STATS 701 – Theory of Reinforcement Learning Markov Reward Processes

Ambuj Tewari

Associate Professor, Department of Statistics, University of Michigan tewaria@umich.edu https://ambujtewari.github.io/stats701-winter2021/

Slide Credits: Prof. M. Vidyasagar @ IIT Hyderabad, India

Winter 2021

STATS 701: MRPs

< □ > < 同 > < 回 > < 回 > < 回 >

- Markov Processes: Basics
- Markov Processes with Absorbing States

• • • • • • • • • • • •

Markov Processes

- Markov Processes: Basics
- Markov Processes with Absorbing States

イロト イヨト イヨト イヨト

- Markov Processes: Basics
- Markov Processes with Absorbing States

Markov Processes: Definition

Suppose $\mathcal{X} = \{x_1, \cdots, x_n\}$ is a finite set, and $\{X_t\}_{t \ge 0}$ is a stochastic process, that is, a sequence of random variables, where each X_t assumes values in \mathcal{X} .

Definition

The stochastic process $\{X_t\}$ is a Markov process if

$$\Pr\{X_{t+1}|X_0^t\} = \Pr\{X_{t+1}|X_t\},\$$

where X_0^t denotes X_0, \dots, X_t .

(日) (四) (日) (日) (日)

Elaboration of Definition

The defining equation is a shorthand for the following statement: Suppose $u \in \mathcal{X}$ and $(y_0, \dots, y_t) \in \mathcal{X}^{t+1}$ are arbitrary. Then

$$\Pr\{X_{t+1} = u | X_0^t = (y_0, \cdots, y_t)\} = \Pr\{X_{t+1} = u | X_t = y_t\}.$$

In other words, the conditional probability of the state X_{t+1} depends only on the value of X_t . Adding information about the values of X_{τ} for $\tau < t$ does not change the conditional probability.

One can also say that X_{t+1} is independent of X_0^{t-1} given X_t . (The future is conditionally independent of the past given the present.)

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

State Transition Matrix

A Markov process is completely characterized by the initial state distribution and the state transition matrix A, where

$$a_{ij} := \Pr\{X_{t+1} = x_j | X_t = x_i\}.$$

Thus in a_{ij} , *i* denotes the current state and *j* the future state. Note: Some authors interchange the roles of *i* and *j* in the above. If the transition probability does not depend on *t*, then the Markov process is said to be stationary; otherwise it is said to be nonstationary.

< □ > < 同 > < 回 > < 回 > < 回 >

Row-Stochasticity of the State Transition Matrix

The matrix A is row-stochastic. Note that X_{t+1} must be one of $\{x_1, \dots, x_n\}$, no matter what X_t is. Therefore

$$\sum_{j=1}^n a_{ij} = 1, i = 1, \dots n.$$

The above equation can be expressed compactly as

$$A\mathbf{1}_n = \mathbf{1}_n$$

where $\mathbf{1}_n$ denotes the column vector consisting of *n* ones. So 1 is an eigenvalue of *A* with eigenvector $\mathbf{1}_n$.

イロト イヨト イヨト イヨト 三日

Stationary Distribution

Hence A must have a row eigenvector π corresponding to the eigenvalue 1.

Theorem

Every row-stochastic matrix A has a nonnegative row eigenvector corresponding to the eigenvalue $\lambda = 1$

If π is a nonnegative row eigenvector, it can be scaled so that it is a probability distribution (components of π add up to one). If so π is said to be a stationary distribution of A, because if $\pi A = \pi$, and X_t has the distribution π , so does X_{t+1} .

