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Abstract
We consider the generalization ability of algo-
rithms for learning to rank at a query level, a
problem also called subset ranking. Existing
generalization error bounds necessarily degrade
as the size of the document list associated with a
query increases. We show that such a degrada-
tion is not intrinsic to the problem. For several
loss functions, including the cross-entropy loss
used in the well known ListNet method, there is
no degradation in generalization ability as docu-
ment lists become longer. We also provide novel
generalization error bounds under `1 regulariza-
tion and faster convergence rates if the loss func-
tion is smooth.

1. Introduction
Learning to rank at the query level has emerged as an excit-
ing research area at the intersection of information retrieval
and machine learning. Training data in learning to rank
consists of queries along with associated documents, where
documents are represented as feature vectors. For each
query, the documents are labeled with human relevance
judgements. The goal at training time is to learn a ranking
function that can, for a future query, rank its associated doc-
uments in order of their relevance to the query. The perfor-
mance of ranking functions on test sets is evaluated using a
variety of performance measures such as NDCG (Järvelin
& Kekäläinen, 2002), ERR (Chapelle et al., 2009) or Aver-
age Precision (Yue et al., 2007).

The performance measures used for testing ranking meth-
ods cannot be directly optimized during training time as
they lead to discontinuous optimization problems. As a re-
sult, researchers often minimize surrogate loss functions
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that are easier to optimize. For example, one might con-
sider smoothed versions of, or convex upper bounds on,
the target performance measure. However, as soon as one
optimizes a surrogate loss, one has to deal with two ques-
tions (Chapelle et al., 2011). First, does minimizing the
surrogate on finite training data imply small expected sur-
rogate loss on infinite unseen data? Second, does small
expected surrogate loss on infinite unseen data imply small
target loss on infinite unseen data? The first issue is one of
generalization error bounds for empirical risk minimiza-
tion (ERM) algorithms that minimize surrogate loss on
training data. The second issue is one of calibration: does
consistency in the surrogate loss imply consistency in the
target loss?

This paper deals with the former issue, viz. that of gener-
alization error bounds for surrogate loss minimization. In
pioneering works, Lan et al. (2008; 2009) gave generaliza-
tion error bounds for learning to rank algorithms. However,
while the former paper was restricted to analysis of pair-
wise approach to learning to rank, the later paper was lim-
ited to results on just three surrogates: ListMLE, ListNet
and RankCosine. To the best of our knowledge, the most
generally applicable bound on the generalization error of
query-level learning to rank algorithms has been obtained
by Chapelle & Wu (2010).

The bound of Chapelle & Wu (2010), while generally ap-
plicable, does have an explicit dependence on the length of
the document list associated with a query. Our investiga-
tions begin with this simple question: is an explicit depen-
dence on the length of document lists unavoidable in gen-
eralization error bounds for query-level learning to rank al-
gorithms? We focus on the prevalent technique in literature
where learning to rank algorithms learn linear scoring func-
tions and obtain ranking by sorting scores in descending
order. Our first contribution (Theorem 3) is to show that di-
mension of linear scoring functions that are permutation in-
variant (a necessary condition for being valid scoring func-
tions for learning to rank) has no dependence on the length
of document lists. Our second contribution (Theorems 5,
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Table 1. A comparison of three bounds given in this paper for Lipschitz loss functions. Criteria for comparison: algorithm bound applies
to (OGD = Online Gradient Descent, [R]ERM = [Regularized] Empirical Risk Minimization), whether it applies to general (possibly
non-convex) losses, and whether the constants involved are tight.

Bound Applies to Handles Nonconvex Loss “Constant” hidden in O(·) notation
Theorem 5 OGD No Smallest
Theorem 6 RERM No Small
Theorem 9 ERM Yes Hides several logarithmic factors

6, 9) is to show that as long as one uses the “right” norm in
defining the Lipschitz constant of the surrogate loss, we can
derive generalization error bounds that have no explicit de-
pendence on the length of document lists. The reason that
the second contribution involves three bounds is that they
all have different strengths and scopes of application (See
Table 1 for a comparison). Our final contribution is to pro-
vide novel generalization error bounds for learning to rank
in two previously unexplored settings: almost dimension
independent bounds when using high dimensional features
with `1 regularization (Theorem 12) and “optimistic” rates
(that can be as fast as O(1/n)) when the loss function is
smooth (Theorem 17). We also apply our results on popu-
lar convex and non-convex surrogates. All omitted proofs
can be found in the appendix (see supplementary material).

2. Preliminaries
In learning to rank (also called subset ranking to distinguish
it from other related problems, e.g., bipartite ranking), a
training example is of the form ((q, d1, . . . , dm), y). Here
q is a search query and d1, . . . , dm are m documents with
varying degrees of relevance to the query. Human labelers
provide the relevance vector y ∈ Rm where the entries in
y contain the relevance labels for the m individual docu-
ments. Typically, y has integer-valued entries in the range
{0, . . . , Ymax} where Ymax is often less than 5. For our
theoretical analysis, we get rid of some of these details by
assuming that some feature map Ψ exists to map a query
document pair (q, d) to Rd. As a result, the training exam-
ple ((q, d1, . . . , dm), y) gets converted into (X, y) where
X = [Ψ(q, d1), . . . ,Ψ(q, dm)]> is an m × d matrix with
the m query-document feature vector as rows. With this
abstraction, we have an input space X ⊆ Rm×d and a label
space Y ⊆ Rm.

A training set consists of iid examples
(X(1), y(1)), . . . , (X(n), y(n)) drawn from some un-
derlying distribution D. To rank the documents in an
instance X ∈ X , often a score vector s ∈ Rm is computed.
A ranking of the documents can then be obtained from
s by sorting its entries in decreasing order. A common
choice for the scoring function is to make it linear in the
input X and consider the following class of vector-valued

functions:

Flin = {X 7→ Xw : X ∈ Rm×d, w ∈ Rd}. (1)

Depending upon the regularization, we also consider the
following two subclasses of Flin :

F2 := {X 7→ Xw : X ∈ Rm×d, w ∈ Rd, ‖w‖2 ≤W2},
F1 := {X 7→ Xw : X ∈ Rm×d, w ∈ Rd, ‖w‖1 ≤W1}.

In the input space X , it is natural for the rows of X to have
a bound on the appropriate dual norm. Accordingly, when-
ever we useF2, the input space is set toX = {X ∈ Rm×d :
∀j ∈ [m], ‖Xj‖2 ≤ RX} where Xj denotes jth row of X
and [m] := {1, . . . ,m}. Similarly, when we use F1, we set
X = {X ∈ Rm×d : ∀j ∈ [m], ‖Xj‖∞ ≤ R̄X}. These
are natural counterparts to the following function classes
studied in binary classification and regression:

G2 := {x 7→ 〈x,w〉 : ‖x‖2 ≤ RX , w ∈ Rd, ‖w‖2 ≤W2},

G1 := {x 7→ 〈x,w〉 : ‖x‖∞ ≤ R̄X , w ∈ Rd, ‖w‖1 ≤W1}.

