Reinforcement Learning in Enormous Action Spaces

Varshant Dhar, Jack Weitze

March 30, 2021

Varshant Dhar, Jack Weitze

Reinforcement Learning in Enormous Action Spaces

Outline

The large action space problem and discrete action spaces

 Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning (2020)

Q-Learning in Enormous Action Spaces Via Amortized Approximate Maximization (2020)

Background: Atari and DQNs

Deep Q-Learning has been used to achieve human-level control in Atari games.

Background: Atari and DQNs

Deep Q-Learning has been used to achieve human-level control in Atari games.

• Atari games have at most 18 actions.

Many applications have large actions spaces:

- Continuous control for robotics
- Web-scale recommendation systems

Many applications have large actions spaces:

- Continuous control for robotics
- Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

Many applications have large actions spaces:

- Continuous control for robotics
- Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

• Training inefficiency in exploration of large action spaces.

Many applications have large actions spaces:

- Continuous control for robotics
- Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

- Training inefficiency in exploration of large action spaces.
- Maximization of action-value over all possible actions.

Many applications have large actions spaces:

- Continuous control for robotics
- Web-scale recommendation systems

Traditional Q-learning framework cannot scale to large action spaces.

- Training inefficiency in exploration of large action spaces.
- Maximization of action-value over all possible actions.

Challenge: scale with action space size $|\mathcal{A}|$

Why discrete action spaces?

• Reinforcement Learning in continuous domains often resort to parametric functions for a compact representation of distributions over actions. Often these are Gaussian.

Why discrete action spaces?

- Reinforcement Learning in continuous domains often resort to parametric functions for a compact representation of distributions over actions. Often these are Gaussian.
- A discrete policy, in practice, can represent much more flexible distributions than Gaussian when there are sufficient number of atomic actions. Intuitively, a discrete policy can represent a multi-modal action distribution while a Gaussian is by design uni-modal.

Why discrete action spaces?

- Reinforcement Learning in continuous domains often resort to parametric functions for a compact representation of distributions over actions. Often these are Gaussian.
- A discrete policy, in practice, can represent much more flexible distributions than Gaussian when there are sufficient number of atomic actions. Intuitively, a discrete policy can represent a multi-modal action distribution while a Gaussian is by design uni-modal.
- A common argument against a discretized action space is that for an action space with *M* dimensions, discretizing *K* atomic actions per dimension leads to *M^K* combinations of joint atomic actions: *Curse of Dimensionality*.

• Hierarchical RL (HRL) works on decomposing the RL problem into sub-problems where solving each of these is more powerful than solving the entire problem.

- Hierarchical RL (HRL) works on decomposing the RL problem into sub-problems where solving each of these is more powerful than solving the entire problem.
- HRL techniques use several forms of abstractions that have the ability to handle the exponentially increasing number of parameters.

- Hierarchical RL (HRL) works on decomposing the RL problem into sub-problems where solving each of these is more powerful than solving the entire problem.
- HRL techniques use several forms of abstractions that have the ability to handle the exponentially increasing number of parameters.
- A well-designed reward function in the HRL setting can decrease the number of impractical acts of exploration.

 Goal-conditioned Hierarchical RL comprises of a high-level policy that breaks the original task into a series of subgoals and a low-level policy that aims to reach those subgoals.

Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning

Tianren Zhang, Shangqi Guo, Tian Tian, Xiaolin Hu, Feng Chen

June 2020

Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning (2020)

• The subgoals are interpreted as high-level actions allowing direct training of the meta-controller to generate subgoals using external rewards as supervision.

Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning (2020)

- The subgoals are interpreted as high-level actions allowing direct training of the meta-controller to generate subgoals using external rewards as supervision.
- **Problem**: Training inefficiency in large goal spaces for the meta-controller. Controller training also suffers as the agent tries to reach every possible subgoal produced by the meta-controller.

Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning (2020)

- The subgoals are interpreted as high-level actions allowing direct training of the meta-controller to generate subgoals using external rewards as supervision.
- **Problem**: Training inefficiency in large goal spaces for the meta-controller. Controller training also suffers as the agent tries to reach every possible subgoal produced by the meta-controller.
- **Proposal**: The high-level action space can be restricted to a k-step adjacent region centered at the current state.

