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Markov Decision Processes: Problem Formulation

Markov Processes with Action Variables

In a Markov process, the state {X;}+>0 evolves on its own, with a state
transition matrix A.

In a Markov Decision Process (MDP), there is an additional “action”
variable U; taking values in a finite set U with || = m.

For each uy € U, there is a corresponding state transition matrix AY. So
if action uy is applied at time t, then

Pr{Xt+1 = Xj’Xt = Xj, Ut = Uk} = a;}k.

There is also a “reward” function R : X xU — R.

Note: R can (i) be a random function of X; and U, (ii) be paid at the
“next” time t + 1, or both.
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The Key ldea: Policy

A key idea in MDPs is policy: A map 7 : X — U that assigns X; to U;.

@ Deterministic policy: A map from X to U.

@ The set My of deterministic policies has cardinality |4|/*!.

@ A policy m € Ny can be represented by an m x n matrix where each
column i has a single entry of 1 in row 7(x;) and the rest are zero.

@ Probabilistic policy: A map from X to the set of probabilities on U4.

@ The set [, of probabilistic policies is uncountable.

@ A policy m € I, can be represented by a nonnegative m x n matrix

where the entries of each column add up to one.
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Markov Decision Processes: Problem Formulation

Impact of a Policy

Key Observation: Whether a policy m € g or I, the resulting process is
a Markov reward process.

If T € Mg, then the resulting state transition matrix is
m(xi)
(Aﬂ)ij =a;

and reward function is

Rx(xi) = R(xi, m(x;)).
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Markov Decision Processes: Problem Formulation
Example

Suppose |X| =4, [U| =2, and the policy 7 € My is represented by
0110
100 1|

Then the state transition matrix A™ consists of the first row of AZ, the
second row of Al, the third row of Al and the fourth row of AZ.

If we represent R as an n x m matrix where Rjj = R(x;, ux), then under
we get
Re=[ R R Rai Ra ]
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Probabilistic Policies

Suppose 7 € [, and suppose that, for each index i, we have

() =[ (i) -+ (T(x0))um |-
Then the i-th row of the state transition matrix A™ is given by

(AT) = (A%) 70

k=1

where A’ denotes the i-th row of the matrix A. That is

Pr{Xey1 = xj| X = xi, 7} = Z (W(Xi))“ka;ljk'
ugeU
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Markov Decision Processes: Problem Formulation
Example

Suppose as before that |X'| = 4, [U| = 2, and the policy 7 € T, is
represented by

03 06 05 0.3

0.7 04 05 0.2

Then the state transition matrix A™ is given by

3(AL)! +0.7(A2)!

AT — 0.6(A!)? + 0.4(A?%)?
| 0.5(AY)3 +0.5(A%)3 |

8(AN* +0.2(A%)*

where (A)" denotes the i-th row of the matrix A.

Ry =[ 0.3Ri1 +0.7R12 0.6R»1 + 0.4R»; 0.5R31 + 0.5R3; 0.8Rs1 + 0.2Rs |.
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Key Question 1

Policy evaluation: For a given policy 7, define V(x;) to be the "value”
associated with the policy 7 and initial state x;, that is, the expected
discounted future reward with Xy = x;. How can V. (x;) be computed for
each x; € X7
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Key Question 2

Optimal Value Determination: For a specified initial state x;, define

V*(x) = 7?&?‘?2 Ve (xi),

to be the optimal value over all policies. How can V*(x;) be computed?

Note that in the above equation, the optimum is taken over all
deterministic policies. In principle one could also seek the optimum value

over all probabilistic policies; but we do not study this situation in these
notes.

Ambuj Tewari (UMich) STATS 701: MDPs Winter 2021 11/38



Key Question 3

Optimal Policy Determination: Define the optimal policy map X — Ty via

7 (x;) := arg max V;(x;).
melly

How can the optimal policy map 7* be determined? Note that, while the
set [1y may be enormous, it is a finite set; hence the maximum indicated
above definitely exists (though it may not be unique).
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Markov Decision Processes: Solution Methodologies
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Rcklelliczs
Value of a Policy by Iteration

Each policy m € Iy results in a Markov process with state transition
matrix A™ and reward function R;.

