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The Experts Problem; Exponential Weights

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.
• Decision Theoretic Online Learning
• Experts setting (also: Hedge setting)
• Prediction with Expert Advice

Protocol: Prediction With Expert Advice
Given: game length T, number K of experts
For t = 1,2, . . . ,T,
• Learner chooses a distribution wt ∈ 4K on K “experts”.
• Adversary reveals loss vector `t ∈ [0,1]K .
• Learner’s loss is the dot loss wᵀ

t `t =
∑K

k=1w
k
t `

k
t

The goal: control the regret (w.r.t. the best expert after T rounds)

RT =
T∑
t=1

wᵀ
t `t − min

k∈[K]

T∑
t=1

`kt

using a computationally efficient algorithm for learner.
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The Experts Problem; Exponential Weights

Let’s apply what we know

Observations:
• Dot loss u 7→ uᵀ`t is linear (hence convex).
• Gradient `t ∈ [0,1]K bounded by ‖`t‖ ≤

√
K.

• Probability simplex 4K is contained in unit ball.
So: Instance of Online Convex Optimization.
OGD with D = 1 and G =

√
K gives RT ≤

√
KT.

Q: Optimal?
Maybe not. There are no points with loss difference

√
K in the simplex . . .
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The Experts Problem; Exponential Weights

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate η > 0 plays weights in round t:

wk
t =

e−η
∑t−1

s=1 `
k
s∑K

j=1 e
−η

∑t−1
s=1 `

j
s
. (EW)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e−η`

k
t∑K

j=1w
j
te−η`

j
t

(EW, incremental)

Theorem (EW regret bd, Freund and Schapire 1997)

The regret of EW is bounded by RT ≤ ln K
η

+ T η8 .

Corollary

Tuning η =
√

8 ln K
T yields RT ≤

√
T/2 lnK.
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The Experts Problem; Exponential Weights

EW Analysis

Applying Hoeffding’s Lemma to the loss of each round gives
T∑
t=1

wᵀ
t `t ≤

T∑
t=1

(
−1
η

ln

(
K∑

k=1

wk
t e−η`

k
t

)
︸ ︷︷ ︸

“mix loss”

+ η/8︸︷︷︸
overhead

)

Crucial observation is that cumulative mix loss telescopes

T∑
t=1

−1
η

ln

(
K∑

k=1

wk
t e−η`

k
t

)
=

T∑
t=1

−1
η

ln

 K∑
k=1

e−η
∑t−1

s=1 `
k
s∑K

j=1 e
−η

∑t−1
s=1 `

j
s
e−η`

k
t


=

T∑
t=1

−1
η

ln

∑K
k=1 e

−η
∑t

s=1 `
k
s∑K

j=1 e
−η

∑t−1
s=1 `

j
s


telescopes

=
−1
η

ln

(
K∑

k=1

e−η
∑T

t=1 `
k
t

)
+

lnK
η

≤ min
k∈[K]

T∑
t=1

`kt +
lnK
η
.
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The Experts Problem; Exponential Weights

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD)

RT ≤ D2
2η + η

2G
2T

Theorem (EW)

RT ≤ ln K
η

+ η
8T

Generates many follow-up questions:
• What if horizon T is not fixed? Anytime guarantees?
• What if gradient bound G is not known a priori?
• Can we have the actual gradient norms?
• What if model complexity (D) is not known? Not uniformly bounded? See
Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses⇒ Restarts (doubling trick), decreasing ηt
(AdaGrad/AdaHedge), learning the learning rate η (MetaGrad), . . .
Active research area!
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Two Peeks Beyond the Basics Follow the Regularized Leader and Mirror Descent

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

wt+1 = argmin
u∈U

t∑
s=1

fs(u) +
1
η
R(u)

wt+1 = argmin
u∈U

t∑
s=1

〈u,∇fs(ws)〉+
1
η
R(u)

Algorithm: Mirror Descent (MD)

wt+1 = argmin
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Examples:
Regularizer R Bregman Divergence B

OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, . . . Connections to continuous
exponential weights [van der Hoeven et al., 2018].
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Two Peeks Beyond the Basics Follow the Regularized Leader and Mirror Descent

FTRL/MD “sneak peak” performance

Algorithm: Follow the Regularized Leader (FTRL) (with linearized losses)

wt+1 = argmin
u∈U

t∑
s=1

fs(u) +
1
η
R(u)

wt+1 = argmin
u∈U

t∑
s=1

〈u,∇fs(ws)〉+
1
η
R(u)

Algorithm: Mirror Descent

wt+1 = argmin
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Theorem (AdaFTRL, Orabona and Pál 2015)

Fix a norm ‖·‖ with associated dual norm ‖·‖?. Let R : U → [0,D2] be strongly
convex w.r.t. ‖·‖. AdaFTRL ensures

RT ≤ 2D

√√√√ T∑
t=1

‖∇ft(wt)‖2? + 2 · loss range.
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

Quadratic Losses

So far we used convexity to “linearise”

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉,

and our methods essentially operated on linear losses. But what if we know
there is curvature?
• How to represent/quantify curvature?
• How to efficiently manipulate curvature?
• How much can we reduce the regret?
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

Curvature assumptions

Assumption: Quadratic loss lower bound
There is a matrix Mt � 0 such that

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉+
1
2 (u−wt)

ᵀMt(u−wt)︸ ︷︷ ︸
=:qt(u)

for each u ∈ U .

Two main classes of instances
• squared Euclidean distance: ft(u) = 1

2‖u− xt‖
2 satisfies the assumption with

Mt = I. More generally, strongly convex functions have Mt ∝ I.
• linear regression: ft(u) = (yt − 〈u,xt〉)2 satisfies the assumption with

Mt = xtx
ᵀ
t . More generally, exp-concave functions have

Mt ∝ ∇tft(wt)∇tft(wt)
ᵀ.
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

ONS Algorithm

Algorithm: Online Newton Step (FTRL variant)

wt+1 = argmin
u∈U

t∑
s=1

qs(u) +
1
2‖u‖

2

Computing the iterate wt+1 amounts to minimising a convex quadratic. Often
(depending on U) closed-form solution or 1d line search.
• For Mt ∝ I, takes O(d) per round.
• For rank-one Mt, can do update in O(d2) per round.
• In both cases, need to take care of projection onto U .
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

ONS Performance

Algorithm: Online Newton Step (FTRL version)

wt+1 = argmin
u∈U

t∑
s=1

qs(u) +
1
2‖u‖

2

Theorem (ONS strcvx bd, Hazan et al. 2006)
For the strongly convex case Mt ∝ I, ONS guarantees

RT = O(lnT)

Algorithm reduces to OGD with specific decreasing step-size ηt

Theorem (ONS expccv bd, Hazan et al. 2006)
For the exp-concave case Mt ∝ gtg

ᵀ
t , ONS guarantees

RT = O(d lnT)
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Two Peeks Beyond the Basics Online Quadratic Optimization; Online Newton Step

ONS Discussion

• Convex quadratics closed under taking sums. Run-time independent of T.
• Curvature gives huge reduction in regret:

√
T to lnT.

• Matrix sketching techniques allow trading off run-time O(d2) vs O(d) with
regret O(lnT) vs O(

√
T) [Luo et al., 2016].
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Conclusion and Extensions

Conclusion

• Online Learning a powerful and versatile tool
• Environment-as-black-box. Adversarial.
• Foundation for optimization, statistical learning, games, . . .
• Techniques we saw here will reappear when we discuss adversarial bandits
and adversarial MDPs

Some (of many) cool things we left out:
• First-order (small loss) and second-order (small variance) bounds
• Adaptivity to friendly stochastic environments (best of both worlds,
interpolation)
• Optimistic MD (predicting the upcoming gradient)
• Non-stationarity (tracking, adaptive/dynamic regret, path length)
• Beyond convexity (star-convex, geometrically convex, . . . )
• Supervised Learning and (stochastic) complexities (VC, Littlestone,
Rademacher, . . . )
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