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Abstract

Recent papers on the theory of representation learning has shown the importance of
a quantity called diversity when generalizing from a set of source tasks to a target
task. Most of these papers assume that the function mapping shared representations
to predictions is linear, for both source and target tasks. In practice, researchers in
deep learning use different numbers of extra layers following the pretrained model
based on the difficulty of the new task. This motivates us to ask whether diversity
can be achieved when source tasks and the target task use different prediction
function spaces beyond linear functions. We show that diversity holds even if the
target task uses a neural network with multiple layers, as long as source tasks use
linear functions. If source tasks use nonlinear prediction functions, we provide
a negative result by showing that depth-1 neural networks with ReLu activation
function need exponentially many source tasks to achieve diversity. For a general
function class, we find that eluder dimension gives a lower bound on the number
of tasks required for diversity. Our theoretical results imply that simpler tasks
generalize better. Though our theoretical results are shown for the global minimizer
of empirical risks, their qualitative predictions still hold true for gradient-based
optimization algorithms as verified by our simulations on deep neural networks.

1 Introduction

It has become a common practice (Tan et al., 2018) to use a pre-trained network as the representation
for a new task with small sample size in various areas including computer vision (Marmanis et al.,
2015), speech recognition (Dahl et al., 2011; Jaitly et al., 2012; Howard and Ruder, 2018) and
machine translation (Weng et al., 2020). Most representation learning is based on the assumption that
the source tasks and the target task share the same low-dimensional representation.

In this paper, following the work of Tripuraneni et al. (2020), we assume that each task, indexed by t,
generates observations noisily from the mean function f∗t ◦ h∗, where h∗ is the true representation
shared by all the tasks and f∗t is called the prediction function. We assume h∗ ∈ H, the representation
function space and ft ∈ Ft, the prediction function space. Tripuraneni et al. (2020) proposed a
diversity condition which guarantees that the learned representation will generalize to target tasks
with any prediction function. Assume we have T source tasks labeled by 1, . . . , T and F1 = · · · =
FT = Fso. We denote the target task by ta and let Et(f, h) ∈ R be the excess error of f, h ∈ Ft×H
for task t. The diversity condition can be stated as follows: there exists some ν > 0, such that for any
f∗ta ∈ Fta and any h ∈ H,

inf
fta∈Fta

Eta(fta, h)

Excess error given h for target task

≤ ν inf
ft∈Fso,t=1,...,T

1

T

T∑
t=1

Et(ft, h)

Excess error given h for source tasks

.
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The diversity condition relates the excess error for source tasks and the target task with respect to
any fixed representation h. A smaller ν indicates a better transfer from source tasks to the target task.
Generally, we say T source tasks achieve diversity over Fta when ν is finite and relatively small.

The number of source tasks plays an important role here. To see this, assume Fso = Fta = F is a
discrete function space and each function can be arbitrarily different. In this case, we will need the
target task to be the same as at least one source task, which in turn requires T ≥ |F| and ν ≥ |F|.
So far, it has only been understood that when both source tasks and target task use linear prediction
functions, it takes at least d source tasks to be diverse, where d is the number of dimension of the
linear mappings. This paper answers the following two open questions with a focus on the deep
neural network (DNN) models:

How does representation learning work when Fso 6= Fta?
How many source tasks do we need to achieve diversity with nonlinear prediction functions?

There are strong practical motivations to answer the above two questions. In practice, researchers use
representation learning despite the difference in difficulty levels of source and target tasks. We use
a more complex function class for substantially harder target task, which means Fso 6= Fta. This
can be reflected as extra layers when a deep neural network model is used as prediction functions.
On the other hand, the source task and target task may have different objectives. Representation
pretrained on a classification problem, say ImageNet, may be applied to object detection or instance
segmentation problems. For instance, Oquab et al. (2014) trained a DNN on ImageNet and kept all
the layers as the representation except for the last linear mapping, while two fully connected layers
are used for the target task on object detection.

Another motivation for our work is the mismatch between recently developed theories in repre-
sentation learning and the common practice in empirical studies. Recent papers on the theory of
representation learning all require multiple sources tasks to achieve diversity so as to generalize to
any target task in F (Maurer et al., 2016; Du et al., 2020; Tripuraneni et al., 2020). However, most
pretrained networks are only trained on a single task, for example, the ImageNet pretrained network.
To this end, we will show that a single multi-class classification problem can be diverse.

Lastly, while it is common to simply use linear mapping as the source prediction function, there is no
clear theoretical analysis showing whether or not diversity can be achieved with nonlinear prediction
function spaces.

Main contributions. We summarize the main contributions made by this paper.

1. We show that diversity over Fso implies diversity over Fta, when both Fso and Fta are
DNNs and Fta has more layers. More generally, the same statement holds when Fta is
more complicated than Fso, in the way that Fta = F ′ta ◦ (F⊗mso ) for some positive integer
m1 and function class F ′ta.

2. Turning our attention to the analysis of diversity for non-linear prediction function spaces,
we show that for a depth-1 NN, it requires Ω(2d) many source tasks to establish diversity
with d being the representation dimension. For general Fso, we provide a lower bound on
the number of source tasks required to achieve diversity using the eluder dimension (Russo
and Van Roy, 2013) and provide a upper bound using the generalized rank (Li et al., 2021).

3. We show that, from the perspective of achieving diversity, a single source task with multiple
outputs can be equivalent to multiple source tasks. While our theories are built on empirical
risk minimization, our simulations on DNNs for a multi-variate regression problem show
that the qualitative predictions our theory makes still hold when stochastic gradient descent
is used for optimization.

2 Preliminaries

We first introduce the mathematical setup of the problem studied in this paper along with the two-phase
learning method that we will focus on.

1F⊗T is the T times Cartesian product of F .
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Problem setup. Let X denote the input space. We assume the same input distribution PX for all
tasks, as covariate shift is not the focus of this work. In our representation learning setting, there
exists a generic feature representation function h∗ ∈ H : X 7→ Z that is shared across different tasks,
where Z is the feature space and H is the representation function space. Since we only consider
the different prediction functions, each task, indexed by t, is defined by its prediction function
f∗t ∈ Ft : Z 7→ Yt ⊂ [0, 1], where Ft is the prediction function space of task t and Yt is the
corresponding output space. The observations Yt = f∗t ◦ h∗(X) + ε are generated noisily with mean
function f∗t ◦ h∗, where X ∼ PX and ε is zero-mean noise that is independent of X .

Our representation is learned on source tasks f∗so := (f∗1 , . . . , f
∗
T ) ∈ F1×· · ·×FT for some positive

integer T . We assume that all the prediction function spaces Ft = Fso are the same over the source
tasks. We denote the target task by f∗ta ∈ Fta : Z 7→ Yt ⊂ [0, 1], where Fta is the target prediction
function space. Unlike the previous papers (Du et al., 2020; Tripuraneni et al., 2020; Maurer et al.,
2016), which all assume that the same prediction function space is used for all tasks, we generally
allow for the possibility that Fso 6= Fta.

Learning algorithm. We consider the same two-phase learning method as in Tripuraneni et al.
(2020). In the first phase (the training phase), n = (n1, . . . , nT ) samples from each task are available
to learn a good representation. In the second phase (the test phase), we are presented nta samples
from the target task to learn its prediction function using the pretrained representation learned in the
training phase.

