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Finite Horizon MDPs

Finite Horizon (or episodic) MDP

A finite horizon MDP M consists of
S, state space and A, action space
µ0, the initial state distribution
Horizon H: every episode terminates in exactly H steps
Transition dynamics st+1 ∼ Pst ,at

Reward distributions rt ∼ Rst ,at

Need to consider non-stationary policy π

π = (π1, . . . , πH)

Trajectory

s1 ∼ µ0, a1 ∼ π1(s1), r1 ∼ Rs1,a1 ,

s2 ∼ Ps1,a1 , a2 ∼ π2(s2), r2 ∼ Rs2,a2 ,

...

sH ∼ PsH−1,aH−1
, aH ∼ πH(sH−1), rH ∼ RsH ,aH
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Finite Horizon MDPs

Optimal policy

Value functions are now also indexed by time step within episode:

V π,h
M (s) = Eπ

M

[
H∑

t=h

rt

∣∣∣∣∣sh = s

]

Optimal policy π?M satisfies, for all s ∈ S, h ∈ {1, . . . ,H}:

V
π?

M ,h
M (s) = max

π
V π,h
M (s)

Will omit MDP M if it is fixed and clear from context
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Finite Horizon MDPs

DP equation for value functions of a policy

DP equations for finite horizon case

V π,h
M = Tπh

M V π,h+1
M , h = {1, 2, . . . ,H}

Base case is V π,H+1 = 0

Here the operator Tπ
M for a single stationary π is defined as usual:

Tπ
MV = RπM + PπMV
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Finite Horizon MDPs

Regret

Let’s say the agent interacts with a fixed but unknown finite horizon
MDP M for T steps

There are K = T/H episodes each of length H

Agent chooses policy π(k) at the start of episode k (based on
available data at that moment)

Regret in episode k

∆k =
∑
s∈S

µ0(s)(V π?,1(s)− V π(k),1(s))

Overall regret

Regret(T ; agent,M) =
K∑

k=1

∆k
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Posterior Sampling for Reinforcement Learning

Posterior Sampling: Per Episode Version

Also called Thompson Sampling because of [Tho33]

Tends to perform better than optimism based algorithms

Start with a prior distribution over MDPs

In every episode:

Use collected statistics to create a posterior distribution over MDPs
Sample an MDP from this posterior
Compute optimal policy for the sampled MDP
For time steps within the episode:

Choose actions according to the optimal policy for sampled MDP
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Posterior Sampling for Reinforcement Learning

Posterior Sampling: Per Time Step Version

Start with a prior distribution over MDPs

In every episode:
For time steps within the episode:

Use collected statistics to create a posterior distribution over MDPs
Sample an MDP from this posterior
Compute optimal policy for the sampled MDP
Choose actions according to the optimal policy for sampled MDP
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Posterior Sampling for Reinforcement Learning

Per Episode vs Per Time Step

Per time step version does worse, sometimes much worse, than per
episode version

Difference in performance increases as MDP size increases

Per episode version is also computationally more efficient

See [RVRK+18], Section 7.5 for details
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Posterior Sampling for Reinforcement Learning

Bayesian Regret

Note that worst-case (or frequentist) regret bounds are of the form

sup
M∈M

Regret(T ; agent,M)

for some class M of MDPs

It is easier to analyze Bayesian regret of posterior sampling

EM∼f [Regret(T ; agent,M)]

Here f is the prior distribution over MDPs
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Posterior Sampling for Reinforcement Learning

Posterior Sampling for RL (PSRL)

Input: Prior distribution f

t ← 1

For episodes k = 1, 2, . . . do
sample M̃k ∼ f (·|H<k)

compute π̃(k) = π?
M̃k

For timesteps h = 1, . . . ,H do

choose action at = π̃
(k)
h (st)

observe rt and st+1

t ← t + 1

For more details see original paper [ORR13]
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PSRL Regret Analysis

