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What is a Bandit?

The Basic Bandit Game

Protocol: Finite-Arm Bandits
Given: game length T, number of arms K
For t = 1,2, . . . ,T,

The learner picks action It ∈ {1, . . . ,K}
The adversary simultaneously picks rewards rt ∈ {1, . . . ,K} → [0,1]

The learner observes and receives rt(It)
The learner does not observe rt(i) for i 6= It

The goal: control the regret (a random variable)

RT = max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(It)
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What is a Bandit?

Bandits are Super Simple MDP

S = {the_state}, P(the_state|the_state,a) = 1
Why should we care about this in RL?

Creates a tension between
Exploration (learning about the loss of actions)
Exploitation (playing actions that will have low regret)

Exploration/Exploitation is absent in full-information but very present in
reinforcement learning
Model is simple enough to allow for comprehensive theory
Easily incorporates adversarial data
Useful algorithm design principles
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What is a Bandit?

The Regret

RT = max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(It)

RT is a random variable we do not observe
Different objectives, from easiest to hardest

Pseudo-regret RT = maxi E
[∑T

t=1 rt(i)
]
− E

[∑T
t=1 rt(It)

]
Expected regret E[RT ] = E

[
max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
can depend on It

−
∑T

t=1 rt(It)

]

High probability bounds on the realized regret

We always have RT ≤ E[RT ]

If the adversary is reactive, then the distribution of rt can be a function of
I1, . . . , It−1
Otherwise, the adversary is oblivious and RT = E[RT ]
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What is a Bandit?

Our Focus

Introduce most popular bandit problems
Adversarial Bandits
Stochastic Bandits
Pure Exploration Bandits
Contextual Bandits (time permitting)

Concentrate on useful algorithm design principles
Exponential weights (still useful)
Optimism in the face of Uncertainty
Probability matching (i.e. Thompson sampling)
Action-Elimination
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What is a Bandit?

Other Settings that Have Been Considered

Data models for rt
chosen by an adversary
sampled i.i.d.
stochastic with adversarial perturbations...

Action spaces
Finite number of arms
A vector space (rt are functions)
Combinatorial (e.g. subsets, paths on a graph)

Objectives
Pseudo-regret (the expectation over the learner’s randomness)
Realized regret (with high probability)
Best-arm identification a.k.a. pure exploration

Side information
Linear rewards
Competing with a policy class

...
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Adversarial Bandits

Adversarial Protocol

Protocol: Finite-Arm Adversarial Bandits
Given: game length T, number of arms K
For t = 1,2, . . . ,T,

The learner picks action It ∈ {1, . . . ,K}
The adversary simultaneously picks losses `t ∈ [0,1]K

The learner observes and receives `t(It)

The results are easier to state using losses instead of rewards
Randomization of It is essential
We are familiar with adversarial data from the first half
The simple idea of estimating `t from `t(It) and then applying a
full-information algorithm works very well
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Adversarial Bandits

Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]
Given: number of arms K, learning rate η > 0, length T
Initialize p1(i) = 1/K, L̂0(i) = 0 for all i ∈ [K]

For t = 1,2, . . . ,T:
Sample It ∼ pt and observe `t(It)
Estimate ˆ̀t(i) = `t(It)

pt(It)
1{It=i} and L̂t = ˆ̀t + L̂t−1

Calculate Wt =
∑

j e
−ηL̂t(j) and pt+1(i) = 1

Wt
e−ηL̂t(i)

Exp3 = Exponential Weights for Exploration and Exploitation
ˆ̀t is the importance-weighted estimator of `t
ˆ̀t is unbiased:

EIt∼pt [
ˆ̀t(i)] = E

[
`t(It)
pt(It)

1{It=i}

]
=
∑
j

pt(j)
`t(j)
pt(j)

1{j=i} = `t(i).

