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Stochastic Bandits

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions ν1, . . . , νK
For t = 1,2, . . . ,T,

The learner picks action It ∈ {1, . . . ,K}
The learner observes and receives reward Xt ∼ νIt

Stochastic bandits is an old problem [Thompson, 1933]
We will use the following notation

Reward of arm i is sampled from νi with µi := EX∼νi [X]
i∗ = arg maxi µi is the best arm
Gaps ∆i := µi∗ − µi ≥ 0,
Number of pulls Ni,t :=

∑t
s=1 1{Is=i}

Empirical mean µ̂i,t :=
∑t

s=1 Xs1{Is=i}
Ni,t
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Stochastic Bandits

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions ν1, . . . , νK
For t = 1,2, . . . ,T,

The learner picks action It ∈ {1, . . . ,K}
The learner observes and receives reward Xt ∼ νIt

We still want to minimize the expected regret, which has the useful
decomposition

E[RT ] = Tµi∗ −
∑T

t=1 E[Xt] =
∑

i ∆iE[Ni,T ]

Assumption: 1-sub-Gaussian reward distributions
For all stochastic bandit problems, we will assume that all arms are
1-sub-Gaussian, i.e. EX∼µ[eλ(X−µ)2−λ2/2] ≤ 1. For X1, . . . ,Xt, This implies the
Hoeffding bound

P

(
1
t

t∑
s=1

Xs − µi ≥ ε

)
≤ e−

ε2t
2 .
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Stochastic Bandits

Warm-up: Explore-Then-Commit

Algorithm: Explore-Then-Commit
Given: Game length T, exploration parameter M
For t = 1,2, . . . ,MK:

Choose it = (t mod K), see Xt ∼ νit
Compute empirical means µ̂i,mK
For t = MK + 1,MK + 2, . . . ,T:

Pull arm i = arg maxi µ̂i,mK

The first strategy you might try
A proof idea that we will return to: bound regret by first bounding E[Ni,T ].
In this simple algorithm,

E[Ni,T ] = M + (T −MK)P

(
i = arg max

j
µ̂j,MK

)
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Stochastic Bandits

Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P

(
i = arg max

j
µ̂j,MK

)
≤ P (µ̂i,MK ≥ µ̂i∗,MK)

= P ((µ̂i,MK − µi) ≥ (µ̂i∗,MK − µi∗) + ∆i)

≤ e−
M∆2

i
4 (the difference is

√
2/M-sub-Gaussian)

Theorem (Explore-Then-Commit upper bound)

E[RT ] =
∑
i

∆iE[Ni,T ] ≤
K∑
i=1

∆i

(
M + (T −MK)e−

M∆2
i

4

)

For the two arm case, if we know ∆, then m = 4
∆2
1

log
T∆2

1
4 , results in

E[RT ] ≤
∑K

i=1
4

∆1
log

T∆2
1

4 + T 4
T∆2

1
= O

(
K log(T)

∆1

)
But we don’t know ∆...can we be adaptive?
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Stochastic Bandits

Algorithm Design Principle: OFU

OFU: Optimism in the Face of Uncertainty
We establish some confidence set for the problem instance (e.g. means) to
within some confidence set
We then assume the most favorable instance in the confidence set and act
greedily

Algorithm: UCB1 [Auer et al., 2002]
Given: Game length T
Initialize: play every arm once
For t = K + 1,2, . . . ,T:

Compute upper confidence bounds Bi,t−1 =
√

6 log(t)
Ni,t−1

Choose It = arg maxi µ̂i,t−1 + Bi,t−1, observe Xt ∼ νIt
Update Ni,t = Ni,t−1 + 1{It=i} and µ̂i,t =

∑t
s=1 1{Is=i}Xs

Ni,t
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Stochastic Bandits

UCB Illustration
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Stochastic Bandits
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Stochastic Bandits

UCB: Intuition

Naturally balances exploration and exploitation: an arm has a high UCB if
It has a high µ̂i,t, or
Bi,t is large because Ni,t−1 is small

Optimistic because we pretend the rewards are the plausibly best and then
do the greedy thing
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Stochastic Bandits

UCB: Analysis

Define Mi =
⌈
12 log(T)

∆2
i

⌉
, the number of pulls of arm i such that

Bi,t =
√

6 log(t)
Ni,t

≤
√

6 log(T)
Ni,t

≤ ∆i
2

The intuition of the proof is
1 Since RT =

∑
i ∆iE[Ni,T ], we bound E[Ni,t] first.

