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Markov Decision Processes: Solution Methodologies Value of a Policy by Iteration

Value of a Policy by Iteration

Each policy π ∈ Πd results in a Markov process with state transition
matrix Aπ and reward function Rπ.

Define the vector vπ by

vπ = [ Vπ(x1) . . . Vπ(xn) ],

and the reward vector rπ by

rπ = [ Rπ(x1) . . . Rπ(xn) ].

Then vπ satisfies the familiar relation

vπ = rπ + γAπvπ.

This equation can be solved by iteration, as before.
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Acton-Value Function

Definition

The action-value function Q : X × U → R is defined by

Qπ(xi , uk) := Eπ

[ ∞∑
t=0

γtRπ(Xt)|X0 = xi ,U0 = uk

]
.

Note: In the definition of Qπ(xi , uk), at the first instant t = 0 we choose
the action uk as we wish, not necessarily as uk = π(xi ).

But for t ≥ 1, we choose Ut = π(Xt).

Q can be viewed as a real vector of dimension |X | · |U|.
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Recursive Relationshop of Action-Value Function

Theorem

The function Q satisfies the recursive relationship

Qπ(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij Qπ(xj , π(xj)).

Proof in the notes.
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Relationship Between Action-Value and Value Functions

Theorem

The functions Vπ and Qπ are related via

Vπ(xi ) = Qπ(xi , π(xi )).

In view of this theorem, the recursive equation for Qπ, namely

Qπ(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij Qπ(xj , π(xj)).

can be rewritten as

Qπ(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij Vπ(xj).
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Optimal Value Function and Optimal Policy

Let V ∗(xi ) denote the maximum value of the discounted future reward,
over all policies π ∈ Πd :

V ∗(xi ) := max
π∈Πd

Vπ(xi ).

Note that, though the set Πd may be huge, it is nevertheless a finite set.
Therefore the maximum above exists. Also define

π∗ = arg max
π∈Πd

Vπ(xi ).

Thus π∗ is any policy such that Vπ∗ = V ∗.
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Bellman Optimality Equation

Theorem

Define V ∗(xi ) as above. Then V ∗(xi ) satisfies the reursive relationship

V ∗(xi ) = max
uk∈U

R(xi , uk) + γ
∑
j∈[n]

aukij V
∗(xj)

 .
This is known as the Bellman optimality equation. Note that it does not
help us to find the function V ∗; it just a characterization of V ∗.
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Rationalization of the Bellman Optimality Equation

Suppose that we have somehow determined the maximum possible value
V ∗(1, xj) at time t = 1 for each state xj ∈ X . Now at time t = 0, suppose
the state X0 = xi . Then each action uk ∈ U leads to the value

R(xi , uk) + γ
∑
j∈[n]

aukij V
∗(1, xj).

So the maximum value at time t = 0, state X0 = xi is given by

V ∗(0, xi ) = max
uk∈U

R(xi , uk) + γ
∑
j∈[n]

aukij V
∗(1, xj)

 .
However, since both the MDP and policy are time-invariant, we must have
that V (1, xi ) = V (0, xi ) for each xi ∈ X .
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Recursive Relationship for Optimal Action-Value Function

Theorem

Define

Q∗(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij V
∗(xj).

Then Q∗(·, ·) satisfies the relationship

Q∗(xi , uk) = R(xi , uk) + γ

n∑
j=1

aukij max
wl∈U

Q∗(xj ,wl).

Note that the maximum w.r.t. uk ∈ U is in a different place compared to
the Bellman equation. This is crucial.
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Markov Decision Processes: Solution Methodologies Action-Value Function and the Bellman Optimality Equation

Advantage of Optimal Action-Value Function

Theorem

Once Q∗(·, ·) is determined, we have that

V ∗(xi ) = max
uk∈U

Q∗(xi , uk),

π∗(xi ) = arg max
uk∈U

Q∗(xi , uk),

Moreover, it is easier to “learn” Q∗(·, ·) than to “learn” V ∗(·), as we shall
see.
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Value Update Map

Define the optimal value vector v∗ as

v∗ = [ V ∗(x1) · · · V ∗(xn) ].

