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1. The Experts Problem; Exponential Weights

2. Two Peeks Beyond the Basics
@ Follow the Regularized Leader and Mirror Descent
@ Online Quadratic Optimization; Online Newton Step

3. Conclusion and Extensions
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The Experts Problem; Exponential Weights

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.
e Decision Theoretic Online Learning
e Experts setting (also: Hedge setting)
e Prediction with Expert Advice
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The Experts Problem; Exponential Weights

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.
e Decision Theoretic Online Learning
e Experts setting (also: Hedge setting)
e Prediction with Expert Advice

Given: game length T, number K of experts

Fort=1,2,...,T,
e Learner chooses a distribution w: € Ax on K “experts”.
o Adversary reveals loss vector £ € [0, 1]<.
e Learner’s loss is the dot loss w] £ = >k, wf/f
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The Experts Problem; Exponential Weights

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.
e Decision Theoretic Online Learning
e Experts setting (also: Hedge setting)
e Prediction with Expert Advice

Given: game length T, number K of experts

Fort=1,2,...,T,
e Learner chooses a distribution w: € Ax on K “experts”.
o Adversary reveals loss vector £ € [0, 1]<.
e Learner’s loss is the dot loss w] £ = >k, wf/f

The goal: control the regret (w.r.t. the best expert after T rounds)

T T
RT = Zwﬂt — min ZE’;
t=1 kel t=1

using a computationally efficient algorithm for learner.
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The Experts Problem; Exponential Weights

Let’s apply what we know

Observations:
e Dot loss u — uT¥4; is linear (hence convex).
e Gradient £ € [0, 1] bounded by ||&]| < VK.
e Probability simplex A is contained in unit ball.

So: Instance of Online Convex Optimization.
OGD with D =1 and G = VK gives Rr < VKT.
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Observations:
e Dot loss u — uT¥4; is linear (hence convex).
e Gradient £ € [0, 1] bounded by ||&]| < VK.
e Probability simplex A is contained in unit ball.

So: Instance of Online Convex Optimization.
OGD with D =1 and G = VK gives Rr < VKT.
Q: Optimal?
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The Experts Problem; Exponential Weights

Let’s apply what we know

Observations:
e Dot loss u — uT¥4; is linear (hence convex).
e Gradient £ € [0, 1] bounded by ||&]| < VK.
e Probability simplex A is contained in unit ball.

So: Instance of Online Convex Optimization.

OGD with D =1 and G = VK gives Rr < VKT.

Q: Optimal?

Maybe not. There are no points with loss difference vK in the simplex ...
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The Experts Problem; Exponential Weights

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate n > 0 plays weights in round t:

—n LIy ek
& e (EW)

t—1, °
Zj"il e " 25:1 els

~x
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Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate n > 0 plays weights in round t:

t—1 )k
e_” Zs:l Ls
wf = — . (EW)
Zj’il e " 25:1 els

or, equivalently, w = % and

‘ wke "4 .
Wipp, = ———— (EW, incremental)
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The Experts Problem; Exponential Weights

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate n > 0 plays weights in round t:

—n LIy ek
& e (EW)

k
t t—1 , "
K —-n — Y

S, e T A

w

or, equivalently, w = % and

‘ wke "4 .
Wipp, = ———— (EW, incremental)
S wienh
j=1 "t

Theorem (EW regret bd, Freund and Schapire 1997)
The regret of EW is bounded by Ry < "X +T4.

