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8 ABSTRACT: Reaction databases provide a great deal of useful information to assist

9  planning of experiments but do not provide any interpretation or chemical concepts to

10 accompany this information. In this work, reactions are labeled with experimental

11 conditions, and network analysis shows that consistencies within clusters of data points

12 can be leveraged to organize this information. In particular, this analysis shows how

13 particular experimental conditions (specifically solvent) are effective in enabling specific

14 organic reactions (Friedel—Crafts, Aldol addition, Claisen condensation, Diels—Alder,

15 and Wittig), including variations within each reaction class. An example of network

16  analysis shows where data points for a Claisen condensation reaction break into clusters

17 that depend on the catalyst and chemical structure. This type of clustering, which

18 mimics how a chemist reasons, is derived directly from the network. Therefore, the

19  findings of this work could augment synthesis planning by providing predictions in a

20 fashion that mimics human chemists. To numerically evaluate solvent prediction ability,

21 three methods are compared: network analysis (through the k-nearest neighbor algorithm), a support vector machine, and a
22 deep neural network. The most accurate method in 4 of the S test cases is the network analysis, with deep neural networks also
23 showing good prediction scores. The network analysis tool was evaluated by an expert panel of chemists, who generally agreed
24

that the algorithm produced accurate solvent choices while simultaneously being transparent in the underlying reasons for its

25 predictions.

1. INTRODUCTION

26 Reaction data sets contain a wealth of information that can be
27 used to make informed decisions in the laboratory and in
28 preparing for large-scale production. This data shows millions
29 of individual syntheses that transform available substrates into
30 interesting products, all resulting from sustained efforts of the
31 chemical community over decades. Chemists often search
32 these data sets for insight and examples when performing novel
33 reactions, which of course are never present in the data set.
34 This process therefore relies on chemical know-how and
35 inference to make a reaction plan that is relevant to the current
36 synthesis target. In our age of modern computation with its
37 incredible advances in data science, it is natural to ask whether
38 these inferences and plans might be greatly improved
39 compared to current man-machine interchanges (Figure 1).

40 Recent progress in computational techniques to translate
41 reaction data sets into predictive models has generated
42 considerable enthusiasm for computer-aided synthesis plan-
43 ning. In the last ten years, notable studies on reaction
44 prediction and synthesis planning algorithms have evolved,
45 including expert systems developed from curated data sets' ™
46 as well as supervised machine learning tools*™'" or graph-
47 based tools'" applied to commercial reaction databases'” or
48 patent-harvested reactivity data.'” The intent to automate
49 chemical decisions has been pursued long before contemporary
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interest in machine learning and artificial intelligence. + 50

Recently, the area has received great interest, including the s1
modern expert system called Chematica, which created s2
synthesis plans for 8 biologically active molecules that were s3
successfully demonstrated in the laboratory.” Chematica s4
achieved this by manual encoding tens of thousands of ss
reaction rules, representing many years of input from expert 36
chemists. On the machine learning front, reports by Segler and s7
Waller'”” have shown that a graph-driven neural network ss
strategy can provide (without the extended human effort) so
synthesis plans that are equivalent in quality to literature 60
reports, as judged by graduate-level organic chemists. 61

Even with these successes, serious limitations to computer- 62
aided synthesis remain. To chemists, reactions are primarily 63
known by their overall classification, not just specific instances 64
of A + B — C. When predicting the outcome or conditions for 6s
a reaction, chemists make decisions using generalized knowl- 66
edge, called chemical intuition. Intuition is the skill gained 67
from instruction and experience in using chemical principles— 68
grounded in physical properties—to navigate experimental 69
design and analysis of laboratory outcomes. The intuition of 70
expert chemists is a powerful science that is fully applicable to 71
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Figure 1. A conceptualization of machine learning in chemical
applications. (a) Databases do not inherently form chemical concepts,
but chemists can provide interpretations of their results and/or be
informed by the database entries. (b) Machine learning in chemistry
can make predictions without transparent reasoning and does not
typically inform expert chemists about new chemical concepts. (c)
The future of the field of chemistry research will seamlessly integrate
machine learning to the current foundation of chemical concepts with
established databases. Chemists will regularly utilize interpretable and
predictive machine learning tools.

