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Abstract

A hallmark of modern machine learning is its ability to deal with high dimensional
problems by exploiting structural assumptions that limit the degrees of freedom in
the underlying model. A deep understanding of the capabilities and limits of high
dimensional learning methods under specific assumptions such as sparsity, group
sparsity, and low rank has been attained. Efforts [1, 2] are now underway to distill
this valuable experience by proposing general unified frameworks that can achieve
the twin goals of summarizing previous analyses and enabling their application
to notions of structure hitherto unexplored. Inspired by these developments, we
propose and analyze a general computational scheme based on a greedy strategy
to solve convex optimization problems that arise when dealing with structurally
constrained high-dimensional problems. Our framework not only unifies existing
greedy algorithms by recovering them as special cases but also yields novel ones.
Finally, we extend our results to infinite dimensional settings by using interesting
connections between smoothness of norms and behavior of martingales in Banach
spaces.

1 Introduction

Increasingly in modern settings, in domains across science and engineering, one is faced with the
challenge of working with high-dimensional models where the number of parameters is large, partic-
ularly when compared to the number of observations. In such high-dimensional regimes, a growing
body of literature in machine learning and statistics has shown that it is typically impossible to obtain
consistent estimators unless some low-dimensional “structure” is imposed on the high dimensional
object that is being estimated from the data. For instance, the signal could be sparse in some basis,
could lie on some manifold, have some graphical model structure, or be matrix-structured with a
low rank. Indeed, given the variety of high dimensional problems that researchers face, it is natural
that many novel notions of such low-dimensional structure will continue to appear in the future.

There are a variety of issues that researchers have grappled with in this area but two themes stand out.
First, there is the statistical problem of identifying the minimum amount of data needed to accurately
estimate high-dimensional objects that are structurally constrained. Second is the computational is-
sue of designing efficient algorithms that, in the ideal case, can recover high dimensional objects
from a limited amount of data. Both of these themes have spurred a huge amount of work over the
past decade. For each of the specific structures, a large body of work has studied regularized and
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constrained M -estimators, where some loss function such as the negative log-likelihood of the data
which measures goodness of fit to the data, is regularized by a function appropriate to the assumed
structure, or constrained to lie within an appropriately chosen set. In recent years, researchers [1, 2]
studying the statistical properties of such estimators have started discovering commonalities among
proofs and analyses and have proposed unified frameworks that take advantage of such commonal-
ities. Specifically, using a single theorem, they are able to rederive a wide range of known results
on high-dimensional consistency and error bounds for the various regularized and constrained es-
timators. The potential benefits are obvious: distillation of existing ideas and knowledge and the
enabling of novel applications that are unexplored to date.

In this paper, we consider the computational facet of such high-dimensional estimation, and pro-
pose a general computational scheme that can be used for recovering objects with low-dimensional
structure in the high dimensional setting. A key feature of our general method is that, at each step, it
greedily chooses to add a single “simple element” or “atom” to the current representation. The idea,
of course, is not new. Indeed we show that our general framework yields several existing greedy
algorithms if we specialize it appropriately. It also yields novel algorithms that, to the best of our
knowledge, have not appeared in the literature so far.

Greedy algorithms for optimizing smooth convex functions over the `1-ball [3, 4, 5], the probability
simplex [6] and the trace norm ball [7] have appeared in the recent literature. Other recent references
on greedy learning algorithm for high-dimensional problems include [8, 9]. Greedy algorithms have
also been studied in approximation theory [10, 11] to approximate a given function, viewed as an
element of a Banach space of functions, using convex combinations of “simple” functions. There is
also the well-known viewpoint of seeing boosting algorithms as greedy minimization algorithms in
function space (see, for example, [12, Section 3], and the references therein). Often, the proofs and
results in these various settings resemble each other to a great extent. There is thus clearly a need
for unification of ideas and proofs.

In this paper, we focus on the underlying similarities between the greedy algorithms mentioned
above. All these algorithms can be seen as specializations of a general computational scheme, with
specific choices of the loss function, regularization or constraint set, and assumptions on the low-
dimensional structure. Is there a commonality in their analyses of convergence rates, and are there
key properties that inform such analyses? Here, we identify two such key properties. The first is a
restricted smoothness property (RSP) parameter (see also [13], for a similar quantity), which relates
the smoothness of the function when restricted to sets with low-dimensional structure, and which
depends on the ambient space norm, as well as a potentially distinct norm in which smoothness is
established. The other, established in [1, 2], measures the size of the low-dimensional structured
object with respect to an “atomic” norm. Using these two quantities, we are able to provide a
general theorem that yields convergence rates for general greedy methods. We recover a wide range
of existing results, as well as some potentially novel ones, such as for block-sparse matrices, low-
rank tensors, and permutation matrices. In certain cases, most notably for low rank tensors, the
scheme appears to lead to a greedy step that is intractable, which leads to intriguing questions about
tractable approximations that we hope will be adequately addressed in the future. We then show
how to extend these results to a general infinite-dimensional setting, by extending our definition of
the restricted smoothness property (RSP) parameter, which allows us to obtain rates for Lp spaces
as well Banach spaces with Martingale type p. For the latter, the RSP parameter hinges on the
rate at which martingale difference sequences concentrate in that space, which provides yet another
connection to the folk-lore statement that the “curse of dimensionality” in high dimensional settings
is sometimes accompanied with the “blessings of concentration of measure”.

2 Preliminaries

2.1 Atoms, Norms, and Structure

In Negahban et al.’s work[1], any specific structure such as sparsity is related to a low-dimensional
subspace of structured vectors. In Chandrasekaran et al.’s work [2], this notion of structure is dis-
tilled further by the use of “atoms.” Specifically, given a set A of very “simple” objects, called
atoms, we can say that a vector x is simple (with some low-dimensional structure) if it can be writ-
ten as a linear combination of few atoms: x =

∑k
i=1 ciai, where k is small relative to the ambient

2



dimensionality. They then use these atoms to generalize the idea behind the use of `1-norm for
sparsity, trace or nuclear norm for low rank, etc.

Let A be a collection of atoms. We start by assuming [2] that these atoms lie in a finite-dimensional
space, and that in particular A is a compact subset of some Euclidean space Rp. Later, in Section 6,
we will extend our treatment to include the case where the atoms belong to an infinite-dimensional
space. Let CA denote the convex hull of A and define the gauge:

‖x‖A := inf{t ≥ 0 : x ∈ t CA)} . (1)

Note that the gauge ‖ · ‖A is not a norm in general, unless for instance A satisfies a technical
condition, namely that it be centrally symmetric: x ∈ A iff − x ∈ A. Also, define the support
function, ‖x‖?A := sup{〈x,a〉 : a ∈ A}. If ‖ · ‖A happens to be a norm, then this is just the dual
norm of ‖ · ‖A.

2.2 Examples

Example 1. (Sparse vectors) A huge amount of recent literature deals with the notion of sparsity
of high-dimensional vectors. Here, the set A ⊂ Rp of atoms is finite and consists of the 2p vectors
±ei. This is a centrally symmetric set and hence ‖ · ‖A becomes a norm, viz. the `1-norm.
Example 2. (Sparse non-negative vectors) Using a slight variation on the previous example, the
atoms can be the p non-negative basis vectors ei. The convex hull CA is the (p − 1)-dimensional
probability simplex. This is not centrally symmetric and hence ‖ · ‖A is not a norm.
Example 3. (Group sparse matrices) Here the structure we have in mind for a p× k matrix is that
it only has a few non-zero rows. This generalizes Example 1 which can be thought of as the case
when k = 1. There are an infinite number of atoms: all matrices with a single non-zero row where
that row has `q-norm 1 for some q > 1. The convex hull CA becomes the unit ball of the ‖ · ‖q,1
group norm on Rp×k that is defined to be the sum of the `q-norms of the rows of its matrix argument.
Example 4. (Low rank matrices) This is another example that has attracted a huge amount of
attention in the recent literature. The set 1 A ∈ Rp×p of atoms here is infinite and consists of rank-
one matrices with Frobenius norm 1. This is centrally symmetric and ‖ · ‖A becomes the trace norm
(also called the nuclear or Schatten-1 norm, it is equal to the sum of the singular values of a matrix).
Example 5. (Low rank tensors) This is a generalization of the previous example to higher order
tensors. Considering order three tensors, the set A of atoms can be taken to be all rank-one tensors
of the form u1 ⊗ u2 ⊗ u3 ∈ Rp×p×p for ui ∈ Rp, ‖ui‖2 = 1. Their convex hull is the unit ball of
‖ · ‖A which can thought of as the tensor nuclear norm. Unfortunately, the tensor nuclear norm is
intractable to compute and hence there is a need to consider relaxations to retain tractability.
Example 6. (Permutation matrices) Here, we consider permutation matrices2 of size p× p as the
setA of atoms. Even though there are p! of them, their convex hull has a succinct description thanks
to the Birkhoff-von Neumann theorem: the convex hull of permutation matrices is the set of doubly
stochastic matrices. As we shall see later, this fact will be crucial for the greedy algorithm to be
tractable in this case.

3 Problem Setup

We consider the general optimization problem

min
x : ‖x‖A≤κ

f(x), (2)

where f is a convex and smooth function, and {x : ‖x‖A ≤ κ} is the atomic norm constraint set
that encourages some specific structure. This is a convex optimization problem that is a constrained
version of the usual regularized problem, minx f(x) + µ‖x‖A. A line of recent work (see, for
example, [2], and the references therein) has focused on different cases, with different atomic norms,

1For simplicity we consider square matrices. It is definitely also possible to consider rectangular matrices
in Rp1×p2 for p1 6= p2

2A permutation matrix is one consisting only of 0’s & 1’s such that there is exactly a single 1 in each row &
column. A non-negative matrix with every row & column sum equal to 1 is called a doubly stochastic matrix.
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but largely on the linear case, where f(x) = 1
2‖y − Φx‖22, for a given y ∈ Rn and a linear map

Φ : Rp → Rn. Φ is typically a linear measurement operator that generates a noisy measurement
y ∈ Rn from an underlying “simple” signal xtr and ‖ · ‖2 is the standard Euclidean norm in Rn. For
the linear case, projected gradient type methods have been suggested [2]. In this paper, we consider
the general problem in (2), with a general loss function f(x), and a general constraint set induced
by a structure-inducing atomic “norm” ‖ · ‖A.

3.1 Smoothness

We now discuss our assumptions on the loss function f in (2). We start by defining a restricted
smoothness property that we require for our analysis. Consider a convex function f : Rp → R that
is differentiable on some convex subset S of Rp. Given a norm ‖·‖ on Rp, we would like to measure
how “smooth” the function f is on S with respect to ‖ ·‖. Towards this end, we define the following:

Definition 1. Given a set S, and norm ‖ · ‖, we define the Restricted Smoothness Property (RSP)
constant of a function f : Rp → R as

L‖·‖ (f ;S) := sup
x,y∈S,α∈(0,1]

f((1− α)x + αy)− f(x)− 〈∇f(x), α(y − x)〉
α2‖y − x‖2

. (3)

Since f is convex, it is clear that L‖·‖ (f ;S) ≥ 0. The larger it is, the larger the function f “curves
up” on the set S.

Remark 1. (Connection to Lipschitz continuity of the gradient) Recall that a function f : Rp → R
is said to have L-Lipschitz continuous gradients w.r.t. ‖ · ‖ if for all x,y ∈ Rp, we have ‖∇f(x)−
∇f(y)‖? ≤ L · ‖x − y‖ where ‖ · ‖? is the norm dual to ‖ · ‖. Using the mean value theorem it is
easy to see that if f has L-Lipschitz continuous gradient w.r.t. ‖ · ‖ then L‖·‖ (f ;S) ≤ L. However,
L‖·‖ (f ;S) can be much smaller since it only looks at the behavior of f on S and cares less about
the global smoothness of f .

Remark 2. (Connection to boundedness of the Hessian) If the function f is twice differentiable on
S, using second order Taylor expansion, L‖·‖ (f ;S) can be bounded as

L‖·‖ (f ;S) ≤ sup
x,y,z∈S

〈
∇2f(z)(y − x),y − x

〉
‖y − x‖2

. (4)

Again, suppose we have global control on ∇2f(x) in the form ∀z ∈ Rp,
∣∣∥∥∇2f(z)

∥∥∣∣ ≤ H where
|‖·‖| is the ‖ · ‖ → ‖ · ‖? operator norm of the matrix M defined as |‖M‖| := sup‖x‖≤1 ‖Mx‖?.
Then, we immediately have L‖·‖ (f ;S) ≤ H but this inequality might be loose in general.

In the statement of our results, we will derive convergence rates that would depend on this Restricted
Smoothness Property (RSP) constant of the loss function f in (2).

4 Greedy Algorithm and Analysis

In this section, we consider a general greedy scheme to solve the general optimization problem in (2)
where f is a convex, smooth function. The idea is to add one atom to our representation at a time in a
way that the stucture of the set of atoms can be exploited to perform the greedy step efficiently. Our
greedy method is applicable to any constrained problem where the objective is sufficiently smooth.

Algorithm 1 A general greedy algorithm to minimize a convex function f over the κ-scaled atomic-
norm “ball”

1: x0 ← κa0 for an arbitrary atom a0 ∈ A
2: for t = 0, 1, 2, 3, . . . do
3: at ← argmina∈A 〈∇f(xt),a〉
4: αt ← argminα∈[0,1] f(xt + α(κat − xt))
5: xt+1 ← xt + αt(κat − xt)
6: end for
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Theorem 1. Assume that f is convex and differentiable and let ‖ · ‖ be any norm. Then, for any
T ≥ 1, the iterates generated by Algorithm 1 lie in κCA and satisfy,

f(xT )− f(x?) ≤
8κ2 · L‖·‖ (f ;κCA) · ‖A‖2

T
, (5)

for any solution x? of (2). Here L‖·‖ (f ;κCA) is the smoothness constant as defined in (3) and
‖A‖ := supa∈A ‖a‖.

Proof. Let us use the abbreviations L and R for L‖·‖ (f ;S) and ‖A‖ respectively. The fact that the
iterates lie in κCA follows immediately from the definition of the algorithm and a simple induction.
Now assuming xt ∈ κCA, we have, by definition of L, for any α ∈ [0, 1],

f(xt + α(κat − xt)) ≤ f(xt) + α 〈∇f(xt), κat − xt〉+ 1
2α

2L‖κat − xt‖2

≤ f(xt) + α 〈∇f(xt), κat − xt〉+ 1
2α

2L
(
2‖κat‖2 + 2‖xt‖2

)
≤ f(xt)− α(−〈∇f(xt), κat〉+ 〈∇f(xt),xt〉) + 2α2Lκ2R2 . (6)

The last inequality holds because ‖κat‖, ‖xt‖ ≤ κR. Now, for any minimizer x? of f , we have, by
convexity of f ,

δt := f(xt)− f(x?) ≤ 〈∇f(xt),xt − x?〉 = 〈∇f(xt),xt〉 − 〈∇f(xt),x?〉
≤ 〈∇f(xt),xt〉 − 〈∇f(xt), κat〉 . (7)

The last inequality holds because, at is the minimizer of the linear function 〈∇f(xt), ·〉 overA (and
hence also over CA) and x?/κ ∈ CA. Thus, 〈∇f(xt),at〉 ≤ 〈∇f(xt),x?/κ〉. Plugging (7) into (6),
we have, for any α ≥ 0, f(xt+α(κat−xt)) ≤ f(xt)−αδt+2α2Lκ2R2. Since xt+1 is chosen by
minimizing the LHS over α ∈ [0, 1], we have f(xt+1) ≤ f(xt) + minα∈[0,1](−αδt + 2α2Lκ2R2).
Thus, we have, for all t ≥ 0, δt+1 ≤ δt + minα∈[0,1](−αδt + 2α2Lκ2R2). For t = 0, choose
α = 1 on the RHS to get δ1 ≤ 2Lκ2R2. Since δt’s are decreasing, this shows δt ≤ 2Lκ2R2 for all
t ≥ 1. Hence, for t ≥ 1, we can choose α = δt/4Lκ2R2 ∈ [0, 1

2 ] on the RHS to get ∀t ≥ 1, δt+1 ≤
δt − δ2t

8Lκ2R2 . Solving this recursion easily gives, for all t ≥ 1, f(xt+1)− f(x?) ≤ 8κ2·L·R2

t .

Remark 3. We emphasize that the norm ‖ · ‖ appears only in the analysis and not in the algorithm.
Since the bound of Theorem 1 is simultaneously true for all norms ‖ · ‖, the best bound is achieved
by choosing a norm that minimizes the product of ‖A‖2 and L‖·‖ (f ;κCA).
Remark 4. We make the simple but useful observation that the iterate xt can be written as a convex
combination of at most t+ 1 atoms, namely a0,a1, . . . ,at.
Remark 5. Given κ, Algorithm 1 is completely parameter free. This is a nice feature from a practi-
cal perspective as it frees the practitioner from the task of tuning parameters.

5 Special Cases

Let us revisit the examples from Section 2.2 to see what concrete algorithms and accuracy bounds
we get by specializing Algorithm 1 and its bound (Theorem 1) to them.

Sparse vectors The greedy step reduces to

at ← argmin
a∈±{e1,...,ep}

〈∇f(xt),a〉 .

Clearly, assuming that the gradient is already available, this can be done in O(p) time by finding
j ∈ {1, . . . , p} such that j = argmaxj′ |[∇f(xt)]j′ | and setting at = − sign([∇f(xt)]j)ej . This
actually gives a well-known algorithm whose roots go back to the 1950s [3]. More recently, a variant
appeared as the Forward Greedy Selection algorithm in [5] (see also [4]). In fact, the original Frank-
Wolfe algorithm can be applied whenever the set CA is polyhedral. If we choose the norm ‖·‖ to be `q
then ‖A‖ is 1 irrespective of q ∈ [1,∞] and the smoothness constant L‖·‖q

(f ;κCA) is an increasing
function of q. Hence to minimize the bound, we should choose p = 1 and measure smoothness of f
over the κ-scaled `1-ball using the `1-norm. When f(x) = 1

2‖y−Φx‖22, we can use the connection
to Hessian bounds (Remark 2) and immediately get the upper bound 8κ2 · ‖Φ>Φ‖1→∞/T where
the norm ‖M‖1→∞ := sup‖x‖1≤1 ‖Mx‖∞ is simply maxi,j |Mi,j |.
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Sparse non-negative vectors The greedy step becomes

at ← argmin
a∈{e1,...,ep}

〈∇f(xt),a〉 .

As in the previous example, this can be done in O(p) time given the gradient entries by computing
j = argminj′∈{1,...,p}[∇f(xt)]j′ and setting at = ej . This particular algorithm to optimize a
smooth function over the (scaled) probability simplex appears in [6]. Following the same reasoning
as above, we get the best (among all `q-norms) bound if we choose ‖ · ‖ to be ‖ · ‖1 and then our
smoothness constant becomes similar to Clarkson’s “nonlinearity measure” that he denotes by Cf .

Group sparse matrices This is an interesting case since there are an infinite number of atoms.
But still the greedy step

at ← argmin
a : nnzrows(a)=1,‖a‖q,1=1

〈∇f(xt),a〉

(where nnzrows counts the number of non-zero rows of a matrix) can be computed easily as follows.
Let q′ be the dual exponent of q that satisfies 1/q + 1/q′ = 1 and find the row j of ∇f(xt) with
maximal `q′ norm. Then, set at to be the matrix all of whose rows are zero except row j. In
row j, place the vector u> where u ∈ Rk×1 is such that3

〈
u, [∇f(xt)]>j,:

〉
= −‖[∇f(xt)]>j,:‖q′

and ‖u‖q = 1. Such a vector u can be found in closed form. For the case f(xt) = 1
2‖y − Φx‖2F ,

choosing the norm ‖·‖ in Theorem 1 to be ‖·‖q,1 (and this gives the optimal bound among all ‖·‖q,r
norms for r > 1), we get the accuracy bound: 8κ2 ·‖Φ>Φ‖q,1→ q,∞/T where the q, 1→ q,∞ norm
of the operator Φ>Φ is defined as sup{‖Φ>ΦM‖q,∞ : M ∈ Rp×k, ‖M‖q,1 ≤ 1}. This algorithm
and its analysis are novel to the best of our knowledge. However, we note that a related greedy
algorithm (that does not directly optimize the objective (2)) called Group-OMP appears in [14, 15].

Low rank matrices As in the previous case, we have an infinite number of atoms: all rank-1
matrices with Frobenius norm 1. Yet, the greedy step

at ← argmin
a : rank(a)=1,‖a‖F =1

〈∇f(xt),a〉

can be done in polynomial time by computing the SVD,∇f(xt) = UΣV > and setting a = −u1v>1
where u1,v1 are the left, right singular vectors corresponding to the largest singular value σ1. Since
we only need the singular vectors corresponding to the largest singular value, the computation of
at can be done much faster than the time it takes to compute a full SVD. For the case f(x) =
1
2‖y−Φx‖2F , the bound of Theorem 1 is minimized, among all Schatten-p norms4, by using ‖ · ‖ =
‖ · ‖S(1), i.e. the trace or nuclear norm. Since the objective is twice differentiable, using Remark 2
we get the following upper bound on the accuracy: 8κ2 · ‖Φ>Φ‖S(1)→S(∞)/T which depends
on the S(1) → S(∞) operator norm of Φ>Φ which is defined as sup{‖Φ>ΦM‖S(∞) : M ∈
Rp×p, ‖M‖S(1) ≤ 1}. This algorithm was recently independently discovered and analyzed in [7].

Low rank tensors Here, the greedy step

at ← argmin
a : a=u1⊗u2⊗u3,‖ui‖2=1

〈∇f(xt),a〉

appears intractable. Indeed, the above problem is closely related to the problem of finding the best
rank-one approximation to a given tensor which is known to be NP-hard [16] already for order-3
tensors. However, as described in [2], it is possible to construct a family of outer approximations
CA ⊆ . . . ⊆ THk+1 ⊆ THk such that, for any fixed k, THk can be described by a semidefinite
program of size polynomial in k. So, even though the exact greedy step above may not be tractable,
we can use these “theta bodies” (whence the notation “TH”) to approximate the greedy step. The
iterates will no longer lie strictly in the tensor nuclear ball of the given radius. Understanding the
implications of such approximations and their analysis are interesting questions to pursue but lie
beyond the scope of the current paper.

3We use MATLAB notation Mj,: to denote row j of a matrix M .
4The Schatten-q norm of a matrix is the `q norm of its singular values.
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Permutation matrices Here, fortunately, we again do not face intractability: the step
aT ← argmin

a : a is a permutation matrix
〈∇f(xt),a〉

reduces to solving a linear assignment problem with costs C(i, j) = [∇f(xt)]i,j . This can be
efficiently done using, for example, the Hungarian algorithm. Another way to see that the above
step does not involve combinatorial explosion is to appeal to the Birkhoff-von Neumann theorem
that states that the convex hull of permutation matrices is the set of doubly stochastic matrices. As
a result, the above reduces to minimizing a linear objective 〈∇f(xt),M〉 subject to polynomially
many constraints: M ≥ 0, M1 = 1 and M>1 = 1.

6 Extension to Infinite Dimensional Banach Spaces

In thi section, we consider an extension of the framework behind Algorithm 1 to the case when the
set of atoms are in some infinite dimensional (real) Banach space (V, ‖ · ‖). For example, the atoms
could be some “simple” real valued functions on some interval [a, b] ⊆ R. The two ingredients in
our framework were the atomic norms, and the Restricted Smoothness Property (RSP) parameters.
In [2], and in Section 2.1, the atoms were considered as belonging to a finite dimensional Euclidean
space. Note however that the definition of the atomic norms in (1) did not make use of the topology
of the ambient space, and hence is applicable even when the atoms belong to some Banach space
(V, ‖·‖). However, our definition of the RSP parameter in (3) relied critically on the Euclidean inner
product, whence we will now extend this to the infinite dimensional case in the sequel.

Consider a convex continuous Fréchet differentiable function f : V → R, and let∇f(x) denote the
Fréchet derivative of f at x. Let 〈·, ·〉 : V ? × V → R denotes the bilinear function (which is not
an inner product in general) 〈X,x〉 := X(x) for x ∈ V and X in the dual space V ? (consisting of
bounded linear functions on V ).
Definition 2. Given a Banach space (V, ‖ · ‖), and a set S ⊆ V , and some r ∈ [1, 2], we de-
fine the Restricted Uniform Smoothness Property (RUSP) constant of a convex continuous Fréchet
differentiable function f : V → R as

Lr (f ;S) := sup
x,y∈S,α∈[0,1]

f((1− α)x + αy)− f(x)− 〈∇f(x), α(y − x)〉
(1/r)αr‖y − x‖r

. (8)

This need not be bounded in general, but would be bounded for instance if the function f were r-
uniformly smooth (though this would be a far stronger condition). Suppose the set of atoms A ⊆ V
is such that maxa∈A 〈X,a〉 is defined for any X ∈ V ?. Then, we can define a straightforward
extension of Algorithm 1 given as Algorithm 2.

Algorithm 2 A general greedy algorithm to minimize a continuous Fréchet differentiable convex
function f over the convex hull of a set of atoms A in a Banach space (V, ‖ · ‖)

1: x0 ← a0 for an arbitrary atom a0 ∈ A
2: for t = 0, 1, 2, 3, . . . do
3: Xt ∈ V ? ← ∇f(xt), the Fréchet derivative of f at xt
4: at ← argmaxa∈A 〈−Xt,a〉
5: αt ← argminα∈[0,1] f(xt + α(at − xt))
6: xt+1 ← xt + αt(at − xt)
7: end for

The following result proves a general rate of convergence for Algorithm 2. Since the proof follows
the proof of Theorem 1 very closely, we defer it to the appendix.
Theorem 2. Suppose that (V, ‖ · ‖) is a Banach space and let f : V → R be a convex continuous
Fréchet differentiable function. Let A be a set of atoms such that ‖a‖ ≤ R for all a ∈ A, and let
S = conv(A). Suppose the Restricted Uniform Smoothness Property (RUSP) constant Lr (f ;S) of
f is bounded for some r ∈ [1, 2]. Then,

f(xt)− inf
x∈S

f(x) = O

(
Lr (f ;S) Rr

tr−1

)
where the hidden constant depends on r only.
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6.1 Rates of Convex Approximation in Lp spaces

For p ∈ (1,∞) the space Lp([a, b]) consists of all functions g : [a, b]→ R such that the (Lebesgue)
integral

∫ b
a
|g(x)|pdx is finite. The space Lp is a Banach space once we equip it with the norm

‖g‖Lp :=
(∫ b

a
|g(x)|pdx

)1/p

. LetA be a set of atoms in Lp with bounded norm and let h ∈ Lp be
a function that we wish to approximate using convex combinations of the atoms. Since, the function
g 7→ ‖g‖p

′

Lp
is p′ = min{p, 2} uniformly smooth for p ∈ (1,∞), we can use Algorithm 2 to generate

a sequence of functions g1, g2, . . . such that gt is a convex combination of only t atoms. Moreover,
we will have the guarantee: ‖gt+1 − h‖p

′

Lp
− infg∈conv(A) ‖g − h‖p

′

Lp
= O

(
1

tp′−1

)
. Such rates of

convex approximation in non-Hilbert spaces have been studied earlier (see, for example, [10, 11]).
Note that, unlike [10], we do not assume that h ∈ conv(A). If that is the case, the above rate
simplifies to the rates given in [10]: O(t−1+ 1

p ) for p ∈ (1, 2), and O(t−
1
2 ) for p > 2.

6.2 Rates of Convex Approximation in Spaces with Martingale Type p

Note the fact that, in the previous subsection, the only property of Lp spaces that we used to get
rates was the fact that the norm to some power was a uniformly smooth convex function. It turns out
that the existence of uniformly smooth functions in a given Banach space is intimately connected to
the behavior of martingale difference sequences in that space. To precisely state the connection, we
need to define the notion of martingale type (also called Haar type) [17, p. 320]. A Banach space
(V, ‖ · ‖) is said to have martingale type p (M-type p in short) if there exists a constant Kp such that,
for all T ≥ 1, and any V -valued martingale difference sequence d1, . . . ,dT , we have

E

[∥∥∥∥∥
T∑
t=1

dt

∥∥∥∥∥
]
≤ Kp ·

(
p∑
t=1

E [‖dt‖p]

)1/p

.

Note that, by triangle inequality for norms, any Banach space always has M-type 1 while a Hilbert
space (i.e. the norm ‖ · ‖ comes from an inner product) has M-type 2. Hilbert space essentially
have the best M-type in the sense that no Banach space has M-type p for p > 2. The connection of
M-type to uniform smoothness is made precise by the following remarkable theorem (see also [18]).
Theorem (Pisier, [19]. A Banach space has M-type p iff there is an equivalent norm5 ‖·‖# such
that the function ‖·‖p# is p-uniformly smooth.

Consider now the setting of the previous subsection where we have some h ∈ conv(A) for some
set A of atoms in an arbitrary Banach space (V, ‖ · ‖). Using Pisier’s theorem, we get the following
corollary of Theorem 2.
Corollary 3. SupposeA is a set of atoms in a Banach space (V, ‖ · ‖) that has M-type p and let h ∈
conv(A). Suppose Algorithm 2 generates iterates g1, g2, . . . when run on the function g 7→ ‖g‖p#
whose existence is guaranteed by Pisier’s theorem. Then, we have, ‖gt+1 − h‖ = O

(
t−1+ 1

p

)
.

7 Future Work

First, we envisage the algorithm being used to compute the entire regularization path correspond-
ing to all values of the constraint parameter κ. Using a warm start strategy, where the algorithm
for higher values of κ is initialized with the solution for lower values, can be very helpful here.
Exploring this to get a general practical algorithm to compute the entire path would be very nice.
Third, linear convergence guarantees for projected gradient type methods have been obtained by [13]
where they make the additional assumption of (generalized) restricted strong convexity. It should be
possible to derive similar faster rates for our greedy algorithm.
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Appendix

A Proofs

Proof of Theorem 2. Fix ε > 0 and let x?(ε) ∈ conv(A) be such that

f(x?(ε)) ≤ inf
x∈conv(A)

f(x) + ε .

Using smoothness we get, for any α,

f(xt + α(at − xt)) ≤ f(xt) + α 〈∇f(xt),at − xt〉+
L

r
αr‖at − xt‖r

≤ f(xt) + α 〈∇f(xt),at − xt〉+
L

r
αr (‖at‖+ ‖xt‖)r

≤ f(xt)− α(〈∇f(xt),at〉+ 〈∇f(xt),xt〉) +
L

r
(2Rα)r . (9)

The second inequality follows by triangle inequality. The last inequality follows because
‖at‖, ‖xt‖ ≤ R. Now, by convexity of f ,

δt := f(xt)− f(x?(ε)) ≤ 〈∇f(xt),xt − x?(ε)〉
≤ 〈∇f(xt),xt〉+ 〈−∇f(xt),x?(ε)〉
≤ 〈∇f(xt),xt〉+ 〈−∇f(xt),at〉 . (10)

The last inequality holds because at maximized the linear functional 〈−∇f(xt), ·〉 overA and hence
also over conv(A). Thus, 〈−∇f(xt),at〉 ≥ 〈−∇f(xt),x?(ε)〉 as x?(ε) ∈ conv(A). Plugging (10)
into (9), we have, for any α ≥ 0,

f(xt + α(at − xt)) ≤ f(xt)− αδt +
L

r
(2Rα)r .

Since xt+1 is chosen by minimizing the LHS over α ∈ [0, 1], we have

f(xt+1) ≤ f(xt) + min
α∈[0,1]

(
−αδt +

L

r
(2Rα)r

)
.

Thus, we have, for all t ≥ 0,

δt+1 ≤ δt + min
α∈[0,1]

(
−αδt +

L

r
(2Rα)r

)
.

For t = 0, choose α = 1 on the RHS to get δ1 ≤ L(2R)r/r. Since δt’s are monotonically non-
increasing, this shows δt ≤ L(2R)r/r for all t ≥ 1. Hence, for t ≥ 1, we can choose α such that
αr−1 = δt/(L2rRr) ∈ [0, 1

r ] on the RHS to get

∀t ≥ 1, δt+1 ≤ δt −
(

1− 1
r

)
δ

r
r−1
t

L
1

r−1 (2R)
r

r−1
.

Solving this recursion easily gives, for all t ≥ 1,

f(xt+1)− f(x?) ≤ KrLR
r

tr−1
,

for some Kr that depends only on r.

Proof of Corollary 3. Since h ∈ conv(A) and ‖·‖# is equivalent to ‖ · ‖, we have

inf
g∈conv(A)

‖h− g‖p# = 0 .

Thus, using p-uniform smoothness of ‖· − h‖p#, Theorem 2 gives

‖gt+1 − h‖p# = O
(
t−p+1

)
.

The corollary now follows by again noting the equivalence of the two norms.
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