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Abstract

Operator learning has emerged as a powerful tool in scientific comput-
ing for approximating mappings between infinite-dimensional function
spaces. A primary application of operator learning is the development
of surrogate models for the solution operators of partial differential
equations (PDEs). These methods can also be used to develop black-
box simulators to model system behavior from experimental data, even
without a known mathematical model. In this article, we begin by for-
malizing operator learning as a function-to-function regression problem
and review some recent developments in the field. We also discuss PDE-
specific operator learning, outlining strategies for incorporating physi-
cal and mathematical constraints into architecture design and training
processes. Finally, we end by highlighting key future directions such
as active data collection and the development of rigorous uncertainty
quantification frameworks.



1. INTRODUCTION

Artificial Intelligence (AI) is making rapid advances in a variety of areas ranging from
language and vision modeling to applications in the physical sciences. Al is transforming
scientific research and accelerating scientific discovery by providing new tools for modeling
complex systems and optimizing workflows . A notable
example is the protein structure prediction with AlphaFold (Jumper et al.[2021)), which was
awarded the 2024 Nobel Prize in Chemistry (The Nobel Committee|[2024). This growing
impact has led to the emergence of “Al for Science” (Zhang et al.|[2023), a paradigm that

seeks to integrate Al into scientific problem-solving. The subject of this article, operator
learning, is one of the key approaches within this new paradigm.

In mathematics, a mapping between infinite dimensional function spaces is often called
an operator. Operator learning is an area at the intersection of applied mathematics, com-
puter science, and statistics which studies how we can learn such operators from data. Its
primary application is the development of fast and accurate surrogate models (Bhattacharyal
for the solution operators of partial differential equations (PDEs). Additionally,
as a data-driven approach, operator learning techniques can be used to develop black-box
simulators that simulate system behavior based on observed experimental data
b)), even when the underlying mathematical model is unknown.

Before formally defining the problem of operator learning, let us discuss a motivating
example that illustrates its relevance. Many physical systems are governed by PDEs, which
describe how the system evolves given particular initial conditions. A classic example is the

heat equation 2022}, Section 2.3)

5% V2u, (1).
that arises in heat conduction and diffusion problems. Here, 7 > 0 could be the thermal
conductivity of a material, u : X x [0,00) — R for some set X C R? could define a
temperature profile at any given space-time coordinate, and V? is the Laplacian operator
defined as V2u := Z?:I 0%u/0x3. The solution of the heat equation can be written using
a linear operator defined as

exp(TtV?) := Z

(1t V¥
k! '
k=0

That is, given an initial condition up, the solution function can be written as u; =
exp(TtV*)uo for any time point t > 0 Chapter 5.4).

This solution operator is useful primarily for conceptual understanding and cannot be
used to obtain the solution function in all but a few cases of simple domain geometry
and simple initial conditions. The solution is generally obtained using PDE solvers which
use numerical methods to map the initial conditions uo to u; at some desired time point
t > 0. Such solver starts from scratch for every new initial condition ug of interest. Since the
solver is computationally slow and expensive, this ab initio approach to evaluating solutions
can be limiting in applications such as engineering design where the solution needs to be
evaluated for many different initial conditions (Umetani & Bickel [2018). To solve this

problem, operator learning aims to learn the solution operator directly from the data. By
amortizing the computational cost through upfront training, these learned operators allow
for significantly efficient solution evaluation compared to traditional solvers while sacrificing
a small degree of accuracy.
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More precisely, for some prespecified time point ¢t = T, let G := exp(7T'V?) denote the
solution operator of interest. Then, given training data (vi,w1), ..., (vn,wy) where v; is the
initial condition and w; = G(v;) is the solution at time point 7', operator learning involves
estimating an approximation Fn of G by searching over a a predefined operator class F
(Kovachki et al.|[2024bj, Section 2). Once trained, the estimated operator can be used to
predict an approximate solution W = ﬁ‘n(v) for a new initial condition v. The objective

is to design an estimation procedure such that w closely approximates the true solution
w = G(v) under a suitable metric. For illustration, Figure [I| compares the Fourier neural
operator’s prediction and the actual output from a PDE solver.

Input Function True Output Predicted Output

(a) Input (v) (b) Output (w) (c) Prediction (@)
Figure 1: Input function, ground truth solution of the heat equation, and the predicted

solution by a Fourier Neural Operator. Here, we use X = [0,1)%,7 = 0.05, and T = 1. The
corresponding code is available in this notebook.

In the example of the heat equation, we wanted to learn an operator that maps an
initial condition to the solution function. But operator learning methods can also be used
to learn how the parameters of steady-state equations map to their corresponding solution
functions. For example, for a prototypical elliptic PDE

—div(v(-) Vw) = f, v(z) =0 Vz € boundary(X),

one may seek to learn the nonlinear ground truth operator G that maps the coefficient
function v to the solution function w. The function v : X — [0, 0] typically represents
permeability of the medium in fluid flow applications . A surrogate operator
trained on for this mapping can efficiently predict how the solution function w changes in
response to variations in the system’s properties defined by v.

Additionally, these operator surrogates can also be used to complement traditional
PDE solvers rather than completely replace them. For example, the prediction of operator
surrogate can be used as an initialization for spectral solvers of nonlinear PDEs, which
often rely on iterative methods such as Newton’s method . A well-chosen
initialization can substantially accelerate convergence, reducing the overall computational
cost.

Although operator learning is a relatively new field, it has already had a practical
impact. For example, the European Centre for Medium-Range Weather Forecasts has in-
corporated an operator learning model, FourcastNet, into its experimental forecasting suite

(ECMWF| [2025)). In the medical field, operator learning has been applied to optimize
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catheter prototypes—devices used in surgical procedures and disease treatment (Zhou et al.
2024). Similarly, operator learning has been applied to model plasma evolution in nuclear
fusion research. Figure [2|illustrates the ability of an operator surrogate to predict the long-
term plasma dynamics within a tokamak reactor using an operator surrogate (Gopakumar
et al.[|2024). In addition, operator learning has also shown promise in biological modeling,
where the underlying dynamics are often unknown. For example, |[You et al.| (2022a) used it
to model the mechanical response of biological tissues from digital image correlation mea-
surements, without making assumptions about tissue structure or the underlying mapping.
Finally, operator learning has been used to accelerate sampling from generative models.
In diffusion models, sampling generally requires hundreds of iterations of the discretized
reverse diffusion process. However, [Zheng et al. (2023) demonstrated that learning the
solution operator of the reverse process enables one-shot sampling without iteration.
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Figure 2: Long-term prediction of plasma evolution around the central solenoid in the toka-
mak. The top row shows experimental camera images, the middle row presents predictions
from a Fourier Neural Operator surrogate, and the bottom row depicts the absolute error
of the prediction. Figure recreated from (Gopakumar et al.|2024).

Given these early successes, operator learning not only received coverage in public me-
dia (Ananthaswamy| /2021, |Anandkumar||2023)) but also attracted the attention of several
research communities. For example, Kovachki et al.| (2024b) explore the foundations opera-
tor learning from an approximation theory perspective, |[Boullé & Townsend| (2024]) discuss
its connections to numerical linear algebra, and |Azizzadenesheli et al.| (2024) provide an
application-focused overview. Our article contributes to this growing body of work by
adopting a statistical perspective on operator learning.

We begin by formalizing operator learning as a regression problem between function
spaces, a problem that has been studied by the statistics community as “functional re-
gression” or “function-on-function regression” within the functional data analysis (FDA)
literature. Recent advances in data-driven surrogate modeling for PDEs have revitalized
the interest in this problem. We adopt the term “operator learning” instead of “functional
regression” as it better reflects our viewpoint of using statistical learning framework with
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an appropriate loss function and a class of operators. Next, we review recent progress in
operator learning, and finally, we conclude by discussing key open questions and future
research directions.

