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Markov Reward Process and Monte Carlo Methods
Markov reward process (MRP) has three elements

I Markov chain {St : t ≥ 0} with state space {1, . . . , n} and transition probabilities

pij = P(St+1 = j | Sj = i)

I Reward function R : {1, . . . , n} → P([0, 1])
I Discount factor γ ∈ (0, 1]

Want to estimate value functions

V (s) = E

[ ∞∑
t=0

γtR(St)

∣∣∣∣S0 = s

]

Can be estimated from trajectories {S0,R0, . . . ,ST−1,RT−1, ST} starting at S0 = s and
terminating at ST = T

G (S) =
T−1∑
t=0

γtRt
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Convergence of Monte Carlo Estimates

Two algorithms exist; given trajectory {S0,R0, . . . ,ST−1,RT−1, ST}
I First-visit Monte Carlo computes gains G (Sk) provided Sk does not repeat in Sk+1, . . . ,ST
I Every-visit Monte Carlo computes gains G (Sk) for all 1 ≤ k ≤ T irrespective of repetitions

Singh and Sutton (1996) derives bias and variance of these estimates in the undiscounted
setting

I First-visit Monte Carlo is unbiased
I Every-visit Monte Carlo is asymptotically unbiased
I After single episode, every-visit has lower variance than first-visit
I In the long run, first-visit has lower MSE than every-visit

Singh and Dayan (1998) analyzes the evolution of MSE curves
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Our Goals

Extend the analysis of Singh and Sutton (1996) to the discounted setting

Derive finite time probability bounds for Monte Carlo estimates
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Partitioning the Transition Matrix

Only focus on trajectories starting at state s to estimate V (s)

Assume all trajectories terminate at a terminal state T

Denote S = {1, . . . , n} \ {s,T}
Partition the Markov transition matrix

P =


s S T

s ps u> pT
S v A w
T 0 0> 1


Claim: Spectral radius ρ(A) < 1

Consequence: We have for all γ ∈ (0, 1]

I + γA + γ2A2 + · · · = (1− γA)−1
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Segmenting the Episode
Episode {S0,R0, . . . ,ST−1,RT−1, ST} starting at s and terminating at T

T0,T1, . . . ,Tk the sorted time indices when STk
= s

Trajectory segments {STj−1
,RTj−1

, . . . ,STj−1,RTj−1} for ≤ j ≤ k and
{STk

,RTk
, . . . ,ST−1,RT−1} are independent

Rewards accumulated over each segment

R̂sj =

Tj−Tj−1−1∑
t=0

γtRTj−1+t , 1 ≤ j ≤ k, R̂T =

T−Tk−1∑
t=0

γtRTk+t

are independent

Gain over episode is given by

G =
k∑

j=1

γTj−1R̂sj + γTk R̂T
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Summary

Informally, we integrate out all states except the starting and terminal states

s Tp̂s , R̂s

p̂T , R̂T

Gain is given by

G =
k∑

j=1

γTj−1R̂sj + γTk R̂T

How does p̂s , p̂T , R̂s and R̂T look like?

What are the expressions for E[G | k revisits] and Var(G | k revisits)?
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Probabilities

Self-loop in reduced MRP can happen in two ways:
I A self loop in full MRP
I Transition to s1, . . . , sk+1 ∈ S followed by transition back to s, k ≥ 0

Combining all possible paths

p̂s = pss +
∞∑
k=0

∑
s1,...,sk+1∈S

pss1ps1s2 · · · psk sk+1
psk+1s

= ps +
∞∑
k=0

u>Akv

= ps + u>(I − A)−1v

Similarly
p̂T = pT + u>(I − A)−1w
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Reward Distributions

Expectations are computed by law of total expectation:

E[R̂s ] = psrs + rsu
>(I − A)−1v + γu>(I − γA)−1diag(rS)(I − A)−1v

and

E[R̂T ] = pT rs + rsu
>(I − A)−1w + γu>(I − γA)−1diag(rS)(I − A)−1w

The variances Var(R̂s) and Var(R̂T ) can also be computed using law of total variance
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Expected Gain
Define T̂j = Tj − Tj−1 for 1 ≤ j ≤ k ; then

E[γTj ] = E[γT̂1+···+T̂j ] = E[γT̂1 ] · · ·E[γT̂j ] = γ̂j

where we denote γ̂ = E[γT̂1 ]

It follows that

E[G | k revisits] = E

 k∑
j=1

γTj−1R̂sj + γTk R̂T


=

k∑
j=1

γ̂j−1r̂s + γ̂k r̂T

We can derive similar expression for variance; it has an extra term to account for the

randomness in γT̂j

The expressions become particularly simple when γ = 1
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Change of Notation

From now on, we only consider the two-state abstract MRP

To simplify notation, we drop the “hat” from p̂s , R̂s , r̂s , γ̂, . . .
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Value Function for the Two-State MRP