Preliminaries: Notation

- Consider a finite-horizon goal conditioned MDP defined as a tuple (S, G, A, P, R, γ) , where S is a state set, G is a goal set and A is an action set.
- $\mathcal{P}: S \times \mathcal{A} \times S \rightarrow \mathbb{R}$ is the state transition function, $\mathcal{R}: S \times \mathcal{A} \rightarrow \mathbb{R}$ is a reward function, $\gamma \in [0, 1)$ is a discount factor and $\Psi: S \rightarrow G$ is a known mapping function.
- Meta-controller with policy $\pi_{\theta_h}^h(g|s)$, controller with policy $\pi_{\theta_l}^l(a|s,g)$ comprising a two-level hierarchy.

Thesis

• Distant subgoals can be substituted by closer subgoals, as long as they drive the controller to move towards the same "direction".

Thesis

- Distant subgoals can be substituted by closer subgoals, as long as they drive the controller to move towards the same "direction".
- The meta-controller policy only needs to explore in a subset of subgoals covering states that the controller can possibly reach within *k* steps.

Thesis

- Distant subgoals can be substituted by closer subgoals, as long as they drive the controller to move towards the same "direction".
- The meta-controller policy only needs to explore in a subset of subgoals covering states that the controller can possibly reach within k steps.
- For the controller, adjacent subgoals provide a stronger learning signal as the agent can be intrinsically rewarded with a higher frequency for reaching these subgoals.

Figure 1: High-level illustration of our method: distant subgoals g_1 , g_2 , g_3 (blue) can be surrogated by closer subgoals \tilde{g}_1 , \tilde{g}_2 , \tilde{g}_3 (yellow) that fall into the k-step adjacent regions.

Shortest Transition Distance

Definition 1. Let s_1 , $s_2 \in S$. Then, the *shortest transition distance* from s_1 to s_2 is defined as:

$$d_{st}(s_1, s_2) := \min_{\pi \in \Pi} E[T_{s_1 s_2} | \pi] = \min_{\pi \in \Pi} \sum_{t=0}^{\infty} t P(T_{s_1 s_2} = t | \pi)$$

where Π is the complete policy set and $T_{s_1s_2}$ denotes the first hit time from s_1 to s_2 .

Shortest Transition Distance

Definition 1. Let s_1 , $s_2 \in S$. Then, the *shortest transition distance* from s_1 to s_2 is defined as:

$$d_{st}(s_1, s_2) := \min_{\pi \in \Pi} E[T_{s_1 s_2} | \pi] = \min_{\pi \in \Pi} \sum_{t=0}^{\infty} t P(T_{s_1 s_2} = t | \pi)$$

where Π is the complete policy set and $T_{s_1s_2}$ denotes the first hit time from s_1 to s_2 .

An optimal (deterministic) goal-conditioned policy $\pi^*: S \times G \rightarrow A$ is:

$$\pi^*(s,g) \in \operatorname{argmin}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s,a) d_{st}(s',\Psi^{-1}(g))$$

 $\forall s \in S, \forall g \in G$

k-Step Adjacent Region

Definition 2. Let $s \in S$. Then, the *k*-step adjacent region of *s* is defined as:

$$G_A(s,k) = \{g \in G | d_{st}(s,\Psi^{-1}(g)) \leq k\}$$

k-Step Adjacent Region

Definition 2. Let $s \in S$. Then, the *k*-step adjacent region of *s* is defined as:

$$G_A(s,k) = \{g \in G | d_{st}(s,\Psi^{-1}(g)) \leq k\}$$

• Consider a goal-conditioned hierarchical policy where the controller is required to reach the subgoals within *k* limited steps.

k-Step Adjacent Region

Definition 2. Let $s \in S$. Then, the *k*-step adjacent region of *s* is defined as:

$$G_A(s,k) = \{g \in G | d_{st}(s,\Psi^{-1}(g)) \leq k\}$$

- Consider a goal-conditioned hierarchical policy where the controller is required to reach the subgoals within k limited steps.
- In deterministic MDPs, given an optimal controller policy $\pi^{I*} = \pi^*$, subgoals that fall in the k-step adjacent region of the current state can represent all optimal subgoals in the whole goal space.