Define the vector v, by
vre=[ Va(x1) ... Vi(xa) |,
and the reward vector r; by
r-=[ Re(x1) ... Re(xn) ]
Then v, satisfies the familiar relation
Vi =t + YA v,
This equation can be solved by iteration, as before.
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[V ETT ORI M TSI NI W VIS S IIT:AClll  Action-Value Function and the Bellman Optimality Equation

Acton-Value Function

Definition
The action-value function @ : X x U — R is defined by

Qn(xi, ) : ny (Xe)| Xo = xi, Up = uk

Note: In the definition of Qr(x;, ux), at the first instant t = 0 we choose
the action wuy as we wish, not necessarily as u, = 7(x;).

But for t > 1, we choose U; = m(X}).

Q can be viewed as a real vector of dimension |X| - |U|.
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[V ETT ORI M TSI NI W VIS S IIT:AClll  Action-Value Function and the Bellman Optimality Equation

Recursive Relationshop of Action-Value Function

Theorem

The function @ satisfies the recursive relationship

Qr(xis i) = R(xi, i) + 7 aff Qrlx, ()

j=1

Proof in the notes.
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Markov Decision Processes: Solution Methodologies

Action-Value Function and the Bellman Optimality Equation
Relationship Between Action-Value and Value Functions

Theorem

The functions V. and Q. are related via

Vir(xi) = Qn(xi, m(x;)).

In view of this theorem, the recursive equation for @, namely

n
QTr(Xi7 Uk) = R(Xi7 uk) + FYZ a/L'Jl'k QTF(XJ'7 7T(XJ))
j=1
can be rewritten as

n
Qﬂ(xi7 uk) = R(Xi7 uk) + Y Z ag'k VTr(XJ)

j=1
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Action-Value Function and the Bellman Optimality Equation
Optimal Value Function and Optimal Policy

Let V*(x;) denote the maximum value of the discounted future reward,
over all policies w € Iy:

V*(x;) = V. (x;).
(x) := max Vz(xi)

Note that, though the set 1y may be huge, it is nevertheless a finite set.
Therefore the maximum above exists. Also define

7 = arg max Vi (x;).
wEMy

Thus 7* is any policy such that V+ = V*.
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Action-Value Function and the Bellman Optimality Equation
Bellman Optimality Equation

Theorem

Define V*(x;) as above. Then V*(x;) satisfies the reursive relationship

V7 () = maxc | R(xi, ug +7§]a“kv* )| -
J€|n

This is known as the Bellman optimality equation. Note that it does not
help us to find the function V*; it just a characterization of V*.
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[V ETT ORI M TSI NI W VIS S IIT:AClll  Action-Value Function and the Bellman Optimality Equation

Rationalization of the Bellman Optimality Equation

Suppose that we have somehow determined the maximum possible value
V*(1,x;) at time t = 1 for each state x; € X'. Now at time t = 0, suppose
the state Xo = x;. Then each action u, € U leads to the value

R(xi, uk) +~ Z as-k V*(1, x;).
Jeln]

So the maximum value at time t = 0, state Xo = X; is given by

V*(O,X,') = ngl)/({ R(Xl'v Uk) + ;} a:.ljk V*(l,Xj)
j€ln

However, since both the MDP and policy are time-invariant, we must have
that V/(1,x;) = V(0,x;) for each x; € X.
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Markov Decision Processes: Solution Methodologies

Action-Value Function and the Bellman Optimality Equation

Recursive Relationship for Optimal Action-Value Function

Theorem
Define

n
Q" (xi, uk) = R(xi, uk) + ’YZ a; V(%)
j=1
Then Q*(-,-) satisfies the relationship

n
Q" (x> ) = ROxi k) +7 Y 2y max Q" (xj, w).
i—1 !

J=

Note that the maximum w.r.t. uy € U is in a different place compared to
the Bellman equation. This is crucial.
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Action-Value Function and the Bellman Optimality Equation
Advantage of Optimal Action-Value Function

Theorem

Once Q*(-,-) is determined, we have that

V*(Xi) = LTgZ)/({ Q*(Xi7 uk)a

7 (x;) = arg max Q*(x;, uk),
ueU

Moreover, it is easier to “learn” Q*(-,-) than to "learn” V*(-), as we shall
see.
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Ve e e e
Value Update Map

Define the optimal value vector v* as
=l Via) oo VE(xa) |
Next, define a “value update” map T : R” — R", as follows:
(Tv); = max R(xi, u) +~ Z ajvj
J€(n]

One can think of v as the current guess for the vector v*, and of Tv as an
updated guess. The next theorem shows that this intuition is valid.
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Markov Decision Processes: Solution Methodologies [EAVEINEEE TN {VAITElilNH

