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Many theoretical results for lasso require the samples to be i.i.d. Re-
cent work has provided guarantees for lasso assuming that the time series
is generated by a sparse Vector Autoregressive (VAR) model with Gaussian
innovations. Proofs of these results rely critically on the fact that the true
data generating mechanism (DGM) is a finite-order Gaussian VAR. This as-
sumption is quite brittle: linear transformations, including selecting a subset
of variables, can lead to the violation of this assumption. In order to break
free from such assumptions, we derive nonasymptotic inequalities for esti-
mation error and prediction error of lasso estimate of the best linear predictor
without assuming any special parametric form of the DGM. Instead, we rely
only on (strict) stationarity and geometrically decaying β-mixing coefficients
to establish error bounds for lasso for sub-Weibull random vectors. The class
of sub-Weibull random variables that we introduce includes sub-Gaussian
and subexponential random variables but also includes random variables with
tails heavier than an exponential. We also show that, for Gaussian processes,
the β-mixing condition can be relaxed to summability of the α-mixing coeffi-
cients. Our work provides an alternative proof of the consistency of lasso for
sparse Gaussian VAR models. But the applicability of our results extends to
non-Gaussian and nonlinear times series models as the examples we provide
demonstrate.

1. Introduction. High-dimensional statistics is a vibrant area of research in modern
statistics and machine learning (Bühlmann and van de Geer (2011), Hastie, Tibshirani and
Wainwright (2015)). The interplay between computational and statistical aspects of es-
timation in high dimensions has led to a variety of efficient algorithms with statistical
guarantees including methods based on convex relaxation (see, e.g., Chandrasekaran et al.
(2012), Negahban et al. (2012)) and methods using iterative optimization techniques (see,
e.g., Agarwal, Negahban and Wainwright (2012), Beck and Teboulle (2009), Donoho, Maleki
and Montanari (2009)). However, the bulk of existing theoretical work focuses on i.i.d. sam-
ples. The extension of theory and algorithms in high-dimensional statistics to time series data,
where dependence is the norm rather than the exception, is just beginning to occur. We briefly
summarize some recent work in Section 1.1 below.

Our focus in this paper is to give guarantees for �1-regularized least squares estimation, or
lasso (Hastie, Tibshirani and Wainwright (2015)), that hold even when there is temporal de-
pendence in data. The recent work of Basu and Michailidis (2015) took a major step forward
in providing guarantees for lasso in the time series setting. They considered Gaussian Vector
Autoregressive (VAR) models with finite lag (see Example 1) and defined a measure of sta-
bility using the spectral density, which is the Fourier transform of the autocovariance function
of the time series. Then they showed that one can derive error bounds for lasso in terms of
their measure of stability. Their bounds are an improvement over previous work (Han and Liu
(2013), Loh and Wainwright (2012), Negahban and Wainwright (2011)) that assumed opera-
tor norm bounds on the transition matrix. These operator norm conditions are restrictive even
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for VAR models with a lag of 1 and never hold (Please see pages 11–13 in the supplement
of Basu and Michailidis (2015) for details) if the lag is strictly larger than 1! Therefore, the
results of Basu and Michailidis (2015) hold in greater generality than previous work. But they
do have limitations.

A key limitation is that Basu and Michailidis (2015) assumed that the VAR model is the
true data generating mechanism (DGM). Their proof techniques rely heavily on having the
VAR representation of the stationary process available. The VAR model assumption, while
popular in many areas, can be restrictive since the VAR family is not closed under linear
transformations: if Zt is a VAR process and C is a linear transformation, then CZt may not
be expressible as a finite lag VAR (Lütkepohl (2005)). We later provide examples (Exam-
ples 2 and 4) of VAR processes where leaving out a single variable breaks down the VAR
assumption. What if we do not assume that Zt is a finite lag VAR process but simply that it is
stationary? Under stationarity (and finite 2nd moment conditions), the best linear predictor of
Zt in terms of Zt−d, . . . ,Zt−1 is well defined even if Zt is not a lag d VAR. If we assume that
this best linear predictor involves sparse coefficient matrices, can we still guarantee consistent
parameter estimation? Our paper provides an affirmative answer to this important question.

We provide finite sample parameter estimation and prediction error bounds for lasso in
two cases: (a) for stationary Gaussian processes with suitably decaying α-mixing coefficients
(Section 3), and (b) for stationary processes with sub-Weibull marginals and geometrically
decaying β-mixing coefficients (Section 4). It is well known that guarantees for lasso follow
if one can establish the restricted eigenvalue (RE) conditions and provide deviation bounds
(DB) for the correlation between noise and the regressors (see the master theorem in Sec-
tion 2.3 below for a precise statement). Therefore, the bulk of the technical work in this paper
boils down to establishing, with high probability, that the DB and RE conditions hold under
the Gaussian α-mixing (Propositions 2 and 3) and the sub-Weibull β-mixing assumptions,
respectively (Propositions 7 and 8). Note that the RE conditions were previously shown to
hold under the i.i.d. assumption by Raskutti, Wainwright and Yu (2010) for Gaussian ran-
dom vectors and for sub-Gaussian random vectors by Rudelson and Zhou (2013). We also
include some simulations (Section 5) to study the effect of VAR dimension, tail behavior and
temporal dependence on the estimation error decay rate as a function of the sample size.

1.1. Summary of recent work on high-dimensional time series. While we discussed the
work of Basu and Michailidis (2015)—since ours is closely related to theirs—we wish to
emphasize that several other researchers have recently published work on statistical analysis
of high-dimensional time series. Song and Bickel (2011), Wu and Wu (2016) and Alquier and
Doukhan (2011) gave theoretical guarantees assuming that the RE conditions hold. As Basu
and Michailidis (2015) pointed out, it takes a fair bit of work to actually establish the RE
conditions in the presence of dependence. Chudik and Pesaran (2011, 2013, 2014) used high-
dimensional time series for global macroeconomic modeling. Alternatives to lasso that have
been explored include quantile based methods for heavy-tailed data (Qiu et al. (2015)), quasi-
likelihood approaches (Uematsu (2015)), two-stage estimation techniques (Davis, Zang and
Zheng (2016)) and the Dantzig selector (Han and Liu (2013), Han, Lu and Liu (2015)). Both
Han and Liu (2013) and Han, Lu and Liu (2015) studied the stable Gaussian VAR models
while our paper covers wider classes of processes as our examples demonstrate. Fan, Qi and
Tong (2016) considered the case of multiple sequences of univariate α-mixing heavy-tailed
dependent data. Under a stringent condition on the autocovariance structure (please refer to
Appendix D for details (Wong, Li and Tewari (2020)), the paper established finite sample
�2 consistency in the real support for penalized least squares estimators. In addition, under a
mutual incoherence type assumption, it provided sign and �∞ consistency. An AR(1) example
was given as an illustration. Uematsu (2015) and Kock and Callot (2015) established oracle