Using closer surrogate subgoals

Theorem 1: Let $s \in S$, $g \in G$ and let π^* be an optimal goal-conditioned policy. Under a deterministic MDP with strongly connected states, for all $k \in \mathbb{N}_+$ satisfying $k \leq d_{st}(s, \Psi^{-1}(g))$ there exists a surrogate goal \tilde{g} such that:

 $egin{aligned} & ilde{g}\in \mathit{G}_{\mathsf{A}}(s,k) \ &\pi^*(s_i, ilde{g})=\pi^*(s_i,g) \end{aligned}$

 $\forall s_i \in \tau (i \neq k)$ where $\tau := (s_0, s_1, \cdots, s_k)$ is the k-step trajectory starting from state $s_0 = s$ under π^* and g.

Meta-Controller Optimizing Objective

• This suggests that the *k*-step action sequence generated by an optimal controller policy conditioned on a distant subgoal can be induced using a subgoal that is closer.

Meta-Controller Optimizing Objective

- This suggests that the *k*-step action sequence generated by an optimal controller policy conditioned on a distant subgoal can be induced using a subgoal that is closer.
- In the deterministic setting they constrain the meta-controller's action space to state-wise k-step adjacent regions without a loss of optimality.

Meta-Controller Optimizing Objective

- This suggests that the *k*-step action sequence generated by an optimal controller policy conditioned on a distant subgoal can be induced using a subgoal that is closer.
- In the deterministic setting they constrain the meta-controller's action space to state-wise k-step adjacent regions without a loss of optimality.
- Employing relaxation methods they derive the following optimizing objective:

$$\max_{\theta_h} E_{\pi_{\theta_h}} \sum_{t=0}^{T-1} [\gamma^t r_{kt}^h - \eta H(d_{st}(s_{kt}, \Psi^{-1}(g_{kt})), k)],$$

where r_{kt}^h is the reward for the meta-controller's policy, H(x,k) = max(x/k - 1,0) is a hinge loss function, and η is a balancing coefficient. Aggregated Adjacency Matrix and Adjacency Network

• Instead of a perfect shortest transition distance between states, a discriminator of k-step adjacency is needed.

Aggregated Adjacency Matrix and Adjacency Network

- Instead of a perfect shortest transition distance between states, a discriminator of k-step adjacency is needed.
- Use the agent's trajectories to construct and update an aggregate binary k-step adjacency matrix.

Aggregated Adjacency Matrix and Adjacency Network

- Instead of a perfect shortest transition distance between states, a discriminator of k-step adjacency is needed.
- Use the agent's trajectories to construct and update an aggregate binary k-step adjacency matrix.
- However, the adjacency matrix has a tough time generalizing to newly-visited sets of states and is non-differentiable.

Figure 4: The functionality of the adjacency network. The *k*-step adjacent region is mapped to an ϵ_k -circle in the adjacency space, where $e_{g_i} = \psi_{\theta}(g_i), i = 1, 2, 3.$
Aggregated Adjacency Matrix and Adjacency Network

• Employ an adjacency network, Φ_{ϕ} with parameter ϕ , that learns a mapping from the goal space to an adjacency space ensuring a binary relation for implementing the adjacency constraint.

Aggregated Adjacency Matrix and Adjacency Network

• Employ an adjacency network, Φ_{ϕ} with parameter ϕ , that learns a mapping from the goal space to an adjacency space ensuring a binary relation for implementing the adjacency constraint.

• Ex:
$$||\Phi_{\phi}(g_1) - \Phi_{\phi}(g_2)||_2 > \epsilon_k$$
 for $d_{st}(s_1, s_2) > k$ and $||\Phi_{\phi}(g_1) - \Phi_{\phi}(g_2)||_2 < \epsilon_k$ for $d_{st}(s_1, s_2) < k$.