However, nothing is said about the uniqueness of π .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Irreducible Markov Processes

Definition

A row-stochastic matrix A is said to be irreducible if it is not possible to partition the permute the rows and columns symmetrically (via a permutation matrix Π) such that

$$\Pi^{-1}A\Pi = \left[\begin{array}{cc} B_{11} & 0 \\ B_{21} & B_{22} \end{array} \right].$$

Equivalent Characterization of Irreducibility

Lemma

A row-stochastic matrix A is irreducible if and only if, for any pair of states $y_s, y_f \in \mathcal{X}$, there exists a sequence of states $y_1, \dots y_l \in \mathcal{X}$ such that, with $y_0 = y_s$ and $y_{l+1} = y_f$, we have that

$$a_{y_ky_{k+1}} > 0, k = 0, \ldots, l.$$

Thus the matrix A is irreducible if and only if, for every pair of states y_s and y_f , there is a path from y_s to y_f such that every step in the path has a positive probability.

Every state is reachable from every other state (including itself) with positive probability.

< □ > < 同 > < 回 > < 回 > < 回 >

Equivalent Characterization of Irreducibility - Cont'd

Theorem

A row-stochastic matrix A is irreducible if and only if

$$\sum_{l=0}^{n-1}A^l>0,$$

where $A^0 = I$ and the inequality is componentwise.

So we can start with $M_0 = I$ and define recursively $M_{l+1} = I + AM_l$. If $M_l > 0$ for any l, then A is irreducible. If we get up to M_{n-1} and if this matrix is not strictly positive, then A is not irreducible.

イロト 不得下 イヨト イヨト 二日

Useful Properties of Irreducible Markov Processes

Theorem

Suppose A is an irreducible row-stochastic matrix. Then

- $\lambda = 1$ is a simple eigenvalue of A.
- Interpretation of the provide the provided and the pro
- Thus A has a unique stationary distribution, whose elements are all positive.
- There is an integer p, called the period of A, such that the spectrum of A is invariant under rotation by $\exp(i2\pi/p)$.
- So In particular, all p-th roots of unity namely $\exp(i2k\pi/p)$, $k = 0, \dots, p-1$ are all eigenvalues of A.

A D > A A > A > A

Primitive Matrices

Definition

A row-stochastic matrix A is said to be primitive if there exists an integer I such that $A^{I} > 0$.

Definition

An irreducible row-stochastic matrix A is said to be aperiodic if $\lambda = 1$ is the only eigenvalue of A with magnitude one.

Theorem

A row-stochastic matrix A is primitive if and only if it is irreducible and aperiodic.

Some Examples

Suppose

$$A_1 = \left[\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{array} \right], A_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right].$$

Then A_1 is primitive because $A_1^2 > 0$

However A_2 is irreducible but not primitive; its 3 eigenvalues are the cube roots of unity and it has a period p = 3.

< □ > < 同 > < 回 > < 回 > < 回 >

Limiting Behavior of Markov Processes

Theorem

Suppose A is an irreducible row-stochastic matrix, and let π denote the corresponding stationary distribution. Then

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}A^t=\mathbf{1}_n\pi.$$

Suppose A is a primitive row-stochastic matrix, and let π denote the corresponding stationary distribution. Then

$$A^t
ightarrow \mathbf{1}_n \pi$$
 as $t
ightarrow \infty$.

Examples

Suppose

$$A_1 = \left[\begin{array}{cc} 0.3 & 0.7 \\ 0.7 & 0.3 \end{array} \right], A_2 = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Then A_1 is strictly positive and hence primitive, while A_2 is irreducible with period 2. Both matrices have the same stationary distribution $\pi = [0.5 \ 0.5]$. So

$$A_1' o \mathbf{1}_2 \pi = \left[egin{array}{cc} 0.5 & 0.5 \ 0.5 & 0.5 \end{array}
ight],$$

while A'_2 equals I if I is even and A if I is odd. So A'_2 has no limit as $I \rightarrow \infty$. However, the average

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} A_2^t = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

٠

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Markov Chain Monte Carlo Method

Application: For any probability distribution ϕ ,

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}\phi A^t = \phi \mathbf{1}_n \pi = \pi, \ \forall \phi.$$

Application: Suppose $f : \mathcal{X} \to \mathbb{R}$, and we wish to compute $E[f(\cdot), \pi]$. If $\{x_t\}_{t\geq 0}$ is any sample path of the Markov process, then define

$$\hat{f}_{T} = \frac{1}{T} \sum_{t=t_{0}+1}^{t_{0}+T} f(X_{t}).$$

Then $\hat{f}_T \to E[f(\cdot), \pi]$ as $T \to \infty$.