reactions outside the scope of any database, expert system, or
machine learning method. In other words, chemists are highly
effective at understanding the details of chemical reactions
using a set of broad physical principles, which are applicable to
reactions that have never before been performed. With this
consideration in mind, it becomes clear that machine learning
reaction prediction computations follow an entirely different
track and specialize in reaction types that most resemble their
training data. By Zipf's law,”" databases are primarily populated
by the most frequently used reactions, with a power law
decrease in number of data points with rank.**** Therefore,
data-driven algorithms—to no surprise—work best for the
most popular reactions, and it is nontrivial to generalize these
to untested, emerging, or even relatively low-population
reaction classes.

Based on these considerations, the basic issue with computer
generalization of reaction concepts might be traced to the (lack
of) interpretability of the underlying algorithms. Here, we
focus on machine learning techniques, where generalization is
attempted by machine, rather than by experts. Machine
learning techniques are notoriously “black box” in character
and provide no direct relationships between the predictions
that are made and the underlying reasons for the predictions.
The most advanced machine learning strategies, for example
the hugely popular area of “deep learning” through neural
networks, fall into this category. Without interpretability, any
machine learning exercise will face severe difficulty of justifying
its value to chemistry, as the generalizability of the model will
be suspect.

In addition to these challenges, computational researchers
face another key difficulty, due to the quality of available
reactivity data. The largest data sets inevitably contain
information from a wide variety of sources, and unlabeled or
mislabeled data (i.e, “label noise”) are commonplace.”*
Doubts regarding the reliability of the training data compound

with the lack of interpretability of black box machine learning
tools result in inevitable mistrust by seasoned experts. Even for
otherwise accurate entries in a data set, deciphering the
difference between “reagent” or “catalyst” can lead to
confusion for data-driven learning. Especially in the area of
chemical synthesis, where reactants, reagents, catalysts,
solvents, and other reaction conditions must be specified
precisely for the reaction to work, consistent information
regarding these factors is paramount. Along these lines, neural
network models for predicting suitable reaction conditions
have been reported by Gao and co-workers.” In their study, a
large data set of millions of reactions was used to train the
models, with accuracies of about 70% in the top-ten
computational predictions. As described herein, we take a
different approach where reaction data is partitioned into
named organic reactions, allowing focus into predictability of
specific types of reactions. This strategy is closer in spirit to
what is practiced by laboratory chemists and importantly will
allow improved verification of the machine predictions by
making transparent models for the reaction conditions.

In this article, we explore whether machine learning
techniques can be made interpretable while maintaining high
accuracy in predicting a key reaction condition. The reaction
condition we focus upon is the solvent, which is a deceptively
simple condition because one solvent choice may allow a
planned reaction to succeed, but another solvent choice may
lead to no reaction at all. Indeed, reports have shown that
choice of solvent can change reaction rates by orders of
magnitude.”® Solvent compatibility therefore represents a key
question that is not only challenging but important for
progressing through synthetic space in the laboratory.
Ultimately, this article will show that solvents can be selected
at high accuracy with a fully interpretable, statistically sound
machine learning method across a testbed of five named
organic reactions, totaling over 50,000 specific examples.

2. METHODOLOGY

2.1. Data Source. All data used in this study was obtained
from the Reaxys database,'” which contains approximately 45
million reactions. To focus our study, five named organic
reactions were chosen: Diels—Alder, Friedel—Crafts, Wittig,
Aldol addition, and Claisen condensation. These represent a
diversity of reaction conditions, including catalyst and solvent
choices. The data set was limited to single-step reactions,
reactants that are commercially available, interpretable solvent
designation, and contained a subset of the 78 most common
solvents. Data points with missing catalyst entries were treated
as uncatalyzed and remain in the data sets. After collecting this
data, the Diels—Alder, Friedel—Crafts, Wittig, Aldol addition,
and Claisen condensation reaction data sets contained 18,394,
29,021, 9,685, 6,603, and 12,151 total useable data points,
respectively.

