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8 ABSTRACT: Reaction databases provide a great deal of useful information to assist
9 planning of experiments but do not provide any interpretation or chemical concepts to
10 accompany this information. In this work, reactions are labeled with experimental
11 conditions, and network analysis shows that consistencies within clusters of data points
12 can be leveraged to organize this information. In particular, this analysis shows how
13 particular experimental conditions (specifically solvent) are effective in enabling specific
14 organic reactions (Friedel−Crafts, Aldol addition, Claisen condensation, Diels−Alder,
15 and Wittig), including variations within each reaction class. An example of network
16 analysis shows where data points for a Claisen condensation reaction break into clusters
17 that depend on the catalyst and chemical structure. This type of clustering, which
18 mimics how a chemist reasons, is derived directly from the network. Therefore, the
19 findings of this work could augment synthesis planning by providing predictions in a
20 fashion that mimics human chemists. To numerically evaluate solvent prediction ability,
21 three methods are compared: network analysis (through the k-nearest neighbor algorithm), a support vector machine, and a
22 deep neural network. The most accurate method in 4 of the 5 test cases is the network analysis, with deep neural networks also
23 showing good prediction scores. The network analysis tool was evaluated by an expert panel of chemists, who generally agreed
24 that the algorithm produced accurate solvent choices while simultaneously being transparent in the underlying reasons for its
25 predictions.

1. INTRODUCTION

26 Reaction data sets contain a wealth of information that can be
27 used to make informed decisions in the laboratory and in
28 preparing for large-scale production. This data shows millions
29 of individual syntheses that transform available substrates into
30 interesting products, all resulting from sustained efforts of the
31 chemical community over decades. Chemists often search
32 these data sets for insight and examples when performing novel
33 reactions, which of course are never present in the data set.
34 This process therefore relies on chemical know-how and
35 inference to make a reaction plan that is relevant to the current
36 synthesis target. In our age of modern computation with its
37 incredible advances in data science, it is natural to ask whether
38 these inferences and plans might be greatly improved

f1 39 compared to current man-machine interchanges (Figure 1).
40 Recent progress in computational techniques to translate
41 reaction data sets into predictive models has generated
42 considerable enthusiasm for computer-aided synthesis plan-
43 ning. In the last ten years, notable studies on reaction
44 prediction and synthesis planning algorithms have evolved,
45 including expert systems developed from curated data sets1−3

46 as well as supervised machine learning tools4−10 or graph-
47 based tools11 applied to commercial reaction databases12 or
48 patent-harvested reactivity data.13 The intent to automate
49 chemical decisions has been pursued long before contemporary