1126 K. C. WONG, Z. LI AND A. TEWARI

inequalities for lasso applied to time series prediction. Uematsu (2015) provided results not
just for lasso but also for estimators using penalties such as the SCAD penalty. Also, instead
of assuming Gaussian errors, the author only required the existence of the fourth moments of
the errors. Kock and Callot (2015) provided non-asymptotic lasso estimation and prediction
error bounds for stable Gaussian VARs. Both Sivakumar, Banerjee and Ravikumar (2015)
and Medeiros and Mendes (2016) considered subexponential designs. Sivakumar, Banerjee
and Ravikumar (2015) studied lasso on iid subexponential designs and provided finite sample
bounds. Medeiros and Mendes (2016) studied adaptive lasso for linear time series models and
provided sign consistency results. Wang, Li and Tsai (2007) provided theoretical guarantees
for lasso in linear regression models with autoregressive errors. Other structured penalties
beyond the �1 penalty have also been considered (Guo, Wang and Yao (2016), Ngueyep
and Serban (2015), Nicholson, Bien and Matteson (2014), Nicholson, Matteson and Bien
(2017)). Zhang and Wu (2017), McMurry and Politis (2015), Wang, Han and Liu (2013)
and Chen, Xu and Wu (2013) considered estimation of the covariance (or precision) matrix
of high-dimensional time series. McMurry and Politis (2015) and Nardi and Rinaldo (2011)
both highlighted that autoregressive (AR) estimation, even in univariate time series, leads to
high-dimensional parameter estimation problems if the lag is allowed to be unbounded.

1.2. Organization of the paper. Section 2 introduces our notation, presents the assump-
tions used to derive our key results, and states some useful facts needed later. Then we present
two sets of high probability guarantees for the lower restricted eigenvalue and deviation
bound conditions in Sections 3 and 4, respectively. Section 3 deals with α-mixing Gaus-
sian time series. Note that α-mixing is a weaker notion than β-mixing and all the parameter
dependences are explicit. Section 4 deals with β-mixing time series with sub-Weibull obser-
vations and we make the dependence on the sub-Weibull norm explicit. Section 5 presents
two simulation results: one where we vary the heaviness of the tail of the random vectors in
the time series and another one where we vary the degree of temporal dependence in the time
series.

We present five examples, two involving α-mixing Gaussian processes and three β-mixing
sub-Weibull vectors. They are presented along with the corresponding theoretical results to
illustrate applicability of the theory. Examples 1 and 2 concern applications of the results in
Section 3. We consider VAR models with Gaussian innovations when the model is correctly
or incorrectly specified. In Examples 3, 4 and 5, we focus on the case of sub-Weibull random
vectors. We consider VAR models with sub-Weibull innovations when the model is correctly
or incorrectly specified (Examples 3 and 4). In addition, we go beyond linear models and
present a nonlinear DGM in Example 5.

These examples serve to illustrate that our theoretical results for lasso on high-dimensional
dependent data estimation extend beyond the classical linear Gaussian setting and provide
guarantees potentially in one or more of the following scenarios: model misspecification,
heavy-tailed non-Gaussian innovations and nonlinearity in the DGM.

2. Preliminaries. Consider a stochastic process of pairs (Xt , Yt )
∞
t=1 where ∀t, Xt ∈

Rp, Yt ∈ Rq . One might be interested in predicting Yt given Xt . In particular, given a
dependent sequence (Zt )

T
t=1, one might want to forecast the present Zt using the past

(Zt−d, . . . ,Zt−1). A linear predictor is a convenient choice. To frame it as a regression prob-
lem, we identify Yt = Zt and Xt = (Zt−d, . . . ,Zt−1). The pairs (Xt , Yt ) defined as such are
no longer i.i.d. Assuming strict stationarity, the parameter matrix of interest �� ∈ Rp×q is

(2.1) �� = arg min
�∈Rp×q

E
[∥∥Yt − �′Xt

∥∥2
2

]
.
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Note that �� is independent of t due to stationarity. Because of high-dimensionality (pq �
T ), consistent estimation is impossible without regularization. We consider the lasso proce-
dure. The �1-penalized least squares estimator �̂ ∈ Rp×q is defined as

(2.2) �̂ = arg min
�∈Rp×q

1

T

∥∥vec(Y − X�)
∥∥2

2 + λT

∥∥vec(�)
∥∥

1,

where

(2.3) Y = (Y1, Y2, . . . , YT )′ ∈ RT ×q, X = (X1,X2, . . . ,XT )′ ∈ RT ×p.

The following matrix of true residuals is not available to an estimator but will appear in our
analysis:

(2.4) W := Y − X��.

2.1. Notation. For scalars a and b, define shorthand a ∧ b := min{a, b} and a ∨ b :=
max{a, b}. For a symmetric matrix M, let λmax(M) and λmin(M) denote its maximum and
minimum eigenvalues, respectively. For any square matrix M with rank d , let λi(M), i =
1, . . . , d denote its eigenvalues. Then r(M) denotes its spectral radius maxi {|λi(M)|}. For
any matrix M, let ‖|M‖|, ‖|M‖|∞ and ‖|M‖|F denote its operator norm

√
λmax(M′M), entry-

wise �∞ norm maxi,j |Mi,j |, and Frobenius norm
√

tr(M′M), respectively. For any vector v ∈
Rp , ‖v‖q denotes its �q norm (

∑p
i=1 |vi |q)1/q . Unless otherwise specified, we shall use ‖·‖

to denote the �2 norm. For any vector v ∈ Rp , we use ‖v‖0 and ‖v‖∞ to denote
∑p

i=1 1{vi 
=
0} and maxi{|vi |}, respectively. Similarly, for any matrix M, ‖|M‖|0 = ‖vec(M)‖0 where
vec(M) is the vector obtained from M by concatenating the rows of M . We say that matrix
M (resp., vector v) is s-sparse if ‖|M‖|0 = s (resp., ‖v‖0 = s). We use v′ and M′ to denote
the transposes of v and M, respectively. When we index a matrix, we adopt the following
conventions. For any matrix M ∈ Rp×q , for 1 ≤ i ≤ p, 1 ≤ j ≤ q , we define M[i, j ] ≡
Mij := e′

iMej , M[i, :] ≡ Mi: := e′
iM and M[:, j ] ≡ M:j := Mej where ei is the vector with

all 0s except for a 1 in the ith coordinate. The set of integers is denoted by Z. Note that �

and 	 are matrices but we will not use bold font for them in this paper.
For a lag l ∈ Z, we define the autocovariance matrix w.r.t. (Xt , Yt )t as �(l) = �(X;Y)(l) :=