The raw data from Reaxys required moderate amounts of
preprocessing to be useful. For example, many catalysts had
“aluminum”, “aluminium”, or “Al” specified: these are all
equivalent. Naming was standardized using the chemical
identifier resolver from the National Institutes of Health,”’
which transforms each name into the IUPAC convention. To
capture the remaining ambiguities, catalyst names were made
lowercase, metal names were replaced by their atomic symbol,
and a hand-crafted dictionary was created to eliminate
additional specific cases that were not otherwise handled
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correctly. The full definition of this procedure is available in
the Supporting Information.

Molecular structures were stored as SMILES strings,
which were provided by Reaxys. Molecular fingerprints were
generated through Open Babel’® using the MACCS keys,*' ~**
which contain 166 functional groups. Rather than use the
reactant structures, these fingerprints were generated for the
products to simplify the data structure from two reactants to
just one product. Tanimoto measures” ">

[Zf: 1 xijjB]
2 2
2, G5+ X, ) = X s

28,29

T, . =
. [ (1)

between all product pairs within each reaction data set provide
a measure of chemical similarity between data points. Catalyst
similarity can also be measured by Tanimoto or by one-hot
encoding of the catalyst identity.

2.2. Prediction Algorithms. To provide solvent classi-
fication, a handful of machine learning algorithms was
employed. The first two, support vector machines®®’’
(SVM) and deep neural networks (NN),*® are nonlinear
classification techniques that can predict on any number of
solvent identities represented by the training data set. SVM
classification requires a kernel function to measure similarity
between data points, and choices for the kernel are discussed
below. NNs do not require this measure, as the number of
input nodes can be scaled to the number of input variables.

The k-nearest neighbor algorithm (kNN) is the third solvent
classification technique.”” The network match technique
requires a similarity metric (a kernel), and makes predictions
by finding k points in the training set that are most similar to
the test point. The most frequent solvent in the k neighbors in
the similarity network is the top solvent prediction. The
Supporting Information shows a small, labeled network to
demonstrate how kNN clusters similar molecules in practice.

2.3. Similarity Measures. The network match and SVM
algorithms are sensitive to the choice of similarity measure.*’
In typical machine learning analysis, one takes fixed-length
feature vectors and subjects them to standard kernels, for
example

K = exp(—y [lx — «'I") )
where y is a hyperparameter that is chosen during cross-
validation. When a “good” kernel is chosen, the data points
become implicitly organized by this measure, and predictions
can be highly accurate. Typical kernels used in machine
learning, however, are not necessarily useful measures for
chemical structures. For example, the kernels are not size
consistent, so large and small molecules will receive widely
differing similarity scores. This leads to inconsistency in
making predictions for large vs small molecules, and the
problem only becomes worse for larger and larger molecules.*!

Alternatively, specialized kernels might provide higher
accuracy by more closely representing the underlying structure
of the data. One such choice is the Tanimoto measure (eq
1),** which is particularly well-suited for use in chemical
problems.”> While Tanimoto is frequently applied to organic
molecules, it can also be applied to catalyst structures. We
denote the product Tanimoto by T} and the catalyst Tanimoto
by T¢.

Two similarity measures will be examined in this work

KW = 1,5, 3)

K? = T,T. 4)
where Jc gives 1.0 for a catalyst match, where the two catalysts
are the same between the two reaction data points and 0.0
otherwise.

2.4. Cross-Validation and Computational Details.
Within each reaction class, training and predictions were
performed using S-fold cross-validation, and accuracy results
are reported only for data points outside of the training set.
This procedure was repeated 10 times, shuffling the data
randomly with each training-test cycle. The mean, maximum,
and minimum errors can be found in the Supporting
Information, and the mean accuracies are reported in the
main text.

The NN training was performed by the MLPClassifier
algorithm®* with a ReLU activation function in the scikit-learn
package.”’ The NN is 4 layers deep, with each of the two inner
layers having the same dimension as the input vector. The
output layer has the dimension equal to the number of solvents
in the neural network training data. For example, the training
data for Diels—Alder contains 15 solvents. Therefore, for each
of those solvents a predicted weight is assigned, and this weight
is normalized across the output layer. The predicted solvent is
the one with the top weight, and the second most likely solvent
has the second highest weight, and so on. The NN is trained
and cross-validated using the product features and the catalyst
fingerprints or with the product features and the catalyst
identity. Catalyst identities are encoded to number categories
based on the catalyst name, and therefore each type represents
one input feature to the neural network.

