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Abstract

Background: Although evidence supporting the feasibility of large-scale mobile health (mHealth) systems continues to grow,
privacy protection remains an important implementation challenge. The potential scale of publicly available mHealth applications
and the sensitive nature of the data involved will inevitably attract unwanted attention from adversarial actors seeking to compromise
user privacy. Although privacy-preserving technologies such as federated learning (FL) and differential privacy (DP) offer strong
theoretical guarantees, it is not clear how such technologies actually perform under real-world conditions.

Objective: Using data from the University of Michigan Intern Health Study (IHS), we assessed the privacy protection capabilities
of FL and DP against the trade-offs in the associated model’s accuracy and training time. Using a simulated external attack on a
target mHealth system, we aimed to measure the effectiveness of such an attack under various levels of privacy protection on the
target system and measure the costs to the target system’s performance associated with the chosen levels of privacy protection.

Methods: A neural network classifier that attempts to predict IHS participant daily mood ecological momentary assessment
score from sensor data served as our target system. An external attacker attempted to identify participants whose average mood
ecological momentary assessment score is lower than the global average. The attack followed techniques in the literature, given
the relevant assumptions about the abilities of the attacker. For measuring attack effectiveness, we collected attack success metrics
(area under the curve [AUC], positive predictive value, and sensitivity), and for measuring privacy costs, we calculated the target
model training time and measured the model utility metrics. Both sets of metrics are reported under varying degrees of privacy
protection on the target.

Results: We found that FL alone does not provide adequate protection against the privacy attack proposed above, where the
attacker’s AUC in determining which participants exhibit lower than average mood is over 0.90 in the worst-case scenario.
However, under the highest level of DP tested in this study, the attacker’s AUC fell to approximately 0.59 with only a 10% point

decrease in the target’s R2 and a 43% increase in model training time. Attack positive predictive value and sensitivity followed
similar trends. Finally, we showed that participants in the IHS most likely to require strong privacy protection are also most at
risk from this particular privacy attack and subsequently stand to benefit the most from these privacy-preserving technologies.

Conclusions: Our results demonstrated both the necessity of proactive privacy protection research and the feasibility of the
current FL and DP methods implemented in a real mHealth scenario. Our simulation methods characterized the privacy-utility
trade-off in our mHealth setup using highly interpretable metrics, providing a framework for future research into privacy-preserving
technologies in data-driven health and medical applications.
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Introduction

Background
The rise of mobile health (mHealth) as an exciting and
compelling health care paradigm has been unmistakable. As
wearable devices continue to gain popularity and smartphone
penetration continues to rise globally [1,2], opportunities for
mHealth to make positive impacts on health care delivery and
administration have proliferated. On the research side, the period
between the years 2018 and 2020 has seen more mHealth-related
publications than the previous years combined [3]. Meanwhile,
the current global mHealth market is expected to experience
annual growth of 11% for the better part of this decade [2].

However, widespread adoption of mHealth technologies may
not occur until the challenge of user data privacy is overcome
[4]. Recent polling has shown that the vast majority of
Americans do not believe that the benefits of releasing personal
data to private companies are worth the risks [5]. Research has
also shown that privacy concerns directly affect the willingness
of users to participate in mHealth systems, especially younger
users [6] and users with diseases that carry social stigma [7].
Along with the increased frequency of cyberattacks on
centralized data centers and IT infrastructure and the growing
number of smart devices that use these facilities [8], the costs
of insufficient security and privacy protection for future
large-scale mHealth applications are abundantly clear.

The collection of privacy-enhancing tools spans the entirety of
the data collection and use pipeline, including approaches such
as data policies, encryption, access control, and secure
multiparty computation [9]. In this study, we examined 2 popular
algorithmic strategies (federated learning [FL] and differential
privacy [DP]) and explored some of their shortcomings.
Specifically, we demonstrated the trade-off between algorithmic
utility and privacy protection when implementing these
strategies in practical mHealth settings. We aimed to offer
insights into the potential of these strategies to protect user data
by constructing a simulated attack on a centralized server.

FL Strategy
FL is a machine learning method used when data are distributed
across independent devices (often referred to as clients). In the
traditional centralized learning regime, a data collector interested
in constructing a statistical model for answering queries about
the data would first aggregate all the data onto a central server
before performing model optimization on all data
simultaneously. However, in the FL setting, all data remain with
the individual client, and only the statistical model resides on
the central server. Optimization of the FL model occurs in a
distributed fashion, where copies of the model are sent to clients
and model updates are aggregated from clients to the central
server at each optimization step. Here, individual updates are
calculated using only the data on the client device.

The exact implementation details of FL depend on the statistical
model being constructed, but its main benefit over the
centralized regime is that a security breach of the central server
is far less serious. In the worst-case scenario, the attacker can
only access historical communications between the central server
and clients; none of which will contain any private user data.
However, FL can reduce the utility of the central model [10]
and slow optimization depending on the availability of
individual clients. Nevertheless, initial research on FL in an
mHealth context has shown that models trained in a federated
manner have only minor performance costs compared with
models trained centrally [11]. In this regard, FL would seem
like a prime candidate for privacy protection in large-scale
mHealth applications; however, we show that FL alone is not
sufficient to defend against all privacy threats.

DP Strategy
DP aims to overcome the problems associated with information
leakage that occur whenever a query is conducted on a private
data set. In short, if the answer to a query (eg, What is the
average age of patients in XYZ hospital?) given a fixed data set
is deterministic, a clever attacker could combine a series of
queries with auxiliary information to infer private information
about individual records in the data set. This includes whether
a particular record is present in the data set (membership
inference) or features associated with a particular record (data
reconstruction).