With the change of notation, we have

s Tps ,Rs

pT ,RT

Bellman optimality condition

V (s) = ps(rs + γV (s)) + pT rT =⇒ V (s) =
psrs + pT rT

1− γps
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First-Visit Monte-Carlo is Unbiased

Given reward sequence {Rs1 , . . . ,Rsk ,RT} the first visit estimate after single episode is

V F
1 (s) = Rs1 + γRs2 + · · ·+ γk−1Rsk + γkRT

Expected value of the first-visit gain is

E[V F
1 (s)] =

∞∑
k=0

P(k revisits)E[V F
1 (s) | k revisits]

=
∞∑
k=0

pks pT

 k∑
j=1

γj−1rs + γk rT


= · · ·
= V (s)
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Every-Visit Monte-Carlo After Single Episode is Biased

Given reward sequence {Rs1 , . . . ,Rsk ,RT} the every visit estimate after single episode is

V E
1 (s) =

(∑k
j=1 γ

j−1Rsk + γkRT

)
+
(∑k

j=2 γ
j−2Rsk + γk−1RT

)
+ · · ·+ RT

k + 1

Expected value of the every-visit gain after a single episode is

E[V E
1 (s)] =

∞∑
k=0

P(k revisits)E[V E
1 (s) | k revisits]

= · · ·

=
1

1− γ

[
rs +

pT
ps

(
rT −

rs
1− γ

)
ln

(
1 +

ps
pT

(1− γ)

)]
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Overview

Finite time bounds for two state undiscounted MRP with deterministic rewards

Recap of notation:

s Tps ,Rs

pT ,RT
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Cumulant Generating Function and Concentration Bounds
The Cumulant Generating Function of a random variable X is defined as

ψX (t) = logE[etx ]

Using this, we can derive concentration bounds as follows:

P[X ≥ λµ] = P[etX ≥ etλµ]

≤ E[etX ]

etλµ

= exp(−λµt + ψX (t))

Similarly, we get can bounds for Pr [X ≤ λµ]

P[X ≤ λµ] = P[e−tX ≥ e−tλµ]

≤ E[e−tX ]

e−tλµ

= exp(−λµ · (−t) + ψX (−t))
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First Visit MC
The first visit estimate after one trial is

V F
1 (s) = kRs + Rt

where k is the number of revisits to s.

We know that µ = E[V F
1 (s)] = V (s).

We now compute E[etV
F
1 (s)]

E
[
etV

F
1 (s)
]

=
∞∑
k=0

pks · pT · et(kRs+RT )

= pT · etRT

∞∑
k=0

pks

(
etRs

)k
=

pT .e
tRT

1− psetRs
when pse

tRs < 1
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First Visit MC

Thus, we get

ψV F
1 (s)(t) = log

(
pT .e

tRT

1− psetRs

)
when t < − log ps

Rs

Using the fact that e−x ≥ 1− x , we get

ψV F
1 (s)(t) = log

(
pT · et(RT−Rs)

e−tRs − ps

)

≤ t(RT − Rs) + log

(
1− ps

1− tRs − ps

)
≤ t(RT − Rs)− log

(
1− tRs

1− ps

)
, t <

1− ps
Rs
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First Visit MC
The first visit estimate after n episodes is V F

n (s) = 1
n

∑n
i=1 V

F
1 (s)i .

Since the trials are independant, we have

ψV F
n (s)(t) =

n∑
i=1

ψvF
1 (s)(t/n) ≤ t(RT − Rs)− n · log

(
1− tRs/n

1− ps

)
We need the upper bound

P[V F
n (s) ≥ λµ] ≤ exp

(
−λµt + ψV F

n (s)(t)
)

to be as tight as possible. So, on optimizing with respect to t, we get that

t =
n(1− ps)

Rs
+

n

RT − Rs − λµ

We also have the constraint that t < n(1−ps)
Rs

. This is satisfied when

λ >
(1− ps)(RT − Rs)

(1− ps)RT + Rs
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First Visit MC

Assuming RS > 0, we have the conditions satisfied for λ > 1. Substituting for t in the
concentration bound, we get

P[V F
n (s) ≥ λ · V (s)] ≤ exp(−n(α− 1− log(α)))

where α = (1−ps)(λV (S)+Rs−RT )
Rs

= λ−1
Rs

[ps · Rs + (1− ps) · RT ] + 1.

Note that α− 1− log(α) > 0 for all positive α 6= 1

Similarly, we get that

P[V F
n (s) ≤ λ · V (s)] ≤ exp(−n(α− 1− log(α)))

for (1−ps)(RT−Rs)
(1−ps)RT+Rs

< λ < 1
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Every Visit MC

The every visit estimate after n trials is

V E
n (s) =

[∑n
i=1

ki (ki+1)
2 Rs + (ki + 1)Rt

]
(
∑n

i=1 ki ) + n

Note that µ = E[V E
n (s)] = nps

(n+1)(1−ps)Rs + RT = V (s)− ps
(n+1)(1−ps)Rs
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Every Visit MC
We now compute E[etV

E
n (s)]

E
[
exp

(
tV E

n (s)
)]

=
∞∑

k1=0

. . .