50interest in machine learning and artificial intelligence.14−18

51Recently, the area has received great interest, including the
52modern expert system called Chematica, which created
53synthesis plans for 8 biologically active molecules that were
54successfully demonstrated in the laboratory.7 Chematica
55achieved this by manual encoding tens of thousands of
56reaction rules, representing many years of input from expert
57chemists. On the machine learning front, reports by Segler and
58Waller19,20 have shown that a graph-driven neural network
59strategy can provide (without the extended human effort)
60synthesis plans that are equivalent in quality to literature
61reports, as judged by graduate-level organic chemists.
62Even with these successes, serious limitations to computer-
63aided synthesis remain. To chemists, reactions are primarily
64known by their overall classification, not just specific instances
65of A + B → C. When predicting the outcome or conditions for
66a reaction, chemists make decisions using generalized knowl-
67edge, called chemical intuition. Intuition is the skill gained
68from instruction and experience in using chemical principles
69grounded in physical propertiesto navigate experimental
70design and analysis of laboratory outcomes. The intuition of
71expert chemists is a powerful science that is fully applicable to
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72 reactions outside the scope of any database, expert system, or
73 machine learning method. In other words, chemists are highly
74 effective at understanding the details of chemical reactions
75 using a set of broad physical principles, which are applicable to
76 reactions that have never before been performed. With this
77 consideration in mind, it becomes clear that machine learning
78 reaction prediction computations follow an entirely different
79 track and specialize in reaction types that most resemble their
80 training data. By Zipf’s law,21 databases are primarily populated
81 by the most frequently used reactions, with a power law
82 decrease in number of data points with rank.22,23 Therefore,
83 data-driven algorithmsto no surprisework best for the
84 most popular reactions, and it is nontrivial to generalize these
85 to untested, emerging, or even relatively low-population
86 reaction classes.
87 Based on these considerations, the basic issue with computer
88 generalization of reaction concepts might be traced to the (lack
89 of) interpretability of the underlying algorithms. Here, we
90 focus on machine learning techniques, where generalization is
91 attempted by machine, rather than by experts. Machine
92 learning techniques are notoriously “black box” in character
93 and provide no direct relationships between the predictions
94 that are made and the underlying reasons for the predictions.
95 The most advanced machine learning strategies, for example
96 the hugely popular area of “deep learning” through neural
97 networks, fall into this category. Without interpretability, any
98 machine learning exercise will face severe difficulty of justifying
99 its value to chemistry, as the generalizability of the model will
100 be suspect.
101 In addition to these challenges, computational researchers
102 face another key difficulty, due to the quality of available
103 reactivity data. The largest data sets inevitably contain
104 information from a wide variety of sources, and unlabeled or
105 mislabeled data (i.e., “label noise”) are commonplace.24

106 Doubts regarding the reliability of the training data compound

107with the lack of interpretability of black box machine learning
108tools result in inevitable mistrust by seasoned experts. Even for
109otherwise accurate entries in a data set, deciphering the
110difference between “reagent” or “catalyst” can lead to
111confusion for data-driven learning. Especially in the area of
112chemical synthesis, where reactants, reagents, catalysts,
113solvents, and other reaction conditions must be specified
114precisely for the reaction to work, consistent information
115regarding these factors is paramount. Along these lines, neural
116network models for predicting suitable reaction conditions
117have been reported by Gao and co-workers.25 In their study, a
118large data set of millions of reactions was used to train the
119models, with accuracies of about 70% in the top-ten
120computational predictions. As described herein, we take a
121different approach where reaction data is partitioned into
122named organic reactions, allowing focus into predictability of
123specific types of reactions. This strategy is closer in spirit to
124what is practiced by laboratory chemists and importantly will
125allow improved verification of the machine predictions by
126making transparent models for the reaction conditions.
127In this article, we explore whether machine learning
128techniques can be made interpretable while maintaining high
129accuracy in predicting a key reaction condition. The reaction
130condition we focus upon is the solvent, which is a deceptively
131simple condition because one solvent choice may allow a
132planned reaction to succeed, but another solvent choice may
133lead to no reaction at all. Indeed, reports have shown that
134choice of solvent can change reaction rates by orders of
135magnitude.26 Solvent compatibility therefore represents a key
136question that is not only challenging but important for
137progressing through synthetic space in the laboratory.
138Ultimately, this article will show that solvents can be selected
139at high accuracy with a fully interpretable, statistically sound
140machine learning method across a testbed of five named
141organic reactions, totaling over 50,000 specific examples.

2. METHODOLOGY

1422.1. Data Source. All data used in this study was obtained
143from the Reaxys database,12 which contains approximately 45
144million reactions. To focus our study, five named organic
145reactions were chosen: Diels−Alder, Friedel−Crafts, Wittig,
146Aldol addition, and Claisen condensation. These represent a
147diversity of reaction conditions, including catalyst and solvent
148choices. The data set was limited to single-step reactions,
149reactants that are commercially available, interpretable solvent
150designation, and contained a subset of the 78 most common
151solvents. Data points with missing catalyst entries were treated
152as uncatalyzed and remain in the data sets. After collecting this
153data, the Diels−Alder, Friedel−Crafts, Wittig, Aldol addition,
154and Claisen condensation reaction data sets contained 18,394,
15529,021, 9,685, 6,603, and 12,151 total useable data points,
156respectively.
157The raw data from Reaxys required moderate amounts of
158preprocessing to be useful. For example, many catalysts had
159“aluminum”, “aluminium”, or “Al” specified: these are all
160equivalent. Naming was standardized using the chemical
161identifier resolver from the National Institutes of Health,27