We denote a dataset of size n from task ft by Snt = {(xti, yti)}ni=1. We use empirical risk minimiza-
tion (ERM) for both phase. In the training phase, we minimize average risks over {Snt

t }Tt=1:

R̂(f , h | f∗so) :=
1∑
t nt

T∑
t=1

nt∑
i=1

lso(ft ◦ h(xti), yti),

where lso : Y × Y 7→ R is the loss function for the source tasks and f = (f1, . . . , fT ) ∈ F⊗Tso .
The estimates are given by (f̂so, ĥ) ∈ arg minf ,h R̂(f , h | f∗so). In the second phase, we obtain the
dataset {xta,i, yta,i}nta

i from the target task and our predictor f̂ta is given by

arg min
f∈Fta

R̂(f, ĥ | f∗ta) :=
1

nta

nta∑
i=1

lta(f ◦ ĥ(xta,i), yta,i),

for some loss function lta on the target task. We also use R(·, · | ·) for the expectation of the above
empirical risks. We denote the generalization error of certain estimates f, h by E(f, h | ·) := R(f, h |
·) −minf ′∈F,h′∈HR(f ′, h′ | ·), where F can be either F⊗Tso or Fta depending on the tasks. Our
goal is to bound the generalization error of the target task.

For simplicity, our results are presented under square loss functions. However, we show that our results
can generalize to different loss functions in Appendix G. We also assume n1 = · · · = nT = nso for
some positive integer nso.

2.1 Model complexity

As this paper considers general function classes, our results will be presented in terms of the
complexity measures of classes of functions. We follow the previous literature (Maurer et al., 2016;
Tripuraneni et al., 2020) which uses Gaussian complexity. Note that we do not use the more common
Rademacher complexity as the proofs require a decomposition theorem that only holds for Gaussian
complexity.

For a generic vector-valued function class Q containing functions q : Rd 7→ Rr and N data points,
XN = (x1, . . . ,xN )T , the empirical Gaussian complexity is defined2 as

ĜN (Q) = Eg

[
sup
q∈Q

1√
N

N∑
i=1

gTi q(xi)

]
, gi ∼ N (0, Ir) i.i.d.

2Note that the standard definition has a 1/N factor instead of 1/
√
N . We use the variant so that ĜN does

not scale with N in most of the cases we consider and only reflects the complexity of the class.
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The corresponding population Gaussian complexity is defined as GN (Q) = EXN

[
ĜN (Q)

]
, where

the expectation is taken over the distribution of XN .

2.2 Diversity

Source tasks have to be diverse enough, to guarantee that the representation learned from source tasks
can be generalized to any target task in Fta. To measure when transfer can happen, we introduce the
following two definitions, namely that of transferability and diversity.
Definition 1. For some ν, µ > 0, we say the source tasks f∗1 , . . . , f

∗
T ∈ Fso are (ν, µ)-transferable

to task f∗ta if

sup
h∈H

inff∈Fta E(f, h | f∗ta)

inff∈F⊗T
so
E(f , h | f∗so) + µ/ν

≤ ν.

Furthermore, we say they are (ν, µ)-diverse over Fta if above ratio is bounded for any true target
prediction functions f∗ta ∈ Fta, i.e.

sup
f∗ta∈Fta

sup
h∈H

inff∈Fta E(f, h | f∗ta)

inff∈F⊗T
so
E(f , h | f∗so) + µ/ν

≤ ν.

When it is clear from the context, we denote E(f, h | f∗ta) and E(f , h | f∗so) by Eta(f, h) and
Eso(f , h), respectively. We will call ν the transfer component and µ, the bias introduced by transfer.
The definition of transferable links the generalization error between source tasks and the target task
as shown in Theorem 1. The proof can be found in Appendix A.
Theorem 1. If source tasks f∗1 , . . . , f

∗
T are (ν, µ)-diverse over Fta, then for any f∗ta ∈ Fta, we have

Eta(f̂ta, ĥ) ≤ νEso(f̂so, ĥ) + µ+

√
2πĜnta

(
Fta ◦ ĥ

)
√
nta

+

√
9 ln(2/δ)

2nta
.

The first term in Theorem 1 can be upper bounded using the standard excess error bound of Gaussian
complexity. The benefit of representation learning is due to the decrease in the third term from
Ĝnta(Fta ◦ H)/

√
nta without representation learning to Ĝnta(Fta ◦ ĥ)/

√
nta in our case. For the

problem with complicated representations, the former term can be extremely larger than the later one.

In the rest of the paper, we discuss when we can bound (ν, µ), for nonlinear and nonidentical Fso
and Fta.

3 Negative transfer when source tasks are more complex

Before introducing the cases that allow transfer, we first look at a case where transfer is impossible.

Let the source task use a linear mapping following the shared representation and the target task
directly learns the representation. In other words, f∗ta is identical mapping and known to the learner.
We further considerFso = {z 7→ wT z : w ∈ Rp} andH = {x 7→ Hx : H ∈ Rp×d}. The interesting
case is when p� d. Let the optimal representation be H∗ and the true prediction function for each
source task be w∗1 , . . . , w

∗
T . In the best scenario, we assume that there is no noise in the source

tasks and each source task collects as many samples as possible, such that we will have an accurate
estimation on each w∗Tt H∗ ∈ Rp×d which we denote by W ∗t .

However, the hypothesis class given the information from source tasks are

{H ∈ Rp×d : ∃w ∈ Rp, wTH = Wt for all t = 1, . . . , T}.

As H∗ is in the above class, any QH∗ for some rotation matrix Q ∈ Rp×p is also in the class. In
other words, a non-reducible error of learnt representation is maxQ ‖H∗ −QH∗‖22 in the worst case.

More generally, we give a condition for negative transfer. Consider a single source task f∗so. Let
H∗so := arg minh∈Hminf∈Fso Eso(f, h) and H∗ta := arg minh∈Hminf∈Fta Eta(f, h). In fact, if
one hopes to get a representation learning benefit with zero bias (µ = 0), we need all h ∈ H∗so to
satisfy inff∈Fta Eta(f, h) = 0, i.e. any representation that is optimal in the source task is optimal
in the target task as well. Equivalently, we will need H∗so ⊂ H∗ta. As shown in Proposition 1, the
definition of transferable captures the case well.
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Proposition 1. If there exists a h′ ∈ H∗so such that h′ /∈ H∗ta, then minfta Eta(fta, h
′) > 0.

Furthermore, there is no ν <∞, such that f∗so is (ν, 0)-transferable to f∗ta.

Proof. The first statement is by definition. Plugging g′ into the Definition 1, we will have ν =∞

The negative transfer happens when the optimal representation for source tasks may not be optimal
for the target task. As the case in our linear example, this is a result of more complex Fso, which
allows more flexibility to reduce errors. This inspires us to consider the opposite case where Fta is
more complex than Fso.

4 Source task as a representation

Before discussing more general settings, we first consider a single source task, which we refer to as
so. Assume that the source task itself is a representation of the target task. Equivalently, the source
task has a known prediction function f∗so(x) = x. This is a commonly-used framework when we
decompose a complex task into several simple tasks and use the output of simple tasks as the input of
a higher-level task.

A widely-used transfer learning method, called offset learning, which assumes f∗ta(x) = f∗so(x) +
w∗ta(x) for some offset function w∗ta falls within the framework considered here. The offset method
enjoys its benefits when wta has low complexity and can be learnt with few samples. It is worth
mentioning that our setting covers a more general setting in Du et al. (2017), which assumes
f∗ta(x) = G(f∗so(x), w∗ta(x)) for some known transformation function G and unknown w∗ta.

