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Abstract

This paper studies the decision making prob-
lem with Funnel Structure. Funnel structure,
a well-known concept in the marketing field,
occurs in those systems where the decision
maker interacts with the environment in a
layered manner receiving far fewer observa-
tions from deep layers than shallow ones. For
example, in the email marketing campaign
application, the layers correspond to Open,
Click and Purchase events. Conversions from
Click to Purchase happen very infrequently
because a purchase cannot be made unless
the link in an email is clicked on.

We formulate this challenging decision making
problem as a contextual bandit with funnel
structure and develop a multi-task learning
algorithm that mitigates the lack of sufficient
observations from deeper layers. We analyze
both the prediction error and the regret of our
algorithms. We verify our theory on predic-
tion errors through a simple simulation. Ex-
periments on both a simulated environment
and an environment based on real-world data
from a major email marketing company show
that our algorithms offer significant improve-
ment over previous methods.

1 Introduction

We consider decision making problems arising in on-
line recommendation systems or advertising systems
(Pescher et al., 2014; Manikrao and Prabhakar, 2005).
Traditional approaches to these problems only opti-
mize a single reward signal (usually purchase or final
conversion), whose positive rate can be extremely low
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in some real recommendation systems. This reward
sparsity can lead to a slow learning speed and unstable
models. Nevertheless, some non-sparse signals are usu-
ally available in these applications albeit in a layered
manner. These signals can be utilized to boost the per-
formance of the final sparse signal. As a special case,
funnel structure generates a sequence of binary signals
by layers and the observations are cumulative products
of the sequence. An example of email conversion funnel
is shown in Figure 1.

Funnel structure characterizes a wide range of problems
in advertising systems. In the email campaign prob-
lem, the learning agent decides the time to send emails
to maximize purchases. Apart from the final reward
on purchase, we also observe the opening and clicking
status of an email. There are also papers studying the
participation funnel in MOOCs (Clow, 2013; Borrella
et al., 2019). Students go through the layers of Aware-
ness, Registration, Activity, Progress and Completion
until they drop or complete the course. For both of
the funnels, the drop-off fraction at each layer is large.
For example, in email campaigns, the conversion rates
are typically 10% for Open, 4% for Click and 2.5% for
Purchase.

Funnel structure studies in the marketing field.
Conversion funnel has been at the center of the market-
ing literature for several decades (Howard and Sheth,
1969; Barry, 1987; Mulpuru, 2011). This line of work
focuses on the attribution of advertising effects and is
more interested in analyzing buyers’ behavior at each
layer. Schwartz et al. (2017) learns contextual bandit
with a Funnel Structure. However, their model di-
rectly learns on the final purchase signal and signals on
other stages are only used for performance evaluation.
Hence, it lacks a comprehensive method that exploits
the structural information of a funnel.

Multi-task learning. Learning on a funnel struc-
ture can be seen as a multi-task learning problem,
where predicting the conversion on each stage is a sin-
gle task. Previous literature analyzed how learning
among multiple similar tasks can improve sample effi-
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ciency (Evgeniou and Pontil, 2004; Ruder, 2017; Zhang
and Yang, 2017). Most of the multi-task learning anal-
yses require an assumption on the similarity among
tasks. Evgeniou and Pontil (2004) assumes that true
parameters of different tasks are centered at some un-
known point, which we adopted in our method. We
also consider a sequential dependency among the tasks,
which imposes restrictions on the unknown parameters
between adjacent layers.

Analyses of multi-task learning often assume balanced
sample sizes for different tasks. Otherwise, their
bounds depend on the harmonic mean of sample sizes
1
n

∑n
i=1

1
mi

, which can be large when sample sizes are
imbalanced as in funnel structures. Furthermore, most
of the multi-task learning algorithms minimize the av-
erage losses over the task set, which is not our primary
goal.

Contextual bandits. The decision making problem
is modelled as a contextual bandit problem (Li et al.,
2010, 2011; Beygelzimer et al., 2011) in our paper. Pre-
vious works on contextual bandits mainly focus on a
single reward. Drugan and Nowe (2013); Turğay et al.
(2018) study multi-objective bandits by considering a
Pareto regret, which optimizes the vector of rewards
for different objectives, while our work focuses on op-
timizing the final reward by exploiting the whole task
set.

Related works This work is the first work that ap-
plies the multi-task learning to contextual bandits with
funnel structure. There has been works considering
contextual bandits with a sequential transfer (Lazaric
et al., 2013; Soare et al., 2014), a multi-task learning
approach (Deshmukh et al., 2017) and a multi-goal
setting (Drugan and Nowe, 2013; Turğay et al., 2018).
However, none of their algorithms adapts to the funnel
structure due to the imbalance in the sample sizes of dif-
ferent layers. On the other side, Schwartz et al. (2017)
focuses on funnel structure contextual bandits without
multi-task learning. Some Reinforcement Learning al-
gorithms with auxiliary rewards (Jaderberg et al., 2016;
Lin et al., 2019) can also be applied to this problem.
This line of work does not use the full information
as it either learns on the output of the last layer or
learns on an weighted average of different layers. Our
experiments also verify that using the full information
could improve performances.

Our contributions. Our main contributions are
summarized below:

1. We formally formulated the important Funnel
Structure problem from the marketing field.

2. We proposed a multi-task learning algorithm for

contextual bandits with funnel structure and ana-
lyzed the prediction errors and regret under various
similarity assumptions.

3. Our prediction error bound was verified on a sim-
ulated environment.

4. Our algorithm improves previous methods on both
simulated and real-data contextual bandit environ-
ment.

2 Formulation

In this section, we introduce the formulation for funnel
structure and discuss how the formulation applies to
our email campaign problem. We also introduce the
generalized linear model and the assumptions for our
theoretical analyses.

Funnel structure. A funnel, denoted by F =
{J,X , (Z1, . . . , ZJ)}, consists of the number of layers
J ∈ N, feature space X ∈ Rd for some d > 0 and a
sequence of J mappings (Z1, . . . , ZJ ). Each Zj is a map-
ping from feature space to [0, 1]. On each interaction,
a funnel takes an input feature x ∈ X and generates a
sequence of binary variables z1, . . . , zJ from Bernoulli
distributions with parameters Z1(x), . . . , ZJ (x), respec-
tively. Then it returns r1, . . . rJ , for rj =

∏j
s=1 zs, to

the learning agent.

Email conversion funnel. We illustrate how the
formulation applies to the email conversion funnel. Our
email conversion funnel, as shown in Figure 1, has 3
layers representing Open, Click and Purchase, respec-
tively. Every email sent to a user randomly generates
r1, r2, r3 representing whether the email is actually
opened, clicked or purchased using the mechanism de-
scribed above, while z1, z2, z3 are the indicators for the
three events given previous events happened.

On the sparsity of the funnel, if an email is never
opened, neither click or purchase could happen. Out of
all the emails sent to users, 10% of them were opened,
0.4% were clicked, and 0.01% led to a purchase. More
generally, when there exists a rj = 0, all the succes-
sors ri’s, i > j, become 0, which leads to unobserv-
able zj+1, . . . , zJ . On average, given a feature x, the
probability of observing zj is Pj−1(x), which decreases
exponentially as the layers go deeper.