E[(Xt ;Yt )(Xt+l;Yt+l)
′]. Note that �(−l) = �(l)′. Similarly, the autocovariance matrix of

lag l w.r.t. (Xt)t is �X(l) := E[XtX
′
t+l], and w.r.t. (Yt )t is �Y (l) := E[YtY

′
t+l]. At lag 0, we

often simplify the notation as �X ≡ �X(0) and �Y ≡ �Y (0).
The cross-covariance matrix at lag l is �X,Y (l) := E[XtY

′
t+l]. Note the difference between

�(X;Y )(l) and �X,Y (l): the former is a (p + q)× (p + q) matrix whereas the latter is a p × q

matrix. Thus, �(X;Y )(l) is a matrix consisting of four submatrices with the following block
structure:

�(X;Y )(l) =
[

�X(l) �X,Y (l)

�Y,X(l) �Y (l)

]
.

Let 1 and 0 denote vectors consisting of ones and zeros, respectively, with dimensionality
indicated in a subscript (if it is not clear from the context). We adopt the convention that, at
lag 0, we omit the lag argument l. For example, �X,Y denotes �X,Y (0) = E[XtY

′
t ]. Finally,

let 	̂ := X′X
T

be the empirical covariance matrix.

2.2. Sparsity, stationarity and zero mean assumptions. The following assumptions are
maintained throughout; we will make additional assumptions specific to each of the sub-
Weibull and Gaussian scenarios. Our goal is to provide finite sample bounds on the error �̂−
��. We shall present theoretical guarantees on the �2 parameter estimation error ‖vec(�̂ −
��)‖2 and also the associated (in-sample) prediction error ‖|(�̂ − ��)′	̂(�̂ − ��)‖|F .
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ASSUMPTION 1. The matrix �� is s-sparse; that is, ‖vec(��)‖0 = s.

ASSUMPTION 2. The process (Xt , Yt ) is strictly stationary; that is, ∀m,τ , n ≥ 0,(
(Xm,Ym), . . . , (Xm+n, Ym+n)

) d= (
(Xm+τ , Ym+τ ), . . . , (Xm+n+τ , Ym+n+τ )

)
,

where “ d=” denotes equality in distribution.

ASSUMPTION 3. The process (Xt , Yt ) is centered; that is, ∀t , E(Xt) = 0p×1, and
E(Yt ) = 0q×1.

2.3. A master theorem. We shall start with what we call a “master theorem” that provides
nonasymptotic guarantees for lasso estimation and prediction errors under two well-known
conditions, namely, the restricted eigenvalue (RE) and the deviation bound (DB) conditions.
Note that in the classical linear model setting (see, e.g., Hayashi (2000), Chapter 2.3) where
sample size is larger than the dimensionality, the conditions for consistency of the ordinary

least squares(OLS) estimator are as follows: (a) the empirical covariance matrix X′X/T
P→ Q

and Q invertible; that is, λmin(Q) > 0, and (b) the regressors and the noise are asymptotically
uncorrelated; that is, X′W/T → 0.

In high-dimensional regimes, Bickel, Ritov and Tsybakov (2009), Loh and Wainwright
(2012) and Negahban and Wainwright (2012) have established similar consistency condi-
tions for lasso. The first one is the restricted eigenvalue (RE) condition on X′X/T (which
is a special case, when the loss function is the squared loss, of the restricted strong convex-
ity (RSC) condition). The second is the deviation bound (DB) condition on X′W/T . The
following lower RE and DB definitions are slight modifications of those given by Loh and
Wainwright (2012).

DEFINITION 1 (Lower restricted eigenvalue). A symmetric matrix 	 ∈ Rp×p satisfies a
lower restricted eigenvalue condition with curvature αC > 0 and tolerance τ(T ,p) > 0 if

∀v ∈ Rp, v′	v ≥ αC‖v‖2
2 − τ(T ,p)‖v‖2

1.

DEFINITION 2 (Deviation bound). Consider the random matrices X ∈ RT ×p and W ∈
RT ×q defined in (2.3) and (2.4) above. They are said to satisfy the deviation bound condition
if there exist a deterministic multiplier function Q(X,W,��) and a rate of decay function
R(p, q, T ) such that

1

T

∥∥∣∣X′W
∥∥∣∣∞ ≤Q

(
X,W,��)R(p, q, T ).

We now present a master theorem that provides guarantees for the �2 parameter estimation
error and the (in-sample) prediction error. The proof, given in Appendix A, builds on existing
results of the same kind (Bickel, Ritov and Tsybakov (2009), Loh and Wainwright (2012),
Negahban and Wainwright (2012)) and we make no claims of originality for either the result
or the proof.

THEOREM 1 (Estimation and prediction errors). Consider the lasso estimator �̂ defined
in (2.2). Suppose Assumption 1 holds. Further, suppose that 	̂ := X′X/T satisfies the lower
RE(αC, τ ) condition with αC ≥ 32sτ and X′W satisfies the deviation bound. Then, for any
λT ≥ 4Q(X,W,��)R(p, q, T ), we have the following guarantees:∥∥vec

(
�̂ − ��)∥∥ ≤ 4

√
sλT /αC,(2.5)

∥∥∣∣(�̂ − ��)′	̂(
�̂ − ��)∥∥∣∣2

F ≤ 32λ2
T s

αC

.(2.6)
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With this master theorem at our disposal, we just need to establish the validity of the re-
stricted eigenvalue (RE) and deviation bound (DB) conditions for stationary time series by
making appropriate assumptions. We shall do that without assuming any parametric form
of the data generating mechanism. Instead, we will impose appropriate tail conditions on
the random vectors Xt,Yt and also assume that they satisfy some type of mixing condition.
Specifically, in Section 3, we consider α-mixing Gaussian random vectors. Next, in Sec-
tion 4, we consider β-mixing sub-Weibull random vectors (we define sub-Weibull random
vectors below in Section 4.1). Historically, mixing conditions were introduced to generalize
the classic limit theorems in probability beyond the case of i.i.d. random variables (Rosenblatt
(1956)). Recent work on high-dimensional statistics has established the validity of RE con-
ditions in the i.i.d. Gaussian (Raskutti, Wainwright and Yu (2010)) and i.i.d. sub-Gaussian
cases (Rudelson and Zhou (2013)). One of the main contributions of our work is to extend
these results in high-dimensional statistics from the i.i.d. to the mixing case.