Exp3 runs exponential weights on ˆ̀t
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Adversarial Bandits

Exp3: Analysis

Wt

Wt−1
=

K∑
j=1

wt(j)
Wt−1

=
∑
j

wt−1(j)
Wt−1

exp(−η ˆ̀t(j))

=
∑
j

pt(j) exp(−η ˆ̀t(j))

≤
∑
j

pt(j)
(
1− η ˆ̀t(j) +

1
2η

2 ˆ̀t(i)2
)

e−x ≤ 1− x +
x2

2 , ∀x ≥ 0

= 1− η
∑
j

pt(j)ˆ̀t(j) +
η2

2
∑
i

pt(j)ˆ̀t(j)2

≤ exp

−η∑
j

pt(j)ˆ̀t(j) +
η2

2
∑
j

pt(j)ˆ̀t(j)2
 1 + x ≤ ex, ∀x

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 9 /47



Exp3: Analysis

Exp3: Analysis

Following the EW analysis, Wt is a potential function
For any i∗, e−ηL̂T (i∗) ≤

∑
j e
−ηL̂T (j) = WT = W0

∏T
t=1

Wt
Wt−1

.
Bound W0 by K and the product using the bound on the previous slide

Therefore, we have

e−ηL̂T (i∗) ≤ W0

T∏
t=1

Wt

Wt−1
≤ K

T∏
t=1

e−η
∑

j pt(j) ˆ̀t(j)+ η
2
2
∑

j pt(j) ˆ̀t(j)2
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Exp3: Analysis

Exp3: Analysis

e−ηL̂T (i∗) ≤ W0

T∏
t=1

Wt

Wt−1
≤ K

T∏
t=1

e−η
∑

j pt(j) ˆ̀t(j)+ η
2
2
∑

j pt(j) ˆ̀t(j)2

⇔ −ηL̂T(i∗) ≤ log(K)− η
∑
t

∑
j

pt(j)ˆ̀t(j) +
η2

2
∑
t

∑
j

pt(j)ˆ̀t(j)2

⇔
T∑
t=1

∑
j

pt(j)ˆ̀t(j)− L̂T(i∗) ≤ log(K)

η
+
η

2

T∑
t=1

∑
j

pt(j)ˆ̀t(j)2

⇒
T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)]− E[L̂T(i∗)] ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)ˆ̀t(j)2


⇔
T∑
t=1

E[`(It)]− LT(i∗) ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}


︸ ︷︷ ︸

variance term
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Exp3: Analysis

Exp3: Analysis

Bounding the variance term turns out to be easy:

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}

 ≤ E

∑
j

pt(j)
1{It=i}

pt(It)2


= E

[
1

pt(It)

]
= K

So, plugging this in,
∑T

t=1 E[`(It)]− LT(i∗) ≤ log(K)
η

+ η
2TK

Theorem (Exp3 upper bound [Auer et al., 2002b])

With η =
√

2 log(T)
TK , Exp3 has RT ≤

√
2TK log(K).

Only get pseudo-Regret bounds because the i∗ in the proof was fixed, not a
function of I1, . . . , IT
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Exp3: Analysis

Lower Bounds

Theorem (Adversarial Bandits lower bound [Auer et al., 2002b])
Any adversarial bandit algorithm must have

RT = Ω(
√
TK)

Exp3 upper bound: RT ≤
√
2TK log(K)

First matching upper bound achieved by INF [Audibert and Bubeck, 2009]
(which is Mirror Descent)

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 13 /47



Exp3: Analysis

Upgrades

High Probability bounds: requires a lower-variance estimate of ˆ̀t or an
algorithm that keeps pt(i) away from zero

Exp3.P [Auer et al., 2002b] uses p̃t(i) = γpt(i) + (1− γ)/K
Exp3-IX [Neu, 2015] uses ˆ̀t(i) =