162which transforms each name into the IUPAC convention. To
163capture the remaining ambiguities, catalyst names were made
164lowercase, metal names were replaced by their atomic symbol,
165and a hand-crafted dictionary was created to eliminate
166additional specific cases that were not otherwise handled

Figure 1. A conceptualization of machine learning in chemical
applications. (a) Databases do not inherently form chemical concepts,
but chemists can provide interpretations of their results and/or be
informed by the database entries. (b) Machine learning in chemistry
can make predictions without transparent reasoning and does not
typically inform expert chemists about new chemical concepts. (c)
The future of the field of chemistry research will seamlessly integrate
machine learning to the current foundation of chemical concepts with
established databases. Chemists will regularly utilize interpretable and
predictive machine learning tools.
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167 correctly. The full definition of this procedure is available in
168 the Supporting Information.
169 Molecular structures were stored as SMILES28,29 strings,
170 which were provided by Reaxys. Molecular fingerprints were
171 generated through Open Babel30 using the MACCS keys,31−33

172 which contain 166 functional groups. Rather than use the
173 reactant structures, these fingerprints were generated for the
174 products to simplify the data structure from two reactants to
175 just one product. Tanimoto measures34,35
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177 between all product pairs within each reaction data set provide
178 a measure of chemical similarity between data points. Catalyst
179 similarity can also be measured by Tanimoto or by one-hot
180 encoding of the catalyst identity.
181 2.2. Prediction Algorithms. To provide solvent classi-
182 fication, a handful of machine learning algorithms was
183 employed. The first two, support vector machines36,37

184 (SVM) and deep neural networks (NN),38 are nonlinear
185 classification techniques that can predict on any number of
186 solvent identities represented by the training data set. SVM
187 classification requires a kernel function to measure similarity
188 between data points, and choices for the kernel are discussed
189 below. NNs do not require this measure, as the number of
190 input nodes can be scaled to the number of input variables.
191 The k-nearest neighbor algorithm (kNN) is the third solvent
192 classification technique.39 The network match technique
193 requires a similarity metric (a kernel), and makes predictions
194 by finding k points in the training set that are most similar to
195 the test point. The most frequent solvent in the k neighbors in
196 the similarity network is the top solvent prediction. The
197 Supporting Information shows a small, labeled network to
198 demonstrate how kNN clusters similar molecules in practice.
199 2.3. Similarity Measures. The network match and SVM
200 algorithms are sensitive to the choice of similarity measure.40

201 In typical machine learning analysis, one takes fixed-length
202 feature vectors and subjects them to standard kernels, for
203 example

K x xexp( )2γ= − − ′204 (2)

205 where γ is a hyperparameter that is chosen during cross-
206 validation. When a “good” kernel is chosen, the data points
207 become implicitly organized by this measure, and predictions
208 can be highly accurate. Typical kernels used in machine
209 learning, however, are not necessarily useful measures for
210 chemical structures. For example, the kernels are not size
211 consistent, so large and small molecules will receive widely
212 differing similarity scores. This leads to inconsistency in
213 making predictions for large vs small molecules, and the
214 problem only becomes worse for larger and larger molecules.41

215 Alternatively, specialized kernels might provide higher
216 accuracy by more closely representing the underlying structure
217 of the data. One such choice is the Tanimoto measure (eq
218 1),34 which is particularly well-suited for use in chemical
219 problems.35 While Tanimoto is frequently applied to organic
220 molecules, it can also be applied to catalyst structures. We
221 denote the product Tanimoto by TP and the catalyst Tanimoto
222 by TC.
223 Two similarity measures will be examined in this work

K T(1)
P Cδ= 224(3)

K T T(2)
P C= 225(4)

