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MDPs with Unknown Parameters

Methods such as value iteration and policy iteration work when
parameters of MDP are completely known.

What if these are unknown but need to be inferred via simulation?

That is the difference between MDPs and RL.
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Temporal Difference Learning One-Step TD Learning

An Explicit Formula for the Value Function

Suppose Xt = xi , the state of interest. An “explicit” formula for V (xi ) is

V (xi ) = E

[ ∞∑
τ=0

γτRt+τ+1|Xt = xi

]
,

where
Rt+τ+1 = R(Xt+τ ,Ut+τ )

is the reward, but paid at time t + τ + 1.
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Temporal Difference Learning One-Step TD Learning

An Implicit Formula for the Value Function

Now the explicit formula can be expanded as

V (xi ) = Rt+1 + E

[ ∞∑
τ=1

γτRt+τ+1|Xt = xi

]
.

This can now be rewritten as a recursion:

V (xi ) = Rt+1 + γE [V (Xt+1)|Xt = xi ] . (1)
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Temporal Difference Learning One-Step TD Learning

Monte Carlo Estimate Revisited

Given the sample path {(Xt ,Ut ,Wt+1)}Tt=0, the quantity

V̂ (xi ) =
T−t∑
τ=0

γτWt+τ+1

provides an approximation to V (xi ).

Disadvantage: We must wait for a complete episode to generate this
estimate.

Is there an alternative?
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Temporal Difference Learning One-Step TD Learning

The Temporal Difference

Write the implicit equation for V as

V (Xt) ∼ Rt+1 + γV (Xt+1),

where the symbol ∼ denotes that the random variables on both sides of
the formula are the same. So, if v̂ ∈ Rn is a current guess for the value
vector at time t, then we can take V̂ (Xt) as a proxy for V (Xt), Wt+1 as a
proxy for Rt+1, and V̂ (Xt+1) as a proxy for V (Xt+1), and define the
temporal difference

δt+1 = Wt+1 + γV̂t(Xt+1)− V̂t(Xt).
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Temporal Difference Learning One-Step TD Learning

Interpretation of the Temporal Difference

Recall
δt+1 = Wt+1 + γV̂t(Xt+1)− V̂t(Xt),

If v̂t = v, the true value vector, then

E [δt+1|Xt = xi ] = E [Wt+1 + γV̂ (Xt+1)− V̂ (Xt)|Xt = xi ] = 0.

So δt+1 gives a measure of how erroneous the estimate V̂ (xi ) is. But it
does not tell us how far off the estimates V̂ (xj), xj 6= xi are.
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Temporal Difference Learning One-Step TD Learning

Temporal Difference Learning

Select a sequence of step sizes {αt}t≥0 beforehand. Start off iterations
with v̂ = 0.

In terms of programming, TD update is very simple:

V̂ (Xt) = V̂ (Xt) + αt(Wt+1 + γV̂ (Xt+1)− V̂t(Xt))

For analysis, at time t, define the TD error:

δt+1 = Wt+1 + γV̂t(Xt+1)− V̂t(Xt),

and update v̂t as follows:

V̂t+1(xj) =

{
V̂t(xj) + αtδt+1 if Xt = xj ,

V̂t(xj), otherwise.
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Temporal Difference Learning One-Step TD Learning

Convergence of Temporal Difference Learning

See Section 2.1.1 of the book by Csaba Szepesvári.

Theorem

If all states are visited infinitely often and we select step size satisfying the
Robbins-Monro conditions

∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞.

Then the estimated value vector v̂t converges to the true value vector v
almost surely.
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Temporal Difference Learning One-Step TD Learning

Advantages of Temporal Difference Learning

V̂ is updated at each time step.

Bootstrapping: Current estimate is based on previous estimate.

Markov process need not have any absorbing states.

If there are absorbing states, even partial episodes are useful.
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Temporal Difference Learning One-Step TD Learning

Relationship to Monte Carlo Return

The Monte Carlo return over an episode can be expressed as a sum of
temporal differences. Define

Gt :=
T−t∑
τ=0

γτWt+τ+1

to be the total return over an episode starting at time t and ending at T .
Then Gt satisfies the recursion

Gt = Wt+1 + γGt+1.
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Temporal Difference Learning One-Step TD Learning

Relationship to Monte Carlo Return (Cont’d)

So we can write

Gt − V̂ (Xt) = Wt+1 + γGt+1 − V̂ (Xt)

= Wt+1 + γGt+1 − V̂ (Xt)− γV̂ (Xt+1) + γV̂ (Xt+1)

= δt + γ(Gt+1 − V̂ (Xt+1)).

Now repeat until the end of the episode, when both GT+1 and V̂ (XT+1)
are zero (because XT is an absorbing state). This leads to

Gt − V̂ (Xt) =
T−t∑
τ=0

γτδt+τ .

Note: We assumed here that V̂ is not updated during the episode
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Temporal Difference Learning One-Step TD Learning

MC vs TD

Book by Csaba Szepesvári shows two examples in Section 2.1.2 one in
which MC is slower to learn whereas in the other TD is slower (but only
for a specific state)

When comparing TD and MC methods, Sutton & Barto (2nd ed) state:
“At the current time this is an open question in the sense that no one has
been able to prove mathematically that one method converges faster than
the other. In fact, it is not even clear what is the most appropriate formal
way to phrase this question!”
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Temporal Difference Learning Multi-Step TD Learning

Multi-Step TD Learning: Philosophy

Define the return

G t+l
t :=

l−1∑
τ=0

γtRt+τ+1.

Then with l = 1 we get

G t+l
t = Gt = Rt+1.

