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MARKOV DECISION PROCESSES

EnvironmentLearner
(“Agent”)

State 𝑋!

Action 𝐴!

Reward 
functionReward 𝑅!

•Learner: 
• Observe state 𝑋!, choose action 𝐴!
• Obtain reward 𝑟 𝑋!, 𝐴!

•Environment: Draw next state 𝑋!"# ∼ 𝑃 ⋅ 𝑋! , 𝐴!
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EnvironmentLearner
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State 𝑋!

Action 𝐴!

Reward 
functionReward 𝑅!

Adversary•Learner: 
• Observe state 𝑋!, choose action 𝐴!
• Obtain reward 𝑟 𝑋!, 𝐴! 𝑟! 𝑋!, 𝐴!
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ADVERSARIAL
MARKOV DECISION PROCESSES

EnvironmentLearner
(“Agent”)

State 𝑋!

Action 𝐴!

Reward 
functionReward 𝑅!

Adversary•Learner: 
• Observe state 𝑋!, choose action 𝐴!
• Obtain reward 𝑟 𝑋!, 𝐴! 𝑟! 𝑋!, 𝐴!

•Environment: Draw next state 𝑋!"# ∼ 𝑃 ⋅ 𝑋! , 𝐴! 𝑃! ⋅ 𝑋! , 𝐴!

This lecture:
what is achievable when an 

external adversary is allowed 
to change the reward function 

and the transition function 
over time?



PERFORMANCE MEASURE: REGRET

Regret

ℜ𝔢𝔤! 𝜋 =&
"#$

!

𝔼 𝑟" 𝑋"∗, 𝜋 𝑋"∗ − 𝑟" 𝑋" , 𝐴" ,

where 𝑋$∗, 𝑋&∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃$, 𝑃&, …



PERFORMANCE MEASURE: REGRET

Regret

ℜ𝔢𝔤! 𝜋 =&
"#$

!

𝔼 𝑟" 𝑋"∗, 𝜋 𝑋"∗ − 𝑟" 𝑋" , 𝐴" ,

where 𝑋$∗, 𝑋&∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃$, 𝑃&, …
Goal: sublinear regret 

lim
$→&

max
'

ℜ𝔢𝔤$ 𝜋
𝑇

= 0



OUTLINE

• Hardness results
• Non-oblivious adversaries
• Arbitrarily changing dynamics

• Arbitrarily changing reward functions
• Some common ideas
• Two algorithm families



SOME HARDNESS RESULTS
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NON-OBLIVIOUS ADVERSARIES
Non-oblivious adversary: 

can take history ℋ! = 𝑋! , 𝐴!(#, 𝑋!(#, 𝐴!(), …
into account when selecting 𝑟! and 𝑃!

Theorem 
(Yu, Mannor and Shimkin, 2009)

No algorithm can guarantee sublinear regret 
against a non-oblivious adversary



Simple counterexample by Yu, Mannor and Shimkin (2009):

PROOF
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Simple counterexample by Yu, Mannor and Shimkin (2009):
•Reward is function of state
•𝑟! default = 0
•𝑟! left = 1 if 𝐴!(# = right
•𝑟! right = 1 if 𝐴!(# = left

PROOF

𝑟! 𝑋! = 0 for all 𝑡!



Simple counterexample by Yu, Mannor and Shimkin (2009):
•Reward is function of state
•𝑟! default = 0
•𝑟! left = 1 if 𝐴!(# = right
•𝑟! right = 1 if 𝐴!(# = left
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Simple counterexample by Yu, Mannor and Shimkin (2009):
•Reward is function of state
•𝑟! default = 0
•𝑟! left = 1 if 𝐴!(# = right
•𝑟! right = 1 if 𝐴!(# = left

PROOF

𝑟! 𝑋! = 0 for all 𝑡!
But there is a policy 𝜋 with 

𝔼 ∑! 𝑟! 𝑋!∗, 𝜋 𝑋!∗ ≥ #
)
− 𝑝 𝑇

Either 𝜋 1 = left or 𝜋 1 = right

ℜ𝔢𝔤! 𝜋 ≥
1
2
− 𝑝 𝑇



OBLIVIOUS ADVERSARIES
Non-oblivious adversary: 

can take history ℋ! = 𝑋! , 𝐴!(#, 𝑋!(#, 𝐴!(), …
into account when selecting 𝑟! and 𝑃!