We show that a simple Lipschitz condition on Fta gives us a bounded transfer-component.

Assumption 1 (Lipschitz assumption). Any fta ∈ Fta is L-Lipschitz with respect to L2 distance.

Theorem 2. If Assumption 1 holds, task f∗so is (L, 0)-transferable to task f∗ta and we have with a
high probability,

Eta(f̂ta, ĥ) = Õ

(
LĜnso

(H)
√
nso

+
Ĝnta

(Fta ◦ ĥ)
√
nta

)
.

Theorem 2 bounds the generalization error of two terms. The first term that scales with 1/
√
nso only

depends on the complexity ofH. Though the second term scales with 1/
√
nta, it is easy to see that

Ĝnta
(Fta ◦ ĥ) = Ĝnta

(Fta)� Ĝnta
(Fta ◦ H) with the dataset {ĥ(xta,i)}nta

i=1.

4.1 General case

Previously, we assume that a single source task is a representation of the target task. Now we
consider a more general case: there exist functions in the source prediction space that can be used
as representations of the target task. Formally, we consider Fta = F ′ta ◦ (F⊗mso ) for some m > 0
and some target-specific function space F ′ta : Y⊗mso 7→ Yta. Note that Fta is strictly larger than Fso
when m = 1 and the identical mapping x 7→ x ∈ F ′ta. In practice, ResNet (Tai et al., 2017) satisfies
the above property.

Assumption 2. Assume any f ′ta ∈ F ′ta is L′-Lipschitz with respect to L2 distance.

Theorem 3. If Assumption 2 holds and the source tasks are (ν, µ)-diverse over its own space Fso,
then we have

Eta
(
f̂ta, ĥ

)
= Õ

L′m(νĜTnso
(F⊗Tso ◦ H)√
Tnso

+ µ

)
+

Ĝnta

(
Fta ◦ ĥ

)
√
nta

 .

It is shown in Tripuraneni et al. (2020) that Ĝ∑
s ns

(F⊗Sso ◦ H) can be bounded by Õ(ĜTnso
(H) +√

T Ĝnso
(Fso)). Thus, the first term scales with ĜTnso

(H)/
√
Tnso + Ĝnso

(Fso)/
√
nso. Again the

common part shared by all the tasks decreases with
√
Tnso, while the task-specific part scales with√

nso or
√
nta.
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4.2 Applications to deep neural networks

Theorem 3 has a broad range of applications. In the rest of the section, we discuss its application to
deep neural networks, where the source tasks are transferred to a target task with a deeper network.

We first introduce the setting for deep neural network prediction function. We consider the regression
problem with Yso = Yta = R and the representation space Z ⊂ Rp. A depth-K vector-valued neural
network is denoted by

f(x) = σ (WK (σ (. . . σ (W1x)))) ,
where each Wk is a parametric matrix of layer k and σ is the activation function. For simplicity, we
let Wk ∈ Rp×p for k = 1, . . .K. The class of all depth-K neural network is denoted byMK . We
denote the linear class by L = {x 7→ αTx+ β : ∀α ∈ Rp, ‖α‖2 ≤M(α)} for some M(α) > 0. We
also assume

max{‖Wk‖∞, ‖Wk‖2‖} ≤M(k).
where ‖ · ‖∞ and ‖ · ‖2 are the infinity norm and spectral norm. We assume any z ∈ Z, ‖z‖∞ ≤ DZ .

Deeper network for the target task. We now consider the source task with prediction function
of a depth-Kso neural network followed by a linear mapping and target task with depth-Kta neural
network. We let Kta > Kso. Then we have

Fta = L ◦MKta−Kso ◦MKso and Fso = L ◦MKso .

Using the fact thatM1 = σ(L⊗p), we can write Fta as L ◦MKta−Kso−1 ◦ σ ◦ (F⊗pso ). Thus, we
can apply Theorem 3 and the standard Gaussian complexity bound for DNN models, which gives us
Corollary 1.
Corollary 1. Let Fso be depth-Kso neural network and Fta be depth-Kta neural network. If source
tasks are (ν, 0)-diverse over Fso, we have

Eta
(
f̂ta, ĥ

)
=

Õ

(
pνM(α)ΠKta

k=1M(k)

(
ĜTnso(H)√

Tnso
+
DZ

√
Kso√
nso

)
+
DZ

√
Kta ·M(α)ΠKta

k=1M(k)
√
nta

)
. (1)

Note that the terms that scales with 1/
√
nso and 1/

√
nta have similar coefficients M(α)ΠKta

k=1M(k),
which do not depends on the complexity of H. The term that depends on ĜTnso

(H) scales with
1/
√
Tnso as we expected.

5 Diversity of non-linear function classes

While Corollary 1 considers the nonlinear DNN prediction function space under a diversity condition,
it is not clearly understood how diversity can be achieved for nonlinear spaces. In this section, we first
discuss a specific non-linear prediction function space and show a fundamental barrier to achieving
diversity. Then we extend our result to general function classes by connecting eluder dimension and
diversity. We end the section with positive results for achieving diversity under a generalized rank
condition.

We consider a subset of depth-1 neural networks with ReLu activation function: F = {x 7→
[〈x,w〉 − (1 − ε/2)]+ : ‖x‖2 ≤ 1, ‖w‖ ≤ 1} for some ε > 0. Our lower bound construction is
inspired by the similar construction in Theorem 5.1 of Dong et al. (2021).
Theorem 4. Let T = {f1, . . . , fT } be any set of depth-1 neural networks with ReLu activation in F .
For any ε > 0, if T ≤ 2d log(1/ε)−1, there exists some representation h∗, h′ ∈ H, some distribution
PX and a target function f∗ta ∈ F , such that

inf
f∈F⊗T

Eso(f , h′) = 0, while inf
f∈F
Eta(f, h′) = ε2/32.

Theorem 4 implies that we need at least Ω(2d log(1/ε)) source tasks to achieve diversity. Otherwise,
we can always find a set of source tasks and a target task such that the generalization error in source
tasks are minimized to 0 while that in target task is ε2/32. Though ReLu gives us a more intuitive
result, we do show that similar lower bounds can be shown for other popular activation functions, for
example, sigmoid function (see Appendix E).
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5.1 Lower bound using eluder dimension

We extend our result by considering a general function space F and build an interesting connection
between diversity and eluder dimension (Russo and Van Roy, 2013). We believe we are the first to
notice a connection between eluder dimension and transfer learning.

Eluder dimension has been used to measure the sample complexity in the Reinforcement Learning
problem. It considers the minimum number of inputs, such that any two functions evaluated similarly
at these inputs will also be similar at any other input. However, diversity considers the minimum
number of functions such that any two representations with similar outputs for these functions will
also have similar output for any other functions. Thus, there is a kind of duality between eluder
dimension and diversity.

We first formally define eluder dimension. Let F be a function space with support X and let ε > 0.
Definition 2 ((F , ε)-dependence and eluder dimension (Osband and Roy (2014))). We say that x ∈ X
is (F , ε)-dependent on {x1, . . . , xn} ⊂ X iff

∀f, f̃ ∈ F ,
n∑
i=1

∥∥∥f (xi)− f̃ (xi)
∥∥∥2
2
≤ ε2 =⇒ ‖f(x)− f̃(x)‖2 ≤ ε.