226where δC gives 1.0 for a catalyst match, where the two catalysts
227are the same between the two reaction data points and 0.0
228otherwise.
2292.4. Cross-Validation and Computational Details.
230Within each reaction class, training and predictions were
231performed using 5-fold cross-validation, and accuracy results
232are reported only for data points outside of the training set.
233This procedure was repeated 10 times, shuffling the data
234randomly with each training-test cycle. The mean, maximum,
235and minimum errors can be found in the Supporting
236Information, and the mean accuracies are reported in the
237main text.
238The NN training was performed by the MLPClassifier
239algorithm42 with a ReLU activation function in the scikit-learn
240package.43 The NN is 4 layers deep, with each of the two inner
241layers having the same dimension as the input vector. The
242output layer has the dimension equal to the number of solvents
243in the neural network training data. For example, the training
244data for Diels−Alder contains 15 solvents. Therefore, for each
245of those solvents a predicted weight is assigned, and this weight
246is normalized across the output layer. The predicted solvent is
247the one with the top weight, and the second most likely solvent
248has the second highest weight, and so on. The NN is trained
249and cross-validated using the product features and the catalyst
250fingerprints or with the product features and the catalyst
251identity. Catalyst identities are encoded to number categories
252based on the catalyst name, and therefore each type represents
253one input feature to the neural network.
254Support vector classification (SVC) was also performed
255using scikit-learn. SVC was fed a concatenated vector of a
256fingerprint of the catalyst and a fingerprint of the products.
257SVC was tested for two types of kernels, the default radial-basis
258function, for which the formula is displayed in eq 2, and a
259linear (or dot-product) kernel. Recalling that a MACCS
260fingerprint contains exclusively 1’s and 0’s, the linear kernel
261counts the total number of functional groups common
262between two fingerprints. Although Tanimoto kernels may
263be applied to SVCs,37,40 for the data sets in this work
264Tanimoto kernels did not increase solvent prediction accuracy,
265and therefore the results from the Tanimoto kernel are
266provided in the Supporting Information. The Supporting
267Information also contains a description of error handling when
268generating the fingerprints required for these kernels.
269The k-NN algorithm for solvent prediction and network
270visualization was created in Python by our group. The two
271similarity measures (eqs 3 and 4) were tested, but measure 3 is
272used exclusively for the graphs shown in this work (with k =
27310). Tests involving the similarity measure of eq 4 are shown
274in the Supporting Information. The number of neighbors was
275tested to understand their effect on kNN performance, where
276the k parameter is the only tunable parameter for this method.
277The solvents predicted for each reaction are the most frequent
278or popular solvents among the neighbors, and the second most
279frequent solvent was the second solvent prediction, etc. To
280break ties in frequency of solvents, the similarity measure itself
281was used for sorting. Visualization of the reaction networks was
282performed using the Force Atlas 2 algorithm44 as implemented
283in the Gephi software package.45 The Python codes are freely

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00313
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00313/suppl_file/ci9b00313_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00313


284 available at the repository located at https://bitbucket.org/
285 ericawalk/solvent_selection/.

3. RESULTS AND DISCUSSION

286 3.1. Statistical Results. The five data sets were subjected
287 to the above-described learning techniques for solvent
288 prediction. Multiple feature sets and similarity measures were

