
Author and Co-author Contact Information

Ambuj Tewari
439 West Hall
1085 South University
Ann Arbor, MI 48109-1107
USA
tewaria@umich.edu

734-763-3519

Peter L. Bartlett
387 Soda Hall #1776
Berkeley, CA 94720-1776
USA
bartlett@cs.berkeley.edu

510-642-7780

Abstract

We present an overview of learning theory including its statistical and com-
putational aspects. We start by giving a probabilistic formulation of learning
problems including classification and regression where the learner knows nothing
about the probability distribution generating the data. We then consider the
principle of empirical risk minimization (ERM) that chooses a function from a
given class based on its performance on the observed data. Learning guarantees
for ERM are shown to be intimately connected with the uniform law of large
numbers. A uniform law of large numbers ensures that empirical means con-
verge to true expectations uniformly over a function class. Tools such as Rade-
macher complexity, covering numbers, and combinatorial dimensions known as
the Vapnik-Chervonenkis (VC) and fat shattering dimensions are introduced.
After considering the case of learning using a fixed function class, we turn to the
problem of model selection: how to choose a function class from a family based
on available data? We also survey alternative techniques for studying general-
ization ability of learning algorithms including sample compression, algorithmic
stability, and the PAC-Bayesian theorem. After dealing with statistical issues,
we study computational models of learning such the basic and agnostic PAC
learning models, the statistical query, and the mistake bound model. Finally,
we point out extensions of the basic theory beyond the probabilistic setting
of a learner passively learning a single task from independent and identically
distributed samples.

Glossary

AdaBoost Acronym for Adaptive Boosting, a popular boosting algorithm.

1

Bayes classifier In classification problems with 0-1 loss, a classifier with the
least risk.

boosting The process of converting a weak learning algorithm (that is, one
that outputs classifiers whose performance is just a little bit better than
random guessing) into a strong one.

concentration inequality A probabilistic inequality stating that some ran-
dom variable will not deviate too far from its mean or median.

excess risk The difference between the risk of a given function and the mini-
mum possible risk over a function class.

empirical risk Same as risk except that the expectation under the unknown
data distribution is replaced with an empirical average over the samples
observed.

empirical risk minimization A learning rule that minimizes the empirical
risk to choose a prediction function.

ERM Empirical Risk Minimization

fat shattering dimension A scale sensitive generalization of the VC dimen-
sion.

generalization error bound An upper bound stating that the risk of a learn-
ing rule is not going to differ too much from its empirical risk.

kernel A symmetric positive semidefinite function.

Littlestone dimension A combinatorial quantity associated with a class of
binary valued functions. Plays a fundamental role in determining worst
case bounds in the online mistake bound model.

loss function A function used to measure the quality of a prediction given the
true label.

mistake bound model A model of learning that, unlike the PAC model, does
not assume anything about the way data is generated.

model selection The task of selecting an appropriate statistical model from a
family based on available data.

PAC model A computational model for analyzing the resources (time, mem-
ory, samples) required for performing learning tasks. Originally defined
for the task of binary classification using the 0-1 loss. The acronym PAC
stands for “Probably Approximately Correct”.

Rademacher complexity A quantity associated with a function class that
measures its capacity to overfit by measuring how well the function class
can fit randomly generated ±1 signs.

2

regression function In regression problems with the squares loss, the predic-
tion function with the least risk.

reproducing kernel Hilbert space A Hilbert space of functions for which
there exists a kernel with the reproducing property: point evaluations of
functions can be written as linear functionals.

risk The expected loss of a prediction function under the underlying unknown
distribution generating input, output pair.

sample complexity The number of samples requires to achieve a given level
of accuracy (usually with high probability).

sample compression An approach to obtaining generalization error bounds
for algorithms whose output can be reconstructed from a small number of
examples belonging to the original sample.

stability The property of a learning algorithm that ensures that its output
does not change much if the training data set is changed slightly.

supervised learning The task of learning a functional dependence between an
input space and an output or label space using given examples of input,
output pairs.

universal consistency The property of a learning rule to converge to the min-
imum possible risk as the number of samples grows to infinity.

Vapnik-Chervonenkis dimension A combinatorial quantity associated with
a binary valued function class that serves as a measure of the capacity of
the function class to overfit the data.

VC dimension Vapnik-Chervonenkis dimension

3

Contents

1 Introduction 5

2 Probabilistic Formulation of Learning Problems 6
2.1 Loss Function and Risk . 7
2.2 Universal Consistency . 8
2.3 Learnability with Respect to a Fixed Class 9
2.4 ERM and Uniform Convergence 11
2.5 Bibliographic Note . 12

3 Uniform Convergence of Empirical Means 13
3.1 Concentration Inequalities . 13
3.2 Rademacher Complexity . 14
3.3 Covering Numbers . 17
3.4 Binary Valued Functions: VC Dimension 18
3.5 Real Valued Functions: Fat Shattering Dimension 20

4 Model Selection 21
4.1 Structural Risk Minimization . 21
4.2 Model Selection via Penalization 22
4.3 Data Driven Penalties Using Rademacher Averages 24
4.4 Hold-out Estimates . 24

5 Alternatives to Uniform Convergence 25
5.1 Sample Compression . 25
5.2 Stability . 26
5.3 PAC-Bayesian Analysis . 28

6 Computational Aspects 29
6.1 The PAC Model . 29
6.2 Weak and Strong Learning . 30
6.3 Random Classification Noise and the SQ Model 31
6.4 The Agnostic PAC Model . 32
6.5 The Mistake Bound Model . 33

6.5.1 Halving and Weighted Majority 34
6.5.2 Perceptron and Winnow 37

7 Beyond the Basic Probabilistic Framework 42

8 Conclusions and Future Trends 43

4

1 Introduction

In a section on Learning Machines in one of his most famous papers (Turing,
1950), Turing wrote:

Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?
If this were then subjected to an appropriate course of education
one would obtain the adult brain. Presumably the child brain is
something like a notebook as one buys it from the stationer’s. Rather
little mechanism, and lots of blank sheets. (Mechanism and writing
are from our point of view almost synonymous.) Our hope is that
there is so little mechanism in the child brain that something like
it can be easily programmed. The amount of work in the education
we can assume, as a first approximation, to be much the same as for
the human child.

The year was 1950. Earlier, in 1943, McCulloch and Pitts (McCulloch and
Pitts, 1943) had already hit upon the idea that mind-like machines could be
built by studying how biological nerve cells behave. This directly lead to neural
networks. By the late 1950s, Samuels (1959) had programmed a machine to play
checkers and Rosenblatt (1959) had proposed one of earliest models of a learning
machine, the perceptron. The importance of the perceptron in the history of
learning theory cannot be overemphasized. Vapnik says that the appearance of
the perceptron was “when the mathematical analysis of learning processes truly
began”. Novikoff’s perceptron theorem (we will prove it in Section 6.5.2) was
also proved in 1962 (Novikoff, 1963).

Vapnik (2000) points out the interesting fact that the 1960s saw four ma-
jor developments that were to have lasting influence on learning theory. First,
Tikhonov and others developed regularization theory for the solution of ill posed
inverse problems. Regularization theory has had and continues to have tremen-
dous impact on learning theory. Second, Rosenblatt, Parzen, and Chentsov pi-
oneered nonparametric methods for density estimation. These beginnings were
crucial for a distribution free theory of non-parametric classification and regres-
sion to emerge later. Third, Vapnik and Chervonenkis proved the uniform law
of large numbers for indicators of sets. Fourth, Solomonoff, Kolmogorov, and
Chaitin all independently discovered algorithmic complexity: the idea that the
complexity of a string of 0’s and 1’s can be defined by the length of the shortest
program that can generate that string. This later led Rissanen to propose his
Minimum Description Length (MDL) principle.

In 1986, a major technique to learn weights in neural networks was discov-
ered: backpropagation (Rumelhart et al., 1986). Around the same time, Valiant
(1984) published his paper introducing a computational model of learning that
was to be called the PAC (probably approximately correct) model later. The
1990s saw the appearance of support vector machines (Cortes and Vapnik, 1995)
and AdaBoost (Freund and Schapire, 1995). This brings us to the brink of the
second millenium which is where we end our short history tour.

5

As we can see, learning theory has absorbed influences from a variety of
sources: cybernetics, neuroscience, nonparametric statistics, regularization the-
ory of inverse problems, and the theory of computation and algorithms. Ongoing
research is not only trying to overcome known limitations of classic models but
is also grappling with new issues such as dealing with privacy and web-scale
data.

Learning theory is a formal mathematical theory. Assumptions are made,
beautiful lemmas are proved, and deep theorems are discovered. But develop-
ments in learning theory also lead to practical algorithms. SVMs and AdaBoost
are prime examples of high impact learning algorithms evolving out of a prin-
cipled and well-founded approach to learning. We remain hopeful that learning
theory will help us discover even more exciting learning algorithms in the future.

Finally, a word about the mathematical background needed to read this
overview of learning theory. Previous exposure to mathematical reasoning and
proofs is a must. So is familiarity with probability theory. But measure theory is
not needed as we will avoid all measure-theoretic details. It will also be helpful,
but not essential, to be aware of the basics of computational complexity such
as the notion of polynomial time computation and NP-completeness. Similarly,
knowing a little bit of functional analysis will help.

2 Probabilistic Formulation of Learning Prob-
lems

A basic problem in learning theory is that of learning a functional dependence
f : X → Y from some input space X to some output or label space Y. Some
special choices for the output space deserve particular attention since they arise
often in applications. In multiclass classification, we have Y = {1, . . . ,K}
and the goal is to classify any input x ∈ X into one of K given classes. A
special case of this problem is when K = 2. Then, the problem is called binary
classification and it is mathematically convenient to think of the output space
as Y = {−1,+1} rather than Y = {0, 1}. In regression, the output space Y is
some subset of the set R of real numbers. Usually Y is assumed to be a bounded
interval, say [−1,+1].

We assume that there is an underlying distribution P over X × Y and that
the learner has access to n samples

(X1, Y1), . . . , (Xn, Yn)

where the (Xi, Yi) are independent and identically distributed (or iid) random
variables with the same distribution P . Note that P itself is assumed to be
unknown to the learner. A learning rule or learning algorithm f̂n is simply a
mapping

f̂n : (X × Y)n ×X → Y .

That is, a learning rule maps the n samples to a function from X to Y. When
the sample is clear from context, we will denote the function returned by a

6

learning rule itself by f̂n.

2.1 Loss Function and Risk

In order to measure the predictive performance of a function f : X → Y, we
use a loss function. A loss function ` : Y × Y → R+ is a non-negative function
that quantifies how bad the prediction f(x) is if the true label is y. We say that
`(f(x), y) is the loss incurred by f on the pair (x, y). In the classification case,
binary or otherwise, a natural loss function is the 0-1 loss:

`(y′, y) = 1 [y′ 6= y] .

The 0-1 loss function, as the name suggests, is 1 if a misclassification happens
and is 0 otherwise. For regression problems, some natural choices for the loss
function are the squared loss:

`(y′, y) = (y′ − y)2 ,

or the absolute loss:
`(y′, y) = |y′ − y| .

Given a loss function, we can define the risk of a function f : X → Y as its
expected loss under the true underlying distribution:

R(f) = E(X,Y)∼P [`(f(X), Y)] .

Note that the risk of any function f is not directly accessible to the learner who
only sees the samples. But the samples can be used to calculate the empirical
risk of f :

R̂(f) =
1

n

n∑
i=1

`(f(Xi), Yi) .

Minimizing the empirical risk over a fixed class F ⊆ YX of functions leads to a
very important learning rule, namely empirical risk minimization (ERM):

f̂n = argmin
f∈F

R̂(f) .

Under appropriate conditions on X ,Y and F , an empirical risk minimizer is
guaranteed to exist though it will not be unique in general. If we knew the
distribution P then the best function from F would be

f?F = argmin
f∈F

R(f) ,

as f?F minimizes the expected loss on a random (X,Y) pair drawn from P .
Without restricting ourselves to the class F , the best possible function to use is

f? = argmin
f

R(f) .

7

where the infimum is with respect to all1 functions.
For classification with 0-1 loss, f? is called the Bayes classifier and is given

simply by
f?(x) = argmax

y∈Y
P (Y = y|X = x) .

Note that f? depends on the underlying distribution P . If we knew P , we
could achieve minimum misclassification probability by always predicting, for a
given x, the label y with the highest conditional probability (ties can be broken
arbitrarily). The following result bounds the excess risk R(f) − R(f?) of any
function f in the binary classification case.

Theorem 1. For binary classification with 0-1 loss, we have

R(f)−R(f?) = E [1 [f(X) 6= f?(X)] |2η(X)− 1|]

where η(x) = P (Y = +1|X = x).

For the regression case with squared loss, f? is called the regression function
and is given simply by the conditional expectation of the label given x:

f?(x) = E [Y |X = x] .

In this case, the excess risk takes a particularly nice form.

Theorem 2. For regression with squared loss, we have

R(f)−R(f?) = E
[
|f(X)− f?(X)|2

]
.

2.2 Universal Consistency

A particularly nice property for a learning rule f̂n to have is that its (expected)
excess risk converges to zero as the sample size n goes to infinity. That is,

E
[
R(f̂n)

]
−R(f?)→ 0 .

Note R(f̂n) is a random variable since f̂n depends on a randomly drawn sample.

A rule f̂n is said to be universally consistent if the above convergence holds
irrespective of the true underlying distribution P . This notion of consistency is
also sometimes called weak universal consistency in order to distinguish it from
strong universal consistency that demands

R(f̂n)−R(f?)→ 0

with probability 1.
The existence of universally consistent learning rules for classification and

regression is a highly non-trivial fact which has been known since Stone’s work

1We should say “all measurable functions” here. We will, however, ignore measurability
issues in this overview article.

8

in the 1970s (Stone, 1977). Proving universal consistency typically requires
addressing the estimation error versus approximation error trade-off. For in-
stance, often the function f̂n is guaranteed to lie in a function class Fn that
does not depend on the sample. The classes Fn typically grow with n. Then
we can decompose the excess risk of f̂n as

R(f̂n)−R(f?) = R(f̂n)−R(f?Fn
)︸ ︷︷ ︸

estimation error

+ R(f?Fn
)−R(f?)︸ ︷︷ ︸

approximation error

.

This decomposition is useful as the estimation error is the only random part.
The approximation error depends on how rich the function class Fn is but does
not depend on the sample. The reason we have to trade these two errors off is
that the richer the function class Fn the smaller the approximation error will
be. However, that leads to a large estimation error. This trade-off is also known
as the bias-variance trade-off. The bias-variance terminology comes from the
regression with squared error case but tends to be used in the general loss setting
as well.

2.3 Learnability with Respect to a Fixed Class

Unlike universal consistency, which requires convergence to the minimum pos-
sible risk over all functions, learnability with respect to a fixed function class F
only demands that

E
[
R(f̂n)

]
−R(f?F)→ 0 .

We can additionally require quantitative bounds on the number of samples
needed to reach, with high probability, a given upper bound on excess risk
relative to f?F . The sample complexity of a learning rule f̂n is the minimum
number n0(ε, δ) such that for all n ≥ n0(ε, δ), we have

R(f̂n)−R(f?F) ≤ ε

with probability at least 1 − δ. We now see how we can arrive at sample com-
plexity bounds for ERM via uniform convergence of empirical means to true
expectations.

We mention some examples of functions classes that arise often in practice.

Linear Functions This is one of the simplest functions classes. In any finite
dimensional Euclidean space Rd, define the class of real valued functions

F = {x 7→ 〈w, x〉 : w ∈ W ⊆ Rd} ,

where 〈w, x〉 =
∑d
j=1 wjxj denotes the standard inner product. The weight

vector might be additionally constrained. For instance, we may require ‖w‖ ≤
W for some norm ‖ · ‖. The set W takes care of such constraints.

9

Linear Threshold Functions or Halfspaces This is class of binary valued
function obtained by thresholding linear functions at zero. This gives us the
class

F = {x 7→ sign(〈w, x〉) : w ∈ W ⊆ Rd} .

Reproducing Kernel Hilbert Spaces Linear functions can be quite re-
stricted in their approximation ability. However, we can get a significant im-
provement by first mapping the inputs x ∈ X into a feature space through a
feature mapping Φ : X → H where H is a very high dimensional Euclidean space
(or an infinite dimensional Hilbert space) and then considering linear functions
in the feature space:

F = {x 7→ 〈w,Φ(x)〉H : w ∈ H} ,

where the inner prodct now carries the subscript H to emphasize the space
where it operates. Many algorithms access the inputs only through pairwise
inner products

〈Φ(xi),Φ(xj)〉H .

In such cases, we do not care what the feature mapping is or how complicated
it is to evaluate, provided we can compute these inner products efficiently.

This idea of using only inner products leads us to reproducing kernel Hilbert
space. We say that a function K : X×X → R is symmetric positive semidefinite
(psd) if it satisfies the following two properties.

Symmetry For any x, x′ ∈ X , we have K(x, x′) = K(x′, x).

Positive Semidefiniteness For any (x1, . . . , xn) ∈ Xn, the symmetric matrix

K = (K(xi, xj))i,j ∈ Rn×n

is psd2. The matrix K is often called the Gram matrix.

Note that, given a feature mapping Φ, it is trivial to verify that

K(x, x′) = 〈Φ(x),Φ(x′)〉H

is a symmetric psd function. However, the much less trivial converse is also
true. Every symmetric psd function arises out of a feature mapping. This is a
consequence of the Moore-Aronszajn theorem. To state the theorem, we first
need a definition. A reproducing kernel Hilbert space or RKHS H is a Hilbert
space of functions f : X → R such that there exists a kernel K : X × X → R
satisfying the properties:

• For any x ∈ X , the function Kx = K(x, ·) is in H.

• For any x ∈ X , f ∈ H, the reproducing property holds: f(x) = 〈f,Kx〉H.

2Recall that a symmetric matrix K ∈ Rn×n is psd iff for all u ∈ Rn, 〈u,Ku〉 ≥ 0.

10

Theorem 3 (Moore-Aronszajn). Given a symmetric psd function K : X×X →
R, there is a unique RKHS H with reproducing kernel K.

This theorem gives us the feature mapping easily. Starting from a symmetric
psd function K, we use the Moore-Aronszajn theorem to get an RKHS H whose
reproducing kernel is K. Now, by the reproducing property, for any x, x′ ∈ X ,

K(x, x′) = Kx(x′) = 〈Kx,Kx′〉H

which means that Φ : X 7→ H given by Φ(x) = Kx is a feature mapping we
were looking for. Given this equivalence between symmetric psd functions and
RKHSes, we will use the word kernel for a symmetric psd function itself.

Convex Hulls This example is not about a function class but rather about a
means of obtaining a new function class from an old one. Say, we have class F
of binary valued functions f : X → {±1}. We can consider functions that take
a majority vote over a subset of functions in F . That is,

f ′(x) = sign

(
L∑
`=1

f`

)
, f` ∈ F

More generally, we can assign weights w` ≥ 0 to f` and consider a weighted
majority

f ′(x) = sign

(
L∑
`=1

w`f`

)
.

Constraining the weights to sum to no more than W gives us the scaled convex
hull

W · conv(F ∪ {0}) =

{
L∑
`=1

w`f` : L ∈ N, w` ≥ 0,

L∑
`

w` ≤W

}
.

The class above can, of course, be thresholded to produce binary valued func-
tions.

2.4 ERM and Uniform Convergence

The excess risk of ERM relative to f?F can be decomposed as

R(f̂n)−R(f?F) = (R(f̂n)− R̂(f̂n)) + (R̂(f̂n)− R̂(f?F)) + (R̂(f?F)−R(f?F)) .

By the definition of ERM, the difference R̂(f̂n) − R̂(f?F) is non-positive. The

difference R̂(f?F)−R(f?F) is also easy to deal with since it deals with a fixed (i.e.
non-random) function f?F . Using Hoeffding’s inequality (see Section 3.1 below),
we have, with probability at least 1− δ,

R̂(f?F)−R(f?F) ≤
√

log(1/δ)

2n
.

11

This simply reflects the fact that as the sample size n grows, we expect the
empirical average of f?F to converge to its true expectation.

The matter with the difference R(f̂n)− R̂(f̂n) is not so simple since f̂n is a

random function. But we do know f̂n lies in F . So we can clearly bound

R(f̂n)− R̂(f̂n) ≤ sup
f∈F

(R(f)− R̂(f)) . (1)

This provides a generalization bound (or, more properly, a generalization error
bound) for ERM. A generalization bound is an upper bound on the true expec-

tation R(f̂n) of a learning rule in terms of its empirical performance R̂(f̂n) (or
some other performance measure computed from data). A generalization bound
typically involves addtional terms that measure the statistical complexity of the
class of functions that the learning rule uses. Note the important fact that the
bound above is valid not just for ERM but for any learning rule that outputs a
function f̂n ∈ F .

The measure of complexity in the bound (1) above is the maximum deviation
between true expectation and empirical average over functions in F . For each
fixed f ∈ F , we clearly have

R(f)− R̂(f)→ 0

both in probability (weak law of large numbers) and almost surely (strong law
of large numbers). But in order for

sup
f∈F

R(f)− R̂(f)→ 0

the law of large numbers has to hold uniformly over the function class F .
To summarize, we have shown in this section that, with probability at least

1− δ,

R(f̂n)−R(f?F) ≤ sup
f∈F

(R(f)− R̂(f)) +

√
log(1/δ)

2n
. (2)

Thus, we can bound the excess risk of ERM if we can prove uniform convergence
of empirical means to true expectations for the function class F . This excess risk
bound, unlike the generalization error bound (1), is applicable only to ERM.

2.5 Bibliographic Note

There are several book length treatments of learning theory that emphasize dif-
ferent aspects of the subject. The reader may wish to consult Anthony and Biggs
(1997), Anthony and Bartlett (1999), Devroye et al. (1996), Vapnik (2006),
Vapnik (2000), Vapnik (1998), Vidyasagar (2003), Natarajan (1991), Cucker
and Zhou (2007), Kearns and Vazirani (1994), Cesa-Bianchi and Lugosi (2006),
Györfi et al. (2002), Hastie et al. (2009).

12

3 Uniform Convergence of Empirical Means

Let us consider the simplest case of a finite function class F . In this case,
Hoeffding’s inequality (see Theorem 5) gives us for any f ∈ F , with probability
at least 1− δ/|F|,

R(f)− R̂(f) ≤ c
√

log(|F|/δ)
n

.

Therefore, denoting the event that the above inequality fails to hold for function
f by Af , we have

P (∃f ∈ F , Af holds) ≤
∑
f∈F

P (Af) ≤ |F| · δ

|F|
= δ .

The first inequality is called a union bound in probability theory. It is exact if
and only if all the events it is applied to are pairwise disjoint, i.e. Af ∩Af ′ = ∅
for f 6= f ′. Clearly, if there are functions that are “similar” to each other,
the bound above will be loose. Nevertheless, the union bound is an important
starting point for the analysis of uniform convergence of empirical means and
for a finite class, it gives us the following result.

Theorem 4. Consider a finite class F and a loss function bounded by 1. Then,
we have, with probability at least 1− δ,

sup
f

(R(f)− R̂(f)) ≤
√

log |F|+ log(1/δ)

2n
.

Therefore, using (2), we have the following result for ERM. With probability at
least 1− 2δ,

R(f̂n)−R(f?F) ≤
√

log |F|
2n

+

√
2 log(1/δ)

n
.

It is instructive to focus on the first term on the right hand side. First, it
decreases as n increases. This means that ERM gets better as it works with
more data. Second, it increases as the function class F grows in size. But the
dependence is logarithmic and hence mild.

However, the bound above is useless if |F| is not finite. The goal of the
theory we will build below (often called “VC theory” after its architects Vapnik
and Chervonenkis) will be to replace log |F| with an appropriate measure of the
capacity of an infinite function class F .

3.1 Concentration Inequalities

Learning theory uses concentration inequalities heavily. A typical concentra-
tion inequality will state that a certain random variable is tightly concentrated
around its mean (or in some cases median). That is, the probability that they
deviate far enough from the mean is small.

The following concentration inequality, called Hoeffding’s inequality, applies
to sums of iid random variables.

13

Theorem 5. Let Zi ∈ [0, 1] be bounded iid random variables with common
expectation µ. Then we have, for ε > 0

P

[
µ− 1

n

n∑
i=1

Zi > ε

]
≤ exp(−2nε2) .

This can be restated as follows. For any δ ∈ (0, 1),

P

[
µ− 1

n

n∑
i=1

Zi ≤
√

log(1/δ)

2n

]
> 1− δ .

A couple of remarks are in order. First, even though we have stated Hoeffd-
ing’s inequality as applying to bounded iid random variables, only the bound-
edness and independence are really needed. It is possible to let the Zi’s have
different distributions. Second, the above result provides probability upper
bounds for devations below the mean µ but a similar result holds for devations
of 1

n

∑n
i=1 Zi above µ as well.

In fact, Hoeffding’s inequality can be considered a special case of the fol-
lowing inequality that is often called McDiarmid’s inequality or the bounded
differences inequality.

Theorem 6. Let F : Xn → R be a function that satisfies the bounded differences
property: for all i ∈ [n] and x1:n ∈ Xn, x′i ∈ X ,

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci

for some constants ci. Then, for any independent X1, . . . , Xn, the random vari-
able Z = f(X1, . . . , Xn) satisfies,

P [Z − E [Z] ≥ ε] ≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
as well as

P [Z − E [Z] ≤ −ε] ≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
for any ε > 0.

3.2 Rademacher Complexity

Let us recall that we need to control the following quantity:

sup
f∈F

R(f)− R̂(f) .

Since this satisfies the conditions of McDiarmid’s inequality with ci = 1/n, we
have, with probability at least 1− δ,

sup
f∈F

R(f)− R̂(f) ≤ E

[
sup
f∈F

R(f)− R̂(f)

]
+

√
log(1/δ)

2n
.

14

Now, we can appeal to a powerful idea known as symmetrization. The basic
idea is to replace

sup
f∈F

R(f)− R̂(f)

with

sup
f∈F

1

n

n∑
i=1

(E [`(f(X ′i), Y
′
i)]− `(f(Xi), Yi))

where (X ′1, Y
′
1), . . . , (X ′n, Y

′
n) are samples drawn from the distribution P that

are independent of each other and of the original sample. The new sample is
often referred to as the ghost sample. The point of introducing the ghost sample
is that, by an application of Jensen’s inequality, we get

E

[
sup
f∈F

R(f)− R̂(f)

]
= E

[
sup
f∈F

1

n

n∑
i=1

(E [`(f(X ′i), Y
′
i)]− `(f(Xi), Yi))

]

≤ E

[
sup
f∈F

1

n

n∑
i=1

(`(f(X ′i), Y
′
i)− `(f(Xi), Yi))

]
.

Now, the distribution of

sup
f∈F

1

n

n∑
i=1

(`(f(X ′i), Y
′
i)− `(f(Xi), Yi))

is invariant under exchanging any Xi, Yi with an X ′i, Y
′
i . That is, for any fixed

choice of ±1 signs ε1, . . . , εn, the above quantity has the same distribution as

sup
f∈F

1

n

n∑
i=1

εi(`(f(X ′i), Y
′
i)− `(f(Xi), Yi)) .

This allows us introduce even more randomization by making the εi’s themselves
random. This gives,

E

[
sup
f∈F

R(f)− R̂(f)

]
≤ Eε,X,Y,X′,Y ′

[
sup
f∈F

1

n

n∑
i=1

εi(`(f(X ′i), Y
′
i)− `(f(Xi), Yi))

]

≤ Eε,X′,Y ′
[

sup
f∈F

1

n

n∑
i=1

εi`(f(X ′i), Y
′
i)

]

+ Eε,X,Y

[
sup
f∈F

1

n

n∑
i=1

(−εi)`(f(Xi), Yi)

]

= 2 · Eε,X,Y

[
sup
f∈F

1

n

n∑
i=1

εi`(f(Xi), Yi)

]
.

This directly yields a bound in terms of the Rademacher complexity :

Rn (` ◦ F) = Eε,X,Y

[
sup
f∈F

1

n

n∑
i=1

εi`(f(Xi), Yi)

]
,

15

where εi is a Rademacher random variable that is either −1 or +1, each with
probability 1

2 . The subscript below the expectation serves as a reminder that
the expectation is being taken with respect to the randomness in Xi, Yi’s and
εi’s. We have thus proved the following theorem.

Theorem 7 (Symmetrization). For a function class F and loss `, define the
loss class

` ◦ F = {(x, y) 7→ `(f(x), y) : f ∈ F} .

We have,

E

[
sup
f∈F

R(f)− R̂(f)

]
≤ 2Rn (` ◦ F) .

An interesting observation is that the sample dependent quantity

R̂n (` ◦ F) = Eε

[
sup
f∈F

1

n

n∑
i=1

εi`(f(Xi), Yi)

]

also satisfies the bounded differences condition with ci = 1/n. This is the
empirical Rademacher average and the expectation in its definition is only over
the Rademacher random variables. Applying McDiarmid’s inequality, we have,

Rn (` ◦ F) ≤ R̂n (` ◦ F) +

√
log(1/δ)

2n

with probability at least 1− δ.
To prove a bound on the Rademacher complexity of a finite class, the fol-

lowing lemma, due to Massart (2007), is useful.

Lemma 8 (Massart’s finite class lemma). Let A be a finite subset of Rn and
ε1, . . . , εn be independent Rademacher random variables. Let r = maxa∈A ‖a‖2.
Then, we have,

E

[
sup
a∈A

1

n

n∑
i=1

εiai

]
≤
r
√

2 log |A|
n

.

Therefore, for any finite class F consisting of functions bounded by 1,

R̂n (F) ≤
√

2 log |F|
n

.

Since the right hand side is not random, the same bound holds for Rn (F) as
well.

The Rademacher complexity, and its empirical counterpart, satisfy a number
of interesting structural properties.

Theorem 9 (Structural Properties of Rademacher Complexity). Let F ,F1, . . . ,Fk
and H be classes of real valued functions. Then Rn (·) (as well as R̂n (·)) satis-
fies the following properties.

16

Monotonicity If F ⊆ H, Rn (F) ≤ Rn (H).

Convex Hull Rn (conv(F)) = Rn (F).

Scaling Rn (cF) = |c|Rn (F) for any c ∈ R.

Contraction If φ : R→ R is Lipschitz with constant Lφ, then

Rn (φ ◦ F) ≤ LφRn (F) .

Translation For any bounded function h, Rn (F + h) = Rn (F).

Subadditivity Rn

(∑k
i=1 Fi

)
≤
∑n
i=1 Rn (Fi).

For proofs of these properties, see Bartlett and Mendelson (2002). How-
ever, note that the Rademacher complexity is defined there such that an extra
absolute value is taken before the supremum over f ∈ F . That is,

Rabs
n (F) = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)

∣∣∣∣∣
]
.

Nevertheless, the proofs given there generalize quite easily to definition of Rade-
macher complexity that we are using. For example, see Ambroladze et al. (2007),
where the Rademacher complexity as we have defined it here (without the ab-
solute value) is called free Rademacher complexity.

Using these properties, it is possible to directly bound the Rademacher com-
plexity of several interesting functions classes. See Bartlett and Mendelson
(2002) for examples. The contraction property is a very useful one. It allows
us to transition from the Rademacher complexity of the loss class to the Rade-
macher complexity of the function class itself (for Lipschitz losses).

The Rademacher complexity can also be bounded in terms of another mea-
sure of complexity of a function class: namely covering numbers.

3.3 Covering Numbers

The idea underlying covering numbers is very intuitive. Let (D, ρ) be any
(pseudo-)metric space and fix a subset T ⊆ D. A set T ′ ⊆ D is said to be
an α-cover of T if

∀f ∈ T, ∃g ∈ T ′ s.t. ρ(f, g) ≤ α .

In other words “balls” of radius α placed at elements of T ′ “cover” the set T
entirely. The covering number (at scale α) of T is defined as the size of the
smallest cover of T (at scale α).

N (T, ρ, α) = min {|T ′| : T ′ is an α-cover of T} .

The logarithm of covering number is called entropy.

17

Given a sample x1:n = (x1, . . . , xn), define the data dependent metric on F
as

ρ̂p(f, g) =

(
1

n

n∑
i=1

|f(xi)− g(xi)|p
)1/p

where p ∈ [1,∞). Taking the limit p→∞ suggests the metric

ρ̂∞(f, g) = max
i∈[n]

|f(xi)− g(xi)| .

These metrics gives us the p-norm covering numbers

Np(F , x1:n, α) = N (F , ρ̂, α) .

These covering numbers increase with p. That is, for p ∈ [1,∞],

N1(F , x1:n, α) ≤ Np(F , x1:n, α) ≤ N∞(F , x1:n, α) .

Finally, we can also define the worst case (over samples) p-norm covering number

Np(F , n, α) = sup
x1:n∈Xn

Np(F , x1:n, α) .

A major result connecting Rademacher complexity with covering numbers
is due to Dudley (1967).

Theorem 10 (Dudley’s entropy integral bound). For any F consisting of real
valued functions bounded by 1, we have

R̂n (F) ≤ α+ 12

∫ 1

α

√
logN2(F , X1:n, β)

n
dβ .

Therefore, using Jensen’s inequality, we have

Rn (F) ≤ α+ 12

∫ 1

α

√
logE [N2(F , X1:n, β)]

n
dβ .

3.4 Binary Valued Functions: VC Dimension

For binary function classes F ⊆ {±1}X , we can provide distribution free up-
per bounds on the Rademacher complexity or covering numbers in terms of a
combinatorial parameter called the Vapnik-Chervonenkis (VC) dimension.

To define it, consider a sequence x1:n = (x1, . . . , xn). We say that x1:n is
shattered by F if each of the 2n possible ±1 labelings of these n points are
realizable using some f ∈ F . That is, x1:n is shattered by F iff

|{(f(x1), . . . , f(xn)) : f ∈ F}| = 2n .

The VC dimension of F is the length of the longest sequence that can shattered
by F :

VCdim(F) = max {n : ∃x1:n ∈ Xn s.t. x1:n is shattered by F} .

18

The size of the restriction of F to x1:n is called the shatter coefficient :

S (F , x1:n) = |{(f(x1), . . . , f(xn)) : f ∈ F}| .

Considering the worst sequence gives us the growth function

S (F , n) = max
x1:n∈Xn

S (F , x1:n) .

If VCdim(F) = d, then we know that S (F , n) = 2n for all n ≤ d. One can
ask: what is the behavior of the growth function for n > d? The following
combinatorial lemma proved independently by Vapnik and Chervonenkis (1968),
Sauer (1972), and Shelah (1972), gives the answer to this question.

Lemma 11. If VCdim(F) = d, then we have, for any n ∈ N,

S (F , n) =

d∑
i=0

(
n

i

)
.

In particular, if d > 2, S (F , n) ≤ nd.

Thus, for a class with finite VC dimension, the Rademacher complexity can
be bounded directly using Massart’s lemma

Theorem 12. Suppose 2 < VCdim(F) = d <∞. Then, we have,

R̂n (F) ≤
√

2 log S (F , n)

n
≤
√

2d log n

n
.

It is possible to shave off the log n factor in the bound above plugging an
estimate of the entropy logN2(F , n, α) for VC classes due to Haussler (1995)
into Theorem 10.

Theorem 13. Suppose VCdim(F) = d <∞. We have, for any n ∈ N,

N2(F , n, α) ≤ Cd log
1

α

for a universal constant C.

These results show that for a class F with finite VC dimension d, the sample
complexity required by ERM to achieve ε excess risk relative to f?F is, with
probability at least 1 − δ, O(dε2 + log 1

δ). Therefore, a finite VC dimension is
sufficient for learnability with respect to a fixed functions class. In fact, a finite
VC dimension also turns out to be necessary (see, for instance, (Devroye et al.,
1996, Chapter 14)). Thus, we have the following characterization.

Theorem 14. In the binary classification setting with 0-1 loss, there is a
learning algorithm with bounded sample complexity for every ε, δ ∈ (0, 1) iff
VCdim(F) <∞.

Note that, when VCdim(F) <∞, the dependence of the sample complexity
on 1/ε is polynomial and on 1/δ is logarithmic. Moreover, such a sample com-
plexity is achieved by ERM. On the other hand, when VCdim(F) =∞, then no
learning algorithm, including ERM, can have bounded sample complexity for
arbitrarily small ε, δ.

19

3.5 Real Valued Functions: Fat Shattering Dimension

For real valued functions, getting distribution free upper bounds on Rademacher
complexity or covering numbers involves combinatorial parameters similar to the
VC dimension. The appropriate notion for determining learnability using a finite
number of samples turns out to be a scale sensitive combinatorial dimension
known as the fat shattering dimension.

Fix a class F consisting of bounded real valued functions f : X → [0, 1] and
a scale α > 0. We say that a sequence x1:n = (x1, . . . , xn) is α-shattered by F
if there exists a witness sequence s1:n ∈ Rn such that, for every ε1:n ∈ {±1}n,
there is an f ∈ F such that

εi(f(xi)− si) ≥ α .

In words, this means that, for any of the 2n possibilities for the sign pattern
ε1:n, we have a function f ∈ F whose values at the points xi is above or below
si depending on whether εi is +1 or −1. Moreover, the gap between f(xi) and
si is required to be at least α.

The fat-shattering dimension of F at scale α is the size of the longest se-
quence that can be α-shattered by F :

fatα (F) = max {n : ∃x1:n ∈ Xn s.t. x1:n is α-shattered by F} .

A bound on∞-norm covering numbers in terms of the fat shattering dimen-
sion were first given by Alon et al. (1997).

Theorem 15. Fix a class F ⊆ [0, 1]X . Then we have, for any α > 0,

N∞(F , n, α) ≤ 2

(
4n

α2

)d log(en/dα)

where d = fatα/2 (F).

Using this bound, the sample complexity of learning a real valued function
class of bounded range using a Lipschitz loss3 ` is O(dε2 log 1

ε + log 1
δ) where

d = fatcε (F) for a universal constant c > 0. The importance of the fat shattering
dimension lies in the fact that if fatα (F) =∞ for some α > 0, then no learning
algorithm can have bounded sample complexity for learning the functions for
arbitrarily small values of ε, δ.

Theorem 16. In the regression setting with either squared loss or absolute
loss, there is a learning algorithm with bounded sample complexity for every
ε, δ ∈ (0, 1) iff ∀α > 0, fatα (F) <∞.

Note that here, unlike the binary classification case, the dependence of the
sample complexity on 1/ε is not fixed. It depends on how fast fatα (F) grows
as α → 0. In particular, if fatα (F) grows as 1/αp then the sample complexity
is polynomial in 1/ε (and logarithmic in 1/δ).

3By this we mean `(·, y) is Lipschitz for all y.

20

4 Model Selection

In general, model selection refers to the task of selecting an appropriate model
from a given family based on available data. For ERM, the “model” is the
class F of functions f : X → Y that are intended to capture the functional
dependence between the input variable X and the output Y . If we choose too
small an F then ERM will not have good performance if f? is not even well
approximated by any member of F . One the other hand, if F is too large (say all
functions) then the estimation error will be so large that ERM will not perform
well even if f? ∈ F .

4.1 Structural Risk Minimization

Consider the classification setting with 0-1 loss. Suppose we have a countable
sequence of nested function classes:

F (1) ⊂ F (2) ⊂ . . . ⊂ F (k) . . .

where F (k) has VC dimension dk. The function f̂
(k)
n chosen by ERM over Fk

satisfies the bound

R(f̂ (k)
n) ≤ R̂(f̂ (k)

n) +O

(√
dk log n

n

)

with high probability. As k increases, the classes become more complex. So, the
empirical risk term will decrease with k whereas the VC dimension term will
increase. The principle of structural risk minimization (SRM) chooses a value
of k by minimizing the right hand side above.

Namely, we choose

k̂ = argmin
k

R̂(f̂ (k)
n) + C

√
dk log n

n
, (3)

for some universal constant C.
It can be shown (see, for example, (Devroye et al., 1996, Chapter 18)) that

SRM leads to universally consistent rules provided appropriate conditions are
placed on the functions classes Fk.

Theorem 17 (Universal Consistency of SRM). Let F (1),F (2), . . . be a sequence
of classes such that for any distribution P ,

lim
k→∞

R(f?F(k)) = R(f?) .

Assume also that VCdim(F (1)) < VCdim(F (2)) < . . . are all finite. Then the

learning rule f̂
(k̂)
n with k̂ chosen as in (3) is strongly universally consistent.

21

The penalty term in (3) depends on the VC dimension of F (k). It turns
out that it is not essential. All we need is an upper bound on the risk of
ERM in terms of the empirical risk and some measure of the complexity of the
function class. One could also imagine proving results for regression problems
by replacing the VC dimension with fat-shattering dimension. We can think of
SRM as penalizing larger classes by their capacity to overfit the data. However,
the penalty in SRM is fixed in advance and is not data dependent. We will now
look into more general penalties.

4.2 Model Selection via Penalization

Given a (not necessarily nested) countable or finite collection of models {F (k)}k
and a penalty function pen : N→ R+, define k̂ as the minimizer of

R̂(f̂ (k)
n) + pen(k) .

Recall that f̂
(k)
n is the result of ERM over F (k). Also note that the penalty can

additionally depend on the data. Now define the penalized estimator as

f̃n = f̂ (k̂)
n .

The following theorem shows that any probabilistic upper bound Un,k on the

risk R(f̂n) can be used to design a penalty for which a performance bound can
be given.

Theorem 18. Assume that there are positive numbers c and m such that for
each k we have the guarantee

∀ε > 0, P
[
R(f̂ (k)

n) > Un,k + ε
]
≤ c exp(−2mε2) .

Then the penalized estimator f̃n with

pen(k) = Un,k − R̂(f̂ (k)
n) +

√
log k

m

satisfies

E
[
R(f̃n)

]
−R(f?) ≤ min

k

{
E [pen(k)] +

(
R(f?F(k))−R(f?)

)}
+

√
log(ce)

2m
.

Note that the result says that the penalized estimator achieves an almost
optimal trade-off between the approximation error R(f?F(k)) − R(f?) and the
expected complexity E [pen(k)]. For a good upper bound Un,k, the expected
complexity will be a good upper bound on the (expected) estimation error.
Therefore, the model selection properties of the penalized estimator depend on
how good an upper bound Un,k we can find.

22

Note that structural risk minimization corresponds to using a distribution
free upper bound

Un,k = R̂(f̂ (k)
n) +O

(√
dk log n

n

)
.

The looseness of these distribution free upper bounds has prompted researchers
to design data dependent penalties. We shall see an examples based on empirical
Rademacher averages in the next section.

Proof. For any ε > 0,

P
[
R(f̃n)− (R̂(f̃n) + pen(k̂)) > ε

]
≤ P

[
∃k s.t. R(f̂ (k)

n)− (R̂(f̂ (k)
n) + pen(k)) > ε

]
≤
∞∑
k=1

P
[
R(f̂ (k)

n)− (R̂(f̂ (k)
n) + pen(k)) > ε

]
=

∞∑
k=1

P

[
R(f̂ (k)

n)− Un,k >
√

log k

m
+ ε

]

≤
∞∑
k=1

c exp
(
−2m(ε+

√
log k/m)2

)
≤
∞∑
k=1

c exp
(
−2m(ε2 + log k/m)

)
= c exp(−2nε2)

∞∑
k=1

1

k2
≤ 2c exp(−2mε2) .

By integrating the final upper bound with respect to ε, we get the bound

E
[
R(f̃n)− (R̂(f̃n) + pen(k̂))

]
≤
√

log(ce)

2m
. (4)

Also, for any k, we have

E
[
R̂(f̃n) + pen(k̂)−R(f?F(k))

]
≤ E

[
R̂(f̂ (k)

n) + pen(k)−R(f?F(k))
]

≤ E
[
R̂(f?F(k)) + pen(k)−R(f?F(k))

]
= E [pen(k)] .

The first inequality above follows by definition of k̂ and f̃n. The second holds

because f̂
(k)
n minimizes the empirical risk over F (k). Summing this with (4), we

get, for any k,

E
[
R(f̃n)

]
≤ E [pen(k)] +R(f?F(k)) +

√
log(ce)

2m
.

23

Now subtracting R(f?) from both sides and minimizing over k proves the the-
orem.

4.3 Data Driven Penalties Using Rademacher Averages

The results of Section 3.2 tell us that there exists universal constants C, c such
that

P
[
R(f̂n) > R̂(f̂n) + 2R̂n

(
F (k)

)
+ ε
]
< c exp(−2Cnε2) .

Thus, we can use the data dependent penalty

pen(k) = 2R̂n

(
F (k)

)
+

√
log k

Cn

in Theorem 18 to get the bound

E
[
R(f̃n)

]
−R(f?) ≤ min

k

{
2Rn

(
F (k)

)
+
(
R(f?F(k))−R(f?)

)
+

√
log k

Cn

}

+

√
log(ce)

2Cn
.

Note that the penalty here is data dependent. Moreover, except for the
√

log k
Cn

term, the penalized estimator makes the optimal trade-off between the Rade-
macher complexity, an upper bound on the estimation error, and the approxi-
mation error.

4.4 Hold-out Estimates

Suppose out of m + n iid samples we set aside m samples where m is much
smaller than n. Since the hold-out set of size m is not used in the computation

of f̂
(k)
n , we can estimate R(f̂

(k)
n) by the hold-out estimate

Un,k =

m∑
i=1

`(f̂ (k)
n (Xn+i), Yn+i) .

By Hoeffding’s inequality, the assumption of Theorem 18 holds with c = 1.

Moreover E [Un,k] = R(f̂
(k)
n). Therefore, we have

E
[
R(f̃n)

]
−R(f?) ≤ min

k

{
E
[
R(f̂ (k)

n)− R̂(f̂ (k)
n)

]
+
(
R(f?F(k))−R(f?)

)
+

√
log k

m

}

+

√
1

2m
.

24

5 Alternatives to Uniform Convergence

The approach of deriving generalization bounds using uniform convergence argu-
ments is not the only one possible. In this section, we review three techniques
for proving generalization bounds based on sample compression, algorithmic
stability, and PAC-Bayesian analysis respectively.

5.1 Sample Compression

The sample compression approach to proving generalization bounds was intro-
duced by Warmuth (1997). It applies to algorithms whose output f̂n,S (that
is learned using some training set S) can be reconstructed from a compressed
subset Si. Here i is a sequence of indices

i = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < . . . < ik ≤ n ,

and Si is simply the subsequence of S indexed by i. For the index sequence i
above, we say that its length |i| is k. To formalize the idea that the algorithms
output can be reconstructed from a small number of examples, we will define a
compression function

C :

∞⋃
n=1

(X × Y)
n → I

where I is the set of all possible index sequences of finite length. It is assumed
that |C(S)| ≤ n for an S is of size n. We also define a reconstruction function

R :

∞⋃
n=1

(X × Y)
n → YX .

We assume that the learning rule satisfies, for any S,

f̂n,S = R
(
SC(S)

)
. (5)

This formalizes our intuition that to reconstruct f̂n,S it suffices to remember
only those examples whose indices are given by C(S).

The following result gives a generalization bound for such an algorithm.

Theorem 19. Let f̂n be a learning rule for which there exists compression and
reconstructions functions C and R respectively such that the equality (5) holds
for all S. Then, we have, with probability at least 1− δ,

R(f̂n) ≤ n

n− k
R̂(f̂n) +

√
log
(
n
k

)
+ log n

δ

2(n− k)

where k = |C(S)|.

25

Proof. The proof uses the simple idea that for a fixed index set i, Sī is a sample
of size n − |i| that is independent of Si. Here ī denotes the sequence [n]\i. By
this independence, the risk of any function that depends only on Si is close to
its empirical average on Sī by Hoeffding’s inequality.

Denote the empirical risk of f calculated on a subset Si of S by R̂i(f). We
have, for any f ,

R̂C(S)
(f) ≤ n

n− k
R̂(f) ,

where k = |C(S)|. Thus, all we need to show is

P
[
R(f̂n)− R̂C(S)

(f̂n) ≥ εn,|C(S)|

]
≤ δ

where

εn,k =

√
log
(
n
k

)
+ log n

δ

2(n− k)
.

To show this, we proceed as follows,

P
[
R(f̂n)− R̂C(S)

(f̂n) ≥ εn,|C(S)|

]
= P

[
R(R(SC(S)))− R̂C(S)

(R(SC(S))) ≥ εn,|C(S)|

]
≤ P

[
∃i s.t. |i| = k, R(R(Si))− R̂ī(R(Si)) ≥ εn,k

]
≤
∑

i:|i|=k

P
[
R(R(Si)− R̂ī(R(Si)) ≥ εn,k

]

≤
n∑
k=1

∑
i:|i|=k

exp(−2(n− k)ε2
n,k)

=

n∑
k=1

(
n

k

)
exp(−2(n− k)ε2

n,k)

≤
n∑
k=1

δ

n
= δ .

The last step holds because, by our choice of εn,k,(
n

k

)
exp(−2(n− k)ε2

n,k) =
δ

n
.

5.2 Stability

Stability is property of a learning algorithm that ensures that the output, or
some aspect of the output, of the learning algorithm does not change much if the
training data set changes very slightly. This is an intuitive notion whose roots

26

in learning theory go back to the work of Tikhonov on regularization of inverse
problems. To see how stability can be used to give generalization bounds, let
us consider a result of Bousquet and Elisseeff (2002) that avoids going through
uniform convergence arguments by directly showing that any learning algorithm
with uniform stability enjoys exponential tail generalization bounds in terms of
both the training error and the leave-one-out error of the algorithm.

Let S\i denote the sample of size n − 1 obtained by removing a particular
input (xi, yi) from a sample S of size n. A learning algorithm is said to have
uniform stability β if for any S ∈ (X × Y)n and any i ∈ [n], we have,

sup
(x,y)∈X×Y

|`(f̂n,S(x), y)− `(f̂n−1,S\i(x), y)| ≤ β .

We have the following generalization bound for a uniformly stable learning al-
gorithm.

Theorem 20. Let f̂n have uniform stability β. Then, with probability at least
1− δ,

R(f̂n) ≤ R̂(f̂n) + 2β + (4βn+ 1)

√
log 1

δ

2n
.

Note that this theorem gives tight bound when β scales as 1/n. As such it
cannot be applied directly to the classification setting with 0-1 loss where β can
only be 0 or 1. A good example of a learning algorithm that exhibits uniform
stability is regularized ERM over a reproducing kernel Hilbert space using a
convex loss function that has Lipschitz constant C`:

∀y, y′, y′′ ∈ Y ⊆ R, |`(y′, y)− `(y′′, y)| ≤ C` · |y′ − y′′| .

A regularized ERM using kernel K is defined by

f̂n = argmin
f∈FK

R̂(f) + λ ‖f‖2K ,

where λ is a regularization parameter. Regularized ERM has uniform stability

β for β =
C2

` κ
2

2λn where

κ = sup
x∈X

√
K(x, x) .

The literature on stability of learning algorithms is unfortunately thick with
definitions. For instance, Kutin and Niyogi (2002) alone consider over a dozen
variants! We chose a simple (but quite strong) definition from Bousquet and
Elisseeff above to illustrate the general point that stability can be used to derive
generalization bounds. But we like to point the reader to Mukherjee et al. (2006)
where a notion of leave-one-out (LOO) stability is defined and shown sufficient
for generalization for any learning algorithm. Moreover, for ERM they show it
is necessary and sufficient for both generalization and learnability with respect
to a fixed class. Shalev-Shwartz et al. (2010) further examine the connections
between stability, generalization and learnability in Vapnik’s general learning
setting that includes supervised learning (learning from example, label pairs) as
a special case.

27

5.3 PAC-Bayesian Analysis

PAC-Bayesian analysis refers to a style of analysis of learning algorithms that
output not just a single function f ∈ F but rather a distribution (called a “pos-
terior distribution”) over F . Moreover, the complexity of the data-dependent
posterior distribution is measured relative to a fixed distribution chosen in ad-
vance (that is, in a data independent way). The fixed distribution is called a
“prior distribution”. Note that the terms “prior” and “posterior” are borrowed
from the analysis of Bayesian algorithms that start with a prior distribution on
some parameter space and, on seeing data, make updates to the distribution
using Bayes’ rule to obtain a posterior distribution. Even though the terms are
borrowed, their use is not required to be similar to their use in Bayesian analy-
sis. In particular, the prior used in the PAC-Bayes theorem need not be “true”
in any sense and the posterior need not be obtained using Bayesian updates:
the bound holds for any choice of the prior and posterior.

Denote the space of probability distributions over F by ∆(F). There might
be measurability issues in defining this for general function classes. So, we can
assume that F is a countable class for the purpose of the theorem below. Note,
however, that the cardinality of the class F never enters the bound explicitly
anywhere. For any ρ ∈ ∆(F), define

R(ρ) = Ef∼ρ [R(f)] ,

R̂(ρ) = Ef∼ρ
[
R̂(f)

]
.

In the context of classification, a randomized classifier that, when asked for a
prediction, samples a function from a distribution ρ and uses if for classification,
is called a Gibbs classifier. Note that R(ρ) is the risk of such a Gibbs classifier.

Also recall the definition of Kullback-Leibler divergence or relative entropy :

D (ρ||π) =

∫
f∈F

log
ρ(f)

π(f)
dρ(f) .

For real numbers p, q ∈ [0, 1] we define (with some abuse of notation):

D (p||q) = p log
p

q
+ (1− p) log

1− p
1− q

.

With these definitions, we can now state the PAC Bayesian theorem (McAllester,
2003).

Theorem 21 (PAC-Bayesian Theorem). Let π be a fixed distribution over F .
Then, we have, with probability at least 1− δ,

∀ρ ∈ ∆(F), D
(
R̂(ρ)

∣∣∣∣∣∣R(ρ)
)
≤
D (ρ||π) + log 2n

δ

n− 1
.

In particular, for any learning algorithm that, instead of returning a single func-
tion f̂n ∈ F , returns a distribution ρ̂n over F , we have, with probability at least
1− δ,

D
(
R̂(ρ̂n)

∣∣∣∣∣∣R(ρ̂n)
)
≤
D (ρ̂n||π) + log 2n

δ

n− 1
.

28

To get more interpretable bounds from this statement, the following inequal-
ity is useful for 0 ≤ p < q ≤ 1:

(p− q)2

2
≤ (p− q)2

2q
≤ D (p||q) .

This implies that if D (p||q) ≤ x then two inequalities hold:

q ≤ p+
√

2x ,

q ≤ p+
√

2px+ 2x .

The first gives us a version of the PAC-Bayesian bound that is often presented:

R(ρ̂n)− R̂(ρ̂n) ≤

√
2(D (ρ̂n||π) + log 2n

δ)

n− 1
.

The second gives us the interesting bound

R(ρ̂n)− R̂(ρ̂n) ≤

√
2R̂(ρ̂n)(D (ρ̂n||π) + log 2n

δ)

n− 1
+ 2

D (ρ̂n||π) + log 2n
δ

n− 1
.

If the loss R̂(ρ̂n) is close to zero, then the dominating term is the second term
that scales as 1

n . If not, then the first term, which scales as 1√
n

, dominates.

6 Computational Aspects

So far we have only talked about sample complexity issues ignoring consider-
ations of computational complexity. To properly address the latter, we need a
formal model of computation and need to talk about how functions are repre-
sented by the learning algorithm. The branch of machine learning that studies
these questions is called computational learning theory. We will now provide a
brief introduction to this area.

6.1 The PAC Model

The basic model in computational learning theory is the Probably Approxi-
mately Correct (PAC) model. It applies to learning binary valued functions
and uses the 0-1 loss. Since a ±1 valued function is specified unambiguously
be specifying the subset of X where it is one, we have a bijection between bi-
nary valued functions and concepts, which are simply subsets of X . Thus we
will use (binary valued) function and concept interchangeably in this section.
Moreover, the basic PAC model considers what is sometimes called the realizable
case. That is, there is a “true” concept in F generating the data. This means
that yi = f(xi) for some f ∈ F . Hence the minimal risk in the class is zero:
R(f?F) = 0. Note, however, that the distribution over X is still assumed to be
arbitrary.

29

To define the computational complexity of a learning algorithm, we assume
that X is either {0, 1}d or Rd. We assume a model of computation that can
store a single real number in a memory location and can perform any basic
arithmetic operation (additional, subtraction, multiplication, division) on two
real numbers in one unit of computation time.

The distinction between a concept and its representation is also an important
one when we study computational complexity. For instance, if our concepts are
convex polytopes in Rd, we may choose a representation scheme that specifies
the vertices of the polytope. Alternatively, we may choose to specify the linear
equalities describing the faces of the polytope. Ther vertex-based and face-
based representations can differ exponentially in size. Formally, a representation
scheme is a mapping rep : (Σ∪R)? → F that maps a representation (consisting
of symbols from a finite alphabet Σ and real numbers) to a concept. As noted
above, there could be many σ’s such that rep(σ) = f for a given concept f . The
size of representation is assumed to be given by a function size : (Σ ∪R)? → N.
A simple choice of size could be simply the number of symbols and real numbers
that appear in the representation. Finally, the size of a concept f is simply the
size of its smallest representation:

size(f) = min
σ:rep(σ)=f

size(σ) .

The last ingredient we need before can give the definition of efficient learn-
ability in the PAC model is the representation class H used by the algorithm
for producing its output. We call H the hypothesis class and it is assumed that
there is a representation in H for every function in F . Moreover, it is required
that for every x ∈ X and any h ∈ H, we can evaluate h(x) (= rep(h)(x)) in
time polynomial in d and size(h).

Recall that we have assumed X = {0, 1}d or Rd. We say that an algorithm
efficiently PAC learns F using hypothesis class H if, for any f ∈ F , given access
to iid examples (xi, f(xi)) ∈ X × {±1}, inputs ε ∈ (0, 1) (accuracy), δ ∈ (0, 1)
(confidence), and size(f), the algorithm satisfies the following conditions.

1. With probability at least 1−δ, it outputs a hypothesis h ∈ H with R(h) ≤
ε.

2. It runs in time polynomial in 1
ε , 1

δ , size(f) and d.

For examples of classes F that are efficiently PAC learnable (using some H),
see the texts Natarajan (1991); Kearns and Vazirani (1994); Anthony and Biggs
(1997).

6.2 Weak and Strong Learning

In the PAC learning definition, the algorithm must be able to achieve arbitrarily
small values of ε and δ. A weaker definition would require the learning algorithm
to work only for fixed choices of ε and δ. We can modify the definition of
PAC learning by removing ε and δ from the input to the algorithm. Instead,

30

we assume that there are fixed polynomials pδ(·, ·) and pε(·, ·) such that the
algorithm outputs h ∈ H that satisfies

R(h) ≤ 1

2
− 1

pε(d, size(f))

with probability at least
1

pδ(d, size(f))
.

Such an algorithm is called a weak PAC learning algorithm for F . The original
definition, in contrast, can be called a definition of strong PAC learning. The
definition of weak PAC learning does appear quite weak. Recall that an accuracy
of 1

2 can be trivially achieved by an algorithm that does not even look at the
samples but simply outputs a hypothesis that outputs a random ±1 sign (each
with probability a half) for any input. The desired accuracy above is just an
inverse polynomial away from the trivial accuracy guarantee of 1

2 . Moreover,
the probability with which the weak accuracy is achieved is not required to be
arbitrarily close to 1.

A natural question to ask is whether a class that is weakly PAC learnable
using H is also strongly learnable using H? The answer, somewhat surprisingly,
is “Yes”. So, the weak PAC learning definition only appears to be a relaxed
version of strong PAC learning. Moreover, a weak PAC learning algorithm,
given as a subroutine or blackbox, can be converted into a strong PAC learning
algorithm. Such a conversion is called boosting.

A boosting procedure has to start with a weak learning algorithm and boost
two things: the confidence and the accuracy. It turns out that boosting the
confidence is easier. The basic idea is to run the weak learning algorithm several
times on independent samples. Therefore, the crux of the boosting procedure
lies in boosting the accuracy. Boosting the accuracy seems hard until one realizes
that the weak learning algorithm does have one strong property: it is guaranteed
to work no matter what the underlying distribution of the examples is. Thus, if a
first run of the weak learning only produces a hypothesis h1 with slightly better
accuracy than 1

2 , we can make the second run focus only on those examples
where h1 makes a mistake. Thus, we will focus the weak learning algorithm
on “harder portions” of the input distribution. While this simple idea does not
directly work, a variation on the same theme was shown to work by Schapire
(1990). Freund (1995) then presented a simpler boosting algorithm. Finally, a
much more practical boosting procedure, called AdaBoost, was discovered by
them jointly (Freund and Schapire, 1995). AdaBoost counts as one of the great
practical success stories of computational learning theory. For more details
on boosting, AdaBoost, and the intriguing connections of these ideas to game
theory and statistics, we refer the reader to Freund and Schapire (1996).

6.3 Random Classification Noise and the SQ Model

Recall that the basic PAC model assumes that the labels are generated using
a function f belonging to the class F under consideration. Our earlier devel-

31

opment of statistical tools for obtaining sampling complexity estimates did not
require such an assumptions (though the rates did depend on whether R(f?F) = 0
or not).

There are various noise models that extend the PAC model by relaxing
the noise-free assumption and thus making the problem of learning potentially
harder. Perhaps the simplest is the random classification noise model (Angluin
and Laird, 1987). In this model, when the learning algorithm queries for the
next labeled example of the form (xi, f(xi)), it receives it with probability 1−η
but with probability η, it receives (xi,−f(xi)). That is, with some probability
η < 1

2 , the label is flipped. The definition of efficient learnability remains the
same except that now the learning algorithm has to run in time polynomial in
1
ε ,

1
δ , d, size(f) and 1

1−2η0
where η0 <

1
2 is an input to the algorithm and is an

upper bound on η.
Kearns (1998) introduced the statistical query (SQ) model where learning

algorithms do not directly access the labeled example but only make statistical
queries about the underlying distribution. The queries take the form (χ, τ)
where χ : X ×{±1} → {±1} is a binary valued function of the labeled examples
and τ ∈ (0, 1] is a tolerance parameter. Given such a query, the oracle in the
SQ model responds with an estimate of P (χ(x, f(x)) = +1) that is accurate
to within an additive error of τ . It is easy to see, using Hoeffding’s inequality,
that given access to the usual PAC oracle that provides iid examples of the
form (xi, f(xi)), we can simulate the SQ oracle by just drawing a sample of size
polynomial in 1

τ2 and log 1
δ and estimating the probability P (χ(x, f(x)) = 1)

based on it. The simulation with succeed with probability 1− δ. Kearns gave a
more complicated simulation that mimics the SQ oracle given access to only a
PAC oracle with random missclassification noise.

Lemma 22. Given a query (χ, τ), the probability P (χ(x, f(x)) = 1) can be
estimated to within τ error, with probability at least 1− δ, using

O

(
1

τ2(1− 2η)2
log

1

δ

)
examples that have random misclassification noise at rate η < 1

2 in them.

This lemma means that learning algorithm that learns a concept class F in
the SQ model can also learn F in the random classification noise model.

Theorem 23. If there is an algorithm that efficiently learns F from statistical
queries using H, then there is an algorithm algorithm that efficiently learns F
using H in the random classification noise model.

6.4 The Agnostic PAC Model

The agnostic PAC model uses the same definition of learning as the one we
used in Section 2.3). That is, the distribution of examples (x, y) is arbitrary.
In particular, it is not assumed that y = f(x) for any f . The goal of the

32

learning algorithm is to output a hypothesis h ∈ H with R(h)−R(f?F) ≤ ε with
probability at least 1− δ. We say that a learning algorithm efficiently learns F
using H in the agnostic PAC model if the algorithm not only outputs a probably
approximately correct hypothesis h but also runs in time that is polynomial in
1
ε ,

1
δ and d.
The agnostic model has proved to be a very difficult one for exhibiting effi-

cient learning algorithms. Note that the statistical issue is completely resolved:
a class F is learnable iff it has finite VC dimension. However, the “algorithm”
inplicit in this statement is ERM which, even for the class of halfspaces

{x 7→ sign(〈w, x〉 − θ) : w ∈ Rd, θ ∈ R},

leads to NP-hard problems. For instance, see Feldman et al. (2009) for very
strong negative results about agnostic learning of halfspaces. However, these
results apply to proper agnostic learning only. That is, the algorithm outputs a
hypothesis that is also a halfspace. An efficient algorithm for learning halfspaces
in the agnostic PAC model using a general hypothesis class would be a major
breakthrough.

6.5 The Mistake Bound Model

The mistake bound model is quite different from the PAC model. Unlike the
PAC model, no assumption is made on the distribution of the inputs. There is
also no distinction between a training phase where the learner uses a batch of
examples to learn a hypothesis and a test phase where the risk of the learned
hypothesis determines the learner’s expected loss. Instead, learning happens in
a series of trials (or rounds) in an online fashion. At any given round t ∈ N,
the order of events is as follows:

• Learner receives xt ∈ X where X = {0, 1}d or Rd

• Learner outputs a label ŷt ∈ Y

• Learner receives the correct label yt = f(xt)

Note that the basic model assumes that is a true function f generating the
labels (the case when such an f is assumed to exist is often called the realizable
case). The identity of this function is, of course, hidden from the learner. The
goal of the learner is to minimize the total number of mistakes it makes:

∞∑
t=1

`(ŷt, f(xt))

where ` is the 0-1 loss. If a learning algorithm can guarantee, for any choice
f ∈ F of the true concept, that the total mistake bound will be a polynomial
function of d and size(f) as well as the computation per round is polynomial in
the same parameters, then we say that the algorithm efficiently learns F in the
mistake bound model.

33

Recall that, in the PAC model, VC dimension of F characterizes learnabil-
ity of F if we ignore computational considerations. Moroever, VC dimension
characterizes learnability in the agnostic PAC model as well. In the mistake
bound model, it is the Littlestone dimension (Littlestone, 1987) whose finite-
ness provides a necessary and sufficient condition for learnability. There is also
an agnostic version of the mistake bound model where we drop the assumption
that yt = f(xt) for some f ∈ F . It is also known that the Littlestone dimen-
sion characterizes learnability (ignoring efficiency) even in the agnostic online
mistake bound model (Ben-David et al., 2009).

The Littlestone dimension of a class F ⊆ {±1}X is defined as follows. A
X -valued tree (or simply an X -tree) of height t is a complete binary tree of
height t whose internal nodes are labeled with instances from X . A (complete
binary) tree of height t has exactly 2t leaves which we identify, from left to
right, with the 2t sequences length t ±1 sequences ordered lexicographically
(with −1 taking precedence over +1 in determining the lexicographic order).
For example, the leftmost leaf correponds to all −1’s sequence whereas the
rightmost leaf corresponds to the all +1’s sequences. If λ is a leaf, we denote
its associated ±1 sequence by ε(λ).

An X -tree of height t is said to be shattered by F if for each of the 2t leaves
the following is true: there is a function f ∈ F such that the sequence of values
taken by f on the internal nodes on the path from the root to the leaf λ is
exactly ε(λ). The Littlestone dimension of F is the height of the tallest tree
that is shattered by F .

It is easy to see that if an X -valued sequence (x1, . . . , xt) is shattered by F
then the X -tree of height t obtained by repeating xi across level i for i ∈ [t] is
also shattered by F . This proves the following relationship between VCdim(F)
and Ldim(F).

Theorem 24. For any F ⊆ {±1}X we have

VCdim(F) ≤ Ldim(F) .

A converse to the above theorem is not possible. Indeed, the class of theshold
functions on R:

F = {x 7→ sign(x− θ) : θ ∈ R}

has VCdim(F) = 1 but Ldim(F) =∞. A finite class F has a finite Littlestone
dimension satisfying the upper bound Ldim(F) ≤ log2(|F|).

6.5.1 Halving and Weighted Majority

Note that we proved risk bounds for a finite class in the probabilistic framework
using Hoeffding’s inequality along with a simple union bound. Here we show how
to deal with a finite class in the online mistake bound model. In the realizable
case, a simple algorithm called halving is guaranteed to make no more than
log2(|F|) mistakes.

34

Algorithm 1 Halving

Initialize F0 = F
for t = 1, 2, . . . do

Receive xt
Predict ŷt using a majority vote over Ft−1

Receive true label yt
if ŷ 6= yt then
Ft = {f ∈ Ft−1 : f(xt) = yt}

end if
end for

At the beginning of round t, the halving algorithm considers a subset Ft ⊆ F
of the original function class. Predictions are made by taking a majority vote
over Ft−1:

ŷt = sign

 ∑
f∈Ft−1

f(xt)

 .

Therefore, if a mistake is made, then |Ft−1| reduces by at least a factor of
2. Moreover, the true function is never eliminated since it will always satisfy
f(xt) = yt. Therefore, if Mt is the number of mistakes made by the halving
algorithm in t rounds, then we have

1 ≤ |Ft| ≤
|F0|
2Mt

=
|F|
2Mt

.

This implies that Mt ≤ log2(|F|). Thus we have proved a mistake bound for
halving.

Theorem 25. The halving algorithm when run on a finite class F enjoys a
mistake bound of log2(|F|).

In the non-realizable case, halving does not work directly but a suitable
modification does. Since no function in the class can be guaranteed to be correct
all the time, it does not make sense to eliminate functions that make mistakes.
The crucial idea here is to keep weights for different functions in the class.
Then, when a functions makes a mistake, it is not eliminated but its weight is
multiplied by a factor of e−η < 1 where η > 0 is a parameter. The prediction
are now taken using a weighted majority vote over all F :

ŷt = sign

∑
f∈F

ρt−1(f)f(xt)

 . (6)

Theorem 26. At any the end of any given round, let Mf be the number of
mistakes made by a function f ∈ F so far. Then the number of mistakes M

35

Algorithm 2 Weighted Majority

Initialize ρ0(f) = π(f) for some distribution π over F
for t = 1, 2, . . . do

Receive xt
Predict ŷt using a ρt−1-weighted majority vote over Ft−1

Receive true label yt
for f ∈ F do
ρt(f) = ρt−1(f) exp(−η`(f(xt), yt))

end for
end for

made by weighted majority so far is bounded as

∀f ∈ F , M ≤ 2 ·
ηMf + log 1

π(f)

1− e−η
.

In particular, using the uniform distribution π(f) = 1/|F|, we get

∀f ∈ F , M ≤ 2 · ηMf + log |F|
1− e−η

.

Proof. Fix a round index T ≥ 1 and let M and Mf be defined as the numbers of
mistakes in the first T rounds. Let Ft be the fraction of weights on the functions
that made a mistake on round t ≤ T . Since we make a mistake if and only if
Ft ≥ 1

2 , we have

M =

T∑
t=1

1
[
Ft ≥ 1

2

]
≤

T∑
t=1

2Ft . (7)

Define the total weight

Wt =
∑
f∈F

ρt(f) .

At round t, the total weight changes as

Wt+1 ≤ (1− (1− e−η)Ft)Wt .

Hence the final total weight is

WT+1 = W0

T∏
t=1

(1− (1− e−η)Ft) .

Note that W0 = 1. If the function f made Mf mistakes, its weight is

ρt+1(f) = π(f)e−ηMf .

Since ρt+1(f) ≤Wt+1, we have

π(f)e−ηMf ≤
T∏
t=1

(1− (1− e−η)Ft) .

36

Taking negative logs of both sides reverses the inequality giving

log
1

π(f)
+ ηMf ≥ −

T∑
t=1

log(1− (1− e−η)Ft) .

Using the elementary but useful inequality − log(1− x) > x gives

(1− e−η)

T∑
t=1

Ft ≤ ηMf + log
1

π(f)
.

Combining this with the bound (7) proves the theorem.

It turns out we can shave off a factor of 2 in the above mistake bound by using
a randomized version of the weighted majority algorithm. Instead of taking the
majority vote with the weights ρt−1(f), we can consider a Gibbs classifier that
chooses a function ft randomly from F with probability proportional to ρt−1(f)
and then outputs ŷt = ft(xt). This makes the number of mistakes a random
variable but the bound (7) turns into an equality without the factor of 2. That
is, for the randomized weighted majority algorithm

E [M] =

T∑
t=1

Ft .

Thus we have the following result.

Theorem 27. Suppose that we change the weighted majority step (6) to the
randomized weighted majority step

ft ∼ ρt−1, ŷt = sign(ft(xt)) .

Then, this randomized version of weighted majority satisfies the expected mistake
bound

∀f ∈ F , E [M] ≤
ηMf + log 1

π(f)

1− e−η
.

6.5.2 Perceptron and Winnow

We now consider two online algorithms that learn a linear threshold function.
Perceptron is a classic algorithm that dates back to the 1960s. The Winnow
algorithm was proposed by Littlestone (1987) as a better alternative when there
are many irrelevant features in the inputs.

Both algorithms follow the general schema given in Algorithm 3. Perceptron
uses the additive update rule:

LTF-Update(wt−1, η, xt, yt) = wt−1 − ηytxt

whereas Winnow uses a multiplicative update rule

LTF-Update(wt−1, η, xt, yt) =
wt−1 � exp(−ηytxt)

Zt

37

where � and exp denote entry wise multiplication and exponentiation respec-
tively. The normalization constant Zt =

∑d
j=1 wt−1,j exp(−ηytxt,j) ensures that

the weight vector remains a probability distribution. Also note that in Percep-
tron, we use the initialization w0 = 0 whereas Winnow initializes w0 with the
uniform distribution over the d features.

Algorithm 3 Online Learning of Linear Threshold Functions

Initialize w0

for t = 1, 2, . . . do
Receive xt
Predict ŷt = sign(〈w, xt〉)
Receive true label yt
if ŷt 6= yt then
wt ← LTF-Update(wt, η, xt, yt)

else
wt ← wt−1

end if
end for

To give a mistake bound for Perceptron and Winnow, we will assume that
we are in realizable case. That is, there is some weight vector w? that can
perfectly classify all the examples that the learner sees. Moreover, we can
assume that there is a margin available in the correct classifications. For a
correct classification, it should simply be the case that yt 〈w?, xt〉 > 0. The
margin condition will ensure that there is a lower bound γ > 0 such that

∀t, yt 〈w?, xt〉 ≥ γ . (8)

Theorem 28. Suppose there exists a w? satisfying the margin condition (8).
Then Perceptron with learning rate η = 1 enjoys the mistake bound

M ≤ ‖w
?‖22 ·B2

2

γ2
,

where B2 = maxt ‖xt‖2.

Proof. Let T ≥ 1 and note that the number M = MT of mistakes till time T is
simply

MT =

T∑
t=1

mt

where mt = 1 [ŷ 6= yt] = 1 [yt 〈wt, xt〉 ≤ 0]. Let us calculate how the inner
product of wt with the vector w? evolves. Note that we can write

wt = wt−1 +mtytxt .

Thus, we have,

〈w?, wt〉 = 〈w?, wt−1 +mtytxt〉

38

= 〈w?, wt−1〉+mtyt 〈w?, xt〉
≥ 〈w?, wt−1〉+mtγ ,

where the last step is due to the margin assumption (8). Summing the above
inequality for t = 1, . . . , T yields

γMT + 〈w?, w0〉 ≤ 〈w?, wT 〉 .

Since w0 = 0 and 〈w?, wT 〉 ≤ ‖w?‖2‖wT ‖2, we get

γMT ≤ ‖w?‖2‖wT ‖2 . (9)

Let us now try to upper bound ‖wT ‖2. We have,

‖wt‖22 = ‖wt +mtytxt‖22
= ‖wt‖22 + 2mtyt 〈wt, xt〉+m2

ty
2
t ‖xt‖22

≤ ‖wt‖22 +m2
ty

2
t ‖xt‖22 ,

where the last line is true because yt 〈wt, xt〉 ≤ 0 when mt > 0. Also note that
y2
t = 1, m2

t = mt and ‖xt‖2 ≤ B2. Therefore,

‖wt‖22 ≤ ‖wt‖22 +mtB
2
2 .

Summing this for t = 1, . . . , T gives

‖wT ‖22 ≤ ‖w0‖2 +MTB
2
2 = MTB

2
2 .

Combining this with (9) gives

γMT ≤ ‖w?‖2
√
MTB2 ,

which gives us the final bound

MT ≤
‖w?‖22 ·B2

2

γ2
.

Theorem 29. Suppose there exists a w? with positive entries that satisfies the
margin condition (8). Let B∞ = maxt ‖xt‖∞. Then Winnow enjoys the mistake
bound

M ≤ log d

C(η)

whenever

C(η) =

(
ηγ

‖w?‖1
− log

(
eηB∞ + e−ηB∞

2

))
> 0 .

In particular, by setting η optimally, we get,

M ≤ 2
‖w?‖21 ·B2

∞
γ2

.

39

Proof. Let u? = w?/‖w?‖1. Since w? > 0 (inequality is entrywise), u? is a prob-
ability distribution. Moreover, Winnow maintains a probability distribution wt
at all times. We will track the progress of the algorithm using the relative
entropy

D (u?||wt) =

d∑
j=1

u?j log
u?j
wt,j

between u? and wt.
Suppose a mistake occurs at time t. Then we have,

D (u?||wt)−D (u?||wt−1) =

d∑
j=1

u?j log
wt−1,j

wt,j

=

d∑
j=1

u?j log
Zt

exp(ηytxt,j)

= logZt

d∑
j=1

u?j − ηyt
d∑
j=1

u?jxt,j

= logZt − ηyt 〈u?, xt〉

≤ logZt −
ηγ

‖w?‖1
, (10)

where the last step is due to the margin assumption (8). Note that ytxtj ∈
[−B∞, B∞]

For any α ∈ [−B∞, B∞] and η > 0, we have the inequality

eηα ≤ 1 + α/B∞
2

eηB∞ +
1− α/b∞

2
e−ηB∞ .

To see this consider a random variable Z that takes value ηL with probability
(1 + α/B∞)/2 and takes value −ηL with probability (1− α/B∞)/2. Then the
inequality above is claims that exp(E [Z]) ≤ E [exp(Z)] which is indeed true by
Jensen’s inequality. Using the inequality above, we have

Zt =

d∑
j=1

wt−1,je
ηytxt−1,j

≤
d∑
j=1

wt−1,j

(
1 + ytxt−1,j/B∞

2
eηB∞ +

1− ytxt−1,j/B∞
2

e−ηB∞
)

=

(
eηB∞ + e−ηB∞

2

) d∑
j=1

wt−1,j +

(
eηB∞ − e−ηB∞

2B∞

) d∑
j=1

ytwt−1,jxt,j

=

(
eηB∞ + e−ηB∞

2

)
+

(
eηB∞ − e−ηB∞

2B∞

) d∑
j=1

yt 〈wt−1, xt〉

40

≤
(
eηB∞ + e−ηB∞

2

)
,

where the last step is true because, in a mistake round, yt 〈wt−1, xt〉 ≤ 0. Com-
bining this bound on Zt with (10) gives us, on any mistake round,

D (u?||wt)−D (u?||wt−1) ≤ −C(η)

where, we have defined

C(η) =
ηγ

‖w?‖1
− log

(
eηB∞ + e−ηB∞

2

)
.

Thus, for any round,

D (u?||wt)−D (u?||wt−1) ≤ −C(η)mt

where mt = 1 [ŷt 6= yt]. Summing this over t = 1, . . . , T gives

D (u?||wT)−D (u?||w0) ≤ −C(η)

T∑
t=1

mt = −C(η)MT .

Since relative entropy is always non-negative D (u?||wT) ≥ 0. On the other
hand,

D (u?||w0) =

d∑
j=1

u?j log(u?jd) ≤
d∑
j=1

u?j log d = log d .

Thus, we have
− log d ≤ −C(η)MT

which gives, whenever C(η) > 0,

MT ≤
log d

C(η)
.

By choosing η to maximize C(η), we get

η =
1

B∞
log

(
L+ γ/‖w?‖1
L− γ/‖w?‖1

)
.

which yields the bound

MT ≤
log d

g
(

γ
B∞‖w?‖1

) .

where

g(x) =
1 + x

2
log(1 + x) +

1− x
2

log(1− x) .

The second statement of the theorem now follows because g(x) ≥ x2/2 for
x ∈ [−1, 1].

41

7 Beyond the Basic Probabilistic Framework

Our overview of learning theory emphasized the classical setting in which a
learning algorithm sees fully labeled data that is an iid draw from an unknown
distribution. There are many extensions possible to this basic setting. We
mention a few directions that are have been explored by researchers. Many of
these continue to evolve actively as new results appear.

Richer Output Spaces We mostly talked about classification and regres-
sion. One can certainly consider richer output spaces. The field of structured
prediction (Bakir et al., 2007) deals with exponentially large output spaces con-
sisting of graphs, trees, or other combinatorials objects. Another output space
that arises in ranking applications is the space of permutations of a finite set of
objects. There has also been work on learning vector valued functions (Micchelli
and Pontil, 2005).

Learning with Dependent Data The iid assumption has also been relaxed.
Aldous and Vazirani (1990), Gamarnik (1999) consider Markov chains. Irle
(1997), Meir (2000), Vidyasagar (2003), Lozano et al. (2006), Mohri and Ros-
tamizadeh (2009) and Steinwart et al. (2009) consider mixing processes. There
is also a negative result (Nobel, 1999) showing that there is no universally con-
sistent learning algorithm for stationary ergodic processes.

Learning with Adversarially Generated Data As in the mistake bound
model, it is possible to develop a theory of learning from online adversarially
generated data provided one defines learnability in terms of low regret

T∑
t=1

`(ft−1(xt), yt)− inf
f∈F

`(f(xt), yt)

which compares the performance of the learner’s functions f1, . . . , fT to the best
function chosen in hindsight (note that the learner has to commit to ft−1 seeing
only examples till (xt−1, yt−1). Analogues of Rademacher complexity, covering
numbers, and fat shattering dimension have been developed (Rakhlin et al.,
2010). This topic has fascinating connections to information theory and game
theory. See Cesa-Bianchi and Lugosi (2006) for a comprehensive overview.

Active Learning In active learning, we consider situations where the learner
has some control over the data it uses to learn. This is in contrast to the basic
iid model where the learner passively sees iid data drawn from a distribution.
In particularly useful model of active learning, we assume that the learning has
access to unlabeled points X1, . . . , Xn drawn iid from a distribution either all
at one (a pool) or one at a time (a stream). The learner can only query for
labels of examples in the pool or the stream. The label complexity of the learner
is the number of label queries it needs to make in order to achieve a desired

42

accuracy with a given level of confidence. In a lot of situations, unlabeled data
is cheap and easy to get. So, it makes sense to charge the learner only for
the number of labels it requires. The label complexity of different problems
in an active learning has been studied (see, for example, Hanneke (2011) and
references therein). Given the practical importance of reducing the number of
labels required and the relatively unexplored nature of active learning, a lot
remains to be done.

Semisupervised Learning Semisupervised learning refers to learing with
labeled data and large amounts of unlabeled data. A lot of work has been
done in this area including methods that try to learn classifiers whose decision
boundary passed through low density regions of the unlabeled data to graph
based methods that use regularization to penalize functions that are nonsmooth
along edges of a graph built from unlabeled data. For a good collection of articles
on semisupervised learning, see the collection Chapelle et al. (2006). In the same
collection, Balcan and Blum propose a PAC style framework for semisupervised
learning.

Learning Multiple Tasks In multitask learning, the learner is faced with
learning multiple related tasks. Because of task relatedness, we expect the
learner to require fewer samples when the tasks are learned together rather than
separately. Many approaches try to encode task relatedness into a regularization
function that couples all the tasks together. Some important advances in our
theoretical understanding of multitask learning have been made (Caruana, 1997;
Baxter, 2000; Evgeniou et al., 2005; Maurer, 2006) but a comprehensive theory,
if one exists, remains to be found.

8 Conclusions and Future Trends

Understanding intelligence and constructing intelligent machines is a great sci-
entific challenge. An understanding of learning is central to an understanding
of intelligence. Whether we talk about learning on an evolutionary time scale or
learning within the lifespan of an organism, learning plays a crucial role in the
development of intelligent behavior. What learning theory has attempted to do
so far is provide a solid mathematical framework within which to pose and solve
questions regarding the process of learning. Admittedly, the most mature part
of learning theory is the theory of supervised learning including classification
and regression problems. But this is just a beginning rather than the end. We
hope that future research will make learning theory much richer and applicable
to a broader variety of problems in both natural and artificial systems.

Learning theory is an interdisciplinary field. It draws ideas and inspiration
from a variety of disciplines including biology, computer science, economics, phi-
losophy, psychology, statistical physics, and statistics. It attempts to achieve
clarity and rigor by using the language of mathematics to precisely state assump-
tions and prove results. We expect that interdisciplinary cross-fertilization of

43

ideas will continue to enrich and give new directions to learning theory. For
example, learning theory has much to contribute to problems arising in diverse
areas such as control (Vidyasagar, 2003) and dynamical systems (Campi and
Kumar, 1998), learning in games (Young, 2004), privacy (Balcan et al., 2012),
evolution (Valiant, 2009), and mechanism design (Balcan et al., 2008).

