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We study the problem of exact support recovery for high-dimensional sparse linear regression under independent
Gaussian design when the signals are weak, rare, and possibly heterogeneous. Under a suitable scaling of the
sample size and signal sparsity, we fix the minimum signal magnitude at the information-theoretic optimal rate
and investigate the asymptotic selection accuracy of best subset selection (BSS) and marginal screening (MS)
procedures. We show that despite the ideal setup, somewhat surprisingly, marginal screening can fail to achieve
exact recovery with probability converging to one in the presence of heterogeneous signals, whereas BSS enjoys
model consistency whenever the minimum signal strength is above the information-theoretic threshold. To mitigate
the computational intractability of BSS, we also propose an efficient two-stage algorithmic framework called ETS
(Estimate Then Screen) comprised of an estimation step and gradient coordinate screening step, and under the
same scaling assumption on sample size and sparsity, we show that ETS achieves model consistency under the
same information-theoretic optimal requirement on the minimum signal strength as BSS. Finally, we present a
simulation study comparing ETS with LASSO and marginal screening. The numerical results agree with our
asymptotic theory even for realistic values of the sample size, dimension and sparsity.

Keywords: Heterogeneous signals; high-dimensional statistics; iterative hard thresholding; marginal screening;
model consistency; variable selection

1. Introduction

Consider = independent observations (G8 , H8)8∈[=] of a random pair (G, H) drawn from the following
linear regression model:

(G, Y) ∼ PG × PY ,

H = G>V + Y,
(1)

where PG is the ?-dimensional isotropic Gaussian distribution N? (0, I?), and P Y is the standard Gaus-
sian distribution on R. In matrix notation, the observations can be represented as

. = -V + �,

where . = (H1, H2, . . . , H=)>, - = (G1, G2, . . . , G=)> and � = (Y1, Y2, . . . , Y=)>. The vector V is unknown
but sparse in the sense that ‖V‖0 :=

∑?

9=1 1(V 9 ≠ 0) = B, which is much smaller than ?. Denote by S(E)
the set of non-zero coordinates of a vector E ∈ R? . Lastly, we denote by PV0 (·) and EV0 (·) the probability
measure and the expectation with V = V0 respectively. In this paper, we focus on the variable selection
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problem, i.e., identifying S(V). We primarily use the 0-1 loss, i.e., PV (S( V̂) ≠ S(V)), to assess the
quality of the selected model S( V̂). The isotropic Gaussian design has been widely used to conduct
precise analysis of variable selection procedures (Fletcher, Rangan and Goyal, 2009, Genovese et al.,
2012, Kowshik and Polyanskiy, 2021, Ndaoud and Tsybakov, 2020, Su, Bogdan and Candes, 2017).
Specifically, these works either derive the necessary and sufficient condition for exact model recovery
(Aeron, Saligrama and Zhao, 2010, Akçakaya and Tarokh, 2009, Fletcher, Rangan and Goyal, 2009, Jin,
Kim and Rao, 2011, Rad, 2011), or establish tight asymptotic bounds of model selection error (Gen-
ovese et al., 2012, Ji et al., 2012, Su, Bogdan and Candes, 2017). The isotropic Gaussian design is also
used in compressed sensing to generate a measurement matrix (Candès, Romberg and Tao, 2006, Can-
des and Tao, 2006, Donoho, 2006) so that one can sense the sparse signals with few measurements of
the high-dimensional signal. Scarlett and Cevher (2016), Wang, Wainwright and Ramchandran (2010)
considered the variable selection problem and studied the information-theoretic limit of support recov-
ery under non-Gaussian setup. It is worth emphasizing that these works also assumed that the entries
of - are independent and identically distributed, which is also the setup of this paper.

Recently there has been growing interest in the variable selection problem in the presence of weak
and rare signal regimes (Genovese et al., 2012, Ji et al., 2012) where the active signals are highly
sparse with very low magnitude of the order $ (

√
(log ?)/=), which is known to be the information-

theoretic optimal rate necessary to achieve model consistency. This regime is ubiquitous in modern
data analytics such as those in Genome-Wide Association Study (GWAS). There the genes that exhibit
detectable association with the trait of interest can be extremely few with weak effects (Consortium
et al., 2007, Marttinen et al., 2013). Moreover, the number of subjects = typically ranges in thousands,
while the number of features ? can range from tens of thousands to hundreds of thousands. Such a
high dimension further adds to the difficulty of identifying the weak signals. Weak and rare signals
also arise in multi-user detection problems (Arias-Castro, Candès and Plan, 2011) where one typically
uses linear model of the form (1). There the 9 th column of - , denoted by - 9 , is the channel impulse
response for user 9 . The signal received from user 9 is V 9- 9 . Thus V 9 = 0 means that 9 th user is not
sending any signal. It is a common practice to model the mixing matrix - as random with i.i.d. entries.
Under the presence of strong noise, one might be interested in knowing whether information is being
transmitted or not. Typically, in some applications, it is reasonable to assume that very few users are
sending signals. Also due to strong noise environment the signals become quite weak, making them
harder to detect. Therefore, from an application point of view, understanding variable selection in weak
and rare signal regimes is crucial. Despite its importance, typically most of the popular methods such
as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive LASSO (Huang, Ma and Zhang,
2008) have been extensively analyzed in terms of 0-1 loss when the signals are uniformly strong (Guo
et al., 2015, Huang, Ma and Zhang, 2008, Zhang and Huang, 2008, Zhao and Yu, 2006, Zheng, Fan
and Lv, 2014) in the sense that

0 := min
9∈S(V)

��V 9 ��� (
log ?
=

)1/2
.