2 With high probability, we will never pull arm i more than Mi times, so

E[Ni,T ] = E
T∑
t=1

1{It=i} ≤ Mi +
T∑

t=Mi

E1{It=i,Ni,t>Mi}︸ ︷︷ ︸
we will bound this

3 If {It = i,Ni,t > Mi} occurs, then the UCB for i∗ or for i must be wrong (next slide)
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Stochastic Bandits

UCB: Analysis

Claim: if {It = i,Ni,t > Mi} occurs, then either µ̂i,t must be too high or µ̂i∗,t must
be too low. In a picture:

Reward
µ̂i∗ + Bi∗,tµi∗µi µ̂i,t µ̂i,t + Bi,t

∆i ≥ 2Bi,t since Ni,t > Mi

≤ Bi,t ≤ Bi,t

In an equation: suppose that Ni,t > Mi, µ̂i,t − Bi,t < µi, and µ̂i∗,t + Bi∗,t > µi∗ . Then

µ̂i∗,t + Bi∗,t > µi∗ = µi + ∆i ≥ µi + 2Bi,t︸︷︷︸
by choice of Bi,t

> µ̂i,t + Bi,t,

so the algorithm will not choose It = i.
If It = i, at least one of the bounds must be wrong, implying

P(It = i,Ni,t > Mi) ≤ P (µ̂i,t ≥ µi + Bi,t) + P (µ̂i∗,t + Bi∗,t ≤ µi∗) .
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Stochastic Bandits

UCB: Analysis

Using the Hoeffding bound,

P (µ̂i,t − µi ≤ Bi,t) ≤ P
(
∃s ≤ t︸ ︷︷ ︸

we don’t know Ni,t−1

: µ̂i,s − µi ≤
√
6 log(t)

s

)

≤
t∑

s=1

P

(
µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1

exp

{
−3 log(t)

s

}
≤

t∑
s=1

t−3 = t−2.

The same inequality holds for i∗, so

RT =
∑
i

∆iE[Ni,T ] ≤
∑
i

∆i

12 log(T)

∆2
i

+ 2
T∑

t=Mi+1

t−2
 .
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Stochastic Bandits

UCB: Analysis

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

RT ≤
∑
i

12 log(T)

∆j
+ o(1).

Theorem (Lower Bound [Lai and Robbins, 1985])
Suppose we have a parametric family Pθ and θ1, . . . , θk. For any “admissible”
algorithm,

lim inf
T→∞

RT

log(T)
≥
∑
i 6=i∗

∆i

KL(Pθi ,Pθi∗ )
≈ O

∑
i6=i∗

1
∆i


E.g. if Pθ is Bernoulli, then (θi−θi∗ )2

θi∗ (1−θi∗ )
≥ KL(Pθi ,Pθi∗ ) ≥ 2(θi − θi∗)2.
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Stochastic Bandits

Algorithm Design Principle: Probability Matching

We put a prior π over means µi and a likelihood νi = P(·|µi) over rewards
Choose P(It = i) = P(µi = µi∗ |history) (the matching)
We usually pick conjugate models (e.g. µi ∼ N(0,1), Xt ∼ N(µi,1))

Algorithm: Thompson Sampling
Given: game length T, prior π(µ), likelihoods p(·|µ)
Initialize posteriors pi,0(µ) = π(µ)

For t = 1,2, . . . ,T:
Draw θi,t ∼ pi,t−1 for all i
Choose It = arg maxi θi,t (implements the matching)
Receive and observe Xt ∼ νIt
Update the posterior pIT ,t(µ) = p(Xt|µ)pIt,t−1(µ)
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Stochastic Bandits

Thompson Sampling: Overview

P(µ2|history)

P(µ1|history)

µ̂2 µ̂1

reward

Not Bayesian: a Bayesian method would maximize the Bayes regret (the
expectation under the probability model)
The regret bound is frequentist
Arms with small Ni,t implies a wide posterior, hence a good probability of
being selected
Generally performs empirically better that UCB (it is much more aggressive)
Analysis is difficult
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Stochastic Bandits

Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])
For binary rewards, Gamma-Beta Thompson sampling has
E[RT ] ≤ (1 + ε)

∑
i 6=i∗ ∆i

log(T)
KL(µi,µi∗ )

+ O
( N
ε2

)
.

The proof is much more technical that UCB’s
We cannot rely on the upper bounds being correct w.h.p.
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Stochastic Bandits

µi xi yi µi∗

reward
For some to-be-tuned µi ≤ xi ≤ yi ≤ µi∗ , we have

E[Ni,T ] ≤
T∑
t=1

P(It = i)

≤
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≥ yi) (O
(

log(T)

kl(xj, yj)

)
)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi) (the tricky case)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≥ xi) (Small by concentration)
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Stochastic Bandits

Thompson Sampling: Proof Outline

The tricky case is
∑T

t=1 P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)
This happens when we have enough samples of i but not many of i∗

A key lemma argues that, on µ̂i,t−1 ≤ xi, θi,t ≤ yi, the probability of picking i
is a constant less than of picking i∗:

T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)

≤
T∑
t=1

P(θi∗,t ≤ yi)
P(θi∗,t > yi)︸ ︷︷ ︸

exponentially small

P(It = i∗, µ̂i,t−1 ≤ xi, θi,t ≤ yi) = O(1)

Hence, we will quickly get enough samples of i∗
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Stochastic Bandits

Best of Both Worlds

The stochastic and adversarial algorithms are quite different
A natural question: is there an algorithm that

gets RT = O(
√
TK) regret for adversarial

gets Rt = O(
∑

i log(T)/∆i) regret for stochastic
without knowing the setting?