A key ingredient in the basic setup of the learning to rank
problem is a loss function φ : Rm × Y → R+ where R+

denotes the set of non-negative real numbers. Given a class
F of vector-valued functions, a loss φ yields a natural loss
class: namely the class of real-valued functions that one
gets by composing φ with functions in F :

φ ◦ F := {(X, y) 7→ φ(f(X), y) : X ∈ Rm×d, f ∈ F}.

For vector valued scores, the Lipschitz constant of φ de-
pends on the norm ||| · ||| that we decide to use in the score
space (||| · |||? is dual of ||| · |||):

∀y ∈ Y, s, s′ ∈ Rm, |φ(s1, y)−φ(s2, y)| ≤ Gφ|||s1−s2|||.

If φ is differentiable, this is equivalent to: ∀y ∈ Y, s ∈
Rm, |||∇sφ(s, y)|||? ≤ Gφ. Similarly, the smoothness
constant Hφ of φ defined as: ∀y ∈ Y, s, s′ ∈ Rm,

|||∇sφ(s1, y)−∇sφ(s2, y)|||? ≤ Hφ|||s1 − s2|||.

also depends on the norm used in the score space. If φ is
twice differentiable, the above inequality is equivalent to

∀y ∈ Y, s ∈ Rm, |||∇2
sφ(s, y)|||op ≤ Hφ



Generalization error bounds for learning to rank

where ||| · |||op is the operator norm induced by the pair
||| · |||, ||| · |||? and defined as |||M |||op := supv 6=0

|||Mv|||?
|||v||| .

Define the expected loss of w under the distribution D
Lφ(w) := E(X,y)∼D [φ(Xw, y)] and its empirical loss on
the sample as L̂φ(w) := 1

n

∑n
i=1 φ(X(i)w, y(i)). The min-

imizer of Lφ(w) (resp. L̂φ(w)) over some function class
(parameterized by w) will be denoted by w? (resp. ŵ). We
may refer to expectations w.r.t. the sample using Ê [·]. To
reduce notational clutter, we often refer to (X, y) jointly by
Z and X × Y by Z . For vectors, 〈u, v〉 denotes the stan-
dard inner product

∑
i uivi and for matrices U, V of the

same shape, 〈U, V 〉 means Tr(U>V ) =
∑
ij UijVij . The

set of m! permutation π of degree m is denoted by Sm. A
vector of ones is denoted by 1.

3. Application to Specific Losses
To whet the reader’s appetite for the technical presenta-
tion that follows, we will consider two loss functions,
one convex and one non-convex, to illustrate the con-
crete improvements offered by our new generalization
bounds. A generalization bound is of the form: Lφ(ŵ) ≤
Lφ(w?)+“complexity term”. It should be noted that w?

is not available to the learning algorithm as it needs knowl-
edge of underlying distribution of the data. The complexity
term of Chapelle & Wu (2010) is O(GCWφ W2RX

√
m/n).

The constant GCWφ is the Lipschitz constant of the sur-
rogate φ (viewed as a function of the score vector s)
w.r.t. `2 norm. Our bounds will instead be of the form
O(GφW2RX

√
1/n), where Gφ is the Lipschitz constant

of φ w.r.t. `∞ norm. Note that our bounds are free of
any explicit m dependence. Also, by definition, Gφ ≤
GCWφ

√
m but the former can be much smaller as the two

examples below illustrate. In benchmark datasets (Liu
et al., 2007), m can easily be in the 100-1000 range.

3.1. Application to ListNet

The ListNet ranking method (Cao et al., 2007) uses
a convex surrogate, that is defined in the following
way1. Define m maps from Rm to R as: Pj(v) =
exp(vj)/

∑m
i=1 exp(vi) for j ∈ [m]. Then, we have, for

s ∈ Rm and y ∈ Rm,

φLN(s, y) = −
m∑
j=1

Pj(y) logPj(s).

An easy calculation shows that the Lipschitz (as well as
smoothness) constant of φLN is m independent.

Proposition 1. The Lipschitz (resp. smoothness) constant

1The ListNet paper actually defines a family of losses based on
probability models for top k documents. We use k = 1 in our def-
inition since that is the version implemented in their experimental
results.

of φLN w.r.t. ‖ · ‖∞ satisfies GφLN
≤ 2 (resp. HφLN

≤ 2)
for any m ≥ 1.

Since the bounds above are independent of m, so the gen-
eralization bounds resulting from their use in Theorem 9
and Theorem 17 will also be independent of m (up to log-
arithmic factors). We are not aware of prior generalization
bounds for ListNet that do not scale with m. In particular,
the results of Lan et al. (2009) have anm! dependence since
they consider the top-m version of ListNet. However, even
if the top-1 variant above is considered, their proof tech-
nique will result in at least a linear dependence on m and
does not result in as tight a bound as we get from our gen-
eral results. It is also easy to see that the Lipschitz constant
GCWφLN

of ListNet loss w.r.t. `2 norm is also 2 and hence the
bound of Chapelle & Wu (2010) necessarily has a

√
m de-

pendence in it. Moreover, generalization error bounds for
ListNet exploiting its smoothness will interpolate between
the pessimistic 1/

√
n and optimistic 1/n rates. These have

never been provided before.

3.2. Application to Smoothed DCG@1

This example is from the work of Chapelle & Wu (2010).
Smoothed DCG@1, a non-convex surrogate, is defined as:

φSD(s, y) = D(1)

m∑
i=1

G(yi)
exp(si/σ)∑
j exp(sj/σ)

,

where D(i) = 1/ log2(1 + i) is the “discount” function
and G(i) = 2i − 1 is the “gain” function. The amount
of smoothing is controlled by the parameter σ > 0 and
the smoothed version approaches DCG@1 as σ → 0
(DCG stands for Discounted Cumulative Gain (Järvelin &
Kekäläinen, 2002)).

Proposition 2. The Lipschitz constant of φSD w.r.t. ‖ · ‖∞
satisfies GφSD

≤ 2D(1)G(Ymax)/σ for any m ≥ 1. Here
Ymax is maximum possible relevance score of a document
(usually less than 5).

As in the ListNet loss case we previously considered, the
generalization bound resulting from Theorem 9 will be in-
dependent of m. This is intuitively satisfying: DCG@1,
whose smoothing we are considering, only depends on the
document that is put in the top position by the score vec-
tor s (and not on the entire sorted order of s). Our gen-
eralization bound does not deteriorate as the total list size
m grows. In contrast, the bound of Chapelle & Wu (2010)
will necessarily deteriorate as

√
m since the constantGCWφSD

is the same asGφSD
. Moreover, it should be noted that even

in the original SmoothedDCG paper, σ is present in the de-
nominator of GCWφSD

, so our results are directly comparable.
Also note that this example can easily be extended to con-
sider DCG@k for case when document list length m � k
(a very common scenario in practice).
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3.3. Application to RankSVM

RankSVM (Joachims, 2002) is another well established
ranking method, which minimizes a convex surrogate based
on pairwise comparisons of documents. A number of stud-
ies have shown that ListNet has better empirical perfor-
mance than RankSVM. One possible reason for the better
performance of ListNet over RankSVM is that the Lips-
chitz constant of RankSVM surrogate w.r.t ‖ · ‖∞ doe scale
with document list size as O(m2). Due to lack of space,
we give the details in the supplement.