However, Wainwright (2009a) established a sharp phase transition for LASSO in terms of exact recov-
ery under a general combination of (=, ?, B). Under some regularity conditions on the design matrix, the
author shows that 0 & {(log ?)/=}1/2 is necessary and sufficient for the model consistency of LASSO
in terms of 0-1 loss. Zhang and Huang (2008) proposed MC+ method based on minimax concave
penalty, which also achieves model consistency under the optimal rate for 0. Therefore, these works
can accommodate weak and rare signal regimes, and it is important to emphasize that the analyses
presented in them are non-asymptotic. Other works on weak and rare signal regimes include Genovese
et al. (2012), Ji et al. (2012), and Jin, Zhang and Zhang (2014) that establish sharp asymptotic require-
ment on the signal strength.
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Besides the weakness and rarity of signals, heterogeneity in the signal strength is another important
feature of modern data applications that has not yet received sufficient attention. Roughly, heterogeneity
in the signal allows the magnitude of the active V 9 ’s to differ in an arbitrary fashion, whereas homo-
geneity restricts the magnitude of the active signals to be in the same order. One limitation of the
existing literature on variable selection in the weak and rare signals regime is that it typically assumes
that the true signals are homogeneous (Genovese et al., 2012, Ji et al., 2012, Jin, Zhang and Zhang,
2014). Ji et al. (2012) refer to this setup as the Asymptotically Rare and Weak (ARW) signal regime.
Many popular approaches have been shown to enjoy satisfactory variable selection properties under the
ARW regime. For instance, Genovese et al. (2012) showed that both LASSO and marginal screening
enjoy model consistency in terms of Hamming loss under independent random design. Ji et al. (2012)
and Jin, Zhang and Zhang (2014) investigated the same problem under sparsely correlated design. They
proposed two-stage screen and clean algorithms that also exhibit model consistency in terms of Ham-
ming loss. However, their theory heavily relies on homogeneous signals and does not extend to the
heterogeneous case that is of interest to us. In reality, the ARW setup seldom occurs: the signals almost
always have different strengths (Li et al., 2019).

To underscore the contrasting effects of homogeneous and heterogeneous signals in terms of exact
model recovery, we study the variable selection property of marginal screening (see Section 3). We
show that under the presence of strong heterogeneity in the signal, marginal screening fails to recover
the exact model with probability converging to 1, whereas under homogeneous signal it can recover the
exact model asymptotically (Genovese et al., 2012). It turns out that due to heterogeneity, the spurious
correlations become large and create impediment to selecting the exact model. In correlated design, a
different problem known as unfaithfulness (Robins et al., 2003, Wasserman and Roeder, 2009) prevents
marginal screening from achieving model consistency. Specifically, due to “correlation cancellation”,
the marginal correlation between. and - 9 becomes negligible even when V 9 is large and this ultimately
leads to false negatives. In this paper, we study independent random design model in which correlation
cancellation does not occur. Instead, we identify a different source of problem under the presence
of signal heterogeneity that affects the exact variable selection performance of marginal screening.
Varying effect of signal heterogeneity in variable selection was also identified in the case of LASSO
by Su, Bogdan and Candes (2017) and Wang, Yang and Su (2022) for i.i.d. Gaussian design under a
special asymptotic setting. In particular, Su, Bogdan and Candes (2017) studied the tradeoff between
power and type-I error of LASSO and showed that strong heterogeneity in the signal helps to reduce
the false discovery in the LASSO path. The same effect was also analyzed in more detail in Wang,
Yang and Su (2022). These works use approximate message passing (AMP) theory to obtain the exact
asymptotic behavior of LASSO estimator in terms of variable selection and show that it is unable to
achieve model consistency under linear sparsity regime.

On the computational side, modern methods like LASSO, SCAD, MC+ were initially motivated as
alternatives to Best Subset Selection (BSS). BSS is in general an NP-hard optimization problem and
was believed to be practically intractable even for ? as small as 30. Thanks to recent advancements in
algorithms and hardware, the optimal solution to the BSS problem can now be computed, sometimes
with approximations, for some practical settings. Jain, Tewari and Kar (2014) showed that a wide family
of iterative hard thresholding (IHT) algorithms can approximately solve the BSS problem, in the sense
that they can achieve similar goodness of fit with the best subset with slight violation of the sparsity
constraint. Liu and Foygel Barber (2020) studied the optimal thresholding operator for such iterative
thresholding algorithms, which manages to exploit fewer variables than IHT to achieve the same good-
ness fit as BSS. Bertsimas, King and Mazumder (2016) viewed the BSS problem through the lens of
mixed integer optimization (MIO) and showed that for = in 100s and ? in 1000s, the MIO algorithm
can obtain a near optimal solution reasonably fast. Bertsimas and Parys (2020) developed a new cutting
plane method that solves to provable optimality the Tikhonov-regularized (Tikhonov, 1943) BSS prob-
lem for = and ? in the 100,000s. Xie and Deng (2020) considered solving the Tikhonov-regularized
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BSS via mixed integer second order cone formulation and the largest problem instance they consid-
ered has ? ∼ 103. Most recently, Hazimeh, Mazumder and Saab (2022) developed a Branch-and-Bound
method that solves the ℓ0/ℓ2-regularized BSS problem for ? ∼ 107. A recent work (Zhu et al., 2020)
proposed an iterative splicing method called Adaptive Best Subset Selection (ABESS) to solve the BSS
problem. They also showed that ABESS enjoys both statistical accuracy and polynomial computational
complexity when the design matrix satisfies sparse Reisz condition and minimum signal strength is of
order Ω{(B log ? log log=/=)1/2}.