OBLIVIOUS ADVERSARIES

Adversary
Oblivious adversary: 

cannot take history ℋ! into account when 
selecting 𝑟! and 𝑃!
“Adversary ≈ nature”: 

it can (mis)behave arbitrarily, but doesn’t 
care about what you do



OBLIVIOUS ADVERSARIES

Adversary
Oblivious adversary: 

cannot take history ℋ! into account when 
selecting 𝑟! and 𝑃!
“Adversary ≈ nature”: 

it can (mis)behave arbitrarily, but doesn’t 
care about what you do

Can we guarantee 
sublinear regret now?



Learning against an oblivious adversary can still be 
computationally hard when the 

transition function is allowed to change!

LEARNING WITH CHANGING 
TRANSITIONS IS HARD

Theorem
(Abbasi-Yadkori et al., 2013)

There is an adversarial MDP where achieving 
sublinear regret is computationally hard.



• Idea: learning of noisy parities can be formulated 
as an MDP with changing transition functions & 
rewards!

•𝑂 poly 𝑛 𝑇#(+ regret ⇒ 𝑂 ,-./ 0
1!/#

excess risk, 
conjectured to be computationally hard to achieve

•Construction: an instance 𝑥 ∈ 0,1 0 corresponds 
to a deterministic transition graph with rewards 
determined by the label 𝑦

PROOF CONSTRUCTION



• Idea: learning of noisy parities can be formulated 
as an MDP with changing transition functions & 
rewards!

•𝑂 poly 𝑛 𝑇#(+ regret ⇒ 𝑂 ,-./ 0
1!/#

excess risk, 
conjectured to be computationally hard to achieve

•Construction: an instance 𝑥 ∈ 0,1 0 corresponds 
to a deterministic transition graph with rewards 
determined by the label 𝑦

PROOF CONSTRUCTION

Corresponds to an oblivious 
adversary that picks 𝑃! , 𝑟! jointly!



Very recent work by Gajane et al. (2019), Cheung et al. (2020):
•define reward and transition variation as

𝑉$2 =O
!3#

$

max
4,6

𝑟! 𝑥, 𝑎 − 𝑟!"# 𝑥, 𝑎

𝑉$7 =O
!3#

$

max
4,6

𝑃! ⋅ 𝑥, 𝑎 − 𝑃!"# ⋅ 𝑥, 𝑎 #

• regret bounds of 𝑂 𝑉$7 + 𝑉$2 #/9𝑇)/9 are possible
•algorithm: UCRL + forgetting old data

SLOWLY CHANGING MDPS



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS



WHERE IT ALL STARTED…

NeurIPS 2005

Math of OR 2009



FORMAL PROTOCOL
Online learning in a fixed MDP
For each round 𝑡 = 1,2, … , 𝑇

• Learner observes state 𝑋! ∈ 𝒳

• Learner takes action 𝐴! ∈ 𝒜
• Adversary selects reward function 𝑟!: 𝒳×𝒜 → 0,1
• Learner earns reward 𝑅! = 𝑟! 𝑋! , 𝐴!
• Learner observes feedback

• Full information: 𝑟!
• Bandit feedback: 𝑅!

• Environment produces new state 𝑋!"# ∼ 𝑃 ⋅ 𝑋! , 𝐴!



FORMAL PROTOCOL
Online learning in a fixed MDP
For each round 𝑡 = 1,2, … , 𝑇

• Learner observes state 𝑋! ∈ 𝒳
• Learner selects stochastic policy 𝜋!
• Learner takes action 𝐴! ∼ 𝜋! ⋅ 𝑋!
• Adversary selects reward function 𝑟!: 𝒳×𝒜 → 0,1
• Learner earns reward 𝑅! = 𝑟! 𝑋! , 𝐴!
• Learner observes feedback

• Full information: 𝑟!
• Bandit feedback: 𝑅!

• Environment produces new state 𝑋!"# ∼ 𝑃 ⋅ 𝑋! , 𝐴!

Stochastic policy: 𝜋 𝑎 𝑥 = ℙ 𝐴! = 𝑎 𝑋! = 𝑥



Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES
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…

NB this graph is accurate for full information feedback; bandit is a bit more complicated
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Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES

𝜋!