2. A STATISTICAL FRAMEWORK FOR OPERATOR LEARNING

We approach operator learning from the point of view of statistical learning theory (Vapnik
2000) with the important difference that both input and output spaces are spaces consisting
of functions. To this end, fix X C R, and let V, W to be separable Banach spaces of RP-
valued functions on X'. As an example, one may have V = W = L2(X, RP), the set of square-
integrable RP-valued functions defined on the domain X. The base measure v is typically
the Lebesgue measure; however, for certain cases, such as when X = R?, a weighted measure
like Gaussian (with density proportional to eIzl dz) may be considered to ensure the
base measure is finite. In general, V can be defined as functions mapping from R% to
RP1, and W as functions mapping from R% to RP?2. However, the learning-theoretic and
practical aspects of the problem remain largely unchanged under such generality. Thus, we
take di = d2 and p1 = p2 to minimize notational complexity and simplify exposition.

We now formally define the statistical problem of operator learning. Let G : V — W be
the ground truth operator of interest. For example, this could be the solution operator of
the PDE of interest. In the statistical learning framework, the learner is provided with n
i.i.d. samples {(v;, G(v;))}i=1, where v;’s are drawn iid from a distribution p. Throughout
the work, we will assume that p belongs to a family of distributions P on V, and the learner
has knowledge of the family.

Using this sample and a predefined learning rule, the learner constructs an estimator Fa.
For simplicity, we use F.. to denote both the estimator and the estimation rule. Although
F\n can theoretically be any operator from V to W, in practice, the learner typically searches
within a prespecified operator class F C WY. For example, F might be the class of bounded
linear operators or neural network-based operator classes (see Section . However, the
true operator of interest G need not be in the class F. Accordingly, the estimator Fn is
evaluated relative to the best operator within the class F. Thus, for a prespecified loss
function £ : W x W — Rs>g, the worst-case (over p € P) expected excess risk of F, is
defined as

En(Fn, F,P,G) := sup <v1 E [E [0(Fn(v),G(v))]| — inf E [E(F(vLG(v))]).

LEP yeeUnNiid B[V p FeF v~p
(2).

Then, the learner’s objective is to develop an estimation rule such that &, (?n, F,P,G)—0
as n — oo.

To make the problem non-trivial from an estimation perspective, we assume that the
learner does not know the exact form of G. Otherwise, the learner could simply set F,.=G
or its closest approximation in F, making the estimation problem trivial. However, the
learner may still have some structural knowledge about G, such as its linearity or smoothness
properties, based on prior information of the underlying PDE. Alternatively, the learner may
know that the class F contains an operator that approximates G to within a small error,
meaning that

jnf B [((Fv),G(v))] <&

for some small € > 0. This assumption is reasonable for function classes with a universal

www. annualreviews.org * Operator Learning

Banach Space: A
vector space V over
R (or C) equipped
with a norm || - ||
such that (V, || - ||) is
complete, i.e., every
Cauchy sequence in
V converges to an
element of V.



Gaussian Process: A
stochastic process
{v(z) : x € X} such
that for any finite
set {z1,...,Zm},
the random vector
(v(x1),...,v(Tm)) is
a multivariate
Gaussian in R™.
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approximation property. In statistical learning, this is often referred to as the well-specified
or e-realizable setting. The well-known additive noise model is a special case of this setting.
To see this, let G(v) = F*(v) + 6 for some F* € F and a random noise term 6 € W such
that E[||§]|2,] < e. Here, instead of G being the ground truth, it is a § perturbation of the
output of ground truth F*. If the loss function £ is the squared norm in the Banach space
W, then infrexE [||[F(v) — G(v)|iy] < E[|F*(v) — G()[3v] = E[||6]]3y] < e. Here, the
expectation accounts for the randomness in both v and §.

2.1. Loss Functions

A common choice for the loss function is ¢(@,w) = ||@ — w]||},,, where || - | denotes the
canonical norm associated with the Banach space W. In practice, g is typically set to 1 or
2. Another frequently used loss function is the relative loss, given by

LW, w) =
which is often preferred in empirical settings, as it has been observed to yield better results

(Kovachki et al.[2023, Section 6.5). Additionally, if prior knowledge about the smoothness of
the functions is available, YW may be chosen as an appropriate Sobolev space to incorporate

this information into the learning process, generally referred to as Sobolev training

2021)).

2.2. Distribution Families

In principle, one could define P as the set of all Borel probability distributions on V. This
family with a worst-case analysis over all operators G : V — W leads to the standard
minimax framework. However, minimax analysis fails to capture the prior knowledge that
a practitioner generally has. Thus, it is common to impose additional constraints on P.
In the applied operator learning literature, P is often chosen as a class of Gaussian

nroce A1T N _SDecitl QovAariance & NOTK l.-l..l..‘.‘.‘m

let al.| (2021)), Kovachki et al.| (2023)) assume that input functions are drawn from a Gaussian
process GP(0, a(—V? + BI)™7) for some «, 8,7 > 0. This assumption is justified in these
works as the datasets are synthetically generated by directly sampling functions from this
distribution. Similarly, generate input functions using a Gaussian process

with an RBF kernel, while Boullé & Townsend| (2024) suggest more general covariance

structures, such as the Matérn kernel, which provides explicit control over the smoothness
of sampled functions. Further discussion on sampling from such distributions is provided
in Section 1]

For theoretical analysis, [Lanthaler et al|(2022) consider P as the class of all distribu-

tions whose covariance operators have finite trace norm. This corresponds to mean-square
continuous processes with covariances that are integral operators of Mercer kernels, as con-

sidered by [Subedi & Tewari| (2025b). Meanwhile, (2024) adopts a non-parametric
perspective, defining P as the set of all compactly supported measures on V.

3. OPERATOR CLASSES

In this section, we present an overview of select classes frequently used in the operator learn-
ing literature. Our primary focus is to describe how mappings between infinite-dimensional
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spaces are defined and to examine the learning-theoretic aspects of these classes. Thus, this
discussion is not meant to serve as an exhaustive review of all classes in operator learning.

For a more comprehensive overview, we refer the readers to articles by Boullé & Townsend|
(2024)) and [Kovachki et al.| (2024b)).

3.1. Linear Operators

For scalar-valued linear regression, the class of linear mappings consists of functions of
the form z — (8, z).
learning. Let V and W be Hilbert spaces with orthonormal bases {p;};en and {9, }jen,

A straightforward analog of this model can be defined for operator
respectively. For a sequence 8 = {3;},en, consider the mapping

v Y Biv,5) 1. 3)
j=1
One can define a class of such mappings as F = {v — 3272, Bi(v,0;) ¥; + [|Bll2q) <}
Since the orthonormal bases are fixed apriori, learning this linear map reduces to esti-
mating the sequence {3;},en. This is effectively a regression task in the frequency domain,
a well-studied problem in statistical modeling (Harvey|[1978). Moreover, this estimation
framework is closely related to principal component functional regression, which has been
studied in works of [Hormann & Kidzinskil (2015) and [Reimherr| (2015). Recently,
let al.| (2023) and |Subedi & Tewari| (2025a) analyzed this model in the context of learning
solution operators of PDEs.