DP protects against such attacks by adding a stochastic
component to query outputs. For example, when the output is
a continuous value, it is often accomplished by adding random
noise to the answer. As there is no longer a deterministic
mapping between data set properties and query outputs, the
probability of an attacker successfully inferring private
information is reduced. In conventional ε-δ DP, we say that a
mechanism M that generates an output based on an input data
set D is ε-δ differentially private if the following inequality
holds:

Pr[M (D_1) ∈ A] ≤ eε Pr[M (D_2) ∈ A] + δ (1)

where A is any set of possible output values and D1 and D2 differ
only in the presence or absence of a single record [12]. In other
words, a differentially private construction provides strong
bounds on the probability of a successful membership inference
attack by enforcing that the model output is sufficiently close
(defined by epsilon and delta) in distribution to what the model
would have output if one user’s record was deleted from the
data set.

As with FL, the exact implementation of DP depends on the
nature of the queries made on a private data set. DP is commonly
used to control information leakage that results from exposing
the parameters of the models trained on private data. For
example, Abadi et al [13] demonstrated how DP can be
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integrated into gradient descent algorithms for deep learning to
achieve certain statistical guarantees of privacy. As with FL,
the benefits of DP come at the cost of lower model utility, often
embodied in lower model accuracy and longer optimization
times.

Previous Work
FL has widespread application in health care settings. Using
electronic health records distributed across hospital systems,
researchers have successfully developed federated models to
predict heart-related hospitalizations [14], electrocardiogram
classification [15], and clinical outcomes in patients with
COVID-19 [16]. In addition to the results in a study by Liu et
al [11], other studies have shown that FL can be applied to
wearable sensor data in biomedical applications [17], a particular
area of interest for mHealth research. Such studies generally
find that the benefits of FL outweigh the costs.

Similarly, there have been many uses of DP in health care
applications [18], including drug sensitivity prediction [19] and
coronary heart disease diagnosis [20]. Other studies combined
DP with FL to achieve enhanced privacy protection [21].
However, such studies have not demonstrated a universal rule
for choosing the ε-DP parameter in any given application. Hsu
et al [22] found that the optimal choices of ε in the existing
literature span orders of magnitude depending on the context.
Therefore, this study aimed to contribute to the DP literature
by evaluating its efficacy in a novel health sensor data
application.

Although quantifying model utility is straightforward in most
cases, quantifying privacy protection is usually imprecise. The
benefits of FL are clear at the conceptual level (eliminating risks
associated with centralizing data in one location), but how this
translates to a quantifiable increase in privacy protection is
unclear. Although DP provides strong statistical guarantees tied
to numeric parameters (such as in ε-δ DP), such guarantees only
directly apply to a specific class of privacy attacks (membership
inference attacks).

Attempts have been made to measure the effectiveness of FL
and DP against other types of attacks, most notably property
inference attacks that aim to uncover the private attributes of
the training data. For instance, Naseri et al [23] constructed
simulated privacy attacks against an image classifier trained on
the Labeled Faces in the Wild data set. Even with the protection
of FL and local DP, they found that these classifiers are still
vulnerable to external property inference [23]. Melis et al [24]
conducted similar experiments on both the Labeled Faces in
the Wild data set and the Yelp reviews data set and arrived at
a similar conclusion [24]. However, both papers limit the
number of clients in their FL setup to no more than 30, which
is far below the scale of mHealth applications intended for
public use. Furthermore, it is unclear whether their findings for
image and text classifiers extend to other domains and data
types, such as time series sensor data collected from wearable
health devices.

In this study, we measured the privacy-utility trade-off of FL
and DP using wearable sensor data gathered from a large-scale
clinical study of medical interns. We adopted an existing
simulation-based methodology tailored to a realistic mHealth
setup to understand how FL and DP might perform in this
specific domain. To the best of our knowledge, this is the first
study to (1) evaluate the effectiveness of FL and DP on a
real-world health sensor data set, (2) use simulation-based
methodology on time series sensor data at the scale of thousands
of FL clients, and (3) characterize which FL clients are most at
risk from these external attacks if privacy protection is
insufficient.

Methods

Ethics Approval
The data used in this analysis come from the University of
Michigan Intern Health Study, approved by the Institutional
Review Boards of the University of Michigan Medical School
(IRBMED), review number HUM00033029.

Overview
We must construct models of a target system and an external
attack to evaluate the strength of privacy protection mechanisms
for guarding against actual privacy attacks. The Target System
is a prediction model existing on a central server that implements
FL and DP in an attempt to protect against privacy threats. The
External Attack simulates an adversarial actor intent on
uncovering private information about individuals in the Target
System. Enacting the External Attack against the Target System
allows us to assess the performance of the Target System in
terms of model utility and privacy protection.

Data: Intern Health Study
Data for this study were obtained from the 2017 to 2019 cohorts
of the University of Michigan Intern Health Study (IHS) [25].
IHS aims to investigate the biological and genetic factors
affecting the relationship between stress and depression. The
study followed medical interns at several dozen facilities in the
United States and China. In addition to providing demographic
information at the beginning of the study, participants were
asked to wear a Fitbit device during their internship and
complete daily mood ecological momentary assessments
(EMAs) through a mobile app.

The data originally covered 6660 registered participants with
1,241,629 daily sensor observations. After data cleaning (see
Table 1 for details), our final data set contained 4274 participants
and 596,585 daily sensor observations. Although the IHS data
included information about participants’ medical internships
(such as specialty), we excluded this information to better
simulate an mHealth system that would be used with the general
population. The pertinent demographic features of the data are
given in Tables 1 and 2, whereas Table 3 shows the summary
statistics for participant age, daily mood, and daily sensor data.
Table 4 summarizes the degree of missingness for each sensor
measurement for all the daily observations.
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Table 1. Participants and sensor data by cohort year.

Daily sensor observations
(clean data; n=596,585), n

Daily sensor observations

(raw data; n=1,235,543b), n

Participants (clean

dataa; n=4274), n

Participants (raw data;
n=6660), n

Cohort year

83,999119,85053128462017

277,754576,535209821292018

234,832539,158164516852019

aParticipants with no available sensor data and sensor observations not linked to the registered participants were removed. We also excluded 40 participants
with invalid or missing age values, 2 participants with missing sex values, and 26 participants with missing ethnicity values. Sensor observations with
no mood scores were excluded.
bThis number is slightly less than the original data set size because of observations not linked to registered participants.

