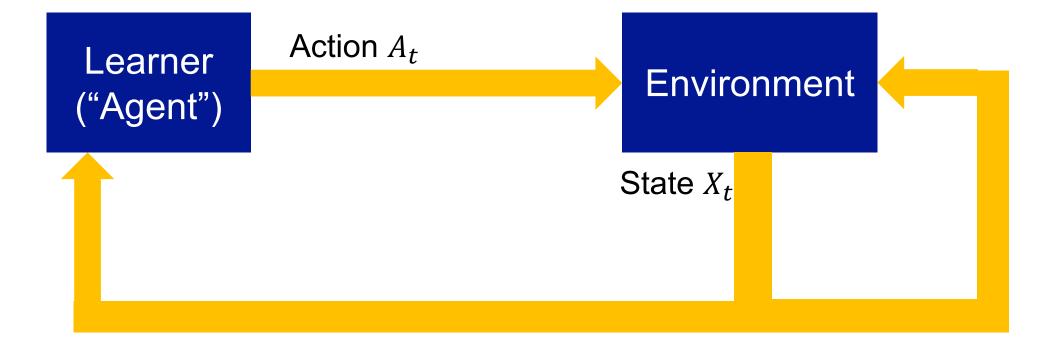
STATS 701: THEORY OF RL WINTER 2021

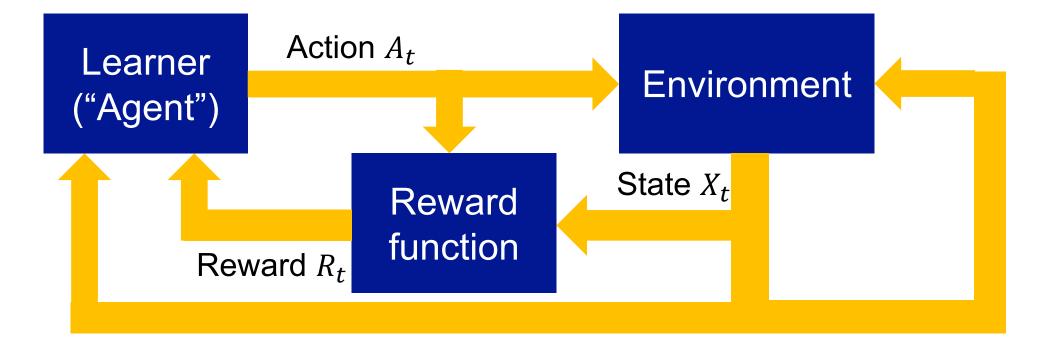
ADVERSARIAL MDPS

Ambuj Tewari slide credits: Gergely Neu @ Universitat Pompeu Fabra, Barcelona

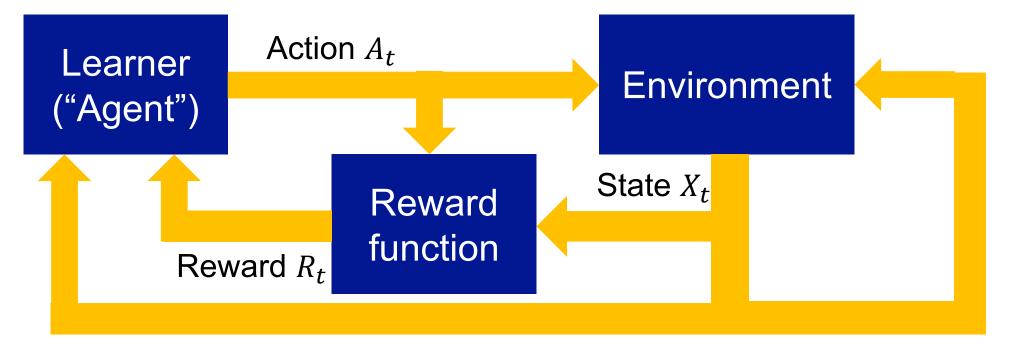
MARKOV DECISION PROCESSES



MARKOV DECISION PROCESSES



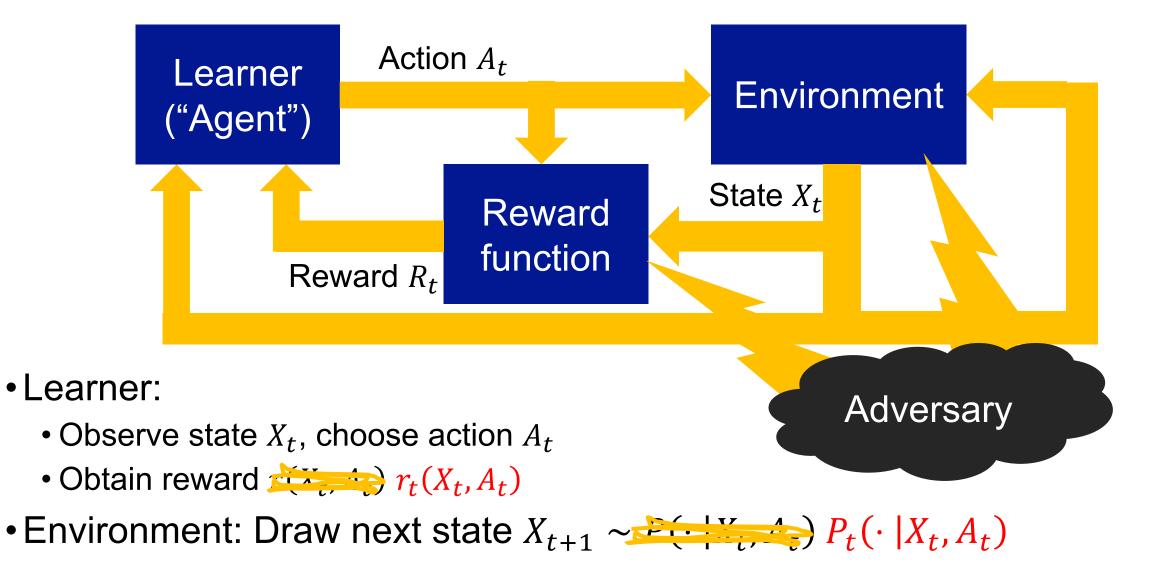
MARKOV DECISION PROCESSES



•Learner:

- Observe state X_t , choose action A_t
- Obtain reward $r(X_t, A_t)$
- Environment: Draw next state $X_{t+1} \sim P(\cdot | X_t, A_t)$

ADVERSARIAL MARKOV DECISION PROCESSES

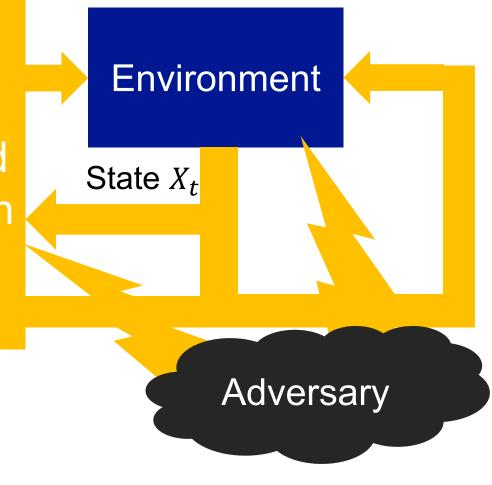


ADVERSARIAL MARKOV DECISION PROCESSES

This lecture: what is achievable when an external adversary is allowed to change the reward function and the transition function over time?

• Learner:

- Observe state X_t , choose action A_t
- Obtain reward $r_t(X_t, A_t)$
- Environment: Draw next state $X_{t+1} \sim P(\cdot | X_t, A_t)$



PERFORMANCE MEASURE: REGRET

Regret
$$\Re eg_T(\pi) = \sum_{t=1}^T \mathbb{E}[r_t(X_t^*, \pi(X_t^*)) - r_t(X_t, A_t)],$$
where X_1^*, X_2^*, \dots is the sequence of states that would have been generated by running comparator policy π through the dynamics P_1, P_2, \dots

PERFORMANCE MEASURE: REGRET

Regret
$$\Re eg_{T}(\pi) = \sum_{t=1}^{T} \mathbb{E}[r_{t}(X_{t}^{*}, \pi(X_{t}^{*})) - r_{t}(X_{t}, A_{t})],$$
where $X_{1}^{*}, X_{2}^{*}, ...$ is the sequence of states that would have been generated by running comparator policy π through the dynamics $P_{1}, P_{2}, ...$

Goal: sublinear regret $\lim_{T \to \infty} \max_{\pi} \frac{\Re eg_T(\pi)}{T} = 0$

OUTLINE

• Hardness results

- Non-oblivious adversaries
- Arbitrarily changing dynamics
- Arbitrarily changing reward functions
 - Some common ideas
 - Two algorithm families

SOME HARDNESS RESULTS

NON-OBLIVIOUS ADVERSARIES

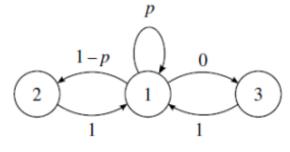
Non-oblivious adversary: can take history $\mathcal{H}_t = X_t, A_{t-1}, X_{t-1}, A_{t-2}, ...$ into account when selecting r_t and P_t

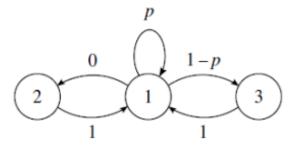
NON-OBLIVIOUS ADVERSARIES

Non-oblivious adversary: can take history $\mathcal{H}_t = X_t, A_{t-1}, X_{t-1}, A_{t-2}, ...$ into account when selecting r_t and P_t

Theorem (Yu, Mannor and Shimkin, 2009) No algorithm can guarantee sublinear regret against a non-oblivious adversary

Simple counterexample by Yu, Mannor and Shimkin (2009):



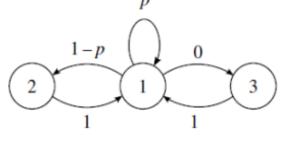


(a) Transition model if the agent chooses to go left.

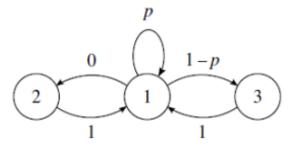
(b) Transition model if the agent chooses to go right.

Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • r_t (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(\text{right}) = 1 \text{ if } A_{t-1} = \text{left}$



(a) Transition model if the agent chooses to go left.



(b) Transition model if the agent chooses to go right.

Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • r_t (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(\text{right}) = 1 \text{ if } A_{t-1} = \text{left}$

 $2 \qquad 1 \qquad 0 \\ 1 \qquad 3 \\ 1 \qquad 1 \qquad 3$

(a) Transition model if the agent chooses to go left.

(b) Transition model if the agent chooses to go right.

1-p

3

0

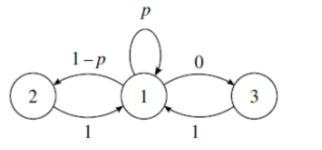
2

 $r_t(X_t) = 0$ for all t!

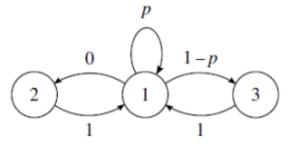
Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • r_t (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(\text{right}) = 1 \text{ if } A_{t-1} = \text{left}$

 $r_t(X_t) = 0$ for all t!



(a) Transition model if the agent chooses to go left.



(b) Transition model if the agent chooses to go right.

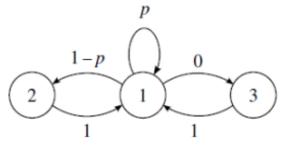
But there is a policy π with $\mathbb{E}\left[\sum_{t} r_t(X_t^*, \pi(X_t^*))\right] \ge \left(\frac{1}{2} - p\right)T$

Either $\pi(1) = \text{left or } \pi(1) = \text{right}$

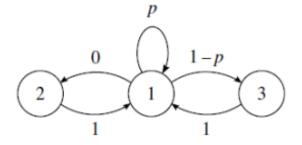
Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • r_t (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(\text{right}) = 1 \text{ if } A_{t-1} = \text{left}$

 $r_t(X_t) = 0$ for all t!



(a) Transition model if the agent chooses to go left.



(b) Transition model if the agent chooses to go right.

