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Abstract: We consider the problem of best subset selection (BSS) under the well known
high-dimensional sparse linear regression model. Recently, Guo et al. (2020) [10] showed
that the model selection performance of BSS depends on a certain identifiability margin, a
measure that captures the model discriminative power of BSS under a general correlation
structure that is robust to the design dependence, unlike its computational surrogates such
as LASSO, SCAD, MCP, etc. Expanding on this, we further broaden the theoretical under-
standing of BSS in this paper and show that the complexities of the residualized signals,
the portion of the signals orthogonal to the true active features, and spurious projections,
describing the projection operators associated with the irrelevant features, also play fun-
damental roles in characterizing the margin condition for model consistency of BSS. In
particular, we establish both necessary and sufficient margin conditions depending only on
the identifiability margin and the two complexity measures. We also partially extend our
sufficiency result to the case of high-dimensional sparse generalized linear models (GLMs).
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1. Introduction

Variable selection in high-dimensional sparse regression has been one of the central topics in
statistical research over the past few decades. Consider 𝑛 observations {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1 following
the linear model:

𝑦𝑖 = x⊤𝑖 𝜷 + 𝜀𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, (1)

where {x𝑖}𝑖∈[𝑛] are fixed 𝑝-dimensional feature vectors, {𝜀𝑖}𝑖∈[𝑛] are i.i.d. mean-zero noise,
and the signal vector 𝜷 ∈ R𝑝 is unknown but is assumed to have a sparse support. In matrix
notation, the observations can be represented as

y = X𝜷 + 𝜺,

where y = (𝑦1, . . . , 𝑦𝑛)⊤, X = (x1, . . . , x𝑛)⊤, and 𝜺 = (𝜀1, . . . , 𝜀𝑛)⊤. We consider the stan-
dard high-dimensional sparse setup where 𝑛 < 𝑝, and possibly 𝑛 ≪ 𝑝, and the vector 𝜷

is sparse in the sense that ∥𝜷∥0 :=
∑𝑝

𝑗=1 1(𝛽 𝑗 ≠ 0) = 𝑠, which is much smaller than 𝑝.
In this paper, we focus on the variable selection problem, i.e., identifying the active set
S := { 𝑗 : 𝛽 𝑗 ≠ 0}. We primarily use the 0-1 loss, i.e., P(Ŝ ≠ S), to assess the quality
of the selected model Ŝ.

One of the well-studied methods for variable selection in high-dimensional sparse regres-
sion is to penalize the empirical risk by model complexity, thereby encouraging sparse solu-
tions. Specifically, consider

𝜷̂
pen

:= arg min𝜷∈R𝑝 L(𝜷) + pen𝜆(𝜷),

were L(𝜷) is a loss function and pen𝜆(𝜷) is the penalization term that controls the model
complexity. Classical methods such as AIC [2, 3], BIC [18], Mallow’s 𝐶𝑝 [16] use model
complexity as penalty term, i.e., ℓ0-norm of the regression coefficient, to penalize the nega-
tive log-likelihood. Although these methods enjoy nice sampling properties [4, 26], such ℓ0

regularized methods are known to suffer from huge computational bottleneck [9]. This mo-
tivated a whole generation of statisticians to develop alternative penalization methods such
as LASSO [21], SCAD [8], MC+ [24], and many others that have both strong statistical
guarantees and computational expediency.

However, after recent computational advancements in solving BSS [5, 6, 29], there has
been growing acknowledgment that BSS enjoys significant statistical superiority over its
computational surrogates and has inevitably motivated statisticians to investigate the prop-
erties of BSS. For example, through extensive simulations, [11] shows that BSS performs
better than LASSO in high signal-to-noise ratio regime in terms of the prediction risk. [12]
showed that a wide family of iterative hard thresholding (IHT) algorithms can approximately
solve the BSS problem, in the sense that they can achieve similar goodness of fit with the best
subset with slight violation of the sparsity constraint. [15] studied the optimal thresholding
operator for such iterative thresholding algorithms, which manages to exploit fewer variables
than IHT to achieve the same goodness fit as BSS. Recently, [19] proposed an algorithmic
framework based on quantile-thresholding that iteratively optimizes ℓ2-penalized BSS objec-
tive function and can achieve model consistency under certain regularity conditions on the
design. On the theoretical side, [10] showed that the model selection behavior of BSS does
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not explicitly depend on the restricted eigenvalue condition for the design [7, 22], a condi-
tion which appears unavoidable (assuming a standard computational complexity conjecture)
for any polynomial-time method [27]. Specifically, they show that BSS is robust to design
collinearity. Under a particular asymptotic regime and independent design, [17] further es-
tablished information-theoretic optimality of BSS in terms of precise constants for the signal
strength parameter under weak and heterogeneous signal regimes.

In this paper, we also study the variable selection property of BSS and identify novel quan-
tities that are fundamental to understanding the model consistency of BSS. Specifically, we
take the geometric alignment of the feature vectors {X 𝑗} 𝑗∈[𝑝] into consideration to produce a
more refined analysis of BSS, and show that on top of a certain identifiability margin [10], the
following two geometric quantities also control the model selection performance of BSS: (a)
Geometric complexity of the space of residualized signals, and (b) Geometric complexity of
spurious projections. We show the explicit dependence of these two complexity measures in
our main results and demonstrate the interplay between the margin condition and the under-
lying geometric structure of the features through some illustrative examples. In the process,
we also point out the existence of a design that is more favorable to BSS than the orthogonal
design, which is commonly believed to be the easiest case for model selection. To the best of
our knowledge, this is the first work that identifies the underlying geometric complexity of
the feature space as a governing force behind the performance of BSS.

The rest of the paper is organized as follows. In Section 2 we discuss the preliminaries
of BSS. Section 3 is devoted to the discussion of the key quantities, i.e., identifiability mar-
gin and the two complexities. In particular, Section 3.1-3.3 carefully introduce the notion
of identifiability margin and the two novel complexity measures. In Section 3.4, we build
intuition for understanding the effect of these two complexities with varying correlation. In
Section 4, we present both sufficient (Section 4.1) and necessary (Section 4.3) conditions for
model consistency of BSS. We also partially extend our result to GLMs and present a similar
sufficiency result for model consistency in Section S2 of the supplementary material.

Notation. Let R denote the set of real numbers. Denote by R𝑝 the 𝑝-dimensional Euclidean
space and by R𝑝×𝑞 the space of real matrices of order 𝑝 × 𝑞. For a positive integer 𝐾 , denote
by [𝐾] the set {1, 2, . . . , 𝐾}.

Regarding vectors and matrices, for a vector 𝑣 ∈ R𝑝, we denote by ∥𝑣∥2 the ℓ2-norm of 𝑣.
I𝑝 denotes the 𝑝-dimensional identity matrix, and 1𝑝 ∈ R𝑝 denotes the 𝑝-dimensional vector
with all entries equal to 1. For A ∈ R𝑝×𝑝, we denote by A 𝑗 and a 𝑗 the 𝑗 th column and the
transposed 𝑗 th row of A respectively. We use col(A) and col(A)⊥ to denote the columnspace
of A and its orthogonal complement respectively.

Let (𝑀, 𝑑) be a metric space where 𝑀 is a set endowed with the metric 𝑑. For a subset
𝑇 ⊆ 𝑀 , we denote by N(𝑇, 𝑑, 𝜀) the 𝜀-covering number of 𝑇 . Similarly, we denote by
M(𝑇, 𝑑, 𝜀) the 𝜀-packing number of 𝑇 .

Throughout the paper, let 𝑂 (·) (respectively Ω(·)) denote the standard big-O (respectively
big-Omega) notation, i.e., we say 𝑎𝑛 = 𝑂 (𝑏𝑛) if there exists a universal constant 𝐶 > 0, such
that 𝑎𝑛 ≤ 𝐶𝑏𝑛 (respectively 𝑎𝑛 ≥ 𝐶𝑏𝑛) for all 𝑛 ∈ N. Sometimes for notational convenience,
we write 𝑎𝑛 ≲ 𝑏𝑛 in place of 𝑎𝑛 = 𝑂 (𝑏𝑛) and 𝑎𝑛 ≳ 𝑏𝑛 in place of 𝑎𝑛 = Ω(𝑏𝑛). We write
𝑎𝑛 ≍ 𝑏𝑛 if 𝑎𝑛 = 𝑂 (𝑏𝑛) and 𝑎𝑛 = Ω(𝑏𝑛). Finally, we write 𝑎𝑛 ∼ 𝑏𝑛 if lim𝑛→∞ 𝑎𝑛/𝑏𝑛 = 1, and
𝑎𝑛 = 𝑜(𝑏𝑛) if lim𝑛→∞ 𝑎𝑛/𝑏𝑛 = 0.
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Table 1
Notations for the geometric sets and corresponding complexity measures.

Geometric Sets Residualized signals (scaled) Spurious projections

Notation 𝜸̂D for all D ≠ S (Eq. (7)) PD − PD∩S for all D ≠ S (Eq. (2) and (9))

Collection sets T ( 𝑠̂)
I such that I = S ∩ D (Eq. (7)) G ( 𝑠̂)

I such that I = S ∩ D (Eq. (7))

Upper scaled complexities E
T (𝑠̂)
I

(Eq. (8)) E
G (𝑠̂)
I

(Eq. (10))

Lower scaled complexity E ∗
T (𝑠̂)
I

(Eq. (16)) E ∗
G (𝑠̂)
I

(Eq. (18))

Diameter D
T (𝑠̂)
I

D
G (𝑠̂)
I

Minimal separation d
T (𝑠̂)
I

d
G (𝑠̂)
I

Brief summary of main contributions. Before diving into the mathematical details, we
first lay out a brief summary of the main results of the paper. As mentioned before, the main
contribution of the paper is to identify the role of two quantities related to the complexities
of the residualized signals and the spurious projections in the model recovery performance of
BSS. To elaborate more on this, we revisit a specific identifiability margin 𝜏∗(𝑠) (introduced
in [10] and Equation (4)) that essentially captures the joint effect of the signal strength and
the collinearity among the true and spurious features arising from mutual correlation between
them. If the minimum signal strength 𝛽min := min{|𝛽 𝑗 | : 𝑗 ∈ S} is large and the correlation
between true and spurios features are small, then 𝜏∗(𝑠) is large, which makes it easier for
BSS to identify the true support S. Next, we introduce the two complexity measures of the
set of residualized signals T (𝑠)

I and the set of spurious projections G (𝑠)
I (see Table 1):

1. Complexity of residualized signals: In Section 3.2, we introduce the complexity mea-
sure for the class of residualized signals 𝜸D (see Equation (6)) originating from the
part of the true signal XS𝜷S that can not be linearly explained by a model D with
D ∩ S = I. To be prices, we consider a scaled log-entropy integral of the space of
resulting unit vectors 𝜸̂D which we denote by ET (𝑠)

I
(see Equation (8)).

2. Complexity of spurious projections: Section 3.3 introduces the complexity measure for
the the spurious projection operators PD − PI (see Equation (2) and (9)) which are the
orthogonal projection matrices onto the subspace col(XD)∩col(XS)⊥ with D∩S = I.
Similar to the previous case, the proposed complexity measure is a scaled version of
the log-entropy (under operator norm) integral of the space of spurious projection (see
Equation (10)) which is denoted by EG (𝑠)

I
.

Both of this complexities can be linked to the diameter of the set of residualized signals
T (𝑠)
I and the spurious projections G (𝑠)

I respectively under proper choices of metrics. It is
important to note that depending on the structural properties of the design matrix X, the
intrinsic complexity of the sets might be much smaller compared to the vanilla complexity
measure that is often associated with just the cardinality of the sets. We elaborate on this
through the following example.
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Example 1. Let us consider the case when the dimension 𝑝 = 3, i.e,

X = [e1, (e1 + 𝛿e2)/(
√︁

1 + 𝛿2), (e1 + 𝛿e3)/(
√︁

1 + 𝛿2)] ∈ R𝑛×3

where e1, e2, e3 are the first three canonical basis of R𝑛, and 𝛿 ≈ 0. Also assume that the true
support is S = {1}. For any other candidate model D of unit size, we have D ∩ S = ∅.
Therefore, we have the set of spurious projections to be G (1)

∅ := {P{2} ,P{3}}. Then, we
have



P{2} − P{3}




op = 𝛿/
√

1 + 𝛿2 < 𝛿, and hence logN(G (1)
∅ , ∥·∥op , 𝛿

′) = 0 for all 𝛿′ ≥ 𝛿.
Therefore, overall complexity of the spurious projections, which is integral of the log-entropy,
is much smaller compared to the log-cardinality of the set which is log 2 in this case. A more
detailed study can be found in Section 4.2.

Therefore, considerations of these quantities will result into sharper results on the margin
conditions required for 𝜏∗(𝑠) (see Theorem 1) in order to have model consistency of BSS.
Informally, one of our our main results Theorem 1 shows that

𝜏∗(𝑠)
𝜎2 ≳ max

{
max
I⊂S

E 2
T (𝑠)
I
,max
I⊂S

E 2
G (𝑠)
I

}
log 𝑝
𝑛

is sufficient for model consistency of BSS. The above condition reveals an interesting in-
terplay between the two complexity measures that shows that only the set of dominating
complexity measure characterizes the model recovery performance. Moreover, the above con-
dition allows us to artificially construct an example with a specific correlation structure in the
design matrix which is more favorable for BSS compared to the independent Gaussian design
(see Section 4.2) case which is popularly believed to be the easiest setting for model selec-
tion. Finally, in Theorem 2, we also present a somewhat similar necessary condition that also
involves the complexity measures (fourth row of Table 1) of the residualized signals and spu-
rious projections. In the supplementary material, we also present an extension of Theorem 1
under the GLM case, i.e., we also provide similar complexity measures tailored to the GLM
models under some regularity assumptions on the design and the link function.

2. Best subset selection

We briefly review the preliminaries of BSS, one of the most classical variable selection ap-
proaches. For a given sparsity level 𝑠̂, BSS solves for

𝜷̂best( 𝑠̂) := arg min𝜷∈R𝑝 , ∥𝜷 ∥0≤ 𝑠̂ ∥y − X𝜷∥2
2 .

For model selection purposes, we can choose the best fitting model to be Ŝbest( 𝑠̂) := { 𝑗 :
[ 𝜷̂best( 𝑠̂)] 𝑗 ≠ 0}. For a subset D ⊆ [𝑝], define the matrix XD := (X 𝑗 ; 𝑗 ∈ D). In addition,
we denote by PD the orthogonal projection operator onto the column space of XD , i.e.,

PD := XD (X⊤
DXD)−1X⊤

D . (2)

Next, we define the corresponding residual sum of squares (RSS) for model D as

𝑅D := y⊤(I𝑛 − PD)y.
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With this notation, the Ŝbest( 𝑠̂) can be alternatively written as

Ŝbest( 𝑠̂) := arg minD⊆[𝑝]: |D |≤ 𝑠̂ 𝑅D . (3)

Given any candidate model D ⊂ [𝑝], we can rewrite the model (1) as

y = XS𝜷S + 𝜺 = PDXS𝜷S + (I𝑛 − PD)XS\D𝜷S\D + 𝜺.

The term (I𝑛 − PD)XS\D𝜷S\D is the residual part of the signal that can not be linearly
explained by XD . We refer to this part as the residualized signals. We can thus measure
the discrimination between the true model S and a different candidate model D through the
quantity 𝑛−1∥(I𝑛 − PD)XS\D𝜷S\D ∥2

2.
Let 𝚺 := 𝑛−1X⊤X be the sample covariance matrix and for any two sets D1,D2 ⊂ [𝑝],

𝚺D1,D2 denotes the submatrix of 𝚺 with row indices in D1 and column indices in D2. Next,
we define the collection A𝑠̂ := {D ⊂ [𝑝] : D ≠ S, |D| = 𝑠̂}, and for D ∈ A𝑠̂ write

Γ(D) = 𝚺S\D,S\D − 𝚺S\D,D𝚺
−1
D,D𝚺D,S\D .

In the Gaussian design case, the above quantity can be identified as the empirical version
of the conditional variance-covariance matrix cov(XS\D | XD). Therefore, Γ(D) roughly
captures the degree correlation between the features in XS\D and XD . To understand the
above quantity more clearly, note that

𝜷⊤
S\DΓ(D)𝜷S\D = 𝑛−1∥(I𝑛 − PD)XS\D𝜷S\D ∥2

2 = 𝑛−1


(I𝑛 − PD)XS𝜷S



2
2 .

This shows that 𝜷⊤
S\DΓ(D)𝜷S\D captures the goodness-of-fit for model D. Intuitively, if

𝜷⊤
S\DΓ(D)𝜷S\D is very close to zero, then there exists b ∈ R |D | such that XS𝜷S ≈ XDb.

Hence, S and D have similar linear explanatory power, and the true model S becomes prac-
tically indistinguishable from D. In fact, the following lemma shows that 𝜷⊤

S\DΓ(D)𝜷S\D
needs to be at least bounded away from 0 for all D ∈ A𝑠̂ to make S identifiable.

Lemma 1. For any given 𝑠̂ > 0, if there exists a D ∈ A𝑠̂ such that 𝜷⊤
S\DΓ(D)𝜷S\D = 0,

then there exists b ∈ R𝑠̂ such that XS𝜷S = XDb. Hence, both XS𝜷S and XDb generates the
same probability distribution for y, and S becomes non-identifiable.

Now we are ready to introduce the identifiability margin that characterizes the model dis-
criminative power of BSS and the two complexity measures.

3. Identifiability margin and two complexities

3.1. Identifiability margin

The discussion in Section 2 motivates us to define the following identifiability margin:

𝜏∗( 𝑠̂) := min
D∈A𝑠̂

𝜷⊤
S\DΓ(D)𝜷S\D

|S \ D| . (4)

If we define A𝑠̂,𝑘 := {D ∈ A𝑠̂ : |S \ D| = 𝑘}, then the above can be rewritten as

𝜏∗( 𝑠̂) = min
𝑘∈[ 𝑠̂]

min
D∈A𝑠̂,𝑘

𝜷⊤
S\DΓ(D)𝜷S\D

𝑘
.
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As mentioned earlier, the quantity 𝜏∗( 𝑠̂) captures the model discriminative power of BSS.
To add more perspective, note that if the features are highly correlated among themselves
then it is expected that 𝜏∗( 𝑠̂) is very close to 0. Hence, any candidate model D is practically
indistinguishable from the actual model S which in turn makes the problem of exact model
recovery harder. On the contrary, if the features are uncorrelated then 𝜏∗( 𝑠̂) becomes bounded
away from 0 making the true model S easily recoverable. For example, [10] showed that
under the condition

𝜏∗(𝑠) ≳ 𝜎2 log 𝑝
𝑛

, (5)

BSS is able to achieve model consistency. In general, Condition (5) is less restrictive than the
well known 𝛽-min condition which demands

𝛽min = min
𝑗∈S

|𝛽 𝑗 | ≳ 𝜎

(
log 𝑝
𝑛

)1/2

.