Contextual bandit with funnel structure. Our
contextual bandit with funnel structure is denoted by
M = {A,X , Px, {Fa}a∈A}, where A is the finite action
space with |A| = A, X is the common context space,
Px is the context distribution and each arm a ∈ A is as-
signed a funnel denoted by Fa = {J,X , (Za1 , . . . , ZaJ)}.
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Sent (100%)

Open (10%)

Click (0.4%)

Purchase (0.01%)

Underlying Process

z1 ∼ B(Z1(x))

z2 ∼ B(Z2(x))

z3 ∼ B(Z3(x))

Observations

r1 = z1

r2 = r1 × z2

r3 = r2 × z3

Figure 1: An illustration of the email conversion fun-
nel. Given any input x, the profile information of the
user, the funnel generates, z1, . . . z3, from Bernoulli
distributions with parameter Z1(x), Z2(x), Z3(x), rep-
resenting whether the email would be opened, clicked
or purchased given the conversion of the previous lay-
ers happened. The observations r1, . . . , r3 represent
whether the email is actually opened, clicked or pur-
chased, respectively.

On each round of t-th interaction, the environment
generates a context xt ∼ Px, the agent takes an ac-
tion at and the funnel Fat returns the reward vector
(r1t, . . . , rJt) taken the input context xt based on the
process described above.

Note that our setting, when J = 1, differs from the
contextual bandit setting in Chu et al. (2011); Filippi
et al. (2010), where each arm has a unique context but
the same mapping from context to reward function.
Filippi et al. (2010) assumes a canonical exponential
family density function. We consider a binomial signal,
whose density might not be in canonical exponential
family.

Assumptions. Most analyses on multi-task learn-
ing assume some similarities among tasks set to allow
knowledge transfer. Here we assume a generalized lin-
ear model (GLM) and a prior-known hypothesis class
over the unknown parameters for all the layers. The
hypothesis class characterizes the relatedness across
layers.

Assumption 1 (Generalized linear model). Assume
all Zj = µ(xT θ∗j ) for some mean function µ : R 7→ [0, 1]
and θ∗j is the true parameter of layer j. A throughout
example of this paper is the model for logistic regression,
where µ(y) = 1/(1 + exp(−y)).

We also assume that the mean function µ is Lipschitz
continuous and convex.

Assumption 2. We assume that µ is monotonically
increasing and µ′(x) ≥ cµ for all x ∈ X . We also
require that function µ satisfies |µ′(x)| ≤ κ.

Assumption 3. Assume X ⊂ {x ∈ R : ‖x‖ ≤ dx}.

Generally, we assume that the joint parameter is from
a hypothesis class. Two special cases of interest are
introduced, upon which we design our practical algo-
rithms.
Assumption 4 (Similarity assumption). Let θ =
(θT1 , θ

T
2 , . . . , θ

T
j )T ∈ RdJ and θ∗ is the joint vector for

the true parameters. We assume θ∗ ∈ Θ0 ⊂ RdJ .
Throughout the paper, we discuss two special cases:

1. Sequential dependency: Θ0 := {θ ∈ RdJ :
‖θj − θj−1‖2 ≤ qj , for j > 1 and ‖θ1‖ ≤ q1 for
some q1, . . . qJ ∈ R+.

2. Clustered dependency: Θ0 := {θ ∈ RdJ : ∃θ0 ∈
Rd, ‖θj−θ0‖2 ≤ qj ,∀j ∈ [J ]} for some q1, . . . qJ ∈
R+.

For any set Θ ⊂ RdJ , we denote the marginal set of
task j by Θ[j] i.e., Θ[j] = {θ ∈ Rd : ∃θ ∈ Θ,θj = θ}.

We first note that a hypothesis class over the joint pa-
rameters is a common assumption in multi-task learning
literature (Maurer et al., 2016; Zhang and Yang, 2017;
Pentina et al., 2015). Also, in another line of work
focusing on transfer learning, the theoretical analyses
often assume a discrepancy between tasks (Wang et al.,
2019). We argue in Appendix A.1 that under our GLM
assumptions, the discrepancy assumption is almost the
same as ours.

3 Supervised learning

Before discussing the contextual bandits with funnel
structure, we first consider the supervised learning
scenario for a single funnel and seek a bound for the
prediction error of each layer:

PEj = |µ(xT θ∗j )− µ(xT θ̂j)|,

for some estimates θ̂1, . . . , θ̂J ∈ Rd.

For a single funnel, our algorithm learns on the
dataset {xi, r1i, . . . , rJi}ni=1 of size n. Let nj =∑n
i=1 1(rj−1,i = 1) be the number available obser-

vations for layer j and j1, . . . jnj be the indices of
these nj samples, i.e. rj−1,ji > 0 for all i ∈ [nj ]. Let
zj,ji = rj,ji/rj−1,ji . We denote the square loss function
of layers j by

lj(θ) :=

nj∑
i=1

(zj,ji − µ(xTjiθ))
2. (1)

3.1 Implications from a single-layered case

We first investigate a single-layered case and see how
prior knowledge helps improve the upper bound on
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prediction error. Lemma 1 bounds the prediction error
using either prior knowledge or collected samples. The
proof of Lemma 1 is provided in Appendix A.2.

Lemma 1. Using the model defined above, assume
J = 1 and the true parameter θ∗ ∈ Θ0. Let the dataset
be {xi, zi}ni=1 and let θ̃ be the solution that maximizes
the L2 function in (1) and θ̂ be its projection onto Θ0.
Let q := supθ1,θ2∈Θ0

‖θ1−θ2‖2. Then with a probability
at least 1− δ, we have

|µ(xT θ̂)− µ(xT θ∗)|

≤ κmin{ sup
θ1,θ2∈Θ0

|xT (θ1 − θ2)|, ‖x‖M−1
n

4cδ
cµ

√
d

n ∨ 1
}

≤ κmin{dxq, ‖x‖M−1
n

cδ
cµ

√
d

n
}, (2)

furthermore, we have a confidence set on θ∗

θ∗ ∈ {θ : ‖θ̂ − θ‖Mn ≤
cδ
cµ

√
d

n
}, (3)

where Mn = 1
n

∑n
i=1 xix

T
i , cδ = 80dx

√
2 ln(8/δ).

Equation (2) bounds the prediction error with a min-
imum of two terms. The first term in (2) is directly
derived from prior knowledge. The second term is a
parametric bound without any regularization (Srebro
et al., 2010). In fact, (2) is a tight upper bound on
prediction error as shown in Appendix A.3.

Lemma 1 implies a "transfer or learn" scenario:
when the sample size for the new task is not large
enough, i.e. n = o(1/q2), it is more beneficial to di-
rectly apply the prior knowledge. Otherwise, one can
drop the prior knowledge and use parametric bound.

3.2 Multi-task learning algorithm

Our algorithm, inspired by the "transfer or learn" idea,
consists of two steps: 1) optimize the loss function for
each layer within its marginal set and calculate the
confidence set defined in (3); 2) take the intersection
between the confidence set and Θ0, which generates Θ1.
Then project the unconstrained solution onto the new
set Θ1. The details are shown in Algorithm 1, where
ProjΘ(θ) denotes the projection of θ onto the set Θ.

3.3 Upper bound on prediction error

Directly applying Lemma 1 within the set Θ1 gives us
a bound on prediction error depending on the marginal
set Θ1[j] and nj as shown in Corollary 1.