Next, define a “value update” map T : Rn → Rn, as follows:

(Tv)i := max
u∈U

R(xi , u) + γ
∑
j∈[n]

auijvj

 .
One can think of v as the current guess for the vector v∗, and of Tv as an
updated guess. The next theorem shows that this intuition is valid.
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Value Iteration

Theorem

The map T is both monotone and a contraction. As a result, for all
v0 ∈ Rn, the sequence of iterations {T kv0} approaches v∗ as k →∞.
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Value Iteration Proof

Monotonicity is easy to prove, hence focus on contraction

|(Tw)i − (Tv)i |

= |max
u

[R(xi , u) + γ
∑
j

auijwj ]−max
u

[R(xi , u) + γ
∑
j

auijvj ]|

≤ max
u
|γ

∑
j

auijwj − γ
∑
j

auijvj |

= γmax
u
|(Auw)i − (Auv)i | ≤ γmax

u
‖Auw − Auv‖∞

≤ γmax
u
‖Au‖∞→∞‖w − v‖∞

≤ γ‖w − v‖∞
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Action-Value Iteration

Define q ∈ R|X |×|U| as the vector [Q(xi , uk), xi ∈ X , uk ∈ U ]. Define
F : R|X |×|U| → R|X |×|U| by

(Fq)(xi , uk) := R(xi , uk) + γ

n∑
j=1

aukij max
wl∈U

Q(xj ,wl).

Theorem

The map F is monotone and is a contraction. Therefore for all
q0 ∈ R|X |×|U|, the sequence of iterations {F k(q0)} converges to q∗.
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Determining Optimal Policy from Optimal Value Function

Determining the optimal policy π∗ from the optimal value function is easy.

Theorem

Suppose the optimal value vector v∗ is known, and define, for each
xi ∈ X , the policy π∗ : X → U via

π∗(xi ) = arg max
uk∈U

R(xi , u) + γ
∑
j∈[n]

aukij V
∗(xj)

 .
But this requires knowledge of the optimal value function v∗.

Is there another way? Yes, to update policy along with value iteration.
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Policy Iteration

Set iteration counter k = 0 and choose some initial policy π0. Then at
iteration k,

Compute the value vector vπk such that vπk = Tπkvπk . Note that
computing vπk by value iteration would require infinitely many
applications of the map Tπk to some arbitrary initial vector.

Use this value vector vπk to compute an updated policy πk+1, via

πk+1(xi ) = arg max
uk∈U

R(xi , uk) + γ
∑
j∈[n]

aukij (vπk )j

 .
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Policy Iteration (Cont’d)

Note that the above equation implies that

Tπk+1
vπk = Tvπk ≥ Tπkvπk = vπk

where the last eq. is because vπk is the value function of πk

Since the map Tπk+1
is monotone, we can keep applying it to get

∀` ≥ 1,T `
πk+1

vπk ≥ vπk

Note: LHS converges to vπk+1
as `→∞
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Markov Decision Processes: Solution Methodologies Value and Policy Iterations

Convergence of Policy Iteration

Suppose policy iteration doesn’t improve the policy, i.e. πk+1 = πk and
the inequality Tvπk ≥ vπk is equality. Then we have

Tvπk = vπk

So vπk must be the optimal value function and the corresponding greedy
policy πk+1 = πk must be the optimal policy.

Theorem

We have that
vπk+1

≥ vπk ,

where the dominance is componentwise. Consequently, there exists a finite
integer k0 such that vπk = v∗ for all k ≥ k0.
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP: Primal

Let d be any distribution over states

minv d>v

s.t. v ≥ Tv

It is clear that v? is feasible and therefore the minimum is at most d>v?

Claim: the minimum above is equal to d>v?

Why? v ≥ Tv implies v ≥ T `v ⇒ v ≥ v? ⇒ d>v ≥ d>v?
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP: equivalent form

min
v

∑
xi∈X

d(xi )V (xi )

s.t. ∀xi ∈ X , V (xi ) ≥ max
uk∈U

R(xi , uk) + γ
∑
xj∈X

aukij V (xj)
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP: equivalent form

min
v

∑
xi∈X

d(xi )V (xi )

s.t. ∀xi ∈ X , uk ∈ U , V (xi ) ≥ R(xi , uk) + γ
∑
xj∈X

aukij V (xj)

This LP has n unconstrained variables and mn inequality constraints
Dual LP will have mn non-negative variables and n equality constraints
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP Duality

The linear program

min
x

c>x

s.t. A x ≥ b

has the dual

max
y≥0

b>y

s.t. A> y = c
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP: Dual

max
µ≥0

∑
xi∈X ,uk∈U

µ(xi , uk)R(xi , uk)

s.t. ∀xi ∈ X ,
∑
uk∈U

µ(xi , uk) = d(xi ) + γ
∑
xj∈X

∑
uk∈U

Auk
ij µ(xj , uk)

Interpretation of µ: discounted state-action visitation frequencies

µ(xj , uk) =
∞∑
t=0

γtP(Xt = xj ,Ut = uk)

Solution directly encodes optimal policy: π?(xj) = arg maxuk µ
?(xj , uk)
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