Despite its simplicity, this model can be used to approximate the solution operator of
the heat equation Let {¢;}521 be the eigenfunctions of the Laplacian operator -v?
on the domain X, with corresponding eigenvalues {n;};>1. That is, —V?p; = n; p; for
all j € N. Then, the solution operator of the heat equation has a spectral representation

(Dodziuk||[1981) such that any initial condition wg is mapped to the solution function at
time point ¢ as

uo = Y e (uo, 5) 05,
j=1
which can be parametrized as Equation
A slightly more general linear model can be defined using an integral operator associated
with a kernel. Let kg : X x X — RP”*P be a kernel parameterized by 6. Define the operator
Ky as follows

(Ko v)(y) = /X Fo(y, ) v(z) du(z), (4).

where v is a measure on X. This model has been extensively studied in the functional data
analysis literature, especially when p = 1 and v € L*([0, 1], R) Section
3.2).

Kernel integral operators are particularly useful for learning linear boundary value prob-
lems of the form Lw = v, where w(z) = 0 for all z € boundary(X). Under regularity condi-
tions such as uniform ellipticity, the solution operator for these problems can be represented

as an integral operator of the associated Green’s kernel (Boullé et al2023). For example,

when X = R¢, the solution operator of the heat equation can also be written as the integral

operator of Gaussian kernel 2022}, Section 2.3), that is

1 —z|?
u(y) = /Rd (@rrt) 72 exp (— H94Tt ! > uo(z) dz.
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Hilbert Space: A
complete inner
product space

(H, (-,-)) with norm
el = /Tz,a).
Every Hilbert space
is a Banach space
with the inner
product structure.

Matrix-Valued
Kernel: A function
k: X x X — RPXP
with entries k;;,
which are each a
scalar-valued kernel
kij A XX —>ROA
scalar-valued kernel
is a function that is
(i) symmetric

kij (IL‘, l'/) =
kij(2',x) and (ii)
positive semidefinite,

> ab=1CaCb kij(Ta,mp) >

OVxy,...,zm € X
and c1,...,cm € R.



However, for general domains X, the heat kernel does not always have a closed-form so-
lution. In fact, deriving an explicit Green’s function is not possible for most linear PDEs,
particularly in high dimensions.

To address this, Boullé et al| (2022) proposed learning the Green’s function directly

from data by parameterizing it with a neural network. This approach offers two main
benefits. First, the problem reduces from estimating an operator on infinite-dimensional
spaces to estimating a function defined on a finite-dimensional domain. Second, Green’s
functions capture fundamental properties such as conservation laws and symmetries, pro-
viding better interpretability compared to the general solution operator. Additionally, when

the underlying boundary value problem is non-linear, (2021) proposed to use an
encoder-decoder framework, where the Green function is learned in an encoding space where

the PDE is linearized. More recently, |Stepaniants| (2023)) developed a theoretical framework

for learning the Green’s function within a reproducing kernel Hilbert space (RKHS). Using

the theory of kernel methods, |Stepaniants| (2023]) derived rigorous statistical guarantees for

the resulting estimator.

3.2. Neural Operators

Unlike the heat equation, many PDEs of practical interest have nonlinear solution operators.
Neural operators are a class of neural network-based architectures developed to approximate
such nonlinear operators. Recall that a multilayer neural network is defined by sequential
composition of multiple single layer networks. In standard finite dimensional settings, a
single layer network is a map « — o(Wxz + b) for some pointwise non-linearity o(-). Neural
operator is a natural generalization of such mapping to function spaces. In particular, for
a given input function v, a single layer of a neural operator is defined as

v o((Kev)() +8()),  where (Kg'u)(y):/kg(y,a:)v(a:)dl/(x).

X

Here, Ky is a kernel integral operator of a kernel kg parameterized by 6, b : X — RP is a
bias function, and ¢ : R? — RP? is a pointwise nonlinear activation function, such as ReLU.

We refer interested readers to [Kovachki et al.| (2023 for a detailed discussion.
Although the neural operator model in its current form was introduced by
(2020alb)) and further developed in [Kovachki et al.| (2023)), the underlying mapping v —

ol (Kev)(-) + b()) has been studied in the FDA literature as functional single and multi-

index models (see (Wang et al|2016, Equation 13) and (Chen et al.|[2011))). However, the

operator learning literature has developed novel techniques that enable fast training and

efficient evaluation of such nonlinear mappings.

Since data is typically provided on a grid over a domain of size N, a naive implemen-
tation of this model based on numerical integration would require a time complexity of
O(NQ). Since the grid size N is typically exponentially large in d, this naive approach
becomes a significant bottleneck while training large neural operator models with multiple
layers. Thus, recent advances in neural operator methods have focused on overcoming this
computational limitation by introducing techniques that reduce the complexity and enable
efficient training and evaluation of these models at a large scale. One such technique in-
volves parametrizing the kernel kg, in the Fourier domain, which gives rise to a well-known
architecture called the Fourier Neural Operator.
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3.2.1. Fourier Neural Operators (FNO). The original formulation of Fourier Neural Opera-
tor (FNO) assumes a translation-invariant kernel and applies the convolution
theorem. Here, we present an equivalent formulation using a Mercer-type decomposition of
ke. Suppose kg : X x X — RP*? admits the expansion

[k9(y>-r)]ij = Z Aij(m)eQﬂm'(y—ﬁ)7

mezd

where A;; : 7% — C. Define the matrix-valued function A : Z¢ — CP*P such that
[A(m)]i; = Aij(m). Using this decomposition and changing the order of sum and integral,
the kernel operator Ky can be written as

o0)) = 30 & (Am) [ (e anto)).

meza

This formulation describes FNOs as first computing the Fourier transform of v, applying a
transformation A(m) to each mode, and reconstructing the output using an inverse Fourier
transform, often written succinctly as IFT (A - FT(v)).

There are two key challenges in a practical implementation of this transformation. First,
the infinite summation over Z%, and second, the approximation of FT(v) due to discretiza-
tion. address the first challenge by truncating the sum to |m|ge < M, re-
ducing parameters of the model to at most M¢ matrices. The second challenge is addressed
by approximating FT(v) using the discrete Fourier transform (DFT) of v, computed over
the finite grid of domain points. Suppose the data is available on a uniform grid of size
N. Then, DFT can be efficiently computed using fast Fourier transform (FFT) algorithms,
which have a computational complexity of O(N log N).

Note that this parameterization is just a special case of Equation where the basis is
explicitly chosen as the Fourier basis. More generally, kernel expansion can use alternative

bases, such as Chebyshev polynomials or wavelets (Tripura & Chakraborty||2023] |Guptal
let al.|[2021), which can be better for non-periodic or non-smooth functions. Variants of
FFT also exist for these transformations, though they may require different grid structures
such as Chebyshev nodes Chapter 2) or dyadic grids for wavelets
Chapter 7).

3.2.2. DeepOnet. While neural operators are typically described as architectures composed
of mappings of the form v — o (K v+ b), there are also other ways in which neural network
modeling has inspired operator learning architectures. Perhaps the most popular one is the
DeepOnet architecture proposed by , based on the pioneering work of
. Given the input function v, the DeepOnet architecture is a mapping

v Db (EE) 1)

Here, £ : V — R" is an encoder that encodes the input function v on R", b; : R" — R is
typically a neural network that processes an encoding of v in R", and ¢; : X — RP is another
neural network that takes the evaluation point y of the output function in W as an input.
Although the learned functions ¢; may not be orthogonal in practice, this architecture can
be interpreted as follows: the functions (t]-)?:1 learn the dominant basis of W that captures
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Mercer’s Expansion:
If k is a continuous,
symmetric, positive
semidefinite kernel
on a compact
domain X, then
there exist
eigenpairs (Mg, ¢¢) of
the integral operator
(TF)(y) =

T Ky, ) () da
such that

o021 Mee(y)de ()
converges uniformly
to k.