To see this, let 𝜆̂𝑚 := minD∈A𝑠
𝜆min (Γ(D)) where 𝜆min (Γ(D)) denotes the minimum eigen-

value of Γ(D), and note that 𝜏∗(𝑠) ≥ 𝜆̂𝑚𝛽
2
min. Thus a sufficient condition for (5) to hold is

𝛽min ≳ 𝜎{log 𝑝/(𝑛𝜆̂𝑚)}1/2. In comparison, [26] showed that the ℓ0-regularized least square
estimator is able to achieve model consistency when 𝛽min ≳ 𝜎{log 𝑝/(𝑛𝜅−)}1/2, where
𝜅− := minD: |D |≤𝑠,D⊂[𝑝] 𝜆min(𝚺D). The latter condition is very sensitive to the feature corre-
lation as 𝜅− can vary drastically depending on the degree of correlation between the features.
In contrast, 𝜆̂𝑚 is robust against design dependence; rather, it reflects how spurious variables
can approximate the true model, which implies much less restriction than that induced by
𝜅−. For more details on the identifiability margin, we point the readers to Section 2.1 of [10].
From now on, unless otherwise mentioned, we will assume that the margin quantity 𝜏∗( 𝑠̂) > 0
to avoid the non-identifiability issue as pointed out in Lemma 1.

Next, we will shift focus on the underlying geometric structures of two spaces that govern
the difficulty of the BSS problem (3). We identify the complexities of two types of sets that
control the hardness of BSS: (i) the set of residualized signals, and (ii) the set of spurious
projections. We discuss these two sets, and the associated complexities in detail below and
Table 1 compiles important notations and quantities related to the aforementioned sets.

3.2. Complexity of residualized signals

We start with the definition of the residualized signal. For a candidate model D ∈ A𝑠̂, define

𝜸D := 𝑛−1/2(I𝑛 − PD)XS\D𝜷S\D , (6)

and the corresponding unit vector 𝜸̂D := 𝜸D/


𝜸D




2. Note that 𝜸̂D is well-defined as

𝜸D



2
2 ≥ 𝜏∗( 𝑠̂) > 0. As mentioned before, 𝜸D represents the part of the signal that can

not be linearly explained by the features in model D. Note that the margin condition (5)
essentially tells that the vectors 𝜸D are well bounded away from the origin. However, this
property does not quite capture the degree of their radial spread in R𝑛. It may happen that de-
spite being well bounded away from the origin, the vectors are clustered along one common
unit direction. For example, in Figure 1, the distance between 𝜸D1

and 𝜸D2
are large as the

vectors are at a larger distance from the origin, although the angular separation between them
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Fig 1: Distance between 𝜸̂D1
and 𝜸̂D2

correctly captures the angular separation.

is small. To capture this notion of separation within the vectors {𝜸D}D∈A𝑠̂
, we also need to

capture the spatial alignment of their corresponding unit vectors {𝜸̂D}D∈A𝑠̂
. This motivates

us to consider the geometric complexities of this set of unit vectors. Specifically, for a set
I ⊂ S, we define

T ( 𝑠̂)
I := {𝜸̂D : D ∈ A𝑠̂,S ∩ D = I} ⊆ R𝑛, (7)

which is the set of all the normalized forms of the residualized signals corresponding to the
models D ∈ A𝑠̂ with I as the common part with true model S. To capture the complexity of
these spaces, we look at the scaled entropy integral

ET (𝑠̂)
I

:=

∫ ∞
0

√︃
logN(T ( 𝑠̂)

I , ∥·∥2 , 𝜀) d𝜀√︃
log |T ( 𝑠̂)

I |
. (8)

The numerator in the above display is commonly known as entropy integral which captures
the topological complexity of T ( 𝑠̂)

I . In literature, this quantity has a connection to the well-
known Talagrand’s complexity [20], which often comes up in controlling the expectation of
the supremum of Gaussian processes [13, 14, 1]. In this paper, we look at the above scaled
version of the entropy integral which allows us to compare the quantity with the diameter and
minimum pairwise distance between the elements of the set T ( 𝑠̂)

I . To elaborate on this point,

define the diameter and minimum pairwise distance of T ( 𝑠̂)
I as follows:

DT (𝑠̂)
I

:= max
u,v∈T (𝑠̂)

I

∥u − v∥2 , and dT (𝑠̂)
I

:= min
u,v∈T (𝑠̂)

I

∥u − v∥2 .

Now notice the following two simple facts:

logN(T ( 𝑠̂)
I , ∥·∥2 ,DTI ) = 0, logN(T ( 𝑠̂)

I , ∥·∥2 , dTI ) = log |T ( 𝑠̂)
I |.

Noting that logN(T ( 𝑠̂)
I , ∥·∥2 , 𝛿) is a decreasing function over 𝛿, we finally get

dT (𝑠̂)
I

≤ ET (𝑠̂)
I

≤ DT (𝑠̂)
I
.
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This shows that the quantity ET (𝑠̂)
I

roughly captures the average separation of the elements

within T ( 𝑠̂)
I . In our subsequent discussion, we will show that ET (𝑠̂)

I
heavily influences the

margin condition for exact recovery. This is indeed an important observation, as the com-
plexity of the set of residualized signals depends heavily on the association between the
features. For example, they can differ vastly for highly correlated designs compared to al-
most uncorrelated designs. Hence, the effect of ET (𝑠̂)

I
on the exact model recovery also varies

significantly across different classes of distributions and leads to sharper margin conditions
for exact model recovery.

3.3. Complexity of spurious projections

In this section, we will introduce the space of projection operators that also control the level
of difficulty of the true model recovery. Similar to the previous section, for a fixed set I ⊂ S,
we consider the set

G ( 𝑠̂)
I := {PD − PI : D ∈ A𝑠̂,S ∩ D = I} ⊆ R𝑛×𝑛. (9)

It is a well-known fact that every projection operator of the form PD − PI ∈ G ( 𝑠̂)
I has a one-

to-one correspondence with the subspace col(XD) ∩ col(XI)⊥. Thus, G ( 𝑠̂)
I can be thought of

as the collection of all linear subspaces of the form col(XD) ∩col(XI)⊥, which is essentially
the set of spurious features that can not be linearly explained by the set of features in model
I ⊂ S. To capture the proper measure of complexity of the set G ( 𝑠̂)

I , it is crucial to induce the
space of projection operators with a proper metric. It turns out that Grassmannian distance is
the correct distance to consider in this context. Specifically, for two linear subspaces𝑈,𝑉 we
look at their maximum sin-theta distance:

d(𝑈,𝑉) := ∥𝚷𝑈 −𝚷𝑉 ∥op ,

where 𝚷𝑈 ,𝚷𝑉 are the orthogonal projection operators of 𝑈,𝑉 respectively. It turns out that
d(𝑈,𝑉) evaluates the trigonometric sine function at the maximum principal angle between
the subspaces 𝑈 and 𝑉 (see Figure 2). We point the readers to [23] for a more detailed
discussion on this topic.

Under this distance, we define the scaled entropy integral as

EG (𝑠̂)
I

:=

∫ ∞
0

√︃
logN(G ( 𝑠̂)

I , ∥·∥op , 𝜀) d𝜀√︃
log |G ( 𝑠̂)

I |
. (10)

Note that, unlike ET (𝑠̂)
I

, the complexity measure EG (𝑠̂)
I

has no dependence on 𝜷 or the resid-

ualized signal. Thus, EG (𝑠̂)
I

roughly captures the geometric complexity of only the spurious

features. In fact, via a similar argument as in Section 3.2, it can be shown that dG (𝑠̂)
I

≤ EG (𝑠̂)
I

≤
DG (𝑠̂)

I
, where

dG (𝑠̂)
I

:= min
U,V∈G (𝑠̂)

I

∥U − V∥op , DG (𝑠̂)
I

:= max
U,V∈G (𝑠̂)

I

∥U − V∥op .
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Fig 2: The figure shows the two principal angles between two subspaces 𝑈 and 𝑉 . {𝑢, 𝑢⊥}
are the two orthonormal basis of 𝑈, and 𝑣 is an orthonormal basis of 𝑉 . 𝜃2 is the maximum
principal angle between𝑈 and 𝑉 .

Thus, EG (𝑠)
I

only captures the separability in the set of subspaces generated by the spurious
features. The main motivation behind considering such quantity is to capture the influence
of the effective size of the set {G ( 𝑠̂)

I }I⊂S in the analysis of BSS. A naive union bound only

uses |G ( 𝑠̂)
I | =

( 𝑝−𝑠̂
𝑠̂−|I |

)
as a measure of complexity of the set G ( 𝑠̂)

I . This is rather loose, as
the effective complexity of the set is much smaller if EG (𝑠̂)

I
is small. Thus, taking EG (𝑠̂)

I
into

account unravels a broader picture of the effect incurred by the underlying geometry of the
feature space.

3.4. Correlation and complexities

From the discussion on the two complexities, it is quite evident that both of the complexity
measures heavily rely on the alignment of the feature vectors {X 𝑗 : 𝑗 ∈ [𝑝]}, which directly
depends on the correlation structure among the features in the model. Below, we discuss how
these two types of complexities may vary with correlation among the features.

Correlation and spurious projection operators: We first focus on the set G ( 𝑠̂)
I , as it is

relatively easy to understand its behavior across different correlation structures. Recall that
for a fixed choice of I, the set G ( 𝑠̂)

I is the collection of all the projection operators of the form
PD − PI for all D ∈ A𝑠̂, which can be thought of as the collection of different subspaces
generated by the linear combination of the spurious features. If the spurious features are
highly correlated then these subspaces may be essentially indistinguishable from each other,
i.e., the mutual distance between the projection operators {PD − PI}D∈A𝑠̂

is significantly
smaller compared to the case when they are weakly correlated. As an example, let us consider
the equi-correlated Gaussian design, i.e., the row vectors {𝑥𝑖}𝑖∈[𝑛] of X in (1) follows i.i.d.
mean-zero Gaussian distribution with covariance matrix

𝚺 = (1 − 𝑟)I𝑝 + 𝑟1𝑝1⊤𝑝 .
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Fig 3: (a) shows the angle between spurious features in G (1)
∅ for 𝑟 = 0, (b) shows the angle

between spurious features in G (1)
∅ for 𝑟 = 0.9.

For the sake of simplicity, we also assume that the true model is a singleton set. In particular,
we consider S = {1} and set 𝑠̂ = 1. Also, note that in this case A𝑠̂ = { 𝑗 ∈ [𝑝] : 𝑗 ≠ 1} and
I = ∅. Under this setup, we have G (1)

∅ = {X 𝑗X⊤
𝑗
/


X 𝑗



2
2 : 𝑗 ∉ S} and 𝑛−1



X 𝑗 − X𝑘



2
2 ≈

2(1 − 𝑟), for all 𝑗 , 𝑘 ≠ 1. If 𝑟 is very close to 1 in the above display, then it follows that the
vectors {X 𝑗/

√
𝑛} 𝑗≠1 are extremely clustered towards each other, and as a result, the spuri-

ous projection operators are also very close to each other in operator norm. Due to this, the
complexity measure EG (1)

∅
becomes extremely small and the subspaces become almost indis-

tinguishable. In contrast, when the features are approximately uncorrelated, i.e., 𝑟 ≈ 0, the
scaled features {X 𝑗/

√
𝑛} 𝑗≠1 are roughly orthogonal. In that case the

𝑛−1


X 𝑗 − X𝑘



2
2 ≈ 2, for all 𝑗 , 𝑘 ≠ 1.

As an example, for 𝑝 = 6 and 𝑠 = 1, Figure 3 illustrates a similar phenomenon in 3-
dimension. Figure 3(a) clearly shows that for the case 𝑟 = 0 the angle is larger compared
to the 𝑟 = 0.9 case in Figure 3(b). This suggests that the linear spans generated by each of the
set of features {𝑛−1/2X 𝑗} 𝑗≠1 are well separated and EG (1)

∅
is well bounded away from zero.

Thus, it follows that the features are well spread out in R𝑛. This phenomenon indicates that a
higher correlation may aid the model recovery chance for BSS by reducing the search space
over the features. As we will see in our subsequent discussion in Section 4.2, the correlation
between noise variables can significantly help BSS to identify the correct model. Specifically,
we construct an example where the true variables are uncorrelated with the noise variables
and show that a high correlation among noise variables helps BSS to identify the correct
model. The intuition is that under the presence of correlation, the diversity of the elements
in G ( 𝑠̂)

I gets reduced as EG (𝑠̂)
I

becomes small. Thus, BSS needs to search on a comparatively

smaller feature space rather than searching over all possible
( 𝑝−𝑠̂
𝑠̂−|I |

)
models, which in turn

aids the probability of finding the correct model out of the other candidate ones. Thus, the
smaller complexity of G ( 𝑠̂)

I counteracts the adverse effect of correlation to some degree, and
it may improve the model recovery performance of BSS.
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Fig 4: Maximum principal angle between the subspaces 𝑈 := span{X1,X2} and 𝑉 :=
span{X3,X4} for 𝑟 = 0.99 under equi-correlated Gaussian design.

However, it is not necessary that the complexity will be small for a highly correlated
structure. For example, in the above case, if S = {1, 2}, then G (1)

∅ might be closer to 1, i.e.,
the maximum principal angles between the subspaces are closer to 90◦ as shown in Figure 4.
Therefore, the complexity solely depends on the distribution and correlation structure of the
design matrix and may behave differently on a case-by-case basis.

Correlation and residualized signals: Now we shift our focus to understanding the be-
havior of the set of normalized residualized signals denoted by T ( 𝑠̂)

I . Recall that for a fixed

I, the set T ( 𝑠̂)
I denotes the collection of all the unit vectors 𝜸̂D (defined in Section 3.2) such

that D ∩ S = I. Similar to G ( 𝑠̂)
I , the complexity of the set T ( 𝑠̂)

I also depends on the cor-
relation structure among the features. To elaborate more on this, we revisit the example of
equi-correlated Gaussian design with correlation parameter 𝑟 and S = {1}. We denote by P 𝑗

the orthogonal projection operator onto the span of X 𝑗 , i.e., P 𝑗 = X 𝑗X⊤
𝑗
/


X 𝑗



2
2 . Similar to

the previous section, in this case also the set T (1)
∅ consists of the scaled residualized signals

that take the following form for large 𝑛 with high probability:

𝜸̂ 𝑗 =
(I𝑛 − P 𝑗)X1

(I𝑛 − P 𝑗)X1




2

≈
X1 − 𝑟X 𝑗

X1 − 𝑟X 𝑗




2

, for all 𝑗 ≠ 1.

Also, note that

𝛾̂⊤𝑗 𝛾̂𝑘 ≈ 1 − 2𝑟2 + 𝑟3

1 − 𝑟2 =: 𝑓 (𝑟).
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Since, 𝑓 (𝑟) is a strictly decreasing function on [0, 1), and


𝜸̂ 𝑗 − 𝜸̂𝑘



2
2 = 2(1 − 𝜸̂⊤

𝑗 𝜸̂𝑘), it
follows that dT∅ ≥ 1/2 when 𝑟 is very close to 1. On the contrary, when 𝑟 ≈ 0, the above
display suggests that DT (1)

∅
≈ 0, i.e., for uncorrelated design, the complexity ET (1)

∅
of the set

T (1)
∅ is smaller compared to the highly correlated case which is in sharp contrast with the

behavior of EG (1)
∅

.
However, it is worth pointing out that the above property of ET (1)

∅
is very specific to the

above considered model. There may exist a correlated structure where higher correlation
among noise variables does not increase ET (1)

∅
(see Section 4.2), and improves the chance

of identifying the correct model via BSS. However, understanding such a phenomenon for a
more general design could be significantly more challenging.

4. Theoretical properties of BSS

4.1. Model selection consistency of BSS under known sparsity

This section illustrates the interaction between the identifiability margin (4) and the two com-
plexities that characterize the sufficient condition for the exact model recovery. From here on,
we assume that the true sparsity is known, i.e., we set 𝑠̂ = 𝑠 in (3), and BSS searches the best
model out of all possible models of size 𝑠. We now introduce a technical assumption that es-
sentially prevents the noisy features from becoming highly correlated with the true features:

Assumption 1. The design matrix X enjoys the following property:

min
I⊂S

EG (𝑠)
I
> {log(𝑒𝑝)}−1/2.

The above assumption ensures that the noisy features are distinguishable enough from the
active features in order for BSS to identify the active features. To see this, consider the case
when the noise variables are highly correlated with the true features {X 𝑗} 𝑗∈S . In this case,
the projection operator PD − PI can be written as (I𝑛 − PI)PD for all D ∈ G (𝑠)

I , whenever
I ≠ ∅. As the features in {X 𝑗 : 𝑗 ∈ D \ S} are highly correlated with XI , it follows that
∥PD − PI ∥op ≈ 0 and by triangle inequality it follows that ∥PD − PD′ ∥op ≈ 0 for any two
candidate models D and D′ such that D ∩ S = D′ ∩ S = I. Thus, Assumption 1 gets rid
of such cases by indirectly controlling the correlation between the active features and noisy
features. Secondly, the assumption also enforces diversity among the noise variables in the
following sense: If the features {X 𝑗 : 𝑗 ∉ S𝑐} are too similar to each other, then also EG (𝑠)

I
shrinks towards 0. Thus, Assumption 1 prevents the noise variables from becoming extremely
correlated with each other.

Assumptions with similar spirits are fairly common in the literature on high-dimensional
statistics. For example, the well-known Sparse Riesz Condition (SRC) [25] assumes that
there exist positive numbers 𝜅−, 𝜅+ and Ψ ≥ 1 such that

𝜅− ≤
∥Xv∥2

2

𝑛
≤ 𝜅+, for all v ∈ {u ∈ R𝑝 : ∥u∥2 = 1, ∥u∥0 ≤ Ψ𝑠}. (11)

The above SRC condition controls the maximum and minimum eigenvalues of all the models
of size 𝑠, which essentially prevents the features to become extremely correlated with each
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other. In comparison, Assumption 1 is much weaker than SRC condition in two aspects. First,
unlike the SRC, Assumption 1 imposes conditions only over (2𝑠 − 2) models, whereas SRC
imposes conditions on Ω((𝑝/𝑠) ⌊Ψ𝑠⌋) many models. Second, the lower bound requirement in
Assumption 1 is rather weak as the bound decays with increasing ambient dimension and
allows a higher degree of correlation among the features. In other words, SRC condition (11)
implies the condition in Assumption 1, and we formalize this claim below.

Proposition 1. Let the columns of X be normalized, i.e.,


X 𝑗




2 =

√
𝑛. Also, assume that

there exist positive constants 𝜅−, 𝜅+ such that the SRC condition (11) holds with Ψ = 2. Then
the condition in Assumption 1 also holds for large enough 𝑝, i.e., minI⊂S EG (𝑠)

I
≥ 𝜅−/𝜅+ ≫

{log(𝑒𝑝)}−1/2. Furthermore, the implication in the other direction is not true in general.

Next, we assume that the noise in model (1) is sub-Gaussian.

Assumption 2. The noise {𝜀𝑖}𝑖∈[𝑛] in model (1) are i.i.d. mean-zero 𝜎-sub-Gaussian noise,
i.e., max𝑖∈[𝑛] E exp(𝑡𝜀𝑖) ≤ exp(𝜎2𝑡2/2) for all 𝑡 ∈ R.

Now we are ready to state our main sufficiency result.

Theorem 1 (Sufficiency). Under Assumption 1 and Assumption 2, there exists a positive
universal constant 𝐶0 such that for any 0 ≤ 𝜂 < 1, whenever the identifiability margin 𝜏∗(𝑠)
satisfies

𝜏∗(𝑠)
𝜎2 ≥

𝐶0

(1 − 𝜂)2

[
max

{
max
I⊂S

E 2
T (𝑠)
I
,max
I⊂S

E 2
G (𝑠)
I

}
+

√︄
log(𝑒𝑠) ∨ log log(𝑒𝑝)

log(𝑒𝑝)

]
log(𝑒𝑝)

𝑛
,

(12)

we have

{Ŝbest(𝑠)} ⊆
{
Ŝ : |Ŝ | = 𝑠, 𝑅Ŝ ≤ min

D∈A𝑠

𝑅D + 𝑛𝜂𝜏∗(𝑠)
}
= {S},

with probability at least 1 − 𝑂 ({𝑠 ∨ log 𝑝}−1). In particular, we have S = arg minD∈A𝑠
𝑅D

with high probability.