Support vector classification (SVC) was also performed
using scikit-learn. SVC was fed a concatenated vector of a
fingerprint of the catalyst and a fingerprint of the products.
SVC was tested for two types of kernels, the default radial-basis
function, for which the formula is displayed in eq 2, and a
linear (or dot-product) kernel. Recalling that a MACCS
fingerprint contains exclusively 1’s and 0’s, the linear kernel
counts the total number of functional groups common
between two fingerprints. Although Tanimoto kernels may
be applied to SVCs,’”* for the data sets in this work
Tanimoto kernels did not increase solvent prediction accuracy,
and therefore the results from the Tanimoto kernel are
provided in the Supporting Information. The Supporting
Information also contains a description of error handling when
generating the fingerprints required for these kernels.

The k-NN algorithm for solvent prediction and network
visualization was created in Python by our group. The two
similarity measures (egs 3 and 4) were tested, but measure 3 is
used exclusively for the graphs shown in this work (with k =
10). Tests involving the similarity measure of eq 4 are shown
in the Supporting Information. The number of neighbors was
tested to understand their effect on kNN performance, where
the k parameter is the only tunable parameter for this method.
The solvents predicted for each reaction are the most frequent
or popular solvents among the neighbors, and the second most
frequent solvent was the second solvent prediction, etc. To
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was used for sorting. Visualization of the reaction networks was
performed using the Force Atlas 2 algorithm44 as implemented
in the Gephi software package.”” The Python codes are freely
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Table 1. Accuracy of 6 Solvent Prediction Methods Across Five Reaction Data Sets (Top 1)“

kNN with catalyst

kNN using catalyst

NN with catalyst

reaction labels fingerprints labels
Friedel—Crafts 79.0 43.4 56.8
Aldol addition 78.0 47.4 47.8
Claisen 80.1 66.0 76.1
condensation
Diels—Alder 79.9 58.7 68.5
Wittig 68.8 45.1 59.6

NN using catalyst

SVC with radial basis

SVC with custom

fingerprints function kernel
70.1 45.9 54.9
67.0 58.8 66.9
78.2 66.2 66.2
80.5 59.9 66.8
69.4 49.6 58.4

“Values are in %.

available at the repository located at https://bitbucket.org/
ericawalk/solvent_selection/.

3. RESULTS AND DISCUSSION

3.1. Statistical Results. The five data sets were subjected
to the above-described learning techniques for solvent
prediction. Multiple feature sets and similarity measures were
considered, and representative choices are shown in Table 1.
In particular, 6 unique algorithms are presented: KNN with two
different similarity measures, neural networks using two types
of raw features, and SVC using radial basis functions or a
Tanimoto similarity measure. All of these methods employ the
full fingerprint feature set for the reactant molecules and either
one-hot encoding of the catalyst identity or catalyst finger-
prints. At a basic level, this means that the kNN and support
vector classification use similarity measures as their basic
variable for making models, whereas the neural network
processes the full set of raw features to generalize the factors
responsible for solvent choice. As explained in the computa-
tional details, all results come from cross-validation, with errors
reported only for points that were not used in training,

Among the evaluated models, kNN stands out as the best at
predicting the experimental solvent, with success rates of 69 to
80% using the one-hot encoding of the catalyst identity. The
same model using catalyst fingerprints drops in accuracy to 43
to 66% across the S reaction classes. The decrease in solvent
selection accuracy might be attributed to the treatment of the
catalyst by the MACCS keys. One aspect is the noise handling,
where the kNN fingerprint vector doubles in length, in a sense
diluting the quality of the reactant features toward less
impactful catalyst features. An increase in catalyst features is
not especially helpful for kNN because catalysts typically
include metals, which are not particularly well represented in
the MACCS keys, where MACCS keys are most useful for
main-group compounds. Neural network models also perform
reasonably well, reaching accuracies between 48 and 76% using
the catalyst identity features. The neural network improves
substantially when using the catalyst fingerprints, with
improvements over kNN for the Diels—Alder and Wittig
reactions by a small amount (<1%), while performing less well
on the Friedel—Crafts, Aldol addition, and Claisen con-
densation reaction classes. The NN, relative to kNN, is not as
influenced by the increased size of the catalyst fingerprint as
kNN and intrinsically avoids irrelevant features in the
fingerprint. Support vector methods generally underperformed
in comparison with the kNN and neural network models.

