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Introduction

Linear contextual bandit is a particular version of MAB.

In this problem we have some “contexts” xi associated with each arm.

The learner uses these feature vectors along with the feature vectors
and rewards of the arms played by her in the past to make the choice
of the arm to play in the current round.

The goal is to minimize regret over time.
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Existing works

Adversarial setting:

[Agrawal and Goyal, 2013] has given a near optimal algorithm (based
on TS) to solve this problem. They have shown that their algorithm

achieves on an average of O(d
2

ε

√
T 1+ε) for some positive ε > 0 which

is close to the theoretical lower bound Ω(d
√
T ) for this problem.

Following the work of [Agrawal and Goyal, 2013] on linear contextual
bandits a further progress was made by [Abeille and Lazaric, 2017].
They showed that it is not necessary for TS to sample from the actual
posterior distribution and still get a regret of order O(d3/2

√
T ).
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Existing works

Stochastic setting:

[Chu et al., 2011] has provided a near optimal algorithm in stochastic

setting with a regret bound of O(
√
Td log3(KT log(T/δ))).

They have also proved a Ω(
√
dT ) lower bound on the regret under

this setting. This bound is improvement over the previously existing
bound Ω(T 3/4K 1/4) by [Abe et al., 2003].
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Linear contextual bandit

We will work with Stochastic linear contextual bandit:

Consider a collection K arms.

We denote those K arms via d−dimensional vectors
X = {x1, . . . , xK}.
At each time point t ∈ {0, 1, . . . ,T} the user selects an arm At and
receives a reward yt ∈ R.

We model the reward as

yt = x>At
β∗ + ηt .
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Linear contextual bandit

Setup and Assumptions:

We assume that ‖xk‖2 ≤ 1 and ‖β∗‖2 ≤ 1.

ηt ∼ N(0, σ2), and they are all i.i.d across t.

β∗ is unknown weight vector.

Optimal arm: x∗ = arg maxx∈X x>β∗.
Goal: Our goal is to minimize the cumulative regret over T rounds,

R(T ) =
T∑
t=1

〈β∗, x∗〉 − 〈β∗, xAt 〉 .
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How do we tackle this problems?

Typically we have two basic approaches.

1 Frequentist Approach: Lin-UCB, OFUL. Both of these algorithms
are based on constructing confidence ellipsoid for β∗ and taking
decision based on that.

2 Bayesian Approach: Thompson sampling. Typically we construct a
prior on the space of β and compute the posterior. Then we generate
one sample from the posterior and use it as a proxy for β. Then we
try to choose an arm based on the procured sample and we continue.
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Lin UCB
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Thompson sampling: Basic idea

Let π(·) be a prior on β∗. For simplicity let

β∗ ∼ N (0,Λ−1).

Then we do the followings:

1 Initialization: Initialize β̂1 = 0 and A = Λ1 = Id .

2 Draw sample form posterior: At time t draw a sample β̃t from
N (β̂t ,Λ

−1
t ).

3 Play arm: At = arg maxk∈[K ] x
>
k β̃.

4 Update the parameters(i.e. the posterior parameters):
Λt+1 = Λt + xAtx

>
At
, β̂t+1 = Λ−1

t+1[xA1 , . . . , xAt ][y1, . . . , yt ]
>.

5 Return to step 2.
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High dimensional linear contextual bandit

Notations:

1 β∗ : Unknown d− dimensional parameter.

2 T : Number of total iterations and T � d .

3 s : Sparsity of β∗ and s � d .

4 Xt,i : Context covariate XAt ∈ Rd associated with each feasible
action in X at time t.

5 yt : Linear reward observed after taking an action At ∈ [K ].

Model: yt = x>At
β∗ + ηt .

Goal: Our goal is to minimize the cumulative regret over T rounds,

R(T ) =
T∑
t=1

〈β∗, x∗〉 − 〈β∗, xAt 〉 .
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Relevance Vector Machine

Relevance Vector Machine is bayesian frame work that is particularly useful
in sparse regression and classification tasks([Tipping, 2001]). Consider the
linear model as an example

y = Xβ∗ + η.

Prior on β∗: β∗ ∼ N (0,A−1).

Structure of A: A = diag(α1, . . . , αd). Thus β∗j ∼ N (0, α−1
j ).

Hyperprior on A : (α1, . . . , αd) ∼
∏d

j=1 Gamma(0, 0).

Posterior of β∗: β∗|y ,α ∼ N (β̂,Σ−1) where,

Σ = A + σ−2X>X ; β̂ = σ−2Σ−1X>y .
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Relevance Vector Machine

Since α is unknown and computing the full posterior is computationally
intensive, [Tipping, 2001] proposes choosing α to maximize p(y |α) and
describes an iterative approach to solving this optimization problem, with
computational speedups detailed in [Tipping et al., 2003].
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Algorithm using RVM

Now we will present the algorithm proposed in [Gilton and Willett, 2017].

1 Initialize β̂1 = 0 and A = Σ1 = Id .

2 Let δ ∈ (0, 1) and set ν =
√

9dσ2 log(T/δ).