The proof of the above theorem is present Section S1.3 of the supplementary material. The
above theorem gives a sufficient condition for BSS to achieve model consistency. The above
theorem states that under the margin condition (12) the true model S is the optimizer of the
BSS problem. Furthermore, the parameter 𝜂 quantifies the magnitude of the sub-optimality
gap. For 𝜂 > 0, the above theorem shows that 𝑅D − 𝑅S > 𝑛𝜂𝜏∗(𝑠) for any D ∈ A𝑠, i.e, the
gap between the optimal RSS value 𝑅S and the next smallest RSS is more pronounced for
larger values of 𝜂. However, this is more demanding than just the requirement for 𝑅𝑆 being
the optimal value, and hence the margin condition (12) is more stringent for 𝜂 > 0 compared
to 𝜂 = 0 case.

Next, note that the margin condition (12) involves the identifiability margin 𝜏∗(𝑠) and the
two complexities associated with the sets of residualized signals and spurious projection op-
erators. This condition reveals an interesting interplay between the identifiability margin and
the two complexities. To highlight this phenomenon, it is instructive to consider the case when
the true model S = {1} and X1 is orthogonal to the spurious features {X 𝑗} 𝑗≠1. However, the
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spurious features are allowed to be extremely correlated to each other. As mentioned in the
independent block design example in Section 4.2, in this case, both of the two complexities
are small for higher correlation among the spurious features, whereas 𝜏∗(𝑠) remains roughly
unaffected by the strength of correlation. Thus, the margin condition (12) becomes less strin-
gent with increasing strength of correlation, and the performance of BSS should improve. To
illustrate this phenomenon, we consider a simulation setup with 𝑝 = 2000, 𝑛 = 500, and 𝑠 = 1.
We generate X from independent Gaussian block design mentioned in Section 4.2 with the
cross-correlation 𝑐 = 0, and 𝑟 ∈ [0, 1) being the correlation within the noise variables. Thus,
𝑟 = 0 corresponds to the independent Gaussian design. We set 𝜷 = (0.1, 0, . . . , 0)⊤ ∈ R𝑝,
and the errors {𝜀𝑖}𝑖∈[𝑛] are generated in i.i.d. fashion from N(0, 1). Finally, the response y is
generated according to model (1). Assuming 𝑠 is known, we use ABESS [29] as a fast com-
putational surrogate for BSS. The left panel of Figure 5 shows that the mean model recovery
rate of ABESS (across 20 independent runs) increases as the correlation between the noise
variables increases to 1, which validates the findings in Theorem 1. The right panel of Figure
5 also shows that a similar phenomenon is true even for 𝑠 > 1.
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Fig 5: Model recovery rate of ABESS under independent block design.

On the other hand, as mentioned in Remark 1, under equicorrelated model with S = {1}
and high correlation, ET (1)

∅
remains strictly bounded away from 0 and it dominates EG (1)

∅
.

However, the identifiability margin 𝜏∗(𝑠) becomes very small due to the high correlation
between the true and noise variables. Hence, the margin condition (12) becomes harder to
satisfy with increasing correlation. In the case of independent design, it turns out EG (1)

∅
is

the dominating complexity measure. This is not surprising as under independent design, the
features are more spread out in the feature space compared to correlated design, whereas
the residualized signals are more concentrated towards a single unit direction, making ET (1)

∅
smaller compared to EG (1)

∅
.

The above discussion shows that apart from the quantity 𝜏∗(𝑠), the complexity of residu-
alized signals and the complexity of spurious projection operators also play a decisive role
in the margin condition of the best subset selection problem. Specifically, the set with higher
complexity characterizes the margin condition in Theorem 1.
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We can further represent the condition (12) in terms of the diameter of the sets T (𝑠)
I and

G (𝑠)
I . To see this, recall that ET (𝑠)

I
≤ DT (𝑠)

I
and EG (𝑠)

I
≤ DG (𝑠)

I
for all I ⊂ S. Under the light

of this fact, we have the following corollary:

Corollary 1. Let the conditions in Assumption 1 and Assumption 2 hold. Then there exists
a positive universal constant 𝐶0 such that for any 0 ≤ 𝜂 < 1, whenever the identifiability
margin 𝜏∗(𝑠) satisfies

𝜏∗(𝑠)
𝜎2 ≥

𝐶0

(1 − 𝜂)2

[
max

{
max
I⊂S

D2
T (𝑠)
I
,max
I⊂S

D2
G (𝑠)
I

}
+

√︄
log(𝑒𝑠) ∨ log log(𝑒𝑝)

log(𝑒𝑝)

]
log(𝑒𝑝)

𝑛
,

(13)

we have

{Ŝbest(𝑠)} ⊆
{
Ŝ : |Ŝ | = 𝑠, 𝑅Ŝ ≤ min

D∈A𝑠

𝑅D + 𝑛𝜂𝜏∗(𝑠)
}
= {S},

with probability at least 1 − 𝑂 ({𝑠 ∨ log 𝑝}−1). In particular, we have S = arg minD∈A𝑠
𝑅D

with high probability.

Corollary 1 essentially conveys the same message as Theorem 1, only under a slightly
stronger margin condition (13). However, in some cases, it could be comparatively easier
to give theoretical guarantees on the diameters DT (𝑠)

I
,DG (𝑠)

I
rather than their corresponding

complexity measures ET (𝑠)
I
, EG (𝑠)

I
respectively. In the next section, we will discuss a few

illustrative examples to further elaborate on the effects of two complexities.

4.2. Illustrative examples

In this section, we will discuss a few illustrative examples to highlight the effect complexities
of the two spaces described in Section 3.2 and Section 3.3.

Block design with a single active feature

Consider the model (1) where the rows of X are independently generated from 𝑝-dimensional
multivariate Gaussian distribution with mean-zero and variance-covariance matrix

𝚺 =

©­­­«
1 𝑐1⊤

𝑝−1

𝑐1𝑝−1 (1 − 𝑟)I𝑝−1 + 𝑟1𝑝−11⊤
𝑝−1

ª®®®¬ ,
where 𝑐 ∈ [0, 0.997], 𝑟 ∈ [0, 1). We need to further impose a restriction

𝑐2 < 𝑟 + 1 − 𝑟
𝑝 − 1

to ensure positive definiteness of 𝚺. In this case, we also set the true model S = {1} and the
noise variance 𝜎 = 1. Recall that in this case the sets of residualized signals and spurious
projection operators are denoted by T (1)

∅ and G (1)
∅ respectively. Under this setup, we have

the following lemma:
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Lemma 2. Assume that log 𝑝 = 𝑜(𝑛). Then under the above setup, there exist universal
positive constants 𝐶, 𝐿, 𝑀 such that the followings are true with 𝜀𝑛,𝑝 = 𝐶{(log 𝑝)/𝑛}1/2:

(a) For large enough 𝑛, 𝑝 we have

P

[{
1 + 𝜀𝑛,𝑝 −

(𝑐 − 𝜀𝑛,𝑝)2

1 + 𝜀𝑛,𝑝

}
≥ 𝜏∗(1)

𝛽2
1

≥
{

1 − 𝜀𝑛,𝑝 −
(𝑐 + 𝜀𝑛,𝑝)2

1 − 𝜀𝑛,𝑝

}]
= 1 + 𝑜(1/𝑝).

(b) For large enough 𝑛, 𝑝 we have

P
[
max

{
2𝑐2(1 − 𝑟)

1 − 𝑐2 − 𝐿𝜀𝑛,𝑝, 0
}
≤ d2

T (1)
∅

≤ D2
T (1)
∅

≤ 2𝑐2(1 − 𝑟)
1 − 𝑐2 + 𝐿𝜀𝑛,𝑝

]
= 1 + 𝑜(1/𝑝).

(c) For large enough 𝑛, 𝑝 we have

P
[
max

{
(1 − 𝑟2) − 𝑀𝜀𝑛,𝑝, 0

}
≤ d2

G (1)
∅

≤ D2
G (
∅1)

≤ (1 − 𝑟2) + 𝑀𝜀𝑛,𝑝
]

= 1 + 𝑜(1/𝑝).

From part (b) and (c) of the above lemma, it follows that the complexity ET (1)
∅

≈ 0 when
𝑐 = 0. For any fixed 𝑐 > 0 and 𝑟 ∈ [0, 1), we have

E 2
T (1)
∅

∼ 2𝑐2(1 − 𝑟)
1 − 𝑐2 , and E 2

G (1)
∅

∼ (1 − 𝑟2) for large 𝑛, 𝑝. (14)

A detailed derivation of the result is present in Section S1.5 of the supplementary material.
Left panel of Figure 6 shows the partition of 𝑐-𝑟 plane based on the dominating complexity.
It is worthwhile to note that a high value 𝑟, i.e., a high correlation among the noise variables
results in a smaller value of the complexity terms in (12). However, Lemma 2(a) suggest
that 𝜏∗(1)/𝛽2

1 ∼ (1 − 𝑐2), i.e., higher correlation between true and noise variables shrinks
the margin quantity 𝜏∗(1) towards 0. This suggests that a smaller value of 𝑐 and a higher
value 𝑟 is more favorable to BSS than other possible choices of (𝑟, 𝑐). We now discuss these
phenomena through some selected examples.

Independent design: In this case 𝑐 = 𝑟 = 0. In this case (14) suggest that E 2
G (1)
∅

≈ 1. On the

other hand, we see that E 2
T (1)
∅

≈ 0. Thus, the complexity of spurious projections is dominant

in this case. Also, in this case, 𝜏∗(1) ≈ 𝛽2
1 which suggests that higher signal strength results

in a better performance in terms of model selection.

Independent block design: In this case, we set 𝑐 = 0 and we vary 𝑟 in (0, 1). Note that (14)
tells that E 2

T (1)
∅

≈ 0, and E 2
G (1)
∅

has a decreasing trend with 𝑟 ∈ (0, 1). This suggests that the

independent block design with a high value of 𝑟 is more favorable for BSS to identify the true
model compared to the independent random design model in the previous example. Finally,
noting the fact that 𝜏∗(1) ≈ 𝛽2

1, we can conclude that for high values of 𝑟, the sufficient
condition in Theorem 1 becomes less stringent.
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Fig 6: (left) Partition of 𝑐-𝑟 plane showing dominating regions for the two complexities. The
color gradient indicates the value of ET (1)

∅
− EG (1)

∅
. (right) The plot of two complexities for

varying 𝑟 under equicorrelated design.

Equicorrelated design: Here we set 𝑐 = 𝑟 and vary 𝑟 in the interval [0, 1). Let 𝑟0 be the
unique positive solution to the following equation:

2𝑟2

1 + 𝑟 − (1 − 𝑟2) = 0.

Calculation shows that 𝑟0 ≈ 0.675. Using (14), it follows that for 𝑟 ∈ [0, 𝑟0) the complexity
of spurious projection operators is dominating, i.e., E 2

G (1)
∅
> E 2

T (1)
∅
. In contrast, for 𝑟 ∈ (𝑟0, 1),

we have the complexity of the residualized signals to be dominating, i.e., E 2
T (1)
∅

> E 2
G (1)
∅
.

Right panel of Figure 6 indicates the phase transition between the two complexities. Since
the identifiability margin 𝜏∗(1) roughly behaves like 𝛽2

1 (1−𝑟
2), the margin quantity becomes

very small for a high value of 𝑟. Hence, for model consistency, we need a high value for 𝛽2
1.

Remark 1. In the example of equi-correlated design with S = {1}, the effect of correlation
parameter 𝑟 on the complexities ET (1)

∅
and EG (1)

∅
are complementary to each other. In the case

of the set of residualized signals, increasing correlation among the features increases the
overall complexity of the set T (1)

∅ and vice versa. In contrast, higher correlation decreases
the complexity EG (1)

∅
, thus shrinking the effective size of G (1)

∅ . Thus, in this case, the two
complexities act as two opposing forces in the margin condition (12).

4.3. Necessary condition

One question that arises from the preceding discussion is whether the margin condition in
Theorem 1 is necessary for model consistency or not. Specifically, it is natural to ask whether
the complexities of residualized signals and spurious projections also characterize the nec-
essary margin condition. In this section, we show that a condition very similar to (12) is
necessary for model consistency of BSS, which is also governed by a similar margin quantity
and complexity measures.

For 𝑗0 ∈ S, we define the set C 𝑗0 := {D : S \ D = { 𝑗0}, |D| = 𝑠} ⊂ A𝑠,1. We consider
the maximum leave-one-out identifiability margin for 𝑗0 ∈ S as

𝜏̂(𝑠) := max
𝑗0∈S

max
D∈C 𝑗0

𝜷⊤
S\DΓ(D)𝜷S\D

|S \ D| = max
𝑗0∈S

max
D∈C 𝑗0

Γ(D)𝛽2
𝑗0
. (15)
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Consider the set I0 := S \ { 𝑗0} for a fixed index 𝑗0 ∈ S. We capture the complexity of T (𝑠)
I0

through the following quantity:

E ∗
T (𝑠)
I0

:=
sup𝛿>0

𝛿
2

√︃
logM({𝜸̂I0∪{ 𝑗 }} 𝑗∈S𝑐 , ∥·∥2 , 𝛿)√︃

log |T (𝑠)
I0

|
. (16)

The above display immediately shows that E ∗
TI0

≥ dT (𝑠)
I0

/2.Also, from the property of packing

and covering number, it follows that

M({𝜸̂I0∪{ 𝑗 }} 𝑗∈S𝑐 , ∥·∥2 , 𝛿) ≤ N ({𝜸̂I0∪{ 𝑗 }} 𝑗∈S𝑐 , ∥·∥2 , 𝛿/2).

As N({𝜸̂I0∪{ 𝑗 }} 𝑗∈S𝑐 , ∥·∥2 , 𝛿/2) is a decreasing function over 𝛿 ∈ (0,∞), we have the fol-
lowing inequality:

sup
𝛿>0

𝛿

2

√︃
logN({𝜸̂I0∪{ 𝑗 }} 𝑗∈S𝑐 , ∥·∥2 , 𝛿/2) ≤

∫ ∞

0

√︃
logN({𝜸̂I0∪{ 𝑗 }} 𝑗∈S𝑐 , ∥·∥2 , 𝜀) 𝑑𝜀.

The above inequality further shows that E ∗
T (𝑠)
I0

≤ ET (𝑠)
I0

≤ DT (𝑠)
I0

. Hence, similar to ET (𝑠)
I0

,

the alternative complexity measure E ∗
T (𝑠)
I0

also captures the average separation among the

elements in T (𝑠)
I0

.

Next, we focus on the set G (𝑠)
I0

which is the collection of all the spurious projection op-
erators of the form PD − PI0 for all D ∈ C 𝑗0 . If D = I0 ∪ { 𝑗} for some 𝑗 ∈ S𝑐, then the
corresponding spurious projection operator takes the form

PD − PI0 = û 𝑗 û⊤
𝑗 , (17)

where û 𝑗 denotes the unit vector along the residualized feature vector u 𝑗 := (I𝑛 − PI0)X 𝑗 .

Thus, the above display basically shows that the PD − PI0 is the orthogonal projection oper-
ator onto the linear span generated by the residualized feature u 𝑗 . Similar to (16), we define
the complexity measure of G (𝑠)

I0
as

E ∗
G (𝑠)
I0

:=
sup𝛿>0

𝛿
2

√︃
logM(G (𝑠)

I0
, ∥·∥op , 𝛿)√︃

log |G (𝑠)
I0

|
. (18)

By a similar argument, it also follows that dG (𝑠)
I0

/2 ≤ E ∗
G (𝑠)
I0

≤ DG (𝑠)
I0

. Hence, combining the

above observation with (17), it also follows that E ∗
G (𝑠)
I0

captures the angular separation among

the elusive features {u 𝑗} 𝑗∈S𝑐 . Next, we introduce some technical assumptions that are crucial
for our theoretical analysis of the necessity result.

Assumption 3. The complexities of the G (𝑠)
I0

and T (𝑠)
I0

are not too small, i.e.,

E ∗2
G (𝑠)
I0

> 16{log(𝑒𝑝)}−1, and E ∗2
T (𝑠)
I0

> 16{log(𝑒𝑝)}−1

for all I0 ⊂ S and |I0 | = 𝑠 − 1.
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Assumption 3 combined with the observation (17) essentially tells that the set of elusive
features {û 𝑗} 𝑗∈S𝑐 and the scaled spurious signals {𝜸̂D}D∈C 𝑗0

are not too identical with each
other, as E ∗

G (𝑠)
I0

and E ∗
T (𝑠)
I0

would be typically small otherwise. Thus, Assumption 3 induces

diversity in T (𝑠)
I0

and G (𝑠)
I0

.

Condition 1. There exists a constant 𝛼 ∈ (0, 1) such that E ∗
T (𝑠)
I0

/ET (𝑠)
I0

∈ (𝛼, 1).

The condition essentially tells that the set T (𝑠)
I0

has a somewhat regular geometric shape
in the sense that both the lower and upper complexity are of the same order. This essentially
implies that minimal separation and maximal separation of the set T (𝑠)

I0
are of the same order.

.
Now we present our theorem on the necessary condition for model consistency of BSS.

Theorem 2 (Necessity). Assume 𝜺 ∼ N(0, 𝜎2I𝑛), 𝑝 > 16𝑒3 and 𝑠 < 𝑝/2. Also, let the
Assumption 3 hold and write J = {I ⊂ S : |I | = 𝑠 − 1}. Then the followings are true:

(a) If E ∗
G (𝑠)
I0

∉ (E ∗
T (𝑠)
I0

, ET (𝑠)
I0

) for all I0 ∈ J , then there exists a universal constant 𝐶1 > 0

such that

𝜏̂(𝑠) ≤ 𝐶1 max
{

max
I0∈J

E ∗2
T (𝑠)
I0

, max
I0∈J

E ∗2
G (𝑠)
I0

}
𝜎2 log(𝑒𝑝)

𝑛

implies that

P(Ŝbest(𝑠) ≠ S) ≥ 1
10
.

(b) If there exists I# ∈ J such that E ∗
G (𝑠)
I#

∈ (E ∗
T (𝑠)
I#

, ET (𝑠)
I#

), then under Condition 1, there

exists a constant 𝐶𝛼 depending on 𝛼, such that

𝜏̂(𝑠) ≤ 𝐶𝛼 max
{

max
I0∈J

E ∗2
T (𝑠)
I0

, max
I0∈J

E ∗2
G (𝑠)
I0

}
𝜎2 log(𝑒𝑝)

𝑛

implies that

P(Ŝbest(𝑠) ≠ S) ≥ 1
10
.

The detailed proof can be found in Section S1.4 of the supplementary material. The above
theorem essentially says that if the maximum leave-one-out margin 𝜏̂(𝑠) ≲ 𝜎2(log 𝑝)/𝑛 then
the BSS fails to achieve model consistency with positive probability. However, the interest-
ing part of the above theorem is to understand the effect of the term involving complexity
measures. Similar to Theorem 1, here also we see that the dominating complexity charac-
terizes the necessary condition for model consistency. However, we reiterate a few major
differences between the above theorem and Theorem 1. First, Theorem 1 needs 𝜏∗(𝑠) to be
lower bounded, which is much stronger than the required condition on 𝜏̂(𝑠) in Theorem 2.
Second, Theorem 2 involves the alternative complexity measures E ∗

T (𝑠)
I0

and E ∗
G (𝑠)
I0

, which

are typically smaller than the complexity measures used in Theorem 1. Third, the resulting
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complexity in Theorem 1 involves the maximum over all possible subsets of S, whereas The-
orem 2 involves the maximum only over the subsets of S of size (𝑠 − 1). These three facts
are the main reasons that the requirement in Theorem 2 is weaker compared to the margin
condition (12). Nonetheless, Theorem 2 is still interesting as it shows that the two types of
complexities are indeed important quantities to understand the model selection performance
of BSS.