Corollary 1. Let θ̂1, . . . , θ̂J be the estimates from Al-
gorithm 1 and Θ1 be the set defined in Algorithm 1.

Algorithm 1 Regularized MTL for funnel structure
Input: number of layers J , hypothesis set Θ0, dataset
{xi, r1i, . . . , rJi}ni=1 generated from the funnel, accu-
racy δ > 0.
# Calculate confidence set.
for j = 1 to J do
Solve θ̄j = ProjΘ0[j](arg min lj(θ)).

Calculate Θ̂j defined in Equation (3) by

Θ̂j = {θ : ‖θ − θ̄j‖Mj,nj
≤ cδ
cµ

√
d

nj
},

for Mj,nj =
∑nj
i=1 xj,jix

T
j,ji

.
end for
# Re-estimate parameters.
Calculate joint set Θ̂ = {θ : θj ∈ Θ̂j for all j ∈ [J ]}.
Set Θ1 ← Θ0 ∩ Θ̂.
for j = 1 to J do
Solve θ̂j = ProjΘ1[j](arg min lj(θ)).

end for
return θ̂1, . . . , θ̂J .

With a probability at least 1− δ, for all j ∈ [J ], we have

PEj ≤ κmin{ sup
θ1,θ2∈Θ1[j]

|xT (θ1 − θ2)|,

‖x‖M−1
n

cδ
cµ

√
d

nj
}. (4)

However, it is more interesting to discuss the actual
form of Θ1 = Θ0 ∩ Θ̂ and its interactions with nj
under some special assumptions on Θ0. As mentioned
in Assumption 4, we consider two cases: sequential
dependency and clustered dependency.

Recall that for the sequential dependency, we assume
θ∗ ∈ Θ0 := {θ ∈ RdJ : ‖θj − θj−1‖2 ≤ qj , for j >
1 and ‖θ1‖2 ≤ q1} for some q1, . . . qJ > 0. Before pre-
senting our results, we need an extra assumption on
the distribution of covariates.

Assumption 5. Assume the minimum eigenvalue of
Mj,nj is lower bounded by a constant λ > 0 for all
j ∈ [J ].

Assumption 5 guarantees that the distribution of the
covariate covers all dimensions.

Theorem 1 (Prediction error under sequential depen-
dency). For any funnel with a sequential dependency
of parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates
from Algorithm 1. If nj+1 ≤ nj/4, q1 ≥, . . . ,≥ qJ and
Assumption 5 is satisfied, then with a probability at
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least 1− δ, for any j0 ∈ [J ], we have

PEj ≤

 κ‖x‖2
cδ/J
cµλ

√
d
nj
, if j < j0,

κ‖x‖2(
cδ/J
cµλ

√
d
nj0

+
∑j
i=j0+1 qi), if j ≥ j0,

where we let n0 =∞. The smallest bound of all choices
of j0 is achieved when j0 is the smallest j ∈ [J ], such
that

cδ
√
d

cµλ
(

1
√
nj
− 1
√
nj−1

) ≥ qj , (5)

if none of j’s in [J ] satisfies (5), j0 = J + 1.

Theorem 1 shows that for some funnel under sequential
dependency assumption, there exists a threshold layer
j0, before which the bounds without multi-task learning
are tighter. After j0, we use the bounds depending
on prior knowledge. For small nj ’s, j0 = 1 and for
sufficient large nj ’s, j0 = J + 1. Figure 2 shows an
example of how the threshold j0 changes when total
number n increases in a 5-layered funnel.
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Figure 2: An example of how the prediction error
bound in Theorem 1 changes when the number of
observations increases in a 5-layered funnel. We
set ‖x‖2cδ

√
d/(cµλ) = 1, qj = (12 − 2j)/100 and

nj = 0.2j−1n. Solid lines mark the prediction error
bound defined in Theorem 1 and dashed lines mark the
prediction error without multi-task learning (second
term in (3)). Black points marked the change of j0.

For the clustered dependency, the prediction error
bound can be characterized by Theorem 2.

Theorem 2 (Prediction error under clustered depen-
dency). For any funnel with a clustered dependency
of parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates
from Algorithm 1. With a probability at least 1− δ,

PEj ≤ κ‖x‖2 min{
cδ/J

cµλ

√
d

nj0
+ qj ,

cδ/J

cµλ

√
d

nj
},

where j0 = arg minj∈[J]
cδ
cµλ

√
d
nj

+ qj .

Under the clustered dependency, there is a single layer
that gives the tightest confidence set on the unknown
center, which is used by all the other layers.

4 Regret Analysis for Contextual
Bandit

In this section, we bound regrets for contextual bandits
with funnel structure and discuss the benefits of multi-
task learning.

Extra notations. For simpler demonstration, we
define Pj : X 7→ [0, 1], such that Pj(x) =

∏j
i=1 Zi(x).

For any θ = (θT1 , θ
T
2 , . . . , θ

T
j )T ∈ RdJ , let Pj(x,θ) =∏j

i=1 µ(xT θj). To account for multiple funnels, we let
nta,j be the number of observations for the j-th layer of
funnel Fa up to step t . Let θ∗a,j be the true parameters
and θ∗a be the joint vector. Further we let λta,j be the
sample minimum eigenvalue covariance matrix of layer
j of funnel Fa, λa,j be the minimum eigenvalue of its
expectation and λ̄ be a lower bound over all a and j.

Regret of contextual bandits with funnel structure is
defined as

T∑
t=1

[
PJ(xt,θ

∗
a∗t

)− PJ(xt,θ
∗
at)
]
,

where a∗t is the optimal action for input xt, at is the
the action chosen by the agent at step t and T is the
total steps.

4.1 Optimistic algorithm

We propose a variation of the famous UCB (upper
confidence bound) algorithm that adds bonuses based
on the uncertainty of the whole funnel. The prediction
error of funnel Fa of a given input x is |PJ(x, θ̂

t

a) −
PJ (x,θ∗a)| for θ̂

t

a which is the joint vector of estimates
θ̂ta,j at the step t.

From Lemma 1, we define ∆µta,j by

κ‖xt‖2 min{ sup
θ1,θ2∈Θta,1

‖θ1 − θ2‖2,
cδ/3AJT

cµλta,j

√
d

nta,j ∨ 1
},

where Θt
a,1 is the intersection set from Algorithm 1 for

funnel a at step t. Using simple Taylor’s expansion, we
have Lemma 2.
Lemma 2. Using the estimates from Algorithm 1, we
have, with the same probability in (4),

|PJ(x, θ̂
t

a)− PJ(x,θ∗a)| ≤∑
j

PJ(x, θ̂
t

a)

µ(xT θ̂ta,j)
∆µta,j +

∑
i 6=j

∆µta,j∆µ
t
a,i =: ∆µta. (6)
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Algorithm 2 Contextual Bandit with a Funnel Struc-
ture
t → 1, total number of steps T , memory Ha = {}
for all a ∈ [A]. Initialize θa,? with zero vectors.
for t = 1 to T do
Receive context xt.
Compute P+

J (xt, θ̂a) based on (6) for all a ∈ [A].
Choose at = arg maxa∈A P̂

+
J (xt, θ̂a,j).