t1 289 considered, and representative choices are shown in Table 1.
290 In particular, 6 unique algorithms are presented: kNN with two
291 different similarity measures, neural networks using two types
292 of raw features, and SVC using radial basis functions or a
293 Tanimoto similarity measure. All of these methods employ the
294 full fingerprint feature set for the reactant molecules and either
295 one-hot encoding of the catalyst identity or catalyst finger-
296 prints. At a basic level, this means that the kNN and support
297 vector classification use similarity measures as their basic
298 variable for making models, whereas the neural network
299 processes the full set of raw features to generalize the factors
300 responsible for solvent choice. As explained in the computa-
301 tional details, all results come from cross-validation, with errors
302 reported only for points that were not used in training.
303 Among the evaluated models, kNN stands out as the best at
304 predicting the experimental solvent, with success rates of 69 to
305 80% using the one-hot encoding of the catalyst identity. The
306 same model using catalyst fingerprints drops in accuracy to 43
307 to 66% across the 5 reaction classes. The decrease in solvent
308 selection accuracy might be attributed to the treatment of the
309 catalyst by the MACCS keys. One aspect is the noise handling,
310 where the kNN fingerprint vector doubles in length, in a sense
311 diluting the quality of the reactant features toward less
312 impactful catalyst features. An increase in catalyst features is
313 not especially helpful for kNN because catalysts typically
314 include metals, which are not particularly well represented in
315 the MACCS keys, where MACCS keys are most useful for
316 main-group compounds. Neural network models also perform
317 reasonably well, reaching accuracies between 48 and 76% using
318 the catalyst identity features. The neural network improves
319 substantially when using the catalyst fingerprints, with
320 improvements over kNN for the Diels−Alder and Wittig
321 reactions by a small amount (<1%), while performing less well
322 on the Friedel−Crafts, Aldol addition, and Claisen con-
323 densation reaction classes. The NN, relative to kNN, is not as
324 influenced by the increased size of the catalyst fingerprint as
325 kNN and intrinsically avoids irrelevant features in the
326 fingerprint. Support vector methods generally underperformed
327 in comparison with the kNN and neural network models.
328 Since more than one solvent may be equally applicable to a
329 given reaction, but databases report only the single solvent
330 used for a particular experiment, testing the computational

t2 331 models for “top N” performance is a natural procedure. Table
t2 332 2 shows the accuracies of the kNN and neural network models

333for top-3 prediction accuracy, i.e., whether the experimental
334solvent is in the top 3 predicted by the model. The best
335choices for the features from Table 1 are used for each
336algorithm, respectively. Accuracies improve across the board,
337as expected, with the kNN slightly outperforming the neural
338network. For 3 of the 5 reaction classes, the two models give
339accuracies within 1% of each other, and the kNN shows clearly
340a better performance for the Friedel−Crafts data set (which is
341the most challenging of the 5 as reflected by the worst-case
342scenario accuracy in Table 2). Overall, the prediction
343accuracies of 91 to 98% of the kNN tool show it to be highly
344capable of selecting good solvents.
345These results of Table 2 show that the kNN and neural
346network models significantly outperform the baseline scenario,
347where the most prevalent solvents in the data sets are chosen.
348When simply taking the statistically most common solvents as
349the top 3 predictions, accuracies of 62 to 95% can be achieved.
350Interestingly, the models are unable to significantly outperform
351the worst case prediction for the Wittig reaction. On the other
352hand, the Claisen condensation worst case accuracy is 95%, but
353the 2 computational models give 98 to 99% accuracy, showing
354a significant improvement. Most dramatically, the Friedel−
355Crafts reaction worst case prediction gives 62% accuracy on
356the top 3, making it a more challenging case than the other 4
357reactions. The kNN technique shines brightest in this reaction
358class, with 93% accuracy, which is markedly better than the
359neural network at 89%.
3603.2. Visualizing the Reaction Landscape. The high
361performance of kNN suggests that the underlying similarity
362measure provides a strong means for organization of the data
363sets. The specific similarity measure given in eq 3 uses a
364combination of catalyst identity and reactant Tanimoto, so the
365overall closeness between two data points depends only on
366these two factors. To better understand the relationships that
367lead to successful predictions, two-dimensional graphs of the
368 f2f3data for the Friedel−Crafts reaction are shown in Figures 2 and
369 f33. Analogous plots are shown in the SI for the Claisen
370condensation and Diels−Alder data sets.