Since more than one solvent may be equally applicable to a
given reaction, but databases report only the single solvent
used for a particular experiment, testing the computational
models for “top N” performance is a natural procedure. Table
2 shows the accuracies of the kNN and neural network models

Table 2. Comparison of Prediction Accuracies if Any of the
Top 3 Predicted Solvents Match the Database Entry”

kNN top 3 NN top 3 worst case
reaction allowed allowed scenario
Friedel—Crafts 92.8 89.0 62.3
Aldol addition 94.5 92.1 71.5
Claisen 98.0 98.7 94.5
condensation
Diels—Alder 93.9 93.5 80.5
Wittig 91.3 91.3 90.8

“The worst case scenario is always predicting the 3 most common
solvents from the training data. Values are in %.

for top-3 prediction accuracy, i.e., whether the experimental
solvent is in the top 3 predicted by the model. The best
choices for the features from Table 1 are used for each
algorithm, respectively. Accuracies improve across the board,
as expected, with the kNN slightly outperforming the neural
network. For 3 of the 5 reaction classes, the two models give
accuracies within 1% of each other, and the kNN shows clearly
a better performance for the Friedel—Crafts data set (which is
the most challenging of the 5 as reflected by the worst-case
scenario accuracy in Table 2). Overall, the prediction
accuracies of 91 to 98% of the kNN tool show it to be highly
capable of selecting good solvents.

These results of Table 2 show that the kNN and neural
network models significantly outperform the baseline scenario,
where the most prevalent solvents in the data sets are chosen.
When simply taking the statistically most common solvents as
the top 3 predictions, accuracies of 62 to 95% can be achieved.
Interestingly, the models are unable to significantly outperform
the worst case prediction for the Wittig reaction. On the other
hand, the Claisen condensation worst case accuracy is 95%, but
the 2 computational models give 98 to 99% accuracy, showing
a significant improvement. Most dramatically, the Friedel—
Crafts reaction worst case prediction gives 62% accuracy on
the top 3, making it a more challenging case than the other 4
reactions. The kNN technique shines brightest in this reaction
class, with 93% accuracy, which is markedly better than the
neural network at 89%.

3.2. Visualizing the Reaction Landscape. The high
performance of kNN suggests that the underlying similarity
measure provides a strong means for organization of the data
sets. The specific similarity measure given in eq 3 uses a
combination of catalyst identity and reactant Tanimoto, so the
overall closeness between two data points depends only on
these two factors. To better understand the relationships that
lead to successful predictions, two-dimensional graphs of the
data for the Friedel—Crafts reaction are shown in Figures 2 and
3. Analogous plots are shown in the SI for the Claisen
condensation and Diels—Alder data sets.
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Figure 2. Friedel—Crafts reaction network. The network is chromatically labeled by a frequent catalyst with the scheme provided in the legend of

Figure 3(a).

@ Al(in)

@ B trifluoride diethyl etherate

® Cu trifluoromethanesulfonate

@ Tetrachlorostannane

@ scandium tris(trifluoromethanesulfonate)
@ trifluoromethanesulfonic acid

® 2,2,2-trifluoroacetic acid

@ TetrachloroTi

@ other catalysts

@ dichloromethane
@ 1,2-dichloroethane
® toluene

@ acetonitrile

© water

@ nitromethane

@ chloroform

@ tetrahydrofuran

@ other solvents

@ accurate top 1
__accurate within top 3
@ inaccurate

Figure 3. Two network cutouts chromatically labeled by property. One cutout is red, and the other cutout is black: (a) frequent catalysts chromatic

label, (b) frequent solvents label, and (c) solvent prediction accuracy label.