References

D. Aldous and V. Vazirani. A Markovian extension of Valiant’s learning model.
In Proceedings of the 31st Annual Symposium on Foundations of Computer
Science, pages 392–396 vol.1, 1990.

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive di-
mensions, uniform convergence, and learnability. Journal of the ACM, 44(4):
615–631, 1997.

A. Ambroladze, E. Parrado-Hernández, and J. Shawe-Taylor. Complexity of
pattern classes and the lipschitz property. Theoretical Computer Science, 382
(3):232–246, 2007.

D. Angluin and P. D. Laird. Learning from noisy examples. Machine Learning,
2(4):343–370, 1987.

M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press, 1999.

M. Anthony and N. Biggs. Computational Learning Theory: An Introduction.
Number 30 in Cambridge Tracts in Computer Science. Cambridge University
Press, 1997.

G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, Ben Taskar, and S. V. N.
Vishwanathan. Predicting Structured Data. MIT Press, 2007.

M.-F. Balcan, A. Blum, J. D. Hartline, and Y. Mansour. Reducing mechanism
design to algorithm design via machine learning. Journal of Computer and
System Sciences, 74(8):1245–1270, 2008.

M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, com-
munication complexity and privacy. In Proceedings of the 25th Annual Con-
ference on Learning Theory, volume 23 of JMLR Workshop and Conference
Proceedings, pages 26.1–26.22, 2012.

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3:
463–482, 2002.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence
Research, 12:149–198, 2000.

44

S Ben-David, D. Pál, and S. Shalev-Shwartz. Agnostic online learning. In
Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

M. Campi and P. R. Kumar. Learning dynamical systems in a stationary envi-
ronment. Systems and Control Letters, 34(3):125–132, 1998.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
Press, Cambridge, MA, 2006.

C. Cortes and V. N. Vapnik. Support-vector networks. Machine Learning, 20
(3):273–295, 1995.

F. Cucker and D.-X. Zhou. Learning Theory: An Approximation Theory View-
point. Cambridge Monographs on Applied and Computational Mathematics.
Cambridge University Press, 2007.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recog-
nition, volume 31 of Stochastic Modelling and Applied Probability. Springer,
1996.

R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of
Gaussian processes. Journal of Functional Analysis, 1(3):290–330, 1967.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615–637, 2005.

V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. On agnostic learning
of parities, monomials, and halfspaces. SIAM Journal on Computing, 39(2):
606–645, 2009.

Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of online-
learning and an application to boosting. In Proceedings of the Second Euro-
pean Conference on Computational Learning Theory, pages 23–37, 1995.

Y. Freund and R. E. Schapire. Game theory, on-line prediction and boosting.
In Proceedings of the Ninth Annual Conference on Computational Learning
Theory, pages 325–332, 1996.

D. Gamarnik. Extension of the PAC framework to finite and countable Markov
chains. In Proceedings of the twelfth annual conference on Computational
learning theory, pages 308–317, 1999.

45

L. Györfi, M. Kohler, A. Krzyjak, and H. Walk. A Distribution Free Theory of
Nonparametric Regression. Springer Series in Statistics. Springer, 2002.

S. Hanneke. Rates of convergence in active learning. The Annals of Statistics,
39(1):333–361, 2011.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer, second edition, 2009.

D. Haussler. Sphere packing numbers for subsets of the boolean n-cube with
bounded vapnik-chervonenkis dimension. Journal of Combinatorial Theory,
Series A, 69(2):217–232, 1995.

A. Irle. On the consistency in nonparametric estimation under mixing assump-
tions. Journal of Multivariate Analysis, 60:123–147, 1997.

M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM, 45(6):983–1006, November 1998.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and generaliza-
tion error. In Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence, pages 275–282, 2002.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2(4):285–318, 1987.

A. Lozano, S. Kulkarni, and R. Schapire. Convergence and consistency of reg-
ularized boosting algorithms with stationary β-mixing observations. In Ad-
vances in Neural Information Processing Systems 18, pages 819–826, 2006.

P. Massart. Concentration inequalities and model selection, volume 1896 of
Lecture Notes in Mathematics. Springer, 2007.

A. Maurer. Bounds for linear multi-task learning. Journal of Machine Learning
Research, 7:117–139, 2006.

David A. McAllester. PAC-Bayesian stochastic model selection. Machine Learn-
ing, 51(1):5–21, 2003.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
neural nets. Bulletin of Mathematical Biophysics, 5:115–137, 1943.

R. Meir. Nonparametric time series prediction through adaptive model selection.
Machine Learning, 39(1):5–34, 2000.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural
Computation, 17(1):177–204, 2005.

46

M. Mohri and A. Rostamizadeh. Rademacher complexity bounds for non-i.i.d.
processes. In Advances in Neural Information Processing 21, pages 1097–1104,
2009.

S. Mukherjee, P. Niyogi, T. Poggio, and R. M. Rifkin. Learning theory: stability
is sufficient for generalization and necessary and sufficient for consistency of
empirical risk minimization. Advances in Computational Mathematics, 25
(1-3):161–193, 2006.

B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauff-
mann, 1991.

A. Nobel. Limits to classification and regression estimation from ergodic pro-
cesses. The Annals of Statistics, 27(1):262–273, 1999.

A. B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of
the Symposium on the Mathematical Theory of Automata (New York, 1962),
pages 615–622, 1963.

A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Random averages,
combinatorial parameters, and learnability. In Advances in Neural Informa-
tion Processing Systems 23, pages 1984–1992, 2010.

F. Rosenblatt. Two theorems of statistical separability in the perceptron. In Pro-
ceedings of a Symposium on the Mechanization of Thought Processes, pages
421–456, London, 1959. Her Majesty’s Stationary Office.

D. E. Rumelhart, G. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

A. L. Samuels. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210–233, 1959.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory
Series A, 13:145–147, July 1972.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:
197–227, 1990.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, sta-
bility and uniform convergence. Journal of Machine Learning Research, 11:
2635–2670, 2010.

Saharon Shelah. A combinatorial problem; stability and order for models and
theories in infinitary languages. Pacific Journal of Mathematics, 41:247–261,
1972.

I. Steinwart, D. Hush, and C. Scovel. Learning from dependent observations.
Journal of Multivariate Analysis, 100(1):175–194, January 2009.

47

C. J. Stone. Consistent nonparametric regression. The Annals of Statistics, 5
(4):595–620, 1977.

A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

L. G. Valiant. A theory of the learnable. Journal of the ACM, 27(11):1134–1142,
1984.

L. G. Valiant. Evolvability. Journal of the ACM, 56(1), 2009.

V. Vapnik. Statistical Learning Theory. Adaptive and learning systems for
signal processing, communications, and control. Wiley, 1998.

V. Vapnik. The Nature of Statistical Learning Theory. Statistics for engineering
and information science. Springer, second edition, 2000.

V. Vapnik. Estimation of Dependences Based on Empirical Data; Empirical
Inference Science: Afterword of 2006. Springer, second edition, 2006. Reprint
of 1982 edition with afterword of 2006.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative
frequencies of event to their probabilities. Soviet Mathematics Doklady, 9:
915–918, 1968.

M. Vidyasagar. Learning and Generalization: With Application to Neural Net-
works. Communications and control engineering. Springer, second edition,
2003.

M. K. Warmuth. Sample compression, learnability, and the vapnik-chervonenkis
dimension. In Proceedings of the Third European Conference on Computa-
tional Learning Theory, pages 1–2, 1997.

H. Peyton Young. Strategic Learning and Its Limits. Oxford University Press,
2004.

Cross References

Related articles within the Work: Model Selection, Neural Networks, Ker-
nel Methods and SVMs, Probabilistic Graphical Models, Clustering, Semi-
supervised learning, Sparse Representations and Compressed Sensing, Multi-
task learning, On-line learning

Author Biography and Photograph

Ambuj Tewari is with the Department of Statistics, University of Michigan, Ann
Arbor. He has served on senior program committees of the conferences Algo-
rithmic Learning Theory (ALT), Conference on Learning Theory (COLT), and
Neural Information Processing Systems (NIPS). His work has received both the

48

student paper award (2005) and the best paper award (2011) at COLT. He re-
ceived his M.A. in Statistics (2005) and Ph.D. in Computer Science (2007) from
the University of California at Berkeley where his advisor was Peter Bartlett. He
was a research assistant professor in Toyota Technological Institute at Chicago
(2008-2010), an assistant professor (part-time) in the Department of Computer
Science, University of Chicago (2008-2010), and a post-doctoral fellow in the
Institute for Computational Engineering and Sciences, University of Texas at
Austin (2010-2012). He has also been a Visiting Researcher at Microsoft Re-
search, Redmond.

Peter Bartlett is with the Division of Computer Science and Department of
Statistics, University of California at Berkeley, and with the School of Math-
ematical Sciences, Queensland University of Technology. He is the co-author
of the book ‘Learning in Neural Networks: Theoretical Foundations.’ He has
served as associate editor of the journals Machine Learning, Mathematics of
Control Signals and Systems, the Journal of Machine Learning Research, the
Journal of Artificial Intelligence Research, and the IEEE Transactions on In-
formation Theory. He was awarded the Malcolm McIntosh Prize for Physical
Scientist of the Year in Australia for his work in statistical learning theory. He
was a Miller Institute Visiting Research Professor in Statistics and Computer
Science at U.C. Berkeley in Fall 2001, and a fellow, senior fellow and professor in
the Research School of Information Sciences and Engineering at the Australian
National University’s Institute for Advanced Studies (1993-2003).

Relevant Websites

• Scholarpedia has a section devoted to machine learning containing links
to articles written by leading researchers.
http://www.scholarpedia.org/article/Category:Machine_learning/

• The Encyclopedia of Machine Learning is a valuable online resource avail-

49

http://www.scholarpedia.org/article/Category:Machine_learning/

able through subscription.
http://www.springerlink.com/content/978-0-387-30768-8/

• The Journal of Machine Learning Research a leading open access journal
publishing high quality articles in machine learning and related topics.
http://jmlr.csail.mit.edu/

• Another high quality journal publishing articles on machine learning and
related topics is Machine Learning.
http://www.springer.com/computer/ai/journal/10994

• There is a Google group for postings of possible interest to learning theory
researchers.
http://groups.google.com/group/learning-theory/

• The website of the International Machine Learning Society. The soci-
ety organizes the annual International Conference on Machine Learning
(ICML).
http://www.machinelearning.org/

• The website of the Association for Computational Learning. The associ-
ation organizes the annual Conference on Learning Theory (COLT).
http://seed.ucsd.edu/joomla/

• The website of the Neural Information Processing Systems (NIPS) Foun-
dation. The foundation organizes the annual NIPS conference.
http://nips.cc/

• The arXiv is good way to find recent preprints in machine learning and
learning theory.
http://arxiv.org/list/cs.LG/recent/

50

http://www.springerlink.com/content/978-0-387-30768-8/
http://jmlr.csail.mit.edu/
http://www.springer.com/computer/ai/journal/10994
http://groups.google.com/group/learning-theory/
http://www.machinelearning.org/
http://seed.ucsd.edu/joomla/
http://nips.cc/
http://arxiv.org/list/cs.LG/recent/

	Introduction
	Probabilistic Formulation of Learning Problems
	Loss Function and Risk
	Universal Consistency
	Learnability with Respect to a Fixed Class
	ERM and Uniform Convergence
	Bibliographic Note

	Uniform Convergence of Empirical Means
	Concentration Inequalities
	Rademacher Complexity
	Covering Numbers
	Binary Valued Functions: VC Dimension
	Real Valued Functions: Fat Shattering Dimension

	Model Selection
	Structural Risk Minimization
	Model Selection via Penalization
	Data Driven Penalties Using Rademacher Averages
	Hold-out Estimates

	Alternatives to Uniform Convergence
	Sample Compression
	Stability
	PAC-Bayesian Analysis

	Computational Aspects
	The PAC Model
	Weak and Strong Learning
	Random Classification Noise and the SQ Model
	The Agnostic PAC Model
	The Mistake Bound Model
	Halving and Weighted Majority
	Perceptron and Winnow

	Beyond the Basic Probabilistic Framework
	Conclusions and Future Trends