1{It=i}`t(It)
pt(It)+γ

Experts with bandits; each arm is an expert that recommends actions: you
compete with the best expert (Exp4 algorithm) [Auer et al., 2002b]
Competing with strategies that can switch [Auer, 2002]
Feedback determined by a graph [Mannor and Shamir, 2011]
Partial Monitoring [Bartók et al., 2014]
Combinatorial action spaces...
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Stochastic Bandits

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions ν1, . . . , νK
For t = 1,2, . . . ,T,

The learner picks action It ∈ {1, . . . ,K}
The learner observes and receives reward Xt ∼ νIt

Stochastic bandits is an old problem [Thompson, 1933]
We will use the following notation

Reward of arm i is sampled from νi with µi := EX∼νi [X]
i∗ = arg maxi µi is the best arm
Gaps ∆i := µi∗ − µi ≥ 0,
Number of pulls Ni,t :=

∑t
s=1 1{Is=i}

Empirical mean µ̂i,t :=
∑t

s=1 Xs1{Is=i}
Ni,t
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Stochastic Bandits

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions ν1, . . . , νK
For t = 1,2, . . . ,T,

The learner picks action It ∈ {1, . . . ,K}
The learner observes and receives reward Xt ∼ νIt

We still want to minimize the expected regret, which has the useful
decomposition

E[RT ] = Tµi∗ −
∑T

t=1 E[Xt] =
∑

i ∆iE[Ni,T ]

Assumption: 1-sub-Gaussian reward distributions
For all stochastic bandit problems, we will assume that all arms are
1-sub-Gaussian, i.e. EX∼µ[eλ(X−µ)2−λ2/2] ≤ 1. For X1, . . . ,Xt, This implies the
Hoeffding bound

P

(
1
t

t∑
s=1

Xs − µi ≥ ε

)
≤ e−

ε2t
2 .
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Stochastic Bandits

Warm-up: Explore-Then-Commit

Algorithm: Explore-Then-Commit
Given: Game length T, exploration parameter M
For t = 1,2, . . . ,MK:

Choose it = (t mod K), see Xt ∼ νit
Compute empirical means µ̂i,mK
For t = MK + 1,MK + 2, . . . ,T:

Pull arm i = arg maxi µ̂i,mK

The first strategy you might try
A proof idea that we will return to: bound regret by first bounding E[Ni,T ].
In this simple algorithm,

E[Ni,T ] = M + (T −MK)P

(
i = arg max

j
µ̂j,MK

)
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Stochastic Bandits

Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P

(
i = arg max

j
µ̂j,MK

)
≤ P (µ̂i,MK ≥ µ̂i∗,MK)

= P ((µ̂i,MK − µi) ≥ (µ̂i∗,MK − µi∗) + ∆i)

≤ e−
M∆2

i
4 (the difference is

√
2/M-sub-Gaussian)

Theorem (Explore-Then-Commit upper bound)

E[RT ] =
∑
i

∆iE[Ni,T ] ≤
K∑
i=1

∆i

(
M + (T −MK)e−

M∆2
i

4

)

For the two arm case, if we know ∆, then m = 4
∆2
1

log
T∆2

1
4 , results in

E[RT ] ≤
∑K

i=1
4

∆1
log

T∆2
1

4 + T 4
T∆2

1
= O

(
K log(T)

∆1

)
But we don’t know ∆...can we be adaptive?

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 18 /47



Stochastic Bandits

Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P

(
i = arg max

j
µ̂j,MK

)
≤ P (µ̂i,MK ≥ µ̂i∗,MK)

= P ((µ̂i,MK − µi) ≥ (µ̂i∗,MK − µi∗) + ∆i)

≤ e−
M∆2

i
4 (the difference is

√
2/M-sub-Gaussian)

Theorem (Explore-Then-Commit upper bound)

E[RT ] =
∑
i

∆iE[Ni,T ] ≤
K∑
i=1

∆i

(
M + (T −MK)e−

M∆2
i

4

)

For the two arm case, if we know ∆, then m = 4
∆2
1

log
T∆2

1
4 , results in

E[RT ] ≤
∑K

i=1
4

∆1
log

T∆2
1

4 + T 4
T∆2

1
= O

(
K log(T)

∆1

)
But we don’t know ∆...can we be adaptive?

