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Markov Processes Markov Processes: Basics

Markov Processes: Definition

Suppose X = {x1, · · · , xn} is a finite set, and {Xt}t≥0 is a stochastic
process, that is, a sequence of random variables, where each Xt assumes
values in X .

Definition

The stochastic process {Xt} is a Markov process if

Pr{Xt+1|X t
0} = Pr{Xt+1|Xt},

where X t
0 denotes X0, · · · ,Xt .
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Markov Processes Markov Processes: Basics

Elaboration of Definition

The defining equation is a shorthand for the following statement: Suppose
u ∈ X and (y0, · · · , yt) ∈ X t+1 are arbitrary. Then

Pr{Xt+1 = u|X t
0 = (y0, · · · , yt)} = Pr{Xt+1 = u|Xt = yt}.

In other words, the conditional probability of the state Xt+1 depends only
on the value of Xt . Adding information about the values of Xτ for τ < t
does not change the conditional probability.

One can also say that Xt+1 is independent of X t−1
0 given Xt . (The future

is conditionally independent of the past given the present.)
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Markov Processes Markov Processes: Basics

State Transition Matrix

A Markov process is completely characterized by the initial state
distribution and the state transition matrix A, where

aij := Pr{Xt+1 = xj |Xt = xi}.

Thus in aij , i denotes the current state and j the future state.

Note: Some authors interchange the roles of i and j in the above.

If the transition probability does not depend on t, then the Markov process
is said to be stationary; otherwise it is said to be nonstationary.
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Markov Processes Markov Processes: Basics

Row-Stochasticity of the State Transition Matrix

The matrix A is row-stochastic. Note that Xt+1 must be one of
{x1, · · · , xn}, no matter what Xt is. Therefore

n∑
j=1

aij = 1, i = 1, . . . n.

The above equation can be expressed compactly as

A1n = 1n,

where 1n denotes the column vector consisting of n ones. So 1 is an
eigenvalue of A with eigenvector 1n.
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Markov Processes Markov Processes: Basics

Stationary Distribution

Hence A must have a row eigenvector π corresponding to the eigenvalue 1.

Theorem

Every row-stochastic matrix A has a nonnegative row eigenvector
corresponding to the eigenvalue λ = 1

If π is a nonnegative row eigenvector, it can be scaled so that it is a
probability distribution (components of π add up to one). If so π is said to
be a stationary distribution of A, because if πA = π, and Xt has the
distribution π, so does Xt+1.

However, nothing is said about the uniqueness of π.
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Markov Processes Markov Processes: Basics

Irreducible Markov Processes

Definition

A row-stochastic matrix A is said to be irreducible if it is not possible to
partition the permute the rows and columns symmetrically (via a
permutation matrix Π) such that

Π−1AΠ =

[
B11 0
B21 B22

]
.
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Markov Processes Markov Processes: Basics

Equivalent Characterization of Irreducibility

Lemma

A row-stochastic matrix A is irreducible if and only if, for any pair of
states ys , yf ∈ X , there exists a sequence of states y1, · · · yl ∈ X such
that, with y0 = ys and yl+1 = yf , we have that

aykyk+1
> 0, k = 0, . . . , l .

Thus the matrix A is irreducible if and only if, for every pair of states ys
and yf , there is a path from ys to yf such that every step in the path has
a positive probability.

Every state is reachable from every other state (including itself) with
positive probability.
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Markov Processes Markov Processes: Basics

Equivalent Characterization of Irreducibility – Cont’d

Theorem

A row-stochastic matrix A is irreducible if and only if

n−1∑
l=0

Al > 0,

where A0 = I and the inequality is componentwise.

So we can start with M0 = I and define recursively Ml+1 = I + AMl . If
Ml > 0 for any l , then A is irreducible. If we get up to Mn−1 and if this
matrix is not strictly positive, then A is not irreducible.
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Markov Processes Markov Processes: Basics

Useful Properties of Irreducible Markov Processes

Theorem

Suppose A is an irreducible row-stochastic matrix. Then

1 λ = 1 is a simple eigenvalue of A.

