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Markov Processes: Definition

Suppose X' = {x1,--- ,xp} is a finite set, and {X;}+>0 is a stochastic
process, that is, a sequence of random variables, where each X; assumes
values in X.

Definition

The stochastic process {X:} is a Markov process if

Pr{Xes1|X§} = Pr{Xes1|Xe},

where X} denotes Xp, - -+, X;.
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Elaboration of Definition

The defining equation is a shorthand for the following statement: Suppose
u€ X and (v, - ,y:) € Xt are arbitrary. Then

Pr{Xer1 = ulXg = (yo, -+, ye)} = Pr{Xes1 = u|Xe = y¢}.

In other words, the conditional probability of the state X:;1 depends only
on the value of X;. Adding information about the values of X, for 7 < t
does not change the conditional probability.

One can also say that X;;1 is independent of Xot*1 given X;. (The future
is conditionally independent of the past given the present.)
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Markov Processes: Basics
State Transition Matrix

A Markov process is completely characterized by the initial state
distribution and the state transition matrix A, where

a,-j = PF{XH_l = ){,|Xt = X,'}.
Thus in aj;, i denotes the current state and j the future state.
Note: Some authors interchange the roles of i and j in the above.

If the transition probability does not depend on t, then the Markov process
is said to be stationary; otherwise it is said to be nonstationary.
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Row-Stochasticity of the State Transition Matrix

The matrix A is row-stochastic. Note that X;1 must be one of
{x1,- -+, Xxn}, no matter what X; is. Therefore

n
Y ay=1i=1...n.
j=1

The above equation can be expressed compactly as
Al, =1,

where 1, denotes the column vector consisting of n ones. So 1 is an
eigenvalue of A with eigenvector 1,,.
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Stationary Distribution

Hence A must have a row eigenvector 7 corresponding to the eigenvalue 1.

Theorem
Every row-stochastic matrix A has a nonnegative row eigenvector
corresponding to the eigenvalue A = 1

If 7 is a nonnegative row eigenvector, it can be scaled so that it is a
probability distribution (components of 7 add up to one). If so 7 is said to
be a stationary distribution of A, because if TA = 7, and X; has the
distribution 7, so does Xiy1.

However, nothing is said about the uniqueness of 7.
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Irreducible Markov Processes

Definition

A row-stochastic matrix A is said to be irreducible if it is not possible to
partition the permute the rows and columns symmetrically (via a
permutation matrix 1) such that

Bo1 By

N—tAM = [ B 0 ]
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Equivalent Characterization of lrreducibility

Lemma

A row-stochastic matrix A is irreducible if and only if, for any pair of
states ys, yr € X, there exists a sequence of states y1,---y; € X such
that, with yo = ys and y;+1 = yf, we have that

Ay > 0,k=0,...,1

Thus the matrix A is irreducible if and only if, for every pair of states ys
and yr, there is a path from ys to yr such that every step in the path has
a positive probability.

Every state is reachable from every other state (including itself) with
positive probability.
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Equivalent Characterization of lrreducibility — Cont'd

Theorem

A row-stochastic matrix A is irreducible if and only if
n—1
YA -0,
1=0

where A° = | and the inequality is componentwise.

So we can start with My = | and define recursively M 1 =1 + AM,. If
M; > 0 for any /, then A is irreducible. If we get up to M,_1 and if this
matrix is not strictly positive, then A is not irreducible.
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Useful Properties of Irreducible Markov Processes

Theorem
Suppose A is an irreducible row-stochastic matrix. Then
@ )\ =1 is a simple eigenvalue of A.
@ The corresponding row eigenvector of A has all positive elements.

© Thus A has a unique stationary distribution, whose elements are all
positive.

@ There is an integer p, called the period of A, such that the spectrum
of A is invariant under rotation by exp(i2m/p).

@ In particular, all p-th roots of unity namely exp(i2km/p),
k=0,---,p—1 are all eigenvalues of A.
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Primitive Matrices

Definition
A row-stochastic matrix A is said to be primitive if there exists an integer /
such that A’ > 0.

Definition
An irreducible row-stochastic matrix A is said to be aperiodic if A=1is
the only eigenvalue of A with magnitude one.

Theorem
A row-stochastic matrix A is primitive if and only if it is irreducible and
aperiodic.

Ambuj Tewari (UMich) STATS 701: MRPs Winter 2021 14 /32



Some Examples

Suppose
0 05 05 010
Ai=[05 0 05 |,A=[001
05 05 0 100

Then Aj is primitive because A? > 0

However A is irreducible but not primitive; its 3 eigenvalues are the cube
roots of unity and it has a period p = 3.
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Limiting Behavior of Markov Processes

Theorem

Suppose A is an irreducible row-stochastic matrix, and let w denote the
corresponding stationary distribution. Then

t
T'TOOTZA = Lo

Suppose A is a primitive row-stochastic matrix, and let = denote the
corresponding stationary distribution. Then

At — 1,7 ast — oo.
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Examples

Suppose
0.3 0.7 01
Al_[o.7 0.3]’A2_[1 0]'
Then Aj is strictly positive and hence primitive, while A; is irreducible

with period 2. Both matrices have the same stationary distribution
m=[0.5 0.5]. So

A’1—>127r:[0'5 0.5]7

0.5 05

while Aé equals / if / is even and A if | is odd. So Aé has no limit as
| — oo. However, the average
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Markov Processes: Basics
Markov Chain Monte Carlo Method

Application: For any probability distribution ¢,

T-1
1 .
lim = E_O: PAL = pl,7 = 7, Vo

Application: Suppose f : X — R, and we wish to compute E[f(-), ].