Table 2. Breakdown of participants by ethnicity and gender (clean data).

Female (n=2378), n (%)Male (n=1896), n (%)

37 (1.56)40 (2.11)Arab or Middle Eastern

524 (22.04)456 (24.05)Asian (eg, Indian or Chinese)

148 (6.22)73 (3.85)Black or African American

81 (3.41)87 (4.59)Latino or Hispanic

223 (9.38)156 (8.23)Multiracial

3 (0.13)1 (0.05)Native American

8 (0.34)10 (0.53)Other

0 (0)1 (0.05)Pacific Islander

1354 (56.94)1072 (56.54)White

Table 3. Descriptive statistics of daily sensor data and participant age (clean data).

Values, median (range)Values, mean (SD)

27 (17-47)27.66 (2.62)Participant age (years)

7 (1-10)7.27 (1.63)Mood ecological momentary assessment score

437 (4-1379)417.98 (137.59)In-bed minutes

389 (0-1228)372.11 (123.81)Sleep minutes

25 (0-1016)63.83 (92.6)Active minutes

8215 (1-70,138)8819 (4739)Step count

63 (39-100)62.83 (7.63)Resting heart rate (beats/min)

Table 4. Daily sensor data missingness (clean data).

Days of data per participant, mean (SD)Days missinga, (n=596,585), n (%)

78.84 (99.70)259,633 (43.52)In-bed minutes

78.84 (99.70)259,633 (43.52)Sleep minutes

57.42 (69.56)351,181 (58.87)Active minutes

96.02 (107.44)186,189 (31.21)Step count

63.84 (77.52)323,722 (54.26)Resting heart rate

39.28 (61.77)428,692 (71.86)Combined featuresb

aMissingness was measured relative to the baseline obtained after removing all days with missing mood scores and all participants with missing
demographic features or no sensor data.
bA nonmissing day for this row is any day with all 5 sensor measurements recorded.
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Data Preprocessing
The most important step in preparing the IHS data for analysis
was to deal with missing data. Although a typical medical
internship lasted 12 months, the average participant in the study
logged a bit more than 1 month (not necessarily continuous) of
complete sensor data. Given our objective of building a
real-world mHealth system, we could not exclude all
observations with any missing features. Furthermore,
exploratory tests demonstrated that neural network classifiers
trained on only complete cases are not useful predictors of mood
scores. Therefore, we imputed missing sensor features using 10
iterations of multivariate imputation by chained equations
because of its flexibility and relatively low computational cost
[26]. We acknowledge that true FL would require us to impute
data locally at the participant level, but data availability
considerations led us to adopt a centralized imputation approach.

Our feature set included the 9 features (cohort year, age, sex,
ethnicity, and 5 sensor measurements) listed in the previous
section, as well as 1-day and 2-day lags for each of the 5 sensor
measurements and the mood score. Lags account for the
possibility that certain sensor events (such as one night of poor
sleep) may have a delayed impact on mood. In addition, we
included 3 time-based features indicating the observation’s day
of week, day of month, and day of year to account for
unmeasured factors that may be correlated with time. Finally,
we performed common preprocessing steps on our feature set,
such as standardizing continuous features and splitting
categorical features into component binary features.

Target System Construction
In the Target System, the statistical models live on the central
server and use data from individual IHS participant devices for
training. We formulated both regression and classification tasks
for the Target System and trained models for each using our
sensor and demographic data. These 2 tasks provide robustness
in assessing the effectiveness of our privacy protection measures.
The regression task predicts mood scores on the 1- to 10-point
scale, whereas the binary classification task predicts whether
the user’s mood has improved from the previous day.

As we did not consider model interpretability in our analysis,
we implemented neural networks for both tasks because of their
flexibility and accuracy advantages over other machine learning
methods. We also considered the fact that future mHealth
systems open to the public are likely to collect data on a far
larger scale than that obtained in the IHS. Although a full
investigation of all possible model types for the Target System
is outside the scope of this analysis, we presented comparisons
with simpler linear methods (ordinary least squares for the
regression task and logistic regression for the binary
classification task) to justify our choice of neural networks. The
details of the neural network implementation are provided in
Multimedia Appendix 1. This paper reports the results from the
regression task and leaves the results from the binary prediction
task in Multimedia Appendix 2.

External Attack: Underlying Assumptions
Several methods can be designed to compromise user privacy
through the Target System. For example, attackers interested

in whether a specific user or record appears in the Target System
may mount a membership inference attack, whereas those
interested in ascertaining certain statistical properties of the
private training data (either globally or on a per-user basis) may
mount a property inference attack. Other attackers may attempt
data reconstruction attacks, which aim to reconstruct partial or
complete records from the original training data [23]. Our attack
model is derived from domain-specific considerations regarding
the environment of mHealth applications, the privacy demands
of system users, and the identities of possible attackers.

In mHealth systems containing a large portion of the general
population, membership inference has limited value, and the
reconstruction of a specific user’s data is quite difficult.
Therefore, we assume that the attacker is interested in property
inference on individual user data, particularly whether an IHS
participant has an average daily mood EMA score higher than
the global average daily mood EMA score (denoted hereafter
by mood status). Such inferences are relatively easy to execute
and could expose sensitive information about the participants;
for instance, those with consistently low mood scores may be
at a higher risk of depression or other mental disorders.
Regardless of the attacker’s exact purposes, the mere possibility
of a successful inference of mood status may significantly
undermine public trust in the mHealth system.