𝑟!(#

𝜋!"#

𝑟!

𝜋!")

𝑟!"#

…

Study this part first, 
worry about the rest later

“Pretend that every policy reaches its stationary distribution immediately!”

Def: stationary distribution of policy 𝜋:
𝜇' 𝑥, 𝑎 = lim

:→&

#
:
∑;3#: 𝕀 <$34,=$36

Assumption: 1-step mixing ∀𝜋
𝜈 − 𝜈> 𝑃' # ≤ 𝑒(#/? 𝜈 − 𝜈> #



•Define 
𝜈!(𝑥, 𝑎) = ℙ 𝑋! = 𝑥, 𝐴! = 𝑎 and 𝜈!∗(𝑥, 𝑎) = ℙ 𝑋!∗ = 𝑥, 𝐴!∗ = 𝑎
𝜇! = 𝜇'%, stationary distribution induced by policy 𝜋!
𝜇∗ = 𝜇'∗, stationary distribution induced by policy 𝜋∗

REGRET DECOMPOSITION



•Define 
𝜈!(𝑥, 𝑎) = ℙ 𝑋! = 𝑥, 𝐴! = 𝑎 and 𝜈!∗(𝑥, 𝑎) = ℙ 𝑋!∗ = 𝑥, 𝐴!∗ = 𝑎
𝜇! = 𝜇'%, stationary distribution induced by policy 𝜋!
𝜇∗ = 𝜇'∗, stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤$ 𝜋∗ =O
!3#

$

𝔼 𝑟! 𝑋!∗, 𝜋∗ 𝑋!∗ − 𝑟! 𝑋! , 𝐴! =O
!3#

$

⟨𝜈!∗ − 𝜈! , 𝑟!⟩

REGRET DECOMPOSITION



•Define 
𝜈!(𝑥, 𝑎) = ℙ 𝑋! = 𝑥, 𝐴! = 𝑎 and 𝜈!∗(𝑥, 𝑎) = ℙ 𝑋!∗ = 𝑥, 𝐴!∗ = 𝑎
𝜇! = 𝜇'%, stationary distribution induced by policy 𝜋!
𝜇∗ = 𝜇'∗, stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤$ 𝜋∗ =O
!3#

$

𝔼 𝑟! 𝑋!∗, 𝜋∗ 𝑋!∗ − 𝑟! 𝑋! , 𝐴! =O
!3#

$

⟨𝜈!∗ − 𝜈! , 𝑟!⟩

=O
!3#

$

𝜈!∗ − 𝜇∗, 𝑟! +O
!3#

$

𝜇∗ − 𝜇! , 𝑟! +O
!3#

$

𝜇! − 𝜈! , 𝑟!

REGRET DECOMPOSITION



•Define 
𝜈!(𝑥, 𝑎) = ℙ 𝑋! = 𝑥, 𝐴! = 𝑎 and 𝜈!∗(𝑥, 𝑎) = ℙ 𝑋!∗ = 𝑥, 𝐴!∗ = 𝑎
𝜇! = 𝜇'%, stationary distribution induced by policy 𝜋!
𝜇∗ = 𝜇'∗, stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤$ 𝜋∗ =O
!3#

$

𝔼 𝑟! 𝑋!∗, 𝜋∗ 𝑋!∗ − 𝑟! 𝑋! , 𝐴! =O
!3#

$

⟨𝜈!∗ − 𝜈! , 𝑟!⟩

=O
!3#

$

𝜈!∗ − 𝜇∗, 𝑟! +O
!3#

$

𝜇∗ − 𝜇! , 𝑟! +O
!3#

$

𝜇! − 𝜈! , 𝑟!

REGRET DECOMPOSITION

“stationarized regret”



•Define 
𝜈!(𝑥, 𝑎) = ℙ 𝑋! = 𝑥, 𝐴! = 𝑎 and 𝜈!∗(𝑥, 𝑎) = ℙ 𝑋!∗ = 𝑥, 𝐴!∗ = 𝑎
𝜇! = 𝜇'%, stationary distribution induced by policy 𝜋!
𝜇∗ = 𝜇'∗, stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤$ 𝜋∗ =O
!3#

$

𝔼 𝑟! 𝑋!∗, 𝜋∗ 𝑋!∗ − 𝑟! 𝑋! , 𝐴! =O
!3#

$

⟨𝜈!∗ − 𝜈! , 𝑟!⟩

=O
!3#

$

𝜈!∗ − 𝜇∗, 𝑟! +O
!3#

$

𝜇∗ − 𝜇! , 𝑟! +O
!3#

$

𝜇! − 𝜈! , 𝑟!