Receive rt,1, . . . , rt,J from funnel Fat .
Set Hat → Hat ∪ {(xt, (rt,1, . . . , rt,J))}.
Update θ̂at,? by algorithm 1 with dataset Hat .

end for

Define P+
J (x, θ̂

t

a) = PJ(x, θ̂
t

a) + ∆µta. We are able to
derive an optimistic algorithm shown in Algorithm 2.
Now we use the prediction error on the whole funnel
to analyze the regret.

4.2 Regret analysis

Theorem 3 bounds regrets for Algorithm 2. The re-
gret in Theorem 3 can be bounded by three terms
in (7). The first term in (7) represents the normal
regret without any multi-task learning with an order
O(
∑
a,j

√
nTa,j), which reduces to the standard

√
AT

when J = 1. Note that the impact of one layer on
regret is bounded with the square root of its number of
observations. The second term is a constant term that
does not depend on T . The third term represents the
benefits of multi-task learning. Full version of Theorem
3 is given and proved in Appendix A.5.
Theorem 3. Using Algorithm 2, under the Assump-
tions 1-4, with high probability, the total regret

T∑
t=1

[
PJ(xt,θ

∗
a∗t

)− PJ(xt,θ
∗
at)
]

= O(c0
∑
a,j

√
nTa,j +

∑
a,j

c20Jd
4
x

p̄2
a,j

)−
∑
a,j

∆a,j (7)

where O ignores all the constant terms and log-
arithmic terms for better demonstrations, c0 =
(κdxcδ/3AJT

√
d)/(cµλ̄), p̄a,j := ExPj−1(x,θ∗a) and

∆a,j =

T∑
t=1;at=a

Pj(x
T
t θ̂

t
at)

c0 1√
nta,j ∨ 1

−∆µta,j

 .
represents the benefits of transfer learning.

We discuss the actual form of benefits under sequential
dependency. If the hypothesis class is truly sequen-
tial dependency with parameters qa,1, . . . , qa,J for each
funnel Fa, we have

∆a,j = O(
∑
j′≤j

1/qa,j′),
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Figure 3: Estimation errors (L2 distance to θ∗j ) of θ̄j
and θ̂j under different number of interactions with the
funnel. Colors represents the layers. Solid (Dashed)
lines represents the estimation errors of θ̂j (θ̄j). Each
point in the plot is an average over 10 independent
runs.

for sufficient large T . Generally, for sufficient large total
steps, the benefits scale with

∑
a,j(J − j + 1)/qa,j .

5 Experiments

In this section, we first present a simulation on the
power of multi-task learning using Algorithm 1. Then
we propose a more practical contextual bandit algo-
rithm, which is tested on a simulated environment and
our real-data email campaign environment.

5.1 Simulation on supervised learning

We use a simulation to verify the bound in Theorem
1 and the curves in Figure 2. We consider a 5-layered
funnel with sequential dependency. The link function
is µ(x) = 1/(1 + exp(−x)). We set d = 5 and θj+1 =
θj+ujqj , where uj ∈ Rd is a unit vector with a random
direction and qj = 1.2 − 0.2j. In the simulation, we
apply Algorithm 1 under the sequential dependency
and calculate the estimation error of the estimates
without parameter transfer (θ̄j) and the final estimates
θ̂j . The results are shown in Figure 3. We observe a
similar pattern as in Figure 2 and the errors of deeper
layers are controlled well despite of their small sample
sizes.

5.2 Simulations on contextual bandits

Practical algorithm. Calculating the intersection
between two sets is not easy when Θ0 has a complex
form. Also, we may not have access to Θ0 in real
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data analysis. We, therefore, develop practical algo-
rithms especially for the sequential dependency and
clustered dependency. Both of the algorithms reduced
to optimizing parameters under a L2 regularization.
An equivalent form is to optimize under L2 penalty.
Our practical contextual bandit algorithm optimize loss
function using an L2 penalty controlled by tuned hyper-
parameters (Algorithm 3 in Appendix B.1). Since ex-
ploration is not the primary interest of this work, we
also adopt a ε-greedy exploration for the simplicity of
implementation.

Compared algorithms. Apart from the naive al-
gorithm that directly learns on the signals rJ , some
methods learn on the averaged rewards across the fun-
nel. This approach is commonly used in Reinforcement
Learning with auxiliary rewards (Jaderberg et al., 2016;
Lin et al., 2019), where the true reward is sparse and
there are some non-sparse auxiliary rewards that can
accelerate learning. We call this method Mix in the
following experiments.

Inspired by the idea of Mix and that of curriculum
learning Bengio et al. (2009), we also test the method
that learns on the signals for each layer sequentially.

To sum up, we compare the following five strategies:

1. Target: we train a single model that only predicts
the reward from the last stage, i.e. rJ .

2. Mix: we train a single model that only pre-
dicts the average rewards from all the stages, i.e.
1
J

∑J
j=1 rj)

3. Sequential: for a total steps T , we train a sin-
gle model on rewards r1, . . . , rJ−1 sequentially for
equal number of steps αT/(J − 1) for some con-
stant α ∈ [0, 1] and train the model on the final
reward rJ for the rest of steps.

4. Multi-layer clustered: Algorithm 3 under clustered
dependency.

5. Multi-layer sequential: Algorithm 3 under sequen-
tial dependency.

Simulated Environments. We first tested the per-
formance of multi-task learning algorithms on the con-
textual bandit setting. In our contextual bandit setting,
number of action is set to be A = 50, for each action,
we independently generate a funnel with J = 8 stages.
The link function is from the logistic regression, where
we sample the unknown parameter θa,j sequentially.
In this case, θa,1 is sampled from N(0, σ2) and θa,j is
sampled from N(θa,j−1, σ

2/j) for for j > 1. This gives
us a funnel with decreasing uncertainty. Context x is
sampled from a Gaussian distribution N(0, σ2

x).

We set the parameters for the environment to be A =
50; J = 8;σ = 1;σx = 0.08; d = 45;T = 3000.

Model setup. For Target, Mix and Sequential, we
use a Neural Network model with one hidden layer,
d-dimensional input and A-dimensional output. Each
dimension on the output vector represents the predicted
conversion probability for an action. The number of
units for the hidden layer is searched in {8, 16, 32, 64}.
Sequential has the hyper-parameter a, which is searched
in {0.1, 0.2, 0.4, 0.6}.

For Multi-layer clustered and Multi-layer sequential,
each stage is modeled with the same one-layer Neural
Networks defined above. The number of units for the
hidden layer is searched in {1, 4, 8, 16}. The penalty
parameter λ is searched in {0.001, 0.005, 0.01, 0.05}.
An ε-greedy exploration is applied.
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Figure 4: Cumulative regrets over 3000 steps using the
best hyper-parameters for each of the five algorithms.
The confidence interval is calculated from independent
runs.

As shown in Figure 4, our practical algorithms beat all
the other algorithms in terms of cumulative regrets. Al-
gorithm 3 under sequential has lower regrets compared
to that under clustered dependency.

5.3 Email campaign environment

We further test our algorithms on the Email Campaign
problem, which aims at the act of sending a commercial
message, typically to a group of people, using email.