But there is a policy π with $\mathbb{E}\left[\sum_{t} r_t(X_t^*, \pi(X_t^*))\right] \ge \left(\frac{1}{2} - p\right)T$

Either $\pi(1) = \text{left or } \pi(1) = \text{right}$

$$\Re \operatorname{eg}_T(\pi) \ge \left(\frac{1}{2} - p\right)T$$

OBLIVIOUS ADVERSARIES

Non-oblivious adversary: can take history $\mathcal{H}_t = X_t, A_{t-1}, X_{t-1}, A_{t-2}, ...$ into account when selecting r_t and P_t

OBLIVIOUS ADVERSARIES

Oblivious adversary: cannot take history \mathcal{H}_t into account when selecting r_t and P_t

Adversary

"Adversary ≈ nature": it can (mis)behave arbitrarily, but doesn't care about what you do

OBLIVIOUS ADVERSARIES

Oblivious adversary: cannot take history \mathcal{H}_t into account when selecting r_t and P_t

"Adversary ≈ nature": it can (mis)behave arbitrarily, but doesn't care about what you do

Can we guarantee sublinear regret now?

Adversary

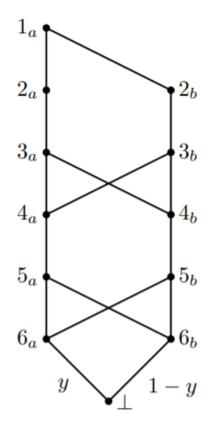
LEARNING WITH CHANGING TRANSITIONS IS HARD

Learning against an oblivious adversary can still be computationally hard when the transition function is allowed to change!

Theorem(Abbasi-Yadkori et al., 2013)There is an adversarial MDP where achieving
sublinear regret is computationally hard.

PROOF CONSTRUCTION

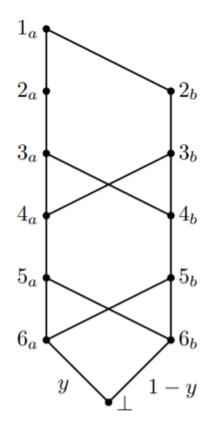
- Idea: learning of noisy parities can be formulated as an MDP with changing transition functions & rewards!
- $O(\text{poly}(n)T^{1-\alpha})$ regret $\Rightarrow O\left(\frac{poly(n)}{\varepsilon^{1/\alpha}}\right)$ excess risk, conjectured to be computationally hard to achieve
- Construction: an instance $x \in \{0,1\}^n$ corresponds to a deterministic transition graph with rewards determined by the label y



PROOF CONSTRUCTION

- Idea: learning of noisy parities can be formulated as an MDP with changing transition functions & rewards!
- $O(\text{poly}(n)T^{1-\alpha})$ regret $\Rightarrow O\left(\frac{poly(n)}{\varepsilon^{1/\alpha}}\right)$ excess risk, conjectured to be computationally hard to achieve
- Construction: an instance $x \in \{0,1\}^n$ corresponds to a deterministic transition graph with rewards determined by the label y

Corresponds to an oblivious adversary that picks (P_t, r_t) jointly!



SLOWLY CHANGING MDPS

Very recent work by Gajane et al. (2019), Cheung et al. (2020):
• define reward and transition variation as

$$V_T^r = \sum_{\substack{t=\bar{T}^1 \\ x,a}} \max_{x,a} |r_t(x,a) - r_{t+1}(x,a)|$$
$$V_T^P = \sum_{\substack{t=1 \\ x,a}} \max_{x,a} ||P_t(\cdot |x,a) - P_{t+1}(\cdot |x,a)||_1$$

• regret bounds of $O\left((V_T^P + V_T^r)^{1/3}T^{2/3}\right)$ are possible

• algorithm: UCRL + forgetting old data

ALGORITHMS FOR MDPS WITH ADVERSARIAL REWARDS

WHERE IT ALL STARTED...

Experts in a Markov Decision Process

NeurIPS 2005

Eyal Even-Dar Computer Science Tel-Aviv University evend@post.tau.ac.il

MATHEMATICS OF OPERATIONS RESEARCH

ISSN 0364-765X | EISSN 1526-5471 | 09 | 3403 | 0726

Vol. 34, No. 3, August 2009, pp. 726-736

Sham M. Kakade Computer and Information Science University of Pennsylvania skakade@linc.cis.upenn.edu **Yishay Mansour** * Computer Science Tel-Aviv University mansour@post.tau.ac.il

inf<mark>orms</mark>,

DOI 10.1287/moor.1090.0396 © 2009 INFORMS

Online Markov Decision Processes

Eyal Even-Dar Google Research, New York, New York 10011, evendar@google.com

Sham. M. Kakade Toyota Technological Institute, Chicago, Illinois 60637, sham@tti-c.org

Yishay Mansour School of Computer Science, Tel-Aviv University, 69978 Tel-Aviv, Israel, mansour@post.tau.ac.il

Math of OR 2009

FORMAL PROTOCOL

Online learning in a fixed MDP

For each round t = 1, 2, ..., T

- Learner observes state $X_t \in \mathcal{X}$
- Learner takes action $A_t \in \mathcal{A}$
- Adversary selects reward function $r_t: \mathcal{X} \times \mathcal{A} \rightarrow [0,1]$
- Learner earns reward $R_t = r_t(X_t, A_t)$
- Learner observes feedback
 - Full information: r_t
 - Bandit feedback: R_t
- Environment produces new state $X_{t+1} \sim P(\cdot | X_t, A_t)$