The literature on privacy attacks provides 2 broad dimensions
along which a privacy threat may be assessed based on the
attacker’s resources. The first dimension is the attacker’s level
of access to the Target System and any associated privacy
protection systems. The literature often differentiates between
black box model access, where the attacker is limited to viewing
only the Target System’s model output for a given input, and
white box access, where the attacker is able to view the model
architecture and all related parameters, along with the details
of any privacy protection mechanisms. The second dimension
is the attacker’s ability to alter the model parameters for liking.
Certain attacks can be implemented passively, meaning that the
attacker can compromise user privacy by simply observing
changes to the Target System’s statistical model that occur
during training. Others require the attacker to actively influence
the model parameters, usually by injecting customized training
data into the system.

We assumed that the attacker has white box access to the central
server of the Target System (including the statistical model and
all communications with the server) but can only carry out
privacy attacks passively. We also assumed that the attacker
has no ability to access any live individual user devices in the
Target System (any devices actively participating in model
training). These assumptions match the rogue employee profile,
an insider who is easily able to access confidential details about
the Target System but would not be able to effect changes in
model parameters without raising suspicion. This profile was
selected to balance plausibility with preparation for a worst-case
scenario. Although it is unlikely that any adversarial actor could
influence the training process of the Target System, we believe
that any serious actor would likely gain insider access.

Implicit in this assumption is the ineffectiveness of other
commonly used privacy-preserving technologies outside FL
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and DP against this type of threat. We assumed that privacy
policies and operational protocols would be of limited use
against bad faith actors, whereas encryption and authentication
technologies would not stop an attacker with insider access.
This is not to say that such tools are not useful for ensuring user
privacy and building trust. However, for the simplicity of this
analysis, we assumed that such conventional methods are not
effective and focus on the ability of FL and DP to stop such an
attacker. We elaborate on the reasonableness of this assumption
and implications for future research in the Discussion section.

External Attack: Implementation

Overview
The implementation details of this attack follow those in the
study by Melis et al [24]. The attack was conducted in the 3
stages described in the following sections. For this analysis, we

assumed that the statistical model in the Target System is trained
using FL and local DP, implying that individual user devices
do not pool their data centrally and add noise to their gradient
updates before sending them to the central server. Other than
the gradient updates, all user data, including sensor
measurements, demographic data, and mood EMA scores,
remain strictly on individual user devices. Additional details
can be found in the Implementing FL and DP section.

Stage 1: Accessing Target Model Parameters
Given that the attacker has full access to all information stored
on the central server at training time, we assumed that they
observe the Target System model parameters at time t (given
by θt) as well as the gradient updates (given by ∇i,t) with respect
to θt sent to the server from individual user devices Ai. The
relationship between these variables is shown on the left side
of Figure 1.

Figure 1. Attacker infiltration of central server.

The attacker first copies the entire Target Model (including
parameters θt) and the gradient updates ∇i,t. The attacker
ultimately attempts to predict the mood status of each user Ai.
Note that under DP, the gradient updates ∇i,t observed by the
attacker would include any noise added to the true model
gradient on the user device.

Stage 2: Constructing the Attacker’s Data Set
To predict the mood status of live users, the attacker requires
an auxiliary collection of users for whom the mood status is
known, and model gradients with respect to θt can be calculated.
We assumed that attackers could access such a data set because
they already have access to the central server. These data could
be sourced from central server databases containing raw data
for pilot users, a small number of previously compromised user

devices, an externally published data set, or even users working
in collusion with the attacker. The process of using these data
to construct the attacker’s data set is shown in Figure 2. In
particular, each user in the auxiliary data has a known mood
status and generates a gradient ∇’i,t with respect to the same
Target Model parameter θt. This gradient contains the same
amount of noise as the observed gradient updates from live
users because we assumed that the parameters used for privacy
protection in the Target System are stored on the central server.
We reasoned this assumption is feasible for systems
implementing FL and DP because they cannot broadcast the
relevant parameters to all users while hiding them from
adversaries with access to the central server. This increases the
likelihood of a successful inference relative to if the noise
parameter is unknown.
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Figure 2. Constructing the attacker’s data set.

Stage 3: Mood Status Prediction
Finally, the records in the attacker’s data set for which mood
status is observed can be used to train a binary batch property
classifier, which predicts mood status (labels) from the provided

gradients (features). This process is illustrated in Figure 3. Any
machine learning model can be used in this step, but we adopted
a neural network approach following the example in a study by
Melis et al [24]. The details of the implementation are provided
in Multimedia Appendix 1.

Figure 3. External attack training and final inference.

Implementing FL and DP
Our proposed defense against external attacks uses local DP
techniques in conjunction with FL to mask the information

present in gradient updates communicated to the central server.
The specific implementation follows the procedure given in
Naseri et al [23]. The general algorithm is illustrated in Figure
4.

J Med Internet Res 2023 | vol. 25 | e43664 | p. 7https://www.jmir.org/2023/1/e43664
(page number not for citation purposes)

Shen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Pseudocode for privacy protection implementation. DP: differential privacy; FL: federated learning.

Our implementation of FL randomly sampled 30% of the study
participants in each iteration to participate in the corresponding
model update (set A). Our procedure is very similar to that of
vanilla FL and differs only in the second and third steps
(indicated with a star) of the inner loop, which are described as
follows:

1. Clip each computed gradient to have L2 norm of at most C.
2. Add gaussian noise with mean 0 and variance σ2C2 to each

gradient component independently.

The first step ensures that the signals within the gradient updates
do not overpower the noise, whereas the second step provides
the stochastic component that addresses information leakage
resulting from deterministic gradient calculations. For this
analysis, we set C=1 for all cases and varied the σ parameter
to achieve different privacy protection levels.

Much of the existing literature on DP reported explicit ε and δ
values based on the training process used for the Target System
(including any noise added) as well as the properties of the
training data. Although it is certainly possible to report our level
of privacy protection in terms of ε (after fixing a value for δ),
we chose to report σ (the noise scale) directly for a variety of
reasons. The ε-δ guarantees of DP did not directly apply to
property inference and hence our simulation-based approach to
measuring the true level of privacy protection. The other main

roles of ε and δ (communicating the degree of perturbation
applied to the training process) could also be served by reporting
the more interpretable noise scale parameter σ. We varied only
the σ parameter in the course of the analysis, creating an
effective one-to-one correspondence between ε and σ values.
Given that the main stakeholders for large-scale mHealth
systems were health care practitioners and the public, we
believed that the interpretability of our analysis should take
precedence over theoretical rigor.