We say x ∈ X is (F , ε)-independent of {x1, . . . , xn} iff it does not satisfy the definition of dependence.

The eluder dimension dimE(F , ε) is the length of the longest possible sequence of elements in X
such that for some ε′ ≥ ε every element is (F , ε′)-independent of its predecessors.

We slightly change the definition and let dims
E(F , ε) be the shortest sequence such that any x ∈ X is

(F , ε)-dependent on the sequence.

Although dims
E(F , ε) ≤ dimE(F , ε), it can be shown that in many regular cases, say linear case and

generalized linear case, dimE(F , ε) is only larger then dims
E(F , ε) up to a constant.

Definition 3 (Dual class). For any F : X 7→ Y , we call F∗ : F 7→ Y its dual class iff. F∗ = {gx :
gx(f) = f(x),∀x ∈ X}.
Theorem 5. For any function class F : X 7→ R, and some ε > 0, let F∗ be the dual class of F .
Let dE = dims

E(F∗, ε). Then for any sequence of tasks f1, . . . , ft, t ≤ dE − 1, there exists a task
ft+1 ∈ F such that for some data distribution PX and two representations h, h∗,

inff ′t+1∈F EX‖f ′t+1(h(X))− ft+1(h∗(X))‖22
1
t inff ′1,...,f ′t

∑t
i=1 EX‖f ′i(h(X))− fi(h∗(X))‖22

≥ t/2.

Theorem 5 formally describes the connections between eluder dimension and diversity. To interpret
the theorem, we first discuss what are good source tasks. Any T source tasks that are diverse could
transfer well to a target task if the parameter ν could be bounded by some fixed value that is not
increasing with T . For instance, in the linear case, ν = O(d) no matter how large T is. While for a
finite function class, in the worst case, ν will increase with T before T reaches |F|. Theorem 5 states
that if the eluder dimension of the dual space is at least dE , then ν scales with T until T reaches dE ,
as if the function space F is discrete with dE elements.

Note that this result is consistent with what is shown in Theorem 9 as eluder dimension of the class
discussed above is lower bounded by Ω(2d) as well (Li et al., 2021).

5.2 Upper bound using approximate generalized rank

Though we showed that diversity is hard to achieve in some nonlinear function class, we point
out that diversity can be easy to achieve if we restrict the target prediction function such that
they can be realized by linear combinations of some known basis. Tripuraneni et al. (2020) has
shown that any source tasks f1, . . . , fT ∈ F are (1/T, µ)-diverse over the space {f ∈ F : ∃f̃ ∈
conv(f1, . . . , fT ) such that supz ‖f(z)− f̃(z)‖ ≤ µ}, where conv(f1, . . . , fT ) is the convex hull
of {f1, . . . , fT }. This can be characterized by a complexity measure, called generalized rank.
Generalized rank is the smallest dimension required to embed the input space such that all hypotheses
in a function class can be realizable as halfspaces. Generalized rank has close connections to eluder
dimension. As shown in Li et al. (2021), eluder dimension can be upper bounded by generalized rank.
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Definition 4 (Approximate generalized rank with identity activation). Let Bd(R) := {x ∈ Rd |
‖x‖2 ≤ R}. The µ-approximate id-rk(F , R) of a function class F : X 7→ R at scale R is the
smallest dimension d for which there exists mappings φ : X 7→ Bd(1) and w : F 7→ Bd(R) such that

for all (x, f) ∈ X × F : |f(x)− 〈w(f), φ(x)〉| ≤ µ.
Proposition 2. For any F with µ-approximate id-rk(F , R) ≤ di for some R > 0, there exists no
more than di functions, f1, . . . , fdi , such that w(f1), . . . w(fdi) span Rddi . Then f1, . . . , fdi are
(di, µ)-diverse over F .

Proposition 2 is a direct application of Lemma 7 in Tripuraneni et al. (2020). Upper bounding id-rank
is hard for general function class. However, this notation can be useful for those function spaces with
a known set of basis functions. For example, any function space F that is square-integrable has a
Fourier basis. Though the basis is an infinite set, we can choose a truncation level d such that the
truncation errors of all functions are less than µ. Then the hypothesis space F has µ-approximate
id-rank less than d.

6 Experiments

In this section, we use simulated environments to evaluate the actual performance of representation
learning on DNNs trained with gradient-based optimization methods. We also test the impact of
various hyperparameters. Our results indicate that even though our theory is shown to hold for ERM
estimators, their qualitative theoretical predictions still hold when Adam is applied and the global
minima might not be found. Before we introduce our experimental setups, we discuss a difference
between our theories and experiments: our experiments use a single regression task with multiple
outputs as the source task, while our analyses are built on multiple source tasks.

6.1 Diversity of problems with multiple outputs

Though we have been discussing achieving diversity from multiple source tasks, we may only
have access to a single source task in many real applications, for example, ImageNet, which is
also the case in our simulations. In fact, we can show that diversity can be achieved by a single
multiclass classification or multivariate regression source task. The diversity for the single multi-
variate regression problem with L2 loss is trivial as the loss function is decomposable. For multi-
class classification problems or regression problems with other loss functions, we will need some
assumptions on boundedness and continuous. We refer the readers to Appendix H for details.

6.2 Experiments setup

Our four experiments are designed for the following goals. The first two experiments (Figure 1, a
and b) target on the actual dependence on nso, nta,Kso and Kta in Equation (1) that upper bounds
the errors of DNN prediction functions. Though the importance of diversity has been emphasized
by various theories, no one has empirically shown its benefits over random tasks selection, which
we explore in our third experiment (Figure 1, c). Our fourth experiment (Figure 1, d) verifies the
theoretical negative results of nonlinearity of source prediction functions showed in Theorem 4 and 5.

Though the hyper-parameters vary in different experiments, our main setting can be summarized
below. We consider DNN models of different layers for both source and target tasks. The first K
layers are the shared representation. The source task is a multi-variate regression problem with output
dimension p and Kso layers following the representation. The target task is a single-output regression
problem with Kta layers following the representation. We used the same number of units for all the
layers, which we denote by nu. A representation is first trained on the source task using nso random
samples and is fixed for the target task, trained on nta random samples. In contrast, the baseline
method trains the target task directly on the same nta samples without the pretrained network. We
use Adam with default parameters for all the training. We use MSE (Mean Square Error) to evaluate
the performance under different settings.

6.3 Results

Figure 1 summaries our four experiments, with all the Y axes representing the average MSE’s of
100 independent runs with an error bar showing the standard deviation. The X axis varies depending
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on the goal of each experiment. In subfigure (a), we test the effects of the numbers of observations
for both source and target tasks, while setting other hyperparameters by default values. The X axis
represents nso and the colors represents nta. In subfigure (b), we test the effects of the number of
shared representation layers K. To have comparable MSE’s, we keep the sum K +Kta = 6 and run
K = 1, . . . , 5 reflected in the X axis, while keeping Kso = 1. In subfigure (c), we test the effects of
diversity. The larger p we have, the more diverse the source task is. We keep the actual number of
observations nso · p = 4000 for a fair comparison. Lastly, in subfigure (d), we test whether diversity
is hard to achieve when the source prediction function is nonlinear. The X axis is the number of layers
in source prediction function Kso. The nonlinearity increases with Kso. We run Kso = 1, 2, 3 and
add an activation function right before the output such that the function is nonlinear even if Kso = 1.