REGRET DECOMPOSITION

“stationarized regret”“comparator drift” “learner drift”



•For the comparator, fast mixing is guaranteed by assumption:

O
!3#

$

𝜈!∗ − 𝜇∗, 𝑟! ≤O
!3#

$

𝜈!∗ − 𝜇∗ # ≤O
!3#

$

𝑒(!/? 𝜈#∗ − 𝜇∗ # ≤ 2𝜏 + 2

THE DRIFT TERMS



•For the comparator, fast mixing is guaranteed by assumption:

O
!3#

$

𝜈!∗ − 𝜇∗, 𝑟! ≤O
!3#

$

𝜈!∗ − 𝜇∗ # ≤O
!3#

$

𝑒(!/? 𝜈#∗ − 𝜇∗ # ≤ 2𝜏 + 2

•The other term is small if the policies change slowly:

THE DRIFT TERMS

Lemma
If max

4
𝜋! ⋅ 𝑥 − 𝜋!(# ⋅ 𝑥 # ≤ 𝜀 for all 𝑡, then

O
!3#

$

𝜇! − 𝜈! # ≤ 𝜏 + 1 )𝜀𝑇 + 2𝑒($/?

“𝜈! tracks 𝜇! if policies change slowly”



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS
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ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Reduction to online 
linear optimization

Local-to-global regret 
decomposition



• Idea by Even-Dar, Kakade and Mansour (2005,2009) based on 
the performance difference lemma:

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Lemma
Let 𝜋, 𝜋′ be two arbitrary policies, 𝑟 a reward 

function and 𝑄' be the (differential) value 
functions corresponding to 𝜋. Then,

𝜇'( − 𝜇' , 𝑟

=&
)

𝜇'((𝑥)&
*

𝜋( 𝑎 𝑥 − 𝜋 𝑎 𝑥 𝑄' 𝑥, 𝑎



Apply with 𝑟 = 𝑟!, 𝜋 = 𝜋! and 𝜋> = 𝜋∗:

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION



Apply with 𝑟 = 𝑟!, 𝜋 = 𝜋! and 𝜋> = 𝜋∗:

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋! with 
reward function 𝑟!



Apply with 𝑟 = 𝑟!, 𝜋 = 𝜋! and 𝜋> = 𝜋∗:

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

Stationarized regret can be written as:

O
!3#

$

𝜇∗ − 𝜇! , 𝑟 =O
!3#

$

O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋! with 
reward function 𝑟!



Apply with 𝑟 = 𝑟!, 𝜋 = 𝜋! and 𝜋> = 𝜋∗:

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

Stationarized regret can be written as:

O
!3#

$

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
!3#

$

O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋! with 
reward function 𝑟!



Apply with 𝑟 = 𝑟!, 𝜋 = 𝜋! and 𝜋> = 𝜋∗:

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

Stationarized regret can be written as:

O
!3#

$

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
!3#

$

O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Local regret in state 𝑥 with 
reward function 𝑄!(𝑥,⋅)

Q-function of 𝜋! with 
reward function 𝑟!



Apply with 𝑟 = 𝑟!, 𝜋 = 𝜋! and 𝜋> = 𝜋∗:

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

Stationarized regret can be written as:

O
!3#

$

𝜇∗ − 𝜇! , 𝑟 =O
4

𝜇∗(𝑥)O
!3#

$

O
6

𝜋∗ 𝑎 𝑥 − 𝜋! 𝑎 𝑥 𝑄! 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋! with 
reward function 𝑟!

Local regret in state 𝑥 with 
reward function 𝑄!(𝑥,⋅)

Algorithm idea:
run a local regret-minimization 
algorithm in each state 𝑥 with 

reward function 𝑄!(𝑥,⋅)!