4. Does The Length of Document Lists
Matter?

Our work is directly motivated by a very interesting gener-
alization bound for learning to rank due to Chapelle & Wu
(2010, Theorem 1). They considered a Lipschitz continu-
ous loss φ with Lipschitz constant GCWφ w.r.t. the `2 norm.
They show that, with probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + 3GCWφ W2RX

√
m

n

+

√
8 log(1/δ)

n
.

The dominant term on the right isO(GCWφ W2RX
√
m/n).

In the next three sections, we will derive improved bounds
of the form Õ(GφW2RX

√
1/n) where Gφ ≤ GCWφ

√
m

but can be much smaller. Before we do that, let us examine
the dimensionality reduction in linear scoring function that
is caused by a natural permutation invariance requirement.

4.1. Permutation invariance removes m dependence in
dimensionality of linear scoring functions

As stated in Section 2, a ranking is obtained by sorting a
score vector obtained via a linear scoring function f . Con-
sider the space of linear scoring function that consists of
all linear maps f that map Rm×d to Rm:

Ffull :=
{
X 7→ [〈X,W1〉 , . . . , 〈X,Wm〉]> : Wi ∈ Rm×d

}
.

These linear maps are fully parameterized by matrices
W1, . . . ,Wm. Thus, a full parameterization of the linear
scoring function is of dimension m2d. Note that the popu-
larly used class of linear scoring functions Flin defined in
Eq. 1 is actually a low d-dimensional subspace of the full
m2d dimensional space of all linear maps. It is important
to note that the dimension of Flin is independent of m.

In learning theory, one of the factors influencing the gen-
eralization error bound is the richness of the class of hy-
pothesis functions. Since the linear function class Flin has
dimension independent of m, we intuitively expect that,
at least under some conditions, algorithms that minimize
ranking losses using linear scoring functions should have

an m independent complexity term in the generalization
bound. The reader might wonder whether the dimension
reduction from m2d to d in going from Ffull to Flin is arbi-
trary. To dispel this doubt, we prove the lower dimensional
class Flin is the only sensible choice of linear scoring func-
tions in the learning to rank setting. This is because scoring
functions should satisfy a permutation invariance property.
That is, if we apply a permutation π ∈ Sm to the rows ofX
to get a matrix πX then the scores should also simply get
permuted by π. That is, we should only consider scoring
functions in the following class:

Fperminv = {f : ∀π ∈ Sm,∀X ∈ Rm×d, πf(X) = f(πX)}.

The permutation invariance requirement, in turn, forces a
reduction from dimension m2d to just 2d (which has no
dependence on m).
Theorem 3. The intersection of the function classes Ffull

and Fperminv is the 2d-dimensional class:

F ′lin = {X 7→ Xw + (1>Xv)1 : w, v ∈ Rd}. (2)

Note that the extra degree of freedom provided by the v
parameter in Eq. 2 is useless for ranking purposes since
adding a constant vector (i.e., a multiple of 1) to a score
vector has no effect on the sorted order. This is why we
said that Flin is the only sensible choice of linear scoring
functions.

5. Online to Batch Conversion
In this section, we build some intuition as to why it is nat-
ural to use ‖ · ‖∞ in defining the Lipschitz constant of the
loss φ. To this end, consider the following well known on-
line gradient descent (OGD) regret guarantee. Recall that
OGD refers to the simple online algorithm that makes the
update wi+1 ← wi−η∇wifi(wi) at time i. If we run OGD
to generate wi’s, we have, for all ‖w‖2 ≤W2:

n∑
i=1

fi(wi)−
n∑
i=1

fi(w) ≤ W 2
2

2η
+ ηG2n

where G is a bound on the maximum `2-norm of
the gradients ∇wifi(wi) and fi’s have to be convex.
If (X(1), y(1)), . . . , (X(n), y(n)) are iid then by setting
fi(w) = φ(X(i)w, y(i)), 1 ≤ i ≤ n we can do an “on-
line to batch conversion”. That is, we optimize over η, take
expectations and use Jensen’s inequality to get the follow-
ing excess risk bound:

∀‖w‖2 ≤W2, E [Lφ(ŵOGD)]− Lφ(w) ≤W2G

√
2

n

where ŵOGD = 1
n

∑n
i=1 wi and G has to satisfy (noting

that s = X(i)wi)

G ≥ ‖∇wifi(wi)‖2 = ‖(X(i))>∇sφ(X(i)wi, y
(i))‖2
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where we use the chain rule to express ∇w in terms of ∇s.
Finally, we can upper bound

‖(X(i))>∇sφ(X(i)wi, y
(i))‖2

≤ ‖(X(i))>‖1→2 · ‖∇sφ(X(i)wi, y
(i))‖1

≤ RX‖∇sφ(X(i)wi, y
(i))‖1

as RX ≥ maxmj=1 ‖Xj‖2 and because of the following
lemma.
Lemma 4. For any 1 ≤ p ≤ ∞,

‖X‖p→q = sup
v 6=0

‖Xv‖q
‖v‖p

‖X>‖1→p = ‖X‖q→∞ =
m

max
j=1
‖Xj‖p ,

where q is the dual exponent of p (i.e., 1
q + 1

p = 1).

Thus, we have shown the following result.
Theorem 5. Let φ be convex and have Lipschitz constant
Gφ w.r.t. ‖ · ‖∞. Suppose we run online gradient descent
(with appropriate step size η) on fi(w) = φ(X(i)w, y(i))
and return ŵOGD = 1

T

∑n
i=1 wi. Then we have,

∀‖w‖2 ≤W2, E [Lφ(ŵOGD)]−Lφ(w) ≤ GφW2RX

√
2

n
.

The above excess risk bound has no explicitm dependence.
This is encouraging but there are two deficiencies of this
approach based on online regret bounds. First, the result
applies to the output of a specific algorithm that may not
be the method of choice for practitioners. For example,
the above argument does not yield uniform convergence
bounds that could lead to excess risk bounds for ERM
(or regularized versions of it). Second, there is no way
to generalize the result to Lipschitz, but non-convex loss
functions. It may noted here that the original motivation
for Chapelle & Wu (2010) to prove their generalization
bound was to consider the non-convex loss used in their
SmoothRank method. We will address these issues in the
next two sections.