FORMAL PROTOCOL

Online learning in a fixed MDP

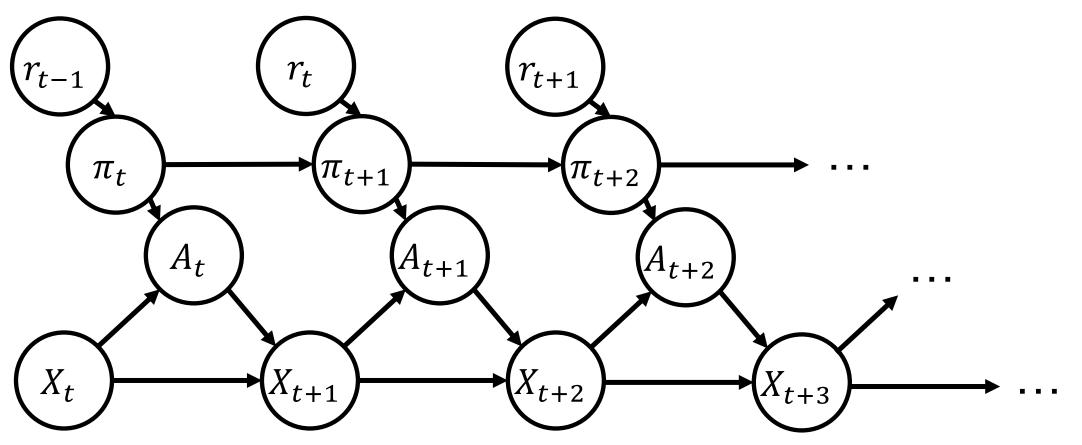
For each round t = 1, 2, ..., T

- Learner observes state $X_t \in \mathcal{X}$
- Learner selects stochastic policy π_t
- Learner takes action $A_t \sim \pi_t(\cdot | X_t)$
- Adversary selects reward function $r_t: \mathcal{X} \times \mathcal{A} \rightarrow [0,1]$
- Learner earns reward $R_t = r_t(X_t, A_t)$
- Learner observes feedback
 - Full information: r_t
 - Bandit feedback: R_t

• Environment produces new state $X_{t+1} \sim P(\cdot | X_t, A_t)$

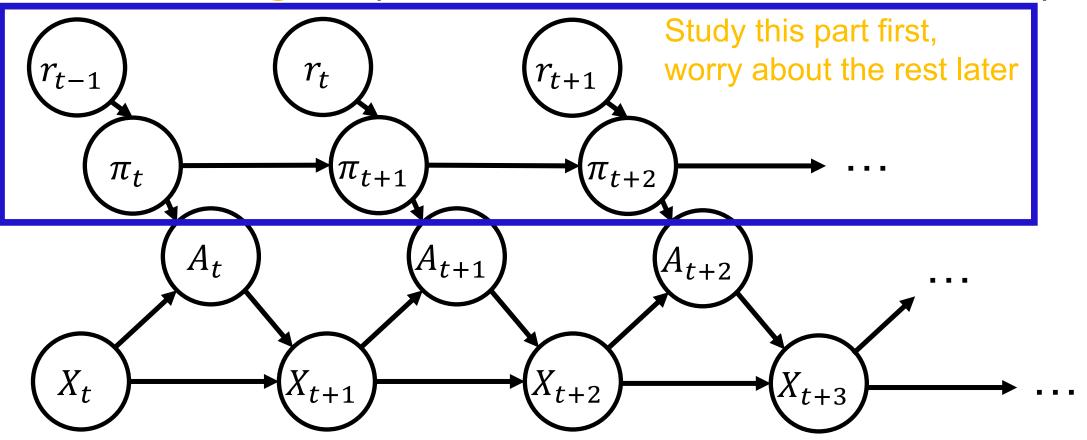
Stochastic policy: $\pi(a|x) = \mathbb{P}[A_t = a|X_t = x]$

Main challenge: dependence between consecutive time steps



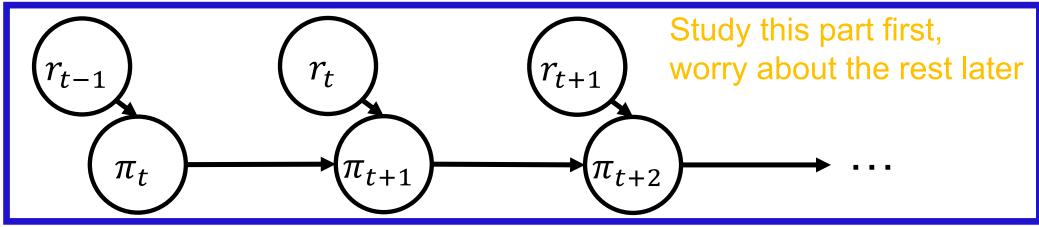
NB this graph is accurate for full information feedback; bandit is a bit more complicated

Main challenge: dependence between consecutive time steps



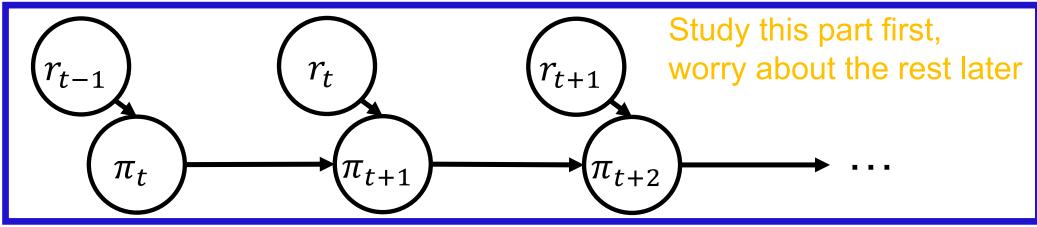
NB this graph is accurate for full information feedback; bandit is a bit more complicated

Main challenge: dependence between consecutive time steps



"Pretend that every policy reaches its stationary distribution immediately!"

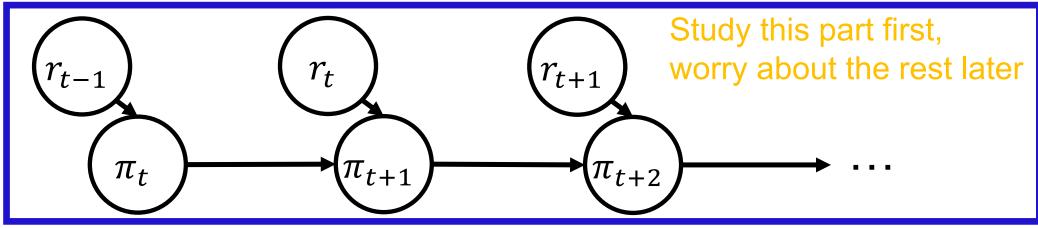
Main challenge: dependence between consecutive time steps



"Pretend that every policy reaches its stationary distribution immediately!"