2.4. Proof strategies for the RE and DB bounds. The key ingredients in establishing both
the DB and RE conditions are concentration inequalities. The general strategy is to discretize
the vector space, apply the concentration inequality, and use the union bound. This occurs
in the proofs of the DB and RE conditions in both cases: α-mixing Gaussian and β-mixing
sub-Weibull.

A brief sketch of the proof of the DB condition via concentration goes like this: Consider
a fixed vector v ∈ Rp and let �X = E[XtX

T
t ]. Use concentration inequality to show that

v′X′Xv/T − v′�Xv = ∑
(1/T )

T∑
t=1

(∥∥X′
t v

∥∥2
2 −E

[∥∥X′
t v

∥∥2
2

])
is sufficiently small. Then apply the union bound over a set of sparse v.

The arguments to show the RE condition via concentration proceed as follows. Note that∥∥∣∣X′W
∥∥∣∣∞ = max

1≤i≤p,1≤j≤q

∣∣[X′W
]
i,j

∣∣ = max
1≤i≤p,1≤j≤q

∣∣(X:i)′W:j
∣∣.

At the population level, there is no correlation between W and X. Therefore,

E(X:i)′
(
Y − X��) = 0 ∀i ⇒ E(X:i)′W:j = 0 ∀i, j.

Fix i, j and write∣∣(X:i)′W:j
∣∣ = ∣∣(X:i )′W:j −E

[
(X:i)′W:j

]∣∣
≤ 1

2

∣∣‖X:i + W:j‖2 −E
[‖X:i + W:j‖2]∣∣

+ 1

2

∣∣‖X:i‖2 −E
[‖X:i‖2]∣∣ + 1

2

∣∣‖W:j‖2 −E
[‖W:j‖2]∣∣.

The Hanson–Wright inequality (Lemma 11) takes care of the Gaussian process case. For
the independent sub-Gaussian case, the classical Bernstein’s concentration inequality will
allow us to prove lasso guarantees. However, applying the Bernstein’s inequality requires
the random vectors to satisfy independence and subexponential tail assumptions. Since a
random variable is subgaussian if and only if its square is subexponential, the set of conditions
required for the original stochastic process translate into independence and sub-Gaussian.

Often times, real time series data exhibit large tail behavior in addition to being depen-
dent. Therefore, the analysis of lasso for real life time series data requires the arguments
to deal with the two complications. As a result, we need ways to quantify dependence and
heavy-tailed behavior. In addition, we need concentration inequalities that hold under weaker
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conditions. Next, we quantify dependence using mixing coefficients. Also, we quantify tail
behavior using the notion of sub-Weibull random variables. The concentration inequality we
use here is Lemma 13 which we derive in Appendix D.3 building on the work of Merlevède,
Peligrad and Rio (2011).

2.5. A brief overview of mixing conditions. Mixing conditions (Bradley (2005)) are well
established in the stochastic processes literature as a way to allow for dependence in extend-
ing results from the i.i.d. case. The general idea is to first define a measure of dependence
between two random variables X, Y (that can be vector-valued or even take values in a Ba-
nach space) with associated sigma algebras σ(X),σ (Y ). For example,

α(X,Y ) = sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣ : A ⊂ σ(X),B ⊂ σ(Y )
}
.

Then for a stationary stochastic process (Xt)
∞
t=−∞, one defines the mixing coefficients, for

l ≥ 1,

α(l) = α(X−∞:t ,Xt+l:∞).

We say that a process is mixing, in the sense just defined, when α(l) → 0 as l → ∞. The par-
ticular notion we get using the α measure of dependence above is called “α-mixing.” It was
first used by Rosenblatt (1956) to generalize the central limit theorem to dependent random
variables. There are other, stronger notions of mixing, such as ρ-mixing and β-mixing that
are defined using the dependence measures:

ρ(X,Y ) = sup
{
Cov

(
f (X), g(Y )

) : Ef = Eg = 0,Ef 2 = Eg2 = 1
}
,

β(X,Y ) = sup
1

2

I∑
i=1

J∑
j=1

∣∣P(Ai ∩ Bj) − P(Ai)P (Bj )
∣∣,

where the last supremum is over all pairs of partitions {A1, . . . ,AI } and {B1, . . . ,BI } of the
sample space  such that Ai ∈ σ(X),Bj ∈ σ(Y ) for all i, j . The ρ-mixing and β-mixing
conditions do not imply each other but each, by itself, implies α-mixing (Bradley (2005)).
For stationary Gaussian processes, ρ-mixing is equivalent to α-mixing (see Fact 2 below).

The β-mixing condition has been of interest in statistical learning theory for obtaining
finite sample generalization error bounds for empirical risk minimization (Vidyasagar (2003),
Section 3.4) and boosting (Kulkarni, Lozano and Schapire (2005)) for dependent samples.
There is also work on estimating β-mixing coefficients from data (Mcdonald, Shalizi and
Schervish (2011)). The usefulness of β-mixing lies in the fact that by using a simple blocking
technique, that goes back to the work of Yu (1994), one can often reduce the situation to
the i.i.d. setting. At the same time, many interesting processes such as Markov and hidden
Markov processes satisfy a β-mixing condition (Vidyasagar (2003), Section 3.5). To the best
of our knowledge, however, there are no results showing that the RE and DB conditions holds
under mixing conditions. Next, we fill this gap in the literature. Before we continue, we note
an elementary but useful fact about mixing conditions, namely, they persist under arbitrary
measurable transformations of the original stochastic process.

FACT 1. Suppose a stationary process {Ut }Tt=1 is α, ρ or β-mixing. Then the stationary
sequence {f (Ut )}Tt=1, for any measurable function f (·), also is mixing in the same sense with
its mixing coefficients bounded by those of the original sequence.
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3. Gaussian processes under α-mixing. Here, we will study Gaussian processes under
the α-mixing condition which is a weaker one than the β-mixing. We make the following
additional assumptions.