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 18 /47



Stochastic Bandits

Algorithm Design Principle: OFU

OFU: Optimism in the Face of Uncertainty
We establish some confidence set for the problem instance (e.g. means) to
within some confidence set
We then assume the most favorable instance in the confidence set and act
greedily

Algorithm: UCB1 [Auer et al., 2002a]
Given: Game length T
Initialize: play every arm once
For t = K + 1,2, . . . ,T:

Compute upper confidence bounds Bi,t−1 =
√

6 log(t)
Ni,t−1

Choose It = arg maxi µ̂i,t−1 + Bi,t−1, observe Xt ∼ νIt
Update Ni,t = Ni,t−1 + 1{It=i} and µ̂i,t =

∑t
s=1 1{Is=i}Xs

Ni,t
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Stochastic Bandits

UCB Illustration
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Stochastic Bandits

UCB Illustration
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Stochastic Bandits

UCB Illustration
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Stochastic Bandits

UCB: Intuition

Naturally balances exploration and exploitation: an arm has a high UCB if
It has a high µ̂i,t, or
Bi,t is large because Ni,t−1 is small

Optimistic because we pretend the rewards are the plausibly best and then
do the greedy thing
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Stochastic Bandits

UCB: Analysis

Define Mi =
⌈
12 log(T)

∆2
i

⌉
, the number of pulls of arm i such that

Bi,t =
√

6 log(t)
Ni,t

≤
√

6 log(T)
Ni,t

≤ ∆i
2

The intuition of the proof is
1 Since RT =

∑
i ∆iE[Ni,T ], we bound E[Ni,t] first.

2 With high probability, we will never pull arm i more than Mi times, so

E[Ni,T ] = E
T∑
t=1

1{It=i} ≤ Mi +
T∑

t=Mi

E1{It=i,Ni,t>Mi}︸ ︷︷ ︸
we will bound this

3 If {It = i,Ni,t > Mi} occurs, then the UCB for i∗ or for i must be wrong (next slide)
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Stochastic Bandits

UCB: Analysis

Claim: if {It = i,Ni,t > Mi} occurs, then either µ̂i,t must be too high or µ̂i∗,t must
be too low. In a picture:

Reward
µ̂i∗ + Bi∗,tµi∗µi µ̂i,t µ̂i,t + Bi,t

∆i ≥ 2Bi,t since Ni,t > Mi

≤ Bi,t ≤ Bi,t

In an equation: suppose that Ni,t > Mi, µ̂i,t − Bi,t < µi, and µ̂i∗,t + Bi∗,t > µi∗ . Then

µ̂i∗,t + Bi∗,t > µi∗ = µi + ∆i ≥ µi + 2Bi,t︸︷︷︸
by choice of Bi,t

> µ̂i,t + Bi,t,

so the algorithm will not choose It = i.
If It = i, at least one of the bounds must be wrong, implying

P(It = i,Ni,t > Mi) ≤ P (µ̂i,t ≥ µi + Bi,t) + P (µ̂i∗,t + Bi∗,t ≤ µi∗) .
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Stochastic Bandits

UCB: Analysis

Using the Hoeffding bound,

P (µ̂i,t − µi ≤ Bi,t) ≤ P
(
∃s ≤ t︸ ︷︷ ︸

we don’t know Ni,t−1

: µ̂i,s − µi ≤
√
6 log(t)

s

)

≤
t∑

s=1

P

(
µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1

exp

{
−3 log(t)

s

}
≤

t∑
s=1

t−3 = t−2.

The same inequality holds for i∗, so

RT =
∑
i

∆iE[Ni,T ] ≤
∑
i

∆i

12 log(T)

∆2
i

+ 2
T∑

t=Mi+1

t−2
 .