Aggregated Adjacency Matrix and Adjacency Network

• Employ an adjacency network, Φ_{ϕ} with parameter ϕ , that learns a mapping from the goal space to an adjacency space ensuring a binary relation for implementing the adjacency constraint.

• Ex:
$$||\Phi_{\phi}(g_1) - \Phi_{\phi}(g_2)||_2 > \epsilon_k$$
 for $d_{st}(s_1, s_2) > k$ and $||\Phi_{\phi}(g_1) - \Phi_{\phi}(g_2)||_2 < \epsilon_k$ for $d_{st}(s_1, s_2) < k$.

• The adjacency network is trained by minimizing an objective that penalizes adjacent state embeddings with large Euclidean distances in the adjacency space and non-adjacent state embeddings with small Euclidean distances.

Updated Meta-Controller Objective

 With a learned adjacency network, Φ_φ, they incorporate the adjacency constraint into the goal-conditioned HRL framework.

Updated Meta-Controller Objective

- With a learned adjacency network, Φ_φ, they incorporate the adjacency constraint into the goal-conditioned HRL framework.
- They minimize the following objective for the meta-controller:

$$\mathcal{L}(\theta_h) = -E_{\pi_{\theta_h}} \sum_{t=0}^{T-1} [\gamma^t r_{kt}^h - \eta \mathcal{L}_{adj}]$$

where $\mathcal{L}_{adj}(\theta_h) \propto \max(||\Phi_{\phi}(\Psi(s_{kt})) - \Phi_{\phi}(g_{kt})||_2 - \epsilon_k, 0)$ is defined as an adjacency loss and $g_{kt} \sim \pi^h_{\theta_h}(g_{kt}|s)$.

Limitations

• A "k" constraint is manually defined as a hyper-parameter. Thus, extension of this procedure to various settings, that may require a different constraint, is resolved through simulation and cross-validation.

Limitations

- A "k" constraint is manually defined as a hyper-parameter. Thus, extension of this procedure to various settings, that may require a different constraint, is resolved through simulation and cross-validation.
- The theorems are derived in the context of the deterministic MDP. They empirically show that their method is robust to **certain** types of stochasticity.

Limitations

- A "k" constraint is manually defined as a hyper-parameter. Thus, extension of this procedure to various settings, that may require a different constraint, is resolved through simulation and cross-validation.
- The theorems are derived in the context of the deterministic MDP. They empirically show that their method is robust to **certain** types of stochasticity.
- For applications with vast state spaces, constructing a complete adjacency matrix will be problematic.

Q-Learning in Enormous Action Spaces Via Amortized Approximate Maximization

Tom Van de Wiele, David Warde-Farley, Adriy Mnih, Volodymyr Mnih

Deepmind. Jan 2020

Q-Learning Flexibility and Complexity

Why doesn't Q-learning scale? Recall Q-learning update:

• Maximization over action space \mathcal{A} .

•
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

Q-Learning Flexibility and Complexity

Why doesn't Q-learning scale? Recall Q-learning update:

• Maximization over action space \mathcal{A} .

•
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$

- \bullet Computing max on discrete ${\cal A}$ has complexity $\propto |{\cal A}|.$
- Unable to maximize over continuous or hybrid \mathcal{A} .

Extend DQN to Large Action Spaces

Challenge: traditional DQN cannot extend to large (continuous) action spaces.

Extend DQN to Large Action Spaces

Challenge: traditional DQN cannot extend to large (continuous) action spaces.

Goal:

- Reduce computational cost dependence on $|\mathcal{A}|$.
- Possibility of continuous/discrete action spaces.

DQN Review

Parameterize state-value function using a neural network Q_{θ} .

Usual case: network maps state input to (action, value) pairs.

- $Q_{\theta} : S \to \mathcal{A} \times \mathcal{V}$
- # parameters $|\theta|$ roughly grows with $|\mathcal{A}|$.

DQN Review: State, Action \rightarrow Value

Can we reduce dependence of network size on action space?

DQN Review: State, Action \rightarrow Value

Can we reduce dependence of network size on action space?

Yes! Redefine Q_{θ} to map (state, actions) to values.