イロト 不得 トイヨト イヨト 二日

- Markov Processes: Basics
- Markov Processes with Absorbing States

Absorbing State: Definition

Definition

A state $x_i \in \mathcal{X}$ is said to be an **absorbing state** if $X_t = x_i$ implies that $X_{t+1} = x_i$, or equivalently, that $X_{\tau} = x_i$ for all $\tau \ge t$. Another equivalent definition is that row *i* of the state transition matrix *A* consists of a 1 in column *i* and zeros elsewhere.

Let A be the state transition matrix. Then x_i is an absorbing state if and only if $a_{ii} = 1$ (which automatically implies that $a_{ij} = 0$ for $j \neq i$.)

A sample path of a Markov process that terminates in an absorbing state is called an episode.

イロト 不得 トイヨト イヨト 二日

Hitting Times and Hitting Probabilities of Absorbing States

Suppose a Markov process has nonabsorbing states x_1, \dots, x_n and absorbing states a_1, \dots, a_s .

Assume it is possible to go from any nonabsorbing state to at least one absorbing state in a finite number of steps. (Note the change in notation.)

The state transition matrix looks like

$$M = \left[\begin{array}{cc} A & B \\ 0 & I_s \end{array} \right].$$

We can ask two questions:

- What is the average time needed to hit an absorbing state?
- What is the probability of hitting an absorbing state?

イロト 不得 トイラト イラト 一日

Hitting Time: Solution

Theorem

Suppose

$$M = \left[\begin{array}{cc} A & B \\ 0 & I_s \end{array} \right].$$

Then the vector of average times needed to hit an absorbing state from each nonabsorbing state is given by

$$\boldsymbol{\theta} = (I - A)^{-1} \mathbf{1}_n.$$

(It can be shown that $\rho(A) < 1$ so that I - A is nonsingular.)

< ロト < 同ト < ヨト < ヨ

Hitting Probability: Solution

Theorem

Suppose

$$M = \left[\begin{array}{cc} A & B \\ 0 & I_s \end{array} \right].$$

For each absorbing state a_j , the vector of probabilities of a sample path reaching the state a_j from each nonabsorbing state is given by

$$\mathbf{p}_j = (I - A)^{-1} B_j, \tag{1}$$

where B_i denotes the *j*-th column of the matrix B.

1 Markov Processes

- Markov Processes: Basics
- Markov Processes with Absorbing States

< □ > < 同 > < 回 > < 回 > < 回 >

Markov Reward Process: Definition

Suppose $\{X_t\}_{t\geq 0}$ is a Markov process on \mathcal{X} with state transition matrix A. Suppose that, in addition, there is a reward function $R: \mathcal{X} \to \mathbb{R}$, as well as a "discount" factor $\gamma \in (0, 1)$. Define the expected discounted future reward $V(x_i)$ as

$$\mathcal{W}(x_i) = E\left[\sum_{t=0}^{\infty} \gamma^t R(X_t) | X_0 = x_i\right]$$

The sum is convergent because $\gamma < 1$ and \mathcal{X} is finite. Note: Even if R is random but bounded, the sum would still converge.