Other parameters remain identical to those outlined in
Multimedia Appendix 1 for the Target System.

Performance Versus Privacy Protection: A Simulation
Approach

Overview
In general, it is difficult to quantify the effectiveness of an
External Attack against the Target System; therefore, we used
a simulation-based approach to report results for several
different attacker settings. We varied σ, the noise parameter in
constructing the stochastic gradients, to test different levels of
privacy protection. We also modeled differences in the attacker’s
access to auxiliary user data by changing q, the proportion of
IHS study participants with compromised devices whose data
are available to the attacker. Figure 5 shows the basic simulation
setup used in the analyses.
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Figure 5. Pseudocode for our assessment of external attack effectiveness. DP: differential privacy.

Measuring Costs of Privacy Protection
Higher levels of privacy protection generally hinder the ability
of the Target System to train the model effectively (because the
gradients have more added noise). We measured this cost in
terms of the training time and final model utility for different
values of σ. To facilitate comparability, we initialized the Target
Model identically for each case and seeded all stochastic
components in the training process (selection of clients and
network dropout) identically.

Measuring Effectiveness of Privacy Protection
We measured the effectiveness of our privacy protection
procedure by the External Attack’s ability to infer the mood
status of noncompromised users. Designating a fixed subset of
such users as a test set, we recorded the maximum test area
under the curve achieved by the attacker’s classifier at any point
during its training process (up to 600 epochs). Although the
attacker theoretically does not have access to the testing labels,
this procedure provides an experimental upper bound on their
performance. We also calculated the model sensitivity and
positive predictive value (PPV) as more easily interpretable
metrics. All metrics are calculated for each choice of σ and q.
To facilitate comparability, all evaluations were performed with
the attacker using the same Target Model parameters produced
after 20 training epochs to generate their gradient data set. All

the other stochastic components were seeded identically for
each evaluation.

Results

Target Model Training Metrics
Figure 6 plots the Target System’s model loss and accuracy
metrics over each gradient update. Training progress under the
conventional centralized training protocol is also plotted for
reference. A σ value of 0 denotes FL with no DP
implementation. We saw a clear effect of both FL and DP on
the training process for the Target System’s statistical model.
Relative to the centralized protocol, FL leads to a noticeable
increase in training time, but the final model accuracy seems
to be very similar (at least within the given training window).
The addition of noise via DP seems to substantially affect both
training time and final model accuracy. Interestingly, training
loss seems to begin increasing at some point in the training
process when additional noise is added, potentially indicating
shortcomings in conventional optimization techniques when
using both FL and DP. Figure 7 shows the relationship between
training time, final model utility, and noise scale, where training
time is defined as the number of gradient updates needed for
model loss to fall within 1% of the minimum loss over 1000
updates.
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Figure 6. Target system model performance. In all simulations, training runs for at most 1000 epochs.

Figure 7. Training time or final model utility versus noise scale.

Privacy Protection Metrics
Figure 8 shows the success of the External Attack in inferring
a participant’s mood status based on the participant’s observed
gradient to the fixed Target System model parameters.
Immediately, we noted that FL alone (0 noise) is insufficient
to protect against this type of attack. Even if the attacker has
access to labeled data for only 10 participants (of 4274 total
participants), they can successfully infer the mood status of a
large majority of all other participants. However, adding noise
to the gradient updates significantly decreases the attacker’s
performance even when they have access to a large amount of
labeled training data. Figure 9 shows similar results for the

attack’s PPV and sensitivity, given that a low mood status is
viewed as a positive test result.

Combined with the training metrics from the previous section,
we can begin to assign concrete trade-offs between model utility
and privacy protection in the context of this particular Target
Model. For example, if the attacker has access to 100
participants’ labeled training data, setting the noise scale to 0.1
increases the training time by 26.2%, decreases the final model

R2 by 11.5%, and decreases the privacy attack’s PPV by 17%
relative to FL with no additional noise. Increasing the noise
scale to 0.2 increases training time by 40.7%, decreases final

model R2 by 17.3%, and decreases the PPV of privacy attack
by 36.4% compared with FL with no noise.
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Figure 8. Attacker success versus noise scale. AUC: area under the curve; DP: differential privacy; FL: federated learning.

Figure 9. Attack PPV or sensitivity versus noise scale. PPV: positive predictive value.

Vulnerability Metrics
This section analyzes the benefits of our privacy protection
procedure for various subgroups within our data. Although we
should strive to maximize privacy protection within reason for
all members of the population, it is instructive to examine who
is most at risk from this privacy threat and hence who benefits
the most from these privacy protection mechanisms.

Figure 10 shows the correlation between the attacker’s
prediction of a particular participant’s mood status versus the
participant’s actual mood status. The y-axis shows the attacker’s
predicted probability of each participant having a high mood
status, where values above 0.5 indicate participants ultimately
classified as having a high mood status. As expected, there was

a strong positive association between the attacker’s prediction
and the participant’s actual average mood when no additional
noise was added to the FL. This indicates that participants with
average mood scores that were much lower than the global
average were simultaneously at a much higher risk of a
successful inference attack. As privacy concerns are usually
greatest for those with sensitive health conditions, this further
underscores the insufficiency of FL alone. Fortunately, the
addition of sufficient noise can eliminate this correlation,
neutralizing privacy risks regardless of the participant’s mood
tendencies. Similar analyses of privacy risk across gender,
ethnicity, and age groups did not yield noteworthy findings.
The associated figures can be found in Multimedia Appendix
1.
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Figure 10. Attacker’s predicted mood status versus participant average mood for different differential privacy (DP) noise parameters.