6. Stochastic Convex Optimization
We first define the regularized empirical risk minimizer:

ŵλ = argmin
‖w‖2≤W2

λ

2
‖w‖22 + L̂φ(w). (3)

We now state the main result of this section.
Theorem 6. Let the loss function φ be convex and have
Lipschitz constantGφ w.r.t. ‖·‖∞. Then, for an appropriate
choice of λ = O(1/

√
n), we have

E [Lφ(ŵλ)] ≤ Lφ(w?) + 2GφRXW2

(
8

n
+

√
2

n

)
.

This result applies to a batch algorithm (regularized ERM)
but unfortunately requires the regularization parameter λ
to be set in a particular way. Also, it does not apply to
non-convex losses and does not yield uniform convergence
bounds. In the next section, we will address these deficien-
cies. However, we will incur some extra logarithmic factors
that are absent in the clean bound above.

7. Bounds for Non-convex Losses
The above discussion suggests that we have a possibility
of deriving tighter, possibly m-independent, generalization
error bounds by assuming that φ is Lipschitz continuous
w.r.t. ‖ · ‖∞. The standard approach in binary classifica-
tion is to appeal to the Ledoux-Talagrand contraction prin-
ciple for establishing Rademacher complexity (Bartlett &
Mendelson, 2003). It gets rid of the loss function and in-
curs a factor equal to the Lipschitz constant of the loss in
the Rademacher complexity bound. Since the loss function
takes scalar argument, the Lipschitz constant is defined for
only one norm, i.e., the absolute value norm. It is not im-
mediately clear how such an approach would work when
the loss takes vector valued arguments and is Lipschitz
w.r.t. ‖ · ‖∞. We are not aware of an appropriate extension
of the Ledoux-Talagrand contraction principle. Note that
Lipschitz continuity w.r.t. the Euclidean norm ‖ · ‖2 does
not pose a significant challenge since Slepian’s lemma can
be applied to get rid of the loss. Several authors have al-
ready exploited Slepian’s lemma in this context (Bartlett &
Mendelson, 2003; Chapelle & Wu, 2010). We take a route
involving covering numbers and define the data-dependent
(pseudo-)metric:

dZ
(1:n)

∞ (w,w′) :=
n

max
i=1

∣∣∣φ(X(i)w, y(i))− φ(X(i)w′, y(i))
∣∣∣

Let N∞(ε, φ ◦ F , Z(1:n)) be the covering number at scale
ε of the composite class φ ◦F = φ ◦F1 or φ ◦F2 w.r.t. the
above metric. Also define

N∞(ε, φ ◦ F , n) := max
Z(1:n)

N∞(ε, φ ◦ F , Z(1:n)).

With these definitions in place, we can state our first result
on covering numbers.
Proposition 7. Let the loss φ be Lipschitz w.r.t. ‖ · ‖∞
with constant Gφ. Then following covering number bound
holds:

log2N∞(ε, φ ◦ F2, n) ≤

⌈
G2
φW

2
2 R

2
X

ε2

⌉
log2(2mn+ 1).

Proof. Note that

n
max
i=1

∣∣∣φ(X(i)w, y(i))− φ(X(i)w′, y(i))
∣∣∣

≤ Gφ ·
n

max
i=1

m
max
j=1

∣∣∣〈X(i)
j , w

〉
−
〈
X

(i)
j , w′

〉∣∣∣ .
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This immediately implies that if we have a cover of the
class G2 (Sec.2) at scale ε/Gφ w.r.t. the metric

n
max
i=1

m
max
j=1

∣∣∣〈X(i)
j , w

〉
−
〈
X

(i)
j , w′

〉∣∣∣
then it is also a cover of φ◦F2 w.r.t. dZ

(1:n)

∞ , at scale ε. Now
comes a simple, but crucial observation: from the point of
view of the scalar valued function class G2, the vectors
(X

(i)
j )i=1:n

j=1:m constitute a data set of size mn. Therefore,

N∞(ε, φ ◦ F2, n) ≤ N∞(ε/Gφ,G2,mn). (4)

Now we appeal to the following bound due to Zhang (2002,
Corollary 3) (and plug the result into (4)):

log2N∞(ε/Gφ,G2,mn) ≤

⌈
G2
φW

2
2 R

2
X

ε2

⌉
log2(2mn+1)

Covering numberN2(ε, φ◦F , Z(1:n)) uses pseudo-metric:

dZ
(1:n)

2 (w,w′) :=

(
n∑
i=1

1

n

(
φ(X(i)w, y(i))− φ(X(i)w′, y(i))

)2
)1/2

It is well known that a control on N2(ε, φ ◦ F , Z(1:n))
provides control on the empirical Rademacher complexity
and that N2 covering numbers are smaller than N∞ ones.
For us, it will be convenient to use a more refined version2

due to Mendelson (2002). Let H be a class of functions,
withH : Z 7→ R, uniformly bounded byB. Then, we have
following bound on empirical Rademacher complexity

R̂n (H)

≤ inf
α>0

4α+ 10

∫ suph∈H

√
Ê[h2]

α

√
log2N2(ε,H, Z(1:n))

n
dε


(5)

≤ inf
α>0

(
4α+ 10

∫ B

α

√
log2N2(ε,H, Z(1:n))

n
dε

)
. (6)

Here R̂n (H) is the empirical Rademacher complexity of
the classH defined as

R̂n (H) := Eσ1:n

[
sup
h∈H

1

n

n∑
i=1

σih(Zi)

]
,

where σ1:n = (σ1, . . . , σn) are iid Rademacher (symmetric
Bernoulli) random variables.

2We use a further refinement due to Srebro and Sridharan
available at http://ttic.uchicago.edu/˜karthik/
dudley.pdf

Corollary 8. Let φ be Lipschitz w.r.t. ‖ · ‖∞ and uni-
formly bounded3 by B for w ∈ F2. Then the empirical
Rademacher complexities of the class φ ◦F2 is bounded as

R̂n (φ ◦ F2) ≤ 10GφW2RX

√
log2(3mn)

n

× log 6B
√
n

5GφW2RX
√

log2(3mn)
.

Proof. This follows by simply plugging in estimates from
Proposition 7 into (6) and choosing α optimally.

Control on the Rademacher complexity immediately leads
to uniform convergence bounds and generalization error
bounds for ERM. The informal Õ notation hides factors
logarithmic in m,n,B,Gφ, RX ,W1. Note that all hidden
factors are small and computable from the results above.

Theorem 9. Suppose φ is Lipschitz w.r.t. ‖ · ‖∞ with con-
stant Gφ and is uniformly bounded by B as w varies over
F2. With probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w)

+ Õ

(
GφW2RX

√
1

n
+B

√
log(1/δ)

n

)

and therefore with probability at least 1− 2δ,

Lφ(ŵ) ≤ Lφ(w?)+Õ

(
GφW2RX

√
1

n
+B

√
log(1/δ)

n

)
.

where ŵ is an empirical risk minimizer over F2.

Proof. Follows from standard bounds using Rademacher
complexity. See, for example, Bartlett & Mendelson
(2003).