A Crucial Observation

(Bayesian) regret analysis of PS rests on a simple but crucial
observation

Let H<k be the history of all observations available at the start of
episode k

E
[
g(M̃k)|H<k

]
= E [g(M)|H<k ]

for any g(·) measurable w.r.t. H<k

The sampled MDP M̃k (observed) has the same distribution as the
true MDP M (unobserved)!
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PSRL Regret Analysis

Regret Equivalence

Recall per-episode regret

∆k =
∑
s∈S

µ0(s)(V π?,1
M (s)− V π(k),1

M (s))

Consider its proxy

∆̃k =
∑
s∈S

µ0(s)(V π(k),1

M̃
(s)− V π(k),1

M (s))

Note that by our crucial observation

E
[
∆k − ∆̃k

∣∣∣H<k

]
= E

[∑
s∈S

µ0(s)(V π?,1
M (s)− V π(k),1

M̃
(s))

∣∣∣∣∣H<k

]
= 0
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PSRL Regret Analysis

Bounding the Proxy Regret

So we will focus on bounding

E[∆̃k ] = E[
∑
s∈S

µ0(s)(V π(k),1

M̃
(s)− V π(k),1

M (s))]

= E[V π(k),1

M̃
(stk+1)− V π(k),1

M (stk+1)]

Recall DP equations for finite horizon case (with V π,H+1 = 0 as base
case)

V π,h
M = Tπh

M V π,h+1
M , h = {1, 2, . . . ,H}

where the operator Tπ
M for a single stationary π is defined as usual:

Tπ
MV = RπM + PπMV
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PSRL Regret Analysis

Towards the Key Recursion

refer to states within the episodes as s1, s2, . . . instead of stk+1, stk+2, . . .
denote the non-stationary policy π(k) in episode k as π̃

V π̃,1

M̃
− V π̃,1

M = T π̃1
M̃
V π̃,2

M̃
− T π̃1

M V π̃,2
M

= T π̃1
M̃
V π̃,2

M̃
− T π̃1

M V π̃,2

M̃
+ T π̃1

M V π̃,2

M̃
− T π̃1

M V π̃,2
M

= (T π̃1
M̃
− T π̃1

M )V π̃,2

M̃
+ T π̃1

M (V π̃,2

M̃
− V π̃,2

M )

= (T π̃1
M̃
− T π̃1

M )V π̃,2

M̃
+ P π̃1M (V π̃,2

M̃
− V π̃,2

M )

Therefore,

e>s1(V π̃,1

M̃
− V π̃,1

M ) = e>s1(T π̃1
M̃
− T π̃1

M )V π̃,2

M̃
+ e>s1P

π̃1
M (V π̃,2

M̃
− V π̃,2

M )

13



PSRL Regret Analysis

Key Recursion

e>s1(V π̃,1

M̃
− V π̃,1

M ) = e>s1(T π̃1
M̃
− T π̃1

M )V π̃,2

M̃
+ e>s1P

π̃1
M (V π̃,2

M̃
− V π̃,2

M )

= e>s1(T π̃1
M̃
− T π̃1

M )V π̃,2

M̃
+ e>s2(V π̃,2

M̃
− V π̃,2

M )

+ (e>s1P
π̃1
M − e>s2)(V π̃,2

M̃
− V π̃,2

M )︸ ︷︷ ︸
mean zero given M, M̃

We have therefore set up the key recursion

E
[
e>s1(V π̃,1

M̃
− V π̃,1

M )
∣∣∣M, M̃

]
= E

[
e>s1(T π̃1

M̃
− T π̃1

M )V π̃,2

M̃

∣∣∣M, M̃
]

+ E
[
e>s2(V π̃,2

M̃
− V π̃,2

M )
∣∣∣M, M̃

]
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PSRL Regret Analysis

Unrolling the Recursion

Unrolling the key recursion gives

E
[
∆̃k

∣∣∣M, M̃
]