3 for t ∈ [T ] do the followings,

4 sample β̃t ∼ N (β̂t , ν
2Σ−1

t )

5 Play arm xAt = arg maxx∈X x>β̃t
6 Update A using the procedure in [Tipping et al., 2003].

7 Set Σt+1 = Σt + xAtx
>
At

= A +
∑t

s=1 xAsx
>
As

.

8 β̂t+1 = Σ−1
t+1(

∑t
s=1 ysxAs ).
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Algorithm using RVM

Suppose we have perfect knowledge of S := Supp(β∗). then if αi =∞ for
i ∈ Sc and αi = λ for i ∈ S , and for now let us forget about updating A.
Then this RVM-LTS is basically same as LTS on the true support of β∗.
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Regret Bound: fixed A (i.e. we do not update A)

Define Sα := {i : 1/αi = 0} and sα = |Sα|.

Theorem

Assume Supp(θ∗) ⊆ Sα. For δ > 0, with probability at least 1− δ we have,

R(T ) ≤ O

(
min{

√
sα,
√

logK}

[
σ

√
sα log

(
T 2αAM + T 3

δ.αGM

)
+ ‖αS‖2

])
,

where αAM = 1
sα

∑
i∈Sα αi and αGM = (

∏
i∈Sα αi )

1/sα .
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Proof sketch

The proof mainly follows the steps of [Chu et al., 2011].

Key element of the proof is to find concentration inequality for x>At
β̂t .

This requires basically bounding
∣∣∣x>At

(β̂t − β∗)
∣∣∣.

As xk ’s are bounded it is enough to get a bound for
β̂ − β∗ = Σ−1

t−1(ζt−1 − Aβ∗), where ζt = X>t y t and Σt = A + X>t X t .

The first thing to show is,

‖ζ‖Σ−1
t
≤ R

√
d log

αAM + t

δαGM
.
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Proof sketch

Using this one can further show that,

‖ζt−1 − Aβ∗‖Σ−1
t−1
≤ R

√
d log

αAM + t

δαGM
+ ‖αS‖2 .

The remainder of the proof is detailed in [Chu et al., 2011].
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Experimental results

Figure: Per-round regret v/s time. s = 5, d = 100,K = 1000
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Experimental results

Figure: Total regret v/s sparsity. d = 100,K = 1000
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Thompson sampling: Disadvantage

The computation of posterior is easy if we consider a gaussian prior
on β∗.

In most of the cases if we work with complicated prior or hierarchical
models then it is almost impossible to get a closed form of the
posterior distribution.

Even if we get a form of the posterior it is often the case we struggle
to get a sample from the posterior.
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Thompson sampling: Solution

One well known methodology is Markov Chain Monte Carlo. For
example: Gibb’s Sampler, Metropolis Hastings, Hamiltonian Monte
Carlo.

Experiments shows that these methods are quite slow. It mainly
occurs due to slow convergence of the Markov chain to its stationary
distribution.

Thus to curb time we need to generate some Markov chain which
quickly converges to its stationary distribution.
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Langevin dynamics: Langevin SDE

Langevin Process:

dθt = −∇U(θt)dt +

√
2

γ
dBt . (1)

(Bt , t ≥ 0) is the standard Brownian motion, and the potential function
U : Rd → R is assumed to satisfy the regularity condition:

∇U is locally lipschitz.

〈∇U(θ), θ〉 ≥ c1 ‖θ‖2 − c2 for any θ ∈ Rd ,

where c1, c2 are positive constants.
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Langevin dynamics: Langevin SDE

Theorem

Under the stated regularity condition, the solution to the Langevin SDE
(1) exists and is unique. Further the density of θt converges in L2 to the
stationary distribution with density proportional to e−γU .
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Langevin dynamics: Connection with Bayesian Inference

Consider a parametric family family of distribution {Pθ |θ ∈ Θ}.
X n

1 := (X1, . . . ,Xn) be i.i.d sequence from Pθ∗ .

log-likelihood: Fn(θ) := 1
n

∑n
i=1 log pθ(Xi ).

Posterior: Π(θ|X n
1 ) ∝ enFn(θ)π(θ), where π(·) is prior on θ.
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Langevin dynamics: Connection with Bayesian Inference

Now consider the following SDE:

dθt =
1

2
∇Fn(θt)dt +

1

2n
∇ log π(θt)dt︸ ︷︷ ︸

:=−∇Un(θt)dt

+
1√
n
dBt .

Thus if we show the aforementioned regularity conditions for ∇Un(θ) then
density of θt converges to Π(·|X n

1 ) in L2.
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Langevin dynamics: Posterior contraction

Let F (θ) = E(log pθ(X )).

(A1) ‖∇F (θ1)−∇F (θ2)‖2 ≤ ‖θ1 − θ2‖2

(A2) ‖∇ log π(θ1)−∇ log π(θ2)‖2 ≤ L2 ‖θ1 − θ2‖2.

(A3) supθ∈Rd 〈∇ log π(θ), θ − θ∗〉 ≤ B.

(A4) 〈∇F (θ), θ∗ − θ〉 ≥ µ ‖θ − θ∗‖2
2.