- $Q_{\theta}: \mathcal{S} \times \mathcal{A} \to \mathcal{V}.$
- No explicit size dependence on $|\mathcal{A}|$.
- Forward pass for each action to compute max value.

Amortized Q-Learning (AQL)

• Q-learning with cost less dependent on $|\mathcal{A}|.$

Amortized Q-Learning (AQL)

- Q-learning with cost *less* dependent on $|\mathcal{A}|$.
- Main idea: learn to search for good candidate actions.

• Only estimate value for candidate actions.

• Maximize over (much smaller) proposed set.

AQL: Approach

Learn a proposal distribution μ over possible actions $a \in A$.

- $\mu(a|s; \theta) = \text{probability of being a high-value action.}$
- Hopefully: learn μ with high probability for optimal action.

AQL: Approach

Learn a proposal distribution μ over possible actions $a \in A$.

- $\mu(a|s; \theta) = \text{probability of being a high-value action.}$
- Hopefully: learn μ with high probability for optimal action.

Parameterize μ with a neural network.

AQL: Q network

- $Q: S \times A \rightarrow V$
- Usual DQN training procedure.

Two NNs: proposal network μ , Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes $\mu(a \mid s)$.

Two NNs: proposal network μ , Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes $\mu(a \mid s)$.

2 Sample actions:
$$A_{samp} = A_{\mu} \cup A_{U}$$
, where $A_{\mu} := \{a_i\}_{i=1}^{N}$, $a_i \sim \mu(a \mid s)$
 $A_{U} := \{a_j\}_{j=1}^{M}$, $a_j \sim \text{Uniform}(\mathcal{A})$

Two NNs: proposal network μ , Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes $\mu(a \mid s)$.

2 Sample actions:
$$A_{samp} = A_{\mu} \cup A_{U}$$
, where:
 $A_{\mu} := \{a_i\}_{i=1}^{N}, a_i \sim \mu(a \mid s)$
 $A_{U} := \{a_j\}_{j=1}^{M}, a_j \sim \text{Uniform}(\mathcal{A})$

③ Q-network forward pass computes Q(s, a) for each $a \in A_{samp}$.

Two NNs: proposal network μ , Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes $\mu(a \mid s)$.

2 Sample actions:
$$A_{samp} = A_{\mu} \cup A_{U}$$
, where:
 $A_{\mu} := \{a_i\}_{i=1}^{N}, a_i \sim \mu(a \mid s)$
 $A_{U} := \{a_j\}_{j=1}^{M}, a_j \sim \text{Uniform}(\mathcal{A})$

- **③** Q-network forward pass computes Q(s, a) for each $a \in A_{samp}$.
- Choose optimal action as:

$$a^*(s) = rgmax_{a \in A_{samp}} Q(s, a)$$

Two NNs: proposal network μ , Q-network Q(s, a).

In a state s:

1 Proposal network forward pass computes $\mu(a \mid s)$.

2 Sample actions:
$$A_{samp} = A_{\mu} \cup A_{U}$$
, where:
 $A_{\mu} := \{a_i\}_{i=1}^{N}, a_i \sim \mu(a \mid s)$
 $A_{U} := \{a_j\}_{j=1}^{M}, a_j \sim \text{Uniform}(\mathcal{A})$

Q-network forward pass computes Q(s, a) for each a ∈ A_{samp}.
Choose optimal action as:

$$a^*(s) = rgmax_{a\in A_{samp}} Q(s,a)$$

Note: complexity proportional to $|A_{samp}|$, not |A|. (Amortized cost!)

AQL: Proposal network

- Output softmax over actions.
- Train with (regularized) proposal loss:
- $\mathcal{L}(\theta^{\mu}; s) = -\log \mu(a^*(s)|s; \theta^{\mu}) \lambda H(\mu(a|s; \theta^{\mu}))$

AQL: Proposal network

- Output softmax over actions.
- Train with (regularized) proposal loss:
- $\mathcal{L}(\theta^{\mu}; s) = -\log \mu(a^*(s)|s; \theta^{\mu}) \lambda H(\mu(a|s; \theta^{\mu}))$

First term: increases likelihood of sampling optimal action from proposal.