Dataset. We randomly selected 5609706 users, who
were active up to the data collection date and then
tracked all the interactions of those users in the fol-
lowing 51 days, which adds up to 39488647 emails.
Each email has a five-dimensional context, consist-
ing of: NumSent, the number of emails sent to the
user since 2019-12-01; NumOpen, the number of emails
opened by the user since 2019-12-01; NumClick, the
number of emails whose links were clicked by the user
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since 2019-12-01; BussinessGroup, categorical variable
indicating the business group of the user; and Recency,
number of hours since last email was sent to the user,
which is categorized into ’0-12’, ’13-24’, ’25-36’, ’37-48’,
’49+’.

The agent takes actions of the time to send an email.
The action space is divided into six blocks: 00:00-
04:00, 04:00-08:00, 08:00-12:00, 12:00-16:00, 16:00-
20:00, 20:00-24:00.

Three rewards are available for each email, indicating
whether the email is opened, whether the email is
clicked and whether the email leads to a purchase
respectively. Note that we say an email leads a purchase
if the user purchases in the following 30 days.

The email campaign problem defines a funnel with
three layers. On average, the rates for opening, click-
ing and purchasing are about 10%, 0.4% and 0.01%,
respectively in the dataset. As we can see, the signals
for learning purchasing behaviour are sparse. We will
show in our experiments that how multi-task learning
can improve the sample efficiency.

Data-based environment. We first build a data-
based contextual bandit environment using population
distribution. At each step, the environment randomly
samples a context from the dataset and the agent takes
an action from the six blocks. The environment then
samples a reward vector from the set of rewards with
the same action and context.

Purchase Click Open
(10−2)

Target 4.09 3.88 24.6
Mix 4.23 6.63 47.0
Sequential 2.1 0.981 0.495
Multi-layer clu. 6.34 0.753 -18.1
Multi-layer seq. 1.06 2.04 3.03

Table 1: Average increases in the number of Purchase,
Click or Open over 10000 steps compared to the Ran-
dom policy using 20 independent runs. The standard
deviations are all less than 10−3 for Purchase and 10−1

for Click and Open.

Results. We searched the same set of hyper-
parameters as used in the previous experiments ex-
cept for the number of hidden units. The hidden
units for the two multi-layer algorithms are searched
in {8, 16, 32, 64} instead.

We first tested the decrease in prediction error for the
five algorithms with actions randomly selected. Hyper-
parameters with the lowest cumulative square predic-
tion errors were selected. As shown in Figure 5, our

multi-task learning algorithms have much lower cumu-
lative prediction errors. The total prediction errors
converge after 2500 steps.
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Figure 5: The cumulative square errors for five algo-
rithms. The solid lines are averaged over 10 indepen-
dent runs and regions mark the 1 standard deviation
over the 10 runs.

We further applied our practical algorithm in Algorithm
3 and selected the hyper-parameters with the lowest
regret. Table 1 showed the average increased number
of Purchase, Click and Open within 10000 steps with
respect to a purely random policy over 10 independent
runs. The results are shown in Table 1. As one can see
in the table, Multi-layer clustered improved Purchase
rate the most by 0.0634 over 10000 steps. However,
Mix improved the average number of Click or Open
the most. This indicates that the three tasks are not
exactly the same.

The advantages of our algorithms over the compared
three algorithms are the use of full information and
the appropriate regularization, which allows knowledge
transfer between layers. Target, Seq. and Mix all
use a single model for the whole funnel, where the
similarities between layers are not clear and they all
lose some information while processing signals. Target
and Seq. learn only on a single signal from one layer
on each step. Mix adopts a weighted average.

6 Discussion

In this paper, we formulated an important problem,
funnel structure, from the marketing field. We used a
multi-task learning algorithm to solve the contextual
bandit problem with a funnel structure and offered its
regret analysis. We verified our theorem using a simple
simulation environment and tested the performances
of our algorithm on both simulation and real-data en-
vironment.
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Note that our bounds on prediction error in Theorem
1 and Theorem 2 do not scale with 1/

√∑
j nj under

the special case when θ1 = · · · = θJ . However, the
sparsity of the funnel implies that the optimal rate
is only smaller than our bound by a constant factor
that does not depend on J . To see this, assuming that
nj+1/nj = q, we have

∑
j nj → n/(1 − q), which is a

constant value.

In terms of the real-data environment, we adopted the
population model that may lead to high variance in
context and action pairs that do not have sufficient
observations and our environment may not fully reflect
the true environment. A better data-based environment
may be proposed using rare event simulation Rubino
and Tuffin (2009).
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A Missing Proofs

A.1 Connection to discrepancy measure

In this section, we discuss how our assumption relates to discrepancy assumptions. Consider Y-discrepancy that
measures the maximum absolute distance between the loss function: dist (D1,D2) := suph∈H |LD1

(h)− LD2
(h)| ,

where D1 and D1 represents the source domain and target domain and LD1
and LD2

are expected loss for two
domains.

Note that under the GLM assumption, the L2 distance in unknown parameters resembles the discrepancy using
square loss. Consider a funnel with two layers and ‖θ1 − θ2‖2 = q. Lemma 3 indicates that q ≈ dist(D1,D2).
Lemma 3. We have under square loss function, dist(D1,D2) ≤ 4κdxq.

Proof.

We first show the second inequality.

dist (D1,D2)

= sup
θ
|Ex(µ(xT θ))− µ(xT θ∗1))2 − Ex(µ(xT θ)− µ(xT θ∗2))2|

≤ sup
θ
|Exµ(xT θ)(µ(xT θ∗1)− µ(xT θ∗2))|+ |Ex(µ2(xT θ∗1)− µ2(xT θ∗2))|

≤ 4|Ex(µ(xT θ∗1)− µ(xT θ∗2))|
≤ 4Ex|µ(xT θ∗1)− µ(xT θ∗2)|
≤ 4κEx|xT (θ∗1 − θ∗2)|
≤ 4κdxq

On the other hand, an lower bound of dist (D1,D2) is also closely related to q.

dist (D1,D2)

= sup
θ
|Ex(µ(xT θ))− µ(xT θ∗1))2 − Ex(µ(xT θ)− µ(xT θ∗2))2|

= sup
θ
|Ex(µ(xT θ∗1)− µ(xT θ∗2))(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))|

= sup
θ
|Ex

∫
t

µ′
(
txT θ∗1 + (1− t)xT θ∗2

)
dt(xT (θ∗1 − θ∗2))(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))|

= sup
θ
|(θ∗1 − θ∗2)T [Exx

∫
t

µ′
(
txT θ∗1 + (1− t)xT θ∗2

)
dt(µ(xT θ∗1) + µ(xT θ∗2) + µ(xT θ))]|

(Let θ → −∞)

≥ |(θ∗1 − θ∗2)T νθ∗1 ,θ∗2 | (letting νθ∗1 ,θ∗2 = [Exx
∫
t

µ′
(
txT θ∗1 + (1− t)xT θ∗2

)
dt(µ(xT θ∗1) + µ(xT θ∗2))]).

Let θ∗2 = θ∗1 + ‖θ∗1 − θ∗2‖2µ, where µ is a unit vector. For sufficient small ‖θ∗1 − θ∗2‖2, νθ∗1 ,θ∗2 →
2Ex[xµ′(xT θ∗1)µ(xT θ∗1)] =: νθ∗1 , which is a constant vector. Thus

lim
‖θ∗1−θ∗2‖2→0

dist(D1,D2)

‖θ∗1 − θ∗2‖2
= |µT νθ∗1 |.