Theorem 2 can also be stated in terms of the diameter and minimum separability of the
sets T (𝑠)

I0
and G (𝑠)

I0
. Recall that E ∗

T (𝑠)
I0

≳ dT (𝑠)
I0

and E ∗
G (𝑠)
I0

≳ dG (𝑠)
I0

. Hence, it follows that

under the same conditions in Theorem 2, the margin condition

𝜏̂(𝑠) ≳ max
{

max
I0∈J

d2
T (𝑠)
I0

, max
I0∈J

d2
G (𝑠)
I0

}
𝜎2 log(𝑒𝑝)

𝑛

is necessary for model consistency of BSS.

5. Experiments

In this section, we will compare the performance of BSS with that of LASSO, one of the
most popular tools for model selection. In these experiments, we set 𝑝 = 2000, 𝑠 = 10 and
𝑛 = 500. We construct the design matrix X by sampling each row x𝑖 ∼ 𝑁 (0,𝚺) for 𝑖 ∈ [𝑛],
where

𝚺 =


(1 − 𝑟𝑡 )I𝑠 + 𝑟𝑡1𝑠1⊤𝑠 0𝑠×(𝑝−𝑠)

0(𝑝−𝑠)×𝑠 (1 − 𝑟𝑠)I𝑝−𝑠 + 𝑟𝑠1𝑝−𝑠1⊤𝑝−𝑠


and 𝑟𝑡 , 𝑟𝑠 ∈ [0, 1]. We set 𝜷 ∈ R𝑝 so that 𝛽 𝑗 = 0.2 × 1{ 𝑗 ≤ 𝑠} for all 𝑗 ∈ [𝑝]. The responses
{𝑦𝑖}𝑖∈[𝑛] are generated according to model (1) with 𝜀𝑖 ∼ N(0, 1). For the experiments, we
vary 𝑟𝑡 ∈ {0.0, 0.5, 0.9} and 𝑟𝑠 ∈ {0.0, 0.1, . . . , 0.9}.

We use ABESS [28] as a computational surrogate for BSS, and we also provide the knowl-
edge of 𝑠 to the algorithm. For LASSO, we choose the penalty parameter by five-fold cross-
validation and then choose the 𝑠 coordinates with the highest absolute values of the estimated
LASSO coefficient, i.e., we perform hard thresholding (HT) operation on the LASSO esti-
mator. In Figure 7, we plot the exact recovery rates of BSS and LASSO + HT for varying
choices of 𝑟𝑡 and 𝑟𝑠.

In all the cases in Figure 7, we see that the performance of BSS improves as 𝑟𝑠 increases to
1. This is in fact consistent with the theoretical results in Theorem 1 as the overall complexity
of the spurious signals is likely smaller for high values of 𝑟𝑠, and thus the margin condition
is easier to satisfy. In this case, complexity of residualized signals are somewhat unaffected
as the cross-correlation between true and spurious signals is 0. However, the performance
of LASSO+ HT does not seem to exhibit any particular behavior across different correlation
structure. For 𝑟𝑡 = 0, performance of LASSO + HT, although comparatively worse than BSS,
is similar in terms of the trend. However, for 𝑟𝑡 = 0.5, LASSO + HT is consistently better
and somewhat stable. For 𝑟𝑡 = 0.9, LASSO + HT is generally better than BSS and exact
recovery rate increases for 𝑟𝑠 ≥ 0.4. However, its performance is much worse compared to
the 𝑟𝑡 = 0.5 case. These observations indicate that similar complexity theory for LASSO is
in fact potentially challenging and evidently requires more future research.
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(a) 𝑟𝑡 = 0.0 (b) 𝑟𝑡 = 0.5 (c) 𝑟𝑡 = 0.9

Fig 7: Exact recovery rate of BSS and LASSO + HT for varying choices of 𝑟𝑡 and 𝑟𝑠.

6. Conclusion

In this paper, we establish the sufficient and (nearly) necessary conditions for BSS to achieve
model consistency in a high-dimensional linear regression setup. Apart from the identifiabil-
ity margin, we show that the geometric complexity of the residualized signals and spurious
projections based on the entropy number and packing numbers also play a crucial role in
characterizing the margin condition for model consistency of BSS. In particular, we establish
that the dominating complexity among the two plays a decisive role in the margin condi-
tion. We also highlight the variation in these complexity measures under different correlation
strengths between the features through some simple illustrative examples. Moreover, in the
supplementary material, we extend the results in Theorem 1 to the high-dimensional sparse
generalized linear models (Section S2). However, it is an open problem to find the analogs of
the two complexities in more general settings, e.g., the low-rank matrix regression problem
or multi-tasking regression problem.

Supplementary Material

The supplementary material contains the extension of Theorem 1 to the generalized linear
model and the proofs of the main results.
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S1. Proof of main results under linear model

S1.1. Proof of Lemma 1

First note that 𝜷⊤
S\DΓ(D)𝜷S\D = 0 ⇔ (I𝑛 − PD)XS\D𝜷S\D = 0. This shows that

XS\D𝜷S\D ∈ col(XD).

Thus, we have XS𝜷S = XS\D𝜷S\D + XS∩D𝜷S∩D ∈ col(XD). This finishes the proof.

S1.2. Proof of Proposition 1

In this section, we will show that the SRC condition (5) is strictly stronger than the condition
in Assumption 1. Recall that the features are normalized, i.e.,



X 𝑗




2 =

√
𝑛 for all 𝑗 ∈ [𝑝].

Now, we will prove the proposition.
1
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Proof. SRC implies Assumption 1:

For a set I ⊂ S, define AI := {D ∈ A𝑠 : S∩D = I}. Now recall that EG (𝑠)
I

≳ dG (𝑠)
I

for large

𝑝. Thus, it suffices to show that dG (𝑠)
I

is large for all choices of I ⊂ S. Let D1,D2 ∈ AI and

write M = D1∩D2. Let𝑚 = |M| and consider the two subspaces 𝐿1 = col(XD1)∩col(XM)⊥
and 𝐿2 = col(XD2) ∩ col(XM)⊥. Let {𝝃 𝑗}𝑚𝑗=1 be an orthonormal basis of M. Let {𝜶 𝑗}𝑠−𝑚𝑗=1
be an orthonormal basis of 𝐿1 and {𝜹 𝑗}𝑠−𝑚𝑗=1 be the orthonormal basis of 𝐿2 such that

𝜃 𝑗 := ∠(𝜶 𝑗 , 𝜹 𝑗), 𝑗 ∈ [𝑘],

are the principal angles between 𝐿1 and 𝐿2 in decreasing order. Now, we construct the matrix
Z in the following way:

Z =
[
XD1\D2 | XM | XD2\D1

]
.

There exists matrix u, v ∈ R𝑠−𝑚 and w1,w2 ∈ R𝑚 such that

𝜶1 = XD1\D2u + XMw1 and 𝜹1 = XD2\D1v + XMw2.

As 𝜶1 ⊥ col(XM), we have

1 = 𝜶⊤
1 𝜶1 = 𝜶⊤

1 XD1\D2u ≤ √
𝑛𝜅+ ∥u∥2 ⇒ ∥u∥2

2 ≥ 1/(𝑛𝜅+).

By a similar argument, we have ∥v∥2
2 ≥ 1/(𝑛𝜅+). Define the vectors 𝜼 := (u⊤, (w1 −

w2)⊤, v⊤)⊤. Hence, ∥𝜼∥2
2 ≥ ∥u∥2

2 + ∥v∥2
2 ≥ 2/(𝑛𝜅+). Due to SRC condition (4.7), we have

∥Z𝜼∥2
2 ≥ 𝑛 ∥𝜼∥2

2 𝜅− ≥ 2(𝜅−/𝜅+). (S1.1)

∥Z𝜼∥2
2 = ∥𝜶1 − 𝜹1∥2

2

= 2(1 −
√︃

1 − sin2 𝜃1)
≤ 2 sin 𝜃1,

(S1.2)

where the last inequality follows from the fact that 1 − 𝑥 ≤
√

1 − 𝑥2 for all 𝑥 ∈ [0, 1].
Combining (S1.1) and (S1.2), we have

PD1 − PD2




op ≥ 𝜅−

𝜅+
.

The above display shows that dG (𝑠)
I

≳ (𝜅−/𝜅+) ≫ {log(𝑒𝑝)}−1/2 for all I ⊂ S. Hence, the
claim follows.

Assumption 1 does not imply SRC:

In this case, assume S = {1} and e 𝑗 be the 𝑗 th canonical basis in R𝑝. Under this setup,
Assumption 1 becomes

EG (1)
∅
> {log(𝑒𝑝)}−1/2. (S1.3)
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Now assume that

2
log(𝑒𝑝) ≤



X 𝑗 − X 𝑗′


2

2

𝑛
≤ 3

log(𝑒𝑝) , for all 𝑗 , 𝑗 ′ ∈ [𝑝] .

Then, for large 𝑝, the condition in (S1.3) holds but SRC fails with the choice of v = (e 𝑗 −
e 𝑗′)/

√
2. □

S1.3. Proof of Theorem 1

Recall that 𝝁 = XS𝜷S , 𝜸D = 𝑛−1/2(I𝑛 − PD)𝝁 and

Γ(D) = 𝚺S\D,S\D − 𝚺S\D,D𝚺
−1
D,D𝚺D,S\D . (S1.4)

Note that for D ∈ A𝑠,𝑘 and 0 ≤ 𝜂 < 1 we have the following:

𝑛−1(𝑅D − 𝑅S) = 𝑛−1{y⊤(I𝑛 − PD)y − y⊤(I𝑛 − PS)y}
= 𝑛−1 {

(XS\D𝜷S\D + 𝜺)⊤(I𝑛 − PD) (XS\D𝜷S\D + 𝜺) − 𝜺⊤(I𝑛 − PS)𝜺
}

= 𝜂𝜷⊤
S\DΓ(D)𝜷S\D

+ 2−1(1 − 𝜂)𝜷⊤
S\DΓ(D)𝜷S\D − 2

{
𝑛−1(I𝑛 − PD)XS\D𝜷S\D

}⊤ (−𝜺)
+ 2−1(1 − 𝜂)𝜷⊤

S\DΓ(D)𝜷S\D − 𝑛−1𝜺⊤(PD − PS)𝜺.

(S1.5)

Also, let 𝜺̃ := (−𝜺). Now, E be an event under which the following happens:{
Ŝ : |Ŝ | = 𝑠, min

S∈A𝑠

𝑅Ŝ ≤ 𝑅S + 𝑛𝜂𝜏∗(𝑠)
}
= {S}.

Define the set AI := {D ∈ A𝑠 : S ∩ D = I}. We also set |I | = 𝑠 − 𝑘 for 𝑘 ∈ [𝑠]. Then we
have AI ⊂ A𝑠,𝑘 . By union bound we have the following:

P(E𝑐) ≤
𝑠∑︁
𝑘=1

∑︁
I⊂S: | I |=𝑠−𝑘

P
{

min
D∈AI

𝑛−1(𝑅D − 𝑅S) < 𝜂𝜏∗(𝑠)
}
. (S1.6)

Thus, under the light of equation (S1.5) it is sufficient to show the following with high
probability:

max
D∈AI

𝜸̂⊤
D 𝜺̃ <

𝑛1/2(1 − 𝜂)
4

min
D∈AI



𝜸D




2 , (S1.7)

max
D∈AI

𝑛−1 {
𝜺⊤(PD − PS)𝜺

}
<

1 − 𝜂
2

min
D∈AI



𝜸D


2

2 , (S1.8)

for every 𝑘 ∈ [𝑠]. We will analyze the above events separately. We recall the two important
sets below:

T (𝑠)
I := {𝜸̂D : D ∈ A𝑠,D ∩ S = I}, and G (𝑠)

I := {PD − PI : D ∈ A𝑠,D ∩ S = I}.

To reduce notational cluttering, we will drop the 𝑠 in the superscript, and use TI and GI
to denote the above sets.



4 Roy et al.

Linear term: Let 𝑓D := 𝜸̂⊤
D 𝜺̃ and ∥ 𝑓 ∥ := maxD∈AI 𝑓D . Since DTI ≤

√
2, Theorem 5.36

of [12] tells that there exists a constant 𝐴1 > 0 such that

P
{
∥ 𝑓 ∥ ≥ 𝐴1𝜎(ETI

√︁
𝑘 log(𝑒𝑝) + 𝑢)

}
≤ 3 exp

(
−𝑢

2

2

)
, (S1.9)

for all 𝑢 > 0. Setting 𝑢 = 2𝑐T
√︁
𝑘 log(𝑒𝑝) in Equation (S1.9) we get

P(∥ 𝑓 ∥ ≥ 𝐴1𝜎ETI
√︁
𝑘 log(𝑒𝑝) + 2𝐴1𝑐T𝜎

√︁
𝑘 log(𝑒𝑝)) ≤ 3(𝑒𝑝)−2𝑐2

T 𝑘 . (S1.10)

Writing 𝐴1 as 𝑐1, we get

P
{

max
D∈AI

𝜸̂⊤
D 𝜺̃ ≥ 𝑐1(ETI + 2𝑐T)𝜎

√︁
𝑘 log(𝑒𝑝)

}
≤ 3(𝑒𝑝)−2𝑐2

T 𝑘 . (S1.11)

Quadratic term: Here we study the quadratic supremum process in Equation (S1.8). First,
define the two projection operators PD|I = PD − PI and PS|I := PS − PI . For any number
𝑐G ∈ ({log(𝑒𝑝)}−1, 1), by union bound we have,

P
{
𝑛−1 max

D∈AI
𝜺⊤(PD − PS)𝜺 > 𝜎2𝑢 + 𝜎2𝑐G𝑢0

}
P

{
𝑛−1 max

D∈AI
𝜺⊤(PD|I − PS|I)𝜺 > 𝜎2𝑢 + 𝜎2𝑐G𝑢0

}
≤ P

{
𝑛−1(𝑘𝜎2 − 𝜺⊤PS|I𝜺) > 𝜎2𝑢0𝑐G

}
+ P

{
𝑛−1 max

D∈AI
(𝜺⊤PD|I𝜺 − 𝑘𝜎2) > 𝜎2𝑢

}
.

(S1.12)
Also, note that E(𝜺⊤PD|I𝜺) ≤ 𝑘𝜎2 and recall that EGI > {log(𝑒𝑝)}−1/2 for all I ⊂ S. This
shows that

√
𝑘 ≤ EGI

√︁
𝑘 log(𝑒𝑝). Furthermore, by the properties of projection matrices,

we have 𝑑op(GI) = 1 and 𝑑𝐹 (GI) =
√
𝑘 (defined in Section S4). Also, it follows that the

quantities 𝑀,𝑉 and𝑈 (defined in Theorem S4.2) have the following properties:

𝑀 ≤ 2E 2
GI
𝑘 log(𝑒𝑝), 𝑉 ≤ 2

√︁
𝑘 log(𝑒𝑝), and 𝑈 = 1.

Using these facts and Theorem S4.2, we get that there exists a universal positive constants
𝐴2, 𝐴3, such that for 𝑡 = 𝐴3𝑐G𝑘 log(𝑒𝑝), we get

P
{

max
D∈AI

𝜺⊤PD|I𝜺 ≥ 𝐴2𝜎
2(E 2

GI
+ 𝑐G)𝑘 log(𝑒𝑝)

}
≤ (𝑒𝑝)−2𝑐2

G𝑘 . (S1.13)

Due to Theorem 1.1 of [9], setting 𝑢0 = 𝑘 log(𝑒𝑝)/(2𝑛) we can show that there exists an
absolute constant 𝐴4 > 0 such that

P
{
𝑛−1

��𝜺⊤PS|I𝜺 − 𝑘𝜎2
�� > 𝑐G𝜎2𝑘 log(𝑒𝑝)

2𝑛

}
≤ 2 exp

{
−𝐴4𝑐G𝑘 log(𝑒𝑝)

}
= 2(𝑒𝑝)−𝐴4𝑐G𝑘 ,

(S1.14)

Combining Equation (S1.12), (S1.13) and Equation (S1.14) yields

P
{
𝑛−1 max

D∈AI
𝜺⊤(PD − PS)𝜺 > 𝑐2(E 2

GI
+ 𝑐G)𝜎2 𝑘 log(𝑒𝑝)

𝑛

}
≤ (𝑒𝑝)−2𝑐2

G𝑘 + 2(𝑒𝑝)−𝐴4𝑐G𝑘 ,

(S1.15)
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where 𝑐2 is a universal constant. Now, if we have

𝜏∗(𝑠) ≜ min
D≠S

𝜷⊤
S\DΓ(D)𝜷S\D

|S \ D|

≥ 64
(1 − 𝜂)2 max

{
𝑐1 max

I⊂S
(ETI + 2𝑐T)2, 𝑐2 max

I⊂S
(E 2

GI
+ 𝑐G)

}
𝜎2 log(𝑒𝑝)

𝑛
,

(S1.16)

it will ensure that (S1.7) and (S1.8) hold with high probability. Finally, using (S1.11) and
(S1.15), we have

P(E𝑐)

≤
𝑠∑︁
𝑘=1

∑︁
I⊂S: | I |=𝑠−𝑘

P
{

min
D∈AI

𝑛−1(𝑅D − 𝑅S) < 𝜂𝜏∗(𝑠)
}

≲
𝑠∑︁
𝑘=1

∑︁
I⊂S: | I |=𝑠−𝑘

{
(𝑒𝑝)−2𝑐2

T 𝑘 + (𝑒𝑝)−2𝑐2
G𝑘 + (𝑒𝑝)−𝐴4𝑐G𝑘

}
≲

𝑠∑︁
𝑘=1

(
𝑠

𝑘

) {
(𝑒𝑝)−2𝑐2

T 𝑘 + (𝑒𝑝)−2𝑐2
G𝑘 + (𝑒𝑝)−𝐴4𝑐G𝑘

}
≲

𝑠∑︁
𝑘=1

(𝑒𝑠)𝑘
{
(𝑒𝑝)−2𝑐2

T 𝑘 + (𝑒𝑝)−2𝑐2
G𝑘 + (𝑒𝑝)−𝐴4𝑐G𝑘

}
≲

𝑠∑︁
𝑘=1

exp
[
−𝑘{2𝑐2

T log(𝑒𝑝) − log(𝑒𝑠)}
]
+ exp[−𝑘{2𝑐2

G log(𝑒𝑝) − log(𝑒𝑠)}]

+ exp
[
−𝑘{𝐴4𝑐G log(𝑒𝑝) − log(𝑒𝑠)}

]
.

Now, setting 𝑐T =
√︁
{log(𝑒𝑠) ∨ log log(𝑒𝑝)}/log(𝑒𝑝) and 𝑐G = (2 ∨ 𝐴−1

4 )𝑐T in the above
display, and using the identity (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) we can conclude that the following is
sufficient to hold (S1.16):

𝜏∗(𝑠) ≥
64

(1 − 𝜂)2 max{8𝑐1, 𝑐2(2 ∨ 𝐴−1
4 )}

[
max

{
max
I⊂S

E 2
TI ,max

I⊂S
E 2
GI

}
+ 𝑐T

]
log(𝑒𝑝)

𝑛
.