THE MDP-EXPERT ALGORITHM
MDP-E
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋!
• Take action 𝐴! ∼ 𝜋!(⋅ |𝑋!)
• Observe reward function 𝑟!
• Calculate value functions as solution to
𝑄! 𝑥, 𝑎 = 𝑟! − 𝜇! , 𝑟! + ∑4>𝑃 𝑥> 𝑥, 𝑎 𝑉! 𝑥>

• For all 𝑥, feed 𝑄! 𝑥,⋅ to expert algorithm 𝔄𝔩𝔤 𝑥



THE MDP-EXPERT ALGORITHM
MDP-E
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋!
• Take action 𝐴! ∼ 𝜋!(⋅ |𝑋!)
• Observe reward function 𝑟!
• Calculate value functions as solution to
𝑄! 𝑥, 𝑎 = 𝑟! − 𝜇! , 𝑟! + ∑4>𝑃 𝑥> 𝑥, 𝑎 𝑉! 𝑥>

• For all 𝑥, feed 𝑄! 𝑥,⋅ to expert algorithm 𝔄𝔩𝔤 𝑥
• Example: 𝔄𝔩𝔤 = Exponential weights

𝜋!"# 𝑎 𝑥 ∝ 𝜋! 𝑎 𝑥 ⋅ 𝑒@A% 4,6



GUARANTEES FOR MDP-E
Theorem

(Even-Dar et al., 2009, Neu et al., 2014)
If 𝔄𝔩𝔤 𝑥 guarantees a regret bound of 𝐵$ for rewards 

bounded in 0,1 , the stationarized regret of MDP-E satisfies

O
!3#

$

𝜇∗ − 𝜇! , 𝑟 ≤ 𝜏𝐵$

Proof is obvious given the regret decomposition.
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If 𝔄𝔩𝔤 𝑥 guarantees a regret bound of 𝐵$ for rewards 

bounded in 0,1 , the stationarized regret of MDP-E satisfies

O
!3#

$

𝜇∗ − 𝜇! , 𝑟 ≤ 𝜏𝐵$

Theorem
If 𝔄𝔩𝔤 𝑥 =EWA, the regret of MDP-E satisfies

ℜ𝔢𝔤$ = 𝑂 𝜏9𝑇 log 𝒜

Proof is obvious given the regret decomposition.



Addressed in Neu, György, Szepesvári and Antos (2010,2014): 
replace 𝑟! by an unbiased estimator 

�̂�! 𝑥, 𝑎 =
𝑟! 𝑥, 𝑎
𝜇!B 𝑥, 𝑎

𝕀 𝑋! , 𝐴! = 𝑥, 𝑎 ,

with 𝜇!B 𝑥, 𝑎 = ℙ 𝑋! , 𝐴! = 𝑥, 𝑎 ℋ!(B

BANDIT FEEDBACK
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replace 𝑟! by an unbiased estimator 
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𝕀 𝑋! , 𝐴! = 𝑥, 𝑎 ,

with 𝜇!B 𝑥, 𝑎 = ℙ 𝑋! , 𝐴! = 𝑥, 𝑎 ℋ!(B

BANDIT FEEDBACK

Theorem
If 𝔄𝔩𝔤 𝑥 =EWA, the regret of MDP-Exp3 satisfies

ℜ𝔢𝔤$ = 𝑂 𝜏9𝑇 𝒜 log 𝒜 /𝛽

Assumption: 𝜇' 𝑥 ≥ 𝛽 for all 𝜋, 𝑥

Remember Exp3?



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization



Notice: stationarized regret = regret in an OLO problem!

O
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Notice: stationarized regret = regret in an OLO problem!

O
!3#

$

𝜇∗ − 𝜇! , 𝑟!

ONLINE LINEAR OPTIMIZATION

Algorithm idea:
run an OLO algorithm with the set of all 
stationary distributions as decision set!

𝒰 = 𝜇 ∈ Δ𝒳×𝒜 :O
6

𝜇 𝑥, 𝑎 = O
4',6'

𝑃 𝑥 𝑥>, 𝑎> 𝜇 𝑥>, 𝑎>



• In each round, update stationary distribution

𝜇!"# = argmax
F∈𝒰

𝜇, 𝑟! −
1
𝜂
𝐷 𝜇 𝜇!

and extract policy 𝜋!"# 𝑎 𝑥 ∝ 𝜇!"#(𝑥, 𝑎)

ONLINE MIRROR DESCENT
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F∈𝒰

𝜇, 𝑟! −
1
𝜂
𝐷 𝜇 𝜇!

