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Markov Reward Processes

Markov Reward Process: Definition

Suppose {Xt}t≥0 is a Markov process on X with state transition matrix A.
Suppose that, in addition, there is a reward function R : X → R, as well
as a “discount” factor γ ∈ (0, 1). Define the expected discounted future
reward V (xi ) as

V (xi ) = E

[ ∞∑
t=0

γtR(Xt)|X0 = xi

]
.

The sum is convergent because γ < 1 and X is finite. Note: Even if R is
random but bounded, the sum would still converge.

Question: How can we compute V (xi ) for each state xi?
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Markov Reward Processes

Recursive Relationship for Expected Discounted Reward

Define the vectors

v = [ V (x1) · · · V (xn) ]>,

r = [ R(x1) · · · R(xn) ]>.

Theorem

The vector v satisfies the recursive relationship

v = r + γAv.
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Markov Reward Processes

Some Generalizations

If the reward function is random, then above relationship still holds, with r
defined as

r = [E [R(x1)] · · ·E [R(xn)]].

If the reward is paid at the next time instant, then r is defined as

r = [r1 · · · rn],

where
ri = E [R(X1)|X0 = xi ].
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Markov Reward Processes

Computing V

Note that ρ(A) = 1, so that ρ(γA) = γ < 1. So we could write

v = (I − γA)−1r.

But the complexity would be O(n3). Is there another way?
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Markov Reward Processes

Contraction Mapping Theorem

Theorem

Suppose f : Rn → Rn and that there exists a constant ρ < 1 such that

‖f (x)− f (y)‖ ≤ ρ‖x − y‖, ∀x , y ∈ Rn,

where ‖ · ‖ on Rn. Then there is a unique x∗ ∈ Rn such that

f (x∗) = x∗.

To find x∗, choose an arbitrary x0 ∈ Rn and define xl+1 = f (xl). Then
{xl} → x∗ as l →∞. Moreover, we have the explicit estimate

‖x∗ − xl‖ ≤
ρl

1− ρ
‖x1 − x0‖.
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Markov Reward Processes

Computing V by Value Iteration

Theorem

The map y 7→ Ty := r + γAy is monotone and is a contraction with
constant γ.

Therefore, if we choose y0 as we wish, and define {yi} by

yi+1 = Tyi = r + γAyi ,

then
‖yi+1 − yi‖∞ ≤ γ‖yi − yi−1‖∞.

So yi → x∗, and for each l , we have

‖v − yl‖ ≤
γ l

1− γ
‖y1 − y0‖.
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Markov Reward Processes

How Many Iterations?

Define the initial error as

c := ‖y1 − y0‖∞ = ‖r + γAy0 − y0‖∞.

Then, to ensure that ‖yL − v‖∞ ≤ ε, it is enough to perform

L =

⌈
1

1− γ
log

c

ε(1− γ)

⌉
iterations. Complexity of O(Ln2) versus O(n3).

Note that L does not depend on n.
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Markov Reward Processes

The Case of Nonnegative Rewards

The map T is monotone. So if y1 ≤ y2, then Ty1 ≤ Ty2 where the
inequality is componentwise.

Hence, if we can choose y0 such that y1 = Ty0 ≥ y0, then
Ty1 = T 2y0 ≥ Ty0 ≥ y0. Therefore yi ↑ v∗.

Sufficient Condition: If r ≥ 0, and we choose y0 = r, then yi ↑ v∗.
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Average Reward Markov Processes

Average Markov Reward Process: Definition

Suppose {Xt}t≥0 is a Markov process on X with state transition matrix A.
Suppose that, in addition, there is a reward function R : X → R (no
discount factor now)

Define the average reward w.r.t. an initial state distribution φ as

c? := lim
T→∞

1

T
E

[
T∑
t=0

R(Xt)|X0 ∼ φ

]

Question: Does c? depend on φ? How can we compute it?
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Average Reward Markov Processes

Average cost in terms of stationary distribution

Note that Xt ∼ φAt and therefore E [R(Xt)|X0 ∼ φ] = φAtr

Suppose A is irreducible with (unique) stationary distribution µ

c? := lim
T→∞

1

T
E

[
T∑
t=0

R(Xt)|X0 ∼ φ

]

= lim
T→∞

1

T

T∑
t=0

φAtr

= φ

(
lim

T→∞

1

T

T∑
t=0

At

)
r

= φ1nµr = µr

c? is independent of φ under irreducibility
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Average Reward Markov Processes

Bias or transient reward

Recall the recursive relationship v = r + γAv for discounted MRPs

In order to derive an analogue for average reward MPs, assume the process
is primitive (which is the same as irreducible and aperiodic)

Define the bias or transient reward

J?i :=
∞∑
t=0

(E [R(Xt)|X0 = xi ]− c?)

Note no discounting — not clear if this is even well defined!
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Average Reward Markov Processes

Bias or transient reward in vector form

We defined the bias or transient reward

J?i :=
∞∑
t=0

(E [R(Xt)|X0 = xi ]− c?)

Note that if X0 ∼ e>i then Xt ∼ e>i A
t . Therefore

J?i =
∞∑
t=0

(e>i A
tr − c?)

which in vector notation becomes (using At1n = 1n)

J? =
∞∑
t=0

(Atr − c?1n) =
∞∑
t=0

At(r − c?1n)
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Average Reward Markov Processes

Why is bias well defined?

By aperiodicity, λ = 1 is the only eigenvalue of magnitude 1

Recall that µ, 1n are left, right eigenvectors for λ = 1

So A2 = A− 1nµ =: A−M has the same spectrum as A except that the
eigenvalue at 1 is replaced by 0

Since ρ(A2) < 1, we have

∞∑
t=0

At
2 = (1− A2)−1 = (I − A + M)−1
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Average Reward Markov Processes

Why is bias well defined? Contd.

Let u = r − c?1n

Note that µu = µr − c?µ1n = c? − c? = 0

Therefore, A2u = (A− 1nµ)u = Au− 1n0 = Au

Note that µAu = µu is also 0

Thus, A2u = A(Au) = A2(Au) = A2A2u = A2
2u

...

∀t ≥ 0, Atu = At
2u and µAtu = 0
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Average Reward Markov Processes

Why is bias well defined? Contd.

J? =
∞∑
t=0

At(r − c?1n)

=
∞∑
t=0

At
2(r − c?1n)

= (I − A + M)−1(r − c?1n)

Observe that

µJ? =
∞∑
t=0

µAt(r − c?1n) = 0
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Average Reward Markov Processes

A recursive relation

J?i :=
∞∑
t=0

(E [R(Xt)|X0 = xi ]− c?)

= R(xi )− c? +
∞∑
t=1

(E [R(Xt)|X0 = xi ]− c?)

= ri − c? +
n∑

j=1

aij

∞∑
t=1

(E [R(Xt)|Xi = xj ]− c?)

= ri − c? +
n∑

j=1

aijJ
?
j

or, in vector notation,
J? = r − c?1n + AJ?
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Average Reward Markov Processes

Uniqueness

The “Poisson equation”

J = r − c?1n + AJ

does not have a unique solution: if J is a solution then so is J + α1n

Turns out the only solution of the Poisson equation that also satisfies
µJ = 0 is J?
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