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OUTLINE

* Hardness results
* Non-oblivious adversaries
 Arbitrarily changing dynamics
 Arbitrarily changing reward functions
 Some common ideas
* Two algorithm families



SOME HARDNESS RESULTS
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B PROOF

Simple counterexample by Yu, Mannor and Shimkin (2009):
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Bl OBLIVIOUS ADVERSARIES

Oblivious adversary:

cannot take history H; into account when
selecting r; and P

“Adversary = nature”:
it can (mis)behave arbitrarily, but doesn’t
care about what you do

Can we guarantee
sublinear regret now?



LEARNING WITH CHANGING
TRANSITIONS IS HARD

Learning against an oblivious adversary can still be
computationally hard when the
transition function is allowed to change!



B PROOF CONSTRUCTION

learning of noisy parities can be formulated

as an MDP with changing transition functions &
rewards!

* 0 (poly(n)T1~%) regret = 0 (poﬁ;?)) excess risk,
conjectured to be computationally hard to achieve

» Construction: an instance x € {0,1}" corresponds
to a deterministic transition graph with rewards
determined by the label y

O,
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Bl SLOWLY CHANGING MDPS

Very recent work by Gajane et al. (2019), Cheung et al. (2020):
define reward anthransition variation as

Vi =) maxir,(x,@) = 1y4s (x, @)

t71

VE =) maxlIP(- [x,@) = Peas - Ix, @)y
t=1

*regret bounds of 0 ((V{? + V{)1/3T2/3) are possible
«algorithm: UCRL + forgetting old data



ALGORITHMS FOR MDPS WITH
ADVERSARIAL REWARDS
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FORMAL PROTOCOL
Online learning in a fixed MDP

Foreachroundt=1,2,..,T
Learner observes state X, € X

Learner takes action 4; € A

Adversary selects reward function r;: X XA — |0,1]
Learner earns reward R, = r:(X;, A;)

Learner observes feedback

Full information: r;
Bandit feedback: R;

Environment produces new state X,,,; ~ P(: |X;, A;)




FORMAL PROTOCOL
Online learning in a fixed MDP

Foreachroundt=1,2,..,T
 Learner observes state X; € X

Adversary selects reward function r;: X XA — |0,1]
Learner earns reward R, = r:(X;, A;)

Learner observes feedback

Full information: r;
Bandit feedback: R;

Environment produces new state X,,,; ~ P(: |X;, A;)

Stochastic policy: m(a|x) = P[4, = a|X; = x]
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dependence between consecutive time steps
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dependence between consecutive time steps

“Pretend that every policy reaches its immediately!”

Def: stationary distribution of policy m:

: 1
Ur (x, Cl) — I}I_)H.}o Ezlg:l H{Xk=x,Ak=Cl}
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B REGRET DECOMPOSITION

* Define
ve(x,a) = P|X; = x,A; = a] and v{(x,a) = P[X{ = x, A} = a]
u: = Ug,, stationary distribution induced by policy m,
u* = u.+, stationary distribution induced by policy r*

* Rewrite regret as
T T

Regr (™) = z IE[rt(XZ‘,n*(X{f)) — Tt(Xt»At)] = Z(V: — Vi, 1¢)
. t=1 . . t=1

= ZW: —u, )+ ZW* — Ug, Ty) T Z<Ht — Vi, Tt)
t=1 t=1 J=1 J

“learner drift”



B THE DRIFT TERMS

* For the comparator, fast mixing is guaranteed by assumption:
T
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B THE DRIFT TERMS

* For the comparator, fast mixing is guaranteed by assumption:

T T T
D wi—ur) < ) i —wlh < ) e llvi =il < 20+ 2
t=1 t=1 t=1
* The other term is small if the policies change slowly:

Lemma
If max||m,(: |x) —m—,(: [x)||; < & forall t, then
X

T
leut — v lly < (¢ + 12T + 2e7 T/
t=1

“v, tracks u, if policies change slowly”
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LOCAL-TO-GLOBAL
REGRET DECOMPOSITION

|dea by Even-Dar, Kakade and Mansour (2005,2009) based on
the performance difference lemma:
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LOCAL-TO-GLOBAL
REGRET DECOMPOSITION

Apply withr =r,, m =, and '’ = m*:

(W = e,y = ) (0 ) (m (@) = m(al0) (v, )

Statlonarlzed regret can be ertten as:

Zw ~ 1) = Zu(x)ZZ(n (alx) = m(al)) Q. (x, @

t=1 a

Algorithm idea:
run a local regret-minimization

algorithm in each state x with
reward function Q;(x,-)!