Given these recent advances in solving BSS, there has been growing acknowledgment that BSS en-
joys significant statistical superiority over the aforementioned alternative methods. Bertsimas, King and
Mazumder (2016) and Bertsimas and Parys (2020) numerically demonstrated higher predictive power
and lower false discovery rate (FDR) respectively of the BSS solution compared to LASSO. Guo, Zhu
and Fan (2020) and Zhu and Wu (2021) reported that the approximate BSS solutions provided by IHT
have much fewer false discoveries than LASSO, SCAD and SIS, especially in the presence of highly
correlated design. They also theoretically showed that the model selection behavior of BSS does not
explicitly depend on the restricted eigenvalue condition for the design (Bickel, Ritov and Tsybakov,
2009, Van De Geer and Bühlmann, 2009), a condition which appears unavoidable (assuming a stan-
dard computational complexity conjecture) for any polynomial-time method (Zhang, Wainwright and
Jordan, 2014). This suggests that BSS is robust against design collinearity in terms of model selection.

In this paper, we mainly focus on the precise asymptotic bound, i.e., the bound with the optimal con-
stant for the minimum signal strength that allows BSS to achieve model consistency. Under a specific
asymptotic setup, we show that BSS achieves asymptotic exact recovery of the true model once the
minimum signal strength parameter is above the information-theoretic lower bound, meaning that BSS
is optimal in terms of the requirement on the signal strength. In contrast, previous works such as Aeron,
Saligrama and Zhao (2010), Rad (2011), Wainwright (2009b) analyze BSS from a sample complexity
point of view: they show that BSS can achieve model consistency under the optimal rate of the sample
complexity and different asymptotic regimes. Later Ndaoud and Tsybakov (2020) showed the existence
of a polynomial-time method that achieves model consistency under the same sufficient condition on =
as BSS for i.i.d. Gaussian design. For general Gaussian design, Wainwright (2009b) showed a similar
result for BSS. However, the analyses of all these works are non-asymptotic and thus may yield a sub-
optimal constant in the minimum signal strength. Next, we summarize the main contributions of our
paper below:

1. Under suitable asymptotic scaling of the sample size and signal sparsity, we present a sharp and
novel asymptotic analysis of BSS that leverages results from Fan, Shao and Zhou (2018) and
achieves the optimal constant in minimum signal strength required for model consistency of BSS
(Theorem 4.1).

2. To establish the sharpness of Theorem 4.1, we first present a novel impossibility result of BSS
(Theorem 4.3) at the information-theoretic boundary which also relies on asymptotic analysis of
BSS. This result together with the impossibility result in Wang, Wainwright and Ramchandran
(2010), establishes the sharp optimality of the constant obtained in Theorem 4.1. However, it is
important to point out that the result in the Theorem 4.1 is only orderwise optimal with respect to
the sparsity.

3. To achieve computational expediency, we propose a computationally tractable two-stage algo-
rithmic framework that also enjoys model consistency under the same condition on the minimum
signal strength as BSS (Theorem 5.2).

The rest of the paper is organized as follows. Section 2 introduces the Asymptotically Ultra-Rare
and Weak Minimum signal (AURWM) regime that accommodates heterogeneous signal strengths. In
Section 3, we point out a potential adverse effect of signal heterogeneity on model selection under
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AURWM regime. For demonstration, we present an illustrative example of marginal screening to sub-
stantiate our claim. In Section 4, we derive an impossibility result for BSS under the AURWM regime
and show that BSS is optimal in terms of the requirement on the minimum signal strength. In Section
5, we propose the aforementioned two-stage algorithmic framework and establish its optimality prop-
erty in terms of the constant in minimum signal strength. Finally, in Section 6, we carry out simulation
studies and numerically demonstrate the superiority of our method over other competing methods.

Notation. Let R and R+ denote the set of real numbers and the set of non-negative real numbers
respectively. Denote by R? the ?-dimensional Euclidean space and by R?×@ the space of real matrices
of order ? × @. For a positive integer  , denote by [ ] the set {1,2, . . . ,  }.

Regarding vectors and matrices, for a vector E ∈ R? , we denote by ‖E‖2 the ℓ2-norm of E. We use
I? ∈ R?×? to denote the ?-dimensional identity matrix. For a matrix � ∈ R?×? , we denote by � 9 and
0 9 the 9 th column and the transposed 9 th row of � respectively.

Throughout the paper, let $ (·) (respectively Ω(·)) denote the standard big-O (respectively big-
Omega) notation, i.e., we say 0= =$ (1=) (respectively 0= = Ω(1=)) if there exists a universal constant
� > 0, such that 0= ≤ �1= (respectively 0= ≥ �1=) for all = ∈ N. Sometimes for notational conve-
nience, we write 0= . 1= in place of 0= = $ (1=) and 0= & 1= in place of 0= = Ω(1=). We write
0= � 1= if 0= =$ (1=) and 0= = Ω(1=). We denote by ΩP the big-Omega in probability: for a sequence
of random variables {/=}=≥1 and a sequence of constants {0=}=≥1, -= = ΩP (0=) means that for any
Y0 > 0, there exist �Y0 > 0 and =Y0 ∈ N, both of which depend on Y0, such that

P( |-=/0= | < �Y0 ) ≤ Y0, ∀= ≥ =Y0 .

We use
p
→ and

d→ to denote convergence in probability and distribution respectively. Also we say - d
=.

for two random variables -,. if their distributions are equal. We denote by 1(·) the indicator function.
Finally, regarding probabilistic distributions, we use N(0,1) to denote the standard Gaussian dis-

tribution. We use N? (0,Σ) to denote the ?-dimensional Gaussian distribution with mean zero and
variance-covariance matrix Σ ∈ R?×? . We denote by Ber(c) the Bernoulli distribution with success
probability c ∈ [0,1].

2. Ultra rare and weak minimum signal regime

In this section, we focus on a specific asymptotic setup that allows heterogeneity among the sparse
signals in high dimension. Throughout our paper, we consider the following signal class:

M0
B := {V ∈ R? : ‖V‖0 = B, min

9∈S(V)
|V 9 | ≥ 0}.

Here 0 denotes the minimum signal strength of V. Note that the signal classM0
B only imposes a lower

bound for the minimum signal strength and thus allows arbitrarily large magnitudes across the true
signals. This implicitly accommodates heterogeneity in the signal, which is in sharp contrast with the
homogeneous signal setup considered by Genovese et al. (2012).