2 The corresponding row eigenvector of A has all positive elements.

3 Thus A has a unique stationary distribution, whose elements are all
positive.

4 There is an integer p, called the period of A, such that the spectrum
of A is invariant under rotation by exp(i2π/p).

5 In particular, all p-th roots of unity namely exp(i2kπ/p),
k = 0, · · · , p − 1 are all eigenvalues of A.
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Markov Processes Markov Processes: Basics

Primitive Matrices

Definition

A row-stochastic matrix A is said to be primitive if there exists an integer l
such that Al > 0.

Definition

An irreducible row-stochastic matrix A is said to be aperiodic if λ = 1 is
the only eigenvalue of A with magnitude one.

Theorem

A row-stochastic matrix A is primitive if and only if it is irreducible and
aperiodic.
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Markov Processes Markov Processes: Basics

Some Examples

Suppose

A1 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 ,A2 =

 0 1 0
0 0 1
1 0 0

 .
Then A1 is primitive because A2

1 > 0

However A2 is irreducible but not primitive; its 3 eigenvalues are the cube
roots of unity and it has a period p = 3.
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Markov Processes Markov Processes: Basics

Limiting Behavior of Markov Processes

Theorem

Suppose A is an irreducible row-stochastic matrix, and let π denote the
corresponding stationary distribution. Then

lim
T→∞

1

T

T−1∑
t=0

At = 1nπ.

Suppose A is a primitive row-stochastic matrix, and let π denote the
corresponding stationary distribution. Then

At → 1nπ as t →∞.
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Markov Processes Markov Processes: Basics

Examples

Suppose

A1 =

[
0.3 0.7
0.7 0.3

]
,A2 =

[
0 1
1 0

]
.

Then A1 is strictly positive and hence primitive, while A2 is irreducible
with period 2. Both matrices have the same stationary distribution
π = [0.5 0.5]. So

Al
1 → 12π =

[
0.5 0.5
0.5 0.5

]
,

while Al
2 equals I if l is even and A if l is odd. So Al

2 has no limit as
l →∞. However, the average

lim
T→∞

1

T

T−1∑
t=0

At
2 =

[
0.5 0.5
0.5 0.5

]
.
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Markov Processes Markov Processes: Basics

Markov Chain Monte Carlo Method

Application: For any probability distribution φ,

lim
T→∞

1

T

T−1∑
t=0

φAt = φ1nπ = π, ∀φ.

Application: Suppose f : X → R, and we wish to compute E [f (·), π]. If
{xt}t≥0 is any sample path of the Markov process, then define

f̂T =
1

T

t0+T∑
t=t0+1

f (Xt).

Then f̂T → E [f (·), π] as T →∞.
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Markov Processes Markov Processes with Absorbing States

Absorbing State: Definition

Definition

A state xi ∈ X is said to be an absorbing state if Xt = xi implies that
Xt+1 = xi , or equivalently, that Xτ = xi for all τ ≥ t. Another equivalent
defintion is that row i of the state transtion matrix A consists of a 1 in
column i and zeros elsewhere.

Let A be the state transition matrix. Then xi is an absorbing state if and
only if aii = 1 (which automatically implies that aij = 0 for j 6= i .)

A sample path of a Markov process that terminates in an absorbing state
is called an episode.
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Markov Processes Markov Processes with Absorbing States

Hitting Times and Hitting Probabilities of Absorbing States

Suppose a Markov process has nonabsorbing states x1, · · · , xn and
absorbing states a1, · · · , as .
Assume it is possible to go from any nonabsorbing state to at least one
absorbing state in a finite number of steps. (Note the change in notation.)

The state transition matrix looks like

M =

[
A B
0 Is

]
.

We can ask two questions:

1 What is the average time needed to hit an absorbing state?

2 What is the probability of hitting an absorbing state?
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Markov Processes Markov Processes with Absorbing States

Hitting Time: Solution

Theorem

Suppose

M =

[
A B
0 Is

]
.

Then the vector of average times needed to hit an absorbing state from
each nonabsorbing state is given by

θ = (I − A)−11n.

