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What is a Bandit?

The Basic Bandit Game

Given: game length T, number of arms K
Fort=1,2,...,T,
@ The learner picks action It € {1,...,K}
@ The adversary simultaneously picks rewards r; € {1,...,K} — [0, 1]
@ The learner observes and receives r¢(l:)
@ The learner does not observe r:(i) fori # I;

The goal: control the regret (a random variable)

Rt = miaxz re(i) — Z re(ly)
t=1

t=1

~————
Best action in hindsight
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Bandits are Super Simple MDP

@ S = {the_state}, P(the_state|the_state,a) = 1
@ Why should we care about this in RL?
o Creates a tension between

@ Exploration (learning about the loss of actions)
@ Exploitation (playing actions that will have low regret)

@ Exploration/Exploitation is absent in full-information but very present in
reinforcement learning

@ Model is simple enough to allow for comprehensive theory

e Easily incorporates adversarial data

o Useful algorithm design principles
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The Regret

RT = m;’ax Z f't(l') — Z rt(lf)
t=1

t=1

N————
Best action in hindsight

@ Rt is a random variable we do not observe
@ Different objectives, from easiest to hardest

o Pseudo-regret Ry = max;E [ZLl rt(i)] —E [Zle rt(lt)]

;
o Expected regret E[R7] = E { max Y re(i) — Y4 rt(lt)}
"

N —
can depend on /¢
@ High probability bounds on the realized regret
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What is a Bandit?

The Regret
T T
RT = m;’ax Z f't(l) — Z rt(lf)
t=1 t=1
N———
Best action in hindsight
@ Rt is a random variable we do not observe

Different objectives, from easiest to hardest
o Pseudo-regret Ry = max;E [ZLl rt(i)] —E [Zle rt(lt)]

;
o Expected regret E[R7] = E { max Y re(i) — Y4 rt(lt)}
"

N —
can depend on /¢
@ High probability bounds on the realized regret

We always have Ry < E[R7]

If the adversary is reactive, then the distribution of r: can be a function of
Il, T ,It—l

@ Otherwise, the adversary is oblivious and Rr = E[R7]

®
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What is a Bandit?

Our Focus

@ Introduce most popular bandit problems

o Adversarial Bandits

@ Stochastic Bandits

@ Pure Exploration Bandits

@ Contextual Bandits (time permitting)

@ Concentrate on useful algorithm design principles

Exponential weights (still useful)

Optimism in the face of Uncertainty
Probability matching (i.e. Thompson sampling)
Action-Elimination

® 6 6 ¢
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Other Settings that Have Been Considered

Data models for r;

@ chosen by an adversary

e sampled i.i.d.

o stochastic with adversarial perturbations...
Action spaces

@ Finite number of arms

@ A vector space (r: are functions)

o Combinatorial (e.g. subsets, paths on a graph)
Objectives

@ Pseudo-regret (the expectation over the learner’s randomness)

o Realized regret (with high probability)

o Best-arm identification a.k.a. pure exploration
@ Side information

@ Linear rewards
o Competing with a policy class

(]
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Adversarial Bandits

Adversarial Protocol

Given: game length T, number of arms K

Fort=1,2,...,T,
@ The learner picks action I; € {1,...,K}
@ The adversary simultaneously picks losses ¢ € [0, 1]¢
@ The learner observes and receives /:(lt)

@ The results are easier to state using losses instead of rewards
@ Randomization of /I; is essential
@ We are familiar with adversarial data from the first half

@ The simple idea of estimating ¢; from ¢:(I) and then applying a
full-information algorithm works very well
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Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]

Given: number of arms K, learning rate n > 0, length T
Initialize p1(i) = 1/K, Lo(i) = 0 for all i € [K]
Fort=1,2,...,T:

@ Sample It ~ p: and observe £:(I¢)

@ Estimate Zt(l) = ﬁigi;‘ﬂ{/t:i} and Et = Zt + £t71

@ Calculate W; = Zje’”[f(f) and pea(i) = Wite’"if(")
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Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]
Given: number of arms K, learning rate n > 0, length T
Initialize p1(7) = 1/K, Lo(i) = 0 for all j € [K]
Fort=1,2,...,T:

@ Sample It ~ p: and observe Zt(lt)

@ Estimate Et( ) = tﬁltgﬂ{/t =i} and Lt = Et + Lt 1

o Calculate W: =37 e~ D) and pesa (i) = w. e k()

@ Exp3 = Exponential Weights for Exploration and Exploitation
@ /: is the importance-weighted estimator of 4
@ /; is unbiased:

Eipnpe[0e(1)] = E [pt(lt)ﬂ{/f } Zpt e 0)1{1 iy = Le(i).