= E
[
e>s1(V π̃,1

M̃
− V π̃,1

M )
∣∣∣M, M̃

]
= E

[
H∑

h=1

e>sh(T π̃h
M̃
− T π̃h

M )V π̃,h+1

M̃

∣∣∣∣∣M, M̃

]
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PSRL Regret Analysis

Enter Confidence Sets

Let P̂k and R̂k be empirical estimates of the transition and reward function
at the start of episode k
Similar to UCRL2 analysis (but now confidence sets are only in the
analysis, not in the algorithm!), define Mk as the set of all MDPs M ′ such
that ∀s, a,

‖PM′(·|s, a)− P̂k(·|s, a)‖1 ≤ βk(s, a)

|RM′(s, a)− R̂k(s, a)| ≤ βk(s, a)

where

βk(s, a) = O

(√
S log(SAK )

1 ∨ Ntk (s, a)

)
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PSRL Regret Analysis

Confidence Set Failure Probability

Can easily show that
E[1(M /∈Mk )] ≤ 1/K

Note that Mk is H<k -measurable which, using the crucial observation
again, gives

E[1(M̃k /∈Mk)] ≤ 1/K
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PSRL Regret Analysis

Sum up Regret over Episodes

Now we sum up regrets over all episodes

E

[
K∑

k=1

∆̃k

]
= E

[
K∑

k=1

∆̃k1(M,M̃k∈Mk)

]
+ E

[
K∑

k=1

∆̃k1(M or M̃k /∈Mk)

]

≤ E

[
K∑

k=1

∆̃k1(M,M̃k∈Mk)

]
+ H

K∑
k=1

2E[1(M /∈Mk )]

= E

[
K∑

k=1

E
[
∆̃k

∣∣∣M, M̃
]
1(M,M̃k∈Mk)

]
+ 2H

Recall that we proved that

E
[
∆̃k

∣∣∣M, M̃
]

= E

[
H∑

h=1

e>stk+h
(T

π̃
(k)
h

M̃k
− T

π̃
(k)
h

M )V π̃(k),h+1

M̃k

∣∣∣∣∣M, M̃k

]
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PSRL Regret Analysis

DP Operators Concentrate

On the event M, M̃k ∈Mk , the two MDPs are close

Therefore T
π̃
(k)
h

M̃k
and T

π̃
(k)
h

M are also close

Also, value function cannot exceed H (rewards are bounded)

E

[∑
k

∆̃k

]
≤ E

[∑
k

H∑
h=1

|e>stk+h
(T

π̃
(k)
h

M̃k
− T

π̃
(k)
h

M )V π̃(k),h+1

M̃k
|1(M,M̃k∈Mk)

]
+ 2H

≤ H
∑
k

H∑
h=1

βk(stk+h, atk+h)︸ ︷︷ ︸
contributes Õ(

√
S ·
√
SAT )

+ 2H

19



PSRL Regret Analysis

Bayesian Regret Bound for Posterior Sampling

Theorem (from [ORR13])

The Bayesian regret of PSRL in an H horizon problem with bounded
rewards is at most Õ(HS

√
AT ).
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PSRL Regret Analysis

Regret Analysis of Posterior Sampling: Non-episodic case

There is a subtlety in the extension of this analysis to the non-episodic
case (where we compete against the average reward optimal policy)

At the start of the episode

E [ρ̃k |H<k ] = E [ρ?|H<k ]

However, the length of episode k may not be measurable w.r.t. H<k

(see [OVR16] for explanation of this subtlety)

Redefining the stopping criterion in posterior sampling allows us to
prove Bayesian regret bounds [OGNJ17]

Frequentist aka worst-case regret analysis more difficult and still not
fully resolved in the non-episodic setting
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PSRL Regret Analysis

Summary

Posterior sampling replaces optimism with sampling (from the
posterior)

Bayesian regret analysis relies on the equality of the distributions of
the true and the sampled MDPs

Confidence intervals still needed but only in the analysis

Worst-case/frequentist analysis is technically more challenging

Works better than optimism in practice (see [OVR17] for more
discussion)
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