Now we are in a position to introduce the Asymptotically Ultra Rare and Weak Minimum signal
regime (AURWM), in which we mainly consider the signal class above with

0 =

(
2A log ?
=

)1/2
and B =$ (log ?), (2)
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where the parameter A controls the magnitude of the minimum signal strength. As we will see in Section
4, the model consistency of BSS will depend on the value of A . Besides, we set the sample size = as

= =
⌊
?:

⌋
, 0 < : < 1.

The condition B. log ? characterizes the ultra-rarity of the signals, which is common in genetic studies
such as GWAS (Yang et al., 2020). Unless stated otherwise, from now on our statistical analysis follows
the scalings of =, ?, B, 0 in this AURWM regime. We say a support estimator Ŝ achieves asymptotic
consistent recovery in the AURWM regime if

lim
?→∞

sup
V∈M0

B

PV (Ŝ ≠ S(V)) = 0. (3)

This paper mainly focuses on the criterion (3) to measure the quality of exact recovery performance for
an estimator Ŝ.

It is also worth mentioning that a relevant but different asymptotic setup is studied by Genovese et al.
(2012) and Ji et al. (2012). There the authors assumed a Bayesian model such that all the signals are
independent and identically distributed and that the sparsity B ∼ ?1−o for some o ∈ (0,1). Under such a
setup they obtained asymptotically tight phase transition boundaries with respect to Bayesian Hamming
risk, which partitions the A-o plane into three regions: (a) Region of exact recovery, (b) Region of
almost recovery, (c) Region of no recovery. We skip the details of these results for brevity. The major
differences between their setup and ours are twofold: (1) They essentially assume homogeneous signals;
(2) They assume B to grow in a polynomial fashion with respect to ?.

3. Marginal screening under heterogeneous signal

Marginal screening (MS) is one of the most widely used variable selection methods in practice. It
selects the variables with top absolute marginal correlation with the response. Formally, for any 9 ∈ [?],
write ` 9 := ->

9
./=. Given any possibly data-driven threshold g(-,. ), define the marginal screening

estimator as follows:

Ŝg := { 9 ∈ [?] :
��` 9 �� ≥ g(-,. )}. (4)

Note that ` 9 is essentially equivalent to the marginal correlation between - 9 and . because of isotropy
of - . Marginal screening has been applied in various fields for feature selection and dimension re-
duction, including biomedicine (Huang, McKeague and Qian, 2019, Leisenring, Pepe and Longton,
1997, Lu, 2005), survival data analysis (Hong, Kang and Li, 2018, Li et al., 2016), economics and
econometrics (Huang, Li and Wang, 2014, Wang et al., 2022).

Besides the broad applications, marginal screening has been shown to enjoy some desirable statistical
properties. Fan and Lv (2008) established the sure screening property of marginal screening under an
ultra-high dimensional setup, which serves as theoretical justification for MS to be used for dimension
reduction in many applications. Later, Genovese et al. (2012) showed that MS enjoys the minimax
optimal rate under Hamming loss with homogeneous signals. Nevertheless, as mentioned in Section
1, precise asymptotic characterization of the 0-1 loss of MS remains fairly underexplored under high
dimension, especially in the presence of heterogeneity in signal strength.
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3.1. Failure of MS in the AURWM regime

In this section, we study the 0-1 risk of the MS estimator. Define T := {Ŝg | g : R=×? × R=→ R+},
which is the class of all possible marginal screening estimators. Under the AURWM regime, we show
that MS fails to achieve exact model recovery in the minimax sense.

Theorem 3.1. Under the AURWM regime with = =
⌊
?:

⌋
for some : ∈ (0,1), none of the MS estimators

of the form (4) can achieve asymptotic exact recovery, i.e.,

lim
?→∞

inf
Ŝg ∈T

sup
V∈M0

B

PV (Ŝg ≠ S(V)) = 1.

To understand the main message of this theorem, it is instructive to compare it with the parallel
result in Genovese et al. (2012) with homogeneous signal. Specifically, Genovese et al. (2012) consider
a Bayesian setup where all the signal coefficients are independent and identically distributed Bernoulli
random variables (up to a universal constant). Under the AURWM regime, B =$ (log ?), which implies
that o = 1 in Theorem 10 of Genovese et al. (2012). Then Theorem 10 in Genovese et al. (2012) says
that when A > 1, MS enjoys consistency in terms of Hamming risk and thus 0-1 risk too. In contrast,
when we broaden the signal class toM0

B that embraces possibly heterogeneous signals, the same model
consistency fails to hold anymore for MS as shown in Theorem 3.1. This comparison clearly reveals
the curse of signal heterogeneity on MS. However, the above impossibility result does not contradict
Theorem 2 in Fletcher, Rangan and Goyal (2009). The result therein states that asymptotically A >
(1 + ‖V‖22) is sufficient for the model consistency of MS. However, in the AURWM regime, A can
be smaller than 1 + ‖V‖22, which would violate the previous condition. In fact, the proof of the above
theorem essentially relies on constructing a sequence of signal patterns that violates the condition A >
(1+ ‖V‖22) asymptotically. Thus, in a way, the proof techniques of Theorem 3.1 show that A > (1+ ‖V‖22 )
is also necessary for MS to achieve model consistency in the AURWM regime. Hence, this establishes
the sharpness of Theorem 2 of Fletcher, Rangan and Goyal (2009), at least in AURWM regime.