Table 1. Accuracy of 6 Solvent Prediction Methods Across Five Reaction Data Sets (Top 1)a

reaction
kNN with catalyst

labels
kNN using catalyst

fingerprints
NN with catalyst

labels
NN using catalyst

fingerprints
SVC with radial basis

function
SVC with custom

kernel

Friedel−Crafts 79.0 43.4 56.8 70.1 45.9 54.9
Aldol addition 78.0 47.4 47.8 67.0 58.8 66.9
Claisen
condensation

80.1 66.0 76.1 78.2 66.2 66.2

Diels−Alder 79.9 58.7 68.5 80.5 59.9 66.8
Wittig 68.8 45.1 59.6 69.4 49.6 58.4
aValues are in %.

Table 2. Comparison of Prediction Accuracies if Any of the
Top 3 Predicted Solvents Match the Database Entrya

reaction
kNN top 3
allowed

NN top 3
allowed

worst case
scenario

Friedel−Crafts 92.8 89.0 62.3
Aldol addition 94.5 92.1 71.5
Claisen
condensation

98.0 98.7 94.5

Diels−Alder 93.9 93.5 80.5
Wittig 91.3 91.3 90.8
aThe worst case scenario is always predicting the 3 most common
solvents from the training data. Values are in %.
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Figure 2. Friedel−Crafts reaction network. The network is chromatically labeled by a frequent catalyst with the scheme provided in the legend of
Figure 3(a).

Figure 3. Two network cutouts chromatically labeled by property. One cutout is red, and the other cutout is black: (a) frequent catalysts chromatic
label, (b) frequent solvents label, and (c) solvent prediction accuracy label.
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371 Figure 2 shows that a small fraction of the catalysts appears
372 frequently within the data, while many others appear sparsely.
373 For a small cluster consisting of a single catalyst, often only one
374 solvent is used for all of the reactions (note that the clustering
375 is performed without knowledge of solvent). These data points
376 are easy to predict to high accuracy, with the solvent label
377 matching one-to-one with the catalyst species. For the larger
378 clusters, the same catalyst might appear with several different
379 solvents, as is obvious in Figure 3 (e.g., the Al(III) region of
380 (a), with a colorful mixture of solvents shown in (b)). For the
381 kNN algorithm, these clusters are harder to accurately predict
382 compared to the more uniform, isolated smaller clusters. At the
383 same time, these regions of the graph do contain subclusters
384 that are consistent, so the ordering is not random. The
385 overlaps between these subclusters lead to unavoidable errors,
386 as classification algorithms cannot easily distinguish over-
387 lapping data points. In these cases, solvent predictions through
388 the top-3 classification (Table 2) will gain considerably in
389 accuracy compared to top-1 classification (Table 1), as
390 multiple solvents may perform just as well for similar
391 substrate/catalyst combinations. In total, however, Figures 2
392 and 3 show that there is a considerable degree of order in
393 clustering, with many small clusters having highly consistent
394 solvent designations.
395 Having the reactions ordered by solvent suggests an
396 interesting possibility: does the reactant/catalyst ordering

f4 397 imply order in the solvent properties. Figure 4 suggests that
398 this is indeed the case, where the Friedel−Crafts reaction
399 network is labeled with solvent descriptors. The three solvent
400 propertiesdielectric constant, boiling point, and protic/
401 aproticform clusters of consistency, showing that the
402 solvents are chemically similar to one another. Importantly,
403 this ordering in solvent properties is found in the product/
404 catalyst network and is not an ordering predetermined by the
405 solvent properties. Instead, the product/catalyst network
406 implies necessary traits of solvents, which then in turn are
407 neatly represented in the graphs.

f5 408 In addition to the graphical analysis, Figure 5 shows that
409 Zipf’s law21 approximates the distribution of catalysts in all five
410 reaction data sets. The fact that Zipf’s law generally applies to

