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Markov Reward Process and Monte Carlo Methods

@ Markov reward process (MRP) has three elements
» Markov chain {S; : t > 0} with state space {1, ..., n} and transition probabilities

pi =P(Ser1 =415 =1)

» Reward function R : {1,...,n} — ([0, 1])
» Discount factor v € (0, 1]
@ Want to estimate value functions

o0

Z’YtR(St)

t=0

V(s)=E

50:5]

e Can be estimated from trajectories {So, Ro, ..., ST—1, RT—1, ST} Sstarting at Sop = s and
terminating at St =T

G(S) = ’Yth
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Convergence of Monte Carlo Estimates

e Two algorithms exist; given trajectory {So, Ro,...,S7t-1, RT-1, ST}

» First-visit Monte Carlo computes gains G(Si) provided Sy does not repeat in Ski1,...,57

» Every-visit Monte Carlo computes gains G(Si) for all 1 < k < T irrespective of repetitions
@ Singh and Sutton (1996) derives bias and variance of these estimates in the undiscounted

setting

» First-visit Monte Carlo is unbiased

» Every-visit Monte Carlo is asymptotically unbiased

> After single episode, every-visit has lower variance than first-visit

> In the long run, first-visit has lower MSE than every-visit

@ Singh and Dayan (1998) analyzes the evolution of MSE curves
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Our Goals

e Extend the analysis of Singh and Sutton (1996) to the discounted setting
@ Derive finite time probability bounds for Monte Carlo estimates
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Partitioning the Transition Matrix

@ Only focus on trajectories starting at state s to estimate V/(s)
@ Assume all trajectories terminate at a terminal state T
o Denote S ={1,...,n}\ {s, T}
o Partition the Markov transition matrix
s S T
s (ps u' pr
P=S|v A w
T\0o 0" 1
e Claim: Spectral radius p(A) < 1
e Consequence: We have for all v € (0, 1]
[ +7A+72A% 4. = (1 —~A)!
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Segmenting the Episode

Episode {So, Ro,-..,S7-1, RT_1, ST} starting at s and terminating at T

To, T1, ..., Tk the sorted time indices when S, =s

Trajectory segments {St,_,, Rt,_,,..., 57,1, Rr,—1} for <j < k and
{STk7 RTk, e ST, RT,;[} are independent
@ Rewards accumulated over each segment

Tj=Tj—1—1 T-T—1
st = Z ’YtR-rJ;l-i-h 1 SJ S k7 RT = Z ’thTk-f—f
t=0 t=0

are independent

@ Gain over episode is given by

k
G=> 7R+ Ry
j=1
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Summary

o Informally, we integrate out all states except the starting and terminal states
~ A ﬁT? RT
p57 RS

k
G = Z'V-rj_l/%sj + ’YTkI%T
Jj=1

@ Gain is given by

o How does ps, p1, Rs and Ry look like?
@ What are the expressions for E[G | k revisits] and Var(G | k revisits)?
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Probabilities

@ Self-loop in reduced MRP can happen in two ways:

> A self loop in full MRP _
» Transition to s1,...,5+1 € S followed by transition back to s, kK >0

@ Combining all possible paths

0o
Ps = Pss + § § Pssi Psysy * * * Psis 1 Psiy1s
k=0 Sl,...,Sk+1€§

o0

= ps + Z u' ARy
k=0

=ps+u' (I —A) v

e Similarly
pr=pr+u' (I -—A)w

Gautam Chandrasekaran, Saibal De Monte Carlo Estimates in RL April 13, 2021 10/36



Reward Distributions

@ Expectations are computed by law of total expectation:
E[Rs] = psrs + reu’ (I — A) v + yu' (1 — yA) diag(rg)(/ — A)'v
and
E[Rr] = prrs + rsu” (I — Ay w 4 yuT (1 = vA) diag(rs)(/ — A)'w

e The variances Var(R;) and Var(R7) can also be computed using law of total variance
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Expected Gain
@ Define 7A'J =T;—Tj_1for1 <)< k; then