and extract policy 𝜋!"# 𝑎 𝑥 ∝ 𝜇!"#(𝑥, 𝑎)
•Choosing the regularizer:

• Relative entropy: 𝐷 𝜇 𝜈 = ∑-,/ 𝜇 𝑥, 𝑎 log 0 -,/
1(-,/)

⇒ “Online Relative Entropy Policy Search” (Zimin and Neu, 2013, Dick, 
György and Szepesvári, 2014)

• Conditional relative entropy: 𝐷 𝜇 𝜈 = ∑-,/ 𝜇 𝑥, 𝑎 log 4! /|-
4"(/|-)

⇒ “Regularized Bellman updates” (Neu, Jonsson and Gómez, 2017)

ONLINE MIRROR DESCENT
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THE ONLINE REPS ALGORITHM
O-REPS
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋!
• Take action 𝐴! ∼ 𝜋!(⋅ |𝑋!)
• Observe reward function 𝑟!
• Calculate value functions as solution to
min
I
log∑4,6 𝜇! 𝑥, 𝑎 𝑒@ 2% 4,6 "∑(' 7(4

'|4,6)I(4')(I 4

• Update stationary distribution as
𝜇!"# 𝑥, 𝑎 = 𝜇! 𝑥, 𝑎 𝑒@ 2% 4,6 "∑(' 7(4

'|4,6)I(4')(I 4

Algorithm inspired by Peters, Mülling and Altün (2010)



THE ONLINE REPS ALGORITHM
O-REPS
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋!
• Take action 𝐴! ∼ 𝜋!(⋅ |𝑋!)
• Observe reward function 𝑟!
• Calculate value functions as solution to
min
I
log∑4,6 𝜇! 𝑥, 𝑎 𝑒@ 2% 4,6 "∑(' 7(4

'|4,6)I(4')(I 4

• Update stationary distribution as
𝜇!"# 𝑥, 𝑎 = 𝜇! 𝑥, 𝑎 𝑒@ 2% 4,6 "∑(' 7(4

'|4,6)I(4')(I 4

Algorithm inspired by Peters, Mülling and Altün (2010)

Unconstrained 
convex minimization



GUARANTEES FOR O-REPS

Theorem
(Zimin and Neu, 2013, Dick et al. 2014)

The stationarized regret of O-REPS satisfies

O
!3#

$

𝜇∗ − 𝜇! , 𝑟𝑡 ≤ 𝑇 log 𝒳 𝒜

Theorem
The regret of O-REPS satisfies
ℜ𝔢𝔤$ = 𝑂 𝜏𝑇 log 𝒳 𝒜

Proof is based on standard OLO analysis.



Addressed in Zimin and Neu (2013) in episodic MDPs: 
replace 𝑟! by an unbiased estimator 

�̂�! 𝑥, 𝑎 =
𝑟! 𝑥, 𝑎
𝑞! 𝑥, 𝑎

𝕀 𝑥, 𝑎 visited in episode 𝑡 ,

with 𝑞! 𝑥, 𝑎 = ℙ 𝑥, 𝑎 visited in episode 𝑡 ℋ!(#

BANDIT FEEDBACK



Addressed in Zimin and Neu (2013) in episodic MDPs: 
replace 𝑟! by an unbiased estimator 

�̂�! 𝑥, 𝑎 =
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𝑞! 𝑥, 𝑎

𝕀 𝑥, 𝑎 visited in episode 𝑡 ,

with 𝑞! 𝑥, 𝑎 = ℙ 𝑥, 𝑎 visited in episode 𝑡 ℋ!(#

BANDIT FEEDBACK

Theorem
If 𝔄𝔩𝔤 𝑥 =EWA, the regret of MDP-Exp3 satisfies

ℜ𝔢𝔤$ = 𝑂 𝐻 𝑇 𝒳 𝒜 log 𝒳 𝒜



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization

Which one 
should I use?