To see how signal heterogeneity hurts MS, for any 9 ∈ [?], write ` 9 as

` 9 = (V 9/=)
- 92

2 + -
>
9 (

∑
ℓ≠ 9

-ℓ Vℓ + �)/= =: ` (1)
9
+ ` (2)

9
. (5)

Here ` (1)
9
= =−1V 9

- 92
2 represents the marginal contribution from V 9 to ` 9 , and ` (2)

9
represents the

random error of ` 9 due to the cross covariance between - 9 and the other signals and noise. Suppose
there are spiky signals among {Vℓ }ℓ≠ 9 . Though E(` (2)

9
) = 0 regardless of the magnitude of V 9 , the

spiky signals may incur large variance of ` (2)
9

and overwhelm the magnitude of ` (1)
9

, which is the
essential indicator of the significance of V 9 . Consequently, for weak signals, one cannot tell if V 9 is
a true variable based on only ` 9 in the presence of spiky signals. For further understanding of this
phenomenon, it is instructive to note that

` 9 | - 9 ∼ N
©«1
=

- 92
2 V 9 ,

1
=2

- 92
2
©«1 +

∑
ℓ≠ 9

V2
ℓ

ª®¬ª®¬ .
If the non-zero components of V are arbitrarily large, then the variance of the above Gaussian distribu-
tion becomes extremely large. Therefore, even if V 9 = 0, there is a high probability that the correlation
` 9 will take larger values. Hence, there is a chance that the true variables associated with weak signals
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would lose to a noise variable, thereby ultimately leading to false discovery. To rigorously show these
claims, we construct a specific example as mentioned before and we study the asymptotic limits of
max 9∉S(V) `

(2)
9

and ` 90 , where 90 denotes the index of a weak signal. While the asymptotic analysis of
` 90 is rather straightforward, we borrow some non-trivial results from Fan, Shao and Zhou (2018) to
obtain the asymptotic properties of max 9∉S(V) `

(2)
9

. Details of the proof can be found in Section A of
the supplementary material.

In contrast, the AMP line of works on LASSO in Su, Bogdan and Candes (2017) and Wang, Yang
and Su (2022) show that under a certain asymptotic regime, signal heterogeneity helps LASSO in terms
of variable selection. Specifically, under i.i.d. Gaussian design and linear sparsity regime (i.e. B/?→ U

for some constant U ∈ (0,1)), Wang, Yang and Su (2022) show that higher signal heterogeneity delays
the inclusion of false variables in the LASSO solution path whereas, under signal homogeneity, false
discovery occurs in a much earlier stage in the solution path. The effect is somewhat opposite to what
we discussed for MS. The reason perhaps lies in the fact that LASSO tries to select the features that
are highly correlated with the shrinkage noise (see Su, Bogdan and Candes (2017)), whereas, MS
tries to select the features that have a higher correlation with the response. In the case of LASSO,
higher signal heterogeneity makes the magnitudes of the correlations between features and shrinkage
noise more distinguishable compared to a homogeneous signal pattern, thus preventing early false
discovery in the first case. In the case of MS, higher signal heterogeneity increases the variance of
`
(2)
9

, which essentially dwarfs the influence of weak signals and leads to false discovery. However,
these two phenomena are not directly comparable as the asymptotic settings are different for the two
cases. In fact, when B =$ (log ?), the effect of shrinkage noise is much smaller (see Section 3.2 in Su,
Bogdan and Candes (2017)) and such phenomenon does not occur for LASSO.

4. Best subset selection

Now we shift our focus to BSS, one of the most classical variable selection approaches. With the oracle
knowledge of true sparsity B, BSS solves for

V̂best ∈ arg minV∈R? , ‖V ‖0=B=
−1 ‖. − -V‖22 .

Define %D := -D (->D-D)
−1->D , which is the orthogonal projection operator onto the column space

of -D . The BSS above can be alternatively viewed as solving for

Ŝbest := arg minD⊆[?]: |D |=B=
−1.> (I= − %D). = arg maxD⊆[?]: |D |=B=

−1.>%D. . (6)

Using a union bound as in Wainwright (2009b) or Guo, Zhu and Fan (2020), one can show that there
exists a universal positive constant i (approximately equal to 0.618) such that whenever A > 4/(1− i),
BSS achieves model consistency, i.e.,

lim
?→∞

sup
V∈M0

B

PV (Ŝbest ≠ S(V)) = 0.

We emphasize that the requirement on A here is more stringent than needed: we will show that BSS
achieves model consistency whenever A > 1. Moreover, a direct application of Theorem 1 of Wang,
Wainwright and Ramchandran (2010) tells us that A ≥ 1 is necessary for model consistency in AURWM
regime. Therefore, our result (Theorem 4.1) essentially resolves the gap between the existing necessary
(A ≥ 1) and sufficient (A > 4/(1− i)) conditions on the parameter A by showing that A > 1 is sufficient.
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4.1. Exact support recovery of BSS

In the following theorem, we show that A > 1 is sufficient for BSS to achieve asymptotic exact recovery.
Recall that = =

⌊
?:

⌋
with 0 < : < 1.

Theorem 4.1. Let A > 1 and write X = A − 1. Then there exists a universal positive constant �0 such
that whenever

B < �0 min
{
2:,

X2

{(1 + 0.75X)1/2 + (1 + 0.5X)1/2}2

}
log ?,

we have

lim
?→∞

sup
V∈M0

B

PV (Ŝbest ≠ S(V)) = 0.

In order for BSS to achieve model consistency, we need to ensure that the maximum spurious cor-
relation, i.e., the correlation between the spurious variables and the response, is well controlled so
that the best subset does not involve any false discovery. One important ingredient of our analysis is
the asymptotic distribution of the maximum spurious correlation due to Fan, Shao and Zhou (2018),
based on which we can derive the sharp constant in the minimum signal strength for BSS to be model-
consistent. It is worth emphasizing that pursuing the exact asymptotic distributions is crucial to obtain
constant-sharp results; typically, standard non-asymptotic analysis can only yield optimal rates rather
than optimal constants. Detailed proof can be found in Section B.1 of the supplementary material.