@ Exp3 runs exponential weights on 4
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Exp3: Analysis

Z B )
= Zpt(l exp(—nle(j))
J
< ;pf(j) (1 — nle(j) + %nzéf(i)z) e <1l—x+ %,\fx >0
=13 pDll) + 5 > PGy’
J i

< exp (—nzth)étU) + %2 Zpt(j)ft(J)2> 14+ x<e",vx

j
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Exp3: Analysis

@ Following the EW analysis, W; is a potential function

e Forany i*, e (") < Zje_"iT(j) =Wr=Wo [, wva_tl'

@ Bound Wy, by K and the product using the bound on the previous slide

Therefore, we have

T T
e ) < W, [ WWr <K]Je™ P DEG+HS 5 PO
=1 t—1

t=1
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Exp3: Analysis

o Wer ™
o —r][r( < log(K ’I’]ZZPL’ fr(j) —|— 5 Zzpr(j)ét
& Pl - Ir(i7) < P 1 0SS S ()
t=1 | t=1 j

t=1 t=1

= 3 Y PG - Bl ) < ) L 73 [Zpr(n&(j)z]
J

& Yo Bl - L) < B 1 2% n

t=1 t=1

- le(1:)?
Seolon ]

variance term
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Exp3: Analysis

Bounding the variance term turns out to be easy:

Z Z ]1{/ i}
< t=
[ Pel ]l{lt l}] £ [ Pel pt(/)

=[] -

I—I

So, plugging this in, >7_, E[¢(le)] — Lr(i*) < &) 4 17K

Theorem (Exp3 upper bound [Auer et al., 2002b])

With n = /229, Exp3 has Rr < /2TK log(K).

Only get pseudo-Regret bounds because the i* in the proof was fixed, not a
function of I1,..., It
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Exp3: Analysis

Lower Bounds

Theorem (Adversarial Bandits lower bound [Auer et al., 2002b])
Any adversarial bandit algorithm must have

Rr = Q(VTK)

@ Exp3 upper bound: Ry < /2TK log(K)
@ First matching upper bound achieved by INF [Audibert and Bubeck, 2009]
(which is Mirror Descent)
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Upgrades

@ High Probability bounds: requires a lower-variance estimate of /; or an
algorithm that keeps p:(i) away from zero

o Exp3.P [Auer et al., 2002b] uses p¢(i) = yp:(i) + (1 — v)/K
s g e(ly)
o Exp3-IX [Neu, 2015] uses 4¢(i) = W

@ Experts with bandits; each arm is an expert that recommends actions: you
compete with the best expert (Exp4 algorithm) [Auer et al., 2002b]

Competing with strategies that can switch [Auer, 2002]
Feedback determined by a graph [Mannor and Shamir, 2011]
Partial Monitoring [Bartdk et al., 2014]

Combinatorial action spaces...
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Protocol

Given: game length T, number of arms K, reward distributions v1, ...,k

Fort=1,2,...,T,
@ The learner picks action It € {1,...,K}
@ The learner observes and receives reward X; ~ v,
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Stochastic Bandits

Protocol

Given: game length T, number of arms K, reward distributions v1, ...,k

Fort=1,2,...,T,
@ The learner picks action It € {1,...,K}
@ The learner observes and receives reward X; ~ v,

@ Stochastic bandits is an old problem [Thompson, 1933]
@ We will use the following notation

e Reward of arm i is sampled from v; with p; := Ex,,[X]

@ /* = argmax; p; is the best arm

o Gaps A; := pj+ — i >0,

o Number of pulls Nj ¢ := 3% 1y
SEi1 XsLyg—iy

it

Empirical mean fi; s :=
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Stochastic Bandits

Protocol

Given: game length T, number of arms K, reward distributions v1, ...,k

Fort=1,2,...,T,
@ The learner picks action It € {1,...,K}
@ The learner observes and receives reward X; ~ v,

@ We still want to minimize the expected regret, which has the useful
decomposition

E[Rr] = T — E;l E[X¢] = >, AE[N; 7]
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Stochastic Bandits