Def: stationary distribution of policy π : $\mu_{\pi}(x, a) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}_{\{X_k = x, A_k = a\}}$

Main challenge: dependence between consecutive time steps



"Pretend that every policy reaches its stationary distribution immediately!"

Def: stationary distribution of policy π : $\mu_{\pi}(x, a) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}_{\{X_k = x, A_k = a\}}$

Assumption: 1-step mixing $\forall \pi$ $\|(\nu - \nu')P_{\pi}\|_{1} \leq e^{-1/\tau} \|\nu - \nu'\|_{1}$

REGRET DECOMPOSITION

• Define

 $v_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } v_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$ $\mu_t = \mu_{\pi_t}$, stationary distribution induced by policy π_t $\mu^* = \mu_{\pi^*}$, stationary distribution induced by policy π^*

REGRET DECOMPOSITION

Define

 $v_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } v_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$ $\mu_t = \mu_{\pi_t}$, stationary distribution induced by policy π_t $\mu^* = \mu_{\pi^*}$, stationary distribution induced by policy π^*

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \Big[r_t \big(X_t^*, \pi^*(X_t^*) \big) - r_t (X_t, A_t) \Big] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$

REGRET DECOMPOSITION

Define

 $v_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } v_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$ $\mu_t = \mu_{\pi_t}$, stationary distribution induced by policy π_t $\mu^* = \mu_{\pi^*}$, stationary distribution induced by policy π^*

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \left[r_t \left(X_t^*, \pi^*(X_t^*) \right) - r_t (X_t, A_t) \right] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$
$$= \sum_{t=1}^T \langle v_t^* - \mu^*, r_t \rangle + \sum_{t=1}^T \langle \mu^* - \mu_t, r_t \rangle + \sum_{t=1}^T \langle \mu_t - v_t, r_t \rangle$$

REGRET DECOMPOSITION

Define

 $v_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } v_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$ $\mu_t = \mu_{\pi_t}$, stationary distribution induced by policy π_t $\mu^* = \mu_{\pi^*}$, stationary distribution induced by policy π^*

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \Big[r_t \big(X_t^*, \pi^*(X_t^*) \big) - r_t (X_t, A_t) \Big] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$
$$= \sum_{t=1}^T \langle v_t^* - \mu^*, r_t \rangle + \sum_{t=1}^T \langle \mu^* - \mu_t, r_t \rangle + \sum_{t=1}^T \langle \mu_t - v_t, r_t \rangle$$

"stationarized regret"

REGRET DECOMPOSITION

• Define

 $v_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } v_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$ $\mu_t = \mu_{\pi_t}$, stationary distribution induced by policy π_t $\mu^* = \mu_{\pi^*}$, stationary distribution induced by policy π^*

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \left[r_t (X_t^*, \pi^*(X_t^*)) - r_t (X_t, A_t) \right] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$
$$= \sum_{t=1}^T \langle v_t^* - \mu^*, r_t \rangle + \sum_{t=1}^T \langle \mu^* - \mu_t, r_t \rangle + \sum_{t=1}^T \langle \mu_t - v_t, r_t \rangle$$

"comparator drift"

"stationarized regret"

"learner drift"

THE DRIFT TERMS

• For the comparator, fast mixing is guaranteed by assumption:

$$\sum_{t=1}^{T} \langle v_t^* - \mu^*, r_t \rangle \le \sum_{t=1}^{T} \|v_t^* - \mu^*\|_1 \le \sum_{t=1}^{T} e^{-t/\tau} \|v_1^* - \mu^*\|_1 \le 2\tau + 2$$

THE DRIFT TERMS

• For the comparator, fast mixing is guaranteed by assumption:

$$\sum_{t=1}^{T} \langle v_t^* - \mu^*, r_t \rangle \le \sum_{t=1}^{T} \|v_t^* - \mu^*\|_1 \le \sum_{t=1}^{T} e^{-t/\tau} \|v_1^* - \mu^*\|_1 \le 2\tau + 2$$

• The other term is small if the policies change slowly:

Lemma
If
$$\max_{x} \|\pi_{t}(\cdot |x) - \pi_{t-1}(\cdot |x)\|_{1} \leq \varepsilon \text{ for all } t, \text{ then}$$

$$\sum_{t=1}^{T} \|\mu_{t} - \nu_{t}\|_{1} \leq (\tau + 1)^{2} \varepsilon T + 2e^{-T/\tau}$$

" v_t tracks μ_t if policies change slowly"

Local-to-global regret decomposition

Reduction to online linear optimization

Local-to-global regret decomposition

Reduction to online linear optimization

 Idea by Even-Dar, Kakade and Mansour (2005,2009) based on the performance difference lemma:

> Lemma Let π, π' be two arbitrary policies, r a reward function and Q^{π} be the (differential) value functions corresponding to π . Then, $\langle \mu_{\pi}, -\mu_{\pi}, r \rangle$ $= \sum \mu_{\pi'}(x) \sum \left(\pi'(a|x) - \pi(a|x) \right) Q_{\pi}(x,a)$

Apply with $r = r_t$, $\pi = \pi_t$ and $\pi' = \pi^*$: $\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$

Apply with $r = r_t$, $\pi = \pi_t$ and $\pi' = \pi^*$:

Q-function of π_t with reward function r_t

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Q-function of π_t with reward function r_t

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with $r = r_t$, $\pi = \pi_t$ and $\pi' = \pi^*$:

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_{t=1}^{T} \sum_x \mu^*(x) \sum_a \left(\pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Q-function of π_t with reward function r_t

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with $r = r_t$, $\pi = \pi_t$ and $\pi' = \pi^*$:

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_{t=1}^{T} \sum_a \left(\pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Q-function of π_t with reward function r_t

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with $r = r_t$, $\pi = \pi_t$ and $\pi' = \pi^*$:

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_{t=1}^{T} \sum_a \left(\pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Local regret in state x with reward function $Q_t(x,\cdot)$

Q-function of π_t with reward function r_t

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with $r = r_t$, $\pi = \pi_t$ and $\pi' = \pi^*$:

 $\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_{t=1}^{T} \sum_a \left(\pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$