Fourier Transform
Operator: A linear
operator FT :
L?(RY) — L2(R%)
defined by

FT(v) = /Rd v(z) e 27H=) dg.

Its inverse IFT(:) is
a linear operator
such that
IFT(FT(v)) = v.
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the most significant variations in the target functions, while the functions (bj)‘j.:1 map an

input function to the corresponding basis coefficients.

A common choice for the encoder is £(v) = (v(z1),...,v(zn)), where z1,...,2N§
are the grid points at which v is sampled. However, this encoding is not discretization-
invariant, meaning the model cannot generalize to evaluate a new input function v’ sam-
pled on a different grid. To achieve discretization invariance, v can instead be encoded as
E() = ((v,p1),...,(v,r)), where (¢;)j=; are orthonormal functions in the space V. In a
special case when (¢;)j—1 correspond to the first 7 principal components of the covariance
operator of p and (t;)7_,
tor of the pushforward measure G (), the resulting architecture is referred to as PCA-Net
(Bhattacharya et al|[2021)).

represent the first ¢ principal components of the covariance opera-

3.3. RKHS and Random Features

Let W be a Hilbert space. Recall that the usual reproducing kernel Hilbert space (RKHS) of
scalar-valued functions can be defined using a real-valued kernel. However, defining a RKHS
of operators requires an operator-valued kernel. To that end, let B(W) denote the space of
bounded linear operators on W. A function K : VxV — B(W) is an operator-valued kernel
if: (1) K is Hermitian, i.e., K(u,v) = K(v,u)" for all u,v € V and (2) K is non-negative,
meaning that for any {(vi,wi)}i1, we have 377, 377 (wi, K (vi, v;)w;)w > 0.

The class F is an operator RKHS associated with K if

(1) K(v,-)we FforallveV, weW.
(2) For any v € V, w € W, and F € F, we have (F, K (v, )w)r = (F(v), w)w.

The second property is the reproducing property, which implies a closed-form solution for
penalized least-squares estimation under the RKHS norm. Given training data {(v;, ws)}ie1,
the solution to such penalized-estimation problem takes the form

Fu(") = ZK(vu-)ai,

for some coefficients a1, ...,a, € W. Further details on operator RKHS and the corre-
sponding estimation problem can be found in the work of [Micchelli & Pontil| (2005). The
framework of using operator RKHS for function valued regression was developed in a series
of works by [Kadri et al| (2010| 2011} 2016). In an interesting work, Batlle et al.| (2024)
showed that these RKHS-based methods for operator learning are competitive with neural

network-based methods on standard benchmark datasets. More recently, (2025)
developed a Gaussian process framework for operator learning where they estimate a real-

valued measurement of the solution operator, which allows them to use finite-dimensional
kernel methods.

Despite the theoretical appeal of the estimator mentioned above, its practical imple-
mentation is challenging. The primary challenge arises from the fact that the kernel K

is operator-valued. [Kadri et al| (2016]) studied a simplified case where K takes the form
K(u,v) = k(u,v)L for a scalar-valued kernel k and a fixed linear operator L. Even under

this restrictive assumption, computing the solution requires expensive tensor-based tech-
niques when L is non-diagonal. For a general kernel K, the computational cost becomes
prohibitive for most practical applications.

A more practical alternative to working directly with operator-valued kernels is the
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random feature model for operators proposed by [Nelsen & Stuart| (2021). The random fea-

ture model (RFM) for scalar-valued functions was originally introduced by |[Rahimi & Recht
(2007) as a scalable approximation of kernel methods by constructing a randomized low-

dimensional approximation of the true RKHS feature map. This idea was later extended to

matrix- and operator-valued kernels by Brault et al.| (2016) and Minh| (2016)), respectively.

However, given the difficulty of defining and implementing non-trivial operator-valued ker-

nels, |[Nelsen & Stuart| (2021) proposed RFM as a standalone model rather than an approxi-

mation technique for kernel methods. Thus, our focus here is only on the resulting trainable
random feature model. For a detailed discussion on operator RFMs and their connection
to kernel methods, we refer the readers to (Nelsen & Stuart|2021} [2024).

Defining an RFM requires a feature map ® : Vx © — W, where O is a set of parameters

and a probability measure p on ©. Then, a random feature model indexed by ¥ is
LM
Frewm (0;0) = 7 ;B]@(v; 0;)

for all v € V. Here, Bi,...,8u are some scalars and ¥ := {0;}}L,, where 0,’s are iid
draw from the probability measure p. The class F indexed by ¥ can be defined as all such
RFMs such that Zjle |3;]> < ¢ for some ¢ > 0. This model is trained in so-called lazy
regime, where the random parameters are fixed and one only trains the scalar parameters
B1,...,Bm. Since this is a linear optimization problem, one can derive the unique minimizer

and establish statistical guarantees of the resulting estimator (Lanthaler & Nelsen|[2023).
Although RFM was originally conceptualized in |Rahimi & Recht| (2007)) from its con-
nection to kernel methods, one can go beyond feature maps of the associated kernels. For

example, one can consider a random feature model where ®(+,6;)’s are random initialization
of large powerful models such Fourier Neural Operators or DeepOnets. Such a model can
potentially give us the expressivity of neural networks while providing rigorous statistical
guarantees.

4. DATA GENERATION, ESTIMATION, AND EVALUATION

Beyond the model itself, the success of operator learning depends on the choice of data
distribution, estimation strategy, and evaluation framework. We next discuss these key
practical aspects of operator learning.

4.1. Data Generation and Sampling

One of the defining features of operator learning, particularly for applications involving
partial differential equations (PDEs), is the flexibility in data acquisition. Unlike traditional
machine learning tasks, where data is often collected from fixed experiments or observations,
operator learning benefits from the ability to generate labeled data by directly querying a
PDE solver. The process begins with sampling input functions v from a carefully chosen
distribution wu.

In the applied literature, v is typically sampled from a mean-zero Gaussian process with
a covariance operator of the form a(—V?2+ I)~". This distribution, widely used in the ap-
plied stochastic PDEs literature , was first proposed for operator learning
by Bhattacharya et al|(2021) and also implemented in later works (Li et al.[|2021} [Kovachkil
. As Figure |3| shows, the parameter v controls the average smoothness of the

www. annualreviews.org ¢ Operator Learning

11



Karhunen—Loeéve
Decomposition: An
orthogonal
expansion of a
centered stochastic
process v with
covariance operator
3, defined as v(z) =
S5 VA€l (@),
where (Mg, ¢g) are
eigenpairs of ¥ and
{&¢} are zero-mean,
uncorrelated random
variables. It is an
infinite-dimensional
analog of principal
component
expansion.

12

generated samples. This allows practitioners to adjust v to incorporate prior knowledge
about the smoothness of input functions relevant to the specific application.

To sample input functions from such a distribution, one makes use of Karhunen-Loeve
decomposition. Let {¢;}52, denote the eigenfunctions of —V?* on X, with corresponding
eigenvalues being (7;);>1. By the Spectral Mapping Theorem, {¢;}52; remain the eigen-
functions of (—V? 4 BI)™7, with eigenvalues being \; := a(n; + 8)~". If D521 A < oo,
then the Karhunen-Lo¢ve Theorem (Hsing & Eubank|[2015, Theorem 7.3.5) states that
any sample v ~ GP(0, a(=V? 4 BI)™7) can be decomposed as

U(JC):Z\/YJ'&%(JC) Vo e X,

where {£;}72; are uncorrelated standard Gaussian random variables on R. Thus, sampling
v is reduced to sampling a sequence of independent Gaussian random variables (&;)721,
which is often truncated to (fj)j]\il in practice. The resulting truncation yields a sample
v(z) = Z]Nil V/Aj & ¢j(z), which is then evaluated on a predefined discrete grid of X.