411the catalyst distribution of all 5 data sets suggests a significant
412trend: there are a large number of catalyst identities which
413appear only once, forming a non-negligible slice of the data
414where predictions cannot be easily made. In the interpretable
415kNN solvent prediction algorithm, single-catalyst reactions
416have no neighbors. Not only does this greatly limit the ability
417of kNN to make predictions, it implies that there is not enough
418data to training machine learning algorithms in general for
419these important “outlier” cases. For the 5 reaction classes,
4200.76% to 7.30% of the data points are single-catalyst.
4213.3. Human Chemist Focus Group Trials. To provide
422feedback on the algorithm, a small group of chemists was
423assembled for evaluation and trials. The purpose of gathering
424these chemists was 3-fold: 1. to provide comparisons between
425computer and expert solvent predictions, 2. to evaluate
426whether computer solvent predictions were within reason on
427unlabeled data points, and 3. to give a general discussion of
428strengths and weaknesses of the algorithm. See the Supporting
429Information for a complete description of the focus group
430procedure (Section VIII).

Figure 4. Frequent solvents cutout of the Friedel−Crafts network. The network is able to cluster reactions by solvent without any prior knowledge
of solvent. Beyond solvent identity, solvent properties reveal clusters of consistency at least as large as solvent identity: (a) solvents, (b) solvent
prediction accuracy, (c) dielectric constant, (d) boiling point, and (e) protic or aprotic.

Figure 5. Zipf’s law describes catalyst distributions. For all 5 reaction
data sets, catalysts appear with a frequency described by a power law
known as Zipf’s law.
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431 The focus group evaluated a set of Friedel−Crafts and
432 Claisen condensation reactions and was asked to predict the
433 correct solvent from a list of 78 possibilities. The chemists
434 were given the reaction in ChemDraw format along with the
435 specific catalyst used in the Reaxys data entry. Of the 26
436 reactions in the evaluation set, 17 were labeled reactions (i.e.,
437 solvent listed in the Reaxys data entry), and 9 of the set of
438 reactions were unlabeled. The chemists were asked to select
439 solvents over a time frame of 30 min, equating to a little over 1
440 min per reaction on average.
441 The 17 labeled reactions in the test set were Friedel−Crafts
442 reactions. Since the labels are available, accuracy of the
443 computer and chemist can be evaluated on this subset, while
444 for the 9 unlabeled points, “accuracy” is much more qualitative
445 and will be discussed in the subsequent paragraph. In the
446 labeled subset the computer’s first solvent choice matched the
447 label in 9 occurrences (via the kNN algorithm), giving correct
448 predictions of dichloromethane 3 times,46−48 water 3
449 times,49−51 dichloroethane 1 time,52 and chloroform 2
450 times.53,54 The second choice of the computer matched the
451 Reaxys entry twice for dichloroethane and once for water. The
452 chemists, however, performed at a lower success rate than the
453 computer: an average of 2 matches per chemist was found with
454 the 17 solvent labels. As discussed above, the Friedel−Crafts
455 reaction is a particularly difficult one to make solvent choices,
456 leading to apparent disagreement between chemists and
457 available solvent labels. This disagreement was explicitly
458 discussed after the expert testing to give additional insight.
459 After the human chemists completed their solvent selections,
460 the computer solvent selections were revealed for labeled as
461 well as unlabeled data points (26 in total). The human
462 chemists were then asked to rate their level of agreement with
463 the computer’s first solvent choice. The rating scale of 1 (no
464 disagreement) to 5 (full disagreement) allowed the chemists to
465 give subjective feedback about the performance of the

f6 466 computer. As shown in Figure 6c, the chemists more often
467 sided with the algorithm than against, with a mean agreement
468 level of 2.3 on the 1 to 5 scale. The human chemists therefore

