

Main idea: learn to search for good candidate actions.

Only estimate value for candidate actions.

Maximize over (much smaller) proposed set.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 25 / 37

AQL: Approach

Learn a proposal distribution µ over possible actions a ∈ A.

µ(a|s; θ) = probability of being a high-value action.

Hopefully: learn µ with high probability for optimal action.

Parameterize µ with a neural network.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 26 / 37

AQL: Approach

Learn a proposal distribution µ over possible actions a ∈ A.

µ(a|s; θ) = probability of being a high-value action.

Hopefully: learn µ with high probability for optimal action.

Parameterize µ with a neural network.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 26 / 37

AQL: Q network

Q : S ×A → V
Usual DQN training procedure.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 27 / 37

AQL: Algorithm

Two NNs: proposal network µ, Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes µ(a | s).

2 Sample actions: Asamp = Aµ ∪ AU , where:
Aµ := {ai}Ni=1, ai ∼ µ(a | s)
AU := {aj}Mj=1, aj ∼ Uniform(A)

3 Q-network forward pass computes Q(s, a) for each a ∈ Asamp.

4 Choose optimal action as:

a∗(s) = arg max
a∈Asamp

Q(s, a)

Note: complexity proportional to |Asamp|, not |A|.
(Amortized cost!)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 28 / 37

AQL: Algorithm

Two NNs: proposal network µ, Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes µ(a | s).

2 Sample actions: Asamp = Aµ ∪ AU , where:
Aµ := {ai}Ni=1, ai ∼ µ(a | s)
AU := {aj}Mj=1, aj ∼ Uniform(A)

3 Q-network forward pass computes Q(s, a) for each a ∈ Asamp.

4 Choose optimal action as:

a∗(s) = arg max
a∈Asamp

Q(s, a)

Note: complexity proportional to |Asamp|, not |A|.
(Amortized cost!)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 28 / 37

AQL: Algorithm

Two NNs: proposal network µ, Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes µ(a | s).

2 Sample actions: Asamp = Aµ ∪ AU , where:
Aµ := {ai}Ni=1, ai ∼ µ(a | s)
AU := {aj}Mj=1, aj ∼ Uniform(A)

3 Q-network forward pass computes Q(s, a) for each a ∈ Asamp.

4 Choose optimal action as:

a∗(s) = arg max
a∈Asamp

Q(s, a)

Note: complexity proportional to |Asamp|, not |A|.
(Amortized cost!)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 28 / 37

AQL: Algorithm

Two NNs: proposal network µ, Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes µ(a | s).

2 Sample actions: Asamp = Aµ ∪ AU , where:
Aµ := {ai}Ni=1, ai ∼ µ(a | s)
AU := {aj}Mj=1, aj ∼ Uniform(A)

3 Q-network forward pass computes Q(s, a) for each a ∈ Asamp.

4 Choose optimal action as:

a∗(s) = arg max
a∈Asamp

Q(s, a)

Note: complexity proportional to |Asamp|, not |A|.
(Amortized cost!)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 28 / 37

AQL: Algorithm

Two NNs: proposal network µ, Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes µ(a | s).

2 Sample actions: Asamp = Aµ ∪ AU , where:
Aµ := {ai}Ni=1, ai ∼ µ(a | s)
AU := {aj}Mj=1, aj ∼ Uniform(A)

3 Q-network forward pass computes Q(s, a) for each a ∈ Asamp.

4 Choose optimal action as:

a∗(s) = arg max
a∈Asamp

Q(s, a)

Note: complexity proportional to |Asamp|, not |A|.
(Amortized cost!)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 28 / 37

AQL: Proposal network

Output softmax over actions.

Train with (regularized) proposal loss:

L(θµ; s) = −logµ(a∗(s)|s; θµ)− λH(µ(a|s; θµ))

First term: increases likelihood of sampling optimal action from proposal.

Recall: a∗ was not necessarily sampled from µ (exploration).

Second term: encourages uncertainty in proposal distribution (exploration).

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 29 / 37

AQL: Proposal network

Output softmax over actions.

Train with (regularized) proposal loss:

L(θµ; s) = −logµ(a∗(s)|s; θµ)− λH(µ(a|s; θµ))

First term: increases likelihood of sampling optimal action from proposal.

Recall: a∗ was not necessarily sampled from µ (exploration).

Second term: encourages uncertainty in proposal distribution (exploration).

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 29 / 37

AQL: Proposal network

Output softmax over actions.

Train with (regularized) proposal loss:

L(θµ; s) = −logµ(a∗(s)|s; θµ)− λH(µ(a|s; θµ))

First term: increases likelihood of sampling optimal action from proposal.

Recall: a∗ was not necessarily sampled from µ (exploration).

Second term: encourages uncertainty in proposal distribution (exploration).

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 29 / 37

AQL: Sampling from proposal network

Discrete case:

Apply softmax to µ output layer.

Sample from resulting distribution.