Value lteration

Theorem

The map T is both monotone and a contraction. As a result, for all
vo € R”, the sequence of iterations { T*vy} approaches v* as k — co.
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Markov Decision Processes: Solution Methodologies [EAVEINEEE TN {VAITElilNH

Value lteration Proof

Monotonicity is easy to prove, hence focus on contraction
[(Tw); = (Tv)il
= ml?x[R(x,, + 72 ajw;] — max[R X, u) + 'yz ajvil|

< mpeiy Yoy~ Y
Jj J
= ymax |(A"w); — (A“v);| <y max]| AW — A||s
u u
< 7y max [[ A% oo 00 W = Voo

<Alw = vl
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Markov Decision Processes: Solution Methodologies [EAVEINEEE TN {VAITElilNH

Action-Value lteration

Define q € RI* >l as the vector [Q(x;, uk), xi € X, ux € U]. Define
F o RIXIXUL _ RIXIXUL by,

n
(Fa)(xi, uk) = ROxi, ) +v > aje max Q(xj, wr).
=1 7

Theorem

The map F is monotone and is a contraction. Therefore for all
qo € RI¥XIUI | the sequence of iterations { T*(qg)} converges to q*.
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Markov Decision Processes: Solution Methodologies [EAVEINEEE TN {VAITElilNH

Determining Optimal Policy from Optimal Value Function

Determining the optimal policy 7* from the optimal value function is easy.

Theorem
Suppose the optimal value vector v* is known, and define, for each
x; € X, the policy 7* - X — U via

7w (x;) = arg max | R(x;, u) +~ Z a;f V*(x)
ueU jeln]

But this requires knowledge of the optimal value function v*.

Is there another way? Yes, to update policy along with value iteration.
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Markov Decision Processes: Solution Methodologies [EAVEINEEE TN {VAITElilNH

Policy lteration

Set iteration counter k = 0 and choose some initial policy mg. Then at
iteration k,

e Compute the value vector v, such that v;, = Ty, v, . Note that
computing v, by value iteration would require infinitely many
applications of the map T, to some arbitrary initial vector.

@ Use this value vector v, to compute an updated policy w1, via

m1(x7) = arg max | R(x, uk) +7 ) aj(vm,);
Ukel/{ jE[n]

Ambuj Tewari (UMich) STATS 701: MDPs Winter 2021 31/38



Value and Policy lerations
Policy Iteration (Cont'd)

Note that the above equation implies that

T

T Ve = TVr, 2 TryNr, =V,

where the last eq. is because vy, is the value function of 7

Since the map T, , is monotone, we can keep applying it to get

ve>1,TE >V,

7Tk1 Tk =—

Note: LHS converges to v, as £ — oo
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Value and Policy Iterations
Convergence of Policy lteration

Suppose policy iteration doesn’t improve the policy, i.e. m,r1 = 7, and
the inequality Tvy, > vy, is equality. Then we have

Ty, = Vg,

So vy, must be the optimal value function and the corresponding greedy
policy mx4+1 = T, must be the optimal policy.

Theorem

We have that
Vi 2 Vs

where the dominance is componentwise. Consequently, there exists a finite
integer ko such that v, = v* for all k > k.
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation
LP: Primal

Let d be any distribution over states

minyd v

st.v>Tv

It is clear that v* is feasible and therefore the minimum is at most d ' v*

Claim: the minimum above is equal to d T v*
Why? v > Tv implies v > Thh=v>v=dlv>dv
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP: equivalent form

mvin Z d(x;)V(x)

xX;i€X

st. Vx; e X, V(x) > max R(xi, uk) + Z a;* V(x)

[IPAS
g x€X
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation

LP: equivalent form

mvin Z d(x;)V(x)

x;i€X

st. Vi e X,up €U, V(x) > R(xj,ux)+ 7 Z a;f V(x)
x€X

This LP has n unconstrained variables and mn inequality constraints
Dual LP will have mn non-negative variables and n equality constraints
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Markov Decision Processes: Solution Methodologies Linear Programming Formulation
LP: Dual

i R i
max Z p(xi, uk)R(xi, uk)

X €EX,ueU

s.t. Vx; € X, Z p(xi, ug) = d(x;) —i—fyz ZAuk (xj, uk)

u e X €X ueU

Interpretation of : discounted state-action visitation frequencies
[e.e]
(g, uk) = Z’YtP(Xt = Xj, Ur = ug)

Solution directly encodes optimal policy: 7*(x;) = arg max,, p*(x;, uk)
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