Protocol

Given: game length T, number of arms K, reward distributions v1, ...,k

Fort=1,2,...,T,
@ The learner picks action It € {1,...,K}
@ The learner observes and receives reward X; ~ v,

@ We still want to minimize the expected regret, which has the useful
decomposition
E[Rr] = T — 3{_, EIXe] = 32, AE[N; 7]

Assumption: 1-sub-Gaussian reward distributions
For all stochastic bandit problems, we will assume that all arms are

1-sub-Gaussian, i.e. Ex.,[e**~#*=*/2] < 1. For X1,...,X:, This implies the
Hoeffding bound
t 2
P (12)@—;@» > e) <e 7
s=1
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Warm-up: Explore-Then-Commit

Algorithm: Explore-Then-Commit

Given: Game length T, exploration parameter M
Fort=1,2,...,MK:

@ Choose it = (t mod K), see X; ~ v,
Compute empirical means fi; mk
Fort=MK+1MK+2,...,T:

@ Pull arm i = arg max; fij mx

@ The first strategy you might try

@ A proof idea that we will return to: bound regret by first bounding E[N; 7].
@ In this simple algorithm,

E[N;7] =M + (T — MK)P <i = arg max ﬂj,MK>
J
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Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P (i = arg max ﬂj,MK) < P (fimk > fii= m)
j

= P ((fimk — pi) > (fii= Mg — pi=) + A7)
ma2

< e % (the difference is v/2/M-sub-Gaussian)
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Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,
P (i = arg max ﬂj,MK) <P (fumk > fiix mx)
J
= P ((fimx — mi) > (fiie mx — pi ) + A)

ma?2

< e % (the difference is v/2/M-sub-Gaussian)

Theorem (Explore-Then-Commit upper bound)

E[Rr] = ZA,E[N,T]<ZA, <M+(T MK )e MAZ)

i=1

@ For the two arm case, if we know A, then m = A? Iog , results in
BIRr] < X5, 4 log 4 + T4 = 0 (X0

@ But we don’t know A...can we be adaptive?
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Algorithm Design Principle: OFU

@ OFU: Optimism in the Face of Uncertainty

@ We establish some confidence set for the problem instance (e.g. means) to
within some confidence set

@ We then assume the most favorable instance in the confidence set and act
greedily
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Algorithm Design Principle: OFU

@ OFU: Optimism in the Face of Uncertainty

@ We establish some confidence set for the problem instance (e.g. means) to
within some confidence set

@ We then assume the most favorable instance in the confidence set and act
greedily

Algorithm: UCB1 [Auer et al., 2002a]

Given: Game length T
Initialize: play every arm once
Fort=K+1,2,...,T:

@ Compute upper confidence bounds B;_; = fvj"t—g_(?

@ Choose It = argmax; fljt—1 + Bit—1, observe X; ~ v,
Teo1 L= Xs
Nit

(] Update N,‘,t = Ni,t—l + ]l{/t:"} and ﬂj’t =
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Stochastic Bandits

UCB Illustration

Round 1
11— ~
11+B1t 21+ B
® R R
fi1.1 f13.1 fi31 + B3y
= [ e
205
]
m N F A
fl1,1 — Bag 121 — B2t 31
—— ®
fiz1 — B3l
0+ i
é\\/ @W @n)
¢ $ $
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Stochastic Bandits

UCB Illustration

Round 2
1 N
22+ Bt
11,2 + Bt
® R .
11,2 12,2 fi32 + B3¢
P ' L] —_
‘;“ 0.5+ i1 — B
]
m ~ A
122 —Bat  [13,2
—L ®
f13,2 — B3t
O 1 _
& & &
& & &
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Stochastic Bandits

UCB Illustration

Round 3
1 B
7@ +B1¢ 23+ B
° R .
1,3 3,3 33+ B3¢
= [ e
£ 05| fl13— By 7& — B¢
g A
H3,3
é
fi33 — B3t
0+ i
é\\/ @W @,)7
¢ $ $
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UCB: Intuition

@ Naturally balances exploration and exploitation: an arm has a high UCB if
e It has a high f; ¢, or
@ B is large because N;;_; is small

@ Optimistic because we pretend the rewards are the plausibly best and then
do the greedy thing
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UCB: Analysis

@ Define M; = [12':7%”)} the number of pulls of arm i such that

Bi,t — /GEigEt) S IGIZig(tT) S %
@ The intuition of the proof is

@ Since Ry = Y; A[E[N; 7], we bound E[N; 4] first.
@ With high probability, we will never pull arm i more than M; times, so