Corollary

Tuning n = /22X yields Rr < \/T/2InK.
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EW Analysis

Applying Hoeffding’s Lemma to the loss of each round gives

T T K

-1 _
Swite < S (2 (Sowke ) 1 s
t=1 t=1 n k=1

“mix loss” overhead

Crucial observation is that cumulative mix loss telescopes
T K T K t=1 ok
-1 Lk -1 e 7]25 1 Lg

Yo > wieTt ) = % —In Z—u

=1 k=1 =1 k=1 Z e X b

= = = = =1

K _ t7 ék
Zk:l e "72571 s
K _ t—1,
Zj:l e "725:1 s
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n
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—nek
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i

|
3 -

< min Zét M
t=1

ke[K]
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The Experts Problem; Exponential Weights

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD) Theorem (EW)
Rr < 2 +1GT Rr < mK4 a1
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The Experts Problem; Exponential Weights

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD) Theorem (EW)
Rr < 2 +3G°T Rr < BF+4T

Generates many follow-up questions:
e What if horizon T is not fixed? Anytime guarantees?
e What if gradient bound G is not known a priori?
e Can we have the actual gradient norms?

e What if model complexity (D) is not known? Not uniformly bounded? See
Orabona and Cutkosky ICML'20 tutorial.
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The Experts Problem; Exponential Weights

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD) Theorem (EW)

Rr < 2 +1GT Rr < =E4a1

Generates many follow-up questions:
e What if horizon T is not fixed? Anytime guarantees?
e What if gradient bound G is not known a priori?
e Can we have the actual gradient norms?

e What if model complexity (D) is not known? Not uniformly bounded? See
Orabona and Cutkosky ICML'20 tutorial.

Need refined analyses = Restarts (doubling trick), decreasing n:
(AdaGrad/AdaHedge), learning the learning rate n (MetaGrad), ...
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The Experts Problem; Exponential Weights

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD) Theorem (EW)

Rr < 2 +1GT Rr < =E4a1

Generates many follow-up questions:
e What if horizon T is not fixed? Anytime guarantees?
e What if gradient bound G is not known a priori?
e Can we have the actual gradient norms?

e What if model complexity (D) is not known? Not uniformly bounded? See
Orabona and Cutkosky ICML'20 tutorial.
Need refined analyses = Restarts (doubling trick), decreasing n:
(AdaGrad/AdaHedge), learning the learning rate n (MetaGrad), ...
Active research areal!
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Follow the Regularized Leader and Mirror Descent
FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?
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Two Peeks Beyond the Basics Follow the Regularized Leader and Mirror Descent

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

t
. 1
w1 = argmin fs(u) + =R(u
= agmin 3w+ R(u)

t

w1 = argmin Z(u,st(ws»Jr%R(u)

ueU —1

Algorithm: Mirror Descent (MD)

. 1
Wt+1 = argmin <’LL, Vft(wt» + 7B(unf)
ueU n
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Two Peeks Beyond the Basics Follow the Regularized Leader and Mirror Descent

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

t
. 1
Wer1 = argmin fs(u) + =R(u
= agmin 3w+ R(u)

t
. 1
w1 = argmin E (u, Vis(ws)) + ER(u)

S

Algorithm: Mirror Descent (MD)

. 1
wei1 = argmin (u,Vfr(wt)>+;B(UH'wf)

ueU
Regularizer R Bregman Divergence B
Examples: OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence
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Follow the Regularized Leader and Mirror Descent
FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

t
. 1
Wer1 = argmin fs(u) + =R(u
= agmin 3w+ R(u)

t

w1 = argmin Z(u,st(ws»Jr%R(u)

S

Algorithm: Mirror Descent (MD)

. 1
wei1 = argmin (u,Vfr(wt)>+;B(UH'wf)

ueU
Regularizer R Bregman Divergence B
Examples: OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, ...Connections to continuous
exponential weights [van der Hoeven et al., 2018].
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Two Peeks Beyond the Basics Follow the Regularized Leader and Mirror Descent

FTRL/MD “sneak peak” performance

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

t

1
w1 = argmin fs(u) + =R(u
* ueld Z s n ( )

s=1
‘ 1

Wyl = argmin Z (u, Vis(ws)) + R( )

ueU —1

Algorithm: Mirror Descent
. 1

wiyr = argmin (u, Vi(we)) + —B(u|we)

uelU n )
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Two Peeks Beyond the Basics Follow the Regularized Leader and Mirror Descent