Now the result follows by renaming the absolute constant 64 max{8𝑐1, 𝑐2(2 ∨ 𝐴−1
4 )} as 𝐶0.

S1.4. Proof of Theorem 2

Proof. First, we will show that


𝜸D




2 has to be well bounded away from 0 for every D ∈

∪ 𝑗0∈SC 𝑗0 . Again, to reduce notational cluttering, we drop the 𝑠 in the superscript and use TI0

and GI0 to denote the sets of scaled residualized signals and spurious projections respectively.

Ruling out the case minD∈∪ 𝑗0∈SC 𝑗0



𝜸D




2 ≤ 𝜎/
√
𝑛 :

Let minD∈∪ 𝑗0∈SC 𝑗0



𝜸D




2 ≤ 𝜎/
√
𝑛, i.e, there exists D ∈ C 𝑗0 for some 𝑗0 ∈ S such that

𝜸D




2 ≤ 𝜎/

√
𝑛.
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Recall that y ∼ N(XS𝜷
∗
S , 𝜎

2I𝑛) and define w := y − XS𝜷
∗
S . Hence, we have

P (𝑅D − 𝑅S < 0) = P
(

y − PDXS𝜷

∗
S


2

2 <


y − XS𝜷

∗
S


2

2

)
= P

(


w + 𝑛1/2𝜸D




2

2
< ∥w∥2

2

)
≥ 1

2
𝑒−0.5
√

2𝜋
> 0.1 (By Lemma S5.2),

i.e., P
(
S ∉ arg minD: |D |=𝑠𝑅D

)
is strictly bounded away from 0. Hence, BSS can not recover

the true model. Hence, we rule out this case.

Under the case minD∈∪ 𝑗0∈SC 𝑗0



𝜸D




2 > 𝜎/
√
𝑛 :

We fix a 𝑗0 ∈ S.

First decomposition:

min
D∈C 𝑗0

𝑛−1(𝑅D − 𝑅S) ≤ min
D∈C 𝑗0

{𝜷⊤
S\DΓ(D)𝜷S\D − 2𝑛−1/2𝜸⊤

D 𝜺̃ − 𝑛−1𝜺⊤(PD − PS)𝜺}

≤ min
D∈C 𝑗0

[

𝜸D




2

{

𝜸D




2 − 2𝑛−1/2𝜸̂⊤
D 𝜺̃

}
− 𝑛−1𝜺⊤(PD − PI0)𝜺

]
+ 𝑛−1𝜺⊤(PS − PI0)𝜺

≤ min
D∈C 𝑗0

[

𝜸D




2

{

𝜸D




2 − 2𝑛−1/2𝜸̂⊤
D 𝜺̃

}]
+ 𝑛−1𝜺⊤(PS − PI0)𝜺

(S1.17)
We start with the quadratic term in the right hand side of the above display. First note that

𝜺⊤(PS −PI0)𝜺/𝜎2 = (û⊤
𝑗0
𝜺)2/𝜎2 follows a chi-squared distribution with degrees of freedom

1. Hence, Markov’s inequality shows that

P
{
𝑛−1𝜺⊤(PS − PI0)𝜺 >

2𝜎2

𝑛

}
≤ 1

2
. (S1.18)

Recall that 

𝜸D




2 ≥ 𝜎
√
𝑛
, for all D ∈ C 𝑗0 .

Next, by Sudakov’s lower bound, we have

E

(
max
D∈C 𝑗0

𝜸̂⊤
D 𝜺̃

)
≥ 𝜎E ∗

TI0

√︁
log(𝑝 − 𝑠) ≥

E ∗TI0√
2

√︁
log(𝑒𝑝).

The last inequality uses the fact that 𝑠 < 𝑝/2 and 𝑝 > 16𝑒3. Again, an application of Borell-
TIS inequality yields

P

{
max
D∈C 𝑗0

𝜸̂⊤
D 𝜺̃ ≥ 𝜎E ∗

TI0

√︁
log(𝑒𝑝) − 𝑐T𝜎

√︁
log(𝑒𝑝)

}
≥ 1 − (𝑒𝑝)−𝑐2

T/2, (S1.19)
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for any 𝑐T > 0. Choosing 𝑐T = E ∗TI0
(2−1/2 − 2−1), and using the fact that E ∗2

TI0
≥

16{log(𝑒𝑝)}−1, we get

P

{
max
D∈C 𝑗0

𝜸̂⊤
D 𝜺̃ ≥ 𝜎E ∗

TI0

√︁
log(𝑒𝑝)/2

}
≥ 1 − 𝑒−1. (S1.20)

Let us define 𝜏̂𝑗0 = maxD∈C 𝑗0
Δ(D)𝛽2

𝑗0
., and by construction we have 𝜏̂(𝑠) = max 𝑗0∈S 𝜏̂𝑗0 . If

𝜏̂
1/2
𝑗0

≤ 𝜎E ∗TI0

√︁
log(𝑒𝑝)/(2𝑛1/2), then we have

min
D∈C 𝑗0

[

𝜸D




2

{

𝜸D




2 − 2𝑛−1/2𝜸̂⊤
D 𝜺̃

}]
≤ −

𝜎2E ∗TI0

√︁
log(𝑒𝑝)

2𝑛

Thus, using (S1.18) and the above display we have

P(S ∉ arg minD: |D |=𝑠𝑅D) = P
(

min
D∈C 𝑗0

𝑛−1(𝑅D − 𝑅S) < 0
)
≥ 1 − 1

𝑒
− 1

2
≥ 1

10
,

as we have E ∗TI0

√︁
log(𝑒𝑝) > 4 (Assumption 2). Thus the necessary condition turns out to be

𝜏̂𝑗0 ≥
E ∗2

TI0

4
𝜎2 log(𝑒𝑝)

𝑛
. (S1.21)

Second decomposition:

We again start with the difference of RSS between a candidate model D ∈ A𝑠,𝑘 and the true
model S:

𝑛−1(𝑅D − 𝑅S)
= 𝑛−1{y⊤(I𝑛 − PD)y − y⊤(I𝑛 − PS)y}
= 𝑛−1 {

(XS\D𝜷S\D + 𝜺)⊤(I𝑛 − PD) (XS\D𝜷S\D + 𝜺) − 𝜺⊤(I𝑛 − PS)𝜺
}

= 𝜷⊤
S\DΓ(D)𝜷S\D − 2

{
𝑛−1(I𝑛 − PD)XS\D𝜷S\D

}⊤
𝜺̃ − 𝑛−1𝜺⊤(PD − PS)𝜺.

(S1.22)

First of all, in order achieve model consistency, the following is necessary for any 𝑘 ∈ [𝑠]:

min
D∈C 𝑗0

𝑛−1(𝑅D − 𝑅S) > 0. (S1.23)

Recall that 𝜏̂𝑗0 = maxD∈C 𝑗0
Γ(D)𝛽2

𝑗0
. Next we note that

min
D∈D 𝑗0

𝑛−1(𝑅D − 𝑅S) ≤ min
D∈C 𝑗0

{𝜷⊤
S\DΓ(D)𝜷S\D − 2𝑛−1/2𝜸⊤

D 𝜺̃ − 𝑛−1𝜺⊤(PD − PS)𝜺}

≤ 𝜏̂𝑗0 + 2𝑛−1/2 max
D∈C 𝑗0

��𝜸⊤
D 𝜺̃

�� − 𝑛−1 max
D∈C 𝑗0

𝜺⊤(PD − PS)𝜺

≤ 𝜏̂𝑗0 + 2(𝜏̂𝑗0/𝑛)1/2 max
D∈C 𝑗0

��𝜸̂⊤
D 𝜺̃

�� − 𝑛−1 max
D∈C 𝑗0

𝜺⊤(PD − PS)𝜺.

(S1.24)
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Similar to the proof of Theorem 1, we define 𝑓D := 𝜸̂⊤
D 𝜺̃ and ∥ 𝑓 ∥ := maxD∈C 𝑗0

𝑓D .
Hence, we have

max
D∈C 𝑗0

��𝜸̂⊤
D 𝜺̃

�� = max
D∈C 𝑗0

𝑓D ∨ (− 𝑓D) (S1.25)

By Borell-TIS inequality [2, Theorem 2.1.1], we have

P {∥ 𝑓 ∥ − E(∥ 𝑓 ∥) ≥ 𝜎𝑢} ≤ exp
(
−𝑢

2

2

)
,

for all 𝑢 > 0. Setting 𝑢 = 𝑐T
√︁

log(𝑒𝑝) we get

P
{
∥ 𝑓 ∥ − E(∥ 𝑓 ∥) ≥ 𝑐T𝜎

√︁
log(𝑒𝑝)

}
≤ (𝑒𝑝)−𝑐2

T/2.

E(∥ 𝑓 ∥) ≤ 4
√

2ETI0
𝜎
√︁

log(𝑒𝑝),

which ultimately yields

P
{
∥ 𝑓 ∥ ≥ (4

√
2ETI0

+ 𝑐T)𝜎
√︁

log(𝑒𝑝)
}
≤ (𝑒𝑝)−𝑐2

T/2.

Finally. using (S1.25) we have the following for any 𝑐T > 0:

P

{
max
D∈C 𝑗0

���𝜸̂⊤
D𝐸

��� ≥ (4
√

2ETI0
+ 𝑐T)𝜎

√︁
log(𝑒𝑝)

}
≤ 2(𝑒𝑝)−𝑐2

T/2. (S1.26)

Next, we will lower bound the quadratic term in Equation (S1.24) with high probability.
similar to the proof of Theorem 1, we consider the decomposition

max
D∈C 𝑗0

𝑛−1𝜺⊤(PD − PS)𝜺 = max
𝑗∉S

𝑛−1𝜺⊤(û 𝑗 û⊤
𝑗 − û 𝑗0 û⊤

𝑗0
)𝜺.

For the maximal process we will use Theorem 2.10 of [1]. We begin with the definition of
concentration property.

Definition 1 ([1]). Let 𝑍 be random vector in R𝑛. We say that 𝑍 has concentration property
with constant 𝐾 if for every 1-Lipschitz function 𝜑 : R𝑛 → R, we have E |𝜑(𝑍) | < ∞ and for
every 𝑢 > 0,

P ( |𝜑(𝑍) − E(𝜑(𝑍)) | ≥ 𝑢) ≤ 2 exp(−𝑢2/𝐾2).

Note that the Gaussian vector 𝜺/𝜎 enjoys concentration property with 𝐾 =
√

2 [4, The-
orem 5.6]. Let 𝑄1 := max 𝑗∉S 𝜺⊤(û 𝑗 û⊤

𝑗
− û 𝑗0 û⊤

𝑗0
)𝜺. By Theorem 2.10 of [1] we conclude

that

P
{
𝑛−1 |𝑄1 − E(𝑄1) | ≥ 𝑡𝜎2} ≤ 2 exp

{
−1

2
min

(
𝑛2𝑡2

16
,
𝑛𝑡

2

)}
.

Setting 𝑡 = 2𝛿 log(𝑒𝑝)/𝑛 in the above equation we get

P
{
𝑛−1 |𝑄1 − E(𝑄1) | ≥ 2𝛿𝜎2 log(𝑒𝑝)/𝑛

}
≤ 2(𝑒𝑝)− 𝛿

2 . (S1.27)
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Next, we will lower bound the expected value of 𝑄1. First, note the following:

E(𝑄1) = E
{
max
𝑗∉S

𝜺⊤(û 𝑗 û⊤
𝑗 − û 𝑗0 û⊤

𝑗0
)𝜺

}
= E

{
max
𝑗∉S

(û⊤
𝑗 𝜺)2

}
− 𝜎2

≥
{
E max
𝑗∈S𝑐

(û⊤
𝑗 𝜺) ∨ (−û⊤

𝑗 𝜺)
}2

− 𝜎2

(S1.28)

Define the set

Usym := {û 𝑗 : 𝑗 ∈ S𝑐} ∪ {−û 𝑗 : 𝑗 ∈ S𝑐}.

We denote by ũ 𝑗 a generic element of Usym. Thus for any two elements ũ 𝑗 , ũ𝑘 , we have

ũ 𝑗 − ũ𝑘




2 ≥ min
{

û 𝑗 − û𝑘




2 ,



û 𝑗 + û𝑘




2

}
≥




û 𝑗 û⊤
𝑗 − û𝑘 û⊤

𝑘





op
.

By Sudakov’s lower bound, we have

E max
𝑗∈S𝑐

(û⊤
𝑗 𝜺) ∨ (−û⊤

𝑗 𝜺) ≥ sup
𝛿>0

𝜎𝛿

2

√︃
logM(Usym, ∥·∥2 , 𝛿)

≥ sup
𝛿>0

𝜎𝛿

2

√︃
logM({û 𝑗 û⊤

𝑗
} 𝑗∈S𝑐 , ∥·∥op , 𝛿)

≥ 𝜎
E ∗GI0√︁

4/3

√︁
log(𝑒𝑝).

The last inequality uses the fact that 𝑝 > 16𝑒3. Finally, (S1.28) yields

E(𝑄1) ≥
𝜎2E ∗2

GI0
log(𝑒𝑝)

4/3
− 𝜎2.

Thus, combined with (S1.27) we finally get

P
[
𝑄1 ≥ (3/4)𝜎2E ∗2

GI0
log(𝑒𝑝) − 𝜎2 − 2𝛿𝜎2 log(𝑒𝑝)

]
≥ 1 − 2(𝑒𝑝)−𝛿/2.

Setting 𝛿 =
E ∗2

GI0
8 , we get

P

𝑄1 ≥
𝜎2E ∗2

GI0

2
log(𝑒𝑝) − 𝜎2

 ≥ 1 − 2(𝑒𝑝)−
E ∗2

GI0
16 .

Thus, finally combining the above with (S1.24) and (S1.26) we get

min
D∈C 𝑗0

𝑛−1(𝑅D − 𝑅S)

≤ 𝜏̂𝑗0 + 2𝜏̂1/2
𝑗0

(4
√

2ETI0
+ 𝑐T)𝜎

√︂
log(𝑒𝑝)

𝑛
− 𝑛−1 ©­«

𝜎2E ∗2
GI0

2
log(𝑒𝑝) − 𝜎2ª®¬

(S1.29)



10 Roy et al.

with probability at least 1 − 2(𝑒𝑝)−𝑐2
T/2 − 2(𝑒𝑝)−

E ∗2
GI0

16 . Thus, for large 𝑝 we have

min
D∈C 𝑗0

𝑛−1(𝑅D − 𝑅D)

≤ 𝜏̂𝑗0 + 2𝜏̂1/2
𝑗0

(4
√

2ETI0
+ 𝑐T)𝜎

√︂
log(𝑒𝑝)

𝑛
−
𝜎2E ∗2

GI0

4
log(𝑒𝑝)

𝑛

with probability at least 1 − 2(𝑒𝑝)𝑐2
T/2 − 2(𝑒𝑝)−

E ∗2
GI0

16 . Now choose 𝑐T = 4/
√︁

log(𝑒𝑝) and
use Assumption 2 to get

min
D∈C 𝑗0

𝑛−1(𝑅D − 𝑅D)

≤ 𝜏̂𝑗0 + 2𝜏̂1/2
𝑗0

(
4
√

2ETI0
+ 4√︁

log(𝑒𝑝)

)
𝜎

√︂
log(𝑒𝑝)

𝑛
−
𝜎2E ∗2

GI0

4
log(𝑒𝑝)

𝑛

≤ 𝜏̂𝑗0 + 8
√

2𝜏̂1/2
𝑗0

(
ETI0

+ 1√︁
2 log(𝑒𝑝)

)
𝜎

√︂
log(𝑒𝑝)

𝑛
−
𝜎2E ∗2

GI0

4
log(𝑒𝑝)

𝑛

≤ 𝜏̂𝑗0 + 10
√

2𝜏̂1/2
𝑗0

ETI0
𝜎

√︂
log(𝑒𝑝)

𝑛
−
𝜎2E ∗2

GI0

4
log(𝑒𝑝)

𝑛

with probability at least 1/5.
Thus, in light of (S1.23), the following is necessary:

𝜏̂𝑗0 ≥

√︃

200E 2
TI0

+ E ∗2
GI0

− 10
√

2ETI0

2


2

𝜎2 log(𝑒𝑝)
𝑛

. (S1.30)

Case 1: If ETI0
≤ E ∗GI0

, then the right hand side of (S1.30) is lower bounded by

E ∗2
GI0

(
√

201 + 10
√

2)2

𝜎2 log(𝑒𝑝)
𝑛

.

Thus (S1.30) yields the necessary condition

𝜏̂𝑗0 ≥
E ∗2

GI0

(
√

201 + 10
√

2)2

𝜎2 log(𝑒𝑝)
𝑛

.

Combining this with (S1.21) we have the necessary condition to be

𝜏̂𝑗0 ≥ 𝐶̃1 max{E ∗2
TI0
, E ∗2

GI0
}𝜎

2 log(𝑒𝑝)
𝑛

,

for a universal constant 𝐶̃1.
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Case 2: If E ∗GI0
≤ E ∗TI0

, then using the inequality
√

1 + 𝑡 −
√
𝑡 < 1 for all 𝑡 > 0, we can

conclude that the right hand side of (S1.30) is always smaller than

E ∗2
GI0

4
𝜎2 log(𝑒𝑝)

𝑛
,

which is further smaller than

E ∗2
TI0

4
𝜎2 log(𝑒𝑝)

𝑛
.

Thus, combining this with (S1.21) we have the necessary condition to be

𝜏̂𝑗0 ≥
E ∗2

TI0

4
𝜎2 log(𝑒𝑝)

𝑛
= max{E ∗2

TI0
, E ∗2

GI0
}𝜎

2 log(𝑒𝑝)
4𝑛

.

Combining all these cases we finally have the following necessary condition for consistent
model selection with 𝐶1, 𝐶2 > 0 being some absolute constants:

𝜏̂𝑗0 ≥ 𝐶1 max{E ∗2
TI0
, E ∗2

GI0
}𝜎

2 log(𝑒𝑝)
𝑛

, if E ∗
GI0

∉ (E ∗
TI0
, ETI0

), (S1.31)

or,

𝜏̂𝑗0 ≥ 𝐶2 max

{
E ∗2

TI0
,

(√︂
200E 2

TI0
+ E ∗2

GI0
− 10

√
2ETI0

)2
}
𝜎2 log(𝑒𝑝)

𝑛
,

if E ∗GI0
∈ (E ∗TI0

, ETI0
).

If there exists I0 ∈ J such that E ∗TI0
/ETI0

∈ (𝛼, 1), then in the preceding case it follows
that the last display can be simplified in the following form:

𝜏̂𝑗0 ≥ 𝐶2 max
{
E ∗2

TI0
, 𝐴𝛼E

∗2
GI0

} 𝜎2 log(𝑒𝑝)
𝑛

, if E ∗
GI0

∈ (E ∗
TI0
, ETI0

),

where

𝐴𝛼 =

(√︂
1 + 200

𝛼2 + 10
√

2
𝛼

)−1

.