DOI: 10.1021/acs.jcim.9b00313
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acs.jcim.9b00313

4

£S

Journal of Chemical Information and Modeling

- ¥ » P $ »
(a) i O
o i v 57 o @
Ly y
- a . «
- .
w Bk W Sl
’ g . d
[3* 29 '?,‘, *8 rg: . “t.“.“"
- i ;"‘ - & o _?‘
e wtt :, Yoo '4 ’

@ Al(I)
@ B trifluoride diethyl etherate
@ Cu trifluoromethanesulfonate

T @ Tetrachlorostannane

@ scandium tris(trifluoromethanesulfonate)
@ trifluoromethanesulfonic acid
% @ 2,2,2-trifluoroacetic acid
@ TetrachloroTi @ accurate top 1
other catalysts  accurate within top 3

low dielectric constant @ low boiling point

medium
@ high

medium
@ high

® inaccurate

@ aprotic
@ protic

Figure 4. Frequent solvents cutout of the Friedel—Crafts network. The network is able to cluster reactions by solvent without any prior knowledge
of solvent. Beyond solvent identity, solvent properties reveal clusters of consistency at least as large as solvent identity: (a) solvents, (b) solvent
prediction accuracy, (c) dielectric constant, (d) boiling point, and (e) protic or aprotic.

371 Figure 2 shows that a small fraction of the catalysts appears
372 frequently within the data, while many others appear sparsely.
373 For a small cluster consisting of a single catalyst, often only one
374 solvent is used for all of the reactions (note that the clustering
375 is performed without knowledge of solvent). These data points
376 are easy to predict to high accuracy, with the solvent label
377 matching one-to-one with the catalyst species. For the larger
378 clusters, the same catalyst might appear with several different
379 solvents, as is obvious in Figure 3 (e.g., the AI(III) region of
380 (a), with a colorful mixture of solvents shown in (b)). For the
381 kNN algorithm, these clusters are harder to accurately predict
382 compared to the more uniform, isolated smaller clusters. At the
383 same time, these regions of the graph do contain subclusters
384 that are consistent, so the ordering is not random. The
38s overlaps between these subclusters lead to unavoidable errors,
386 as classification algorithms cannot easily distinguish over-
387 lapping data points. In these cases, solvent predictions through
388 the top-3 classification (Table 2) will gain considerably in
389 accuracy compared to top-1 classification (Table 1), as
390 multiple solvents may perform just as well for similar
391 substrate/catalyst combinations. In total, however, Figures 2
392 and 3 show that there is a considerable degree of order in
393 clustering, with many small clusters having highly consistent
394 solvent designations.

39s Having the reactions ordered by solvent suggests an
396 interesting possibility: does the reactant/catalyst ordering
397 imply order in the solvent properties. Figure 4 suggests that
398 this is indeed the case, where the Friedel—Crafts reaction
399 network is labeled with solvent descriptors. The three solvent
400 properties—dielectric constant, boiling point, and protic/
401 aprotic—form clusters of consistency, showing that the
402 solvents are chemically similar to one another. Importantly,
403 this ordering in solvent properties is found in the product/
404 catalyst network and is not an ordering predetermined by the
405 solvent properties. Instead, the product/catalyst network
406 implies necessary traits of solvents, which then in turn are
407 neatly represented in the graphs.

408 In addition to the graphical analysis, Figure 5 shows that
409 Zipf's law”' approximates the distribution of catalysts in all five
410 reaction data sets. The fact that Zipf’s law generally applies to

40 1—— Friedel-Crafts
2 —— Diels-Alder
3 —— Aldol addition

103 4 4 —— Claisen condensation
5 —— Wittig

Logio(frequency)
=
B

=

o
=
1

10° 4

10° 10? 10? 103
Catalyst Rank
Figure S. Zipf's law describes catalyst distributions. For all 5 reaction

data sets, catalysts appear with a frequency described by a power law
known as Zipf's law.

the catalyst distribution of all 5 data sets suggests a significant 411
trend: there are a large number of catalyst identities which 412
appear only once, forming a non-negligible slice of the data 413
where predictions cannot be easily made. In the interpretable 414
kNN solvent prediction algorithm, single-catalyst reactions 415
have no neighbors. Not only does this greatly limit the ability 416
of kNN to make predictions, it implies that there is not enough 417
data to training machine learning algorithms in general for 418
these important “outlier” cases. For the S reaction classes, 419
0.76% to 7.30% of the data points are single-catalyst. 420