Ambuj Tewari (UMich) STATS 701: Bandits Winter 2021 26 /47



Stochastic Bandits

UCB: Analysis

Using the Hoeffding bound,

P (µ̂i,t − µi ≤ Bi,t) ≤ P
(
∃s ≤ t︸ ︷︷ ︸

we don’t know Ni,t−1

: µ̂i,s − µi ≤
√
6 log(t)

s

)

≤
t∑

s=1

P

(
µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1

exp

{
−3 log(t)

s

}
≤

t∑
s=1

t−3 = t−2.

The same inequality holds for i∗, so

RT =
∑
i

∆iE[Ni,T ] ≤
∑
i

∆i

12 log(T)

∆2
i

+ 2
T∑
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t−2
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Stochastic Bandits

UCB: Analysis

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

RT ≤
∑
i

12 log(T)

∆j
+ o(1).

Theorem (Lower Bound [Lai and Robbins, 1985])
Suppose we have a parametric family Pθ and θ1, . . . , θk. For any “admissible”
algorithm,

lim inf
T→∞

RT

log(T)
≥
∑
i 6=i∗

∆i

KL(Pθi ,Pθi∗ )
≈ O

∑
i6=i∗

1
∆i


E.g. if Pθ is Bernoulli, then (θi−θi∗ )2

θi∗ (1−θi∗ )
≥ KL(Pθi ,Pθi∗ ) ≥ 2(θi − θi∗)2.
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Stochastic Bandits

Algorithm Design Principle: Probability Matching

We put a prior π over means µi and a likelihood νi = P(·|µi) over rewards
Choose P(It = i) = P(µi = µi∗ |history) (the matching)
We usually pick conjugate models (e.g. µi ∼ N(0,1), Xt ∼ N(µi,1))

Algorithm: Thompson Sampling
Given: game length T, prior π(µ), likelihoods p(·|µ)
Initialize posteriors pi,0(µ) = π(µ)

For t = 1,2, . . . ,T:
Draw θi,t ∼ pi,t−1 for all i
Choose It = arg maxi θi,t (implements the matching)
Receive and observe Xt ∼ νIt
Update the posterior pIT ,t(µ) = p(Xt|µ)pIt,t−1(µ)
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Stochastic Bandits

Thompson Sampling: Overview

P(µ2|history)

P(µ1|history)

µ̂2 µ̂1

reward

Not Bayesian: a Bayesian method would maximize the Bayes regret (the
expectation under the probability model)
The regret bound is frequentist
Arms with small Ni,t implies a wide posterior, hence a good probability of
being selected
Generally performs empirically better that UCB (it is much more aggressive)
Analysis is difficult
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Stochastic Bandits

Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])
For binary rewards, Gamma-Beta Thompson sampling has
E[RT ] ≤ (1 + ε)

∑
i 6=i∗ ∆i

log(T)
KL(µi,µi∗ )

+ O
( N
ε2

)
.

The proof is much more technical that UCB’s
We cannot rely on the upper bounds being correct w.h.p.
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Stochastic Bandits

µi xi yi µi∗

reward
For some to-be-tuned µi ≤ xi ≤ yi ≤ µi∗ , we have

E[Ni,T ] ≤
T∑
t=1

P(It = i)

≤
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≥ yi) (O
(

log(T)

kl(xj, yj)

)
)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi) (the tricky case)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≥ xi) (Small by concentration)
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Stochastic Bandits

Thompson Sampling: Proof Outline

The tricky case is
∑T

t=1 P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)
This happens when we have enough samples of i but not many of i∗

A key lemma argues that, on µ̂i,t−1 ≤ xi, θi,t ≤ yi, the probability of picking i
is a constant less than of picking i∗:

T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)

≤
T∑
t=1

P(θi∗,t ≤ yi)
P(θi∗,t > yi)︸ ︷︷ ︸

exponentially small

P(It = i∗, µ̂i,t−1 ≤ xi, θi,t ≤ yi) = O(1)

Hence, we will quickly get enough samples of i∗
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Stochastic Bandits

Best of Both Worlds

The stochastic and adversarial algorithms are quite different
A natural question: is there an algorithm that

gets RT = O(
√
TK) regret for adversarial

gets Rt = O(
∑

i log(T)/∆i) regret for stochastic
without knowing the setting?