(A5) supθ∈B(θ∗,r) ‖∇Fn(θ)−∇F (θ)‖ ≤ ε1(n, δ) + ε2(n, δ) with probability
at least 1− δ.
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Langevin dynamics: Posterior contraction

Theorem (Informal version, [Mou et al., 2019])

If (A1)-(A5) is satisfied then for large enough n such that ε1(n, δ) ≤ µ/6,
we have

Π

(
‖θ − θ∗‖2 ≥ C

√
d + log(1/δ) + B

nµ
+
ε2(n, δ)

µ

∣∣∣∣∣X n
1

)
≤ δ,

with probability at least 1− δ.

This establishes (d/n)1/2 rate of posterior contraction.
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Langevin dynamics: Stochastic optimization

The basic structure of the Langevin based algorithms are hinged on
stochastic optimization of some cost function.

An ordinary stochastic gradient update step is:

θt+1 = θt +
ht
2

(
∇ log π(θ) +

n

k

k∑
i=1

∇ log p(xti |θt)

)

k = number of sub-sample, n = number of samples, xti are
sub-samples.

But this update step collapses to MAP estimator. But we need a
sample from the posterior.
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Langevin dynamics: Stochastic optimization

But the Langevin update does the following:

θt+1 = θt +
ht
2

(
∇ log π(θ) +

n

k

k∑
i=1

∇ log p(xti |θt)

)
+
√

2htwt

wt ∼ Nd(0, 1). Typically we have,∑
t

ht =∞,
∑
t

h2
t <∞.

It turns out that adding this gaussian noise eventually generates a sample
from the posterior.
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K-armed stochastic MAB

Setup:

A := {1, . . . ,K}.
At time t learner chooses an arm At and receives reward XAt from a
distribution pAt .

We assume that the reward distribution of arm a can be characterized
by θa ∈ Rda , i.e, reward distribution is pa(X ) = pa(X ; θ∗a).

Ex∼pa(x |θa)[X ] = αT
a θa.

Goal: Minimize

R(T ) = E

[
T∑
t=1

r̄a∗ − r̄At

]
.

r̄a = mean reward of arm a, a∗ = arg maxa∈A r̄a.
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K-armed stochastic MAB: Langevin SDE

We consider the following SDE:

dθt =
1

2
∇θFn,a(θt)dt +

1

2n
∇θ log πa(θt)dt +

1
√
nγa

dBt .

Thus we expect,

lim
t→∞

Pt(θ|X n
1 ) ∝ exp(−γa(nFn,a(θ) + log πa(θ)))

Sampling from scaled posterior µ
(n)
a [γa] is needed for technical reasons.
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K-armed stochastic MAB: Assumptions

Assumption 1- Uniform

− log pa(x |θ′a)−∇θ log pa(x |θ′a)T (θa − θ′a) +
ma

2

∥∥θa − θ′a∥∥2

≤ − log pa(x |θa)

≤ − log pa(x |θ′a)−∇θ log pa(x |θ′a)T (θa − θ′a) +
La
2

∥∥θa − θ′a∥∥2
.

Assumption 2: Strong log-concavity and lipschitz assumption on pa(x |θ)
in x .
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K-armed stochastic MAB: Algorithm
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Main regret result

Theorem (Informal, [Mazumdar et al., 2020])

When the likelihood and the true reward distributions satisfy
aforementioned regularity conditions: The algorithm after T rounds
satisfies the following,

E[R(T )] ≤ O

(
logT

∆min

)
,

∆min = minimum sub-optimality gap across the arms.
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Proof sketch

Between the n-th and the (n + 1)-th pull to arm a, samples θa,t

approximately follows the posterior µ
(n)
a :

Wp(µ̂
(n)
a , µ

(n)
a ) ≤ O

(√
da + C1p + C2

n

)
.

µ̂na is the probability measure associated with any of the samples(s)
θ
a,Nh

(n)
a

.

Then we show that θa,t concentrates to θ∗a ,i.e., ‖θa,t − θ∗a‖2 ≤
√

da
n ,

with high probability.
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Proof sketch

Next we try to bound E(Ta(T )), where Ta(T )= number of times the
sub-optimal arm a is pulled up.

Ea(t) = {ra,t(Ta(t)) ≥ r̄1 − ε}. (1 is optimal arm).

E(Ta(T )) = E

[
T∑
t=1

1(At = a,E c
a (t))

]
︸ ︷︷ ︸

A

+E

[
T∑
t=1

1(At = a,Ea(t))

]
︸ ︷︷ ︸

B

pa,s = P(ra,t(s) > r̄1 − ε|Ft−1) for some ε > 0.
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Proof sketch

Using standard techniques of [Agrawal and Goyal, 2012] one can show,

A ≤ E

[
T−1∑
s=l

1

p1,s
− 1

]
,

B ≤ 1 + E

[
T∑
s=1

1(pa,s >
1

T
)

]
,

then one can further get an upper bound on the right hand terms.

Then using standard regret decomposition for stochastic settings, one
can prove the final bound to be O(logT/∆).
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Numerical results
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