Bubeck and Slivkins [2012] proposed an algorithm that assumes stochastic
but falls back to UCB once adversarial data is detected
Zimmert and Seldin [2019] showed that (for pseudo-regret), it is possible

Their algorithm: online mirror descent with 1
2 -Tsallis entropy

Ψ(w) = −
∑

i 4(
√wi − 1

2wi)
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Pure Exploration

A New Problem

What if we only wanted to identify the best arm i∗ without caring about loss
along the way?
Intuitively, we would explore more; we are happy to accrue less reward if we
get more useful samples.
More similar to hypothesis testing; useful for selecting treatments
Known as “Best Arm Identification” or “Pure Exploration”
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Pure Exploration

Two Settings

Protocol: Best-arm Identification
Given:number of arms K, arm distributions ν1, . . . , νK
For t = 1,2, . . . ,

The learner picks arm It ∈ {1, . . . ,K}
The learner observes Xt ∼ νIt
The learner decides whether to stop

The learner returns arm A
Two settings:

fixed-confidence fixed-budget
Input δ > 0, T
Goal P(A = i∗) ≥ 1− δ maximize P(A = i∗)
Stopping once learner is confident after T rounds
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Pure Exploration

Standard stochastic bandit algorithms under explore (they fail to meet lower
bounds on this problem)
Many can be adapted

LUCB [Kalyanakrishnan et al., 2012]
Top-Two Thompson Samping [Russo, 2016]

Instead, we will describe a new algorithm design principle
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Pure Exploration

Algorithm Design Principle: Action Elimination

Algorithm: Successive Elimination
Given: confidence δ > 0
Initialize plausibly-best set S = {1, . . . ,K}
For t = 1,2, . . .:

Pull all arms in S and update µ̂i,t
Calculate Bt =

√
2t−1 log(4Kt2/δ)

Remove i from S if max
j∈S

µ̂j,t − Bt︸ ︷︷ ︸
Lowest µ∗i could be

≥ µ̂i,t + Bt︸ ︷︷ ︸
highest µi could be

If |S| = 1, stop and return A = S.

S is a list of plausibly-best arms
Each epoch, all arms that cannot be the best (if the bounds hold) are
removed
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Pure Exploration

Successive Elimination Analysis

Define the “bad event” E =
⋃

i,t{|µ̂i,t − µi| ≥ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≥

√
2t−1 log(4Kt2/δ)

)
≤
∑
i,t

2e
− log

(
4Kt2
δ

)

≤
∑
i,t

2δ
4Kt2 =

2π2

24 δ ≤ δ

(Correctness) If E does not happen,
|µ̂i∗ − µi∗ | ≤ Bt and |µj − µ̂j| ≤ Bt for all j. Thus, for all j
µ̂j − µ̂i∗ ≤ (µi∗ − µ̂i∗ ) + (µj − µi∗ ) + (µ̂j − µj) ≤ 2Bt
i is removed if maxj∈S µ̂j,t − µ̂i,t ≥ 2Bt ⇒ i∗ is never removed
limt→∞ Bt(δ)→ 0: every arm will eventually be removed
Successive Elimination is correct with probability 1− δ

(Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

Total sample complexity of
∑

i ∆−2i log(K/δ∆i)
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(
∆−2i log(K/δ∆i)

)
is sufficient

Total sample complexity of
∑

i ∆−2i log(K/δ∆i)

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 25 /29



Pure Exploration

Successive Elimination Analysis

Define the “bad event” E =
⋃

i,t{|µ̂i,t − µi| ≥ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≥

√
2t−1 log(4Kt2/δ)

)
≤
∑
i,t

2e
− log

(
4Kt2
δ

)

≤
∑
i,t
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4Kt2 =

2π2
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limt→∞ Bt(δ)→ 0: every arm will eventually be removed
Successive Elimination is correct with probability 1− δ

(Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

Total sample complexity of
∑

i ∆−2i log(K/δ∆i)
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Theorem
Successive Elimination is (0, δ)-PAC with sample complexity

O

(∑
i

∆−2i log(K/δ∆i)

)

Theorem
For any best-arm identification algorithm, there is a problem instance that
requires

Ω

(∑
i

∆−2i log log

(
1
δ∆2

i

))
samples.
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Review

Setting: adversarial bandits
Exp3 (exponential weights)

Setting: stochastic bandits
ETC (Explore-Then-Commit)
UCB (optimism)
Thompson Sampling (probability matching)

Setting: pure exploration
Successive Elimination (action-elimination)
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