E[yT] =Eh++ T =BT B[y T = 4/

where we denote 4 = E[’Yﬁ]
o It follows that

@ We can derive similar expression for variance; it has an extra term to account for the

randomness in v i
@ The expressions become particularly simple when v =1
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Change of Notation

@ From now on, we only consider the two-state abstract MRP

@ To simplify notation, we drop the “hat” from ps, ﬁs, Fsy %y - -
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Value Function for the Two-State MRP

o With the change of notation, we have
PT, RT
pn A DPEE(T)

_ Ps's + prrr
1 —ps

@ Bellman optimality condition

V(s) = ps(rs +7V(s)) + prrr = V(s)
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First-Visit Monte-Carlo is Unbiased
o Given reward sequence {Rs,, ..., Rs,, RT} the first visit estimate after single episode is
V() = Rsy +7Rs + -+ 7" 'Ry + 7R

@ Expected value of the first-visit gain is

E[V{ (s)] = P(k revisits) E[V{ (s) | k revisits]
k=0

00 k

=Y pkpr| D A s Ak
k=0 =1

= V(s)
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Every-Visit Monte-Carlo After Single Episode is Biased

e Given reward sequence {Rs,, ..., Rs,, RT} the every visit estimate after single episode is

(Zjl'(=1 YRs, + ’YkRT) + (Zf:z ¥72R, + ’YkilRT> +--+Rr
k+1

V1E(5) =

@ Expected value of the every-visit gain after a single episode is

E[VE(s)] = > P(k revisits) E[V{(s) | k revisits]
k=0

1 pT( I's ) ( Ps >:|
= rs+— | rr— In{ 14+ —(1—
1—7{5 ps \ | 1—~ pr( ”)
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Overview

@ Finite time bounds for two state undiscounted MRP with deterministic rewards

pPT, RT
Ps, Rs C®7®

@ Recap of notation:
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Cumulant Generating Function and Concentration Bounds
@ The Cumulant Generating Function of a random variable X is defined as
¥x(t) = log E[e™]
@ Using this, we can derive concentration bounds as follows:
P[X > \u] = P[eX > ]
E[etx]
- etAp
= exp(—Aut + ¥x(t))
e Similarly, we get can bounds for Pr[X < Ay]
P[X < A\y] = Ple ™ > e tM]
E[e—tX]
= ot
= exp(—Ap - (—t) + ¢¥x(—t))
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First Visit MC

@ The first visit estimate after one trial is
Vi(s) = kR + R:

where k is the number of revisits to s.
o We know that = E[V{ (s)] = V(s).

e We now compute E[erf(S)]

E [etVf(S)] _ i Pé(  pr - et(kRs+R7)
k=0

s k
— pr - etRT Z pk (etRs>
S
k=0

tRT

e

- IPTW when psetf < 1
P s S
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First Visit MC

@ Thus, we get

p .etRT
Yyr(s)(t) = log (1_T—)

peetRs

when t < Iogps

@ Using the fact that e™* > 1 — x, we get

PT - et(RT_RS)
Dy (s)(t) = log (T_ps

1—
< t(Rr — Rs) + log (ﬁ)
S S

Rs

tR. 1—
<t(RTt —Rs) — Iog( 1 s), t< Ps

— Ps
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First Visit MC
o The first visit estimate after n episodes is V//(s) =157 Vf(s);.
@ Since the trials are independant, we have

tRs/n>

Dur(s)(t) = D Wyree)(t/n) < t(RT — Rs) = n-log (1 -1,
i=1 s

@ We need the upper bound

PIVE(5) > Ml < exp(—Aut + by (1))

to be as tight as possible. So, on optimizing with respect to t, we get that

. n(1— ps) N n
R, Rr — R. — 1
@ We also have the constraint that t < "(IT_SPS). This is satisfied when

(1 B ps)(RT - Rs)
(1 - ps)RT + Rs
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First Visit MC

@ Assuming Rs > 0, we have the conditions satisfied for A > 1. Substituting for ¢t in the
concentration bound, we get

P[Vy (s) 2 A~ V(s)] < exp(—n(a — 1 —log(a)))

where a = (1_p5)(AV§?5)+Rs_RT) = AT_SI [ps - Rs + (1 —ps) - RT] + 1.