∞∑
kn=0

p
∑n

i=1 ki
s pnT exp

[
t

(∑n
i=1

ki (ki+1)
2 Rs + (ki + 1)Rt

(
∑n

i=1 ki ) + n

)]

=
∞∑
k=0

pks p
n
T

∑
∑n

i=1 ki=k

exp

[
t

(∑n
i=1

ki (ki+1)
2 Rs + (ki + 1)Rt

k + n

)]

=
∞∑
k=0

pks p
n
T

∑
∑n

i=1 ki=k

exp

[
t

(∑k
i=1

1
2k

2
i Rs + k

2Rs + (k + n)Rt

k + n

)]

≤
∞∑
k=0

pks p
n
T

∑
∑n

i=1 ki=k

exp

[
t

(
1
2k

2Rs + k
2Rs + (k + n)Rt

k + n

)]

=
∞∑
k=0

pks p
n
T

(
n + k − 1

n − 1

)
exp

[
t

(
1
2k

2Rs + k
2Rs + (k + n)Rt

k + n

)]
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Every Visit MC

E
[
exp
(
tV E

n (s)
)]
≤
∞∑
k=0

pks p
n
T

(
n + k − 1

n − 1

)
exp

[
t

(
1
2k(k + 1)

k + n
Rs + Rt

)]

≤
∞∑
k=0

pks p
n
T

(
n + k − 1

n − 1

)
exp

[
t

(
kRs

2
+ Rt

)]

= pnT exp (tRt)
∞∑
k=0

(
n + k − 1

n − 1

)[
exp

(
tRs

2

)
ps

]k
= pnT exp (tRt)

∞∑
k=0

(
n + k − 1

k

)
(−1)k

[
− exp

(
tRs

2

)
ps

]k
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Negative Binomial Series

We have the following

(x + a)−n =
∞∑
k=0

(
−n
k

)
xka−n−k

for |x | < a and (
−n
k

)
=

(−n)(−n − 1) · · · (−n − k + 1)

k!

We can rewrite (
−n
k

)
= (−1)k

(
n + k − 1

k

)
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Every Visit MC

Using the Negative Binomial series, we get

E
[
exp
(
tV E

n (s)
)]
≤ pnT exp (tRt)

∞∑
k=0

(
−n
k

)[
− exp

(
tRs

2

)
ps

]k
= pnT exp (tRt)

(
1− exp

(
tRs

2

)
ps

)−n
= exp(tRt)

[
pT

1− exp
(
tRs
2

)
ps

]n

We need exp
(
tRs
2

)
ps < 1 to use the expansion. Thus, t < −2 log(ps)

Rs
.
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Every Visit MC

We now compute ψV E
n (s).

ψV E
n

(t) ≤ tRt + n log

(
pT

1− exp
(
tRs
2

)
ps

)

= tRt − n
tRs

2
+ n log

(
pT

exp
(
− tRs

2

)
− ps

)

≤ t

(
Rt −

nRs

2

)
+ n log

(
1− ps

1− tRs
2 − ps

)

≤ t

(
Rt −

nRs

2

)
− n log

(
1−

tRs
2

1− ps

)

with t < 2(1−ps)
Rs
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Every Visit MC

We now optimize t to make the upper bound

P[V E
n (s) ≥ λµ] ≤ exp

(
−λµt + ψV E

n (s)(t)
)

as tight as possible. We get the best value of t as

t =
2(1− ps)

Rs
+

n

RT − nRs
2 − λµ

To satify t < 2(1−ps)
Rs

, we have that

λ >
(1− p)

[
RT − Rsn

2

]
RT (1− p) + n

n+1p · Rs
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Every Visit MC

Assuming positive rewards, the previous condition is satisfied for all λ > 1. Thus, we get

Pr [V E
n (s) ≥ λµ] ≤ exp (−n (α− 1− log(α)))

with α = 2(1−ps)
n·Rs

· (λµ+ nRs
2 − Rt).

Similarly,
Pr [V E

n (s) ≤ λµ] ≤ exp (−n(α− 1− log(α)))

for
(1−ps)[RT−Rsn

2 ]
RT (1−ps)+ n

n+1
ps ·Rs

< λ < 1
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Summary

Explicit expressions in two-state MRP reduction

Bias of first- and every-visit MC in discounted settings

Finite time bounds with deterministic rewards in undiscounted setting
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Future Work

Variance of first- and every-visit MC in discounted setting

Finite time bounds with random rewards in discounted setting

Potential new estimates?
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