ASSUMPTION 4 (Gaussianity). The process (Xt , Yt ) is a Gaussian process.

Assume (Xt , Yt )
T
t=1 satisfies Assumptions 2, 3 and 4. Note that Xt ∼ N (0,�X) and Yt ∼

N (0,�Y ). To control dependence over time, we will assume α-mixing, the weakest notion
among α, ρ and β-mixing.

ASSUMPTION 5 (α-Mixing). The process (Xt , Yt ) is an α-mixing process. Let Sα(T ) :=∑T
l=0 α(l). If α(l) is summable, we let α̃ := limT →∞ Sα(T ) < ∞.

We will use the following useful fact (Ibragimov and Rozanov (1978), p. 111) in our
analysis.

FACT 2. For any stationary Gaussian process, the α- and ρ-mixing coefficients are re-
lated as follows:

∀l ≥ 1, α(l) ≤ ρ(l) ≤ 2πα(l).

PROPOSITION 2 (Deviation bound, Gaussian case). Suppose Assumptions 2–5 hold.
Then there exists a deterministic positive constant c̃, and a free parameter b > 0, such that,

for T ≥
√

b+1
c̃

log(pq), we have

P

[∥∥∥∥∣∣∣∣X′W
T

∥∥∥∥∣∣∣∣∞ ≤Q
(
X,W,��)R(p, q, T )

]
≥ 1 − 8 exp

(−b log(pq)
)
,

where

Q
(
X,W,��) = 8π

√
(b + 1)

c̃

(
‖|�X‖|

(
1 + max

1≤i≤p

∥∥��:i
∥∥2

2

)
+ ‖|�Y ‖|

)
, and

R(p, q, T ) = Sα(T )

√
log(pq)

T
.

REMARK 1. Note that the free parameter b serves as a trade-off between the success
probability on the one hand and the sample size threshold and multiplier function Q on the
other. A large value of b increases the success probability but worsens the sample size thresh-
old and the multiplier function.

PROPOSITION 3 (RE, Gaussian case). Suppose Assumptions 2–5 hold. There exists some
universal constant c > 0, such that for sample size T ≥ 42e log(p)

c min{1,η2} , we have, with probability

at least 1 − 2 exp(− c
2T min{1, η2}) that for every vector v ∈ Rp ,

(3.1)
∣∣v′	̂v

∣∣ > αC‖v‖2
2 − τ(T ,p)‖v‖2

1,

where

αC = 1

2
λmin(�X), τ (T ,p) = αC/

⌈
c

T

4 log(p)
min

{
1, η2}⌉

, and

η = λmin(�X)

108πSα(T )λmax(�X)
.
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REMARK 2. Note that, in Theorem 1, it is advantageous to have a large αC and a smaller
τ so that the convergence rate is fast and the initial sample threshold for the result to hold
is small. The result above, therefore, clearly shows that it is advantageous to have a well-
conditioned �X .

3.1. Estimation and prediction errors. Substituting the RE and DB constants from
Propositions 2 and 3 into Theorem 1 immediately yields the following guarantees.

COROLLARY 4 (Lasso guarantees for Gaussian vectors under α-mixing). Suppose As-
sumptions 2–5 hold. Let c, c̃ be fixed constants and b be a free parameter defined as in
Propositions 2 and 3. Then, for sample size,

T ≥ max
{

log(p)

c min{1, η2} max{42e,128s}, log(pq)

√
b + 1

c̃

}
,

where η = λmin(�X)

108πSα(T )λmax(�X)

we have, with probability at least 1 − 2 exp(− c
2T min{1, η2}) − 8 exp(−b log(pq)), that the

lasso error bounds (2.5) and (2.6) hold with

αC = 1

2
λmin(�X), and

λT = 4Q
(
X,W,��)R(p, q, T ),

where

Q
(
X,W,��) = 8π

√
(b + 1)

c̃

(
‖|�X‖|

(
1 + max

1≤i≤p

∥∥��:i
∥∥2

2

)
+ ‖|�Y ‖|

)
, and

R(p, q, T ) = Sα(T )

√
log(pq)

T
.

REMARK 3. If the α-mixing coefficients are summable, that is, Sα(T ) ≤ α̃ < ∞, ∀T ,

then we get the usual convergence rate of O(

√
log(pq)

T
). Also, the threshold sample size is

O(s log(pq)). This is in agreement with what happens in the i.i.d. Gaussian case. When
α(l) is not summable, then both the initial sample threshold required for the guarantee to be

valid as well as the rate of error decay deteriorate. The latter becomes O(Sα(T )

√
log(pq)

T
).

We see that as long as Sα(T ) ∈ o(
√

T ), we still have consistency. For the finite order stable
Gaussian VAR case considered by Basu and Michailidis (2015), the α-mixing coefficients
are geometrically decaying, and hence summable (see Example 1 for details).

3.2. Examples. We illustrate applicability of our theory developed in this section using
the examples below.

EXAMPLE 1 (Gaussian VAR). Transition matrix estimation in sparse stable VAR models
has been considered by several authors in recent years (Davis, Zang and Zheng (2016), Han
and Liu (2013), Song and Bickel (2011)). The lasso estimator is a natural choice for the
problem.

Formally, a finite-order Gaussian VAR(d) process is defined as follows. Consider a se-
quence of serially ordered random vectors (Zt )

T +d
t=1 , Zt ∈ Rp that admits the following au-

toregressive representation:

Zt = A1Zt−1 + · · · + AdZt−d + Et ,(3.2)
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where each Ak, k = 1, . . . , d is a sparse nonstochastic coefficient matrix in Rp×p and in-
novations Et are p-dimensional random vectors from N (0,�ε) with λmin(�ε) > 0 and
λmax(�ε) < ∞.

Assume that the VAR(d) process is stable; that is, det(Ip×p − ∑d
k=1 Akz

k) 
= 0, ∀|z| ≤ 1.
Now, we identify Xt := (Z′

t , . . . ,Z
′
t−d+1)

′ and Yt := Zt+d for t = 1, . . . , T .
We can verify (see Appendix E.1 for details) that Assumptions 1–5 hold. Note that �� =

(A1, . . . ,Ad)′ ∈ Rdp×p . As a result, Propositions 2 and 3, and thus Corollary 4 follow, and
hence we have all the high probabilistic guarantees for lasso on Example 1. This shows that
our theory covers the stable Gaussian VAR models for which Basu and Michailidis (2015)
provided lasso error bounds.