S

o Note that o — 1 — log(«) > 0 for all positive v # 1
o Similarly, we get that

P[Vy (s) < A+ V(s)] < exp(—n(a — 1 —log(a)))

(1—ps)RT+Rs
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Every Visit MC

@ The every visit estimate after n trials is
Sy SR, 4+ (k + )R]
(i ki) +n

o Note that p = E[V,7(s)] = rjtipy Re + RT = V(S) — rraftisy

Vi (s) =

Rs
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Every Visit MC

e We now compute E[etvf(s)]

m S U R 4 (ki + 1R,
E [exp (tVf(s))] Z Z Ps PT exp [ < : (i?:l k) +n

k1= kn=0

i n ki(ki+1)
B K n Yo R+ (ki + 1)R:
= kEOPSPT > " exp t( g

2 ki=k

00 B 1,2 k
_ K Pl 15k Rs + 5Rs + (k + n)Ry
=> pEpt D exp t( P

k=0 S ki=k L

[ (LR + KRy + (k + n)R:
Z exp |t P

[o.¢]
<> pkp
k=0 >ia ki=k
[ee]
K
-3 stot
k=0

<n+k— 1) [ (;k2Rs+ KRy + (k+ n)Rt>]
exp |t
n—1 k+n
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Every Visit MC

E[exp(tVE )] t(é (k1) 5+Rt>]
(2]

o ()]

%:: <+/<I >exp[
kz (n+kI )exp[

> (n+k-1
= pTexp thZ _q

k=0 )

= ntk—1 tR g
= pTexp (tR) Z < P > _1)k [_ exp (75) ps]

k=0
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Negative Binomial Series

@ We have the following

for |x| < a and

@ We can rewrite
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Every Visit MC

@ Using the Negative Binomial series, we get

E [exp(tVf(s))} < pl exp(th)iO: (_k”> {— exp (%) ,Ds] k

k=0

tR -
= pTexp (tRt) (1 —exp (75) Ps)

PT
= exp(tR,
p( t) ll—exp (tTRS) pJ

o We need exp(5:)ps < 1 to use the expansion. Thus, t < #f(ps).
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Every Visit MC

@ We now compute '(,Z)V’F(s).

pT
Yye(t) < tRe + nlog
’ 1—exp (52) ps

tR
=tR; — n—> 4+ nlog F:;—
2 exp (=53*) —ps
nRs 1—ps
t{Re——— ) +nlog| ————
(f 2) g(l—%—p)
s i
t| R — —nl 1-—
(t 2) nog( 1—ps

IN

IN

with t < 202

Gautam Chandrasekaran, Saibal De Monte Carlo Estimates in RL April 13, 2021 30/36



Every Visit MC
@ We now optimize t to make the upper bound

PIVE(s) > Al < exp(—Aut + e (1))
as tight as possible. We get the best value of t as

2(1 — ps) n
+ nRs

t=
Rs RT—T—)\,LL

e To satify t < (1 ps) , we have that

(L= p) [Rr = ]
Rr(1—p)+ 7P Rs

A >
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Every Visit MC

@ Assuming positive rewards, the previous condition is satisfied for all A > 1. Thus, we get
Pr[Vy (s) > Au] < exp(—n (o —1—log(e)))

with a = 2222 (N 4 2R Ry,

@ Similarly,
Pr[Vy (s) < Au] < exp(—n(a — 1 — log(a)))

1 Ps [RT_M

for T(1—ps)+ =25 ps Rs

<A<l
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Summary

@ Explicit expressions in two-state MRP reduction
@ Bias of first- and every-visit MC in discounted settings

@ Finite time bounds with deterministic rewards in undiscounted setting
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Future Work

@ Variance of first- and every-visit MC in discounted setting
@ Finite time bounds with random rewards in discounted setting

@ Potential new estimates?
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