THE MDP-EXPERT ALGORITHM

MDP-E

Foreachroundt =1,2,...,T
* QObserve state X;
« Take action A; ~ (- |X;)
* QObserve reward function r;

 (Calculate value functions as solution to
Qc(x,a) =1 — (Ue, 1) + 2 P(X | x, @)V (x7)
« Forall x, feed Q,(x,-) to expert algorithm Alg(x)




THE MDP-EXPERT ALGORITHM

MDP-E

Foreachroundt =1,2,...,T
Observe state X,
Take action A; ~ (- | X;)
Observe reward function r;

Calculate value functions as solution to

Qt(x, a) = Tt — <:ut) Tt) + lep(xllx) a)Vt(x’)

For all x, feed Q,(x,) to expert algorithm Alg(x)
Example: Alg = Exponential weights

mev1(alx) o m(alx) - €7D




Bl GUARANTEES FOR MDP-E

Proof is obvious given the regret decomposition.



Bl GUARANTEES FOR MDP-E

Theorem
If Alg(x)=EWA, the regret of MDP-E satisfies

Regr = 0 (\/T3Tlog|c/l|)

Proof is obvious given the regret decomposition.




B BANDIT FEEDBACK

Addressed in Neu, Gyorgy, Szepesvari and Antos (2010,2014):
replace r; by an unbiased estimator

re(x,a) B
‘U{LV (x’ Cl) H{(XtJ At) — (.'X', Cl)},

with g’ (x, a) = P[(X;, 4;) = (x, a)|[Hy—p]
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B BANDIT FEEDBACK

Addressed in Neu, Gyorgy, Szepesvari and Antos (2010,2014):
replace r; by an unbiased estimator

e(00) yex, A = (o)
.ut (X, (l)

with M{“V(xJ Cl) — ]P)[(XtﬁAt) — (x, a)l}[t—N]

fe(x,a) =

Assumption:



ALGORITHMS FOR MDPS WITH
ADVERSARIAL REWARDS

Local-to-global regret Reduction to online

decomposition linear optimization
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stationarized regret = regret in an OLO problem!
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Bl ONLINE LINEAR OPTIMIZATION

stationarized regret = regret in an OLO problem!

T
z<.u* — Ut rt>
t=1

Algorithm idea:
run an OLO algorithm with the set of all
stationary distributions as decision set!

U = {u € At Y B(x@) = Y PGl a)pux a')}
a x" a’



B ONLINE MIRROR DESCENT

*|n each round, update stationary distribution

1
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and extract policy m;,;(a|x) < pus+1(x, a)
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1
Her1 = arg %{w, ) — ;D(Mlﬂt)}
and extract policy m;,;(a|x) < pus+1(x, a)

« Choosing the regularizer:

u(x,a)

v(x,a)

= “Online Relative Entropy Policy Search” (Zimin and Neu, 2013, Dick,
Gyorgy and Szepesvari, 2014)

* Relative entropy: D(u|v) = Xy q u(x,a) log

nu(alx)
1y (alx)
= “Regularized Bellman updates™ (Neu, Jonsson and Gomez, 2017)

» Conditional relative entropy: D(ulv) = X, o u(x, a) log
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*|n each round, update stationary distribution

1
Her1 = arg %{w, ) — ;D(Mlﬂt)}
and extract policy m;,;(a|x) < pus+1(x, a)

« Choosing the regularizer:

puix,aj

v(x,a)

= “Online Relative Entropy Policy Search” (Zimin and Neu, 2013, Dick,
Gyorgy and Szepesvari, 2014)

* Relative entropy: D(u|v) = Xy q u(x,a) log

n”(uix\}
1y (alx)
= “Regularized Bellman updates™ (Neu, Jonsson and Gomez, 2017)

» Conditional relative entropy: D(ulv) = X, o u(x, a) log



B THE ONLINE REPS ALGORITHM

O-REPS

Foreachroundt =1,2,...,T
Observe state X;
Take action A; ~ (- | X;)
Observe reward function r;
Calculate value functions as solution to

re(x@)+X, P(x'xa)V (x") -V (x)

minlog ¥ q e (x, a)e”

Update stationary distribution as
(rexa)+2,0 P(x'1xa)v (x") -V (x))

.ut+1(x1 Cl) — ,th(x, a)en

Algorithm inspired by Peters, Mulling and Altun (2010)



B THE ONLINE REPS ALGORITHM

O-REPS
Foreachroundt =1,2,...,T

Observe state X;
Take action A; ~ (- | X;)

Observe reward function r;
Calculate value functions as solution to

Update stationary distribution as
(rexa)+2,0 P(x'1xa)v (x") -V (x))

.ut+1(x1 Cl) — ,th(x, a)en

Algorithm inspired by Peters, Mulling and Altun (2010)



Bl GUARANTEES FOR O-REPS

Theorem
The regret of O-REPS satisfies

Regr = 0 (/7T log|XTAl)

Proof is based on standard OLO analysis.