Sampling from this distribution requires knowledge of eigenpairs (\;, ¢;);>1, which de-
pend on the domain geometry. In certain cases, these can be computed analytically. For
example, on the 1d torus (T =~ [0, 1]), the eigenfunctions are the Fourier basis, with eigen-
values \; = (B + 472|§|>)™7. This also extends to higher-dimensional torus T (Subedi
Section 3.2.1). Similarly, on a d-dimensional sphere S, the eigenfunc-
tions are spherical harmonics, though closed-form expressions may not exist for arbitrary
domains.
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Figure 3: Samples from GP (0, (—V?+1)~7) for different values of v on the domain [0, 1),
illustrating how v determines the smoothness of the generated functions.

Moreover, other kernels such as the Matérn or radial basis function (RBF) can also be

used. For example, (2021a)) generate samples using the RBF kernel, K(y,z) =

exp(—|lz — y||*/(2¢?)). The eigenfunctions of the RBF kernel are Hermite polynomials

with corresponding eigenvalues that decay exponentially fast (Williams & Rasmussen! 2006,

Section 4.3.1). When the eigenpairs of the kernels are not available in closed form, various

numerical methods can be used to approximate them (Williams & Rasmussen|2006], Section
4.3.2). Additionally, it is possible to go beyond Gaussian processes and sample (;);>1 from
other distributions with heavier tails such as from ¢-distribution or Uniform([—c, c|) for some
c> 0.
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Once the input function v has been generated, numerical solvers are used to obtain
the corresponding solution w = G(v). There are many numerical methods such as finite
difference, spectral, and finite element. To keep this discussion focused on the statistical
aspect of operator learning, we will not expand further on these numerical methods. We

refer the interested readers to Boullé & Townsend (2024 Section 4.1.2) and references

therein.

4.2. Estimation

Given n i.i.d. samples {(v;, G(vi))}i=1, the estimator is typically obtained by empirical risk
minimization,

~ 1 <

F, € argmin — L(F(vi), G(vi)).

gmin 3 H(F (), G(w)

As discussed in Section common choice of the loss function includes squared L? loss,
£(F(vi), G(v3)) = ||F(v;) — G(v:)||32, or a related relative loss. Since the data is only avail-
able on a discrete grid {z1,...,zn} C X, the L? norm is approximated empirically as
[F(vi) — Gi)||32 = + Z;\;l | F(vi)(z;) — G(Ui)(fﬂj)|2. The optimization problem is then
solved using first-order methods such as stochastic gradient descent (SGD) and its variants.
When the underlying PDE is known, additional constraints imposed by the PDE such as
conservation laws are often incorporated as a regularization term in the optimization prob-
lem. This technique, referred to as physics-informed training, is discussed further in Section
(6]

4.3. Evaluation & Out-of-Distribution Generalization

Suppose F, is the operator estimated from the training data. Its performance is then

2ot The test samples may

evaluated on a separate set of held-out test samples {(v;, G(v;))
be drawn from the same distribution as the training set or from a different distribution. For
example, if the training distribution u is a Gaussian process with covariance a(—V?+£I) ™7,
the test distribution piest could have a covariance of the form a(—V2 + BI)~7 for some
Y2 < 1. Since the parameter v; determines the smoothness of the sampled functions,
evaluating on a test set with a smaller 72 allows for assessing the model’s ability to generalize
to functions with lower smoothness.

Moreover, as discussed in Section functions are typically sampled using the
Karhunen-Loéve decomposition. That is, a function can be expressed as v(z) =
Z?il VAj & @j(z), where function samples are generated by drawing values for &;. To
assess out-of-distribution generalization, one can modify the distribution from which &; is
sampled. For example, while training data may be generated by drawing &; from a Gaus-
sian distribution, test samples could be generated using a long-tailed distribution, such as
a t-distribution.

5. ERROR ANALYSIS AND CONVERGENCE RATES

For a fixed pu, the excess risk &, (f‘n, F,P,G) defined in Equation consists of two terms:
the risk of the estimator F,, and the risk of the optimal operator in F. The latter term,

inf B [((F(v),G())],

FEF (v,w)~p
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is referred to as the approrimation error of F. This error arises due to model
misspecification— the ground truth G lying outside the class F. Since this error is irre-
ducible and does not vanish even as n — oo, it is subtracted from the error of the estimator
so that the resulting excess risk can go to zero in the limit.

In traditional learning problems, the excess risk &, (Fn, F,P,G) is typically referred
to as the statistical error of the estimator fn Statistical error arises because the learner
must identify the optimal operator in F for the distribution p, despite only having access
to a finite number of samples from that distribution. However, in operator learning, unlike
traditional learning settings, the excess risk contains at least two additional sources of
error beyond the statistical error: the discretization error and the truncation error. The
discretization error arises because the learner has access to samples only on a discrete grid
of domain points, but is evaluated on the entire domain. On the other hand, the truncation
error arises due to various finite-dimensional approximations of the infinite-dimensional
object of interest.

5.1. Approximation Error

Most theoretical works in operator learning have focused on quantifying the approximation

error of various model classes. One of the earliest works was by |Chen & Chen| (1995)), who

introduced a neural network-based architecture called operator networks and established
its universality for representing continuous operators on compact subsets. Building on this

work, (2021a) proposed DeepONet and proved its universality. While these initial
results were qualitative, [Lanthaler et al| (2022) provided quantitative error estimates for

these architectures. The universality of Fourier Neural Operators (FNOs) and their associ-

ated error bounds were established by [Kovachki et al| (2021). Similar approximation error

estimates were later established for PCA-Net by [Lanthaler| (2023)). For a more compre-

hensive overview of works on approximation error of various operator classes, we refer the
readers to (Kovachki et al.|[2024b| Sections 4 & 5).

5.2. Truncation Error

Truncation errors can arise from a variety of sources. For example, as discussed in Section
while samples v ~ GP(0,a(—V? + BI)™7) has the representation v = P VAi&ies,
only a truncated sum E]]Vi1 \/E &;jp; is used in practice. This introduces a truncation error
in the data itself.

Truncation errors also arise during the estimation process. For example, in model
only a finite subset of the parameters (£;)72; can be estimated in practice, introducing
a truncation error. More generally, in operator learning literature, the model class F is
often assumed to have a low-dimensional latent structure. Specifically, for any F € F,
there exists a mapping h : R” — R? belonging to another class H such that F =DohoE,
where E and D are predefined encoder and decoder operators. A common choice for the
encoder is a finite-dimensional projection, defined as E(v) = ((v,¢1),..., (v,¢r)), where
(pj)5=1 is an orthonormal basis of the input space V. Similarly, given a vector { € RY,
the decoder can be defined as ¢ — 23:1 ¢y, where ¢ = (C1,...,¢q) and ()52, is an
orthonormal basis of the output space WW. Such encoders and decoders naturally introduce a

truncation error. Lanthaler et al.| (2022)) characterized the encoding and decoding errors for
the DeepONet architecture, while a similar analysis for PCA-Net was provided in

(2023). Furthermore, (2024) studied truncation error of various encoder-decoder
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frameworks for the estimation of Lipschitz operators.
Truncation errors are also inherent in FNO estimation (Section|3.2.1)), where the infinite
sum is approximated by a finite truncation. |[Subedi & Tewari| (2025b)) quantify this error

for the linear core of FNO. Similarly, PCA-based estimators in functional linear regression

(Hormann & Kidzinski[2015| [Reimherr|[2015) also incur truncation errors as only a finite

number of principal components are used in practice.