We state the following convenient fact because it allows us to study any finite order VAR
model by considering its equivalent VAR(1) representation. See Appendix E.1 for details.

FACT 3. Every VAR(d) process can be written in a VAR(1) form (see, e.g., Lütkepohl
(2005), Chapter 2.1).

Therefore, without loss of generality, we can consider VAR(1) models in the ensuing ex-
amples.

EXAMPLE 2 (Gaussian VAR with omitted variable). We study lasso estimation for a
VAR(1) process when there are endogenous variables omitted. This arises naturally when the
underlying DGM is high dimensional but not all variables are available (e.g., it is impossible
to observe them or perhaps very costly to measure them) to the researcher to perform esti-
mation and prediction. Such a situation can also arise when the researcher misspecifies the
scope of the model.

Notice that the system of the retained set of variables is no longer a finite-order VAR (and
thus non-Markovian). As we describe below, the target of estimation is still the best linear
predictor (in the least squares sense) of the future given the past. There is model misspecifica-
tion and this example also serves to illustrate that our theory is applicable to models beyond
the finite order VAR setting.

Consider a VAR(1) process (Zt ,�t)
T +1
t=1 such that each vector in the sequence is generated

by the recursion below:

(Zt ;�t) = A(Zt−1;�t−1) + (EZ,t−1;E�,t−1),

where Zt ∈ Rp , �t ∈ R, EZ,t ∈ Rp , and E�,t ∈ R are partitions of the random vectors (Zt ,�t)

and Et into p and 1 variables. Also,

A :=
[

AZZ AZ�

A�Z A��

]
is the coefficient matrix of the VAR(1) process with AZ� 1-sparse, AZZ p-sparse and r(A) <

1. Et := (EX,t−1;EZ,t−1) for t = 1, . . . , T + 1 are i.i.d. draws from a Gaussian white noise
process.

We are interested in the best (in the least squares sense) 1-lag predictor of Zt as a function
of Zt−1. Recall that

�� := arg min
B∈Rp×p

E
(∥∥Zt − B′Zt−1

∥∥2
2

)
.

Note that Zt is not necessarily a finite-rder VAR process. Now, set Xt := Zt and Yt := Zt+1
for t = 1, . . . , T . It can be shown that (��)′ = AZZ + AZ���Z(0)(�Z)−1. We can verify
that Assumptions 1–5 hold. See Appendix E.2 for details. As a result, Propositions 2 and 3,
and thus Corollary 4 follow, and hence we have all the high probabilistic guarantees for lasso
on this non-Markovian example.
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4. Sub-Weibull random vectors under β-mixing. Existing analyses of lasso mostly
assume data have sub-Gaussian or subexponential tails. These assumptions ensure that the
moment generating function exists, at least for some values of the free parameter. Nonex-
istence of the moment generating function is often taken as a definition of having a heavy
tail (Foss, Korshunov and Zachary (2011)). We now introduce a family of random variables
that subsumes sub-Gaussian and subexponential random variables. In addition, it includes
some heavy-tailed distributions.

4.1. Sub-Weibull random variables and vectors. Among the several equivalent defini-
tions of the sub-Gaussian and subexponential random variables, we recall the ones that are
based on the growth behavior of moments. Recall that a sub-Gaussian (resp., subexponential)
random variable X can be defined as one for which E(|X|p)1/p ≤ K

√
p, ∀p ≥ 1 for some

constant K (resp., E(|X|p)1/p ≤ Kp, ∀p ≥ 1). A natural generalization of these definitions
that allows for heavier tails is as follows. Fix some γ > 0, and require

‖X‖p := (
E|X|p)1/p ≤ Kp1/γ ∀p ≥ 1 ∧ γ.

There are a few different equivalent ways to impose the condition above. One of them
requires that the tail is no heavier than that of a Weibull random variable with parameter γ .
That is the reason why we call this family “sub-Weibull(γ ).”

LEMMA 5 (Sub-Weibull properties). Let X be a random variable. Then the following
statements are equivalent for every γ > 0. The constants K1,K2,K3 differ from each other
at most by a constant depending only on γ .

1. The tails of X satisfies

P
(|X| > t

) ≤ 2 exp
{−(t/K1)

γ } ∀t ≥ 0.

2. The moments of X satisfy

‖X‖p := (
E|X|p)1/p ≤ K2p

1/γ ∀p ≥ 1 ∧ γ.

3. The moment generating function of |X|γ is finite at some point; namely

E
[
exp

(|X|/K3
)γ ] ≤ 2.

REMARK 4. A similar tail condition is called “Condition C0” by Tao and Vu (2013).
However, to the best of our knowledge, this family has not been systematically introduced.
The equivalence above is related to the theory of Orlicz spaces (see, e.g., Lemma 3.1 in the
lecture notes of Pisier (2016)).

DEFINITION 3 (Sub-Weibull(γ ) random variable and norm). A random variable X that
satisfies any property in Lemma 5 is called a sub-Weibull(γ ) random variable. The sub-
Weibull(γ ) norm associated with X, denoted ‖X‖ψγ , is defined to be the smallest constant
such that the moment condition in definition Lemma 5 holds. In other words, for every γ > 0,

‖X‖ψγ := sup
p≥1

(
E|X|p)1/p

p−1/γ .

It is easy to see that ‖·‖ψγ , being a pointwise supremum of norms, is indeed a norm on the
space of sub-Weibull(γ ) random variables.



REGULARIZED ESTIMATION IN HIGH-DIMENSIONAL TIME SERIES 1135

REMARK 5. It is common in the literature (see, e.g., Foss, Korshunov and Zachary
(2011)) to call a random variable heavy-tailed if its tail decays slower than that of an expo-
nential random variable. This way of distinguishing between light and heavy tails is natural
because the moment generating function for a heavy-tailed random variable thus defined fails
to exist at any point. Note that, under such a definition, sub-Weibull(γ ) random variables with
γ < 1 include heavy-tailed random variables.

In our theoretical analysis, we will often be dealing with squares of random variables. The
next lemma tells us what happens to the sub-Weibull parameter γ and the associated constant,
under squaring.

LEMMA 6. For any γ ∈ (0,∞), if a random variable X is sub-Weibull(2γ ) then X2 is
sub-Weibull(γ ). Moreover, ∥∥X2∥∥

ψγ
≤ 21/γ ‖X‖2

ψ2γ
.