As we said before, ignoring logarithmic factors, the bound
for F2 is an improvement over the bound of Chapelle &
Wu (2010).

8. Extensions
We extend the generalization bounds above to two settings:
a) high dimensional features and b) smooth losses.

8.1. High-dimensional features

In learning to rank situations involving high dimensional
features, it may not be appropriate to use the class F2 of
`2 bounded predictors. Instead, we would like to consider
the class F1 of `1 bounded predictors. In this case, it is

3A uniform bound on the loss easily follows under the
(very reasonable) assumption that ∀y,∃sy s.t. φ(sy, y) = 0.
Then φ(Xw, y) ≤ Gφ‖Xw − sy‖∞ ≤ Gφ(W2RX +
maxy∈Y ‖sy‖∞) ≤ Gφ(2W2RX).

http://ttic.uchicago.edu/~karthik/dudley.pdf
http://ttic.uchicago.edu/~karthik/dudley.pdf
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natural to measure size of the input matrix X in terms of
a bound R̄X on the maximum `∞ norm of each of its row.
The following analogue of Proposition 7 can be shown.

Proposition 10. Let the loss φ be Lipschitz w.r.t. ‖·‖∞ with
constant Gφ. Then the following covering number bound
holds:

log2N∞(ε, φ ◦ F1, n) ≤

⌈
288G2

φW
2
1 R̄

2
X (2 + log d)

ε2

⌉

× log2

(
2

⌈
8GφW1R̄X

ε

⌉
mn+ 1

)
.

Using the above result to control the Rademacher complex-
ity of φ ◦ F1 gives the following bound.

Corollary 11. Let φ be Lipschitz w.r.t. ‖·‖∞ and uniformly
bounded byB forw ∈ F1. Then the empirical Rademacher
complexities of the class φ ◦ F1 is bounded as

R̂n (φ ◦ F1) ≤ 120
√

2GφW1R̄X

√
log(d) log2(24mnGφW1R̄X)

n

× log2 B+24mnGφW1R̄X

40
√

2GφW1R̄X
√

log(d) log2(24mnGφW1R̄X )
.

As in the previous section, control of Rademacher com-
plexity immediately yields uniform convergence and ERM
generalization error bounds.

Theorem 12. Suppose φ is Lipschitz w.r.t. ‖ · ‖∞ with
constant Gφ and is uniformly bounded by B as w varies
over F1. With probability at least 1− δ,

∀w ∈ F1, Lφ(w) ≤ L̂φ(w)

+ Õ

(
GφW1R̄X

√
log d

n
+B

√
log(1/δ)

n

)

and therefore with probability at least 1− 2δ,

Lφ(ŵ) ≤ Lφ(w?)+Õ

(
GφW1R̄X

√
log d

n
+B

√
log(1/δ)

n

)

where ŵ is an empirical risk minimizer over F1.

As can be easily seen from Theorem. 12, the generalization
bound is almost independent of the dimension of the docu-
ment feature vectors. We are not aware of existence of such
a result in learning to rank literature.

8.2. Smooth losses

We will again use online regret bounds to explain why we
should expect “optimistic” rates for smooth losses before
giving more general results for smooth but possibly non-
convex losses.

8.3. Online regret bounds under smoothness

Let us go back to OGD guarantee, this time presented in a
slightly more refined version. If we run OGD with learning
rate η then, for all ‖w‖2 ≤W2:

n∑
i=1

fi(wi)−
n∑
i=1

fi(w) ≤ W 2
2

2η
+ η

n∑
i=1

‖gi‖22

where gi = ∇wifi(wi) (if fi is not differentiable at wi
then we can set gi to be an arbitrary subgradient of fi at
wi). Now assume that all fi’s are non-negative functions
and are smooth w.r.t. ‖ · ‖2 with constant H . Lemma 3.1 of
Srebro et al. (2010) tells us that any non-negative, smooth
function f(w) enjoy an important self-bounding property
for the gradient:

‖∇wfi(w)‖2 ≤
√

4Hfi(w)

which bounds the magnitude of the gradient of f at a point
in terms of the value of the function itself at that point. This
means that ‖gi‖22 ≤ 4Hfi(wi) which, when plugged into
the OGD guarantee, gives:

n∑
i=1

fi(wi)−
n∑
i=1

fi(w) ≤ W 2
2

2η
+ 4ηH

n∑
i=1

fi(wi)

Again, setting fi(w) = φ(X(i)w, y(i)), 1 ≤ t ≤ n, and us-
ing the online to batch conversion technique, we can arrive
at the bound: for all ‖w‖2 ≤W2:

E [Lφ(ŵ)] ≤ Lφ(w)

(1− 4ηH)
+

W 2
2

2η(1− 4ηH)n

At this stage, we can fix w = w?, the optimal `2-norm
bounded predictor and get optimal η as:

η =
W2

4HW2 + 2
√

4H2W 2
2 + 2HLφ(w?)n

. (7)

After plugging this value of η in the bound above and some
algebra (see Section H), we get the upper bound

E [Lφ(ŵ)] ≤ Lφ(w?) + 2

√
2HW 2

2Lφ(w?)

n
+

8HW 2
2

n
.

(8)
Such a rate interpolates between a 1/

√
n rate in the “pes-

simistic” case (Lφ(w?) > 0) and the 1/n rate in the “op-
timistic” case (Lφ(w?) = 0) (this terminology is due to
Panchenko (2002)).
Now, assuming φ to be twice differentiable, we need H
such that

H ≥ ‖∇2
wφ(X(i)w, y(i))‖2→2 = ‖X>∇2

sφ(X(i)w, y(i))X‖2→2

where we used the chain rule to express ∇2
w in terms of

∇2
s. Note that, for OGD, we need smoothness in w w.r.t.
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‖ · ‖2 which is why the matrix norm above is the operator
norm corresponding to the pair ‖·‖2, ‖·‖2. In fact, when we
say “operator norm” without mentioning the pair of norms
involved, it is this norm that is usually meant. It is well
known that this norm is equal to the largest singular value
of the matrix. But, just as before, we can bound this in
terms of the smoothness constant of φ w.r.t. ‖ · ‖∞ (see
Section I in the appendix):

‖(X(i))>∇2
sφ(X(i)w, y(i))X(i)‖2→2

≤ R2
X‖∇2

sφ(X(i)w, y(i))‖∞→1.

where we used Lemma 4 once again. This result using on-
line regret bounds is great for building intuition but suffers
from the two defects we mentioned at the end of Section 5.
In the smoothness case, it additionally suffers from a more
serious defect: the correct choice of the learning rate η re-
quires knowledge of Lφ(w?) which is seldom available.

8.4. Generalization error bounds under smoothness

Once again, to prove a general result for possibly non-
convex smooth losses, we will adopt an approach based on
covering numbers. To begin, we will need a useful lemma
from Srebro et al. (2010, Lemma A.1 in the Supplementary
Material). Note that, for functions over real valued predic-
tions, we do not need to talk about the norm when dealing
with smoothness since essentially the only norm available
is the absolute value.