Discussion

Principal Findings
Our results showed that FL combined with DP substantially
reduced the attacker’s ability to infer the participant mood status
in our simulation. The 3 attacker success metrics we report (area
under the curve, PPV, and sensitivity) all approach 0.5 with
increased noise, meaning that the attacker only performs slightly
better than a random guess in these situations. In addition, the
attacker does not perform better when classifying those with
extreme mood scores, protecting those who may be more
vulnerable to an attack. This protection results in a decrease in
the utility of the target model, but even in the worst-case

scenario, R2 decreases by only 17.3% compared with FL without
noise.

In contrast to the studies by Naseri et al [23] and Melis et al
[24], both of which found that FL and DP are insufficient to
protect against this type of attack in other domains [23,24], we
found that FL and DP could potentially provide a reasonable
trade-off when used in a large-scale mHealth system based on
health sensor data. A natural next step is to understand the
reasons for this difference on a theoretical basis and explore
how FL and DP fare in domains outside of those mentioned in
this analysis. Nevertheless, these results underscored our belief
that context is crucial in privacy research; there is no universal
approach that will work in every setting.

Our analysis addresses the challenge of quantifying and
communicating the level of protection offered by
privacy-preserving methods. We narrowed the scope of the
External Attack and adopted a simulation-based approach to
produce metrics that are both meaningful and easy to interpret.
Our results underscore two important principles for future work
on privacy protection: (1) FL, despite its simplicity and broad
acceptance, is insufficient to protect against advanced privacy
attacks on its own and (2) mHealth users whose health indicators
deviate strongly from those of the general population (ie, those

who most require privacy protection) are at a higher risk under
our threat model. We must evaluate and improve existing tools
for privacy protection and ensure that new approaches consider
the individual needs and vulnerabilities of system users.

Limitations of the Analysis
It is possible that our implementation of the property inference
attack may not exploit sufficient weaknesses in our Target
System setup or our implementation of FL with local DP may
not be perfectly optimized for our data set. These issues would
result in model metrics that overstate the efficacy of our privacy
protection measures or the cost of privacy protection. Future
research could establish more credibility for implementing FL
with DP by verifying our results using modified target systems
and attacks. Experiments with variations of the FL and DP
algorithms could also provide more favorable trade-offs against
some or all external attacks.

Our methods are also predicated on specific assumptions about
the capabilities and resources of the attacker. We assumed the
failure of more conventional privacy-preserving technologies
to stop attackers. Although this may not be true in all real-world
scenarios, the number of high-profile cybersecurity breaches in
recent years justifies preparing for the worst-case scenario.
Given sufficient incentive, it is likely that bad actors would
attempt to procure the access and resources required to bypass
conventional privacy measures and carry out our proposed
attack. Future research should examine how FL and DP interact
with other conventional privacy measures, especially if other
technologies can compensate for the weaknesses of FL and DP.

Missing data imputation is another area for future research on
FL and DP implementation. Our imputation procedure is one
of the main threats to the validity of our results, and it seems
likely that future mHealth studies will suffer from similar
problems. Although our analysis does not devote attention to a
rigorous solution to this problem, we acknowledged that
imputation methods deserve the same scrutiny for privacy risks
as the other tools used for mHealth research.
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It is important to note that our simulation-based approach to
measuring privacy protection sacrifices some statistical rigor
in favor of interpretability. Unlike many DP implementations,
we cannot guarantee the maximum bounds on the attacker’s
probability of successful inference. It is not entirely clear how
the mechanics of this attack change based on the Target
System’s model architecture (neural network or otherwise),
Target System’s classification task, attacker’s resources,
attacker’s intended inference task, or properties of the underlying
population. We hope that this work provides the foundation for
the future development of numerical methods to approximate
protection levels over a broader range of models and populations

or even theoretical bounds on the likelihood of successful
property inference in mHealth systems.

Conclusions
It is our sincere hope that mHealth research will continue to
generate robust tools for privacy protection along with novel
statistical methodologies and technical improvements. The
weaknesses of FL clearly demonstrated the dangers of
complacency: threats will continue to evolve and our privacy
protection technologies cannot fall behind. As mHealth
applications continue to scale, safeguarding public trust must
remain a top priority for researchers and practitioners alike.

Acknowledgments
This research was supported by the National Institutes of Health under awards R01MH101459 and R01MH131617.

Data Availability
The data sets generated and analyzed during this study are not publicly available because of considerations regarding participant
privacy but are available from the corresponding author on reasonable request.

The computer code that supports the findings of this study is available on reasonable request from the corresponding author, AS.
The code is not publicly available because of considerations of participant privacy. However, a version of the code used in this
study was developed for use with the publicly available Wearable Stress and Affect Detection (WESAD) data set [27]. The code
and instructions for downloading the WESAD data and running the experiments are available on the web [28].

Authors' Contributions
AS planned and performed the analyses and produced the results presented in this manuscript. He also conducted background
research necessary for simulating privacy attacks and implementing both FL and DP on the Target System. He is currently
affiliated with Carnegie Mellon University; however, the research described in this paper was performed at the University of
Michigan. LF assisted in the completion of the final manuscript, including reviewing, proofreading, compiling references, and
ensuring the proper labeling of tables and figures. AT provided the initial idea for this analysis and pointed out the team to relevant
resources. He also provided frequent and impactful guidance during the course of the analysis, including reviews of the final
manuscript. SS was the principal investigator of the University of Michigan Intern Health Study (IHS) and provided the data used
in this analysis. He also provided the input for the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Additional details and results for the regression task.
[DOCX File , 279 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Results from the binary classification task.
[DOCX File , 1330 KB-Multimedia Appendix 2]

References

1. Research and Markets. URL: https://www.researchandmarkets.com/reports/5124989/wearable-technology-market-size-share-
and-trends [accessed 2022-08-26]

2. Grand View Research. URL: https://www.grandviewresearch.com/industry-analysis/mhealth-market [accessed 2022-08-26]
3. Cao J, Lim Y, Sengoku S, Guo X, Kodama K. Exploring the shift in international trends in mobile health research from

