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Package Theft

● Package theft is an emerging type of crime
○ Increasing volume of package delivered directly to a home[1,2]

○ Increasing concern among online retailers[3]

● Potential methods to reduce package theft:
○ Reducing award

○ Increasing risk

○ Increasing efforts
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Autonomous Delivery Robots

● Autonomous delivery robots for package delivery
○ Last mile delivery[4,5]

○ Fast and cheap[6]

○ Less impacted by traffic congestion

● Package theft prevention: delivery spot selection
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Package Theft Prevention as a Bandit Problem

● Unrealistic to solve analytically
○ Different house designs

○ Varied individual behaviors

○ Large number of packages

● Formulate package spot selection problem as an adversarial bandit problem
○ The choice of package placement has no inherent state

○ Each porch can be viewed as a different context

○ Actions are defined as choices of package placement
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Adversarial Bandit Problem Algorithms [8-10]

● Exp3: exponential weights
○ Exp3.P: Exp3 with high probability regret

○ Exp3.IX: Exp3 with high probability regret, using Implicit Exploration

○ Exp3.S: Exp3 for sequence of actions

● Exp4: exponential weights with experts

● We choose Exp4 Algorithm for the adversarial bandit problem
○ Homeowners can be modeled as experts

○ Thieves can also be modeled as experts in reverse

Background Methods Results Conclusion



Outline

1. Background

2. Methods

3. Results

4. Conclusion

Background Methods Results Conclusion



Exp4 (Lattimore and Szepesvári)

1. Take Real 𝛾 ∈ 0,1

2. Initialize weights 𝑊0

3. For each time t:

A. Get expert advices 𝐸(𝑡)

B. Choose action A 𝑡 ~𝑃 𝑡 = 𝑊 𝑡 𝐸(𝑡)

C. Receive reward X 𝑡 for action A 𝑡

D. Estimate action rewards 𝑋𝑖 𝑡 = 1 −
(1−𝑋𝑖 𝑡 )

𝑃𝑖(𝑡)
, if A 𝑡 = 𝑖

E. Update 𝑌(𝑡) = 𝐸 𝑡 𝑋 𝑡

𝑊𝑖 𝑡 + 1 =
𝑊𝑖 𝑡 𝑒

𝛾𝑌𝑖(𝑡)

σ𝑗𝑊𝑗 𝑡 𝑒
𝛾𝑌𝑗(𝑡)
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Expert 1: Distance from sidewalk

Sidewalk

Walls
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Expert 2: Distance from doors
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Expert 3: Visibility from doors and windows
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Expert 4: Visibility from sidewalk
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Regret Analysis
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Regret Analysis
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Regret Analysis
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Regret Analysis
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Comparison to Exp3

Exp3:

𝛾 =
2 log 𝑛

𝑛𝐾

𝑅𝑛 ≤ 2𝑛𝐾 log𝐾

Exp4:

𝛾 =
2 log𝑀

𝑛𝐾

𝑅𝑛 ≤ 2𝑛𝐾 log𝑀

Background Methods Results Conclusion



Outline

1. Background

2. Methods

3. Results

4. Conclusion

Background Methods Results Conclusion



Experimental Setup

● Discretized Semantic 2D Maps
○ 40 x 40 grids, each cell is 20 in. x 20 in.

○ Each cell is a semantic class

○ Different maps represent significantly different architectures

● Simulated reward function
○ If package is visible from sidewalk and not too far out of reach 

(40 grid cells path length), it is stolen

○ Simulates probability of theft given opportunity

● Random Context
○ Each iteration, agent is given one of nine random maps

○ Agent placement vs. door placement

○ Mitigated by adding Uniform Expert
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Preliminary Results
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Conclusion

● Current performance is marginally better than baseline
○ Difficulty simulating agent in action

○ Result has not converged after 10,000 iterations

○ May be due to choice of experts, or choice of maps

○ “Failed” experts do not recover

● Future
○ Experimental Regret

○ More experts (e.g. visibility kernel)

○ More maps
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