0.00

0.05

0.10

100 1000 10000 Baseline
Source

M
ea

n 
S

qu
ar

e 
E

rr
or

Target

10

100

1000

(a) Effects of sample sizes

0.010

0.015

0.020

1 2 3 4 5 baseline
Number of Layers in the Representation

M
ea

n 
S

qu
ar

e 
E

rr
or

(b) Effects of K

0.45

0.50

0.55

0.60

0.65

1 2 3 4 5 6 7 8 Baseline
Output Dimensions

M
ea

n 
S

qu
ar

e 
E

rr
or

(c) Effects of diversity

0.005

0.010

0.015

0.020

0.025

1 2 3 Baseline
Number of Layers in the Source Prediction Functions

M
ea

n 
S

qu
ar

e 
E

rr
or

(d) Effects of Kso

Figure 1: (a) Effects of the numbers of observations for both source (nso) and target tasks (nta). (b)
Effects of the number of shared representation layers K. (c) Effects of diversity determined by the
output dimensions p. We keep the actual number of observations nso · p = 4000. (d) Effects of
nonlinearity of the source prediction function. Higher Kso indicates higher nonlinearity.

In Figure 1 (a), MSE’s decrease with larger numbers of observations in both source and target tasks,
while there is no significant difference between nso = 1000 and 10000. The baseline method without
representation learning performs worst and it performs almost the same when nta reaches 1000. In
(b), there are positive benefits for all different numbers of the shared layers and the MSE is the lowest
at 5 shared layers. As shown in Figure 1 (c), the MSE’s and their variances are decreasing when
the numbers of outputs increase, i.e., higher diversity. Figure 1 (d) shows that there is no significant
difference between baseline and Kso = 1, 2, 3. When Kso = 2, 3 there is a negative effects.

7 Discussion

In this paper, we studied representation learning beyond linear prediction functions. We showed
that the learned representation can generalize to tasks with multi-layer neural networks as prediction
functions as long as the source tasks use linear prediction functions. We show the hardness of being
diverse when the source tasks are using nonlinear prediction functions by giving a lower bound on
the number of source tasks in terms of eluder dimension. We further give an upper bound depending
on the generalized rank.

Focusing on future work, we need better tools to understand the recently proposed complexity measure
generalized rank. Our analyses rely on the ERM, while in practice as well as in our simulations,
gradient-based optimization algorithms are used. Further analyses on the benefits of representation
learning that align with practice on the choice of optimization method should be studied. Our analyses
assume arbitrary source tasks selection, while, in real applications, we may have limited data from
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groups that are under-represented, which may lead to potential unfairness. Algorithm that calibrates
this potential unfairness should be studied.

Another direction of future work is to propose reasonable assumptions for a guarantee of generaliza-
tion even when the source prediction functions are nonlinear. Possibly the interesting functions are
within a subset of the target prediction function class, which makes generalization easier.

In this work, we consider provided and fixed source tasks. In practice, many empirical methods
(Graves et al., 2017) are proposed to adaptively select unknown source tasks. An interesting direction
is to ask whether adaptively task selection could achieve the optimal level of diversity and to design
algorithms for that purpose.
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A Proof of Theorem 1

Proof. Note that the second phase is to find the best function within the class Fta ◦ ĥ. We first apply
the standard bounded difference inequality (Bartlett and Mendelson, 2002) as shown in Theorem 6.

Theorem 6 (Bartlett and Mendelson (2002)). With a probability at least 1− δ,

sup
f∈Fta

|Rta(f ◦ ĥ)− R̂ta(f ◦ ĥ)| ≤
√

2πĜnta
(Fta ◦ ĥ)

√
nta

+

√
9 ln(2/δ)

2nta
=: ε(ĥ, nta, δ),

furthermore, the total generalization error can be upper bounded by

Eta(f̂ta ◦ ĥ) ≤ inf
f∈Fta

Eta(f, ĥ)︸ ︷︷ ︸
approximation error

+ ε(ĥ, nta, δ)︸ ︷︷ ︸
generalization error over Fta◦ĥ

. (2)

Theorem 6 is stated in terms of Gaussian complexity. It is more common to use Radamecher
complexity, which can be upper bounded by

√
2π of the corresponding Gaussian complexity. For

the generalization bound in terms of Rademacher complexity, Theorem 26.5 of Shalev-Shwartz and
Ben-David (2014) has a full proof. Then recall that Yt and Yta ⊂ [0, 1], we get rid of the loss function
by the contraction lemma, which leads to Theorem 6. The result follows by the definition,

inf
f∈Fta

Eta(f, ĥ) ≤ inffta∈Fta
Eta(fta, ĥ)

inffso∈F⊗S
so
Eso(fso, ĥ) + µ/ν

(Eso(f̂so, ĥ) + µ/ν) ≤ νEso(f̂so, ĥ) + µ.

B Proof of Theorem 2

Proof. To show f∗so is (L, 0)-transferable to f∗ta, we bound the approximation error of the target task
given any fixed h ∈ H.

Eta(f∗ta, h)

= EX,Y [lta(f∗ta ◦ h(X), Y )− lta(f∗ta ◦ h∗(X), Y )]

= EX‖f∗ta ◦ h(X)− f∗ta ◦ h∗(X)‖22
≤ LEX‖h(X)− h∗(X)‖22. (3)

Now using Assumption 1, we have

Eso(h) = EX,Y [lso(h(X), Y )− lso(h∗(X), Y )]

= EX‖h∗(X)− h(X)‖22

Combined with Equation (3), we have suph∈H[Eta(f∗ta, h)/Eso(h)] ≤ L.

Firstly, using Theorem 6 on source tasks solely, we have Eso(ĥ) = Õ(Ĝnso
(G)/
√
nso). Definition 1

gives us

inf
f∈Fta

Eta(f, ĥ) ≤ LEso(ĥ) = Õ(LĜnso(G)/
√
nso).

Combined with (2), we have

Eta
(
f̂ta, ĥ

)
= Õ

L Ĝnso
(G)

√
nso

+
Ĝnta

(
Fta ◦ ĥ

)
√
nta

 .
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C Proof of Theorem 3

Proof. Let f∗ta(x) = f ′∗ta(f∗1 ◦ h∗(x), . . . f∗m ◦ h∗(x)). Define new tasks t1, . . . tm. Each ti has the
prediction function f∗i .

By Definition 1, the source tasks are (ν, µ)-transferable to each ti. By Theorem 1, we have

inf
fi∈Fso

Eti(fi, ĥ) ≤ νEso(f̂so, ĥ) + µ.

Since we use L2 loss,

inf
fi∈Fso

EX‖fi ◦ ĥ(X)− f∗i ◦ h∗(X)‖22 = inf
fi∈Fso

Eti(fi, ĥ) ≤ νEso(f̂so, ĥ) + µ.

As this holds for all i ∈ [m], we have

inf
f1,...,fm∈Fso

EX‖(f1◦ĥ(X), . . . , fm◦ĥ(X))−(f∗1 ◦h∗(X), . . . , f∗m◦ĥ∗(X))‖22 ≤ m(νEso(f̂so, ĥ)+µ).

Using Assumption 2, we have

inf
f∈Fta

Eta(f, ĥ) ≤ L′m(νEso(f̂so, ĥ) + µ).