• Recall: a^* was not necessarily sampled from μ (exploration).

AQL: Proposal network

- Output softmax over actions.
- Train with (regularized) proposal loss:
- $\mathcal{L}(\theta^{\mu}; s) = -\log \mu(a^*(s)|s; \theta^{\mu}) \lambda H(\mu(a|s; \theta^{\mu}))$

First term: increases likelihood of sampling optimal action from proposal.

• Recall: a^* was not necessarily sampled from μ (exploration).

Second term: encourages uncertainty in proposal distribution (exploration).

AQL: Sampling from proposal network

Discrete case:

- Apply softmax to μ output layer.
- Sample from resulting distribution.

AQL: Sampling from proposal network

Discrete case:

- Apply softmax to μ output layer.
- Sample from resulting distribution.

Continuous case:

• Option 1: discretize action space.

AQL: Sampling from proposal network

Discrete case:

- Apply softmax to μ output layer.
- Sample from resulting distribution.

Continuous case:

- Option 1: discretize action space.
- Option 2: μ parameterizes a Gaussian:
- I.e. Samples $a_i \sim \mathcal{N}(\mu(a \mid s), \sigma^2)$

AQL: Architecture

AQL: Dependence on $|\mathcal{A}|$

Does AQL address the problem of learning in large action spaces?

AQL: Dependence on $|\mathcal{A}|$

Does AQL address the problem of learning in large action spaces?

- Proposal network has softmax over all actions.
- Why is this better than a DQN predicting (action, value) pairs?
- Both AQL and DQN have an output layer with $|\mathcal{A}|$ nodes.

AQL: Dependence on $|\mathcal{A}|$

In general, it's "easier" to classify than regress, (easier: requires fewer parameters, less training, etc...)
In general, it's "easier" to classify than regress, (easier: requires fewer parameters, less training, etc...)

- AQL: learning softmax over actions is multi-class classification.
- DQN: learning (action, value) pairs is many regressions.

In general, it's "easier" to classify than regress, (easier: requires fewer parameters, less training, etc...)

- AQL: learning softmax over actions is multi-class classification.
- DQN: learning (action, value) pairs is many regressions.

Intuition: classifying an action as good is "easier" than regressing how good it is.

Results: AQL per-step similar, per-second better than QL

Tom Van de Wiele, David Warde-Farley, Q-Learning in Enormous Action Spaces Via Amortized Approximate Maximization 34 / 37

AQL: Limitations

Hierarchical RL can exploit structure in problem. E.g.

- Inductive bias that the problem can be decomposed into sub-goals.
- Or that *local* subgoals are optimal (k-step adjacency HRL).

AQL: Limitations

Hierarchical RL can exploit structure in problem. E.g.

- Inductive bias that the problem can be decomposed into sub-goals.
- Or that local subgoals are optimal (k-step adjacency HRL).

AQL is "fixed" in its adaptability,

• but does amortize cost wrt action space size.

AQL: Limitations

Hierarchical RL can exploit structure in problem. E.g.

- Inductive bias that the problem can be decomposed into sub-goals.
- Or that local subgoals are optimal (k-step adjacency HRL).

AQL is "fixed" in its adaptability,

• but does amortize cost wrt action space size.

Our project: can we exploit structure in action space and reduce complexity dependence on $|\mathcal{A}|$?

Questions?

References

- Tejas D. Kulkarni et al. *Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation*. 2016. arXiv: 1604.06057 [cs.LG].
- Volodymyr Mnih et al. "Playing atari with deep reinforcement learning". In: *arXiv preprint arXiv:1312.5602* (2013).
- Yunhao Tang and Shipra Agrawal. Discretizing Continuous Action Space for On-Policy Optimization. 2020. arXiv: 1901.10500 [cs.LG].
 - Tom Van de Wiele et al. *Q-Learning in enormous action spaces via amortized approximate maximization*. 2020. arXiv: 2001.08116 [cs.LG].
 - Tianren Zhang et al. Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning. 2020. arXiv: 2006.11485 [cs.LG].