For sufficient small ‖θ∗1 − θ∗2‖, discrepancy scales with ‖θ∗1 − θ∗2‖.

A.2 Proof of Lemma 1

In this subsection, we introduce the proof of Lemma 1. Many proofs could achieve a very similar bound. Here we
use the idea of local Rademacher complexity.
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Proof.

We discuss two cases: 1) θ̂ ∈ int(Θ0). 2) θ̂ /∈ int(Θ0).

In both cases, one simply has

|µ(xT θ̂)− µ(xT θ∗)| ≤ κ|xT (θ̂ − θ∗)| ≤ κ sup
θ1,θ2∈Θ0

|xT (θ1 − θ2)|,

which completes the first term in the minimum.

Now we prove the parametric bound. We first assume that case 1 holds. In this case, the constraint does not
come into effects and θ̂ is the global minimal. By Theorem 26.5 in Shalev-Shwartz and Ben-David (2014), we
have under an event, whose probability is at least 1− δ,

L(θ̂)− L(θ∗) ≤ 2Rn(z) + 5

√
2 ln(8/δ)

n
, (8)

where R(z) is the Rademacher complexity defined by

Rn(z) = Eσ
1

n
sup
θ∈Θ

n∑
i=1

‖zi − µ(xTi θ)‖2Mn
σi,

and the variables in σ are distributed i.i.d. from Rademacher distribution. Let us call the event EA.

As for any i ∈ [n], let φi(t) := (zi − µ(t))2, which satisfies |φ′i(t)| = |2(zi − µ(t))µ′(t)| ≤ κ, using Contraction
lemma (Shalev-Shwartz and Ben-David, 2014), we have

Rn(z) ≤ Eσ
1

n
sup
θ∈Θ

∑
i

κ(xTi θ)σi

= κEσ
1

n
sup
θ∈Θ

n∑
i=1

xTi (θ − θ∗)σi. (9)

≤ κEσ
1

n
sup
θ∈Θ
‖
∑
i

xiσi‖M−1
n
‖θ − θ∗‖Mn

≤ κEσ
1

n
‖
∑
i

xiσi‖M−1
n

sup
θ∈Θ0

‖θ − θ∗‖Mn .

Next, using Jensen’s inequality we have that

Eσ
1

n
‖
∑
i

xiσi‖M−1
n

≤ 1

n

(
Eσ‖

∑
i

xiσi‖2M−1
n

)1/2

=
1

n

(
Eσtr[M

−1
n (
∑
i

xiσi)(
∑
i

xiσi)
T ]

)1/2

=
1

n

(
tr[M−1

n Eσ(
∑
i

xiσi)(
∑
i

xiσi)
T ]

)1/2

(10)
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Finally, since the variables σ1, . . . , σm are independent we have

Eσ(
∑
i

xiσi)(
∑
i

xiσi)
T

= Eσ

∑
k,l∈[n]

σkσlxkx
T
l

= Eσ

∑
i∈[n]

σ2
i xix

T
i

=
∑
i∈[n]

xix
T
i = nMn.

Plugging this into (10), assuming Mn is full rank, we have

(9) ≤
√
d/n sup

θ∈Θ0

‖θ − θ∗‖Mn
. (11)

Lemma 4. Under the notation in Lemma 1 and Assumption 2, if an estimate θ̂ satisfies L(θ̂) ≤ L(θ∗) + bn, then

‖θ̂ − θ∗‖2Mn
≤ dxbn

cµ
.

Proof. Let gn(θ) =
∑
i xi(µ(xTi θ)− µ(xTi θ

∗)). For any θ, ∇gn(θ) =
∑
i xix

T
i µ
′(xTi θ). By simple calculus,

gn(θ∗)− gn(θ̂) =

∫ 1

0

∇gn
(
sθ∗ + (1− s)θ̂

)
ds(θ∗ − θ̂).

As µ(t) ≥ cµ, we have
∫ 1

0
∇gn

(
sθ∗ + (1− s)θ̂

)
ds � cµMn. Plugging this into the inequality above we have

‖θ∗ − θ̂‖2Mn
≤ 1

cµ
(
∑
i

xi(µ(xTi θ)− µ(xTi θ
∗)))2 =

1

cµ
εTMnε ≤

dx
cµ
εT ε =

dx
cµ

(L(θ̂)− L(θ∗)),

where ε := (µ(xTi θ̂)− µ(xTi θ
∗))ni=1.

Applying (8) and Lemma 4, we complete the proof by

‖θ̂ − θ∗‖Mn ≤

√
2dx
√
d

cµ
√
n

sup
θ∈Θ
‖θ − θ∗‖Mn

+ 5

√
2 ln(8/δ)

n

≤

√
20
√

2 ln(8/δ)dx
√
d supθ∈Θ0

‖θ − θ∗‖Mn

cµ
√
n

. (12)

We apply (12) iteratively 1. Let Θ(1) := Θ0. For any t > 1, let Θ(t) = {θ ∈ Rd : ‖θ − θ̂‖Mn
≤√

20
√

2d ln(8/δ)

cµ
√
n

supθ∈Θ(t−1)
‖θ − θ∗‖Mn}. When t→∞, we have

Θ(∞) =
20dx

√
2d ln(8/δ)

cµ
√
n

.

By (12), we have θ∗ ∈ ∩t≥1Θ(∞) and ‖θ̂ − θ∗‖Mn
≤ 40dx

√
2d ln(8/δ)

cµ
√
n

, which completes the second part of Lemma 1.

1Note that (12) holds under the same event EA as the estimates θ̂ keeps the same each round as it is the global
minimizer.
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For any x ∈ X , we have

|µ(xT θ̂)− µ(xT θ∗)| ≤ κ‖x‖M−1
n

40dx
√

2d ln(8/δ)

cµ
√
n

. (13)

When case 2 holds, let θ̂′ be the global minimizer. Using the analysis above, we have

‖θ̂′ − θ∗‖Mn
≤

40dx
√

2d ln(8/δ)

cµ
√
n

.

Then by triangle inequality

‖θ̂ − θ∗‖Mn
≤ ‖θ̂ − θ̂′‖Mn

+ ‖θ̂′ − θ∗‖Mn
≤

80dx
√

2d ln(8/δ)

cµ
√
n

.

A.3 Tightness of Lemma 1

We use an example to show the tightness of Lemma 1. Assume a linear predictor, i.e. µ(t) = t. Consider the
following distribution, let X be uniform over the d-standard basis vector em, for m = 1, . . . , d. Let Z | (X =
ei) ∼ Bern(ri), where ri ∈ [0, 1] is pre-determined and unknown. The optimal parameter θ∗ = (r1, . . . , rd)

T . Let
nm be the number of samples collected for dimension m. Let Θ0 := {θ : ‖θ‖2 ≤ q}.

When n is sufficiently large n > 1/q2, θ̂ is the regularized minimizer. It can be shown that for any θ̂, there exists
θ∗ such that E[θ̂i − θ∗i ]2 ≥ (rm(1− rm))/nm. Then E‖θ̂ − θ∗‖22 ≥

∑d
m=1

ri(1−ri)
nm

≥ d2(ri(1−ri))
n = Ω(d

2

n ).

Then we also see that when n is small (≤ 1
q2 ), the estimation error is Ω(q). We use the same example as above.