B BANDIT FEEDBACK

Addressed in Zimin and Neu (2013) in
replace r; by an unbiased estimator

re(x,a)

qt (.X', (l)
with g, (x,a) = P|[(x, a) visited in episode t|H;_1]

r(x,a) = I{(x, a) visited in episode t},




B BANDIT FEEDBACK

Addressed in Zimin and Neu (2013) in episodic MDFs:
replace r; by an unbiased estimator
rt (x) a)

d¢ (X, Cl)
with g, (x, a) = P[(x, a) visited in episode t|H;_]

r(x,a) = I{(x, a) visited in episode t},




ALGORITHMS FOR MDPS WITH
ADVERSARIAL REWARDS

Local-to-global regret Reduction to online

decomposition linear optimization




Which one
ﬁc should | use?

ALGORITHMS FOR MDPS WITH
ADVERSARIAL REWARDS

Local-to-global regret Reduction to online

decomposition linear optimization




B COMPARISON OF GUARANTEES

MDP-E * O-REPS
Full information J 13T log| Al JTT log| X || Al
Bandit feedback JT3|A|T log|Al /B 7?7
Full information
(episodic case) HZ\/T log|A| H\/T log|X||A| ‘
Bandit feedback
(episodic case) Hz\/ldqlTlogl‘ﬂl/:B \/H|X||a‘l|T10g|X||cﬂ|



B COMPARISON OF GUARANTEES

MDP-E * O-REPS
Full information J 13T log| Al JTT log| X || Al
Bandit feedback JT3|A|T log|Al /B 7?7
Full information
(episodic case) Hz\/T log|A| H\/T log|X||A| ‘
Bandit feedback
(episodic case) Hz\/|c/‘l|T10g|cfl|/IB \/H|X||a‘l|T10g|X||Jl|

+ MDP-E works well with
function approximation
for Q-function
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MDP-E only needs a good approximation of the action-value
function Q; = Q™t to define its policy

mes1(al) o< exp (n D 0, a>)
k=1




MDP-E WITH
FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value
function Q; = Q™t to define its policy

e (alx) o exp< Z 0, a>)

* POLITEX (Abbasi-Yadkori et al. 2019)
use LSPE to estimate Q™t W|th linear FA

regret = O(T3/* + ¢,T)

* OPPO (Cai et al., 2019)
use LSPE to estimate Q™t with linear FA

regret = 0(VT)




MDP-E WITH
FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value
function Q, = Q™t to define its policy

t
mes1(al) o< exp (n D 0, a>)
=1

™ / A 1 1 LI Y 4 (M | L] 4 [ | N\ 7\ 4




Bl O-REPS WITH UNCERTAIN MODELS

O-REPS can easily accommodate uncertainties in the transition
model by extending the decision set:
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Bl O-REPS WITH UNCERTAIN MODELS

O-REPS can easily accommodate uncertainties in the transition
model by extending the decision set:

U = {M E AXXA:Zu(x, a) = z P(x|x',a)u(x',a"),P € ?}
a x'a'

Confidence set of
UC-O-REPS by Rosenberg and Mansour (2019) transition models

Extended to bandit feedback by Jin et al. (2020):
Tt (x) a)

u(x, a)
with u;(x,a) > q;(x,a) = P[(x, a) visited in episode t|H;_,] w.h.p.

r(x,a) = I{(x, a) visited in episode t},



OUTLOOK
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* Open problems:
* Lower bounds? Right scaling with t? Is uniform mixing necessary?
* Large state spaces and function approximation?
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Bl OUTLOOK

* Open problems:
* Lower bounds? Right scaling with t? Is uniform mixing necessary?
* Large state spaces and function approximation?

* Online learning algorithms are Main tool:
« Better understanding of regularization tools = better algorithms!
« Remember: TRPO = MDP-E!
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