Bubeck and Slivkins [2012] proposed an algorithm that assumes stochastic
but falls back to UCB once adversarial data is detected
Zimmert and Seldin [2019] showed that (for pseudo-regret), it is possible

Their algorithm: online mirror descent with 1
2 -Tsallis entropy

Ψ(w) = −
∑

i 4(
√wi − 1

2wi)
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Pure Exploration

A New Problem

What if we only wanted to identify the best arm i∗ without caring about loss
along the way?
Intuitively, we would explore more; we are happy to accrue less reward if we
get more useful samples.
More similar to hypothesis testing; useful for selecting treatments
Known as “Best Arm Identification” or “Pure Exploration”
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Pure Exploration

Two Settings

Protocol: Best-arm Identification
Given:number of arms K, arm distributions ν1, . . . , νK
For t = 1,2, . . . ,

The learner picks arm It ∈ {1, . . . ,K}
The learner observes Xt ∼ νIt
The learner decides whether to stop

The learner returns arm A
Two settings:

fixed-confidence fixed-budget
Input δ > 0, T
Goal P(A = i∗) ≥ 1− δ maximize P(A = i∗)
Stopping once learner is confident after T rounds
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Pure Exploration

Standard stochastic bandit algorithms under explore (they fail to meet lower
bounds on this problem)
Many can be adapted

LUCB [Kalyanakrishnan et al., 2012]
Top-Two Thompson Samping [Russo, 2016]

Instead, we will describe a new algorithm design principle
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Pure Exploration

Algorithm Design Principle: Action Elimination

Algorithm: Successive Elimination
Given: confidence δ > 0
Initialize plausibly-best set S = {1, . . . ,K}
For t = 1,2, . . .:

Pull all arms in S and update µ̂i,t
Calculate Bt =

√
2t−1 log(4Kt2/δ)

Remove i from S if max
j∈S

µ̂j,t − Bt︸ ︷︷ ︸
Lowest µ∗i could be

≥ µ̂i,t + Bt︸ ︷︷ ︸
highest µi could be

If |S| = 1, stop and return A = S.

S is a list of plausibly-best arms
Each epoch, all arms that cannot be the best (if the bounds hold) are
removed
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Pure Exploration

Successive Elimination Analysis

Define the “bad event” E =
⋃

i,t{|µ̂i,t − µi| ≥ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≥

√
2t−1 log(4Kt2/δ)

)
≤
∑
i,t

2e
− log

(
4Kt2
δ

)

≤
∑
i,t

2δ
4Kt2 =

2π2

24 δ ≤ δ

(Correctness) If E does not happen,
|µ̂i∗ − µi∗ | ≤ Bt and |µj − µ̂j| ≤ Bt for all j. Thus, for all j
µ̂j − µ̂i∗ ≤ (µi∗ − µ̂i∗ ) + (µj − µi∗ ) + (µ̂j − µj) ≤ 2Bt
i is removed if maxj∈S µ̂j,t − µ̂i,t ≥ 2Bt ⇒ i∗ is never removed
limt→∞ Bt(δ)→ 0: every arm will eventually be removed
Successive Elimination is correct with probability 1− δ

(Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

Total sample complexity of
∑

i ∆−2i log(K/δ∆i)
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Pure Exploration

Theorem
Successive Elimination is (0, δ)-PAC with sample complexity

O

(∑
i

∆−2i log(K/δ∆i)

)

Theorem
For any best-arm identification algorithm, there is a problem instance that
requires