This time, we assume ‖θ∗‖ ≤ q
2 . If we have a ‖θ̂‖ = q, then ‖θ∗ − θ̂‖ ≥ q/2 = Ω(q). Otherwise, we use the lower

bound above: ‖θ∗ − θ̂‖ ≥ Ω( d√
n

) = Ω(dq).

The above argument corresponds to the upper bound in Lemma 1, where we use prior knowledge when n is small
and use the parametric bound when n is large.

A.4 Proof of Theorem 1

In this subsection, we show the missing proof for Theorem 1.

Theorem 4 (Prediction error under sequential dependency). For any funnel with a sequential dependency of
parameters q1, . . . , qJ , let θ̂1, . . . , θ̂J be the estimates from Algorithm 1. If nj+1 ≤ nj/4, q1 ≥, . . . ,≥ qJ and
Assumption 5 is satisfied, then with a probability at least 1− δ, for any j0 ∈ [J ], we have

PEj ≤

 κ‖x‖2 cδ
cµλ

√
d
nj
, if j < j0,

κ‖x‖2( cδ
cµλ

√
d
nj0

+
∑j
i=j0+1 qj), if j ≥ j0,

(14)

where we let n0 =∞. The bound is smallest when j0 is the smallest j ∈ [J ], such that

4cδ
√
d

cµλ
(

1
√
nj
− 1
√
nj−1

) ≥ qj , (15)

if none of j’s in [J ] satisfies (15), j0 = J + 1.

Proof. First we reshape the ellipsoid in (3) to a ball.

Lemma 5 (Reshape). For any vector x ∈ Rd and any matrix M � 0 ∈ Rd×d, ‖x‖2 ≤ 1
λ‖x‖M , where λ is the

minimum eigenvalue of M .

Proof. We directly use the definition of positive definite matrix: λ2‖x‖22 − ‖x‖2M = xT (λ2I −M)x ≤ 0. Thus,
‖x‖2 ≤ 1

λ2 ‖x‖M . #
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Using Lemma 5 and Assumption 5, we have ‖θ̄j − θ∗j ‖2 ≤ 1
λ‖θ̄j − θ

∗
j ‖Mn

≤ 4cδ
cµλ

√
d
n . Thus the set Θ̂j ⊂ {θ :

‖θ − θ̄j‖2 ≤ 4cδ
cµλ

√
d
n} =: Θ̂ball

j .

For every j, one can derive two bounds. First we can directly apply Corollary 1 and get PEj ≤ κ‖x‖2 4cδ
cµλ

√
d
nj
.

Second, for any j0, we have θ∗j ∈ Θ1[j] ⊂ {θ : ‖θ̄j0 − θ‖2 ≤ 4cs
cµλ

√
d
nj0

+
∑
j0+1≤i≤j qi} and get PEj ≤

κ‖x‖2( cδ
cµλ

√
d
nj0

+
∑j
i=j0+1 qj).

Now we show the second argument: of all those bounds the one defined in (14) with j0 defined in (15) is the
smallest. For any j ≤ j0 and j1 ≤ j, we have

4cδ
cµλ

√
d

nj
=

4cδ
√
d

cµλ

 j∑
i=j1+1

(
1
√
ni
− 1
√
ni−1

) +
1
√
nj1

 ≤ 4cδ
cµλ

√
d

nj1
+

j∑
i=j1+1

qi. (16)

The second inequality is given by ( 1√
ni
− 1√

ni−1
) ≤ qi for all i < j0. For any j ≥ j0 and j1 ≤ j0, by (16), we have

4cδ
cµλ

√
d

nj0
+

j∑
i=j0+1

qi ≤
4cδ
cµλ

√
d

nj1
+

j∑
i=j1+1

qi.

Now we prove that for all i ≥ j0,
4cδ
√
d

cµλ
(

1
√
ni
− 1
√
ni−1

) ≥ qi. (17)

We use induction. Assume for some i1, (17) is satisfied. Under the assumption that ni1−1 ≤ ni1/4 and qi1 ≥ qi1+1,
we have

4cδ
√
d

cµλ
(

1
√
ni1+1

− 1
√
ni1

) =
4cδ
√
d

cµλ
(

1
√
ni1+1

+
1

√
ni1−1

− 2
√
ni1

+
1
√
ni1
− 1
√
ni1−1

)

≥ 4cδ
√
d

cµλ
(

1
√
ni1+1

+
2
√
ni1
− 2
√
ni1

+
1
√
ni1
− 1
√
ni1−1

)

≥ 4cδ
√
d

cµλ
(+

1
√
ni1
− 1
√
ni1−1

)

≥ qi1 ≥ qi1+1.

Using 17, for any j ≥ j1 > j0,

4cδ
cµλ

√
d

nj0
+

j∑
i=j0+1

qi =
4cδ
√
d

cµλ

 j1∑
i=j0+1

(
1

√
ni−1

− 1
√
ni

) +
1
√
nj1

+

j∑
i=j0+1

qi ≤
4cδ
cµλ

√
d

nj1
+

j∑
i=j1+1

qi.

Finally, we conclude that j0 gives the smallest bound. #

Similar argument can be used to show Theorem 2. For any j0 ∈ [J ], we have

PEj ≤ κ‖x‖2 min

{
cδ/J

cµλ

√
d

nj0
+ qj ,

cδ/J

cµλ

√
d

nj

}
.

Out of all the choices of j0, the best one is achieved by j0 = arg minj∈[J]
cδ
cµλ

√
d
nj

+ qj .
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A.5 Proof of Theorem 3

Theorem 5. Using Algorithm 2, under the Assumptions 1-4, with a probability at least 1− δ, the total regret

T∑
t=1

[
P (xt,θ

∗
a∗t

)− P (xt,θ
∗
at)
]

≤ 2
√

2c0
∑
a,j

√
nTa,j +

∑
a,j

8c20Jd
4
x log(6AJT/δ)

p̄2
a,j

−
∑
a,j

∆a,j . (18)

where O ignores all the constant terms and logarithmic terms for better demonstrations, c0 = (κdxcδ/AJT
√
d)/(cµλ̄),

p̄a := ExPJ−1(xTθ∗a) and

∆a,j =

T∑
t=1;at=a

Pj(x
T
t θ̂

t
at)

c0 1√
nta,j ∨ 1

−∆µta,j

 .
represents the benefits of transfer learning.

Let p̄a,j := ExPj−1

(
xT θ∗a

)
. We first show that upper bound the number of steps t with λtat,j ≤ λ̄/2 or nta,j ≤

1
2n

t
a,1p̄a,j . These steps are considered bad events.

Lemma 6 shows that with high probability, the number of observations for each layer is close to its expectation.

Lemma 6. With a probability at least 1 − δ, we have nta,j ≥ nta,1p̄a,j −
√

2nta,1 log(1/δ). Especially, when

nta,1 > 8 log(1/δ)/p̄2
a,j =: cn,a, we have nta,j ≥ 1

2n
t
a,1p̄a,j.

Proof. This is a direct application of Hoeffding inequality.

Lemma 7. For any x1, . . . , xn i.i.d, ‖xi‖ ≤ dx, let λn be the minimum eigenvalue of
∑
i xix

T
i /n and λ̄ be the

minimum eigenvalue of its expectation. We have λn ≥ λ̄/2, when n > d4
x log(1/δ)/λ̄2.