3.3. Human Chemist Focus Group Trials. To provide 421
feedback on the algorithm, a small group of chemists was 422
assembled for evaluation and trials. The purpose of gathering 423
these chemists was 3-fold: 1. to provide comparisons between 424
computer and expert solvent predictions, 2. to evaluate 425
whether computer solvent predictions were within reason on 426
unlabeled data points, and 3. to give a general discussion of 427
strengths and weaknesses of the algorithm. See the Supporting 428
Information for a complete description of the focus group 429
procedure (Section VIII). 430
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Selection of 17 Labeled (all Friedel-Crafts) and 9 Unlabeled (3 Friedel-Crafts and 6 Claisen
Condensations) Data Points from Reaxys

(a) | Computer selects 3 solvents
(ordinal)

(b) Accuracy labeled data only
v

-
~N

-
o

Number match Reaxys/referenc
o

Computer Computer Chemist Chemist Chemist
top 3 2 3

Provide list
of 78
solvents

compare
solvent
selections

3 Chemists total count

3 human chemists select
solvents

(c) Disagreement labeled and unlabeled
data 3 chemists

. labeled
= unlabeled

Agree Neutral Disagree

Figure 6. Human chemist focus group trials of computer solvent selection. (a) The computer ranks its top 3 solvents, and human chemists select
solvents from a reaction test set. (b) The number of matches between the computer and the human chemists is counted for solvent-labeled
reactions. (c) The spectrum of agreement to disagreement of the human chemists to the computer is totaled.

431 The focus group evaluated a set of Friedel—Crafts and
432 Claisen condensation reactions and was asked to predict the
433 correct solvent from a list of 78 possibilities. The chemists
434 were given the reaction in ChemDraw format along with the
435 specific catalyst used in the Reaxys data entry. Of the 26
436 reactions in the evaluation set, 17 were labeled reactions (i.e.,
437 solvent listed in the Reaxys data entry), and 9 of the set of
438 reactions were unlabeled. The chemists were asked to select
439 solvents over a time frame of 30 min, equating to a little over 1
440 min per reaction on average.

441 The 17 labeled reactions in the test set were Friedel—Crafts
442 reactions. Since the labels are available, accuracy of the
443 computer and chemist can be evaluated on this subset, while
444 for the 9 unlabeled points, “accuracy” is much more qualitative
445 and will be discussed in the subsequent paragraph. In the
446 labeled subset the computer’s first solvent choice matched the
447 label in 9 occurrences (via the kNN algorithm), giving correct
s predictions of dichloromethane 3 times,**** water 3
449 times,” " dichloroethane 1 time,”> and chloroform 2
450 times.”>>* The second choice of the computer matched the
451 Reaxys entry twice for dichloroethane and once for water. The
452 chemists, however, performed at a lower success rate than the
453 computer: an average of 2 matches per chemist was found with
454 the 17 solvent labels. As discussed above, the Friedel—Crafts
455 reaction is a particularly difficult one to make solvent choices,
456 leading to apparent disagreement between chemists and
457 available solvent labels. This disagreement was explicitly
458 discussed after the expert testing to give additional insight.
459 After the human chemists completed their solvent selections,
460 the computer solvent selections were revealed for labeled as
461 well as unlabeled data points (26 in total). The human
462 chemists were then asked to rate their level of agreement with
463 the computer’s first solvent choice. The rating scale of 1 (no
464 disagreement) to S (full disagreement) allowed the chemists to
465 give subjective feedback about the performance of the
466 computer. As shown in Figure 6¢, the chemists more often
467 sided with the algorithm than against, with a mean agreement
468 level of 2.3 on the 1 to 5 scale. The human chemists therefore

~N O

[

(=)

—

regarded the algorithm as generally accurate, although one 469
exception is shown below with a consistent, strong disagree- 470
ment. 471

Figure 6¢ reveals a trend of the chemists disagreeing more 472
regarding the unlabeled data points rather than the labeled. 473
This may be explained by the unlabeled data point predictions 474
from the computer being less informed than for labeled data 475
points. This is evidenced by the computer not selecting second 476
nor third solvents for 7 of the 9 unlabeled data points, due to 477
the sparsity of neighbor connections from which to select 478
solvents. Among the labeled data points, a lower fraction of 4 479
missing second solvents and 14 missing third solvents out of 17 480
allowed a better populated region of data and more informed 481
solvent choices. 482