Theorem 3 follows by plugging this into (2).

D Proof of Corollary 1

This section we prove Corollary 1 using Theorem 3, the standard bound for Gaussian complexity of
DNN model and the Gaussian complexity decomposition from Tripuraneni et al. (2020).

The following theorem bounds the Rademacher complexity of a deep neural network model given an
input dataset XN = (x1, . . . ,xN )T ∈ RN×d.
Theorem 7 (Golowich et al. (2018)). Let σ be a 1-Lipschitz activation function with σ(0) = 0. Recall
thatMK is the depth K neural network with d-dimensional output with bounded input ‖xji‖ ≤ DZ

and ‖Wk‖∞ ≤M(k) for all k ∈ [K]. Recall that L =
{
x 7→ αTx+ β : ∀α ∈ Rp, ‖α‖2 ≤M(α)

}
is the linear class following the depth-K neural network. Then,

Rn(L ◦MK ;XN ) ≤ 2DZ

√
K + 2 + log d ·M(α)ΠK

k=1M(k)√
n

.

Since for any function class F , Ĝn(F) ≤ 2
√

log n · R̂n(F), we also have the bound for the Gaussian
complexity under the same conditions.

Applying Theorem 7, we have an upper bound for the second term in Theorem 3:

Ĝnta

(
Fta ◦ ĥ

)
√
nta

≤
2DZ

√
log(nta)

√
Kta + 2 + log(d)MαΠKta

k=1M(k)
√
nta

= Õ

(
DZsqrtKtaM(α)ΠKta

k=1M(k)
√
nta

)
.

It only remains to bound ĜTnso

(
F⊗Tso ◦ H

)
/
√
Tnso in Theorem 3. To proceed, we introduce the

decomposition theorem for Gaussian complexity (Tripuraneni et al., 2020).
Theorem 8 (Theorem 7 in Tripuraneni et al. (2020)). Let the function classF consist of functions that
are L(F)-Lipschitz and have boundedness parameter DX = supf,f ′,x,x′ ‖f(x)− f ′(x′)‖2. Further,
define Q = {h(X̄) : h ∈ H, X̄ ∈ ∪Tj=1{Xj}}. Then the Gaussian complexity of the function class
F⊗T (H) satisfies,

ĜX

(
F⊗T (H)

)
≤ 4DX

(nT )3/2
+ 128C

(
F⊗T (H)

)
· log(nT ),

where C (F⊗t(H)) = L(F)ĜX(H) + maxq∈Q Ĝq(F).
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With Theorem 8 applied, we have

ĜTnso

(
F⊗Tso ◦ H

)
√
Tnso

≤ 8DX

(Tnso)2
+

128
(
L(Fso)ĜTnso(H) + maxq∈Q Ĝq(Fso)

)
· log(Tnso)

√
Tnso

.

(4)

The second term relies on the Lipschitz constant of DNN, which we bound with the following lemma.
Similar results are given by Scaman and Virmaux (2018); Fazlyab et al. (2019).

Lemma 1. If the activation function is 1-Lipschitz, any function in L ◦MK is M(α)ΠK
k=1M(k)-

Lipschitz with respect to L2 distance.

Proof. The linear mapping x 7→Wkx is ‖Wk‖2-Lipschitz. Combined with the Lipschitz of activation
function we have σ(Wkx) is also ‖Wk‖2-Lipschitz. Then the composition of different layers has
Lipschitz constant ΠkMk. The Lemma follows by adding the Lipschitz of the last linear mapping.

Thus, we have
L(Fso) ≤M(α)ΠKso

k=1M(k).

By Theorem 7,

max
q∈Q

Ĝq(Fso) = Õ(
DZ

√
KsoM(α)ΠKso

k=1M(k)
√
nso

).

Plug the above two equations into (4), we have

ĜTnso

(
F⊗Tso ◦ H

)
√
Tnso

= Õ

(
DX

(Tnso)2
+M(α)ΠKso

k=1M(k)(
ĜTnso(H)√

Tnso
+
DZ

√
Kso√
nso

)

)
,

where DX = sup(h,f,x),(h′,f ′,x′)∈H×Fso×X ‖h ◦ f(x)− h′ ◦ f ′(x′)‖.

Lemma 2. The boundedness parameter DX satisfies DX ≤ DZM(α)ΠKso

k=1M(k).

Proof. The proof is given by induction. Let rk denote the vector-valued output of the k-th layer of
the prediction function. First note that

DX ≤ 2 sup
f∈Fso,z∈Z

‖f(z)‖2 ≤ 2M(α)‖rKso
‖2.

For each output of the k-th layer, we have

‖rk‖2 = ‖σ(Wkrk−1)‖2 ≤ ‖Wkrk−1‖22 ≤ ‖Wk‖22‖rk−1‖22,

where the first inequality is by the 1-Lipschitz of the activation function. By induction, we have

DX ≤ 2DZM(α)ΠKso

k=1M(k).

Recall that Fta = L ◦MKta−Kso−1 ◦ (F⊗pso ) and the Lipschitz constant L′ ≤M(α)ΠKta

Kso+2M(k).
Using Theorem 3 and apply Lemma 2, we have

Eta
(
f̂ta, ĥ

)
=

Õ

(
pνΠKta

k=Kso+2M(k)

(
M(α)ΠKso

k=1M(k)(
ĜTnso

(H)√
Tnso

+
DZ

√
Kso√
nso

)

)
+
DZ

√
Kta ·M(α)ΠKta

k=1M(k)
√
nta

)
.
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E Lower bound results for the diversity of depth-1 NN

We first give the proof using ReLu activation function (Theorem 4), as the result is more intuitive
before we extend the similar results to other activation functions.

Proof. As we consider arbitrary representation function and covariate distribution, for simplicity we
write X ′ = h∗(X) and Y ′ = h(X).

We consider a subset of depth-1 neural networks with ReLu activation function: F = {x 7→
[〈x,w〉 − (1− ε/4)]+ : ‖x‖2 ≤ 1, ‖w‖ ≤ 1}. Let fw be the function with parameter w. Consider
U ⊂ {x : ‖x‖2 = 1} such that 〈u, v〉 ≤ 1− ε for all u, v ∈ U, u 6= v.

Lemma 3. For any T ⊂ F , |T | ≤ b|U |/2c, there exists a V ⊂ U , |V | ≥ b|U |/2c such that any
f ∈ T , f(v) = 0 for all v ∈ V .

Proof. For any set T , let UT = {u : ∃t ∈ T , u ∈ arg maxu∈U 〈u, ft〉} be a subset of U . Thus,
|UT | ≤ T ≤ b|U |/2c. Let V = U \ UT .

For any f ∈ T , let uf be its closed point in U . Let vf be its closed point in V . Let θf be the angle
between uf and vf . By the definition of U , we have cos(θf ) = 〈uf , vf 〉 ≤ 1− ε. We will show that
〈f, vf 〉 ≤ 1− ε/4.

Note that since 〈f, vf 〉 ≤ 〈f, uf 〉, we have the angle between f and v is larger than θf/2. By the
simple fact that cos(θf/2) ≤ 1 − (1 − cos(θf ))/4, we have 〈f, vf 〉 ≤ 1 − ε/4. Thus, f(vf ) = 0
and f(v) = 0 for all v ∈ V .