Algorithm idea: run a local regret-minimization algorithm in each state x with reward function $Q_t(x,\cdot)!$

Local regret in state x with reward function $Q_t(x,\cdot)$

THE MDP-EXPERT ALGORITHM

MDP-E

For each round t = 1, 2, ..., T

- Observe state X_t
- Take action $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function r_t
- Calculate value functions as solution to $Q_t(x, a) = r_t - \langle \mu_t, r_t \rangle + \sum_{x'} P(x'|x, a) V_t(x')$
- For all x, feed $Q_t(x,\cdot)$ to expert algorithm $\mathfrak{Alg}(x)$

THE MDP-EXPERT ALGORITHM

MDP-E

For each round t = 1, 2, ..., T

- Observe state X_t
- Take action $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function r_t
- Calculate value functions as solution to $Q_t(x, a) = r_t - \langle \mu_t, r_t \rangle + \sum_{x'} P(x'|x, a) V_t(x')$
- For all x, feed $Q_t(x,\cdot)$ to expert algorithm $\mathfrak{Alg}(x)$
- **Example:** $\mathfrak{Alg} = \mathsf{Exponential weights}$ $\pi_{t+1}(a|x) \propto \pi_t(a|x) \cdot e^{\eta Q_t(x,a)}$

GUARANTEES FOR MDP-E

Theorem (Even-Dar et al., 2009, Neu et al., 2014) If $\mathfrak{AIg}(x)$ guarantees a regret bound of B_T for rewards bounded in [0,1], the stationarized regret of MDP-E satisfies $\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle \leq \tau B_T$

Proof is obvious given the regret decomposition.

GUARANTEES FOR MDP-E

Theorem (Even-Dar et al., 2009, Neu et al., 2014) If $\mathfrak{Alg}(x)$ guarantees a regret bound of B_T for rewards bounded in [0,1], the stationarized regret of MDP-E satisfies $\sum \langle \mu^* - \mu_t, r \rangle \leq \tau B_T$ Theorem If $\mathfrak{Alg}(x)$ =EWA, the regret of MDP-E satisfies $\Re eg_T = O\left(\sqrt{\tau^3 T \log|\mathcal{A}|}\right)$

Proof is obvious given the regret decomposition.

Addressed in Neu, György, Szepesvári and Antos (2010,2014): replace r_t by an unbiased estimator

$$\hat{r}_{t}(x,a) = \frac{r_{t}(x,a)}{\mu_{t}^{N}(x,a)} \mathbb{I}\{(X_{t},A_{t}) = (x,a)\},\$$

with $\mu_{t}^{N}(x,a) = \mathbb{P}[(X_{t},A_{t}) = (x,a)|\mathcal{H}_{t-N}]$

Addressed in Neu, György, Szepesvári and Antos (2010,2014):replace r_t by an unbiased estimatorRemember Exp3?

$$\hat{r}_{t}(x,a) = \frac{r_{t}(x,a)}{\mu_{t}^{N}(x,a)} \mathbb{I}\{(X_{t},A_{t}) = (x,a)\},\$$
with $\mu_{t}^{N}(x,a) = \mathbb{P}[(X_{t},A_{t}) = (x,a)|\mathcal{H}_{t-N}]$

Addressed in Neu, György, Szepesvári and Antos (2010,2014):replace r_t by an unbiased estimatorRemember Exp3?

$$\hat{r}_{t}(x,a) = \frac{r_{t}(x,a)}{\mu_{t}^{N}(x,a)} \mathbb{I}\{(X_{t},A_{t}) = (x,a)\},\$$
with $\mu_{t}^{N}(x,a) = \mathbb{P}[(X_{t},A_{t}) = (x,a)|\mathcal{H}_{t-N}]$

Theorem

If $\mathfrak{AIg}(x)$ =EWA, the regret of MDP-Exp3 satisfies $\Re eg_T = O\left(\sqrt{\tau^3 T |\mathcal{A}| \log |\mathcal{A}| / \beta}\right)$

Assumption: $\mu_{\pi}(x) \ge \beta$ for all π, x

Local-to-global regret decomposition

Reduction to online linear optimization

ONLINE LINEAR OPTIMIZATION

Notice: stationarized regret = regret in an OLO problem!

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r_t \rangle$$

ONLINE LINEAR OPTIMIZATION

Notice: stationarized regret = regret in an OLO problem!

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r_t \rangle$$

Algorithm idea: run an OLO algorithm with the set of all stationary distributions as decision set! $\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} : \sum_{a} \mu(x, a) = \sum_{x', a'} P(x | x', a') \mu(x', a') \right\}$

ONLINE MIRROR DESCENT

• In each round, update stationary distribution

$$\mu_{t+1} = \arg \max_{\mu \in \mathcal{U}} \left\{ \langle \mu, r_t \rangle - \frac{1}{\eta} D(\mu | \mu_t) \right\}$$

and extract policy $\pi_{t+1}(a | x) \propto \mu_{t+1}(x, a)$

ONLINE MIRROR DESCENT

• In each round, update stationary distribution

$$\mu_{t+1} = \arg \max_{\mu \in \mathcal{U}} \left\{ \langle \mu, r_t \rangle - \frac{1}{\eta} D(\mu | \mu_t) \right\}$$

and extract policy $\pi_{t+1}(a|x) \propto \mu_{t+1}(x,a)$

- Choosing the regularizer:
 - Relative entropy: $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\nu(x,a)}$

⇒ "Online Relative Entropy Policy Search" (Zimin and Neu, 2013, Dick, György and Szepesvári, 2014)

- Conditional relative entropy: $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\pi_{\mu}(a|x)}{\pi_{\nu}(a|x)}$
 - \Rightarrow "Regularized Bellman updates" (Neu, Jonsson and Gómez, 2017)

ONLINE MIRROR DESCENT

• In each round, update stationary distribution

$$\mu_{t+1} = \arg \max_{\mu \in \mathcal{U}} \left\{ \langle \mu, r_t \rangle - \frac{1}{\eta} D(\mu | \mu_t) \right\}$$

and extract policy $\pi_{t+1}(a | x) \propto \mu_{t+1}(x, a)$

Choosing the regularizor:

• Choosing the regularizer:

• Relative entropy: $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\nu(x,a)}$

⇒ "Online Relative Entropy Policy Search" (Zimin and Neu, 2013, Dick, György and Szepesvári, 2014)

- Conditional relative entropy: $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\pi_{\mu}(a|x)}{\pi_{\nu}(a|x)}$
 - \Rightarrow "Regularized Bellman updates" (Neu, Jonsson and Gómez, 2017)

THE ONLINE REPS ALGORITHM

O-REPS

For each round t = 1, 2, ..., T

- Observe state X_t
- Take action $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function r_t
- Calculate value functions as solution to $\min_{V} \log \sum_{x,a} \mu_t(x,a) e^{\eta \left(r_t(x,a) + \sum_{x'} P(x'|x,a)V(x') - V(x) \right)}$
- Update stationary distribution as $\mu_{t+1}(x, a) = \mu_t(x, a) e^{\eta \left(r_t(x, a) + \sum_{x'} P(x'|x, a) V(x') - V(x) \right)}$

Algorithm inspired by Peters, Mülling and Altün (2010)

THE ONLINE REPS ALGORITHM

O-REPS

For each round t = 1, 2, ..., T

- Observe state X_t
- Take action $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function r_t

Unconstrained convex minimization

- Calculate value functions as solution to $\min_{V} \log \sum_{x,a} \mu_t(x,a) e^{\eta \left(r_t(x,a) + \sum_{x'} P(x'|x,a)V(x') - V(x) \right)}$
- Update stationary distribution as

 $\mu_{t+1}(x,a) = \mu_t(x,a) e^{\eta \left(r_t(x,a) + \sum_{x'} P(x'|x,a) V(x') - V(x) \right)}$

Algorithm inspired by Peters, Mülling and Altün (2010)

GUARANTEES FOR O-REPS

$\begin{array}{l} \textbf{Theorem}\\ \text{(Zimin and Neu, 2013, Dick et al. 2014)}\\ \text{The stationarized regret of O-REPS satisfies}\\ \sum_{t=1}^{T} \langle \mu^* - \mu_t, r_t \rangle \leq \sqrt{T \log |\mathcal{X}| |\mathcal{A}|} \end{array}$

Theorem The regret of O-REPS satisfies $\Re eg_T = O\left(\sqrt{\tau T \log |\mathcal{X}||\mathcal{A}|}\right)$

Proof is based on standard OLO analysis.

Addressed in Zimin and Neu (2013) in episodic MDPs: replace r_t by an unbiased estimator

$$\hat{r}_t(x,a) = \frac{r_t(x,a)}{q_t(x,a)} \mathbb{I}\{(x,a) \text{ visited in episode } t\},$$

with $q_t(x,a) = \mathbb{P}[(x,a) \text{ visited in episode } t | \mathcal{H}_{t-1}]$

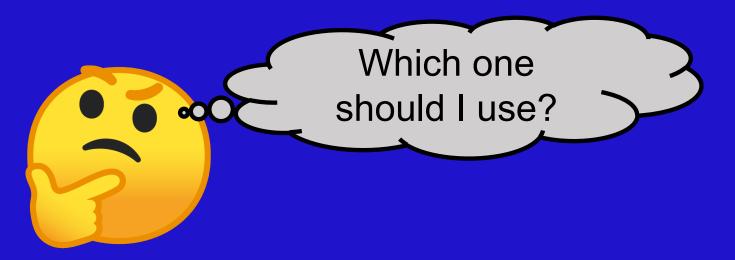
Addressed in Zimin and Neu (2013) in episodic MDPs: replace r_t by an unbiased estimator

$$\hat{r}_t(x,a) = \frac{r_t(x,a)}{q_t(x,a)} \mathbb{I}\{(x,a) \text{ visited in episode } t\},$$
with $q_t(x,a) = \mathbb{P}[(x,a) \text{ visited in episode } t | \mathcal{H}_{t-1}]$

TheoremIf $\mathfrak{AIg}(x)$ =EWA, the regret of MDP-Exp3 satisfies $\mathfrak{Reg}_T = O\left(H\sqrt{T|\mathcal{X}||\mathcal{A}|\log|\mathcal{X}||\mathcal{A}|}\right)$

Local-to-global regret decomposition

Reduction to online linear optimization



Local-to-global regret decomposition

Reduction to online linear optimization

COMPARISON OF GUARANTEES

	MDP-E	O-REPS
Full information	$\sqrt{\tau^3 T \log \mathcal{A} }$	$\sqrt{\tau T \log \mathcal{X} \mathcal{A} }$
Bandit feedback	$\sqrt{\tau^3 \mathcal{A} T \log \mathcal{A} / \beta}$???
Full information (episodic case)	$H^2\sqrt{T\log \mathcal{A} }$	$H\sqrt{T\log \mathcal{X} \mathcal{A} }$
Bandit feedback (episodic case)	$H^2\sqrt{ \mathcal{A} T\log \mathcal{A} /\beta}$	$\sqrt{H \mathcal{X} \mathcal{A} T\log \mathcal{X} \mathcal{A} }$

COMPARISON OF GUARANTEES

	MDP-E	O-REPS
Full information	$\sqrt{\tau^3 T \log \mathcal{A} }$	$\sqrt{\tau T \log \mathcal{X} \mathcal{A} }$
Bandit feedback	$\sqrt{\tau^3 \mathcal{A} T \log \mathcal{A} / \beta}$???
Full information (episodic case)	$H^2\sqrt{T\log \mathcal{A} }$	$H\sqrt{T\log \mathcal{X} \mathcal{A} }$
Bandit feedback (episodic case)	$H^2\sqrt{ \mathcal{A} T\log \mathcal{A} /\beta}$	$\sqrt{H \mathcal{X} \mathcal{A} T\log \mathcal{X} \mathcal{A} }$

+ MDP-E works well with function approximation for Q-function + O-REPS can easily handle model constraints and extensions