{xt}+>0 is any sample path of the Markov process, then define

1 to+T
fr== 3 F(X)
T
t=to+1
Then fr — E[f(-),n] as T — oc.
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Markov Processes with Absorbing States
Absorbing State: Definition

Definition

A state x; € X is said to be an absorbing state if X; = x; implies that
Xi41 = xj, or equivalently, that X; = x; for all 7 > t. Another equivalent
defintion is that row i of the state transtion matrix A consists of a 1 in
column 7 and zeros elsewhere.

Let A be the state transition matrix. Then x; is an absorbing state if and
only if a;; = 1 (which automatically implies that a;; = 0 for j # i.)

A sample path of a Markov process that terminates in an absorbing state
is called an episode.
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Markov Processes with Absorbing States
Hitting Times and Hitting Probabilities of Absorbing States

Suppose a Markov process has nonabsorbing states xi, - - - , x, and
absorbing states aj, - - -, as.

Assume it is possible to go from any nonabsorbing state to at least one
absorbing state in a finite number of steps. (Note the change in notation.)

The state transition matrix looks like
A B
M= [ )0 } .

We can ask two questions:

@ What is the average time needed to hit an absorbing state?
@ What is the probability of hitting an absorbing state?
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Hitting Time: Solution

Theorem
Suppose

A B
M= .
[ 0 I }
Then the vector of average times needed to hit an absorbing state from
each nonabsorbing state is given by

0=(-A"11,

(It can be shown that p(A) < 1 so that / — A is nonsingular.)

Ambuj Tewari (UMich) STATS 701: MRPs Winter 2021 22/32



Markov Processes with Absorbing States
Hitting Probability: Solution

Theorem
Suppose

A B
M = .
ok
For each absorbing state aj, the vector of probabilities of a sample path
reaching the state a; from each nonabsorbing state is given by

pj=(-A)'B;, (1)

where B; denotes the j-th column of the matrix B.
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Markov Reward Processes

Markov Reward Process: Definition

Suppose {X;}+>0 is a Markov process on X’ with state transition matrix A.
Suppose that, in addition, there is a reward function R : X — R, as well
as a “discount” factor v € (0,1). Define the expected discounted future
reward V(x;) as

[Z’y (X2)| Xo —x,] .

The sum is convergent because v < 1 and X is finite. Note: Even if R is
random but bounded, the sum would still converge.

Question: How can we compute V/(x;) for each state x;?
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Markov Reward Processes

Recursive Relationship for Expected Discounted Reward

Define the vectors

Theorem

The vector v satisfies the recursive relationship

vV =r-+ vAv.
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Markov Reward Processes

Some Generalizations

If the reward function is random, then above relationship still holds, with r

defined as
r=[E[R(x1)]- - - E[R(xn)]]-

If the reward is paid at the next time instant, then r is defined as
r— [rl...rn]’

where
ri = E[R(Xl)‘XO = X,'].
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Computing V

Note that p(A) = 1, so that p(yA) = v < 1. So we could write
v=(—-~A)"1r

But the complexity would be O(n?). Is there another way?
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Markov Reward Processes

Contraction Mapping Theorem

Theorem

Suppose f : R" — R" and that there exists a constant p < 1 such that
1(x) = fFW)Il < plix = yll, Vx,y € R,
where || - || on R". Then there is a unique x* € R" such that
f(x*) = x*.

To find x*, choose an arbitrary xo € R" and define x;11 = f(x;). Then
{x;} — x* as | — co. Moreover, we have the explicit estimate

/

I =il < 12

[x1 — xol|-
—p
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Computing V by Value Iteration

Theorem

The mapy — Ty :=r + Ay is monotone and is a contraction with
constant .

Therefore, if we choose yo as we wish, and define {y;} by

Yir1 = Ty = r+~Ay;,
then

lYit1 = Yilloo < YIlyi = ¥i-1lloo-

So y; — x*, and for each /, we have

I
v
v—y/ < ——Iy1 — Yol
| | 1_,yH |
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Markov Reward Processes

How Many lterations?

Define the initial error as

c:=[ly' =¥l = [Ir + YAY® — ¥ -

Then, to ensure that ||yl — v||oo < ¢, it is enough to perform

= hivloge(lc—v)w

iterations. Complexity of O(Ln?) versus O(n?).

Note that L does not depend on n.
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Markov Reward Processes

The Case of Nonnegative Rewards

The map T is monotone. So if y! < y?, then Ty! < Ty? where the
inequality is componentwise.

Hence, if we can choose yg such that y; = Tyg > yq, then
Ty1 = T?yo > Tyo > yo. Therefore y; 1 v*.

Sufficient Condition: If r > 0, and we choose yo = r, then y; T v*.
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