For any set of prediction functions in source tasks, let V be the set defined in the above lemma.
Consider any u ∈ U \ V and let V ′ = U \ (V ∪ u). By this construction, we have fu(u) = ε/4,
while all f ∈ T , f(u) = 0. Note that

inf
f∈F

1

|V ′|
∑
x∈V ′

(fu(u)− f(x))2 ≥ |V
′| − 1

16|V ′|
ε2 ≥ 1

32
ε2,

while ∑
f∈T

1

|V ′|
∑
x∈V ′

(f(u)− f(x))2 = 0.

Thus, we let X ′ = u almost surely and Y ′ follows a uniform distribution over V ′. This is true when
the covariate distribution is the same as Y ′ and h = x 7→ x and h∗ = x 7→ u. Recalling the definition
of diversity, we have

inf
f∈F

EX′,Y ′(fu(X ′)− f(Y ′))2 = ε2/32 and
1

T

∑
ft∈T

inf
f ′t∈F

EX′,Y ′(fs(X
′)− f ′s(Y ′))2 = 0.

Note that the same result holds when the bias b ≤ −(1− ε/4). For general bounded ‖b‖2 ≤ 1, one
can add an extra coordinate in x as an offset.

In Theorem 4, we show that in depth-1 neural network with ReLu activation function, we will need
exponentially many source tasks to achieve diversity. Similar results can be shown for other non-linear
activation functions that satisfies the following condition:
Assumption 3. Let σ : R 7→ R be an activation function. We assume there exists x1, x2 ∈ R,
x1 > x2, such that |σ(x1)| ≥ supx≤x2

|σ(x)|M for some M > 0.

ReLu satisfies the assumption with any M > 0 for any x1 > 0 and x2 ≤ 0. Also note that any
continuous activation function that is lower bounded and increasing satisfies this assumption.
Theorem 9. Let σ satisfies the above assumption with M for some x1 and x2. Let F = {x 7→
σ(8(x1 − x2)〈x,w〉 − 7x1 + 8x2)) : ‖x‖2 ≤ 1, ‖w‖2 ≤ 1}. Let T = {f1, . . . , fT } be any
set of depth-1 neural networks with ReLu activation in F . If T ≤ 2d log(2)−1, there exists some
representation h∗, h′ ∈ H, some distribution PX and a target function f∗ta ∈ F , such that

inff∈F Eta(f, h′)

inff∈F Eso(f , h′)
≥ (M − 1)2

8
.
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Proof. We follow the construction in the proof of Theorem 9, fix an ε = 1/2 and let U ⊂ {x :
‖x‖2 = 1} such that 〈u, v〉 ≤ 1− ε for all u, v ∈ U, u 6= v.

For any source tasks set T , let UT = {u : ∃t ∈ T , u ∈ arg maxu∈U 〈u, ft〉} be a subset of U . Thus,
|UT | ≤ T ≤ b|U |/2c. Let V = U \ UT . For any f ∈ T , v ∈ V , similarly to the previous argument,
we have 〈f, v〉 ≤ 1− ε/4 = 1/8. Therefore, 〈f, v〉 ≤ 1− ε/4 = 1/8 ≤ x2.

For any set of prediction functions in source tasks, let V be the set defined in the above lemma.
Consider any u ∈ U \ V and let V ′ = U \ (V ∪ u). By this construction, we have fu(u) = σ(x1),
while all f ∈ T , f(u) = σ(x2). Note that

inf
f∈F

1

|V ′|
∑
x∈V ′

(fu(u)− f(x))2 ≥ |V
′| − 1

|V ′|
≥ 1

2
(σ(x1)− σ(x2))2,

while ∑
f∈T

1

|V ′|
∑
x∈V ′

(f(u)− f(x))2 ≤ 4 sup
x≤x2

σ(x2)2.

Thus
inff∈F

1
|V ′|

∑
x∈V ′(fu(u)− f(x))2∑

f∈T
1
|V ′|

∑
x∈V ′(f(u)− f(x))2

≥ (M − 1)2

8

F Proof of Theorem 5

Proof. Since dims(F∗) is at least dE , for any set {f1, . . . , ft}, there exists a ft+1 that is (F∗, ε)-
independent of {f1, . . . , ft}. By definition, we have

∃x1, x2 ∈ X ,
t∑
i=1

‖fi(x1)− fi(x2)‖22 ≤ ε2, while ‖ft+1(x1)− ft+1(x2)‖22 ≥ ε2.

We only need to construct appropriate data distribution PX and representation g, g∗ to finish the
proof. As we do not make any assumption on g, g∗ and PX , it would be simple to let X1 = g(X)
and X2 = g∗(X).

We let the distribution of X1 be the point mass on x1. Let X2 be the uniform distribution over
{x1, x2}.
For the excess error of source tasks, we have

inf
f ′1,...,f

′
t

t∑
i=1

EX1,X2
‖f ′i(X1)− fi(X2)‖22

≤
t∑
i=1

EX1,X2
‖fi(X1)− fi(X2)‖22

=

t∑
i=1

1

2
‖fi(x1)− fi(x2)‖22 ≤

ε2

2
.

For the excess error of the target task ft+1, we have

inf
f ′t+1∈F

EX‖f ′t+1(X1)− ft+1(X2)‖22

= inf
f ′t+1∈F

[
1

2
‖f ′t+1(x1)− ft+1(x2)‖22 +

1

2
‖f ′t+1(x1)− ft+1(x1)‖22]

≥ inf
a∈R

[
1

2
‖a− ft+1(x2)‖22 +

1

2
‖a− ft+1(x1)‖22]

=
1

4
‖ft+1(x1)− ft+1(x2)‖22 ≥

ε2

4
.

The statement follows.
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G Extending to general loss functions

In all the above analyses, we assume the square loss function for both source and target tasks. We first
show that diversity under square loss implies diversity under any convex loss function. Let ∇l(x, y)
be the gradient of function∇l(·, y) evaluated at x.
Lemma 4. Any task set F that is (ν, µ)-diverse over any prediction space under square loss is also
(ν/c1, µ/c1)-diverse over the same space under loss l, if l is c1 strongly-convex and for all x ∈ X

E[∇l(g∗(X), Y ) | X = x] = 0 (5)

Proof. Using the definition of the strongly convex and (5),
EX,Y [l(ft ◦ h(X), Y )− l(f∗t ◦ h∗(X), Y )]

≥ EX,Y [∇l (f∗t ◦ h∗(X), Y )
T

(f∗t ◦ h∗(X)− ft ◦ h(X)) + c1 ‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22]

= c1EX,Y [‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22],

which is the generalization error under the square loss.

Note that Equation (5), is a common assumption made in various analyses of stochastic gradient
descent (Jin et al., 2021).

On the other direction, we show that any established diversity over the target task with square loss
also implies the diversity over the same target task with any loss l if ∇2l � c2I for some c2 > 0.
Lemma 5. Any task set F that is (ν, µ)-diverse over a target prediction space under square loss is
also (νc2, µc2)-diverse over the same space under loss l, if ∇2l(·, y) � c2I for all y ∈ Yta and for
all x ∈ X we have E[∇l(g∗(X), Y ) | X = x] = 0.