MDP-E WITH FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value function $\hat{Q}_t \approx Q^{\pi_t}$ to define its policy

$$\pi_{t+1}(a|x) \propto \exp\left(\eta \sum_{k=1}^{t} \hat{Q}_k(x,a)\right)$$

MDP-E WITH FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value function $\hat{Q}_t \approx Q^{\pi_t}$ to define its policy

$$\pi_{t+1}(a|x) \propto \exp\left(\eta \sum_{k=1}^{t} \hat{Q}_k(x,a)\right)$$

- POLITEX (Abbasi-Yadkori et al., 2019): use LSPE to estimate Q^{π_t} with linear FA regret = $O(T^{3/4} + \varepsilon_0 T)$
- OPPO (Cai et al., 2019) use LSPE to estimate Q^{π_t} with realizable linear FA regret = $O(\sqrt{T})$

MDP-E WITH FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value function $\hat{Q}_t \approx Q^{\pi_t}$ to define its policy

$$\pi_{t+1}(a|x) \propto \exp\left(\eta \sum_{k=1}^{t} \hat{Q}_k(x,a)\right)$$

+ MDP-E is essentially identical to the "Trust-Region Policy Optimization" (TRPO) algorithm of Schulman et al. (2015), as shown by Neu, Jonsson and Gómez (2017)!!!

O-REPS WITH UNCERTAIN MODELS

O-REPS can easily accommodate uncertainties in the transition model by extending the decision set:

$$\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} \colon \sum_{a} \mu(x, a) = \sum_{x', a'} P(x | x', a') \mu(x', a') \right\}$$

O-REPS WITH UNCERTAIN MODELS

O-REPS can easily accommodate uncertainties in the transition model by extending the decision set:

$$\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} : \sum_{a} \mu(x, a) = \sum_{x', a'} P(x | x', a') \mu(x', a'), \mathbf{P} \in \mathcal{P} \right\}$$

Confidence set of transition models

O-REPS WITH UNCERTAIN MODELS

O-REPS can easily accommodate uncertainties in the transition model by extending the decision set:

$$\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} : \sum_{a} \mu(x, a) = \sum_{x', a'} P(x|x', a') \mu(x', a'), \mathbf{P} \in \mathcal{P} \right\}$$

UC-O-REPS by Rosenberg and Mansour (2019) Extended to bandit feedback by Jin et al. (2020): Confidence set of transition models

 $\hat{r}_t(x,a) = \frac{r_t(x,a)}{u_t(x,a)} \mathbb{I}\{(x,a) \text{ visited in episode } t\},$ with $u_t(x,a) > q_t(x,a) = \mathbb{P}[(x,a) \text{ visited in episode } t|\mathcal{H}_{t-1}]$ w.h.p.

OUTLOOK

• Open problems:

- Lower bounds? Right scaling with τ ? Is uniform mixing necessary?
- Large state spaces and function approximation?
- Practical algorithms?

OUTLOOK

• Open problems:

- Lower bounds? Right scaling with τ ? Is uniform mixing necessary?
- Large state spaces and function approximation?
- Practical algorithms?

Relevance to practice of RL?

OUTLOOK

• Open problems:

- Lower bounds? Right scaling with τ ? Is uniform mixing necessary?
- Large state spaces and function approximation?
- Practical algorithms?

Relevance to practice of RL?

- Online learning algorithms are robust! Main tool: regularization
- Better understanding of regularization tools \Rightarrow better algorithms!
- Remember: TRPO = MDP-E!

REFERENCES

- Yu, J. Y., Mannor, S., & Shimkin, N. (2009). Markov decision processes with arbitrary reward processes. *Mathematics of Operations Research*, *34*(3), 737-757.
- Abbasi-Yadkori, Y., Bartlett, P. L., Kanade, V., Seldin, Y., & Szepesvári, Cs. (2013). Online learning in Markov decision processes with adversarially chosen transition probability distributions. In *Advances in neural information processing* systems (pp. 2508-2516).
- Gajane, P., Ortner, R., & Auer, P. (2019). Variational Regret Bounds for Reinforcement Learning. In *Uncertainty in Artificial Intelligence*.
- Cheung, W. C., Simchi-Levi, D., & Zhu, R. (2020). Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism. In *International Conference on Machine Learning*.
- Even-Dar, E., Kakade, S. M., & Mansour, Y. (2005). Experts in a Markov decision process. In *Advances in neural information processing systems* (pp. 401-408).
- Even-Dar, E., Kakade, S. M., & Mansour, Y. (2009). Online Markov decision processes. *Mathematics of Operations Research*, *34*(3), 726-736.

REFERENCES

- Neu, G., Antos, A., György, A., & Szepesvári, C. (2010). Online Markov decision processes under bandit feedback. In *Advances in Neural Information Processing Systems* (pp. 1804-1812).
- Peters, J., Mülling, K., & Altun, Y. (2010). Relative entropy policy search. In AAAI (Vol. 10, pp. 1607-1612).
- Zimin, A., & Neu, G. (2013). Online learning in episodic Markovian decision processes by relative entropy policy search. In *Advances in neural information processing systems* (pp. 1583-1591).
- Dick, T., György, A., & Szepesvári, Cs. (2014). Online Learning in Markov Decision Processes with Changing Cost Sequences. In *International Conference* on Machine Learning (pp. 512-520).
- Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvári, Cs., & Weisz, G. (2019). POLITEX: Regret bounds for policy iteration using expert prediction. In *International Conference on Machine Learning* (pp. 3692-3702).
- Cai, Q., Yang, Z., Jin, C., & Wang, Z. (2019). Provably efficient exploration in policy optimization. *arXiv preprint arXiv:1912.05830.*

REFERENCES

- Neu, G., Jonsson, A., & Gómez, V. (2017). A unified view of entropy-regularized Markov decision processes. *arXiv preprint arXiv:1705.07798*.
- Rosenberg, A., & Mansour, Y. (2019, May). Online Convex Optimization in Adversarial Markov Decision Processes. In *International Conference on Machine Learning* (pp. 5478-5486).
- Rosenberg, A., & Mansour, Y. (2019). Online stochastic shortest path with bandit feedback and unknown transition function. In *Advances in Neural Information Processing Systems* (pp. 2212-2221).
- Jin, C., Jin, T., Luo, H., Sra, S., & Yu, T. (2020). Learning adversarial Markov decision processes with bandit feedback and unknown transition. In *International Conference on Machine Learning* (pp. 1369-1378).