Thus, using the fact that 𝐴𝛼 < 1 and combining the previous three displays we have the
necessary condition to be

𝜏̂𝑗0 ≥ 𝐶2𝐴𝛼 max
{
E ∗2

TI0
, E ∗2

GI0

} 𝜎2 log(𝑒𝑝)
𝑛

. (S1.32)

Since, (S1.31) and (S1.32) hold for all choices of 𝑗0 and I0 depending on whether the E ∗GI0
∈

(E ∗TI0
, ETI0

) is satisfied or not, the claim follows. □
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S1.5. Correlated random feature model example (Proof of Lemma 2)

Consider the model (1). We assume that the rows of X are independently generated from
𝑝-dimensional multivariate Gaussian distribution with mean-zero and variance-covariance
matrix

𝚺 =

(
1 𝑐1⊤

𝑝−1
𝑐1𝑝−1 (1 − 𝑟)I𝑝−1 + 𝑟1𝑝−11⊤

𝑝−1

)
,

where 𝑐 ∈ [0, 0.997], 𝑟 ∈ [0, 1) and true model is S = {1}. We need to further impose the
restriction

𝑐2 < 𝑟 + 1 − 𝑟
𝑝 − 1

to ensure positive definiteness of Σ. In this case

𝜏̂ = 𝛽2
1 min
𝑗≠1

{
∥X1∥2

2

𝑛
−

(X⊤
1 X 𝑗/𝑛)2

X 𝑗



2
2 /𝑛

}
=
𝛽2

1 ∥X1∥2
2

𝑛
− 𝛽2

1 max
𝑗≠1

(X⊤
1 X 𝑗/𝑛)2

X 𝑗



2
2 /𝑛

.

We start with providing an upper bound on the margin quantity 𝜏̂. Using Equation (S5.57)
and (S5.58), for any 𝜀𝑛,𝑝 ∈ (0, 1) we get

P

( 

X 𝑗



2
2

𝑛
≥ 1 + 𝜀𝑛,𝑝

)
≤ exp(−𝑛𝜀2

𝑛,𝑝/16), ∀ 𝑗 ∈ [𝑝] . (S1.33)

P

( 

X 𝑗



2
2

𝑛
≤ 1 − 𝜀𝑛,𝑝

)
≤ exp(−𝑛𝜀2

𝑛,𝑝/4), ∀ 𝑗 ∈ [𝑝] . (S1.34)

Using Equation (S1.33) and Equation (S1.34), we also get the following:

P

(
max
𝑗≠1

�����


X 𝑗



2
2

𝑛
− 1

����� ≥ 𝜀𝑛,𝑝
)
≤ 2𝑝 exp(−𝑛𝜀2

𝑛,𝑝/16). (S1.35)

Let X 𝑗 = (𝑥1, 𝑗 , . . . , 𝑥𝑛, 𝑗)⊤ for all 𝑗 ∈ [𝑝]. To this end we recall the sub-Gaussian norm
∥·∥𝜓2

[11, Definiton 2.5.6] and the sub-exponential norm ∥·∥𝜓1
[11, Definition 2.7.5]. Now

due to [11, Lemma 2.7.7], we have that


𝑥𝑢,1𝑥𝑢, 𝑗

𝜓1

≤


𝑥𝑢,1

𝜓2



𝑥𝑢,2

𝜓2
≤ 4. Thus, by

Berstein’s inequality, we have

P
(����X⊤

1 X 𝑗

𝑛
− 𝑐

���� > 𝜀𝑛,𝑝) ≤ exp
(
−𝐶𝑛min{𝜀𝑛,𝑝, 𝜀2

𝑛,𝑝}
)
,

where 𝐶 > 0 is a universal constant. Thus, we have

P
(
max
𝑗≠1

����X⊤
1 X 𝑗

𝑛
− 𝑐

���� > 𝜀𝑛,𝑝) ≤ 𝑝 exp(−𝐶𝑛min{𝜀𝑛,𝑝, 𝜀2
𝑛,𝑝}). (S1.36)
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Combining (S1.34), (S1.35) and (S1.36) we have

P

[{
1 + 𝜀𝑛,𝑝 −

(𝑐 − 𝜀𝑛,𝑝)2

1 + 𝜀𝑛,𝑝

}
≥ 𝜏̂

𝛽2
1

≥
{

1 − 𝜀𝑛,𝑝 −
(𝑐 + 𝜀𝑛,𝑝)2

1 − 𝜀𝑛,𝑝

}]
≥ 1 − exp(−𝑛𝜀2

𝑛,𝑝/16) − 2𝑝 exp(−𝑛𝜀2
𝑛,𝑝/4) − 𝑝 exp(−𝐶𝜀2

𝑛,𝑝𝑛)
= 1 + 𝑜(1/𝑝),

(S1.37)

if 𝜀𝑛,𝑝 ≍ {(log 𝑝)/𝑛}1/2 and (log 𝑝)/𝑛 is small enough. Similarly, due to Bernstein’s inequal-
ity, it can also be shown that

P
(
max
𝑗 ,𝑘≠1

����X⊤
𝑘

X 𝑗

𝑛
− 𝑟

���� ≤ 𝜀𝑛,𝑝) ≥ 1 − 𝑝2 exp(−𝐶𝑛𝜀2
𝑛,𝑝) = 1 + 𝑜(1/𝑝), (S1.38)

where 𝑟 ∈ [0, 1) and with the same conditions on 𝜀𝑛,𝑝.
Next, we will analyze the geometric quantities. In this case, we have

𝜸̂ 𝑗 =

X1 −
X⊤

𝑗
X1

∥X 𝑗 ∥2
2

.X 𝑗√︂
∥X1∥2

2 −
(X⊤

1 X 𝑗 )2

∥X 𝑗 ∥2
2

.

Note that 

𝜸̂ 𝑗 − 𝜸̂𝑘


2

2 = 2(1 − 𝜸̂⊤
𝑗 𝜸̂𝑘)

and

𝜸̂⊤
𝑗 𝜸̂𝑘 =

∥X1∥2
2 /𝑛 −

(X⊤
𝑗
X1/𝑛)2

∥X 𝑗 ∥2
2/𝑛

− (X⊤
𝑘

X1/𝑛)2

∥X𝑘 ∥2
2/𝑛

+
(X⊤

𝑗
X1/𝑛) (X⊤

𝑘
X1/𝑛) (X⊤

𝑗
X𝑘/𝑛)

(∥X 𝑗 ∥2
2/𝑛) ( ∥X𝑘 ∥2

2/𝑛)√︂
∥X1∥2

2 /𝑛 −
(X⊤

1 X 𝑗/𝑛)2

∥X 𝑗 ∥2
2/𝑛

√︂
∥X1∥2

2 /𝑛 −
(X⊤

1 X𝑘/𝑛)2

∥X𝑘 ∥2
2/𝑛

.

Next, we consider the event

G𝑛 :=

{
max
𝑗∈[𝑝]

�����


X 𝑗



2
2

𝑛
− 1

����� ≤ 𝜀𝑛,𝑝,max
𝑗≠1

����X⊤
1 X 𝑗

𝑛
− 𝑐

���� ≤ 𝜀𝑛,𝑝, max
𝑗 ,𝑘≠1

����X⊤
𝑘

X 𝑗

𝑛
− 𝑟

���� ≤ 𝜀𝑛,𝑝} .
Due to (S1.33), (S1.34), (S1.36) and (S1.38) we have P(G𝑛) = 1 + 𝑜(1/𝑝). Also, for large
𝑛, 𝑝, the value of 𝜀𝑛,𝑝 can be chosen such that 𝜀𝑛,𝑝 < 0.001 so that 𝑐 + 𝜀𝑛,𝑝 < 0.998 for all
𝑐 ∈ [0, 0.997].

Complexity of unexplained signals: Let u := (𝑢1, 𝑢2, 𝑢3) ∈ R3 and t := (𝑡1, 𝑡2, 𝑡2) ∈ R3.
Define the function

Φ(u, t) :=
𝑢1 − (𝑡21/𝑢2) − (𝑡22/𝑢3) + (𝑡1𝑡2𝑡3)/(𝑢2𝑢3)√︃

𝑢1 − 𝑡21/𝑢2

√︃
𝑢1 − 𝑡22/𝑢3

,

where
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(𝑢1, 𝑢2, 𝑢3, 𝑡1, 𝑡2, 𝑡3) ∈
[0.999, 1.001] × [0.999, 1.001] × [0.999, 1.001] × [0, 0.998] × [0, 0.998] × [0, 1]︸                                                                                                          ︷︷                                                                                                          ︸

:=K

.

It is easy to see that the function Φ is continuously differentiable on the compact set K.
Hence, there exists a universal constant 𝐿 > 0 such that

|Φ(u, t) −Φ(u′, t′) | ≤ 𝐿 (∥u − u′∥1 + ∥t − t′∥1).

Since we have

𝜸̂⊤
𝑗 𝜸𝑘 = Φ

(
∥X1∥2

2

𝑛
,



X 𝑗



2
2

𝑛
,
∥X𝐾 ∥2

2

𝑛
,

X⊤
1 X 𝑗

𝑛
,

X⊤
1 X𝑘

𝑛
,

X⊤
𝑗
X𝑘

𝑛

)
,

it follows that on the event G𝑛, the following holds for all 𝑗 , 𝑘 ∈ [𝑝] \ {1} :����

𝜸̂ 𝑗 − 𝜸̂𝑘


2

2 −
2𝑐2(1 − 𝑟)

1 − 𝑐2

���� ≤ 12𝐿𝜀𝑛,𝑝,

⇒

√︄
max

{
2𝑐2(1 − 𝑟)

1 − 𝑐2 − 12𝐿𝜀𝑛,𝑝, 0
}
≤



𝜸̂ 𝑗 − 𝜸̂𝑘




2 ≤

√︄
2𝑐2(1 − 𝑟)

1 − 𝑐2 + 12𝐿𝜀𝑛,𝑝 .

Hence, we have

ET∅

= {log(𝑒𝑝)}−1/2
[ ∫ √︄(

2𝑐2 (1−𝑟 )
1−𝑐2 −12𝐿𝜀𝑛,𝑝

)
∨0

0

√︁
logN(T∅, ∥·∥2 , 𝜀) 𝑑𝜀

+
∫ √︂

2𝑐2 (1−𝑟 )
1−𝑐2 +12𝐿𝜀𝑛,𝑝√︄(

2𝑐2 (1−𝑟 )
1−𝑐2 −12𝐿𝜀𝑛,𝑝

)
∨0

√︁
logN(T∅, ∥·∥2 , 𝜀) 𝑑𝜀

]
.

Applying Lemma S5.4 on the second integral, it follows that

𝜔𝑛,𝑝

√︄
log 𝑝

log(𝑒𝑝) ≤ ET∅ ≤
(
𝜔𝑛,𝑝 +

√︁
24𝐿𝜀𝑛,𝑝

) √︄
log 𝑝

log(𝑒𝑝) ,

where 𝜔𝑛,𝑝 =

√︂(
2𝑐2 (1−𝑟 )

1−𝑐2 − 12𝐿𝜀𝑛,𝑝
)
∨ 0. Thus, for 𝑐 = 0 we have 0 ≤ ET∅ ≤

√︁
24𝐿𝜀𝑛,𝑝.

For any fixed 𝑐 > 0 and 𝑟 ∈ [0, 1) we have

ET∅ ∼
{

2𝑐2(1 − 𝑟)
1 − 𝑐2

}1/2

for large 𝑛, 𝑝. (S1.39)
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Complexity of spurious projections: For 𝑗 , 𝑘 ≠ 1, let 𝜃 𝑗 ,𝑘 denote the angle between X 𝑗

and X𝑘 .



P 𝑗 − P𝑘




op = sin(𝜃 𝑗 ,𝑘) =
√︃

1 − cos2(𝜃 𝑗 ,𝑘) =

√√√
1 −

(
X⊤
𝑗
X𝑘

X 𝑗




2 ∥X𝑘 ∥2

)2

.

By a similar argument as above, we can conclude that there exists a universal constant 𝑀 > 0
such that on the event G𝑛 we have,���

P 𝑗 − P𝑘



2
op − (1 − 𝑟2)

��� ≤ 𝑀𝜀𝑛,𝑝, for all 𝑗 , 𝑘 ∈ [𝑝] \ {1}.

Thus, for any fixed 𝑟 ∈ [0, 1) we have

EG∅ ∼ (1 − 𝑟2)1/2. (S1.40)

S2. Generalized linear model

In this section, we will focus on the best subset selection problem under generalized linear
models (GLM). Similar to the linear regression setup, we will also adopt the fixed design
setup in this case. In particular, given the data matrix X := (x1, . . . , x𝑛)⊤ ∈ R𝑛×𝑝 we observe
the responses y := (𝑦1, . . . , 𝑦𝑛)⊤ coming from the distribution

𝑓x,𝜷∗ (𝑦) := ℎ(𝑦) exp
{
𝑦(x⊤𝜷∗) − 𝑏(x⊤𝜷∗)

𝜙

}
= ℎ(𝑦) exp

{
𝑦𝜂 − 𝑏(𝜂)

𝜙

}
. (S2.41)

Here 𝜂 = x⊤𝜷∗ is linear predictor and 𝜷∗ is true parameter with ∥𝜷∗∥0 = 𝑠 and support S.
The functions 𝑏 : R → R and ℎ : R → R are known and specific to modeling assumptions.
Examples include several well-known models such as

1. Linear regression: Consider the linear regression model 𝑦 = x⊤𝜷∗ + 𝜀, where 𝜀 ∼
N(0, 𝜎2). In this case ℎ(𝑦) = exp{−𝑦2/(2𝜎2)} and 𝑏(𝑢) = 𝑢2/2.

2. Logistic regression: In this model 𝑦 ∼ Ber(1/(1+ exp(−x⊤𝜷∗))). Standard calculations
show that ℎ(𝑦) = 1 and 𝑏(𝑢) = log(1 + 𝑒𝑢).

For the purpose of model selection, we choose the loss function to be the scaled negative
log-likelihood function

L(𝜷; {(x𝑖 , 𝑦𝑖)}𝑖∈[𝑛]) =
2
𝑛

∑︁
𝑖∈[𝑛]

ℓ(𝜷; (x𝑖 , 𝑦𝑖)),

where ℓ(𝜷; (x, 𝑦)) = −𝑦(x⊤𝜷) + 𝑏(x⊤𝜷). Furthermore, for a candidate model D ∈ A𝑠 and
𝜷̃ ∈ R𝑠, define the restricted version of the scaled negative log-likelihood function as

LD ( 𝜷̃; {(x𝑖,D , 𝑦𝑖)}𝑖∈[𝑛]) := (𝑛/2)−1
∑︁
𝑖∈[𝑛]

ℓD ( 𝜷̃; (x𝑖,D , 𝑦𝑖)),

where ℓD ( 𝜷̃; (xD , 𝑦)) := −𝑦(x⊤D 𝜷̃) + 𝑏(x⊤D 𝜷̃). Let 𝜷̂D := arg min𝜷̃LD ( 𝜷̃; {(x𝑖,D , 𝑦𝑖)}𝑖∈[𝑛]).
Under the oracle knowledge of sparsity 𝑠, BSS solves for

Ŝbest = 𝑛
−1arg minD: |D |=𝑠LD ( 𝜷̂D ; {(x𝑖,D , 𝑦𝑖)}𝑖∈[𝑛]).
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Next, we will introduce the quantities that capture the degree of separation between the true
model S and a candidate model D ∈ A𝑠 and characterize the identifiability margin for model
selection consistency. Let PD,𝜷̃ be probability measure corresponding to the joint density∏
𝑖∈[𝑛] 𝑓x𝑖,D ,𝜷̃ (𝑦𝑖) and define

Δkl(D) :=
2𝜙
𝑛

min
𝜷̃∈R𝑠

KL
(
PS,𝜷∗

S



 PD,𝜷̃

)
=

2
𝑛

𝑛∑︁
𝑖=1

{
(x⊤
𝑖,S𝜷

∗
S)𝑏

′(x⊤
𝑖,S𝜷

∗
S) − 𝑏(x

⊤
𝑖,S𝜷

∗
S)

}
− max

𝜷̃∈R𝑠

2
𝑛

𝑛∑︁
𝑖=1

{
(x⊤𝑖,D 𝜷̃)𝑏′(x⊤

𝑖,S𝜷
∗
S) − 𝑏(x

⊤
𝑖,D 𝜷̃)

}
,

where KL(·∥·) denotes the Kullback-Leibler (KL) divergence. The above quantity can be
thought of as the degree of model separation as it measures the minimum KL-divergence
between the likelihood generated by the data under (S, 𝜷∗

S) and the likelihood generated by
D and all possible choices of 𝜷 ∈ R𝑝 with the support in D. Let 𝜷̄D be the minimizer of the
optimization problem in the above display, i.e.,

𝜷̄D := arg min𝜷̃∈R𝑠KL
(
PS,𝜷∗

S



 PD,𝜷̃

)
.

By definition it follows that 𝜷̄S = 𝜷∗
S . Also, note that for PD,𝜷̄D

, the natural parameter of the
density function is XD 𝜷̄D . Thus, one can also measure the separation between two models
through the mutual distance between the corresponding natural parameters. This motivates
the definition of the second measure of separability between the true model S and candidate
model D:

Δpar(D) :=



XS𝜷
∗
S − XD 𝜷̄D



2
2

𝑛
.

Note that, under the linear regression model with isotropic Gaussian error, both Δkl(D) and
Δpar(D) becomes equal to the quantity 𝜷⊤

S\DΓ(D)𝜷S\D . To see this, recall that for linear
regression model 𝑏(𝑢) = 𝑢2/2 and the KL-divergence

KL(PS,𝜷∗
S



 PD,𝜷̄D
) =



XS𝜷
∗
S − XD 𝜷̄D



2
2 /(2𝜎

2).

Thus, from the definition of 𝜷̄D , it immediately follows that XD 𝜷̄D = PDXS𝜷
∗
S . Later, we

will see that these two notions of distances are equivalent under certain regularity conditions
on the link function 𝑏(·).

S2.1. Identifiability margin and two complexities

In this section we will introduce the identifiability margin and the two complexities similar
the case of linear model. We consider the following identifiability margin:

𝜏∗(𝑠) := min
D∈A𝑠

Δkl(D)
|S \ D| .
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We assume that 𝜏∗(𝑠) > 0 to avoid non-identifiability issue. Next, we consider the trans-
formed features as follows:

X̃D = 𝚲1/2
D XD ,

where 𝚲D = diag(𝑏′′(x⊤1,D 𝜷̄D), . . . , 𝑏′′(x⊤
𝑛,D 𝜷̄D)). Let P̃D be orthogonal projection matri-

ces onto the columnspace of X̃D . Let P̃I|D be the orthogonal projector onto the columnspace
of [X̃D]I . Now we define the following sets of residualized signals and spurious projections:

T̃ (𝑠)
I =

{
XD 𝜷̄D − XS𝜷

∗
S

XD 𝜷̄D − XS𝜷
∗
S




2

: D ∈ AI

}
,

G̃ (𝑠)
I =

{
P̃D − P̃I|D : D ∈ AI

}
.

The complexity measures for these two sets are ET̃ (𝑠)
I

and EG̃I(𝑠)
respectively, which are

defined in the same way as the complexity measures in Section 3.2 and Section 3.3 of the
main paper.

S2.2. Main results

In this section we will state the main result analogous to the Theorem 1 in the main paper. We
begin with some standard assumption necessary for the theoretical analysis for GLM models.

Assumption S2.1 (Features and parameters). We assume the following conditions:

(a) There exists positive constants 𝑥0 and 𝑅0 such that max𝑖∈[𝑛] ∥x𝑖 ∥∞ ≤ 𝑥0 and ∥𝜷∗∥1 ≤
𝑅0.

(b) There exists a constant 𝜅0 > 0 such that

min
D⊂[𝑝]: |D |=𝑠

𝜆min
(
X⊤

DXD/𝑛
)
≥ 𝜅0.