5.3. Discretization Error

Discretization error fundamentally arises from approximating functional operations using

numerical methods on a finite-sized grid. (2021a) quantified the discretization

error in sampling from a Gaussian process and reconstructing functions via linear interpo-

lation. For DeepONet, [Lanthaler et al| (2022)) analyzed the error from encoding v using

numerical inner products on a discrete grid. More recently, |[Lanthaler et al.| (2024]) analyzed

discretization error in Fourier Neural Operators (FNOs) during evaluation. For a fixed FNO
model F, they bounded the numerical error of evaluating F(v) on a grid of size N¢ instead
of the exact evaluation.

A more relevant discretization error arises during the learning process itself rather than
model evaluation. It occurs because the estimator is trained on a discrete grid of size N
but evaluated at full resolution as N — co. [Subedi & Tewari (2025a) quantified this error
for learning the linear core of FNOs. However, a more practical analysis would consider

training on a grid of size N; and evaluating on a different grid of size Na>. Such a general
analysis would provide a rigorous foundation for understanding the multiresolution general-
ization, also known as zero-shot super-resolution, often observed in practice
Section 5.4). Therefore, a key direction for future research is developing a general theory
of multiresolution generalization.

The problem of learning from discretized data shares similarities with partial informa-
tion settings studied in the bandit literature (Lattimore & Szepesvari|[2020). Thus, tech-
niques from bandit literature could help in understanding learning theoretic consequences

of discretization. Additionally, often in practice, training data is available at multiple grid
sizes. A natural way to study this could be through the lens of missing data problems,
borrowing tools from the statistical literature (Little & Rubin|[2019).

5.4. Statistical Error

There is a substantial body of work studying statistical error when F is a class of linear
operators. In the FDA literature, V is often assumed to be L2([0,1]), the output space W
is typically R, and F is generally a class of integral transforms. For foundational results

in this setting, we refer readers to the seminal works of [Hall & Horowitz| (2007) and |Yuan|
(2010)), as well as the references therein. A non-technical overview of these results
is available in review articles such as [Wang et al| (2016) and [Morris| (2015)). These results

have been extended to settings where the response is function-valued, say W = L?([0,1]),
in works like [Yao et al.| (2005]), (Crambes & Mas| (2013), |Benatia et al.| (2017)), and Imaizumi
(2018). Further generalizations to arbitrary Hilbert spaces V and W have been
developed in (Hormann & Kidzinskil2015] [Reimherr][2015], [Mollenhauer et al.[2022] |[de Hoop|
. All of the works mentioned above generally establish prediction consistency
results with associated rates of estimation under the additive noise model w = F(v) 4+ 4. In
contrast, [Tabaghi et al.| (2019) and |Subedi & Tewari| (2025a) bound excess risk for learning
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linear operators in potentially fully misspecified (agnostic) settings. It is important to note
that this list is far from exhaustive and represents only a subset of works from a mature
and extensive body of literature on linear operator learning.

Compared to linear operator learning, the statistical theory for nonlinear operator
classes F is relatively underdeveloped. Early works in this area include works on addi-
tive and polynomial models (Li & Marx]|[2008| [Yao & Miiller][2010). [Kadri et al.| (2016)
extended the theory to the estimation of operators when F is a reproducing kernel Hilbert
space (RKHS) of operators. Additionally, Batlle et al.| (2024) developed a kernel-based
framework for operator learning and established statistical guarantees for scenarios where
data is observed as finite-dimensional vectors through a fixed measurement map.
generalized the random feature model of [Rahimi & Recht| (2007) to learning
operators, and comprehensive statistical analysis for RFM was later provided by
(2023)

Building on the early work of Mhaskar & Hahm)| (1997), recent work by [Kovachki et al.
(2024a)) provides a statistical analysis for non-parametric operator classes such as Lipschitz

operators. However, their findings primarily highlight the hardness of the problem, as they

show that the minimax error bound decays very slowly, at a rate of ~ (logn)~'. A related
analysis by also reports similarly pessimistic rates for Lipschitz operators
estimation. These results suggest that Lipschitz operators might be too big of a class to
learn. Thus, an important future direction is to identify a smaller class F that captures
operators commonly encountered in practice for which efficient statistical estimation is
possible.

While most applied works in operator learning rely on neural network-based archi-

tectures, their statistical analyses remain limited. |Lanthaler et al| (2022) and |Gopalani|
(2024) established generalization bounds for DeepONets, while Kim & Kang| (2024)
and |Benitez et al.| (2024) derived bounds for Fourier Neural Operators using Rademacher

complexity estimates. However, these bounds typically rely on covering number analysis,
leading to an exponential dependence on the parameter size or number of layers. Thus, the
resulting bounds are too loose to provide any meaningful insights into the empirical success
of these models. In future, shifting focus from deep architectures to tighter analyses of
simpler models, such as single-layer networks, may yield deeper insights into the statistical
properties of these neural network-based operator models.

5.5. Towards a General Statistical Theory of Operator Learning

Beyond analyzing specific operator classes, it would be of interest to develop a general
statistical theory for operator learning. Historically, statistical learning theory has focused
on developing such general frameworks, beginning with the Vapnik-Chervonenkis (VC)
theory introduced by [Vapnik & Chervonenkis| (1971)) and further developed through tools
from empirical process theory by Dudley| (1978)), |Talagrand| (2005)), and others. A key
challenge in developing a similar theory for operator learning is identifying an appropriate

complexity measure for the operator class F that effectively quantifies its complexity of
learning. Modern statistical learning theory relies primarily on covering numbers to quantify
such complexity (van der Vaart & Wellner] [1996) [van de Geer|[2000). Recent work by
[Reinhardt et al.| (2024)) has taken a step in this direction by providing estimation bounds

for compact operator classes in terms of their covering number. However, covering numbers
may not be the right tool in this setting as many fundamental operator classes are inherently
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non-compact, making covering number-based bounds vacuous.
For example, consider a simple class of constant functions

F={v—w|weW and |w||lw < 1},

which corresponds to the unit ball in the output space WW. Since the unit ball in an
infinite-dimensional space is non-compact, the covering number of F is unbounded under
any reasonable metric. Yet, learning this class is just a reframing of a mean estimation
problem. Given n i.i.d. samples {(v;, wl)}l 1, the empirical mean F,=1 = >, w; achieves
the standard convergence rate of &, (Fn,]-' P,G) < n~ Y% when W is a separable Hilbert
space and £ is the canonical norm of W. This suggests that a new complexity measure
other than covering number is needed—one that meaningfully characterizes learnability for
operator classes, much like what VC dimension does for binary classification (Blumer et al.
1989). More precisely, given a class F, is there a complexity measure function C(F) such
that &, (Fn, F,P,G) 222 0 if and only if C.,(F) < oo for every v > 07 In other words, the
measure C,(F) tells us when the risk-consistent estimation of F is possible. A promising
direction could be to develop generalizations of the fat-shattering dimension, which has
been used to characterize learnability in scalar-valued regression (Bartlett et al.||1996, |Alon
et al.|1997). The theory of scalar-valued regression, developed in terms of the fat-shattering
dimension, suggests that the appropriate complexity measure C,(F) also provides a tight
bound on the rate at which En(l?‘717 F,P,G) converges to zero.