Easy to verify that

V (Xt) ∼ G t+l
t + γ lV (Xt+l).

(Analog of one-step recursion). Can we use this to define a “multi-step”
temporal difference?
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Temporal Difference Learning Multi-Step TD Learning

Multi-Step Temporal Difference

If v̂ = v, the true value vector, then

E [G t+l
t + γ l V̂ (Xt+l)− V̂ (Xt)|Xt = xi ] = 0.

Let us define
δlt+1 := G t+l

t + γ l V̂ (Xt+l)− V̂ (Xt).

Then we can think of δlt+1 as an l-step temporal difference.
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Temporal Difference Learning Multi-Step TD Learning

Multi-Step TD Updating Rule

V̂t+1(xj) =

{
V̂t(xj) + αtδ

l
t+1 if Xt = xj ,

V̂t(xj), otherwise.

Advantages?
Convergence Analysis?
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Temporal Difference Control SARSA

Outline

1 Temporal Difference Learning

One-Step TD Learning

Multi-Step TD Learning

2 Temporal Difference Control

SARSA

Q-Learning

Ambuj Tewari (UMich) STATS 701: TD methods Winter 2021 22 / 33



Temporal Difference Control SARSA

SARSA: On-Policy Control

SARSA = State, Action, Reward, State, Action

Once a policy π is fixed, the associated state sequence {Xt} is a
Markov process.

So is the process {(Xt ,Ut)} (even if π ∈ Πp).

The associated action-value function Qπ : X × U → R can be viewed
as a “reward” on the joint Markov process{(Xt ,Ut)}.
It satisfies the recursion

Qπ(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij Qπ(xj , π(xj)) if π ∈ Πd

= R(xi , uk) + γE [Qπ(Xt+1, π(Xt+1))|(Xt ,Ut) = (xi , uk)].

It can be learned using a TD scheme just we can learn Vπ.
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Temporal Difference Control SARSA

Estimating Qπ for a Specific Policy

Given a sample path {(Xt ,Ut ,Wt+1)}t≥0.

Start with some initial guess for Q̂π.

If Q̂π is exact, then

E [Rt+1 + γQ̂π(Xt+1, π(Xt+1))− Q̂π(Xt ,Ut)|Xt ,Ut ] = 0.

Update the guess according to

Q̂π(Xt ,Ut)← Q̂π(Xt ,Ut) + αt [Wt+1 + γQ̂π(Xt+1,Ut+1)− Q̂π(Xt ,Ut)].

for the current pair (Xt ,Ut); do not adjust Q̂π for other pairs.

Reduce αt to zero.

This converges to Qπ if every pair (xi , uk) is visited infinitely often.
(This requires that π(xi |uk) > 0 for all (xi , uk).)
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Temporal Difference Control SARSA

Converging to an Optimal Policy

We can in parallel update the policy π using an ε-greedy approach on the
current policy, as before: Define

k∗ = arg min
uk∈U

Q̂π(xi , uk), ψ(xi ) = uk∗ ,

φ(uk |xi ) =

{
ε
|U| k 6= k∗

ε
|U| + (1− ε) k = k∗.

All policies are functions of t.

Reduce ε to zero over time. Then perhaps φ→ π∗ and Q̂ → Q∗ as
t →∞.
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Temporal Difference Control Q-Learning
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Temporal Difference Control Q-Learning

Reprise: The Action-Value Function

Recall the action-value function Q : X × U → R:

Qπ(xi , uk) := Eπ

[ ∞∑
t=0

γtRπ(Xt)|X0 = xi ,U0 = uk

]
.

Q satisfies the recursion

Qπ(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij Qπ(xj , π(xj)).

The optimal function Q∗ satisfies the recursion

Q∗(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij max
wl∈U

Q∗(xj ,wl).
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Temporal Difference Control Q-Learning

Reprise: Action-Value to Optimal Value to Optimal Policy

Recall the Bellman equation:

V ∗(xi ) = max
u∈U

R(xi , u) + γ
∑
j∈[n]

auijV
∗(xj)

 .
Therefore it is clear that

V ∗(xi ) = max
uk∈U

Q∗(xi , uk).

This leads to a Bellman equation for Q∗:

Q∗(xi , uk) := R(xi , uk) + γ
∑
j∈[n]

aukij max
wl∈U

Q∗(xj ,wl).

Once we know Q∗, it is easy to determine the optimal policy, via

π∗(xi ) = arg max
uk∈U

Q∗(xi , uk).
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Temporal Difference Control Q-Learning

Iterative Method to Estimate Q∗

Start with some arbitrary Q̂ : X × U → R. Choose a sequence of positive
step sizes {αt}t≥0. As the time series {(Xt ,Ut ,Wt+1)}t≥0 is observed,
update function Q̂ as follows:

Q̂(Xt ,Ut) = Q̂(Xt ,Ut) + αt(Wt+1 + γ max
uk∈U

Q̂(Xt+1, uk)− Q̂(Xt ,Ut))

Need to maintain sufficient exploration: e.g., choose Ut to be ε-greedy
w.r.t. current Q̂
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Temporal Difference Control Q-Learning

Convergence Result

Note: The Reward R is permitted to be random.

Theorem

Suppose each state-action pair is visited infinitely often and the
Robbins-Monro step size conditions

∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞.

are satisfied. If there exists a finite constant RM such that
|R(Xt ,Ut)| ≤ RM , then

Qt(xi , uk)→ Q∗(xi , uk) as t →∞, ∀xi ∈ X , uk ∈ U , a.s.
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Temporal Difference Control Q-Learning

References

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint.
Springer-Verlag, 2008
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