(c) There exists constant 𝑀 > 0 such that

max
D⊂[𝑝]: |D |=𝑠







1
𝑛

∑︁
𝑖∈[𝑛]

x𝑖,D ⊗ x𝑖,D ⊗ x𝑖,D








op

≤ 𝑀.

(d) There exists a constant 𝑅 > 0 such that maxD∈A𝑠
max𝑖∈[𝑛]

���x⊤𝑖,D 𝜷̄D

��� ≤ 𝑥0𝑅.
(e) The design matrix X enjoys the following property:

min
I⊂S

E 2
G̃ (𝑠)
I
> {log(𝑒𝑝)}−1.

Assumption S2.1(a) is very common in high-dimensional literature. Assumption S2.1(b)
basically tells that the sparse-eigenvalues of X are strictly bounded away from 0. Assumption
S2.1(c) tells that the third order empirical moment of XD is bounded. A stronger version of
Assumption S2.1(d) is present in [8, 13], where the authors assume that



𝜷̄D




1 is bounded
uniformly over all D ∈ A𝑠. Finally, Assumption S2.1(e) allows diversity among the spurious
features. Next, we will assume some technical assumptions on the link function 𝑏(·).
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Assumption S2.2 (𝑏(·) function). We assume the following conditions on 𝑏(·) function:

(a) There exists a function 𝜓 : R+ → R+ such that for any 𝜂 ∈ R and any 𝜔 > 0, 𝑏′′(𝜂) ≥
𝜓(𝜔) whenever |𝜂 | ≤ 𝜔.

(b) There exists constants 𝐵 > 0 and 𝐵̃ ≥ 0 such that ∥𝑏′′∥∞ ≤ 𝐵 and ∥𝑏′′′∥∞ ≤ 𝐵̃.

These assumptions on the link function are pretty common to analyze high-dimensional
generalized models. Assumption S2.2(a) basically assumes that 𝑏(·) is strongly convex within
a compact neighborhood of 0. It is straightforward to check that this assumption is satisfied
by standard GLM setups like linear regression and logistic regression. In particular, one can
choose 𝜓(𝜔) = 1 for linear regression, and 𝜓(𝜔) = (3 + 𝑒𝜔)−1 in the case of logistic regres-
sion. Furthermore, from (S2.41) it follows that E(𝑦) = 𝑏′(x⊤𝜷∗) and var(𝑦) = 𝜙𝑏′′(x⊤𝜷∗) ≥
𝜙𝜓(𝜔), whenever |x⊤𝜷∗ | ≤ 𝜔.

Finally, Assumption S2.2(b) tells that the second and third derivatives of 𝑏(·) are bounded.
This guarantees the first convergence rates of the maximum likelihood estimator. Moreover,
this assumption guarantees sub-Gaussianity of 𝑦 as

E(exp{𝑡 (𝑦 − 𝑏′(𝜂)})

= 𝑒−𝑡𝑏
′ (𝜂)

∫ ∞

−∞
ℎ(𝑦) exp

{
(𝜂 + 𝜙𝑡)𝑦 − 𝑏(𝜂)

𝜙

}
𝑑𝑦

= exp
(
𝑏(𝜂 + 𝜙𝑡) − 𝑏(𝜂) − 𝑡𝜙𝑏′(𝜂)

𝜙

) ∫ ∞

−∞
ℎ(𝑦) exp

{
(𝜂 + 𝜙𝑡)𝑦 − 𝑏(𝜂 + 𝜙𝑡)

𝜙

}
𝑑𝑦

= exp[𝜙−1{𝑏(𝜂 + 𝜙𝑡) − 𝑏(𝜂) − 𝑡𝜙𝑏′(𝜂)}] ≤ exp
(
𝜙𝐵𝑡2

2

)
.

(S2.42)

Under Assumption S2.2, we can compare between the margin quantities Δkl(D) and
Δpar(D). To see this, we first focus on Δkl(D) . Recall that

Δkl(D)

=
2
𝑛

𝑛∑︁
𝑖=1

{
(x⊤
𝑖,S𝜷

∗
S)𝑏

′(x⊤
𝑖,S𝜷

∗
S) − 𝑏(x

⊤
𝑖,S𝜷

∗
S)

}
− 2
𝑛

𝑛∑︁
𝑖=1

{
(x⊤𝑖,D 𝜷̄D)𝑏′(x⊤

𝑖,S𝜷
∗
S) − 𝑏(x

⊤
𝑖,D 𝜷̄D)

}
=

2
𝑛

𝑛∑︁
𝑖=1

{
𝑏(x⊤𝑖,D 𝜷̄D) − 𝑏(x⊤

𝑖,S𝜷
∗
S) − (x⊤𝑖,D 𝜷̄D − x⊤

𝑖,S𝜷
∗
S)𝑏

′(x⊤
𝑖,S𝜷

∗
S)

}
=

1
𝑛

𝑛∑︁
𝑖=1

𝑏′′
(
x⊤
𝑖,S𝜷

∗
S + 𝑡 (x⊤𝑖,D 𝜷̄D − x⊤

𝑖,S𝜷
∗
S)

)
{x⊤𝑖,D 𝜷̄D − x⊤

𝑖,S𝜷
∗
S}

2,

for some 𝑡 ∈ (0, 1). Due to Assumption S2.1(a) and Assumption S2.1(d), we get���x⊤𝑖,S𝜷∗
S + 𝑡 (x⊤𝑖,D 𝜷̄D − x⊤

𝑖,S𝜷
∗
S)

��� ≤ 𝑥0(𝑅0 + 𝑅).

Finally, strong convexity and smoothness of 𝑏(·) (Assumption S2.2(a), S2.2(b)), we have

𝐵Δpar(D) ≥ Δkl(D) ≥ 𝜓(𝑥0𝑅0 + 𝑥0𝑅)Δpar(D). (S2.43)

This established the equivalence between Δkl(D) and Δpar(D). Now, we present the main
below.
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Theorem S2.1 (Sufficiency). Under Assumption 1, there exists a positive constant𝐶 depend-
ing on 𝜙, 𝐵, 𝐵̃, 𝑥0, 𝑅, 𝑅0, 𝜅0, 𝑀 and the function 𝜓(·) such that for any 0 ≤ 𝜂 < 1, whenever
the identifiability margin 𝜏̃∗(𝑠) satisfies

𝜏̃∗(𝑠)
𝜙𝐵

≥

𝐶

(1 − 𝜂)2 max

{
max

{
max
I⊂S

E 2
T̃ (𝑠)
I
,max
I⊂S

E 2
G̃ (𝑠)
I

}
+

√︄
log(𝑒𝑠) ∨ log log(𝑒𝑝)

log(𝑒𝑝) , 𝑡
(1)
𝑠,𝑛, 𝑝, 𝑡

(2)
𝑠,𝑛, 𝑝

}
log(𝑒𝑝)

𝑛

(S2.44)
for a specified 𝑡 (1)𝑠,𝑛, 𝑝 = 𝑂 (𝑠{log 𝑠 ∨ log log 𝑝}/log 𝑝) and 𝑡 (2)𝑠,𝑛, 𝑝 = 𝑂 ( 𝑠

2 (log 𝑛)2

𝑛 log 𝑝 + 𝑠3/2 (log 𝑛)3/2
√
𝑛 log 𝑝 ),

we have {
Ŝ : |Ŝ | = 𝑠, min

S∈A𝑠

LŜ ( 𝜷̂Ŝ) ≤ LS ( 𝜷̂S) + 𝑛𝜂𝜏∗(𝑠)
}
= {S},

with probability at least 1 − 𝑂 ({𝑠 ∨ log 𝑝}−1 + 𝑛−7𝑠 log 𝑝). In particular, setting 𝜂 = 0, we
have S = arg minŜ∈A𝑠

LŜ ( 𝜷̂Ŝ) with high probability.

The proof of the above theorem is deferred to Section S3. The above theorem is the gen-
eralization of Theorem 1, and (S2.44) also involves the two complexities related to the sets
of residualized signals and spurious projection operators. However, condition (S2.44) also
involves two extra terms 𝑡 (1)𝑠,𝑛, 𝑝 and 𝑡 (2)𝑠,𝑛, 𝑝, the exact forms of which can be found in Section
S3. It can be shown that both of these terms are exactly 0 for linear models as 𝜓 ≡ 1, 𝐵 = 1
and 𝐵̃ = 0.

Remark 1. If 𝑝 = Ω(𝑒𝑐0𝑛) for some universal constant 𝑐0 > 0 and 𝑠(log 𝑛)/𝑛 → 0 as
𝑛→ ∞, then both 𝑡 (1)𝑠,𝑛, 𝑝 and 𝑡 (2)𝑠,𝑛, 𝑝 are negligible compared to the complexity term in (S2.44).
Hence, in this case, we witness roughly a similar phenomenon involving the two complexities
as in the linear model.

S3. Proof of main results under GLM model

Let D ∈ A𝑠 such that S ∩ D = I.

Strong convexity

We will start by showing the strong convexity of LD ( 𝜷̃; {x𝑖 , 𝑦𝑖}𝑖∈[𝑛]). For ease of presen-
tation we will just write LD ( 𝜷̃) instead of LD ( 𝜷̃; {x𝑖 , 𝑦𝑖}𝑖∈[𝑛]). Given any 𝑟 ∈ (0, 𝑅0 ∧ 𝑅]
and 𝚫 ∈ B1(0, 𝑟) define the function

𝛿LD ( 𝜷̄D + 𝚫; 𝜷̄D) := LD ( 𝜷̄D + 𝚫) − LD ( 𝜷̄D) − ∇LD ( 𝜷̄D)⊤𝚫

=
1
2
𝚫⊤∇2LD ( 𝜷̄D + 𝑡𝚫)𝚫 (for some 𝑡 ∈ (0, 1))

=
1
𝑛

𝑛∑︁
𝑖=1

𝑏′′(x⊤𝑖,D ( 𝜷̄D + 𝑡𝚫)) (x⊤𝑖,D𝚫)2

≥ 𝜓(𝑥0𝑅 + 𝑥0𝑟)𝜅0 ∥𝚫∥2
2 (Using Assumption S2.1(a), S2.1(b), S2.1(d))

≥ 𝜓(𝑥0𝑅 + 𝑥0𝑅0)𝜅0 ∥𝚫∥2
2
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Rate of convergence

Construct an intermediate estimator 𝜷̂D,𝛼 = 𝜷̄D + 𝛼( 𝜷̂D − 𝜷̄D) where

𝛼 = min

{
1,

𝑟

∥ 𝜷̂D − 𝜷̄D ∥2

}
,

where 𝑟 will be chosen later.
Write 𝜷̂D,𝛼 − 𝜷̄D as 𝚫𝛼 and note that

𝜓(𝑥0𝑅 + 𝑥0𝑅0) ∥𝚫𝛼∥2
2 ≤ 𝛿LD ( 𝜷̂D,𝛼, 𝜷̄D) ≤ −∇LD ( 𝜷̄D)⊤𝚫𝛼 ≤



∇LD ( 𝜷̄D)




2 ∥𝚫𝛼∥2 .

Hence we have

∥𝚫𝛼∥2 ≤


∇LD ( 𝜷̄D)




2

𝜓(𝑥0𝑅 + 𝑥0𝑅0)
≤

√
𝑠


∇LD ( 𝜷̄D)




∞

𝜓(𝑥0𝑅 + 𝑥0𝑅0)
. (S3.45)

Now, note that

∇LD ( 𝜷̄D) := −2
𝑛

∑︁
𝑖∈[𝑛]

{𝑦𝑖 − 𝑏′(x⊤𝑖,D 𝜷̄D)}x𝑖,D

= −2
𝑛

∑︁
𝑖∈[𝑛]

{𝑦𝑖 − 𝑏′(x⊤𝑖,S𝜷
∗
S)}x𝑖,D − 2

𝑛

∑︁
𝑖∈[𝑛]

{𝑏′(x⊤
𝑖,S𝜷

∗
S) − 𝑏

′(x⊤𝑖,D 𝜷̄D)}x𝑖,D︸                                            ︷︷                                            ︸
=0

= −2(𝜙𝐵)1/2

𝑛

∑︁
𝑖∈[𝑛]

{𝑦𝑖 − 𝑏′(x⊤𝑖,S𝜷
∗
S)}

(𝜙𝐵)1/2︸                  ︷︷                  ︸
:=𝜖𝑖

x𝑖,D

Note that E{exp(𝜆𝜖𝑖 [x𝑖,D] 𝑗) ≤ exp(𝜆2𝑥2
0/2)}, i.e., 𝜖𝑖 [x𝑖,D] 𝑗 is sub-Gaussian with parameter

𝑥0. Hence, by an application of union bound and Hoeffding’s inequality we have

P
(

∇LD ( 𝜷̄D)




∞ ≥ 2𝑡𝑥0(𝜙𝐵)1/2

)
≤ 2𝑠 exp

(
−𝑛𝑡

2

2

)
. (S3.46)

Setting 𝑡 = 4(log 𝑛/𝑛)1/2 in (S3.46) we get

P

(

∇LD ( 𝜷̄D)



∞ ≥ 8𝑥0(𝜙𝐵)1/2

√︂
log 𝑛
𝑛

)
≤ 2
𝑛7 . (S3.47)

Using the above fact and (S3.45) we finally get that with probability at least 1 − 2𝑛−7 the
following holds:

∥𝚫𝛼∥2 ≤ 8𝑥0(𝜙𝐵)1/2

𝜓(𝑥0𝑅 + 𝑥0𝑅0)

√︂
𝑠 log 𝑛
𝑛

.

Now we set 𝑟 =
9𝑥0 (𝜙𝐵)1/2

𝜓 (𝑥0𝑅)

√︃
𝑠 log 𝑛
𝑛

. Hence, we have ∥𝚫𝛼∥2 < 𝑟 , i.e., ∥𝚫∥2 < 𝑟 . This shows
that

P

(
max
D∈A𝑠




𝜷̂D − 𝜷̄D





2
>

9𝑥0(𝜙𝐵)1/2

𝜓(𝑥0𝑅 + 𝑥0𝑅0)

√︂
𝑠 log 𝑛
𝑛

)
≤ 4𝑠 log 𝑝

𝑛7 . (S3.48)
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By a similar argument, it can be shown that

P

(


𝜷̂S − 𝜷∗
S





2
>

9𝑥0(𝜙𝐵)1/2

𝜓(𝑥0𝑅 + 𝑥0𝑅0)

√︂
𝑠 log 𝑛
𝑛

)
≤ 2
𝑛7 . (S3.49)

Expansion of likelihood estimate

Now that we have determined the rate of estimation, we can now write 𝜷̂D in terms of 𝜷̄D .
To see this, note that

0 = ∇LD ( 𝜷̂D) = ∇LD ( 𝜷̄D) + ∇2LD ( 𝜷̄D) ( 𝜷̂D − 𝜷̄D) + RD ( 𝜷̂D − 𝜷̄D)⊗2,

where RD = (1/2)∇3LD ( 𝜷̄D + 𝑡D ( 𝜷̂D − 𝜷̄D)) for some 𝑡D ∈ (0, 1). Thus, we have

𝜷̂D = 𝜷̄D − [∇2LD ( 𝜷̄D)]−1
(
∇LD ( 𝜷̄D) + RD ( 𝜷̂D − 𝜷̄D)⊗2

)
(S3.50)

Higher order Taylor’s expansion of loss function

Now we are ready to analyze the loss functions. We do so by expanding the Taylor series of
the loss function. Write 𝜷̂D − 𝜷̄D ad 𝚫̂D . Then, using (S3.50) we have

LD ( 𝜷̂D)

= LD ( 𝜷̄D) + ∇LD ( 𝜷̄D)⊤𝚫̂D + 1
2
𝚫̂
⊤
D∇2LD ( 𝜷̄D)𝚫̂D + (1/3)𝚫̂⊤

DR̃D (𝚫̂D ⊗ 𝚫̂D)

= LD ( 𝜷̄D) − ∇LD ( 𝜷̄D)⊤ [∇2LD ( 𝜷̄D)]−1
(
∇LD ( 𝜷̄D) + R̃D ( 𝜷̂D − 𝜷̄D)⊗2

)
+ 1

2

(
∇LD ( 𝜷̄D) + R̃D ( 𝜷̂D − 𝜷̄D)⊗2

)⊤
[∇2LD ( 𝜷̄D)]−1

(
∇LD ( 𝜷̄D) + R̃D ( 𝜷̂D − 𝜷̄D)⊗2

)
+ 1

2
𝚫̂
⊤
DR̃D (𝚫̂D ⊗ 𝚫̂D)

= LD ( 𝜷̄D) − 1
2
∇LD ( 𝜷̄D)⊤ [∇2LD ( 𝜷̄D)]−1∇LD ( 𝜷̄D)

+ 1
2
(R̃D𝚫̂

⊗2
D )⊤ [∇2LD ( 𝜷̄D)]−1(R̃D𝚫̂

⊗2
D ) + (1/3)𝚫̂⊤

DR̃D (𝚫̂D ⊗ 𝚫̂D)

=
2
𝑛

∑︁
𝑖∈[𝑛]

{−𝑦𝑖 (x⊤𝑖,D 𝜷̄D) + 𝑏(x⊤𝑖,D 𝜷̄D)}

− 1
𝑛
(y − 𝝆(XD 𝜷̄D))⊤XD (X̃⊤

DX̃D)−1X⊤
D (y − 𝝆(XD 𝜷̄D))

+ 1
2
(R̃D𝚫̂

⊗2
D )⊤ [∇2LD ( 𝜷̄D)]−1(R̃D𝚫̂

⊗2
D ) + (1/3)𝚫̂⊤

DR̃D (𝚫̂D ⊗ 𝚫̂D)

= −2
𝑛
𝝆(XS𝜷

∗
S)

⊤XD 𝜷̄D + 2
𝑛

∑︁
𝑖∈[𝑛]

𝑏(x⊤𝑖,D 𝜷̄D) − 2
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤XD 𝜷̄D

− 1
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤XD (X̃⊤
DX̃D)−1X⊤

D (y − 𝝆(XS𝜷
∗
S))

+ 1
2
(R̃D𝚫̂

⊗2
D )⊤ [∇2LD ( 𝜷̄D)]−1(R̃D𝚫̂

⊗2
D ) + (1/3)𝚫̂⊤

DR̃D (𝚫̂D ⊗ 𝚫̂D),
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where R̃D = (1/2)∇3LD ( 𝜷̄D + 𝑡D ( 𝜷̂D − 𝜷̄D)) for some 𝑡D ∈ (0, 1).
Thus, we have the following:

LD ( 𝜷̂D) − LS ( 𝜷̂S)

= Δkl(D) − 2
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤(XD 𝜷̄D − XS𝜷
∗
S)︸                                            ︷︷                                            ︸

linear term

− 1
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤
{
XD (X̃⊤

DX̃D)−1X⊤
D − XS (X̃⊤

SX̃S)−1X⊤
S

}
(y − 𝝆(XS𝜷

∗
S))︸                                                                                                    ︷︷                                                                                                    ︸

quadratic term

+ 1
2
(R̃D𝚫̂

⊗2
D )⊤ [∇2LD ( 𝜷̄D)]−1(R̃D𝚫̂

⊗2
D ) + (1/3)𝚫̂⊤

DR̃D (𝚫̂D ⊗ 𝚫̂D)

− 1
2
(R̃S𝚫̂

⊗2
S )⊤ [∇2LS (𝜷∗

S)]
−1(R̃S𝚫̂

⊗2
S ) − (1/3)𝚫̂⊤

DR̃D (𝚫̂D ⊗ 𝚫̂D).