2000 to 2020: bibliometric analysis. JMIR Mhealth Uhealth 2021 Sep 08;9(9):e31097 [FREE Full text] [doi: 10.2196/31097]
[Medline: 34494968]

4. Kotz D, Gunter CA, Kumar S, Weiner JP. Privacy and security in mobile health: a research agenda. Computer (Long Beach
Calif) 2016 Jun;49(6):22-30 [FREE Full text] [doi: 10.1109/MC.2016.185] [Medline: 28344359]

J Med Internet Res 2023 | vol. 25 | e43664 | p. 13https://www.jmir.org/2023/1/e43664
(page number not for citation purposes)

Shen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v25i1e43664_app1.docx&filename=4ed1afbd8122d5508775a854866ea316.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e43664_app1.docx&filename=4ed1afbd8122d5508775a854866ea316.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e43664_app2.docx&filename=cb4d023328f66bf425836f28b78fa2a5.docx
https://jmir.org/api/download?alt_name=jmir_v25i1e43664_app2.docx&filename=cb4d023328f66bf425836f28b78fa2a5.docx
https://www.researchandmarkets.com/reports/5124989/wearable-technology-market-size-share-and-trends
https://www.researchandmarkets.com/reports/5124989/wearable-technology-market-size-share-and-trends
https://www.grandviewresearch.com/industry-analysis/mhealth-market
https://mhealth.jmir.org/2021/9/e31097/
http://dx.doi.org/10.2196/31097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34494968&dopt=Abstract
https://europepmc.org/abstract/MED/28344359
http://dx.doi.org/10.1109/MC.2016.185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28344359&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


5. Auxier B, Rainie L, Anderson M, Perrin A, Kumar M, Turner E. Americans and privacy: concerned, confused and feeling
lack of control over their personal information. Pew Research Center. 2019 Nov 15. URL: https://www.pewresearch.org/
internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
[accessed 2022-08-26]

6. Guo X, Zhang X, Sun Y. The privacy–personalization paradox in mHealth services acceptance of different age groups.
Electronic Commerce Res Appl 2016 Mar;16:55-65. [doi: 10.1016/j.elerap.2015.11.001]

7. Koffi B, Yazdanmehr A, Mahapatra R. Mobile health privacy concerns - a systematic review. In: Proceedings of AMCIS
2018. 2018 Presented at: AMCIS 2018 Proceedings; Aug 16-18, 2018; New Orleans, Louisiana, USA URL: https://aisel.
aisnet.org/amcis2018/Health/Presentations/25

8. Brooks C. 3 Key Cybersecurity Trends To Know For 2021 (and On ...). Forbes. 2021 Apr 12. URL: https://www.forbes.com/
sites/chuckbrooks/2021/04/12/3-key-cybersecurity-trends-to-know-for-2021-and-on-/ [accessed 2022-08-26]

9. Domingo-Ferrer J, Blanco-Justicia A. Privacy-preserving technologies. In: The Ethics of Cybersecurity. Cham: Springer
International Publishing; 2020.

10. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V. Federated learning with Non-IID data. arXiv 2018 [FREE Full text]
[doi: 10.48550/arXiv.1806.00582]

11. Liu JC, Goetz J, Sen S, Tewari A. Learning from others without sacrificing privacy: simulation comparing centralized and
federated machine learning on mobile health data. JMIR Mhealth Uhealth 2021 Mar 30;9(3):e23728 [FREE Full text] [doi:
10.2196/23728] [Medline: 33783362]

12. Dwork C, Roth A. The algorithmic foundations of differential privacy. Foundation Trend Theoretical Comput Sci
2014;9(3-4):211-407. [doi: 10.1561/0400000042]

13. Abadi M, Chu A, Goodfellow I, McMahan H, Mironov I, Talwar K, et al. Deep learning with differential privacy. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016 Presented at: CCS'16:
2016 ACM SIGSAC Conference on Computer and Communications Security; Oct 24 - 28, 2016; Vienna Austria. [doi:
10.1145/2976749.2978318]

14. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated
Electronic Health Records. Int J Med Inform 2018 Apr;112:59-67 [FREE Full text] [doi: 10.1016/j.ijmedinf.2018.01.007]
[Medline: 29500022]

15. Lee GH, Shin S. Federated learning on clinical benchmark data: performance assessment. J Med Internet Res 2020 Oct
26;22(10):e20891 [FREE Full text] [doi: 10.2196/20891] [Medline: 33104011]

16. Dayan I, Roth HR, Zhong A, Harouni A, Gentili A, Abidin AZ, et al. Federated learning for predicting clinical outcomes
in patients with COVID-19. Nat Med 2021 Oct 15;27(10):1735-1743 [FREE Full text] [doi: 10.1038/s41591-021-01506-3]
[Medline: 34526699]

17. Can YS, Ersoy C. Privacy-preserving federated deep learning for wearable IoT-based biomedical monitoring. ACM Trans
Internet Technol 2021 Feb 28;21(1):1-17. [doi: 10.1145/3428152]

18. Ficek J, Wang W, Chen H, Dagne G, Daley E. Differential privacy in health research: a scoping review. J Am Med Inform
Assoc 2021 Sep 18;28(10):2269-2276 [FREE Full text] [doi: 10.1093/jamia/ocab135] [Medline: 34333623]

19. Niinimäki T, Heikkilä MA, Honkela A, Kaski S. Representation transfer for differentially private drug sensitivity prediction.
Bioinformatics 2019 Jul 15;35(14):i218-i224 [FREE Full text] [doi: 10.1093/bioinformatics/btz373] [Medline: 31510659]

20. Liu X, Zhou P, Qiu T, Wu DO. Blockchain-enabled contextual online learning under local differential privacy for coronary
heart disease diagnosis in mobile edge computing. IEEE J Biomed Health Inform 2020 Aug;24(8):2177-2188. [doi:
10.1109/jbhi.2020.2999497]