Note also that Theorem 4.1 requires B to grow slowly, i.e., we need B =$ (log ?). Given that we have
at least (? − B)!/{B!(? − 2B)!} spurious models and that this number increases with respect to B when
B is small, a larger B implies a higher maximum spurious correlation due to randomness and thus a
thinner chance for the best subset to remain the true model.

Remark 4.2. The result of Theorem 4.1 can be extended to the sub-Gaussian case. In particular, if the
coordinates of G follow i.i.d. distribution with mean-zero and unite variance, and n is also distributed
as a mean-zero sub-Gaussian distribution with unit variance and independently from G, then BSS is
model consistent under a similar condition on sparsity B. Details can be found in Section B.2 of the
supplementary material.

In the next section, we show that A > 1 is the weakest possible requirement on the minimum signal
strength for BSS to achieve asymptotic model consistency.

4.2. Necessary condition for model consistency of BSS

In this section, we establish that under the AURWM regime, it is impossible for BSS to achieve model
consistency if A ≤ 1, i.e., A > 1 is necessary for BSS to exactly recover the true support of V. To begin
with, Theorem 1 of Fletcher, Rangan and Goyal (2009) in our setting yields that whenever A < 1,
i.e., A < 1 − X0 for some X0 ∈ (0,1), the 0-1 loss of BSS approaches to 1 as ? grows to infinity. This
immediately shows that if A < 1, BSS is not model consistent. However, to the best of our knowledge,
there is no existing research that has explored the compatibility of the condition A = 1 with the model
consistency of BSS. In the following theorem, we answer this question negatively.
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Theorem 4.3. Under AURWM regime (2) with A = 1 and = =
⌊
?:

⌋
for some : ∈ (0,1), BSS is unable

to achieve model consistency, i.e.,

lim
?→∞

sup
V∈M0

B

P(Ŝbest ≠ S(V)) >
1
10
.

The above theorem together with Theorem 1 of Fletcher, Rangan and Goyal (2009) shows that A > 1
is necessary for model consistency of BSS which is an improvement over the prior existing necessary
condition A ≥ 1. Therefore, These results along with Theorem 4.1, provide a complete characterization
of model consistency of BSS in terms of the magnitude of A and resolve the existing theoretical gap at
A = 1.

It is worth mentioning that a more general information-theoretic impossibility result is true for the
regime A < 1. In other words, if A < 1, all methods (including BSS) fail to achieve model consistency.
This claim is a direct consequence of Theorem 1 of Wang, Wainwright and Ramchandran (2010) that
states that the minimax 0-1 loss is bounded away from 0 as ? diverges to infinity, i.e.,

lim
?→∞

inf
Ŝ

sup
V∈M0

B

PV (Ŝ ≠ S(V)) ≥ 2,

where 2 > 0 is a universal constant and the infimum is taken over the class of all possible measurable
functions Ŝ : (-,. ) → {D ⊆ [?] : |D| = B}. The above inequality suggests that A ≥ 1 is a necessary
condition for exact support recovery. Combining this with Theorem 4.1 and Theorem 4.3, we can see
that BSS is almost optimal in terms of the requirement on the constant A in minimum signal strength to
achieve model consistency. More discussion on this can be found in Section B.4 of the supplementary
material.

Next, we briefly discuss the intuition behind the Theorem 4.3. In the regime A = 1, the main difficulty
for BSS arises from the fact that it gets confused between S(V) and its closest competitors. To be
precise, let 90 denote the index of a weak signal, i.e., V 90 = {(2A log ?)/=}1/2 with A = 1. Due to the
weak magnitude of V 90 , it becomes indistinguishable from 0 and as a result, BSS confuses S(V) with
other candidate models {D ⊂ [?] : S(V) \ D = { 90}, |D| = B} of size B that differ only at 90 with
non-negligible probability. To prove Theorem 4.3, we also analyze the asymptotic distribution of an
appropriate maximum spurious correlation statistics using results from Fan, Shao and Zhou (2018). We
point the readers to Section B.3 of the supplementary material for further details of the proof.

Comparison with previous literature: As pointed out before in Section 1, there is a sharp contrast
between the above results and the results in the previous works like Aeron, Saligrama and Zhao (2010),
Rad (2011), Wainwright (2009b), where the authors study the necessary and sufficient conditions for
model consistency of BSS in terms of sample complexity under different asymptotic regimes. For
example, under strong-noise regime, Aeron, Saligrama and Zhao (2010) showed that the necessary
and sufficient conditions for model consistency in terms of 0-1 loss are given by = = Ω(B log(?/B))
and 02 = Ω(log(? − B)), and BSS is optimal in the sense that it achieves exact recovery under these
conditions. For the fixed noise-variance regime, the results are different. Firstly, Wang, Wainwright and
Ramchandran (2010) showed that the following condition is necessary for any method to achieve exact
recovery:

= = Ω

(
B log(?/B)

log(1 + B02)
∨ log(? − B)

log(1 + 02)

)
, (7)

where D ∨ E := max{D, E}. Under the restriction that 0 = $ (1) and 0 = Ω(1/
√
B), which represents

strong-signal regime, Rad (2011) showed that BSS achieves model consistency under the necessary
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condition (7). In the general case, that is with no assumption on the joint behavior of (=, ?, B, 0),
Wainwright (2009b) established that = = Ω(max{B log(?/B), 0−2 log(? − B)}) is a sufficient condition
for model consistency of BSS. One can check that the previous condition matches with the condition in
(7) under the weak signal regime 0 =$ (1/

√
B). This indicates that BSS is also optimal in this regime

in terms of sample complexity. It is interesting to note that the AURWM regime (2) also falls under
this regime as 0 =$ (

√
(log ?)/=) � 1/

√
B, and = � ?: . However, all of these results fail to capture the

precise dependence on 0 in terms of sharp requirement on the constant A.

5. Achieving information-theoretic optimality with computational
efficiency

Despite the optimality of BSS in terms of model selection, its NP-hardness seriously restricts its prac-
tical applicability. To address the computational issue, we propose a two-stage algorithm framework
called ETS (Estimate then Screen) that combines an estimation step with a follow-up coordinate screen-
ing step. Under this framework, one has the flexibility to use any sensible algorithm in the first stage
that outputs an estimate with a good estimation guarantee for V. For example, one choice could be
the well-known iterative hard thresholding (IHT) algorithm (Blumensath and Davies, 2009) which
is a computational surrogate for BSS and enjoys a desirable estimation guarantee (Jain, Tewari and
Kar, 2014). Other choices may include algorithms like pathwise calibrated sparse shooting algorithm
(PICASSO) or prox-gradient homotopy (PGH) method that are known to produce good approximate
solutions for LASSO (see Xiao and Zhang (2013), Zhao, Liu and Zhang (2018)) in high-dimensional
setup. We show that in the AURWM regime, ETS enjoys the same selection optimality as BSS in terms
of the requirement on the minimum signal strength, i.e., ETS asymptotically achieves model consis-
tency whenever A is greater than the information-theoretic threshold 1, which is also the the optimal
requirement for BSS to achieve exact recovery.

The above framework is similar to the methodology introduced in Ndaoud and Tsybakov (2020). In
that paper, the authors used the square-root SLOPE estimator (Bogdan et al., 2015) for the estimation
step, and under i.i.d. Gaussian design they showed that their algorithm achieves model consistency
under the same sample complexity as BSS. However, they do not study optimal dependence on A ,
which is the main focus of our paper.

5.1. The ETS algorithm

In this section, we introduce our ETS algorithm (Algorithm 1) in detail. Given a partition parameter
0 < W < 1, ETS first splits the full sample (G8 ,.8)8∈[=] into two subsamples D1,D2 of respective sizes
=1 = bW=c and =2 = = − =1. Then ETS performs two main steps on these two sub-samples respectively:

1. Given an objective function 5=1 (·;D1) and a constraint set C ⊆ R? , in the estimation step, ETS
procures a close approximation to V by solving for an approximate solution to the optimization
problem

minimize\ ∈C 5=1 (\;D1) (8)

via a suitable iterative algorithm A(·, ·) that takes the objective function 5=1 (·;D1) and a set
of tuning parameters TA as inputs. In particular, in this step, ETS outputs an estimator V̂ :=
A( 5=1 (·;D1),TA) of the true signal vector V.

2. In the second step, ETS performs a coordinatewise screening based on D2 and V̂ to select the
true variables.
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Algorithm 1: ETS
Input: Data D = {(G8 ,.8) }=8=1, objective function 5=1 ( ·;D1) , partition parameter W , threshold parameter e ;

1. Randomly partition the whole dataset D into two disjoint subsets D1 = (- (1) ,. (1) ) and D2 = (- (2) ,. (2) ) ;
2.Apply the algorithm A to compute an approximate solution V̂ of the optimization problem (8) ;

3. Construct the statistics {Δ8 }
?

8=1 and thresholds {^e (- (2)8 ) }
?

8=1 using (9)-(10);
4. Finally compute the selector [̂ (-,. );
Output: The selector [̂ (-.. ) .

To elaborate more on the method, for ℓ ∈ {1,2}, let - (ℓ) ∈ R=ℓ×? and . (ℓ) ∈ R=ℓ denote the design
matrix and the response vector of the ℓth sub-sample respectively. ETS computes V̂ based on the first
sub-sample D1 := (- (1) ,. (1) ) by finding an approximate solution the optimization problem (8) via al-
gorithmA. In practice, there could be several choices for both the objective function 5=1 (·;D1) and the
algorithmA. For example, one of the most common choices is to consider the ℓ0-constrained squared-
error loss, i.e., 5=1 (\;D1) = =−1

1 ‖.
(1) − - (1)\‖22 with C = {\ ∈ R? : ‖\‖0 ≤ B}. In this case, a natural

choice for A is the IHT algorithm which is basically a projected gradient descent method. Another
popular choice for the objective function is the well-known ℓ1-regularized LASSO objective function
5=1 (\;_,D1) = =−1

1 ‖.
(1) − - (1)\‖22 + _ ‖\‖1 with C = R? and one can choose either PICASSO, PGH

or the composite gradient method proposed in Agarwal, Negahban and Wainwright (2012) as the al-
gorithm A. Besides these, another choice could be to solve the square-root LASSO problem (Bogdan
et al., 2015) via proximal-gradient descent algorithm proposed in Li et al. (2020).

Next comes the screening step of ETS. For each 8 ∈ [?], define

Δ 8 :=
-
(2)>
8

(
. (2) −∑

9≠8 -
(2)
9
V̂ 9

)
‖- (2)
8
‖2

(9)

and

^e (D) :=
0 ‖D‖2

2
+ e

2 log ?
0 ‖D‖2

, ∀D ∈ R=2 , (10)

where e > 0 is specified later. ETS selects the 8th variable if and only if |Δ 8 | > ^e (- (2)8 ). To see why
we can screen variables based on {Δ 8}8∈[?] , note that

Δ 8 = V8 ‖- (2)8 ‖2 +
-
(2)>
8

(∑
9≠8 -

(2)
9
(V 9 − V̂ 9 ) + �

)
‖- (2)
8
‖2

. (11)

A straightforward argument shows that conditioned on D1 and - (2)
8

, Δ 8 is distributed as:

Δ 8
�� (D1, -

(2)
8

) d
= V8

- (2)
8


2 +

{
1 +

∑
9≠8

(V 9 − V̂ 9 )2
}1/2

68 ,

where 68 ∼ N(0,1) and is independent of - (2)
8

. If estimation method performs well in the sense that
‖ V̂ − V‖2 is small, then for all 8 ∈ S(V), V8 ‖- (2)8 ‖2 becomes the dominant term in Δ 8 . In contrast,
for all 8 ∉ S(V), V8 ‖- (2)8 ‖2 = 0 and we thus expect Δ 8 to be small. This suggests the existence of a
threshold C (·) on (Δ 8)8∈[?] that distinguishes the true support S(V) from the irrelevant variables. We



Variable selection with heterogeneous signals 13

follow Ndaoud and Tsybakov (2020) to choose the threshold function in (10), which is shown to be a
reasonable choice to identify the true variables.