T T
ENir] =EY Tg_p <M+ > EX 1=  >m}
=1 =M,

we will bound this

Q If {lt =i, Nj+ > M;} occurs, then the UCB for i* or for i must be wrong (next slide)
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UCB: Analysis

Claim: if {I: =i,N;+ > M;} occurs, then either fi; must be too high or j;- ; must
be too low. In a picture:

Aj > 2Bj ¢ since N > M;

T T
i fie  fie+Bit Bix flix + Bix ¢

< Ei,t < Ei,t

Reward

In an equation: suppose that N > M;, jii: — Bi+ < pi, and fij= ¢ + Bj« ¢ > pi=. Then

fiv ¢ + Bie p > pie = i + Aj > pi + 2B > flic + B,
N~

by choice of B; ¢

so the algorithm will not choose I = i.
If It = i, at least one of the bounds must be wrong, implying

P(le =i,Njt > M;) <P (fiie > pi+ Bit) + P (fixt + Bix ¢ < pix).
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UCB: Analysis

Using the Hoeffding bound,

A~ ~ 6 log(t
P(fic—pi <Bjg) <P 3Is<t:fs—p< ﬁ)
N—— S
we don’t know N; ¢

<ZP<N15 i < \/6|0g(t))

<Zex { 3 log( )}gzt:t‘3=t‘2.

s=1
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UCB: Analysis

Using the Hoeffding bound,

o R 6 log(t
P(fic—pi <Bjg) <P 3Is<t:fs—p< ﬁ)
N—— S

we don’t know N; ¢

<ZP<H15 i < \/6|0g(t))

<Zex { 3 log( )}gzt:t‘3=t‘2.

s=1

The same inequality holds for i*, so

.
RT_ZA,IE[N,T]<ZA, %ﬁhz St

t=M;+1
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UCB: Analysis

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

"y < 3 1210l 'Z?m +o(1).
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UCB: Analysis

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

WTSZ%@JFOM.

i

Theorem (Lower Bound [Lai and Robbins, 1985])

Suppose we have a parametric family Py and 61,...,0k. For any “admissible”
algorithm,

1
li f —
imin |og T) —ZKL Pa P9 y <0 ;A,

E.g. if Py is Bernoulli, then % > KL(Ps,,Pe,. ) > 2(6;i — 0= )2.
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Algorithm Design Principle: Probability Matching

@ We put a prior 7 over means y; and a likelihood v; = P(-|u;) over rewards
@ Choose P(l: = i) = P(u;j = pi~ |history) (the matching)
@ We usually pick conjugate models (e.g. pj ~ N(0, 1), Xt ~ N(u;, 1))
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Algorithm Design Principle: Probability Matching

@ We put a prior 7 over means y; and a likelihood v; = P(-|u;) over rewards
@ Choose P(l: = i) = P(pi = pi~ |history) (the matching)
@ We usually pick conjugate models (e.g. uj ~ N(0,1), Xt ~ N(uj, 1))

Algorithm: Thompson Sampling

Given: game length T, prior 7(u), likelihoods p(-|u)
Initialize posteriors pjo(1) = m(1)
Fort=1,2,...,T:
@ Draw 6+ ~ pjt—1 forall i
@ Choose It = arg max; 0; ; (implements the matching)
@ Receive and observe X;: ~ v,
@ Update the posterior pi ¢(u) = p(Xe|p)pie,e—1 (1)
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Stochastic Bandits

Thompson Sampling: Overview

P(u2|history)

P(u1|history)

reward

@ Not Bayesian: a Bayesian method would maximize the Bayes regret (the
expectation under the probability model)

@ The regret bound is frequentist

@ Arms with small N, implies a wide posterior, hence a good probability of
being selected

@ Generally performs empirically better that UCB (it is much more aggressive)
@ Analysis is difficult
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Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])

For binary rewards, Gamma-Beta Thompson sampling has
E[R7] < (1+ ) s Aigreory +0 (5):

KL (pj =)

@ The proof is much more technical that UCB’s
@ We cannot rely on the upper bounds being correct w.h.p.
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Stochastic Bandits

reward
For some to-be-tuned pu; < x; < y; < uj=, we have

E[N; ] < §T: P(l: = i)

t=1
T
N log(T
< ZP(/t =1, fiit—1 < X;, 01t > Yi) (o (ﬁ(’y)j)))

t=1
;