We now define the sub-Weibull norm of a random vector to capture dependence among its
coordinates. It is defined using one-dimensional projections of the random vector in the same
way as we define sub-Gaussian and subexponential norms of random vectors.

DEFINITION 4. Let γ ∈ (0,∞). A random vector X ∈ Rp is said to be a sub-Weibull(γ )
random vector if all of its one-dimensional projections are sub-Weibull(γ ) random variables.
We define the sub-Weibull(γ ) norm of a random vector as

‖X‖ψγ := sup
v∈Sp−1

∥∥v′X
∥∥
ψγ

,

where Sp−1 is the unit sphere in Rp .

Having introduced the sub-Weibull family, we present the assumptions required for the
lasso guarantees. In proving our results, we need measures that control the amount of depen-
dence in the observations across time as well as within a given time period.

ASSUMPTION 6. The process (Xt , Yt ) is geometrically β-mixing; that is, there exist
constants c > 0 and γ1 > 0 such that

β(n) ≤ 2 exp
(−c · nγ1

) ∀n ∈ N.

ASSUMPTION 7. Each random vector in the sequences (Xt) and (Yt ) follows a sub-
Weibull(γ2) distribution with ‖Xt‖ψγ2

≤ KX , ‖Yt‖ψγ2
≤ KY for t = 1, . . . , T .

Finally, we make an joint assumption on the allowed pairs γ1, γ2.

ASSUMPTION 8. Assume γ < 1 where

γ :=
(

1

γ1
+ 2

γ2

)−1
.

REMARK 6. Note that the parameters γ1 and γ2 defines a difficulty landscape with
smaller values of γ1, γ2 corresponding to harder problems. The “easy case” where γ1 ≥ 1
and γ2 ≥ 2 are already addressed in the literature (see, e.g., Wong, Li and Tewari (2016)).
This paper serves to provide theoretical guarantees for the difficult scenario when the tail
probability decays slowly (γ2 < 2) and/or data exhibit strong temporal dependence (γ1 < 1),
and hence extends the the theoretical results available in the literature to the entire spectrum
of possibilities, that is, all positive values of γ1 and γ2.
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Now, we are ready to provide high probability guarantees for the deviation bound and
restricted eigenvalue conditions.

PROPOSITION 7 (Deviation bound, β-mixing sub-Weibull case). Suppose Assumptions
1–3 and 6–8 hold. Let c′ > 0 be a universal constant and let K be defined as

K := 22/γ2
(
KY + KX

(
1 + ‖|��‖|))2

.

Then with sample size T ≥ C1(log(pq))
2
γ

−1
, we have

P

(
1

T
‖|X′W‖|∞ > C2K

√
log(pq)

T

)
≤ 2 exp

(−c′ log(pq)
)
,

where the constants C1,C2 depend only on c′ and the parameters γ1, γ2, c appearing in
Assumptions 6 and 7.

PROPOSITION 8 (RE, β-mixing sub-Weibull case). Suppose Assumptions 1–3 and 6–8
hold. Let

K := 22/γ2K2
X.

Then for sample size

T ≥ max
{

54K(2C1 log(p))1/γ

λmin(�X)
,

(
54K

λmin(�X)

) 2−γ
1−γ

(
C2

C1

) 1
1−γ

}
we have with probability at least

1 − 2T exp
{−c̃T γ }

, where c̃ = (λmin(�X))γ

(54K)γ 2C1
,

that for all v ∈Rp ,

1

T
‖Xv‖2

2 ≥ αC‖v‖2
2 − τ‖v‖2

1,

where αC = 1
2λmin(�X) and τ = αC

2c̃
· ( log(p)

T γ ). Note that the constants C1,C2 depend only on
the parameters γ1, γ2, c appearing in Assumptions 6 and 7.

4.2. Estimation and prediction errors. Substituting the RE and DB constants from
Propositions 7–8 into Theorem 1 immediately yields the following guarantee.

COROLLARY 9 (Lasso guarantees for sub-Weibull vectors under β-mixing). Suppose
Assumptions 1–3 and 6–8 hold. Let c′,C1,C2, c̃ be constants as defined in Propositions 7–8,
and let K := 22/γ2(KY + KX(1 + ‖|��‖|))2.

Then for sample size

T ≥ max
{
C1

(
log(pq)

) 2
γ

−1
,

54K[2 max{8s/c̃,C1} log(p)]1/γ

λmin(�X)
,

(
54K

λmin(�X)

) 2−γ
1−γ

(
C2

C1

) 1
1−γ

}
we have with probability at least

1 − 2T exp
{−c̃T γ } − 2 exp

(−c′ log(pq)
)
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that the lasso error bounds (2.5) and (2.6) hold with

αC = 1

2
λmin(�X),

λT = 4Q
(
X,W,��)R(p, q, T ),

where

Q
(
X,W,��) = C2K,

R(p, q, T ) =
√

log(pq)

T
.

REMARK 7. The impact of mixing behavior is limited to the initial sample size and the
probability with which the error bounds hold. The parameter error bound itself resembles the
bounds obtained in the i.i.d. case but with an additional multiplicative factor that depends on
the “effective condition number” K/λmin(�X).

4.3. Examples. We explore applicability of our theory in Section 4 beyond just linear
Gaussian processes using the examples below. Together, these demonstrate that our high
probability guarantees for lasso can apply even in the presence of one or more of the fol-
lowing: heavy-tailed sub-Weibull data, model misspecification and nonlinearity in the DGM.

EXAMPLE 3 (Sub-Weibull VAR). We study a generalization of the VAR, one that has
sub-Weibull(γ2) realizations. Consider a VAR(1) model defined as in Example 1 except that
we replace the Gaussian white noise innovations with i.i.d. random vectors from some sub-
Weibull(γ2) distribution with a non-singular covariance matrix �ε . Now, consider a sequence
(Zt )t generated according to the model. Then each Zt will be a mean zero sub-Weibull ran-
dom vector.

Now, we identify Xt := (Z′
t , . . . ,Z

′
t−d+1)

′ and Yt := Zt+d for t = 1, . . . , T . Assuming
that Ai’s are sparse, r(A) < 1, we can verify (see Appendix E.1 for details) that Assumptions
1–3 and 6–8 hold. Note that �� = (A1, . . . ,Ad)′ ∈ Rdp×p . As a result, Propositions 7 and 8
follow, and hence we have all the high probability guarantees for lasso on Example 3. This
shows that our theory covers DGMs beyond just the stable Gaussian processes.