469regarded the algorithm as generally accurate, although one
470exception is shown below with a consistent, strong disagree-
471ment.
472Figure 6c reveals a trend of the chemists disagreeing more
473regarding the unlabeled data points rather than the labeled.
474This may be explained by the unlabeled data point predictions
475from the computer being less informed than for labeled data
476points. This is evidenced by the computer not selecting second
477nor third solvents for 7 of the 9 unlabeled data points, due to
478the sparsity of neighbor connections from which to select
479solvents. Among the labeled data points, a lower fraction of 4
480missing second solvents and 14 missing third solvents out of 17
481allowed a better populated region of data and more informed
482solvent choices.
483One example showed high levels of disagreement between
484the focus group and the computer (all chemists rated this point
485with a 5, full disagreement). In this case, the computer selected
486water for a reaction in which one of the reactants was acetic
487anhydride.55 The chemists noted that water reacts with acetic
488anhydride, causing an undesired side reaction (resulting in a
489lower yield than an unreactive solvent). This side reaction
490could not be identified with the solvent prediction algorithms,
491leading to a knowledge gap that was swiftly noticed by the
492panel. In this particular case one would hope that a machine
493learning algorithm could be trained to learn the incompatibility
494with water as a solvent. As shown in Table S15 in the
495Supporting Information, however, using water as a solvent
496alongside reactant anhydride is based upon actual data in the
497literature. While the expert panel would object to this
498combination, the data-driven algorithm makes predictions
499based on the data it has available and is not able to learn from
500the expert objections.
501A number of observations were made by the chemists
502regarding the solvent selection process, some of which are
503 s1noted in Scheme 1. In addition to these points, the kNN
504algorithm was felt to be more transparent than other popular
505machine learning algorithms such as an artificial neural
506network. In other words, the concept of similarity measured

Figure 6. Human chemist focus group trials of computer solvent selection. (a) The computer ranks its top 3 solvents, and human chemists select
solvents from a reaction test set. (b) The number of matches between the computer and the human chemists is counted for solvent-labeled
reactions. (c) The spectrum of agreement to disagreement of the human chemists to the computer is totaled.
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507 by the kNN algorithm was acceptable to this group of experts.
508 The algorithm “thought chemically” up to a point because the
509 functional groups of the fingerprints were driving the similarity
510 measures, and therefore the neighbor choices and ultimately
511 the solvent predictions were seen as made through acceptable
512 chemical reasoning.

4. CONCLUSIONS
513 Networks of named organic reactions show clusters of
514 consistency that are predictive of experimental conditions.
515 This technique was shown to accurately select solvents for
516 these reactions, an essential component of experimental
517 conditions. The kNN metric, a Tanimoto similarity with a
518 catalyst label, was shown to be not only particularly effective in
519 solvent classification but also rich in relevant conceptual
520 chemical information. The raw molecular structure informa-
521 tion was insufficient to accurately predict solvent, but the
522 inclusion of a catalyst label provided the necessary chemical
523 information to fill in this gap. Additionally, the solvent choices
524 through this metric mimicked those of a human chemist and
525 were visually interpretable, allowing an expert panel of
526 chemists to view the algorithm favorably in critical testing.
527 While the kNN method was tested on five common named
528 reactions, it may be expanded to less-well-known classes of
529 reactions based on the results of the present work. For
530 example, a more general prediction algorithm could classify
531 reactions by SMIRKS,56 the reaction analogy to SMILES.
532 SMIRKS would allow systematic classification of reactions by
533 their mechanisms and the chemical substructure involved in
534 those mechanisms, allowing treatment of essentially any class
535 of reaction where the reactant/product pairs are known.
536 In addition to having strong interpretive value, the kNN
537 algorithm was the most accurate technique on 4 of the 5
538 reaction data sets, with accuracies of 91.0 to 98.0% on top-3
539 predictions. The highly popular technique, a deep neural
540 network, was found to be numerically useful as well and
541 slightly outperformed kNN on 1 of the 5 data sets (98.7% vs
542 98.0% accuracy), performed similarly on 3 of the 5, and
543 performed somewhat worse on the most challenging data set,
544 the Friedel−Crafts reaction (89.0% vs 92.8%), cf. Table 2. In
545 total, kNN was found to be a strong technique, having
546 interpretive value as well as statistical accuracy, making it
547 outcompete neural networks from our point of view.
548 Continued studies using kNN are likely to provide a route
549 for machine-expert interfaces, where feedback from the
550 machine learning technique allows the expert chemist to
551 learn deep insights from large data sets.
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