21. Choudhury O, Gkoulalas-Divanis A, Salonidis T, Sylla I, Park Y, Hsu G, et al. Differential privacy-enabled federated
learning for sensitive health data. arXiv 2020. [doi: 10.48550/arXiv.1910.02578]

22. Hsu J, Gaboardi M, Haeberlen A, Khanna S, Narayan A, Pierce B, et al. Differential privacy: an economic method for
choosing epsilon. In: Proceedings of the 2014 IEEE 27th Computer Security Foundations Symposium. 2014 Presented at:
2014 IEEE 27th Computer Security Foundations Symposium; Jul 19-22, 2014; Vienna, Austria. [doi: 10.1109/csf.2014.35]

23. Naseri M, Hayes J, De Cristofaro E. Local and central differential privacy for robustness and privacy in federated learning.
arXiv 2020 [FREE Full text] [doi: 10.14722/ndss.2022.23054]

24. Melis L, Song C, De Cristofaro E, Shmatikov V. Exploiting unintended feature leakage in collaborative learning. In:
Proceedings of the IEEE Symposium on Security and Privacy (SP). 2019 Presented at: IEEE Symposium on Security and
Privacy (SP); May 19-23, 2019; San Francisco, CA, USA. [doi: 10.1109/sp.2019.00029]

25. Sen S, Kranzler HR, Krystal JH, Speller H, Chan G, Gelernter J, et al. A prospective cohort study investigating factors
associated with depression during medical internship. Arch Gen Psychiatry 2010 Jun 01;67(6):557-565 [FREE Full text]
[doi: 10.1001/archgenpsychiatry.2010.41] [Medline: 20368500]

26. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int
J Methods Psychiatr Res 2011 Mar 24;20(1):40-49 [FREE Full text] [doi: 10.1002/mpr.329] [Medline: 21499542]

27. Schmidt P, Reiss A, Duerichen R, Marberger C, Van Laerhoven K. Introducing WESAD, a multimodal dataset for wearable
stress and affect detection. In: Proceedings of the 20th ACM International Conference on Multimodal Interaction. 2018

J Med Internet Res 2023 | vol. 25 | e43664 | p. 14https://www.jmir.org/2023/1/e43664
(page number not for citation purposes)

Shen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
http://dx.doi.org/10.1016/j.elerap.2015.11.001
https://aisel.aisnet.org/amcis2018/Health/Presentations/25
https://aisel.aisnet.org/amcis2018/Health/Presentations/25
https://www.forbes.com/sites/chuckbrooks/2021/04/12/3-key-cybersecurity-trends-to-know-for-2021-and-on-/
https://www.forbes.com/sites/chuckbrooks/2021/04/12/3-key-cybersecurity-trends-to-know-for-2021-and-on-/
https://arxiv.org/abs/1806.00582
http://dx.doi.org/10.48550/arXiv.1806.00582
https://mhealth.jmir.org/2021/3/e23728/
http://dx.doi.org/10.2196/23728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33783362&dopt=Abstract
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1145/2976749.2978318
https://europepmc.org/abstract/MED/29500022
http://dx.doi.org/10.1016/j.ijmedinf.2018.01.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29500022&dopt=Abstract
https://www.jmir.org/2020/10/e20891/
http://dx.doi.org/10.2196/20891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33104011&dopt=Abstract
https://europepmc.org/abstract/MED/34526699
http://dx.doi.org/10.1038/s41591-021-01506-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34526699&dopt=Abstract
http://dx.doi.org/10.1145/3428152
https://europepmc.org/abstract/MED/34333623
http://dx.doi.org/10.1093/jamia/ocab135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34333623&dopt=Abstract
https://europepmc.org/abstract/MED/31510659
http://dx.doi.org/10.1093/bioinformatics/btz373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31510659&dopt=Abstract
http://dx.doi.org/10.1109/jbhi.2020.2999497
http://dx.doi.org/10.48550/arXiv.1910.02578
http://dx.doi.org/10.1109/csf.2014.35
https://arxiv.org/abs/2009.03561
http://dx.doi.org/10.14722/ndss.2022.23054
http://dx.doi.org/10.1109/sp.2019.00029
https://europepmc.org/abstract/MED/20368500
http://dx.doi.org/10.1001/archgenpsychiatry.2010.41
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20368500&dopt=Abstract
https://europepmc.org/abstract/MED/21499542
http://dx.doi.org/10.1002/mpr.329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21499542&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Presented at: ICMI '18: International Conference on Multimodal Interaction; Oct 16 - 20, 2018; Boulder CO USA. [doi:
10.1145/3242969.3242985]

28. ihs-privacy-paper. GitHub. URL: https://github.com/Alex-Shen-93/ihs-privacy-paper [accessed 2023-04-04]

Abbreviations
AUC: area under the curve
DP: differential privacy
EMA: ecological momentary assessment
FL: federated learning
IHS: Intern Health Study
mHealth: mobile health
PPV: positive predictive value

Edited by A Mavragani; submitted 19.10.22; peer-reviewed by Y Jeem, L Bonomi; comments to author 11.01.23; revised version
received 31.01.23; accepted 19.02.23; published 20.04.23

Please cite as:
Shen A, Francisco L, Sen S, Tewari A
Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of
Federated Learning, Differential Privacy, and External Attacks
J Med Internet Res 2023;25:e43664
URL: https://www.jmir.org/2023/1/e43664
doi: 10.2196/43664
PMID:

©Alexander Shen, Luke Francisco, Srijan Sen, Ambuj Tewari. Originally published in the Journal of Medical Internet Research
(https://www.jmir.org), 20.04.2023. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete
bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license
information must be included.

J Med Internet Res 2023 | vol. 25 | e43664 | p. 15https://www.jmir.org/2023/1/e43664
(page number not for citation purposes)

Shen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1145/3242969.3242985
https://github.com/Alex-Shen-93/ihs-privacy-paper
https://www.jmir.org/2023/1/e43664
http://dx.doi.org/10.2196/43664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