Ω

(∑
i

∆−2i log log

(
1
δ∆2

i

))
samples.
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Linear Stochastic Bandits

Bonus: Linear Contextual Bandits

Protocol: Contextual Linear Bandit
Given: game length T, number of arms K
For t = 1,2, . . . ,T,

The learner sees one context per arm c1,t, . . . , cK,t
The learner picks action It ∈ {1, . . . ,K}
The learner observes and receives reward Xt = 〈cIt,t, θ

∗〉+ ξt

Regret is defined w.r.t. an agent that knows the true θ:

RT =
T∑
t=1

max
i
cᵀi,tθ

∗ −
T∑
t=1

cᵀIt,tθ
∗
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Linear Stochastic Bandits

Algorithm Design Principle: Optimism

Algorithm: OFUL [Abbasi-Yadkori et al., 2011]

Initialize θ̂0 = 0, B0 = Rd

For t = 1,2, . . . ,T:
Receive contexts c1,t, . . . , cK,t
Choose (It, θ̃t) = arg maxi∈{1,...,K},θ∈Bt−1 θ

ᵀci,t (optimism)
Observe Xt = cᵀIt,tθ

∗ + ξt

Calculate Vt =
∑t

s=1 csc
ᵀ
s + λI and rt =

√
log det(Vt)

δ2λd
+
√
λ‖θ∗‖

Calculate θ̂t = V−1t

(∑t
s=1 csXs

)
(ridge)

Update Bt = {θ : (θ − θ̂t)ᵀVt(θ − θ̂t) ≤ rt)

If ξt is 1-sub-Gaussian, Bt is a confidence sequence with
P(∀t > 0 : θ∗ ∈ Bt) ≥ 1− δ (more examples in [de la Peña et al., 2009,
Howard et al., 2020])
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Linear Stochastic Bandits

Analysis

Regret decomposes over rounds:
Recall that (It, θ̃t) = arg maxi∈{1,...,K},θ∈Bt−1 θ

ᵀci,t

Rt −Rt−1 = cᵀi∗t θ
∗ − cᵀItθ

∗

≤ cᵀIt θ̃t − cᵀItθ
∗ (by optimism)

≤ cᵀIt
(
θ̃t − θ̂t−1

)
+ cᵀIt

(
θ̂t−1 − θ∗

)
≤ ‖cIt‖Vt

∥∥∥θ̃t − θ̂t−1∥∥∥
Vt︸ ︷︷ ︸

≤rt

+‖cIt‖Vt
∥∥∥θ̂t−1 − θ∗∥∥∥

Vt︸ ︷︷ ︸
≤rt

After some algebra, we can show, with probability ≥ 1− δ, that

RT = O
(
d log(1/δ)

∆

)
The shared structure lets us learn a lot!
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Linear Stochastic Bandits

Review

Setting: adversarial bandits
Exp3 (exponential weights)

Setting: stochastic bandits
UCB (optimism)
Thompson Sampling (probablity matching)

Setting: pure exploration
Successive Elimination (action-elimination)

Setting: linear contextual bandits
OFUL (optimism)
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Extras

Aside: Lower Bound Reasoning

Fix a strategy and consider two problem instances:
1 ν1, ν2, . . . , νK ; with P as the joint distribution over (It, ri,t)
2 ν1, ν

′
2, . . . , νK ; with P

′ as the joint distribution over (It, ri,t)
3 The optimal arm is different: µ′2 ≥ µ1 ≥ µ2 ≥ µ3 ≥ . . .
4 The data from P and P′ will look very similar

An algorithm that does well on P must not pull arm 2 too many times;
hence, it will not do well on P′

“Similar” is quantified by a change-of-measure identity; e.g.
P′(A) = e−k̂lN2,T P(A), where k̂lt =

∑t
s=1 log dν2

dν′2
(X2,s)

Hence, an algorithm cannot tell if it is P or P′ and must get high regret under
P′, mistakenly believing it is playing in P
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