FTRL/MD “sneak peak” performance

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

t
1
w1 = argmin fs(u) + =R(u
* ueld ; s n ( )
‘ 1
Wyl = argmin Z (u, Vis(ws)) + R( )

ueU —1

Algorithm: Mirror Descent

) 1
Wt+1 = argmin <u, Vft(wt» + 7B(unf)
ueU n

Theorem (AdaFTRL, Orabona and P&l 2015)

Fix a norm ||| with associated dual norm |-||,. Let R : U/ — [0,D?] be strongly
convex w.r.t. ||-||. AdaFTRL ensures

.
Rr < 2D\ > IVfi(we)l|? + 2 - loss range.
t=1
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Quadratic Losses

So far we used convexity to “linearise”
fe(u) > fe(we) + (w — we, Vi(wr)),

and our methods essentially operated on linear losses. But what if we know
there is curvature?

e How to represent/quantify curvature?

e How to efficiently manipulate curvature?

e How much can we reduce the regret?
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

Curvature assumptions

Assumption: Quadratic loss lower bound
There is a matrix M; > 0 such that

fr(u) > fi(we) + (u — we, Vi(we)) + %(u — we)" Me(u — wt)

=qt(u)

foreach u e U.
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

Curvature assumptions

Assumption: Quadratic loss lower bound
There is a matrix M; > 0 such that

fi(w) > filwe) + (w — we, VH(we)) + = (w — we)T Me(w — we)

2
=qt(u)
for each u € U.
Two main classes of instances
e squared Euclidean distance: fi(u) = 1|u — x¢||? satisfies the assumption with

M; = I. More generally, strongly convex functions have M; « I.

e linear regression: fi(u) = (vt — (u,x:))* satisfies the assumption with
M; = ztx]. More generally, exp-concave functions have
Mt X tht(wt)vtft(wt)T.
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ONS Algorithm

Algorithm: Online Newton Step (FTRL variant)

uelU

t
] 1
wey1 = argmin E Qs(U)Jer“HZ
s=1

Computing the iterate w:+1 amounts to minimising a convex quadratic. Often
(depending on Uf) closed-form solution or 1d line search.

e For M; «x I, takes O(d) per round.
e For rank-one M, can do update in O(d?) per round.
e In both cases, need to take care of projection onto /.
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

ONS Performance

Algorithm: Online Newton Step (FTRL version)

ueU

t
. 1
wy1 = argmin qu(u)-i-iHqu
s=1

Theorem (ONS strcvx bd, Hazan et al. 2006)
For the strongly convex case M; x I, ONS guarantees

RT = O(In T)

Algorithm reduces to OGD with specific decreasing step-size n:

Theorem (ONS expccv bd, Hazan et al. 2006)

For the exp-concave case M; x g:g{, ONS guarantees

Rr = O(dInT)
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

ONS Discussion

e Convex quadratics closed under taking sums. Run-time independent of T.
e Curvature gives huge reduction in regret: v/T to InT.

e Matrix sketching techniques allow trading off run-time O(d?) vs O(d) with
regret O(InT) vs O(v/T) [Luo et al., 2016].
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Conclusion and Extensions

Conclusion

e Online Learning a powerful and versatile tool
Environment-as-black-box. Adversarial.

Foundation for optimization, statistical learning, games, ...

e Techniques we saw here will reappear when we discuss adversarial bandits
and adversarial MDPs
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Conclusion and Extensions

Conclusion

e Online Learning a powerful and versatile tool
Environment-as-black-box. Adversarial.

Foundation for optimization, statistical learning, games, ...

e Techniques we saw here will reappear when we discuss adversarial bandits
and adversarial MDPs

Some (of many) cool things we left out:
e First-order (small loss) and second-order (small variance) bounds

e Adaptivity to friendly stochastic environments (best of both worlds,
interpolation)

e Optimistic MD (predicting the upcoming gradient)
e Non-stationarity (tracking, adaptive/dynamic regret, path length)
e Beyond convexity (star-convex, geometrically convex, ...)

e Supervised Learning and (stochastic) complexities (VC, Littlestone,
Rademacher, ...)
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