One example showed high levels of disagreement between 4s3
the focus group and the computer (all chemists rated this point 4s4
with a §, full disagreement). In this case, the computer selected 4ss
water for a reaction in which one of the reactants was acetic 486
anhydride.”® The chemists noted that water reacts with acetic 47
anhydride, causing an undesired side reaction (resulting in a 4ss
lower yield than an unreactive solvent). This side reaction 4so
could not be identified with the solvent prediction algorithms, 490
leading to a knowledge gap that was swiftly noticed by the 491
panel. In this particular case one would hope that a machine 492
learning algorithm could be trained to learn the incompatibility 493
with water as a solvent. As shown in Table SIS in the 494
Supporting Information, however, using water as a solvent 495
alongside reactant anhydride is based upon actual data in the 496
literature. While the expert panel would object to this 497
combination, the data-driven algorithm makes predictions 498
based on the data it has available and is not able to learn from 499
the expert objections. 500

A number of observations were made by the chemists so1
regarding the solvent selection process, some of which are so2
noted in Scheme 1. In addition to these points, the kNN s03
algorithm was felt to be more transparent than other popular so4
machine learning algorithms such as an artificial neural sos
network. In other words, the concept of similarity measured sos
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Scheme 1. Focus Group Observations

Focus Group Observations

e Chemists agreed that the computer algorithm was providing
reasonable results. The chemists did not detect biases in solvent
choice from the computer.

e The computer had access to a large data set of reactions which gave it
an advantage over a human, who could look up reactions in the same
database given sufficient time and effort.

e The computer made solvent predictions based upon the most popular
solvents among its neighbors, but chemists did not believe it was
thinking critically about whether the solvent was good or not.

e The nearest neighbor algorithm provides a list of data entries used in
a particular solvent prediction, and this data points to original articles
that allow for the prediction to be checked and interpreted.

507 by the kNN algorithm was acceptable to this group of experts.
508 The algorithm “thought chemically” up to a point because the
s09 functional groups of the fingerprints were driving the similarity
si0 measures, and therefore the neighbor choices and ultimately
s11 the solvent predictions were seen as made through acceptable
s12 chemical reasoning,

—

4. CONCLUSIONS

513 Networks of named organic reactions show clusters of
514 consistency that are predictive of experimental conditions.
s1s This technique was shown to accurately select solvents for
si6 these reactions, an essential component of experimental
517 conditions. The kNN metric, a Tanimoto similarity with a
518 catalyst label, was shown to be not only particularly effective in
519 solvent classification but also rich in relevant conceptual
520 chemical information. The raw molecular structure informa-
tion was insufficient to accurately predict solvent, but the
522 inclusion of a catalyst label provided the necessary chemical
523 information to fill in this gap. Additionally, the solvent choices
524 through this metric mimicked those of a human chemist and
s2s were visually interpretable, allowing an expert panel of
526 chemists to view the algorithm favorably in critical testing.
527 While the kNN method was tested on five common named
528 reactions, it may be expanded to less-well-known classes of
529 reactions based on the results of the present work. For
530 example, a more general prediction algorithm could classify
531 reactions by SMIRKS,*® the reaction analogy to SMILES.
s32 SMIRKS would allow systematic classification of reactions by
533 their mechanisms and the chemical substructure involved in
534 those mechanisms, allowing treatment of essentially any class
s3s of reaction where the reactant/product pairs are known.

s36 In addition to having strong interpretive value, the kNN
537 algorithm was the most accurate technique on 4 of the $
538 reaction data sets, with accuracies of 91.0 to 98.0% on top-3
539 predictions. The highly popular technique, a deep neural
s40 network, was found to be numerically useful as well and
s41 slightly outperformed kNN on 1 of the S data sets (98.7% vs
s42 98.0% accuracy), performed similarly on 3 of the S, and
543 performed somewhat worse on the most challenging data set,
s44 the Friedel—Crafts reaction (89.0% vs 92.8%), cf. Table 2. In
s45 total, KNN was found to be a strong technique, having
s46 interpretive value as well as statistical accuracy, making it
547 outcompete neural networks from our point of view.
s48 Continued studies using kNN are likely to provide a route
s49 for machine-expert interfaces, where feedback from the
sso machine learning technique allows the expert chemist to
ss1 learn deep insights from large data sets.

v
)
—

—
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