+ ZP(/t =i, flit—1 < Xi,0ie < Yi) (the tricky case)
t=1
T

+ ZP(It =i Qi1 > X) (Small by concentration)
t=1
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Stochastic Bandits

Thompson Sampling: Proof Outline

@ The tricky case is S, P(le = i, flie—1 < Xi,0i¢ < ¥i)
@ This happens when we have enough samples of i but not many of /*

@ A key lemma argues that, on fi;—1 < X;,0;+ < y;, the probability of picking i
is a constant less than of picking i*:

;
ZP(It =1, fiit—1 < X, 0i¢ < Yi)

-
}:P(Gi*tﬁ}’f) . .

< VIt =J10 _ < x B < V) =

< P(Oi ¢ > i) P(le =i", fie—1 < Xxi,0i¢ < yi) =0(1)

N——

exponentially small

@ Hence, we will quickly get enough samples of i*
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Best of Both Worlds

@ The stochastic and adversarial algorithms are quite different
@ A natural question: is there an algorithm that

e gets Ry = O(VTK) regret for adversarial
o gets Ry = O(3_; log(T)/A;) regret for stochastic
e without knowing the setting?
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Best of Both Worlds

@ The stochastic and adversarial algorithms are quite different
@ A natural question: is there an algorithm that

e gets Ry = O(VTK) regret for adversarial
o gets Ry = O(3_; log(T)/A;) regret for stochastic
e without knowing the setting?

@ Bubeck and Slivkins [2012] proposed an algorithm that assumes stochastic
but falls back to UCB once adversarial data is detected
@ Zimmert and Seldin [2019] showed that (for pseudo-regret), it is possible
@ Their algorithm: online mirror descent with %-Tsallis entropy

o W(w) = — 5, 4(y; — Iw)
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Pure Exploration

A New Problem

@ What if we only wanted to identify the best arm i* without caring about loss
along the way?

@ Intuitively, we would explore more; we are happy to accrue less reward if we
get more useful samples.

@ More similar to hypothesis testing; useful for selecting treatments
@ Known as “Best Arm Identification” or “Pure Exploration”

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 34/47



Pure Exploration

Two Settings

Given:number of arms K, arm distributions v1, ...,k
Fort=1,2,...,
@ The learner picks arm It € {1,...,K}
@ The learner observes X: ~ v,
@ The learner decides whether to stop
The learner returns arm A
Two settings:

fixed-confidence fixed-budget
Input 60>0, T
Goal PA=i")>1-¢ maximize P(A = i)
Stopping | once learner is confident after T rounds
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Pure Exploration

@ Standard stochastic bandit algorithms under explore (they fail to meet lower
bounds on this problem)
@ Many can be adapted
o LUCB [Kalyanakrishnan et al., 2012]
@ Top-Two Thompson Samping [Russo, 2016]

@ Instead, we will describe a new algorithm design principle
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Algorithm Design Principle: Action Elimination

Algorithm: Successive Elimination
Given: confidence 6 > 0
Initialize plausibly-best set S = {1,...,K}
Fort=1,2,...
@ Pull all arms in S and update fi;;
@ Calculate B = /2t~ log(4Kt2/4)
@ Remove j from S if masx it —Bt > fiit+ Bt
IS

———r
highest p; could be
Lowest ./ could be

@ If |S| =1, stop and return A =S.

@ S is a list of plausibly-best arms

@ Each epoch, all arms that cannot be the best (if the bounds hold) are
removed
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Pure Exploration

Successive Elimination Analysis

@ Define the “bad event” & =, {|fi,c — pi| > B(d)}: we have

&) < S (1ine =il > /26 log(ake2 /) < > ()

20

< =
— £~ 4AKt?

it
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Pure Exploration

Successive Elimination Analysis

@ Define the “bad event” & =, {|fi,c — pi| > B(d)}: we have

&) < S (1ine =il > /26 log(ake2 /) < > ()

26 2n°
< —_
- aKe2 ~ 24
@ (Correctness) Ifé‘ does not happen,
@ |fijx — pp=| < By and |u; — fi;| < By for all j. Thus, for all j
B — i < (i — Py ) + (g — pie ) + (B — 1) < 2Bt
o iis removed if maxjcs fi;+ — fij¢ > 2Bt = i* is never removed