EXAMPLE 4 (VAR with sub-Weibull innovations and omitted variable). Using the same
setup as in Example 2 except that we replace the Gaussian white noise innovations with i.i.d.
random vectors from some sub-Weibull(γ2) distribution with a nonsingular covariance matrix
�ε . Now, consider a sequence (Zt )t generated according to the model. Then each Zt will be
a mean zero sub-Weibull random vector.

Now, set Xt := Zt and Yt := Zt+1 for t = 1, . . . , T . Assume r(A) < 1. It can be shown
that (��)′ = AZZ + AZ���Z(0)(�Z)−1. We can verify that Assumptions 1–3 and 6–8 hold.
See Appendix E.2 for details. Therefore, Propositions 7 and 8, and thus Corollary 9 follow,
and hence we have all the high probabilistic guarantees for sub-Weibull random vectors from
a non-Markovian model.

EXAMPLE 5 (Multivariate ARCH). We explore the generality of our theory by consid-
ering a multivariate nonlinear time series model with sub-Weibull innovations. A popular
nonlinear multivariate time series model in econometrics and finance is the vector autoregres-
sive conditionally heteroscedastic (ARCH) model. We choose the following specific ARCH
model just for convenient validation of the geometric β-mixing property of the process; it
may potentially be applicable to a larger class of multivariate ARCH models.
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Let (Zt )
T +1
t=1 be random vectors defined by the following recursion, for any constants c > 0,

m ∈ (0,1), a > 0, and A sparse with r(A) < 1:

Zt = AZt−1 + �(Zt−1)Et ,

�(z) := c · clipa,b

(‖z‖m)
Ip×p,

(4.1)

where Et are i.i.d. random vectors from some sub-Weibull(γ2) distribution with a nonsingular
covariance matrix �ε , and clipa,b(x) clips the argument x to stay in the interval [a, b]; that
is,

clipa,b(x) =

⎧⎪⎪⎨⎪⎪⎩
b if x ≥ 0,

x if a < x < b,

a otherwise.

Consequently, each Zt will be a mean zero sub-Weibull random vector. Note that �∗ = A′,
the transpose of the coefficient matrix A here.

Now, set Xt := Zt and Yt = Zt+1 for t = 1, . . . , T . We can verify (see Appendix E.3
for details) that Assumptions 1–3 and 6–8 hold. Therefore, Propositions 7 and 8, and thus
Corollary 9 follow, and hence we have all the high probabilistic guarantees for lasso for a
nonlinear models with subWeibull innovations. Our example is admittedly contrived, but we
hope that our techniques and results will allow other researchers to consider more compelling
nonlinear models.

5. Simulations. In this section, we report simulation results to study the effect of heavy
tails and temporal dependence on the estimation error of lasso.

5.1. Effect of heavy-tailedness. We conducted a simulation experiment to investigate the
effect of heavy-tailedness via a sub-Weibull VAR (Example 3). Consider a standard VAR
model

Xt+1 = AXt + cεt ,

where the underlying parameter matrix A is a s-sparse p × p matrix with spectral ra-
dius c, Xt is a p × 1 vector and εt is a sub-Weibull random vector where each entry
is i.i.d. Weibull random variable with shape parameter α and scale parameter 1. More-
over, εt is independent across time. For the simulation, A is generated by first randomly
choosing s positions with non-zero entries and then sampling each nonzero entry i.i.d.
from Uniform(0,1). Finally, A is rescaled so that its spectral radius is c = 0.5. Now, let
s = √

p, p ∈ {50,100,150,200}, α ∈ {0.4,0.5,1.0,1.9} and T = m × s log(p) where mul-
tiples m ∈ {1,3,5,7,9,11,13,15,17,19}. The average estimation error (Frobenius norm of
the difference between true parameter matrix A and its estimated counterpart Â) over 10

repetitions plotted against
√

s log(p)
T

is shown in Figure 1.
The relation between shape parameter and the estimation error is quite clear. Smaller shape

parameter means a heavier tail, resulting in larger estimation error, which is indeed what we
observe here. The unequal spacing in the choice of shape parameter is due to the fact that the
relation of shape parameter and estimation error is highly nonlinear, and using equal spacing
would make the differences between plots less easy to see.

5.2. Effect of dependence. Next, we set up a simulation to study the effect of depen-
dence on lasso estimation error. At time 0, we set X0 ∼ N (0, Ip×p), Y0 = AX0 + cε0.
For t ≥ 1, with probability ρ, (Xt , Yt ) is just a copy of the previous observations, that
is, Yt = Yt−1, Xt = Xt−1. With probability 1 − ρ, (Xt , εt ) are fresh independent samples,
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FIG. 1. Effect of heavy tails on lasso estimation error. A smaller shape parameter corresponds to heavier tails
of the noise.

Xt ∼ N (0, Ip×p), Yt = AXt + cεt . The settings of A and εt are exactly the same as above
in Section 5.1. We fix shape parameter α = 1. Now, let s = √

p, p ∈ {50,100,150,200},
ρ ∈ {0.2,0.4,0.6,0.8} and T = m×s log(p) where m ∈ {1,3,5,7,9,11,13,15,17,19}. The

average estimation error over 10 repetitions plotted against
√

s log(p)
T

is shown in Figure 2. For

FIG. 2. Effect of dependence on lasso estimation error. A larger ρ parameter corresponds to more dependence
in the generating process.
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all choices of the dimension p, the results confirm the intuition that higher ρ leads to higher
estimation error as higher ρ implies more dependence in data.

6. Conclusion. One way to interpret the main results of this paper is that the lasso pro-
cedure is robust to deviations from idealized conditions, for example, independence and sub-
Gaussian tails. Our work shows that lasso continues to enjoy theoretical guarantees even in
the presence of dependence and heavy tails.

A key theoretical question we left largely unaddressed is that of lower bounds. Our simu-
lations suggest that the performance of lasso does deteriorate as tails of random variable get
heavier and there is more temporal dependence. It will be good to derive lower bounds on
estimation and prediction errors in terms of sub-Weibull and mixing parameters. If we can
derive matching lower and upper bounds, then it will enhance our theoretical understanding
of lasso.

We also note that there are several related topics that were outside the scope of the present
paper but that merit further attention. A nonexhaustive list includes low-dimensional struc-
tures other than sparsity (and associated regularization penalties) (see, e.g., Negahban et al.
(2012)), model selection consistency (see, e.g., Zhao and Yu (2006)), and post-selection in-
ference (see, e.g., Lee et al. (2016)).
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