Lemma 13. For any h-smooth non-negative function f :
R→ R+ and any t, r ∈ R we have

(f(t)− f(r))2 ≤ 6h(f(t) + f(r))(t− r)2.

We first provide an extension of this lemma to the vector
case.

Lemma 14. If φ : Rm → R+ is a non-negative function
with smoothness constant Hφ w.r.t. a norm ||| · ||| then for
any s1, s2 ∈ Rm we have

(φ(s1)− φ(s2))2 ≤ 6Hφ · (φ(s1) + φ(s2)) · |||s1 − s2|||2.

Using the basic idea behind local Rademacher complexity
analysis, we define the following loss class:

Fφ,2(r) := {(X, y) 7→ φ(Xw, y) : ‖w‖2 ≤W2, L̂φ(w) ≤ r}.

Note that this is a random subclass of functions since
L̂φ(w) is a random variable.
Proposition 15. Let φ be smooth w.r.t. ‖·‖∞ with constant
Hφ. The covering numbers of Fφ,2(r) in the dZ

(1:n)

2 metric
defined above are bounded as follows:

log2N2(ε,Fφ,2(r), Z(1:n)) ≤
⌈

12HφW
2
2 R

2
X r

ε2

⌉
log2(2mn+1).

Control of covering numbers easily gives a control on the
Rademacher complexity of the random subclass Fφ,2(r).

Corollary 16. Let φ be smooth w.r.t. ‖ · ‖∞ with constant
Hφ and uniformly bounded by B for w ∈ F2. Then the
empirical Rademacher complexity of the class Fφ,2(r) is
bounded as

R̂n (Fφ,2(r)) ≤ 4
√
rC log

3
√
B

C

where C = 5
√

3W2RX

√
Hφ log2(3mn)

n .

With the above corollary in place we can now prove our
second key result.

Theorem 17. Suppose φ is smooth w.r.t. ‖ · ‖∞ with con-
stant Hφ and is uniformly bounded by B over F2. With
probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + Õ

(√
Lφ(w)D0

n
+
D0

n

)

where D0 = B log(1/δ) + W 2
2R

2
XHφ. Moreover, with

probability at least 1− 2δ,

Lφ(ŵ) ≤ Lφ(w?) + Õ

(√
Lφ(w?)D0

n
+
D0

n

)

where ŵ, w? are minimizers of L̂φ(w) and Lφ(w) respec-
tively (over w ∈ F2).

9. Conclusion
We showed that it is not necessary for generalization error
bounds for query-level learning to rank algorithms to dete-
riorate with increasing length of document lists associated
with queries. The key idea behind our improved bounds
was defining Lipschitz constants w.r.t. `∞ norm instead of
the “standard” `2 norm. As a result, we were able to derive
much tighter guarantees for popular loss functions such as
ListNet and Smoothed DCG@1 than previously available.

Our generalization analysis of learning to rank algorithms
paves the way for further interesting work. One possibil-
ity is to use these bounds to design active learning algo-
rithms for learning to rank with formal label complexity
guarantees. Another interesting possibility is to consider
other problems, such as multi-label learning, where func-
tions with vector-valued outputs are learned by optimizing
a joint function of those outputs.
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A. Proof of Proposition 1
Proof. Let ej’s denote standard basis vectors. We have

∇sφLN(s, y) = −
m∑
j=1

Pj(y)ej +

m∑
j=1

exp(sj)∑m
j′=1 exp(sj′)

ej

Therefore,

‖∇sφLN(s, y)‖1 ≤
m∑
j=1

Pj(y)‖ej‖1 +

m∑
j=1

exp(sj)∑m
j′=1 exp(sj′)

‖ej‖1

= 2.

We also have

[∇2
sφLN(s, y)]j,k =

−
exp(2sj)

(
∑m
j′=1

exp(sj′ ))
2 +

exp(sj)∑m
j′=1

exp(sj′ )
if j = k

− exp(sj+sk)
(
∑m
j′=1

exp(sj′ ))
2 if j 6= k .

Moreover,

‖∇2
sφLN(s, y)‖∞→1 ≤

m∑
j=1

m∑
k=1

|[∇2
sφLN(s, y)]j,k|

≤
m∑
j=1

m∑
k=1

exp(sj + sk)

(
∑m
j′=1 exp(sj′))2

+

m∑
j=1

exp(sj)∑m
j′=1 exp(sj′)

=
(
∑m
j=1 exp(sj))

2

(
∑m
j′=1 exp(sj′))2

+

∑m
j=1 exp(sj)∑m
j′=1 exp(sj′)

= 2

B. Proof of Proposition 2
Proof. Let 1(condition) denote an indicator variable. We have

[∇sφSD(s, y)]j = D(1)

(
m∑
i=1

G(ri)

[
1

σ

exp(si/σ)∑
j′ exp(sj′/σ)

1(i=j) −
1

σ

exp((si + sj)/σ)

(
∑
j′ exp(sj′/σ))2

])
Therefore,

‖∇sφSD(s, y)‖1
D(1)G(Ymax)

≤
m∑
j=1

(
m∑
i=1

[
1

σ

exp(si/σ)∑
j′ exp(sj′/σ)

1(i=j) +
1

σ

exp((si + sj)/σ)

(
∑
j′ exp(sj′/σ))2

])

=
1

σ

( ∑
j exp(sj/σ)∑
j′ exp(sj′/σ)

+
(
∑
j exp(sj/σ))2

(
∑
j′ exp(sj′/σ))2

)

=
2

σ
.

C. RankSVM
The RankSVM surrogate is defined as:

φRS(s, y) =

m∑
i=1

m∑
j=1

max(0, 1(yi>yj)(1 + sj − si))
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It is easy to see that ∇sφRS(s, y) =
∑m
i=1

∑m
j=1 max(0, 1(yi>yj)(1 + sj − si))(ej − ei). Thus, the `1 norm of gradient

is O(m2) .

D. Proof of Theorem 3
Proof. It is straightforward to check that F ′lin is contained in both Ffull as well as Fperminv. So, we just need to prove that
any f that is in both Ffull and Fperminv has to be in F ′lin as well.

Let Pπ denote the m ×m permutation matrix corresponding to a permutation π. Consider the full linear class Ffull. In
matrix notation, the permutation invariance property means that, for any π,X , we have Pπ[〈X,W1〉 , . . . , 〈X,Wm〉〉]> =
[〈PπX,W1〉 , . . . , 〈PπX,Wm〉]>.

Let ρ1 = {Pπ : π(1) = 1}, where π(i) denotes the index of the element in the ith position according to permutation π.
Fix any P ∈ ρ1. Then, for any X , 〈X,W1〉 = 〈PX,W1〉. This implies that, for all X , Tr(W1

>X) = Tr(W1
>PX).