Question: How can we compute $V(x_i)$ for each state x_i ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recursive Relationship for Expected Discounted Reward

Define the vectors

$$\mathbf{v} = [V(x_1) \cdots V(x_n)]^\top,$$

$$\mathbf{r} = [R(x_1) \cdots R(x_n)]^\top.$$

Theorem

The vector \mathbf{v} satisfies the recursive relationship

 $\mathbf{v} = \mathbf{r} + \gamma A \mathbf{v}.$

Am	bui	Tew	/ari ((U	M	lich)	

STATS 701: MRPs

Winter 2021 26 / 32

Some Generalizations

If the reward function is random, then above relationship still holds, with ${\bf r}$ defined as

$$\mathbf{r} = [E[R(x_1)] \cdots E[R(x_n)]].$$

If the reward is paid at the next time instant, then \mathbf{r} is defined as

$$\mathbf{r}=[r_1\cdots r_n],$$

where

$$r_i = E[R(X_1)|X_0 = x_i].$$

Computing V

Note that $\rho(A) = 1$, so that $\rho(\gamma A) = \gamma < 1$. So we could write

$$\mathbf{v} = (I - \gamma A)^{-1} \mathbf{r}.$$

But the complexity would be $O(n^3)$. Is there another way?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Contraction Mapping Theorem

Theorem

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ and that there exists a constant $\rho < 1$ such that

$$\|f(x) - f(y)\| \le \rho \|x - y\|, \ \forall x, y \in \mathbb{R}^n,$$

where $\|\cdot\|$ on \mathbb{R}^n . Then there is a unique $x^* \in \mathbb{R}^n$ such that

$$f(x^*)=x^*.$$

To find x^* , choose an arbitrary $x_0 \in \mathbb{R}^n$ and define $x_{l+1} = f(x_l)$. Then $\{x_l\} \to x^*$ as $l \to \infty$. Moreover, we have the explicit estimate

$$||x^* - x_l|| \le \frac{\rho^l}{1-\rho} ||x_1 - x_0||.$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Computing V by Value Iteration

Theorem

The map $\mathbf{y} \mapsto T\mathbf{y} := \mathbf{r} + \gamma A \mathbf{y}$ is monotone and is a contraction with constant γ .

Therefore, if we choose \mathbf{y}_0 as we wish, and define $\{\mathbf{y}_i\}$ by

$$\mathbf{y}_{i+1} = T\mathbf{y}_i = \mathbf{r} + \gamma A \mathbf{y}_i,$$

then

$$\|\mathbf{y}_{i+1} - \mathbf{y}_i\|_{\infty} \leq \gamma \|\mathbf{y}_i - \mathbf{y}_{i-1}\|_{\infty}.$$

So $\mathbf{y}_i \rightarrow \mathbf{x}^*$, and for each *I*, we have

$$\|\mathbf{v} - \mathbf{y}_I\| \leq rac{\gamma'}{1-\gamma} \|\mathbf{y}_1 - \mathbf{y}_0\|.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Many Iterations?

Define the initial error as

$$c := \|\mathbf{y}^1 - \mathbf{y}^0\|_{\infty} = \|\mathbf{r} + \gamma A \mathbf{y}^0 - \mathbf{y}^0\|_{\infty}.$$

Then, to ensure that $\|\mathbf{y}^{L} - \mathbf{v}\|_{\infty} \leq \epsilon$, it is enough to perform

$$L = \left\lceil \frac{1}{1 - \gamma} \log \frac{c}{\epsilon(1 - \gamma)}
ight
ceil$$

iterations. Complexity of $O(Ln^2)$ versus $O(n^3)$.

Note that L does not depend on n.

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

The Case of Nonnegative Rewards

- The map T is monotone. So if $\mathbf{y}^1 \leq \mathbf{y}^2$, then $T\mathbf{y}^1 \leq T\mathbf{y}^2$ where the inequality is componentwise.
- Hence, if we can choose \mathbf{y}_0 such that $\mathbf{y}_1 = T\mathbf{y}_0 \ge \mathbf{y}_0$, then $T\mathbf{y}_1 = T^2\mathbf{y}_0 \ge T\mathbf{y}_0 \ge \mathbf{y}_0$. Therefore $\mathbf{y}_i \uparrow \mathbf{v}^*$.

Sufficient Condition: If $\mathbf{r} \ge \mathbf{0}$, and we choose $\mathbf{y}_0 = \mathbf{r}$, then $\mathbf{y}_i \uparrow \mathbf{v}^*$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □