
A Parallel DFA Minimization Algorithm

Ambuj Tewari, Utkarsh Srivastava, and P. Gupta

Department of Computer Science & Engineering
Indian Institute of Technology Kanpur

Kanpur 208 016, INDIA
pg@iitk.ac.in

Abstract. In this paper, we have considered the state minimization
problem for Deterministic Finite Automata (DFA). An efficient parallel
algorithm for solving the problem on an arbitrary CRCW PRAM has
been proposed. For n number of states and k number of inputs in Σ of
the DFA to be minimized, the algorithm runs in O(kn log n) time and
uses O(n

log n
) processors.

1 Introduction

The problem of minimizing a given DFA (Deterministic Finite Automata) has
a long history dating back to the beginnings of automata theory. Consider a de-
terministic finite automaton M as a tuple (Q,Σ, q0, F, δ) where Q, Σ, q0 ∈ Q,
F ⊆ Q and δ : Q × Σ → Q are a finite set of states, a finite input alphabet,
the start state, the set of accepting (or final) states and the transition function,
respectively. An input string x is a sequence of symbols over Σ. On an input
string x = x1x2 . . . xm, the DFA visits a sequence of states q0q1 . . . qm starting
with the start state by successively applying the transition function δ. Thus
qi+1 = δ(qi, xi+1) for 0 ≤ i ≤ m − 1. The language L(M) accepted by a DFA
is defined as the set of strings x that takes the DFA to an accepting state, i.e.
x is in L(M) if and only if qm ∈ F . Two DFAs are said to be equivalent if they
accept the same set of strings.

The problem of DFA minimization is to find a DFA with the minimum num-
ber of states which is equivalent to the given DFA. A fundamental result in
automata theory states that such a minimal DFA is unique up to renaming of
states. The number of states in the minimal DFA is given by the number of equiv-
alence classes in the partition on the set of all strings in Σ∗ defined as follows:
Two strings x and y are equivalent if and only if for all strings z, xz ∈ L(M) if
and only if yz ∈ L(M) [6].

Besides being widely studied, DFA has many applications in the diverse fields
like pattern matching, optimization of logic programs, protocol verification and
specification and modeling of finite state systems [14]. It is known that non-
deterministic finite automata (NFA) are equivalent to deterministic ones as far
as the languages recognized by them are concerned. Huffman [4] and Moore [10]
have presented O(n2) algorithms for DFA minimization and are sufficiently fast
for most of the classical applications. However, there exist numerous algorithms

S. Sahni et al. (Eds.) HiPC 2002, LNCS 2552, pp. 34–40, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Parallel DFA Minimization Algorithm 35

which are variations of the same basic idea. An efficient O(n logn) algorithm is
due to Hopcroft [5]. Blum [2] has also proposed a simpler algorithm with same
time complexity.

Traditional applications of the DFA minimization algorithm involve a few
thousand states and the sequential algorithms available generally perform well
in these settings. But if the number of states in a DFA is of the order of a few
millions, then the efficient sequential algorithms may take a significant amount
of time and may need much more than the available physical memory. One way
to achieve the speed-up is the use of multiple processors.

DFA minimization has been extensively studied on many parallel computa-
tion models. Jaja and Kosaraju [7] have presented an efficient algorithm on mesh
connected computer for the case when |Σ| = 1. A simple NC algorithm has also
been outlined in their work. Cho and Huynh [3] have proved the problem to
be NLOGSPACE-complete. Efficient and close to cost-optimal algorithms are
known only for the case of the alphabet consisting of a single input symbol.
A very simple algorithm is proposed by Srikant [13] but the best algorithm for
this problem is due to Jaja and Ryu [8]. It is a CRCW algorithm with time com-
plexity O(log n) and cost O(n log log n). Unfortunately, no efficient algorithm,
which is also economical with respect to cost, is known for the general case of
multiple input symbols. The standard NC algorithm for this problem requires
O(n6) processors. This is due the use of transitive closure computation on a cross
product graph. In [12], a simple parallel algorithm for DFA minimization along
with its implementation is presented.

In this paper we have proposed an efficient parallel algorithm for DFA mini-
mization having O(knlogn) time complexity on an arbitrary CRCW PRAM with
(n

logn
) processors. The rest of the paper is organized as follows. Section 2 con-

tains some preliminaries along with the naive sequential algorithm. In Section 3,
we discuss a fast parallel algorithm for the problem which uses a large number
of processors. An efficient parallel algorithm has been proposed in Section 4.
Conclusion is given in the last section.

2 Review

The DFA minimization problem is closely related to the coarsest partitioning
problem which can be stated as follows. We are given a set Q and its initial
partition into m disjoint sets {B0, . . . , Bm−1}, and a collection of functions,
fi : Q → Q. We have to find a coarsest partition of Q, say {E1, . . . , Eq}, such
that: (1) each Ei is a subset of some Bj , and (2) the partition respects the given
functions, i.e. ∀j, if a and b both belong to the same Ei then fj(a) and fj(b)
also belong to the same Ek for some k.

Assume, Q is the set of states, fi is the restriction of the transition function
δ to the ith input symbol, i.e. fi(q) = δ(q, ai), the initial partition contains two
sets, namely F and Q−F . The size of the minimal DFA is the number of equiv-
alence classes in the coarsest partition. For the general case of multiple function
coarsest partition problem, an O(n log n) solution is given in [1]. Later, a linear

36 Ambuj Tewari et al.

Sequential Algorithm
1. for all final states qi do block no[qi] = 1
2. for all non-final states qi do block no[qi] = 2
3. do
4. for i= 0 to k-1 do
5. for j = 0 to n-1 do
6. b1 = block no[qj]
7. b2 = block no[δ(qj , xi)]
8. label state qj with (b1, b2)
9. endfor
10. Assign same block number to states having same labels
11. endfor
12. while <number of blocks is changing>

Algorithm 1: The sequential algorithm for DFA minimization

time solution has been proposed in [11] for the case of the single function coars-
est partition problem. The single function version of the problem corresponds to
having only a single symbol in the input alphabet Σ.

But the simplest sequential algorithm for solving the problem, given in Algo-
rithm 1, runs in O(kn2) time, where |Σ| = k [1]. It performs as follows. Initially
there are only two blocks: one containing all the final states and the other con-
taining all the non-final states. If two states q and q′ are found in the same
block such that for some input symbol ai, the states δ(q, ai) and δ(q′, ai) are in
different blocks, q and q′ are placed in different blocks for the next iteration. The
algorithm is iterated for at most n times because, in the worst case, each state
will be in a block containing just itself. In each iteration new block numbers are
assigned in O(kn) time. Therefore, the total time taken is O(kn2) .

3 A Fast Parallel Algorithm

The fastest known algorithm for the multiple input symbol case is due to Cho
and Huynh [3]. The DFA minimization problem is initially translated to an
instance of the multiple function coarsest partition problem to yield the set S
of states, the initial partition B containing sets of final and non-final states and
the functions fi which are restrictions of the transition function to single input
symbols. A graph G =< V,E > may be generated as follows: V = {(a, b)|a, b ∈
S} and E = {((a, b), (c, d))|c = fi(a), d = fi(b) for some i}.

For any pair x, y ∈ S, x and y get different labels in the coarsest partition if
and only if there is a path from node (x, y) to some node (a, b) such that a and
b have different B-labels. The algorithm is given below. It can be shown that
the algorithm can be implemented on a EREW in time O(log2 n) with total cost
O(n6). The bound O(n6) arises because of the transitive closure computation of
a graph with n2 nodes. So far, it has not been possible to find an algorithm with
a reasonable cost, say O(n2), and a small running time.

A Parallel DFA Minimization Algorithm 37

Parallel Algorithm
1. Construct graph G as defined above
2. Mark all nodes (p, q) � p and q belong to different sets of the

B-partition
3. Uses transitive closure to mark pairs reachable from marked pairs
4. comment Note that all unmarked pairs are equivalent

Algorithm 2: A fast parallel algorithm for DFA minimization

4 An Efficient Algorithm

In this section we have proposed a parallel version of the simple O(n2) time
sequential algorithm outlined in Section 3. We use O(n

log n) processors to achieve
an expected running time of O(log n). Using an arbitrary-CRCW PRAM, we
have parallelized the inner for-loop which iterates over the set of states. The the
new labels obtained in this for-loop are hashed using parallel hashing algorithm
of Matias and Vishkin [9] to get new block numbers for the states. The algorithm
is given below.

Lines 1-8 are the same as in the sequential algorithm except that Lines 5-8
of Algorithm 3 are now done in parallel. The n labels obtained in Line 8 are
hashed to [1..O(n)] using the hashing technique due to Matias and Vishkin [9].

Theorem 1 (Parallel Hashing Theorem). Let W be a multiset of n numbers
from the range [1..m], where m + 1 = p is a prime. Suppose we have n

log n

New Parallel Algorithm
1. Initialize block no array
2. do
3. for i = 0 to k-1 do
4. for j = 1 to n

log n
do in parallel

5. for m = (j − 1) ∗ log n to j ∗ log n − 1 do
6. b1 = block no[qm]
7. b2 = block no[δ(qm, ai)]
8. label state qm with (b1, b2)
9. endfor
10. endfor
11. Use parallel hashing to map the n labels to [1..O(n)]
12. a number to which a state’s label gets mapped to

its new block no
13. Reduce the range of block no from O(n) to n
14. endfor
15. while number of blocks is changing

Algorithm 3: New parallel algorithm for DFA minimization

38 Ambuj Tewari et al.

processors on an arbitrary-CRCW PRAM. A one-to-one function F : W �−→
[1..O(n)] can be found in O(log n) expected time. The evaluation of F (x) for
each x ∈ W , takes O(1) arithmetic operations (using numbers from [1..m]).

We have to assign new block numbers to states such that states with different
labels get different block numbers and states with same label get same block
number. Also we do not want the block numbers to become too large. The labels
are pairs of the form (b1, b2) where b1, b2 ≤ n. Therefore we can map a label
(b1, b2) to b1 ∗ (n+1)+ b2 and we can treat these labels as numbers in the range
[1..2n2]. A number m such that 2n2 < m ≤ 4n2 and m + 1 is a prime can be
found in O(log n) time (see [9]) and this has to be done just once. For instance,
it can be done after the initialization phase of step 1.

We want the block numbers to remain in the range [1..n]. However, after
hashing, we get numbers in the range [1..Kn] some fixed K. This range shrink-
ing can be implemented on an arbitrary-CRCW PRAM in time O(log n). The
procedure is given as Algorithm 4.

First, each processor hashes logn labels and sets PRESENT [x] to 1 if some
label got hashed to the value x, where PRESENT [1..Kn] is an array. Several
processors might try to write in the same location in the array but since we
have assumed an arbitrary-CRCW PRAM, one of them will succeed arbitrarily.
Each of the n

log n processors now considers a range of K logn indices of the
PRESENT array and computes the number of locations which are set to 1
using O(log(n

log n)) prefix sum algorithm. New block number for a given location
is simply the number of 1’s occurring before that location. A processor can easily
compute the new block number for a location in its range by adding the number
of 1’s occurring before that location within the processor’s range to the number
of 1’s occurring in earlier ranges (this has already been computed by prefix-sum).

To find the time complexity, let us consider first Algorithm 4. From the
parallel hashing theorem we know that evaluation of the hashing function in
line 3 takes O(1) time. Line 4 is an assignment and so the loop in Lines 2-5
takes O(log n) time. Similarly the loop in Lines 9-11 takes O(log n). Prefix sum
computation in Lines 13-14 also takes O(log n) time. The loop in Lines 17-21
takes O(log n) time. Evaluation of the hash function at line 25 takes O(1) time.
Therefore, the last loop (Lines 24-27) too takes O(log n) time.

The outermost for-loop (Lines 3-14) of Algorithm 3 runs exactly k times
where k is the size of the input alphabet and the outer do-while-loop (Lines
2-15) of our algorithm can run for at most n times since the minimal DFA does
not have more than n states. Therefore, the expected time complexity of our
algorithm is O(kn logn). Since we use O(n

log n) processors, the cost is O(kn
2)

which is the cost optimal parallel adaptation of the O(kn2) sequential method.

5 Conclusion

In this paper, we have considered a well-known problem from classical automata
theory and have presented a parallel algorithm for the problem. We have essen-
tially adapted the naive O(kn2) sequential algorithm and have shown that our

A Parallel DFA Minimization Algorithm 39

algorithm requires O(n log n) time using O(n
log n) processors. Thus it is a cost

optimal parallelization on an arbitrary-CRCW PRAM.
Finally, it will be of immense theoretical and practical importance to come

up with impossibility results about the limited parallelizability of the sequential
DFA minimization algorithms.

// Initialize the PRESENT [1..Kn] array
1. for i = 1 to n

log n do in parallel
2. for j = (i− 1) ∗K log n+ 1 to i ∗K logn do
3. Let x be the value to which the label of qj hashes
4. PRESENT [x] = 1
5. endfor
6. endfor

// Compute number of 1’s in each processor’s range
7. for i = 1 to n

log n do in parallel
8. ai = 0
9. for j = (i− 1) ∗K logn+ 1 to i ∗K log n do
10. ai = ai + PRESENT [j]
11. endfor
12. endfor

//Compute partial sums
13. s0 = 0
14. Compute si =

∑i
k=1 ai for 1 ≤ i ≤ n

log n using prefix sum

//Compute new block numbers
15. for i = 1 to n

log n do in parallel
16. ai = si−1

17. for j = (i− 1) ∗K log n+ 1 to i ∗K logn do
18. ai = ai + PRESENT [j]
19. if PRESENT [j] = 1 then
20. new block no[j] = ai

21. endfor
22. endfor

// Update the block no array with the new block numbers
23. for i = 1 to n

log n do in parallel
24. for j = (i− 1) ∗ logn to i ∗ log n− 1 do
25. Let x be the value to which the label of qj hashes
26. block no[qj] = new block no[x]
27. endfor
28. endfor

Algorithm 4: Reducing the range of block numbers

40 Ambuj Tewari et al.

References

[1] Aho A. V., Hopcroft J. E. and Ullman J. D.: The design and analysis of computer
algorithms. Addison-Wesley, Reading, Massachusetts (1974) 35, 36

[2] Blum N.: An O(n log n) implementation of the standard method of minimizing
n-state finite automata. Information Processing Letters 57 (1996) 65-69 35

[3] Cho S. and Huynh D. T.: The parallel complexity of coarsest set partition prob-
lems. Information Processing Letters 42 (1992) 89-94 35, 36

[4] Huffman D. A.: The Synthesis of Sequential Switching Circuits. Journal of
Franklin Institute 257 (1954) 161-190 34

[5] Hopcroft J. E.: An n log n algorithm for minimizing states in a finite automata.
Theory of Machines and Computation, Academic Press (1971) 189-196 35

[6] Hopcroft J. E. and Ullman J. D.: Introduction to automata theory, languages, and
computation. Addison-Wesley, Reading, Massachusetts (1979) 34

[7] Jaja J. and Kosaraju S. R.: Parallel algorithms for planar graph isomorphism and
related problems. IEEE Transactions on Circuits and Systems 35 (1988) 304-311
35

[8] Jaja J. and Ryu K. W.: An Efficient Parallel Algorithm for the Single Function
Coarsest Partition Problem. Theoretical Computer Science 129 (1994) 293-307
35

[9] Matias Y. and Vishkin U.: On parallel hashing and integer sorting. Journal of
Algorithms 4 (1991) 573–606 37, 38

[10] Moore E. F.: Gedanken-experiments on sequential circuits. Automata Studies,
Princeton University Press (1956) 129-153 34

[11] Paige R., Tarjan R. E. and Bonic R.: A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science 40 (1985) 67-84 36

[12] Ravikumar B. and Xiong X.: A parallel algorithm for minimization of finite au-
tomata. Proceedings of the 10th International Parallel Processing Symposium,
Honululu, Hawaii (1996) 187-191 35

[13] Srikant Y. N.: A parallel algorithm for the minimization of finite state automata.
International Journal Computer Math. 32 (1990) 1-11 35

[14] Vardi M.: Nontraditional applications of automata theory. Lecture Notes in Com-
puter Science, Springer-Verlag 789 (1994) 575-597 34

	A Parallel DFA Minimization Algorithm
	Introduction
	Review
	A Fast Parallel Algorithm
	An Efficient Algorithm
	Conclusion