Proof. For all x1, . . . , xn, write xi =
∑d
s=1 νs,ix̃s, where x̃1, . . . , x̃d are any basis of Rd. We have Eν2

s,i ≥ λ̄. For
Hoeffding’s inequality, since νs,i ≤ dx, with a probability 1− δ, we have

1

n

∑
i

ν2
s,i ≥ Eν2

s,1 − d2
x

√
log(1/δ)

n
≥ λ̄− d2

x

√
log(1/δ)

n
.

For n > d4
x log(1/δ)/λ̄2, we have 1

n

∑
i ν

2
s,i ≥ λ̄/2. There exists a choice of x̃1, . . . , x̃d such that λn = 1

n

∑
i ν

2
s,i.

Combining Lemma 6 and Lemma 7, we have with a probability at least 1− δ/3, #{t : ∃j, λtat,j ≤ λ̄/2 or nta,j ≤
1
2n

t
a,1p̄a,j} can be upper bounded by

∑
a,j

max
{

8 log(6AJT/δ)/p̄2
a,j , 2d

4
x log(6AJT/δ)/(λ̄2p̄a,j)

}
. (19)

In the following proof, we assume for all t, λta,j ≥ λ̄/2 and nta,j ≥ 1
2n

t
a,1p̄a,j . We also assume the event in Lemma

1 happens for all a ∈ [A], j ∈ [J ] and t < T . The probability is at least 1 − δ/3 as each probability is at least
1− δ/(3AJT ).
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The total regret is

T∑
t=1

[
P (xt,θ

∗
a∗t

)− P (xt,θ
∗
at)
]

≤
T∑
t=1

[
P (xt,θ

∗
a∗t

)− P+(xt, θ̂at) + P+(xt, θ̂at)− P (xt,θ
∗
at)
]

(Using P (xt,θ
∗
a∗t

)− P+(xt, θ̂at) ≤ 0)

≤
T∑
t=1

[
P+(xt, θ̂

t

at)− P (xt,θ
∗
at)
]

(Using Lemma 2)

≤
T∑
t=1

∑
j

PJ

(
x, θ̂tat

)
µ
(
xT θ̂tat,j

)∆µtat,j +
∑
i 6=j

∆µtat,j∆µ
t
at,i


≤

T∑
t=1

∑
j

Pj(xt, θ̂
t
at)∆µ

t
at,j +

∑
i 6=j

∆µtat,j∆µ
t
at,i


=

T∑
t=1

∑
j

(Pj(xt, θ
∗
at) + Pj(xt, θ̂

t
at)− Pj(xt, θ

∗
at))∆µ

t
at,j +

∑
i6=j

∆µtat,j∆µ
t
at,i


≤

T∑
t=1

∑
j

Pj
(
xt, θ

∗
at

) c0√
ntat,j︸ ︷︷ ︸

1©

−
T∑
t=1

∑
j

Pj
(
xt, θ

∗
at

)
(

c0√
ntat,j

−∆µtat,i)︸ ︷︷ ︸
2©

+

T∑
t=1

∑
i 6=j

∆µtat,j∆µ
t
at,i︸ ︷︷ ︸

3©

+

T∑
t=1

∑
j

(Pj(xt, θ̂
t
at)− Pj(xt, θ

∗
at))∆µ

t
at,j


︸ ︷︷ ︸

4©

.

We further bound the terms separately. The first term 1© represents the bound one could have without multi-task
learning.

T∑
t=1

∑
j

Pj(xt, θ
∗
at)

c0√
ntat,j

≤
T∑
t=1

∑
j

1(rt,j−1 = 1)
c0√
ntat,j

+

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
ntat,j

(Using Lemma 19 in Jaksch et al. (2010))

≤ c02
√

2
∑
a,j

√
nTa,j +

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
ntat,j

(20)

As E[Pj(xt, θ
∗
at)− 1(rt,j−1 = 1)] = 0, the second term in (20) is a martingale. Using Azuma-Hoeffding inequality,

with a probability at least 1− δ/3, for all T ,

T∑
t=1

∑
j

(Pj(xt, θ
∗
at)− 1(rt,j−1 = 1))

c0√
ntat,j

≤ c0
√

2 log(3TJ/δ). (21)
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Combined with (20),

1© ≤ 2
√

2c0
∑
a,j

√
nTa,j + c0

√
2 log(3TJ/δ). (22)

Next we bound 3©. We notice that this is a quadratic term. We first show Lemma 6 that lower bounds the
number of observations for each layer. Lemma 6 is a direct application of Hoeffding’s inequality.

For any pair i, j, we have

T∑
t=1

∆µtat,j∆µ
t
at,i

≤ c20
T∑
t=1

1√
ntat,i

1√
ntat,j

≤ c20
T∑
t=1

1(ntat,1 ≤ cn,at)
1√
ntat,i

1√
ntat,j

+ 1(ntat,1 > cn,at)
1√
ntat,i

1√
ntat,j


≤ c20

∑
a

cn,a + c20
∑
t

4

p̄2
an

t
at,1

≤ c20
∑
a

cn,a + c20
∑
a

4 log(nTa,1)

p̄2
a

≤ 4c20
∑
a

log(nTa,1A/δ)

p̄2
a

. (23)

where we let p̄a := ExPJ
(
xT θ∗a

)
.

Thus, 3© is upper bounded by 4c20J
2
∑
a

log(nTa,1A/(3δ))

p̄2a
.

Finally we bound term 4©. Using Lemma 2 on only first j layers, we have

4© ≤
∑
t

∑
j

[
∑
i

∆µtat,i +
∑
i,k

∆µtat,k∆µtat,i]∆µ
t
at,j ≤ (J + 1)× 3©. (24)

The proof is completed by combining Equations (19), (21), (22), (23) and (24).



Ziping Xu, Amirhossein Meisami, Ambuj Tewari

B Experiments

B.1 Practical algorithm

Algorithm 3 Practical Algorithm for Contextual Bandit with a Funnel Structure

t→ 1, total number of steps T , memory Ha = {} for all a ∈ [A]. Initialize θ̂a,? with zero vectors.
θ̂a,0 → 0.
for t = 1 to T do
Receive context xt.
Choose at = arg maxa∈A P̂J(xt, θ̂a,j).
Set at = Unif([A]) with probability ε.
Receive rt,1, . . . , rt,J from funnel Fat .
Set Hat → Hat ∪ {(xt, (rt,1, . . . , rt,J))}.
for j = 1, . . . , J do
# For sequential dependency

θ̂at,j → arg min
θ

l(θ,Hat) + λj‖θ − θ̂at,j−1‖2

# For clustered dependency

θ̂at,j → arg min
θ

l(θ,Hat) + λj‖θ −
1

J

∑
i

θ̂at,i‖2

end for
end for

B.2 Tuned hyper-parameters

Simulated environment.

1. Target: units 16

2. Mix: units 32

3. Sequential: units 32

4. Multi-layer Clustered: units 4; λ 0.001

5. Multi-layer Sequential: units 8; λ 0.001

Data-based environment.

1. Target: units 64

2. Mix: units 64

3. Sequential: units 64

4. Multi-layer Clustered: units 64; λ 0.005

5. Multi-layer Sequential: units 16; λ 0.001
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