Proof. The proof is the same as the proof above except for changing the direction of inequality.
Using the definition of the strongly convex and (5),

EX,Y [l(ft ◦ h(X), Y )− l(f∗t ◦ h∗(X), Y )]

≤ EX,Y [∇l (f∗t ◦ h∗(X), Y )
T

(f∗t ◦ h∗(X)− ft ◦ h(X)) + c2 ‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22]

= c2EX,Y [‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22],

which is the generalization error under the square loss.

H Missing proofs in Section 6

Assume we have T tasks, which is (ν, µ)-diverse over Fso, and Yso ⊂ R. Then we can construct
a new source task so with multivariate outputs, i.e. Yso ⊂ RT , such that Hso = F⊗Tso and each
dimension k on the output, given an input x, is generated by

Yk(X) = f∗k ◦ h∗(X) + ε.

Intuitively, this task is equivalent to T source tasks of a single output, which is formally described in
the following Theorem.
Theorem 10. Let so be a source task with Yso ⊂ RK and f∗so(·) = (m∗1(·), . . . ,m∗K(·)) for some
class M : Z 7→ R. Then if the task set t1, . . . , tK with prediction functions m∗1, . . . ,m

∗
K from

hypothesis classM is (ν, µ)-diverse overM, then so is ( νK ,
µ
K )-diverse over the same class.

Proof. This can be derived directly from the definition of diversity. We use t to denote the new task.
By definition,

inf
fso∈Fso

Eso(fso, h) = inf
hso

EX‖(m1 ◦ (X), . . . ,mK ◦ h(X))− (m∗1 ◦ h∗(X), . . . ,m∗K ◦ h∗(X))‖22

=

K∑
k=1

inf
mk∈M

‖mk ◦ h(X)−m∗k ◦ h∗(X)‖22

=

K∑
k=1

inf
mk∈M

Etk(ftk , h)
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As (t1, . . . , tK) is (ν, µ)-diverse, we have

supm∗∈M infm∈M Em∗(m,h)

infhso∈Fso Eso(fso, h) + µ/ν
=

1

K

supm∗∈M infm∈M Em∗(m,h)
1
K

∑K
k=1 infmk∈M Etk(hk, h) + µ

νK

≤ ν

K
.

For the multiclass classification problem, we try to explain the success of the pretrained model
on ImageNet, a single multi-class classification task. For a classification problem with K-levels,
a common way is to train a model that outputs a K-dimensional vector, upon which a Softmax
function is applied to give the final classification result. A popular choice of the loss function is the
cross-entropy loss.

Now we formally introduce our model. Let the Softmax function be q : RK 7→ [0, 1]K . Assume
our response variable y ∈ RK is sampled from a multinomial distribution with mean function
q(f∗so ◦ h∗(x)) ∈ [0, 1]K , where h∗ ∈ H : X 7→ Z and f∗so ∈ Fso : Z 7→ RK . We use the
cross-entropy loss l : [0, 1]K × [0, 1]K 7→ R, l(p, q) = −

∑K
k=1 pk log(qk).

Assumption 4. [Boundedness] We assume that any f ◦ h(x) ∈ Fso × H is bounded in
[− log(B), log(B)] for some constant positive B. We also assume the true function mink U(f∗ ◦
h∗(x))k ≥ 1/B∗ for some B∗ > 0.

Theorem 11. Under Assumption 4, a K-class classification problem with f∗so(·) =
(m∗1(·), . . . ,m∗K(·)) for some m∗1, . . . ,m

∗
K ∈ M and Softmax-cross-entropy loss function is

(2B2
∗B

4ν,B2
∗µ)-diverse over any the function classM as long as f∗so with L2 loss is (ν, µ)-diverse

overM.

Proof. We consider any target task with prediction function fromM⊗K′ . Let U : RK
′ 7→ [0, 1]K

′
be

the softmax function. We first try to remove the cross-entropy loss. By definition, the generalization
error of any f ◦ h ∈M⊗K′ ×H is

Eta(f ◦ h)− Eta(h∗ ◦ h∗)

= EX,Y [−
K′∑
i=1

1(Y = i) log(
U(f ◦ h)

U(f∗ ◦ h∗)
)]

= EX [−
K′∑
i=1

U(f∗ ◦ h∗) log(
U(f ◦ h)

U(f∗ ◦ h∗)
)], (6)

which gives us the KL-divergence between two distributions U(f ◦ h) and U(f∗ ◦ h∗).

Lemma 6. For any two discrete distributions p, q ∈ [0, 1]K , we have

KL(p, q) ≥ 1

2
(

K∑
i=1

|p− q|)2 ≥ 1

2

K∑
i=1

(pi − qi)2.

On the other hand, if mini pi ≥ b for some positive b, then

KL(p, q) ≤ 1

b2

K′∑
i=1

(pi − qi)2.

Proof. The first inequality is from Theorem 2 in Dragomir and Gluscevic (2000). The second
inequality is by simple calculus.

By the assumption 4, we have that for any h, g, x,

U(f ◦ h(x))i ∈ [
1

KB2
,

1

1 + (K − 1)/B2
].
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We also have
∑K
i=1 exp(f ◦ h(x)i) ∈ [K/B,KB]. To proceed,

supf∗ta∈M⊗Kta inf f̂ta Eta(f̂ta ◦ h)− Eta(f∗ta ◦ h∗)

inf f̂so∈M⊗Kso Eso(f̂so ◦ h)− Eso(f∗so ◦ h∗) +
B2
∗µ

2B2
∗B

4ν

(Applying (6) and Lemma 6)

≤ 2B2
∗

supf∗ta∈M⊗Kta inf f̂ta EX‖U(f̂ta ◦ h(X))− U(f∗ta ◦ h∗(X))‖22
inf f̂so∈M⊗Kso EX‖U(f̂so ◦ h(X))− U(f∗so ◦ h∗(X))‖22 + µ

B4ν

(Using the boundedness of
K∑
i=1

exp (f ◦ h(x)i))

≤ 2B2
∗B

2
supf∗ta∈M⊗Kta inf f̂ta EX‖ exp(f̂ta ◦ h(X))− exp(f∗ta ◦ h∗(X))‖22
inf f̂so∈M⊗Kso EX‖ exp(f̂so ◦ h(X))− exp(f∗so ◦ h∗(X))‖22 + µ

B2ν

(Using the Lipschitz and convexity of exp)

≤ 2B2
∗B

4
supf∗ta∈M⊗Kta inf f̂ta EX‖f̂ta ◦ h(X)− f∗ta ◦ h∗(X)‖22
inf f̂so∈M⊗Kso EX‖f̂so ◦ h(X)− f∗so ◦ h∗(X)‖22 + µ/ν

≤ 2B2
∗B

4ν.

The diversity follows.

I Experimental details

Each dimension of inputs is generated from N (0, 1). We use Adam with default parameters for all
the training with a learning rate 0.001. We choose ReLu as the activation function.

True parameters. The true parameters are initialized in the following way. All the biases are set
by 0. The weights in the shared representation are sampled from N (0, 1/

√
nu). The weights in the

prediction function for the source task are set to be orthonormal when Kso = 1 and p ≤ nu. For the
target prediction function or source prediction function if Kso > 1, the weights are sampled from
N (0, 1/

√
nu) as in the representation part.

Hyperparameters. Without further mentioning, we use the number of hidden units, nu = 4, input
dimension p = 4, K = 5, Kta = Kso = 1, the number of observations nso = 1000 and nta = 100
by default. Note that since p is set to be 4 by default, equivalently we will have nso · p = 4000
observations.
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