Continuous case:

Option 1: discretize action space.

Option 2: µ parameterizes a Gaussian:

I.e. Samples ai ∼ N (µ(a | s), σ2)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 30 / 37

AQL: Sampling from proposal network

Discrete case:

Apply softmax to µ output layer.

Sample from resulting distribution.

Continuous case:

Option 1: discretize action space.

Option 2: µ parameterizes a Gaussian:

I.e. Samples ai ∼ N (µ(a | s), σ2)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 30 / 37

AQL: Sampling from proposal network

Discrete case:

Apply softmax to µ output layer.

Sample from resulting distribution.

Continuous case:

Option 1: discretize action space.

Option 2: µ parameterizes a Gaussian:

I.e. Samples ai ∼ N (µ(a | s), σ2)

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 30 / 37

AQL: Architecture

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 31 / 37

AQL: Dependence on |A|

Does AQL address the problem of learning in large action spaces?

Proposal network has softmax over all actions.

Why is this better than a DQN predicting (action, value) pairs?

Both AQL and DQN have an output layer with |A| nodes.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 32 / 37

AQL: Dependence on |A|

Does AQL address the problem of learning in large action spaces?

Proposal network has softmax over all actions.

Why is this better than a DQN predicting (action, value) pairs?

Both AQL and DQN have an output layer with |A| nodes.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 32 / 37

AQL: Dependence on |A|

In general, it’s “easier” to classify than regress,
(easier: requires fewer parameters, less training, etc...)

AQL: learning softmax over actions is multi-class classification.

DQN: learning (action, value) pairs is many regressions.

Intuition: classifying an action as good is “easier” than regressing how
good it is.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 33 / 37

AQL: Dependence on |A|

In general, it’s “easier” to classify than regress,
(easier: requires fewer parameters, less training, etc...)

AQL: learning softmax over actions is multi-class classification.

DQN: learning (action, value) pairs is many regressions.

Intuition: classifying an action as good is “easier” than regressing how
good it is.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 33 / 37

AQL: Dependence on |A|

In general, it’s “easier” to classify than regress,
(easier: requires fewer parameters, less training, etc...)

AQL: learning softmax over actions is multi-class classification.

DQN: learning (action, value) pairs is many regressions.

Intuition: classifying an action as good is “easier” than regressing how
good it is.

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 33 / 37

Results: AQL per-step similar, per-second better than QL

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 34 / 37

AQL: Limitations

Hierarchical RL can exploit structure in problem. E.g.

Inductive bias that the problem can be decomposed into sub-goals.

Or that local subgoals are optimal (k-step adjacency HRL).

AQL is “fixed” in its adaptability,

but does amortize cost wrt action space size.

Our project: can we exploit structure in action space and reduce
complexity dependence on |A|?

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 35 / 37

AQL: Limitations

Hierarchical RL can exploit structure in problem. E.g.

Inductive bias that the problem can be decomposed into sub-goals.

Or that local subgoals are optimal (k-step adjacency HRL).

AQL is “fixed” in its adaptability,

but does amortize cost wrt action space size.

Our project: can we exploit structure in action space and reduce
complexity dependence on |A|?

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 35 / 37

AQL: Limitations

Hierarchical RL can exploit structure in problem. E.g.

Inductive bias that the problem can be decomposed into sub-goals.

Or that local subgoals are optimal (k-step adjacency HRL).

AQL is “fixed” in its adaptability,

but does amortize cost wrt action space size.

Our project: can we exploit structure in action space and reduce
complexity dependence on |A|?

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 35 / 37

Questions?

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 36 / 37

References

Tejas D. Kulkarni et al. Hierarchical Deep Reinforcement Learning:
Integrating Temporal Abstraction and Intrinsic Motivation. 2016.
arXiv: 1604.06057 [cs.LG].

Volodymyr Mnih et al. “Playing atari with deep reinforcement
learning”. In: arXiv preprint arXiv:1312.5602 (2013).

Yunhao Tang and Shipra Agrawal. Discretizing Continuous Action
Space for On-Policy Optimization. 2020. arXiv: 1901.10500
[cs.LG].

Tom Van de Wiele et al. Q-Learning in enormous action spaces via
amortized approximate maximization. 2020. arXiv: 2001.08116
[cs.LG].

Tianren Zhang et al. Generating Adjacency-Constrained Subgoals in
Hierarchical Reinforcement Learning. 2020. arXiv: 2006.11485
[cs.LG].

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr MnihQ-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 37 / 37

https://arxiv.org/abs/1604.06057
https://arxiv.org/abs/1901.10500
https://arxiv.org/abs/1901.10500
https://arxiv.org/abs/2001.08116
https://arxiv.org/abs/2001.08116
https://arxiv.org/abs/2006.11485
https://arxiv.org/abs/2006.11485

	The large action space problem and discrete action spaces
	Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning (2020)
	Q-Learning in Enormous Action Spaces Via Amortized Approximate Maximization (2020)