Write 𝜓∗ = min{𝜓(𝑥0𝑅), 𝜓(𝑥0𝑅0)}. By definition of X̃D , we have

X̃⊤
DX̃D = X⊤

D𝚲DXD ⪰ 𝜓∗X⊤
DXD , where 𝚲D = diag(𝑏′′(x⊤1,D 𝜷̄D), . . . , 𝑏′′(x⊤𝑛,D 𝜷̄D)).

Hence, we have (X̃⊤
DX̃D)−1 ⪯ 1

𝜓∗
(X⊤

DXD)−1 ⇒ XD (X̃⊤
DX̃D)−1X⊤

D ⪯ 1
𝜓∗

PD . Similarly,

XS (X̃⊤
SX̃S)−1XS ⪰ 1

𝐵
PS . Also, recall that P̃D = X̃D (X̃⊤

DX̃D)−1X̃⊤
D for any D ∈ A𝑠 ∪ {S}.

Let P̃I|D be the orthogonal projector onto the col( [X̃D]I). Using these facts, for any 𝜂 ∈
[0, 1), the difference between the two losses can be lower bounded as follows:

LD ( 𝜷̂D) − LS ( 𝜷̂S)
≥ 𝜂Δkl(D)

+ 2−1(1 − 𝜂)Δkl(D) − 2
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤(XD 𝜷̄D − XS𝜷
∗
S)

+ 2−1(1 − 𝜂) − 1
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤𝚲−1/2
D (P̃D − P̃I|D)𝚲−1/2

D (y − 𝝆(XS𝜷
∗
S))

+ 1
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤𝚲−1/2
S (P̃S − P̃I|S)𝚲−1/2

S (y − 𝝆(XS𝜷
∗
S))︸                                                                           ︷︷                                                                           ︸

≥0

− 1
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤𝚲−1/2
D P̃I|D𝚲−1/2

D (y − 𝝆(XS𝜷
∗
S))

+ 1
𝑛
(y − 𝝆(XS𝜷

∗
S))

⊤𝚲−1/2
S P̃I|S𝚲

−1/2
S (y − 𝝆(XS𝜷

∗
S))

− 𝐵̃2𝑀2

4𝜅0𝜓∗




𝚫̂D




4

2
− 𝐵̃2𝑀2

4𝜅0𝜓∗




𝚫̂S




4

2
− 𝐵̃𝑀

6




𝚫̂D




3

2
− 𝐵̃𝑀

6




𝚫̂S




3

2
.

(S3.51)

Now recall that

T̃ (𝑠)
I =

{
XD 𝜷̄D − XS𝜷

∗
S

XD 𝜷̄D − XS𝜷
∗
S




2

: D ∈ AI

}
G̃ (𝑠)
I =

{
P̃D − P̃I|D : D ∈ AI

}
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Now we will handle the linear and the quadratic terms separately. We assume that |I | =
𝑠 − 𝑘 , where 1 ≤ 𝑘 ≤ 𝑠.

Analysis of likelihood lower bound

Analysis of linear term

To analyze the linear term we will use the deviation bound for the supremum of the sub-
Gaussian process. In particular, we will use Theorem 5.36 of [12]. First, note that the diameter

diam(T̃ (𝑠)
I ) ≤

√
2 and recall 𝝐 = (𝜖1, . . . , 𝜖𝑛)⊤, where 𝜖𝑖 =

{𝑦𝑖−𝑏′ (x⊤𝑖,S𝜷
∗
S ) }

(𝜙𝐵)1/2 . Due to 1-sub-

Gaussianity, we have max𝑖∈[𝑛] var(𝜖𝑖) ≤ 𝜎2
𝜖 for some universal constant 𝜎𝜖 > 0. Also, recall

that

𝒓̂D =
XD 𝜷̄D − XS𝜷

∗
S

XD 𝜷̄D − XS𝜷
∗
S




2

.

Thus, using the aforementioned theorem we get

P
{

max
D∈AI

𝒓̂⊤D𝝐 ≥ 𝐴1(ET̃ (𝑠)
I

√︁
𝑘 log(𝑒𝑝) +

√︁
2𝑘{log(𝑒𝑠) ∨ log log(𝑒𝑝)})

}
≤ 3{(𝑒𝑠) ∨ log(𝑒𝑝)}−2𝑘 ,

(S3.52)

for some universal constant 𝐴1 > 0.

Analysis of quadratic terms

Now, we focus on the quadratic terms. Define the random vector 𝝃D := (𝜉1,D , . . . , 𝜉𝑛,D),
where

𝜉𝑖 =
{𝑦𝑖 − 𝑏′(x⊤𝑖,S𝜷

∗
S)}

(𝜙𝐵𝜓−1
∗ )1/2

√︃
𝑏′′(x⊤

𝑖,D 𝜷̄D)
, 𝑖 ∈ [𝑛] .

Note that {𝜉𝑖,D}𝑖∈[𝑛] are independent 1-sub-Gaussian. We will study the random quantity
𝑄AI := maxD∈AI 𝝃

⊤
D (P̃D − P̃I|D)𝝃D . Let us assume that max𝑖∈[𝑛] var(𝜉𝑖,D) = 𝜎2

D . First,
we note that P̃D − P̃I|D is a projection matrix of rank 𝑘 and hence it is idempotent. Also

note that E
{
𝝃⊤D (P̃D − P̃I|D)𝝃D

}
= tr

{
(P̃D − P̃I|D)E(𝝃D𝝃⊤D)

}
= 𝑘𝜎2

D ≤ 𝑘𝜎2
0 , where 𝜎2

0
is a universal constant. Now, to bound 𝑄A𝑠

we will use Theorem S4.2. By the properties
of projection matrices, we have 𝑑op(G̃ (𝑠)

I ) = 1 and 𝑑𝐹 (G̃ (𝑠)
I ) =

√
𝑘 . Hence, equipped with

Assumption S2.1(e), the quantities 𝑀,𝑉 and 𝑈 (defined in Theorem S4.2) has the following
properties:

𝑀 ≤ 2E 2
G̃ (𝑠)
I
𝑘 log(𝑒𝑝), 𝑉 ≤ 2

√︁
𝑘 log(𝑒𝑝), and 𝑈 = 1.

Due to Theorem S4.2, there exists a universal positive constant 𝐴3, such that for

𝑡 = 𝐴3𝑘
√︁

log(𝑒𝑝){log(𝑒𝑠) ∨ log log(𝑒𝑝)},
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we get

P
(
𝐶AI (𝝃D) ≥ 𝐴2E

2
G̃ (𝑠)
I
𝑘 log(𝑒𝑝) + 𝐴3𝑘

√︁
log(𝑒𝑝){log(𝑒𝑠) ∨ log log(𝑒𝑝)}

)
≤ {(𝑒𝑠) ∨ log(𝑒𝑝)}−2𝑘 ,

for a universal positive constant 𝐴2. As we have

max
D∈AI

E{𝝃⊤(P̃D − P̃I|D)𝝃} ≤ 𝑘𝜎2
0 ≤ 𝑘𝜎2

0 E 2
G̃ (𝑠)
I

log(𝑒𝑝),

it follows that

P
(
𝑄A𝑠

≤ 𝐴4E
2
G̃ (𝑠)
I
𝑘 log(𝑒𝑝) + 𝐴3𝑘

√︁
log(𝑒𝑝){log(𝑒𝑠) ∨ log log(𝑒𝑝)}

)
≤ {(𝑒𝑠) ∨ log(𝑒𝑝)}−2𝑘 ,

(S3.53)

where 𝐴4 is a universal positive constant.
Next, by construction, we have

𝑛−1(y − 𝝆(XS𝜷
∗
S))

⊤𝚲−1/2
D P̃I|D𝚲−1/2

D (y − 𝝆(XS𝜷
∗
S))

= 𝑛−1(y − 𝝆(XS𝜷
∗
S))

⊤XI (X̃⊤
IX̃I)−1X⊤

I (y − 𝝆(XS𝜷
∗
S))

⪯ 𝑛−1𝜓−1
∗ (y − 𝝆(XS𝜷

∗
S))

⊤PI (y − 𝝆(XS𝜷
∗
S)).

Similarly,

1
𝑛
(y−𝝆(XS𝜷

∗
S))

⊤𝚲−1/2
D P̃I|D𝚲−1/2

D (y−𝝆(XS𝜷
∗
S)) ⪰

1
𝑛𝐵

(y−𝝆(XS𝜷
∗
S))

⊤PI (y−𝝆(XS𝜷
∗
S)).

By Theorem 1 of [9], there exists a universal constant 𝐴5 > 0 such that

P
{��𝝐⊤PI𝝐 − (𝑠 − 𝑘)𝜎2

𝜖

�� ≥ 𝑡} ≤ 2 exp
[
−𝐴5 min

{
𝑡2

𝑠 − 𝑘 , 𝑡
}]
.

For 𝑡 = 2𝐴−1
5 𝑠{log(𝑒𝑠) ∨ log log(𝑒𝑝)} and a universal constant 𝐴6 > 0, we get

P
[
𝝐⊤PI𝝐 ≥ 𝐴6𝑠max{log(𝑒𝑠), log log(𝑒𝑝)}

]
≤ {log(𝑒𝑝)}−2𝑠 for all D ∈ A𝑠 ∪ {S}.

(S3.54)

Final 0-1 error bound

Define the event

Ω =

{
max

D∈A𝑠∪{S}




𝜷̂D − 𝜷̄D





2
≤ 9𝑥0(𝜙𝐵)1/2

𝜓(𝑥0𝑅 + 𝑥0𝑅0)

√︂
𝑠 log 𝑛
𝑛

}
.

By (S3.48) and (S3.49) we have P(Ω𝑐) ≲ (𝑠 log 𝑝)/𝑛7. Also, let E be an event inside of
which the assertion of the theorem holds. It follows that

P(E𝑐) = P(E𝑐 ∩Ω) + P(E𝑐 ∩Ω𝑐)

≲


𝑠∑︁
𝑘=1

∑︁
I⊂S: | I |=𝑠−𝑘

P
(

min
D∈AI

LD ( 𝜷̂D) − LS ( 𝜷̂S) < 𝜂𝜏̃∗(𝑠)
) +

𝑠 log 𝑝
𝑛7



A Tale of Two C(omplex)ities 25

Now, assume the follwing

𝜏̃glm(𝑠) := min
D≠S, |D |=𝑠

min

{
Δ2

kl(D)
Δpar(D) |D \ S| ,

Δkl(D)
|D \ S|

}
≳

(1 ∨ 𝜓−1
∗ )

(1 − 𝜂)2 max
{
Comp1,Comp2, 𝑡

(1)
𝑠,𝑛, 𝑝, 𝑡

(2)
𝑛,𝑠, 𝑝

} (𝜙𝐵) log(𝑒𝑝)
𝑛

,

where

Comp1 =

(
ET̃ (𝑠)

I
+

√︄
log(𝑒𝑠) ∨ log log(𝑒𝑝)

log(𝑒𝑝)

)2

,

Comp2 =

(
E 2
G̃ (𝑠)
I

+

√︄
log(𝑒𝑠) ∨ log log(𝑒𝑝)

log(𝑒𝑝)

)
,

𝑡
(1)
𝑠,𝑛, 𝑝 := (𝜓−1

∗ − 𝐵−1) 𝑠{log(𝑒𝑠) ∨ log log(𝑒𝑝)}
log(𝑒𝑝) ,

𝑡
(2)
𝑠,𝑛, 𝑝 :=

(
𝐵̃2𝑀2𝑥4

0𝜙
2𝐵2

𝜅0𝜓∗𝜓4
∗∗

)
𝑠2(log 𝑛)2

𝑛 log 𝑝
+

(
𝐵̃𝑀𝑥3

0𝜙
3/2𝐵3/2

6

)
𝑠3/2(log 𝑛)3/2
√
𝑛 log 𝑝

,

where 𝜓∗∗ = 𝜓(𝑥0𝑅 + 𝑥0𝑅0). Now, recall the property (S2.43) of Δkl(D). Thus, for the
aforementioned condition to hold for 𝜏̃glm(𝑠), it is sufficient to have

𝜏̃∗(𝑠) := min
D≠S, |D |=𝑠

Δkl(D)
|S \ D|

≳
(𝜙𝐵) (1 ∨ 𝜓∗)−1

(𝜓∗∗ ∧ 1) (1 − 𝜂)2 max
{
Comp1,Comp2, 𝑡

(1)
𝑠,𝑛, 𝑝, 𝑡

(2)
𝑛,𝑠, 𝑝

} log(𝑒𝑝)
𝑛

Under the above inequality and due to (S3.52), (S3.53), and (S3.54), we can finally conclude

P(E𝑐) ≲
𝑠∑︁
𝑘=1

(
𝑠

𝑘

)
{(𝑒𝑠) ∨ log(𝑒𝑝)}−2𝑘 + 𝑠 log 𝑝

𝑛7

≲
1

(𝑠 ∨ log 𝑝) +
𝑠 log 𝑝
𝑛7 .

S4. Quadratic chaos process

Let A be a set of 𝑚 × 𝑛 matrices and 𝝃 be a 1-sub-Gaussian random vector. The random
variable of interest is

𝐶A (𝝃) := sup
𝐴∈A

���∥𝐴𝝃∥2
2 − E ∥𝐴𝝃∥2

2

��� .
This quantity is studied by [6] and [3]. In the literature of empirical process, this is known
as order-2 sub-Gaussian chaos. Before we present the main result for 𝐶A (𝝃), we introduce
some useful definitions.
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Definition 2. For a metric space (𝑇, 𝑑), an admissible sequence of 𝑇 is a collection of subsets
of 𝑇 , {𝑇𝑟 : 𝑟 ≥ 0}, such that for every 𝑟 ≥ 0, |𝑇𝑟 | ≤ 22𝑟 and |𝑇0 | = 1. For 𝛼 ≥ 1, define the
𝛾𝛼 functional by

𝛾𝛼 (𝑇, 𝑑) := inf sup
𝑡∈𝑇

∞∑︁
𝑟=0

2𝑟/𝛼𝑑 (𝑡, 𝑇𝑟 ).

The 𝛾𝛼 functional can be bounded in terms of the covering numbers N(𝑇, 𝑑, 𝜖) by the
well-known Dudley’s integral (see [10]). A more specific formulation for the 𝛾2 functional
of a set of matrices A endowed with the operator norm, the scenario which we will focus on
in this article, is

𝛾2(A, ∥·∥op) ≤
∫ ∞

0

√︃
logN(A, ∥·∥op , 𝜖) 𝑑𝜖 .

We also define the two quantities 𝑑op(A) = sup𝐴∈A ∥𝐴∥op and 𝑑𝐹 (A) := sup𝐴∈A
√︁

tr(𝐴⊤𝐴).
Now, we present the main deviation bound for 𝐶A (𝝃).

Theorem S4.2 (Theorem 1 of [3]). Let A be a set of 𝑚 × 𝑛 matrices and 𝝃 := (𝜉1, . . . , 𝜉𝑛)⊤
be a random vector with independent 1-sub-Gaussian entries. Let

𝑀 = 𝛾2(A, ∥·∥)op
{
𝛾2(A, ∥·∥)op + 𝑑𝐹 (A)

}
,

𝑉 = 𝑑op(A)
{
𝛾2(A, ∥·∥)op + 𝑑𝐹 (A)

}
,

𝑈 = 𝑑op(A).

Then, for 𝑡 > 0,

P (𝐶A (𝝃) ≥ 𝑐1𝑀 + 𝑡) ≤ 2 exp
(
−𝑐2 min

{
𝑡2

𝑉2 ,
𝑡

𝑈

})
,

where 𝑐1, 𝑐2 are universal positive constants.

S5. Technical lemmas

Lemma S5.1 (Equation (9) in [5]). Let Φ(·) denote the cumulative distribution function of
standard Gaussian distribution. Then for all 𝑥 ≥ 0, the following inequalities are true:( 𝑥

1 + 𝑥2

) 𝑒−𝑥2/2
√

2𝜋
≤ 1 −Φ(𝑥) ≤

(
1
𝑥

)
𝑒−𝑥

2/2
√

2𝜋
.

Lemma S5.2. Let w ∼ N(0, 𝜎2I𝑛) and 𝝁 ∈ R𝑛 \ {0} such that ∥𝝁∥2 ≤ 𝜎𝛿. Then

P(∥w + 𝝁∥2
2 < ∥w∥2

2) ≥
𝛿

1 + 𝛿2

𝑒−𝛿
2/2

√
2𝜋

.

Proof. By straightforward algebra, it follows that

p0 := P(∥w + 𝝁∥2
2 < ∥w∥2

2) = P(𝝁⊤w + ∥𝝁∥2
2 < 0).
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Note that 𝝁⊤w d
= ∥𝝁∥2 𝑤, where 𝑤 ∼ N(0, 𝜎2). Hence, due to Lemma S5.1 we have

p0 = P(𝑤 < − ∥𝝁∥2)
= P(𝑤 > ∥𝝁∥2)
≥ P(𝑤 > 𝜎𝛿)

≥ 𝛿

1 + 𝛿2

𝑒−𝛿
2/2

√
2𝜋

.

□

Lemma S5.3 (Lemma 1 in [7]). Let 𝑊 be chi-squared random variable with degrees of
freedom 𝑚. Then, we have the following large-deviation inequalities for all 𝑥 > 0

P(𝑊 − 𝑚 > 2
√
𝑚𝑥 + 2𝑥) ≤ exp(−𝑥), 𝑎𝑛𝑑 (S5.55)

P(𝑊 − 𝑚 < −2
√
𝑚𝑥) ≤ exp(−𝑥). (S5.56)

If we set 𝑥 = 𝑚𝑢 in Equation (S5.55) for 𝑢 > 0, then we get

P
(
𝑊

𝑚
− 1 ≥ 2

√
𝑢 + 2𝑢

)
≤ exp(−𝑚𝑢).

Note that for 𝑢 < 1, we have 2
√
𝑢 + 2𝑢 < 4

√
𝑢. Thus, setting 𝑢 = 𝛿2/16 for any 𝛿 < 1, we get

P
(
𝑊

𝑚
− 1 ≥ 𝛿

)
≤ exp(−𝑚𝛿2/16). (S5.57)

Similarly, setting 𝑥 = 𝑚𝑢 and 𝑢 = 𝛿2/4 in Equation (S5.56), we get

P
(
𝑊

𝑚
− 1 ≤ −𝛿

)
≤ exp(−𝑚𝛿2/4). (S5.58)

Lemma S5.4. Let 𝛿 ∈ (0,∞). Then for any 𝑥 > 0 the following inequality holds:

0 <
√
𝑥 + 𝛿 −

√︁
(𝑥 − 𝛿) ∨ 0 ≤

√
2𝛿.

Proof. It is obvious that 𝑓𝛿 (𝑥) :=
√
𝑥 + 𝛿 −

√︁
(𝑥 − 𝛿) ∨ 0 > 0. Now for the other inequality,

we will consider two cases:

Case 1: 𝑥 ≤ 𝛿 In this case 𝑓𝛿 (𝑥) =
√
𝑥 + 𝛿 ≤

√
2𝛿.

Case 2: 𝑥 > 𝛿 In this case we have

𝑓 ′𝛿 (𝑥) =
1
2

(
1

√
𝑥 + 𝛿

− 1
√
𝑥 − 𝛿

)
< 0 for all 𝑥 > 𝛿.

Hence 𝑓𝛿 (𝑥) ≤ 𝑓𝛿 (𝛿) =
√

2𝛿. □
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