Using the fact that Tr(A>X) = Tr(B>X),∀X implies A = B, we have that W1
> = W1

>P . Because P> = P−1, this
means PW1 = W1. This shows that all rows of W1, other than 1st row, are the same but perhaps different from 1st row.
By considering ρi = {Pπ : π(i) = i} for i > 1, the same reasoning shows that, for each i, all rows of Wi, other than ith
row, are the same but possibly different from ith row.

Let ρ1↔2 = {Pπ : π(1) = 2, π(2) = 1}. Fix any P ∈ ρ1↔2. Then, for any X , 〈X,W2〉 = 〈PX,W1〉 and 〈X,W1〉 =
〈PX,W2〉. Thus, we have W>2 = W>1 P as well as W>1 = W>2 P which means PW2 = W1, PW1 = W2. This shows
that row 1 of W1 and row 2 of W2 are the same. Moreover, row 2 of W1 and row 1 of W2 are the same. Thus, for some
u, u′ ∈ Rd, W1 is of the form [u|u′|u′| . . . |u′]> and W2 is of the form [u′|u|u′| . . . |u′]>. Repeating this argument by
considering ρ1↔i for i > 2 shows that Wi is of the same form (u in row i and u′ elsewhere).

Therefore, we have proved that any linear map that is permutation invariant has to be of the form:

X 7→

u>Xi + (u′)>
∑
j 6=i

Xj

m

i=1

.

We can reparameterize above using w = u− u′ and v = u′ which proves the result.

E. Proof of Lemma 4
Proof. The first equality is true because

‖X>‖1→p = sup
v 6=0

‖X>v‖p
‖v‖1

= sup
v 6=0

sup
u6=0

〈
X>v, u

〉
‖v‖1‖u‖q

= sup
u 6=0

sup
v 6=0

〈v,Xu〉
‖v‖1‖u‖q

= sup
u6=0

‖Xu‖∞
‖u‖q

= ‖X‖q→∞.

The second is true because

‖X‖q→∞ = sup
u 6=0

‖Xu‖∞
‖u‖q

= sup
u6=0

m
max
j=1

| 〈Xj , u〉 |
‖u‖q

=
m

max
j=1

sup
u 6=0

| 〈Xj , u〉 |
‖u‖q

=
m

max
j=1
‖Xj‖p.

F. Proof of Theorem 6
Our theorem is developed from the “expectation version” of Theorem 6 of Shalev-Shwartz et al. (2009) that was originally
given in probabilistic form. The expected version is as follows.

Let Z be a space endowed with a probability distribution generating iid draws Z1, . . . , Zn. LetW ⊆ Rd and f :W×Z →
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R be λ-strongly convex4 and G-Lipschitz (w.r.t. ‖ · ‖2) in w for every z. We define F (w) = E [f(w,Z)] and let

w? = argmin
w∈W

F (w),

ŵ = argmin
w∈W

1

n

n∑
i=1

f(w,Zi).

Then E [F (ŵ)− F (w?)] ≤ 4G2

λn , where the expectation is taken over the sample. The above inequality can be proved by
carefully going through the proof of Theorem 6 proved by Shalev-Shwartz et al. (2009).

We now derive the “expectation version” of Theorem 7 of Shalev-Shwartz et al. (2009). Define the regularized empirical
risk minimizer as follows:

ŵλ = argmin
w∈W

λ

2
‖w‖22 +

1

n

n∑
i=1

f(w,Zi). (9)

The following result gives optimality guarantees for the regularized empirical risk minimizer.
Theorem 18. LetW = {w : ‖w‖2 ≤ W2} and let f(w, z) be convex and G-Lipschitz (w.r.t. ‖ · ‖2) in w for every z. Let

Z1, ..., Zn be iid samples and let λ =

√
4G2

n
W2

2
2 +

4W2
2

n

. Then for ŵλ and w? as defined above, we have

E [F (ŵλ)− F (w?)] ≤ 2GW2

(
8

n
+

√
2

n

)
. (10)

Proof. Let rλ(w, z) = λ
2 ‖w‖

2
2 + f(w, z). Then rλ is λ-strongly convex with Lipschitz constant λW2 + G in ‖ · ‖2.

Applying “expectation version” of Theorem 6 of Shalev-Shwartz et al. (2009) to rλ, we get

E
[
λ

2
‖ŵλ‖22 + F (ŵλ)

]
≤ min
w∈W

{
λ

2
‖w‖22 + F (w)

}
+

4(λW2 +G)2

λn
≤ λ

2
‖w?‖22 + F (w∗) +

4(λW2 +G)2

λn
.

Thus, we get

E [F (ŵλ)− F (w?)] ≤ λW 2
2

2
+

4(λW2 +G)2

λn
.

Minimizing the upper bound w.r.t. λ, we get λ =
√

4G2

n

√
1

W2
2

2 +
4W2

2
n

. Plugging this choice back in the equation above and

using the fact that
√
a+ b ≤

√
a+
√
b finishes the proof of Theorem 18.

We now have all ingredients to prove Theorem 6.

Proof of Theorem 6. Let Z = X × Y and f(w, z) = φ(Xw, y) and apply Theorem 18. Finally note that if φ is Gφ-
Lipschitz w.r.t. ‖ · ‖∞ and every row of X ∈ Rm×d has Euclidean norm bounded by RX then f(·, z) is GφRX -Lipschitz
w.r.t. ‖ · ‖2 in w.

G. Proof of Theorem 12
Proof. Following exactly the same line of reasoning (reducing a sample of size n, where each prediction is Rm-valued, to
an sample of size mn, where each prediction is real valued) as in the beginning of proof of Proposition 7, we have

N∞(ε, φ ◦ F1, n) ≤ N∞(ε/Gφ,G1,mn). (11)

Plugging in the following bound due to Zhang (2002, Corollary 5):

log2N∞(ε/Gφ,G1,mn) ≤

⌈
288G2

φW
2
1 R̄

2
X (2 + ln d)

ε2

⌉
× log2

(
2d8GφW1R̄X/εemn+ 1

)
into (11) respectively proves the result.

4Recall that a function is called λ-strongly convex (w.r.t. ‖ · ‖2) iff f − λ
2
‖ · ‖22 is convex.
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H. Calculations involved in deriving Equation (8)
Plugging in the value of η from (7) into the expression

Lφ(w?)

(1− 4ηH)
+

W 2
2

2η(1− 4ηH)n

yields (using the shorthand L? for Lφ(w?))

L? +
2HW2L

?√
4H2W 2

2 + 2HL?n
+
W2

n

[
4H2W 2

2√
4H2W 2

2 + 2HL?n
+
√

4H2W 2
2 + 2HL?n+ 4HW2

]

Denoting HW 2
2 /n by x, this simplifies to

L? +
2
√
xL? + 4x

√
x√

4x+ 2L?
+
√
x
√

4x+ 2L? + 4x.

Using the arithmetic mean-geometric mean inequality to upper bound the middle two terms gives

L? + 2
√

2xL? + 4x2 + 4x.

Finally, using
√
a+ b ≤

√
a+
√
b, we get our final upper bound

L? + 2
√

2xL? + 8x.