6. PDE-SPECIFIC OPERATOR LEARNING

Existing works in operator learning typically use neural networks as black-box estimators
for solution operators, which makes them broadly applicable across various PDEs. However,
these methods often neglect structural properties inherent to specific PDE classes, leading
to suboptimal data efficiency. To address this, a few works have attempted to integrate
mathematical or physical constraints into the learning process, often referred to as physics-
informed learning. The central idea is to encode known physical constraints (e.g., boundary
conditions, conservation laws) directly into the training objective as a regularization term.
Specifically, a physics-informed approach minimizes a regularized loss function of the form

F € argmin ( ZZ ,w;) + A2 R(Sh, F))

FeF

for some prespecified weights A1, A2 > 0. Here, S, is the training sample set, and R :
Sp X F — [0,00] is a regularization functional encoding PDE priors such as boundary
conditions (Li et al.||2024b)) or variational formulations (Goswami et al.[2023)).

In our running example of the heat equation suppose u is integrable and van-
ishes on the boundary It is well known that the total heat energy is conserved, meaning
fx ut(z)de = fx uo(z)dz, WVt > 0. A natural way to enforce this constraint in operator
learmng is through a regularization functional

n

R(S,F) := % Z

i=1

/X (F(v)(@) — vi(2)) da|

This penalizes deviations from the heat conservation law to ensure that the learned operator
respects the underlying physical principle.
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The use of physics-based constraints in learning models for solving PDEs was formally
introduced within the framework of Physics-Informed Neural Networks (PINNs) by [Raissi
et al.| (2019). By restricting the search space from F to operators F that satisfy physical
laws, the effective model complexity is reduced. This generally leads to improved sample
efficiency.

While physics-informed learning is an important first step, a more effective approach
could be to incorporate these constraints directly into the architecture design, leading to
PDE-specific models. For example, consider the time-dependent Schrédinger equation,

L diy

lhﬂ = H.
The development of surrogate models for Schrédinger’s equation has been an active area
of research since the 1970s, with many research communities still dedicated to this pursuit.
Thus, an off-the-shelf neural network is unlikely to make a meaningful progress. However,
a carefully designed operator learning approach tailored specifically to the Schrédinger
equation itself could be a valuable addition to the existing toolbox of approximate methods.

The structure of this PDE itself can be used to inform architecture design. For example,
when the Hamiltonian H is time-independent, the solution operator takes the form G =
exp(fi%H), which is unitary, that is GFG = I. Thus, a more data-efficient learning
approach may involve parametrizing F such that every F € F is unitary. Extending existing
parameterizations of unitary matrices, such as one by |Jarlskog| (2005)), could provide a useful
starting point.

Finally, we end by noting that a similar PDE-informed design philosophy underlies the
Green function learning framework proposed by [Boullé et al.|(2022) and |Gin et al.| (2021)),
where the architecture is derived from the observation that solution operators of certain
boundary value problems can be expressed as integral operators with Green’s functions.
Extending this type of principled approach of architectural design to general nonlinear
PDEs is an important future direction.

7. FUTURE DIRECTIONS

While operator learning holds great potential, scaling it for real-world applications presents
key challenges. We now outline some important research directions to address these issues.

7.1. Active Data Collection

It is unclear if the iid-based statistical model is the right framework to study operator
learning for PDEs. This is because the learner can generate any training data by query-
ing the numerical solver, and thus has no reason to be limited to iid samples from some
source distribution. In fact, as generating training data requires computationally expensive
numerical solvers, the learner should ideally generate data adaptively to ensure that the
computational cost of training is justified by saving during evaluation. The model where the
learner can adaptively select the data is referred to as active learning model in statistical
learning theory. We will propose an active learning model and argue why this is the right
model to study operator learning for surrogate modeling of PDE.

Given a sample size budget of n, the learner can pick any functions vi,ve,..., v, € V
and get the label G(v;) for each ¢ € [n]. Note that this framework where the learner can
request labels for any input is generally unrealistic in many problems. For example, for

Unique Subedi and Ambuj Tewari



human data, it may not be feasible to request a label for an individual with an arbitrary
feature vector, as such a representative human may not exist in reality. However, this is
perfectly realistic in operator learning because the PDE solver can provide a solution for
any input function in the appropriate function space V.

With this actively collected training data (v, G(v;))j=1, the learner has to produce an
estimate fn such that

e (@, 7, PG = sup (B | B [F0.G)]| - jut, B [£(P0).G()] )

peEP \V1ir-- FeFv~p

vanishes to 0 as n — oco. The key distinction between SZC“%(?",]:,P, G) and the excess
risk 5n(§‘n, F,P,G) defined in Equationlies in the definition of F,,. In Equation F,
is constructed using labeled samples where the inputs v; are drawn independently from p. In
contrast, for £active (ﬁn, F,P,G), the learner has the flexibility to select any vi,...,v, € V.
The expectation over v, ..., v, accounts for any randomness introduced by the learner in
the data generation process.

This seemingly minor distinction can have significant implications for the guarantees
that can be established in this setting. For example, when F is a class of linear operators,
|Subedi & Tewari| (2025b) showed that fast convergence rates of n=? for 8 > 1 can be
obtained for many natural families . This is in stark contrast to the i.i.d. setting, where

rates faster than n~! are not possible. Therefore, this result highlights the substantial
advantage of active data collection over i.i.d. sampling, at least for linear operator learning.

Recent empirical work by |Musekamp et al.| (2024) also highlights the benefits of active data
collection in operator learning. also showed empirically that an active
learning strategy that jointly selects input functions and their resolution improves the data
efficiency of FNOs.

The statistical benefits of active learning over passive sampling in traditional learning
problems are well-established in the learning theory literature (Hanneke[2013} [Settles|1994)).
Given this potential benefit, developing active data collection strategies and rigorously

establishing their statistical benefits is an important direction for future research in operator
learning, as emphasized by |Azizzadenesheli (2024)) in his ICML 2024 tutorial.

7.2. Uncertainty Quantification

For operator learning to be deployed in real-world applications, particularly in safety-critical
domains, a rigorous framework of uncertainty quantification is essential. Several works have
already explored this direction, mostly using Bayesian techniques. For example,
uses Hamiltonian Monte Carlo to sample from the posterior distribution, using the
mean for point prediction and the variance as an uncertainty estimate. Similarly,
et al.| (2022)),|Akhare et al.| (2023)),|Guo et al.| (2024)) propose approximate Bayesian methods

for uncertainty quantification, while (2024) proposes conformal prediction to
provide distribution-free coverage guarantees.

Beyond ensuring model reliability, uncertainty quantification can actually be used to
improve the operator learning pipeline in two ways. First, it allows uncertainty-guided
active data collection, which can potentially improve sample efficiency by prioritizing high-
uncertainty inputs for labeling. A standard Bayesian active learning strategy involves esti-
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mating the empirical posterior covariance to define an acquisition objective

m m 2
1 1
Un(v) = — Fi(v) — — i ,
=23 [Fil) - - Y F)
=1 Jj=1 w
where F1, ..., F,, are posterior samples from n training data points. Then, the next input to

label is selected as vn+1 = arg max, ¢y, Un (v), often from a predefined candidate set S C V of
finite size for computational efficiency. This is particularly useful in settings where acquiring
labeled data is costly, such as physical experiments, where retraining the model is much
cheaper than running a new experiment. A similar approach to uncertainty-guided active
learning using ensemble predictions was proposed by Musekamp et al.| (2024).