(It can be shown that ρ(A) < 1 so that I − A is nonsingular.)

Ambuj Tewari (UMich) STATS 701: MRPs Winter 2021 22 / 32



Markov Processes Markov Processes with Absorbing States

Hitting Probability: Solution

Theorem

Suppose

M =

[
A B
0 Is

]
.

For each absorbing state aj , the vector of probabilities of a sample path
reaching the state aj from each nonabsorbing state is given by

pj = (I − A)−1Bj , (1)

where Bj denotes the j-th column of the matrix B.
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Markov Reward Processes

Markov Reward Process: Definition

Suppose {Xt}t≥0 is a Markov process on X with state transition matrix A.
Suppose that, in addition, there is a reward function R : X → R, as well
as a “discount” factor γ ∈ (0, 1). Define the expected discounted future
reward V (xi ) as

V (xi ) = E

[ ∞∑
t=0

γtR(Xt)|X0 = xi

]
.

The sum is convergent because γ < 1 and X is finite. Note: Even if R is
random but bounded, the sum would still converge.

Question: How can we compute V (xi ) for each state xi?
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Markov Reward Processes

Recursive Relationship for Expected Discounted Reward

Define the vectors

v = [ V (x1) · · · V (xn) ]>,

r = [ R(x1) · · · R(xn) ]>.

Theorem

The vector v satisfies the recursive relationship

v = r + γAv.
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Markov Reward Processes

Some Generalizations

If the reward function is random, then above relationship still holds, with r
defined as

r = [E [R(x1)] · · ·E [R(xn)]].

If the reward is paid at the next time instant, then r is defined as

r = [r1 · · · rn],

where
ri = E [R(X1)|X0 = xi ].
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Markov Reward Processes

Computing V

Note that ρ(A) = 1, so that ρ(γA) = γ < 1. So we could write

v = (I − γA)−1r.

But the complexity would be O(n3). Is there another way?
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Markov Reward Processes

Contraction Mapping Theorem

Theorem

Suppose f : Rn → Rn and that there exists a constant ρ < 1 such that

‖f (x)− f (y)‖ ≤ ρ‖x − y‖, ∀x , y ∈ Rn,

where ‖ · ‖ on Rn. Then there is a unique x∗ ∈ Rn such that

f (x∗) = x∗.

To find x∗, choose an arbitrary x0 ∈ Rn and define xl+1 = f (xl). Then
{xl} → x∗ as l →∞. Moreover, we have the explicit estimate

‖x∗ − xl‖ ≤
ρl

1− ρ
‖x1 − x0‖.

Ambuj Tewari (UMich) STATS 701: MRPs Winter 2021 29 / 32



Markov Reward Processes

Computing V by Value Iteration

Theorem

The map y 7→ Ty := r + γAy is monotone and is a contraction with
constant γ.

Therefore, if we choose y0 as we wish, and define {yi} by

yi+1 = Tyi = r + γAyi ,

then
‖yi+1 − yi‖∞ ≤ γ‖yi − yi−1‖∞.

So yi → x∗, and for each l , we have

‖v − yl‖ ≤
γ l

1− γ
‖y1 − y0‖.
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Markov Reward Processes

How Many Iterations?

Define the initial error as

c := ‖y1 − y0‖∞ = ‖r + γAy0 − y0‖∞.

Then, to ensure that ‖yL − v‖∞ ≤ ε, it is enough to perform

L =

⌈
1

1− γ
log

c

ε(1− γ)

⌉
iterations. Complexity of O(Ln2) versus O(n3).

Note that L does not depend on n.
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Markov Reward Processes

The Case of Nonnegative Rewards

The map T is monotone. So if y1 ≤ y2, then Ty1 ≤ Ty2 where the
inequality is componentwise.

Hence, if we can choose y0 such that y1 = Ty0 ≥ y0, then
Ty1 = T 2y0 ≥ Ty0 ≥ y0. Therefore yi ↑ v∗.

Sufficient Condition: If r ≥ 0, and we choose y0 = r, then yi ↑ v∗.
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