I. Calculation of smoothness constant

‖(X(i))>∇2
sφ(X(i)w, y(i))X(i)‖2→2 = sup

v 6=0

‖(X(i))>∇2
sφ(X(i)w, y(i))X(i)v‖2
‖v‖2

≤ sup
v 6=0

‖(X(i))>‖1→2‖∇2
sφ(X(i)w, y(i))X(i)v‖1
‖v‖2

≤ sup
v 6=0

‖(X(i))>‖1→2 · ‖∇2
sφ(X(i)w, y(i))‖∞→1 · ‖X(i)v‖∞
‖v‖2

≤ sup
v 6=0

‖(X(i))>‖1→2 · ‖∇2
sφ(X(i)w, y(i))‖∞→1 · ‖X(i)‖2→∞ · ‖v‖2

‖v‖2

≤
(

m
max
j=1
‖X(i)

j ‖
)2

· ‖∇2
sφ(X(i)w, y(i))‖∞→1

≤ R2
X‖∇2

sφ(X(i)w, y(i))‖∞→1.

J. Proof of Lemma 14
Proof. Consider the function

f(t) = φ((1− t)s1 + ts2).

It is clearly non-negative. Moreover

|f ′(t1)− f ′(t2)| = | 〈∇sφ(s1 + t1(s2 − s1))−∇sφ(s1 + t2(s2 − s1)), s2 − s1〉 |
≤ |||∇sφ(s1 + t1(s2 − s1))−∇sφ(s1 + t2(s2 − s1))|||? · |||s2 − s1|||
≤ Hφ |t1 − t2| |||s2 − s1|||2

and therefore it is smooth with constant h = Hφ|||s2 − s1|||2. Appealing to Lemma 13 now gives

(f(1)− f(0))2 ≤ 6Hφ|||s2 − s1|||2(f(1) + f(0))(1− 0)2

which proves the lemma since f(0) = φ(s1) and f(1) = φ(s2).
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K. Proof of Proposition 15
Proof. Let w,w′ ∈ Fφ,2(r). Using Lemma 14

n∑
i=1

1

n

(
φ(X(i)w, y(i))− φ(X(i)w′, y(i))

)2
≤ 6Hφ

n∑
i=1

1

n

(
φ(X(i)w, y(i)) + φ(X(i)w′, y(i))

)
· ‖X(i)w −X(i)w′‖2∞
≤ 6Hφ ·

n
max
i=1
‖X(i)w −X(i)w′‖2∞

·
n∑
i=1

1

n

(
φ(X(i)w, y(i)) + φ(X(i)w′, y(i))

)
= 6Hφ ·

n
max
i=1
‖X(i)w −X(i)w′‖2∞ ·

(
L̂φ(w) + L̂φ(w′)

)
≤ 12Hφr ·

n
max
i=1
‖X(i)w −X(i)w′‖2∞.

where the last inequality follows because L̂φ(w) + L̂φ(w′) ≤ 2r.

This immediately implies that if we have a cover of the class G2 at scale ε/
√

12Hφr w.r.t. the metric

n
max
i=1

m
max
j=1

∣∣∣〈X(i)
j , w

〉
−
〈
X

(i)
j , w′

〉∣∣∣
then it is also a cover of Fφ,2(r) w.r.t. dZ

(1:n)

2 . Therefore, we have

N2(ε,Fφ,2(r), Z(1:n)) ≤ N∞(ε/
√

12Hφr,G2,mn). (12)

Appealing once again to a result by Zhang (2002, Corollary 3), we get

log2N∞(ε/
√

12Hφr,G2,mn) ≤
⌈

12HφW
2
2 R

2
X r

ε2

⌉
× log2(2mn+ 1)

which finishes the proof.

L. Proof of Corollary 16
Proof. We plug in Proposition 15’s estimate into (5):

R̂n (Fφ,2(r)) ≤ inf
α>0

4α+ 10

∫ √Br
α

√√√√⌈ 12HφW 2
2 R

2
X r

ε2

⌉
log2(2mn+ 1)

n
dε


≤ inf
α>0

(
4α+ 20

√
3W2RX

√
rHφ log2(3mn)

n

∫ √Br
α

1

ε
dε

)
.

Now choosing α = C
√
r where C = 5

√
3W2RX

√
Hφ log2(3mn)

n gives us the upper bound

R̂n (Fφ,2(r)) ≤ 4
√
rC

(
1 + log

√
B

C

)
≤ 4
√
rC log

3
√
B

C
.
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M. Proof of Theorem 17
Proof. We appeal to Theorem 6.1 of Bousquet (2002) that assumes there exists an upper bound

R̂n (F2,φ(r)) ≤ ψn(r)

where ψn : [0,∞) → R+ is a non-negative, non-decreasing, non-zero function such that ψn(r)/
√
r is non-increasing.

The upper bound in Corollary 16 above satisfies these conditions and therefore we set ψn(r) = 4
√
rC log 3

√
B
C with C as

defined in Corollary 16. From Bousquet’s result, we know that, with probability at least 1− δ,

∀w ∈ F2, Lφ(w) ≤ L̂φ(w) + 45r?n +
√

8r?nLφ(w)

+
√

4r0Lφ(w) + 20r0

where r0 = B(log(1/δ) + log log n)/n and r?n is the largest solution to the equation r = ψn(r). In our case, r?n =(
4C log 3

√
B
C

)2
. This proves the first inequality.

Now, using the above inequality with w = ŵ, the empirical risk minimizer and noting that L̂φ(ŵ) ≤ L̂φ(w?), we get

Lφ(ŵ) ≤ L̂φ(w?) + 45r?n +
√

8r?nLφ(ŵ)

+
√

4r0Lφ(ŵ) + 20r0

The second inequality now follows after some elementary calculations detailed below.

M.1. Details of some calculations in the proof of Theorem 17

Using Bernstein’s inequality, we have, with probability at least 1− δ,

L̂φ(w?) ≤ Lφ(w?) +

√
4Var[φ(Xw?, y)] log(1/δ)

n
+

4B log(1/δ)

n

≤ Lφ(w?) +

√
4BLφ(w?) log(1/δ)

n
+

4B log(1/δ)

n

≤ Lφ(w?) +
√

4r0Lφ(w?) + 4r0.

Set D0 = 45r?n + 20r0. Putting the two bounds together and using some simple upper bounds, we have, with probability
at least 1− 2δ,

Lφ(ŵ) ≤
√
D0L̂φ(w?) +D0,

L̂φ(w?) ≤
√
D0Lφ(w?) +D0.

which implies that

Lφ(ŵ) ≤
√
D0

√√
D0Lφ(w?) +D0 +D0.

Using
√
ab ≤ (a+ b)/2 to simplify the first term on the right gives us

Lφ(ŵ) ≤ D0

2
+

√
D0Lφ(w?) +D0

2
+D0 =

√
D0Lφ(w?)

2
+ 2D0 .