Second, uncertainty quantification allows robust decision-making in downstream tasks
where operator surrogates are integrated into optimization pipelines. For example, in design
optimization (Rao||[2019), the surrogate prediction @ is used to minimize a downstream
objective function J(&,w) over a feasible parameter space =, subject to design constraints
C(&) < 0. A robust optimization can account for uncertainty by solving a min-max problem,

argmin max J({,w) subject to C(&) <0,
fez  wEB(W)

where B(w) is an uncertainty set derived from Bayesian posterior samples or conformal
prediction.

Thus, a proper uncertainty framework not only improves model reliability but also allows
the development of more sample-efficient and robust systems. As such, developing reliable
and scalable uncertainty quantification methods is a crucial future direction in operator
learning.

7.3. Local Averaging and Ensemble Methods

Given a labeled dataset {(vs, w;)}i=1, local averaging methods such as nearest neighbors or
Nadaraya-Watson kernel smoothing define an estimator F,, as

Fo(v) = Zai(u) w,

where @; : V — [0,1] are weights satisfying > | @;(v) = 1 for every v € V. This method
outputs a weighted average of the training labels, with weights determined by the new input.
Prior works have established the consistency of k-nearest neighbors for functional regression
with both scalar response (Lalo€||2008) and functional response (Lian|2011) as well as the
consistency of Nadaraya-Watson estimators (Aspirot et al.|[2009). However, their empirical
performance in surrogate modeling of PDEs has not yet been studied. These methods may
provide competitive alternatives to parametric models, particularly in data-scarce settings.
Additionally, their ability to update efficiently makes them well-suited for settings where
the data is acquired sequentially.

Ensemble methods, like local averaging, compute the weighted averages of multiple
predictions. Formally, they define an estimator

Fu(v) =Y B Ui(v), VoeV,
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where \le : ¥V — W are base predictors trained on all or part of the dataset {(vs, w;)}i=1, and
Bj € [0,00) are learned weights. Common ensemble techniques include bagging, boosting,
and random forests.

Ensemble methods, especially boosting, have been shown to outperform neural networks
in various applications, particularly when data is scarce, heavy-tailed, skewed, or highly

variable (McElfresh et al.||2023). Given that operator learning for PDEs is a data-scarce

settings and PDEs on complex geometries introduce data irregularities, ensemble methods
may provide strong alternatives to neural operators. Functional regression literature already
provide a foundation on these methods, with works on boosting (Ferraty & Vieu||2009,
[Tutz & Gertheiss|[2010) and implementations like FDboost (Brockhaus et al[2020), as well
as works on bagging for functional covariates (Secchi et al|[2013| Kim & Lim|[2022)) and
functional random forests (Moller et al.|[2016, [Rahman et al|2019). While some methods
handle functional targets (see (Brockhaus et al.|[2020, Section 7)), most are designed for

scalar-valued outputs. Extending these techniques to Banach space-valued targets is a useful
starting point. Moreover, since existing functional ensemble methods are typically limited
to small datasets, scaling them using computational techniques from operator learning

(Kovachki et al|2023) is another natural direction. Finally, rather than replacing neural

operators, ensemble methods could also complement them as an ensemble of smaller neural
operator models may outperform a single large one.

7.4. Frictionless Reproducibility

A key future direction for advancing operator learning is fostering what (2024))
describes as frictionless reproducibility— a research environment where scientific findings,

computational experiments, and learning models can be easily replicated, verified, and built
upon with minimal effort.

A foundational step in this direction is the development of standard benchmark datasets.
took an important step by releasing 16 benchmark datasets. Additionally,
the NeuralOperator library (Kovachki et al|2023, Kossaifi et al|2024) has a few datasets
for benchmarking. However, most existing datasets are on toy problems, which, while

valuable for proof-of-concept validation, do not fully capture the complexity of real-world
applications. Thus, there is a clear need to expand existing benchmarks to include large-
scale datasets for applications such as climate modeling, materials science, and molecular
dynamics, where operator learning is expected to have a major impact. Additionally, a
single large-scale dataset could significantly accelerate progress: for example, consider the
central role ImageNet played in transforming computer vision.

Beyond datasets, another critical component of frictionless reproducibility is open-
source implementations of operator learning models. Some progress has already been made
in this direction with the development of libraries such as DeepXDE and
NeuralOperator (Kossaifi et al.||2024) [Kovachki et al.|[2023]). Additionally, many indepen-
dent works have publicly released their models and datasets. However, these models and

datasets are often scattered across different repositories, making it difficult for researchers to
locate and systematically compare them. To address this, a centralized platform for hosting
operator learning datasets and models would be of huge benefit to the community. Existing
platforms such as Hugging Face could be used for sharing datasets, pre-trained models, and
benchmarking results in a way that allows seamless collaboration and reproducibility.
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7.5. Scaling Sample and Model Size

Recent works on scaling laws (Kaplan et al.|[2020, |Zhai et al.|[2022]) suggest that model per-
formance continues to improve as sample size, model size, and computational resources in-
crease. However, most existing works in operator learning are in a data-scarce setting, with
models that are much smaller than those used in computer vision and language modeling.
Thus, a key future direction is to explore how we can train a large-scale operator learning
model on massive datasets. There are two key challenges in scaling operator learning meth-
ods. First, obtaining labeled data is expensive since obtaining each sample requires running
a computationally expensive solver or conducting costly experiments. Second, widely used
architectures such as DeepONet and FNOs do not scale as efficiently as transformer-based
models, limiting the size of models that can be trained with available resources.

One approach to mitigating data limitations is training a foundation model on diverse
PDE datasets and fine-tuning it for specific tasks, as explored by |Subramanian et al.| (2024]).
On the model scaling front, transformer-based architectures have been proposed for operator
learning ((Caol|[2021} [Hao et al.|[2023| |Li et al.|2023), but their quadratic computational cost
with grid size limits scalability. Developing more efficient tokenization strategies for trans-
formers to enable large-scale operator learning without excessive computational overhead
remains an important future direction.

8. CONCLUSION

In this article, we reviewed recent developments in operator learning, emphasizing its statis-
tical foundations and connections to functional data analysis (FDA). That said, the overall
goal of the FDA differs slightly from that of operator learning. In FDA, the focus is on
statistical inference, typically using RKHS-based frameworks. As a result, FDA methods
do not always scale to large datasets. In contrast, operator learning primarily aims at pre-
diction, with an emphasis on creating computationally efficient methods that can be used
to train large models and handle large datasets. However, bridging these fields could be mu-
tually beneficial. FDA’s theoretical tools can be used for the analysis of operator learning
methods, while methodological advances in operator learning can improve the scalability of
FDA techniques.

Applied research has been the primary driver of advancements in operator learning,
and this trend will likely continue. However, unlike other machine learning fields, there
is a unique opportunity for theory to catch up more rapidly due to the structured nature
of operator learning problems. Here, the ground truth operator is well-defined, and the
learner typically has partial prior knowledge along with a strong oracle access to the op-
erator via a numerical solver. This is in contrast to language or vision modeling, where a
ground truth function may not even exist or the learner may only have limited oracle access
through available samples. As discussed in Section [B this structure in operator learning
allows for designing PDE-specific architectures and methods, which may also introduce
further mathematical regularity that enables easier theoretical analysis. Moreover, a key
reason for the gap between empirical performance and theoretical lower bounds in modern
machine learning is the reliance on the iid assumption, which often fails to reflect practical
scenarios where practitioners actively select the mosy informative samples. While the iid
model historically became standard as a reasonable tradeoff between practical relevance
and analytical tractability, operator learning allows for greater flexibility in data acquisi-
tion. This opens the door to alternative learning models that better align with real-world
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data collection while being theoretically as tractable as the iid framework. Studying such
alternative learning models can potentially bridge the gap between theory and practice.
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