@ lim¢_, oo Bt(d) — 0: every arm will eventually be removed
@ Successive Elimination is correct with probability 1 — §

<4é
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Pure Exploration

Successive Elimination Analysis

@ Define the “bad event” & =, {|fi,c — pi| > B(d)}: we have

&) < S (1ine =il > /26 log(ake2 /) < > ()

2

oy 22

- 4Kt2 24

@ (Correctness) Ifé‘ does not happen,

@ |fijx — pp=| < By and |u; — fi;| < By for all j. Thus, for all j
B — R < (s — R ) + (1 — i) + (8 — 1) < 2B
o iis removed if maxjcs fi;+ — fij¢ > 2Bt = i* is never removed
@ lim¢_, oo Bt(d) — 0: every arm will eventually be removed
@ Successive Elimination is correct with probability 1 — §

@ (Sample Complexity): arm i will be eliminated once A; < 2B:
o We can verify that N; =0 (Afz Iog(K/éA-)) is sufficient
o Total sample complexity of 3°; A2 log(K/5A)

<4é
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Pure Exploration

Theorem
Successive Elimination is (0, §)-PAC with sample complexity

o) <Z A? Iog(K/dA;))

Theorem
For any best-arm identification algorithm, there is a problem instance that

requires
_ 1
Q A% loglog [ =
(Z ' °g°g(w)>

samples.
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Linear Stochastic Bandits

Bonus: Linear Contextual Bandits

Given: game length T, number of arms K

Fort=1,2,...,T,
@ The learner sees one context per arm ci, ..., Ck,t
@ The learner picks action It € {1,...,K}
@ The learner observes and receives reward X; = (Ci,,¢.,0%) + &

Regret is defined w.r.t. an agent that knows the true 6:

T T
D T * T *
Rt = E miaxCI.,tH — E C,ht0
t=1 t=1
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Algorithm Design Principle: Optimism

Algorithm: OFUL [Abbasi-Yadkori et al., 2011]

Initialize Ay = 0, By = R?

Fort=1,2,...,T:
@ Receive contexts ci¢,...,Ckt
@ Choose (I, 0r) = argmax;c 1.} pes,_, 07Cit (Optimism)
@ Observe X; = ¢/ 0" + &

o Calculate Vi = 3%, cscI + M and ri = y/log 4504 + v/X]j67 |
e Calculate 4 = v; ! (Zgzl cSX5> (ridge)
Update B: = {0 : (60 — 0¢)TVi(0 — ) < rt)

@ If & is 1-sub-Gaussian, B; is a confidence sequence with
P(vt>0:0" € Bt) > 1 — ¢ (more examples in [de la Pefia et al., 2009,
Howard et al., 2020])
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Analysis

@ Regret decomposes over rounds:
@ Recall that (I¢, 6;) = arg MaXic (1, . k},0e8,_, 0" Cit

R — Ri_1 = CI}G* — C,Tt@*
< C,Ttét - 0" (by optimism)
C;I; (ét — ét_1> —+ CI.I; (é\t_]_ — 9*>

0t71 B 0* H
Ve

IA

IA

l€ellve

0 — érle <t v,
3

<rt <re

@ After some algebra, we can show, with probability > 1 — §, that

Re— 0 (dlogél/é))

@ The shared structure lets us learn a lot!
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Linear Stochastic Bandits

Review

@ Setting: adversarial bandits

@ Exp3 (exponential weights)
@ Setting: stochastic bandits

o UCB (optimism)

e Thompson Sampling (probablity matching)
@ Setting: pure exploration

@ Successive Elimination (action-elimination)
@ Setting: linear contextual bandits

@ OFUL (optimism)
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Aside: Lower Bound Reasoning

@ Fix a strategy and consider two problem instances:
Q 1,15, ..., 0k; With P as the joint distribution over (I, rit)
Q 1,05, ..., vk with P’ as the joint distribution over (I, rj ¢)
© The optimal arm is different: pb > py > pp > pz > ...
@ The data from P and P’ will look very similar

@ An algorithm that does well on P must not pull arm 2 too many times;
hence, it will not do well on P’

@ “Similar” is quantified by a change-of-measure identity; e.qg.
P'(A) = e ™21 P(A), where kI, = 3¢ _, log 92 (X2,5)
2

@ Hence, an algorithm cannot tell if it is P or P and must get high regret under
P, mistakenly believing it is playing in P
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