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Abstract. Bounded parameter Markov Decision Processes (BMDPs)
address the issue of dealing with uncertainty in the parameters of a
Markov Decision Process (MDP). Unlike the case of an MDP, the notion
of an optimal policy for a BMDP is not entirely straightforward. We
consider two notions of optimality based on optimistic and pessimistic
criteria. These have been analyzed for discounted BMDPs. Here we pro-
vide results for average reward BMDPs.

We establish a fundamental relationship between the discounted and
the average reward problems, prove the existence of Blackwell optimal
policies and, for both notions of optimality, derive algorithms that con-
verge to the optimal value function.

1 Introduction

Markov Decision Processes (MDPs) are a widely used tool to model decision
making under uncertainty. In an MDP, the uncertainty involved in the outcome
of making a decision in a certain state is represented using various probabilities.
However, these probabilities themselves may not be known precisely. This can
happen for a variety of reasons. The probabilities might have been obtained via
an estimation process. In such a case, it is natural that confidence intervals will
be associated with them. State aggregation, where groups of similar states of
a large MDP are merged to form a smaller MDP, can also lead to a situation
where probabilities are no longer known precisely but are only known to lie in
an interval.

This paper is concerned with such higher level uncertainty, namely uncertainty
about the parameters of an MDP. Bounded parameter MDPs (BMDPs) have
been introduced in the literature [1] to address this problem. They use intervals
(or equivalently, lower and upper bounds) to represent the set in which the
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parameters of an MDP can lie. We obtain an entire family, say M, of MDPs by
taking all possible choices of parameters consistent with these intervals. For an
exact MDP M and a policy μ (which is a mapping specifying the actions to take
in various states), the α-discounted return from state i, Vα,μ,M (i) and the long
term average return Vμ,M (i) are two standard ways of measuring the quality of
μ with respect to M . When we have a family M of MDPs, we are immediately
faced with the problem of finding a way to measure the quality of a policy. An
optimal policy will then be the one that maximizes the particular performance
measure chosen.

We might choose to put a distribution over M and define the return of a
policy as its average return under this distribution. In this paper, however, we
will avoid taking this approach. Instead, we will consider the worst and the best
MDP for each policy and accordingly define two performance measures,

V opt
μ (i) := sup

M∈M
Vμ,M (i)

V pes
μ (i) := inf

M∈M
Vμ,M (i)

where the superscripts denote that these are optimistic and pessimistic criteria
respectively. Analogous quantities for the discounted case were defined in [1] and
algorithms were given to compute them. In this paper, our aim is to analyze the
average reward setting.

The optimistic criterion is motivated by the optimism in the face of uncer-
tainty principle. Several learning algorithms for MDPs [2,3,4,5] proceed in the
following manner. Faced with an unknown MDP, they start collecting data which
yields confidence intervals for the parameters of the MDP. Then they choose a
policy which is optimal in the sense of the optimistic criterion. This policy is
followed for the next phase of data collection and the process repeats. In fact,
the algorithm of Auer and Ortner requires, as a blackbox, an algorithm to com-
pute the optimal (with respect to the optimistic criterion) value function for a
BMDP.

The pessimistic criterion is related to research on robust control of MDPs [6].
If nature is adversarial, then once we pick a policy μ it will pick the worst possible
MDP M from M. In such a scenario, it is reasonable to choose a policy which
is best in the worst case. Our work also extends this line of research to the case
of the average reward criterion.

A brief outline of the paper is as follows. Notation and preliminary results
are established in Section 2. Most of these results are not new but are needed
later, and we provide independent, self-contained proofs in the appendix. Sec-
tion 3 proves one of the key results of the paper: the existence of Blackwell
optimal policies. In the exact MDP case, a Blackwell optimal policy is a pol-
icy that is optimal for an entire range of discount factors in the neighbourhood
of 1. Existence of Blackwell optimal policies is an important result in the the-
ory of MDPs. We extend this result to BMDPs. Then, in Section 4, we exploit
the relationship between the discounted and average returns together with the
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existence of a Blackwell optimal policy to derive algorithms that converge to
optimal value functions for both optimistic as well as pessimistic criteria.

2 Preliminaries

A Markov Decision Process is a tuple 〈S, A, R, {p(i,j)(a)}〉. Here S is a finite set
of states, A a finite set of actions, R : S �→ [0, 1] is the reward function and pi,j(a)
is the probability of moving to state j upon taking action a in state i. A policy
μ : S �→ A is a mapping from states to actions. Any policy induces a Markov
chain on the state space of a given MDP M . Let Eμ,M [·] denote expectation
taken with respect to this Markov chain. For α ∈ [0, 1), define the α-discounted
value function at state i ∈ S by

Vα,μ,M (i) := (1 − α)Eμ,M

[ ∞∑
t=0

αtR(st)

∣∣∣∣∣ s0 = i

]
.

The optimal value function is obtained by maximizing over policies.

V ∗
α,M (i) := max

μ
Vα,μ,M (i) .

From the definition it is not obvious that there is a single policy achieving the
maximum above for all i ∈ S. However, it is a fundamental result of the theory
of MDPs that such an optimal policy exists.

Instead of considering the discounted sum, we can also consider the long term
average reward. This leads us to the following definition.

Vμ,M (i) := lim
T→∞

Eμ,M

[∑T
t=0 R(st)

∣∣∣ s0 = i
]

T + 1

The above definition assumes that the limit on the right hand side exists for
every policy. This is shown in several standard texts [7]. There is an important
relationship between the discounted and undiscounted value functions of a policy.
For every policy μ, there is a function hμ,M : S �→ R such that

∀i, Vμ,M (i) = Vα,μ,M (i) + (1 − α)hμ,M (i) + O
(
|1 − α|2

)
. (1)

A bounded parameter MDP (BMDP) is a collection of MDPs specified by
bounds on the parameters of the MDPs. For simplicity, we will assume that the
reward function is fixed, so that the only parameters that vary are the transition
probabilities. Suppose, for each state-action pair i, a, we are given lower and
upper bounds, l(i, j, a) and u(i, j, a) respectively, on the transition probability
pi,j(a). We assume that the bounds are legitimate, that is

∀i, a, j, 0 ≤ l(i, j, a) ≤ u(i, j, a) ,

∀i, a,
∑

j

l(i, j, a) ≤ 1 &
∑

j

u(i, j, a) ≥ 1 .
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This means that the set defined1 by

Ci,a := {q ∈ R
|S|
+ : qT 1 = 1 & ∀j, l(i, j, a) ≤ qj ≤ u(i, j, a)}

is non-empty for each state-action pair i, a. Finally, define the collection of MDPs

M := { 〈S, A, R, {pi,j(a)}〉 : ∀i, a, pi,·(a) ∈ Ci,a } .

Given a BMDP M and a policy μ, there are two natural choices for the value
function: an optimistic and a pessimistic one,

V opt
α,μ (i) := sup

M∈M
Vα,μ,M (i) V pes

α,μ (i) := inf
M∈M

Vα,μ,M (i) .

We also define the undiscounted value functions,

V opt
μ (i) := sup

M∈M
Vμ,M (i) V pes

μ (i) := inf
M∈M

Vμ,M (i) .

Optimal value functions are defined by maximizing over policies.

Vopt
α (i) := max

μ
V opt

α,μ (i) Vpes
α (i) := max

μ
V pes

α,μ (i)

Vopt(i) := max
μ

V opt
μ (i) Vpes(i) := max

μ
V pes

μ (i)

In this paper, we are interested in computing Vopt and Vpes. Algorithms
to compute Vopt

α and Vpes
α have already been proposed in the literature. Let

us review some of the results pertaining to the discounted case. We note that
the results in this section, with the exception of Corollary 4, either appear or
can easily be deduced from results appearing in [1]. However, we provide self-
contained proofs of these in the appendix. Before we state the results, we need
to introduce a few important operators. Note that, since Ci,a is a closed, convex
set, the maximum (or minimum) of qT V (a linear function of q) appearing in
the definitions below is achieved.

(Tα,μ,MV ) (i) := (1 − α)R(i) + α
∑

j

pi,j(μ(i))V (j)

(Tα,MV ) (i) := max
a∈A

⎡
⎣(1 − α)R(i) + α

∑
j

pi,j(a)V (j)

⎤
⎦

(
T opt

α,μV
)
(i) := (1 − α)R(i) + α max

q∈Ci,μ(i)

qT V

(
T opt

α V
)
(i) := max

a∈A

[
(1 − α)R(i) + α max

q∈Ci,a

qT V

]
(
T pes

α,μV
)
(i) := (1 − α)R(i) + α min

q∈Ci,μ(i)

qT V

(T pes
α V ) (i) := max

a∈A

[
(1 − α)R(i) + α min

q∈Ci,a

qT V

]
1 We denote the transpose of a vector q by qT .
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Recall that an operator T is a contraction mapping with respect to a norm ‖ · ‖
if there is an α ∈ [0, 1) such that

∀V1, V2, ‖TV1 − TV2‖ ≤ α‖V1 − V2‖ .

A contraction mapping has a unique solution to the fixed point equation TV = V
and the sequence {T kV0} converges to that solution for any choice of V0. It is
straightforward to verify that the six operators defined above are contraction
mappings (with factor α) with respect to the norm

‖V ‖∞ := max
i

|V (i)| .

It is well known that the fixed points of Tα,μ,M and Tα,M are Vα,μ,M and V ∗
α,M re-

spectively. The following theorem tells us what the fixed points of the remaining
four operators are.

Theorem 1. The fixed points of T opt
α,μ , T opt

α , T pes
α,μ and T pes

α are V opt
α,μ ,Vopt

α , V pes
α,μ

and Vpes
α respectively.

Existence of optimal policies for BMDPs is established by the following theorem.

Theorem 2. For any α ∈ [0, 1), there exist optimal policies μ1 and μ2 such
that, for all i ∈ S,

V opt
α,μ1

(i) = Vopt
α (i) ,

V pes
α,μ2

(i) = Vpes
α (i) .

A very important fact is that out of the uncountably infinite set M, only a finite
set is of real interest.

Theorem 3. There exist finite subsets Mopt, Mpes ⊂ M with the following
property. For all α ∈ [0, 1) and for every policy μ there exist M1 ∈ Mopt,
M2 ∈ Mpes such that

V opt
α,μ = Vα,μ,M1 ,

V pes
α,μ = Vα,μ,M2 .

Corollary 4. The optimal undiscounted value functions are limits of the optimal
discounted value functions. That is, for all i ∈ S, we have

lim
α→1

Vopt
α (i) = Vopt(i) , (2)

lim
α→1

Vpes
α (i) = Vpes(i) . (3)

Proof. Fix i ∈ S. We first prove (2). Using Theorem 3, we have

Vopt
α (i) = max

μ
max

M∈Mopt
Vα,μ,M (i) .
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Therefore,

lim
α→1

Vopt
α (i) = lim

α→1
max

μ
max

M∈Mopt
Vα,μ,M (i)

= max
μ

max
M∈Mopt

lim
α→1

Vα,μ,M (i)

= max
μ

max
M∈Mopt

Vμ,M (i)

= Vopt(i) .

The second equality holds because lim and max over a finite set commute. Note
that finiteness is crucial here since lim and sup do not commute. The third
equality follows from (1).

To prove (3), one repeats the steps above with appropriate changes. In this
case, one additionally uses the fact that lim and min over a finite set also
commute.

3 Existence of Blackwell Optimal Policies

Theorem 5. There exist αopt ∈ (0, 1), a policy μopt and an MDP Mopt ∈ Mopt
such that

∀α ∈ (αopt, 1), Vα,μopt,Mopt = Vopt
α .

Similarly, there exist αpes ∈ (0, 1), a policy μpes and an MDP Mpes ∈ Mpes such
that

∀α ∈ (αpes, 1), Vα,μpes,Mpes = Vpes
α .

Proof. Given an MDP M = 〈S, A, R, {pi,j(a)}〉 and a policy μ, define the asso-
ciated matrix PM

μ by
PM

μ (i, j) := pi,j(μ(i)) .

The value function Vα,μ,M has a closed form expression.

Vα,μ,M = (1 − α)
(
I − αPM

μ

)−1
R

Therefore, for all i, the map α �→ Vα,μ,M (i) is a rational function of α. Two
rational functions are either identical or intersect each other at a finite number
of points. Further, the number of policies and the number of MDPs in Mopt is
finite. Therefore, for each i, there exists αi ∈ [0, 1) such that no two functions
in the set

{α �→ Vα,μ,M (i) : μ : S �→ A, M ∈ Mopt}
intersect each other in the interval (αi, 1). Let αopt = maxi αi. By Theorem 2,
there is an optimal policy, say μopt, such that

V opt
αopt,μopt

= Vopt
αopt

.

By Theorem 3, there is an MDP, say Mopt, in Mopt such that

Vαopt,μopt,Mopt = V opt
αopt,μopt

= Vopt
αopt

. (4)
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We now claim that
Vα,μopt,Mopt = Vopt

αopt

for all α ∈ (αopt, 1). If not, there is an α′ ∈ (αopt, 1), a policy μ′ and an MDP
M ′ ∈ Mopt such that

Vα′,μopt,Mopt(i) < Vα′,μ′,M ′(i)

for some i. But this yields a contradiction, since (4) holds and by definition of
αopt, the functions

α �→ Vα,μopt,Mopt(i)

and
α �→ Vα,μ′,M ′(i)

cannot intersect in (αopt, 1).
The proof of the existence of αpes, μpes and Mpes is based on similar argu-

ments.

4 Algorithms to Compute the Optimal Value Functions

4.1 Optimistic Value Function

The idea behind our algorithm (Algorithm 1) is to start with some initial vector
and perform a sequence of updates while increasing the discount factor at a cer-
tain rate. The following theorem guarantees that the sequence of value functions
thus generated converge to the optimal value function. Note that if we held the
discount factor constant at some value, say α, the sequence would converge to
Vopt

α .

Algorithm 1. Algorithm to Compute Vopt

V (0) ← 0
for k = 0, 1, . . . do

αk ← k+1
k+2

for all i ∈ S do
V (k+1)(i) ← maxa∈A

[
(1 − αk)R(i) + αk maxq∈Ci,a qT V (k)

]
end for

end for

Theorem 6. Let {V (k)} be the sequence of functions generated by Algorithm 1.
Then we have, for all i ∈ S,

lim
k→∞

V (k)(i) = Vopt(i) .
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We need a few intermediate results before proving this theorem. Let αopt, μopt
and Mopt be as given by Theorem 5. To avoid too many subscripts, let μ and M
denote μopt and Mopt respectively for the remainder of this subsection. From (1),
we have that for k large enough, say k ≥ k1, we have,∣∣Vαk,μ,M (i) − Vαk+1,μ,M (i)

∣∣ ≤ K(αk+1 − αk) , (5)

where K can be taken to be ‖hμ,M‖∞ + 1. Since αk ↑ 1, we have αk > αopt for
all k > k2 for some k2. Let k0 = max{k1, k2}. Define

δk0 := ‖V (k0) − Vαk0 ,μ,M‖∞ . (6)

Since rewards are in [0, 1], we have δk0 ≤ 1. For k ≥ k0, define δk+1 recursively
as

δk+1 := K(αk+1 − αk) + αkδk . (7)

The following lemma shows that this sequence bounds the norm of the difference
between V (k) and Vαk,μ,M .

Lemma 7. Let {V (k)} be the sequence of functions generated by Algorithm 1.
Further, let μ, M denote μopt, Mopt mentioned in Theorem 5. Then, for k ≥ k0,
we have

‖V (k) − Vαk,μ,M‖∞ ≤ δk .

Proof. Base case of k = k0 is true by definition of δk0 . Now assume we have
proved the claim till k ≥ k0. So we know that,

max
i

∣∣∣V (k)(i) − Vαk,μ,M (i)
∣∣∣ ≤ δk . (8)

We wish to show

max
i

∣∣∣V (k+1)(i) − Vαk+1,μ,M (i)
∣∣∣ ≤ δk+1 . (9)

Recall that Vopt
α is the fixed point of T opt

α by Theorem 1. We therefore have, for
all i,

Vαk,μ,M (i) =
(
T opt

αk
Vαk,μ,M

)
(i)

[ αk > αopt and Vα,μ,M = Vopt
α for α > αopt ]

= max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑
j

q(j)Vαk,μ,M (j) ]

[ defn. of T opt
αk

]

≤ max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑
j

q(j)V (k)(j) ] + αkδk

[ (8) and
∑

j

q(j)δk = δk]

= V (k+1)(i) + αkδk .

[ defn. of V (k+1)(i) ]
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Similarly, for all i,

V (k+1)(i) = max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑
j

q(j)V (k)(j) ]

[ defn. of V (k+1)(i)]

≤ max
a∈A

[ (1 − αk)R(i) + αk max
q∈Ci,a

∑
j

q(j)Vαk,μ,M (j) ] + αkδk

[ (8) and
∑

j

q(j)δk = δk]

=
(
T opt

αk
Vαk,μ,M

)
(i) + αkδk

[ defn. of T opt
αk

]

= Vαk,μ,M (i) + αkδk .

[ αk > αopt and Vα,μ,M = Vopt
α for α > αopt ]

Thus, for all i, ∣∣∣V (k+1)(i) − Vαk,μ,M (i)
∣∣∣ ≤ αkδk .

Combining this with (5) (as k ≥ k0 ≥ k1), we get∣∣∣V (k+1)(i) − Vαk+1,μ,M (i)
∣∣∣ ≤ αkδk + K(αk+1 − αk) .

Thus we have shown (9).

The sequence {δk} can be shown to converge to zero using elementary
arguments.

Lemma 8. The sequence {δk} defined for k ≥ k0 by equations (6) and (7)
converges to 0.

Proof. Plugging αk = k+1
k+2 into the definition of δk+1 we get,

δk+1 = K

(
k + 2
k + 3

− k + 1
k + 2

)
+

k + 1
k + 2

δk

=
K

(k + 3)(k + 2)
+

k + 1
k + 2

δk .

Applying the recursion again for δk, we get

δk+1 =
K

(k + 3)(k + 2)
+

k + 1
k + 2

(
K

(k + 2)(k + 1)
+

k

k + 1
δk−1

)

=
K

k + 2

(
1

k + 3
+

1
k + 2

)
+

k

k + 2
δk−1 .

Continuing in this fashion, we get for any j ≥ 0,

δk+1 =
K

k + 2

(
1

k + 3
+

1
k + 2

+ . . . +
1

k − j + 3

)
+

k − j + 1
k + 2

δk−j .
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Setting j = k − k0 above, we get

δk+1 =
K

k + 2
(Hk+3 − Hk0+2) +

k0 + 1
k + 2

δk0 ,

where Hn = 1+ 1
2 +. . .+ 1

n . This clearly tends to 0 as k → ∞ since Hn = O(log n)
and δk0 ≤ 1.

We can now prove Theorem 6.

Proof. (of Theorem 6) Fix i ∈ S. We have,

|V (k)(i) − Vopt(i)| ≤ |V (k)(i) − Vαk,μ,M (i)|︸ ︷︷ ︸
≤δk

+ |Vαk,μ,M (i) − Vopt
αk

(i)|︸ ︷︷ ︸
εk

+ |Vopt
αk

(i) − Vopt(i)|︸ ︷︷ ︸
ζk

.

We use Lemma 7 to bound the first summand on the right hand side by δk.
By Lemma 8, δk → 0. Also, εk = 0 for sufficiently large k because αk ↑ 1 and
Vα,μ,M (i) = Vopt

α (i) for α sufficiently close to 1 (by Theorem 5). Finally, ζk → 0
by Corollary 4.

4.2 Pessimistic Value Function

Algorithm 2 is the same as Algorithm 1 except that the max over Ci,a appearing
inside the innermost loop gets replaced by a min. The following analogue of
Theorem 6 holds.

Algorithm 2. Algorithm to Compute Vpes

V (0) ← 0
for k = 0, 1, . . . do

αk ← k+1
k+2

for all i ∈ S do
V (k+1)(i) ← maxa∈A

[
(1 − αk)R(i) + αk minq∈Ci,a qT V (k)

]
end for

end for

Theorem 9. Let {V (k)} be the sequence of functions generated by Algorithm 2.
Then we have, for all i ∈ S,

lim
k→∞

V (k)(i) = Vpes(i) .

To prove this theorem, we repeat the argument given in the previous subsection
with appropriate changes. Let αpes, μpes and Mpes be as given by Theorem 5. For
the remainder of this subsection, let μ and M denote μpes and Mpes respectively.
Let k1, k2 be large enough so that, for all k ≥ k1,∣∣Vαk,μ,M (i) − Vαk+1,μ,M (i)

∣∣ ≤ K(αk+1 − αk) ,
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for some constant K (which depends on μ, M), and αk > αpes for k > k2. Set
k0 = max{k1, k2} and define the sequence {δk}k≥k0 as before (equations (6)
and (7)).

The proof of the following lemma can be obtained from that of Lemma 7 by
fairly straightforward changes and is therefore omitted.

Lemma 10. Let {V (k)} be the sequence of functions generated by Algorithm 2.
Further, let μ, M denote μpes, Mpes mentioned in Theorem 5. Then, for k ≥ k0,
we have

‖V (k) − Vαk,μ,M‖∞ ≤ δk .

Theorem 9 is now proved in exactly the same fashion as Theorem 6 and we
therefore omit the proof.

5 Conclusion

In this paper, we chose to represent the uncertainty in the parameters of an
MDP by intervals. One can ask whether similar results can be derived for other
representations. If the intervals for pi,j(a) are equal for all j then our representa-
tion corresponds to an L∞ ball around a probability vector. It will be interesting
to investigate other metrics and even non-metrics like relative entropy (for an
example of an algorithm using sets defined by relative entropy, see [8]). Gen-
eralizing in a different direction, we can enrich the language used to express
constraints on the probabilities. In this paper, constraints had the form

l(i, j, a) ≤ pi,j(a) ≤ u(i, j, a) .

These are simple inequality constraints with two hyperparameters l(i, j, a) and
u(i, j, a). We can permit more hyperparameters and include arbitrary semi-
algebraic constraints (i.e. constraints expressible as boolean combination of poly-
nomial equalities and inequalities). It can be shown using the Tarski-Seidenberg
theorem that Blackwell optimal policies still exist in this much more general
setting. However, the problem of optimizing qT V over Ci,a now becomes more
complicated.

Our last remark is regarding the convergence rate of the algorithms given in
Section 4. Examining the proofs, one can verify that the number of iterations
required to get to within ε accuracy is O(1

ε ). This is a pseudo-polynomial con-
vergence rate. It might be possible to obtain algorithms where the number of
iterations required to achieve ε-accuracy is poly(log 1

ε ).
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Appendix

Throughout this section, vector inequalities of the form V1 ≤ V2 are to be inter-
preted to mean V1(i) ≤ V2(i) for all i.

Proofs of Theorems 1 and 2

Lemma 11. If V1 ≤ V2 then, for all M ∈ M,

Tα,μ,MV1 ≤ T opt
α,μV2 ,

T pes
α,μV1 ≤ Tα,μ,MV2 .

Proof. We prove the first inequality. Fix an MDP M ∈ M. Let pi,j(a) denote
transition probabilities of M . We then have,

(Tα,μ,MV1) (i) = (1 − α)R(i) + α
∑

j

pi,j(μ(i))V1(j)

≤ (1 − α)R(i) + α
∑

j

pi,j(μ(i))V2(j) [ ∵ V1 ≤ V2 ]

≤ (1 − α)R(i) + α max
q∈Ci,μ(i)

qT V2 [ ∵ M ∈ M ]

=
(
T opt

α,μV2
)
(i) .

The proof of the second inequality is similar.
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Lemma 12. If V1 ≤ V2 then, for any policy μ,

T opt
α,μV1 ≤ T opt

α V2 ,

T pes
α,μV1 ≤ T pes

α V2 .

Proof. Again, we prove only the first inequality. Fix a policy μ. We then have,(
T opt

α,μV1
)
(i) = (1 − α)R(i) + α max

q∈Ci,μ(i)

qT V1

≤ (1 − α)R(i) + α max
q∈Ci,μ(i)

qT V2

≤ max
a∈A

[
(1 − α)R(i) + α max

q∈Ci,a

qT V2

]
=

(
T opt

α V2
)
(i)

Proof (of Theorems 1 and 2). Let Ṽ be the fixed point of T opt
α,μ . This means that

for all i ∈ S,
Ṽ (i) = (1 − α)R(i) + α max

q∈Ci,μ(i)

qT Ṽ .

We wish to show that Ṽ = V opt
α,μ . Let qi be the probability vector that achieves

the maximum above. Construct an MDP M1 ∈ M as follows. Set the transition
probability vector pi,·(μ(i)) to be qi. For a �= μ(i), choose pi,·(a) to be any
element of Ci,a. It is clear that Ṽ satisfies, for all i ∈ S,

Ṽ (i) = (1 − α)R(i) + α
∑

j

pi,j(μ(i))Ṽ (j) ,

and therefore Ṽ = Vα,μ,M1 ≤ V opt
α,μ . It remains to show that Ṽ ≥ V opt

α,μ . For that,
fix an arbitrary MDP M ∈ M. Let V0 be any initial vector. Using Lemma 11
and straightforward induction, we get

∀k ≥ 0, (Tα,μ,M )kV0 ≤ (T opt
α,μ)kV0 .

Taking limits as k → ∞, we get Vα,μ,M ≤ Ṽ . Since M ∈ M was arbitrary, for
any i ∈ S,

V opt
α,μ (i) = sup

M∈M
Vα,μ,M (i) ≤ Ṽ (i) .

Therefore, Ṽ = V opt
α,μ .

Now let Ṽ be the fixed point of T opt
α . This means that for all i ∈ S,

Ṽ (i) = max
a∈A

[
(1 − α)R(i) + α max

q∈Ci,a

qT Ṽ

]
.

We wish to show that Ṽ = Vopt
α . Let μ1(i) be any action that achieves the

maximum above. Since Ṽ satisfies, for all i ∈ S,

Ṽ (i) = (1 − α)R(i) + α max
q∈Ci,μ1(i)

qT Ṽ ,
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we have Ṽ = V opt
α,μ1

≤ Vopt
α . It remains to show that Ṽ ≥ Vopt

α . For that,
fix an arbitrary policy μ. Let V0 be any initial vector. Using Lemma 12 and
straightforward induction, we get

∀k ≥ 0, (T opt
α,μ)kV0 ≤ (T opt

α )kV0 .

Taking limits as k → ∞, we get V opt
α,μ ≤ Ṽ . Since μ was arbitrary, for any i ∈ S,

Vopt
α (i) = max

μ
V opt

α,μ (i) ≤ Ṽ (i) .

Therefore, Ṽ = Vopt
α . Moreover, this also proves the first part of Theorem 2

since
V opt

α,μ1
= Ṽ = Vopt

α .

The claim that the fixed points of T pes
α,μ and T pes

α are V pes
α,μ and Vpes

α respec-
tively, is proved by making a few obvious changes to the argument above. Fur-
ther, as it turned out above, the argument additionally yields the proof of the
second part of Theorem 2.

Proof of Theorem 3

We prove the existence of Mopt only. The existence of Mpes is proved in the same
way. Note that in the proof presented in the previous subsection, given a policy
μ, we explicitly constructed an MDP M1 such that V opt

α,μ = Vα,μ,M1 . Further,
the transition probability vector pi,·(μ(i)) of M1 was a vector that achieved the
maximum in

max
Ci,μ(i)

qT V opt
α,μ .

Recall that the set Ci,μ(i) has the form

{q : qT 1 = 1, ∀j ∈ S, lj ≤ qj ≤ uj} , (10)

where lj = l(i, j, μ(i)), uj = u(i, j, μ(i)). Therefore, all that we require is the
following lemma.

Lemma 13. Given a set C of the form (10), there exists a finite set Q = Q(C)
of cardinality no more than |S|! with the following property. For any vector V ,
there exists q̃ ∈ Q such that

q̃T V = max
q∈C

qT V .

We can then set

Mopt = { 〈S, A, R, {pi,j(a)}〉 : ∀i, a, pi,·(a) ∈ Q(Ci,a) } .

The cardinality of Mopt is at most (|S||A|)|S|!
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Proof (of Lemma 13). A simple greedy algorithm (Algorithm 3) can be used
to find a maximizing q̃. The set C is specified using upper and lower bounds,
denoted by ui and li respectively. The algorithm uses the following idea recur-
sively. Suppose i∗ is the index of a largest component of V . It is clear that we
should set q̃(i∗) as large as possible. The value of q̃(i∗) has to be less than ui.
Moreover, it has to be less than 1 −

∑
i
=i∗ li. Otherwise, the remaining lower

bound constraints cannot be met. So, we set q̃(i∗) to be the minimum of these
two quantities.

Note that the output depends only on the sorted order of the components of
V . Hence, there are only |S|! choices for q̃.

Algorithm 3. A greedy algorithm to maximize qT V over C.
Inputs The vector V and the set C. The latter is specified by bounds {li}i∈S and
{ui}i∈S that satisfy ∀i, 0 ≤ li ≤ ui and

∑
i li ≤ 1 ≤

∑
i ui.

Output A maximizing vector q̃ ∈ C.

indices ← order(V ) � order(V ) gives the indices of the largest to smallest
elements of V

massLeft ← 1
indicesLeft ← S
for all i ∈ indices do

elem ← V (i)
lowerBoundSum ←

∑
j∈indicesLeft,j �=i lj

q̃(i) ← min(ui, massLeft − lowerBoundSum)
massLeft ← massLeft − q̃(i)
indicesLeft ← indicesLeft − {i}

end for
return q̃
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