MDP-E O-REPS
Full information 𝜏9𝑇 log 𝒜 𝜏𝑇 log 𝒳 𝒜
Bandit feedback 𝜏9 𝒜 𝑇 log 𝒜 /𝛽 ???
Full information
(episodic case) 𝐻) 𝑇 log 𝒜 𝐻 𝑇 log 𝒳 𝒜

Bandit feedback
(episodic case) 𝐻) 𝒜 𝑇 log 𝒜 /𝛽 𝐻 𝒳 𝒜 𝑇 log 𝒳 𝒜

COMPARISON OF GUARANTEES
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Bandit feedback
(episodic case) 𝐻) 𝒜 𝑇 log 𝒜 /𝛽 𝐻 𝒳 𝒜 𝑇 log 𝒳 𝒜

COMPARISON OF GUARANTEES

+ MDP-E works well with 
function approximation 

for Q-function

+ O-REPS can easily 
handle model constraints 

and extensions



MDP-E only needs a good approximation of the action-value 
function x𝑄! ≈ 𝑄'% to define its policy

𝜋!"# 𝑎 𝑥 ∝ exp 𝜂O
;3#

!

x𝑄; 𝑥, 𝑎

•POLITEX (Abbasi-Yadkori et al., 2019):
use LSPE to estimate 𝑄'% with linear FA
regret = 𝑂(𝑇9/N + 𝜀O𝑇)

•OPPO (Cai et al., 2019)
use LSPE to estimate 𝑄'% with realizable linear FA
regret = 𝑂 𝑇

MDP-E WITH 
FUNCTION APPROXIMATION
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MDP-E only needs a good approximation of the action-value 
function x𝑄! ≈ 𝑄'% to define its policy

𝜋!"# 𝑎 𝑥 ∝ exp 𝜂O
;3#

!

x𝑄; 𝑥, 𝑎

•POLITEX (Abbasi-Yadkori et al., 2019):
use LSPE to estimate 𝑄'% with linear FA
regret = 𝑂(𝑇9/N + 𝜀O𝑇)

•OPPO (Cai et al., 2019)
use LSPE to estimate 𝑄'% with realizable linear FA
regret = 𝑂 𝑇

MDP-E WITH 
FUNCTION APPROXIMATION

+ MDP-E is essentially identical to the 
“Trust-Region Policy Optimization” (TRPO) 

algorithm of Schulman et al. (2015), as shown 
by Neu, Jonsson and Gómez (2017)!!!



O-REPS can easily accommodate uncertainties in the transition 
model by extending the decision set:

O-REPS WITH UNCERTAIN MODELS

𝒰 = 𝜇 ∈ Δ𝒳×𝒜 :O
6

𝜇 𝑥, 𝑎 = O
4',6'

𝑃 𝑥 𝑥>, 𝑎> 𝜇 𝑥>, 𝑎> , 𝑃 ∈ 𝒫
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O-REPS can easily accommodate uncertainties in the transition 
model by extending the decision set:

O-REPS WITH UNCERTAIN MODELS

𝒰 = 𝜇 ∈ Δ𝒳×𝒜 :O
6

𝜇 𝑥, 𝑎 = O
4',6'

𝑃 𝑥 𝑥>, 𝑎> 𝜇 𝑥>, 𝑎> , 𝑃 ∈ 𝒫

Confidence set of 
transition modelsUC-O-REPS by Rosenberg and Mansour (2019)

Extended to bandit feedback by Jin et al. (2020):
�̂�" 𝑥, 𝑎 =

𝑟" 𝑥, 𝑎
𝑢" 𝑥, 𝑎

𝕀 𝑥, 𝑎 visited in episode 𝑡 ,

with 𝑢" 𝑥, 𝑎 > 𝑞" 𝑥, 𝑎 = ℙ 𝑥, 𝑎 visited in episode 𝑡 ℋ"#$ w.h.p.
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•Open problems:
• Lower bounds? Right scaling with 𝜏? Is uniform mixing necessary?
• Large state spaces and function approximation?
• Practical algorithms?

OUTLOOK



•Open problems:
• Lower bounds? Right scaling with 𝜏? Is uniform mixing necessary?
• Large state spaces and function approximation?
• Practical algorithms?

OUTLOOK

Relevance to practice of RL?



•Open problems:
• Lower bounds? Right scaling with 𝜏? Is uniform mixing necessary?
• Large state spaces and function approximation?
• Practical algorithms?

OUTLOOK

Relevance to practice of RL?
• Online learning algorithms are robust! Main tool: regularization
• Better understanding of regularization tools ⇒ better algorithms!
• Remember: TRPO = MDP-E!
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