For each 8 ∈ [?], define [̂8 (-,. ) := 1{|Δ 8 | > ^e (- (2)8 )} and write

[̂(-,. ) := ([̂1 (-,. ), . . . , [̂? (-,. ))>.

The selector [̂(-,. ) is the final estimate of the support S(V) produced by the ETS algorithm. Algo-
rithm 1 shows the detailed steps of the ETS algorithm.

5.1.1. Model consistency of ETS

In this section, we establish theoretical guarantees for ETS-IHT. First, we introduce a technical as-
sumption that concerns how fast algorithm A can generate a good approximation of the true signal V.

Assumption 5.1. The following holds with a probability converging to 1 as ? diverges to infinity:
For any given tolerance level n > 0, there exists a suitable set of deterministic tuning parameters
TA such that the algorithm A requires no more than ) (n, ?, V) iterations to produce a solution
V̂ :=A( 5=1 (·;D1),TA) such that

V̂ − V2
2 ≤ n .

The above assumption essentially tells that the ) (n, ?, V)th iterate of algorithmA is already n-close
to V in squared ℓ2-distance with high probability for large enough ?. If n is small, then V̂ is a good
estimate of V and we can use it in the screening step to select the variables. Typically, as n decreases
towards 0, the iteration counts ) (n, ?, V) increases to infinity as higher accuracy generally demands
more computation. However, in many examples, as we will see in Section 5.1.2, ) (n, ?, V) depends
only poly-logarithmically on n−1, which alleviates the computational cost.

Next, we define the binary decoder of the true support S(V) as [V := (1{V1 ≠ 0}, . . . ,1{V? ≠ 0})>.
The following theorem shows that ETS can achieve exact recovery under suitable choices of tuning
parameters.

Theorem 5.2. Assume the condition in Assumption 5.1 hold and the sample size = =
⌊
?:

⌋
for some

: ∈ (0,1). Let A > 1 and write X = A − 1. Then, under AURWM regime (2), there exist universal positive
constants �1, �2 such that with overall iteration count no more than ) (�1X, ?, V) for algorithm A,
W ∈ (0, X/(8 + 8X)) and e = (1 + �2X)1/2, we have that lim?→∞ supV∈MB

0
PV ([̂ ≠ [V) = 0.

Note that as the signal strength parameter A approaches the information-theoretic boundary, i.e., as X
approaches 0, ETS may require more iterations to achieve model consistency as ) (�1X, ?, V) generally
increases as X decreases to 0. This is not surprising: intuitively, weaker signals are harder to identify
than strong ones.

Besides, ETS does not require the knowledge of the true sparsity B, but requires the knowledge of
0 in the second stage for accurate screening. If the true sparsity B is known, then we can enforce ETS
to select exactly B features as follows: Let |Δ | (<) denote the <th largest value of {|Δ 8 |}8∈[?] . For each
8 ∈ [?], define

[̂8 (-,. ; B) = 1{|Δ 8 | ≥ |Δ | (B) }. (12)

Hence [̂(B) := ([̂1 (B), . . . , [̂? (B))> selects exactly B features and the knowledge of 0 is not required in
this case. The following corollary shows that under the same conditions of Theorem 5.2, [̂(B) achieves
model consistency.
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Corollary 5.3. Assume the condition in Assumption 5.1 holds and the sample size = =
⌊
?:

⌋
for some

: ∈ (0,1). Let �1 be the same universal constant as in Theorem 5.2, A > 1 and write X = A − 1. Then,
under AURWM regime (2), with overall iteration count no more than ) (�1X, ?, V) for algorithmA and
W ∈ (0, X/(8 + 8X)), we have that lim?→∞ supV∈M0

B
PV ([̂(B) ≠ [V) = 0.

Remark 5.4. The algorithm can be made adaptive to 0 in some certain regime of A. In particular,
if there exists a known positive constant X∗ such that A > 1 + X∗, then a threshold as in (10) can be
constructed without the knowledge of 0 or A so that ETS still enjoys model consistency. In this case, X∗
can be arbitrarily small, and as long as X∗ is known, an adaptive choice of threshold exists.

Detailed proofs of Theorem 5.2, Corollary 5.3 and Remark 5.4 can be found in Section C of the
supplementary materials. Next, we will discuss some concrete examples of ETS methods that enjoy
model consistency.

5.1.2. Examples of ETS methods

In this section, we will present a few examples of ETS methods. In particular, we will consider the
ETS methods with different choices for the base algorithm A: (1) the IHT algorithm which solves
the ℓ0-constrained optimization problem, (2) the PICASSO and PGH algorithm which solves the ℓ1-
regularized optimization problem. We will show that Assumption 5.1 is met in all these cases and we
will explicitly derive the dependence of ) (n, ?, V) on (n, ?, V). Hence, this will automatically establish
the model consistency of these three variants of the ETS method due to the result in Theorem 5.2.
For clarity, depending on the algorithm used in the estimation step, we will refer to these methods
as ETS-IHT, ETS-PICASSO, and ETS-PGH. To be self-contained, we describe the steps of IHT in
Algorithm 2. However, we do not add the description of PICASSO and PGH as those are too involved
to add in this paper. Detailed descriptions of PICASSO and PGH can be found in Zhao, Liu and Zhang
(2018) and Xiao and Zhang (2013) respectively. We remind the readers that throughout the discussion
in this section, we will consider the AURWM regime defined in (2) with sample size = =

⌊
?:

⌋
for

some : ∈ (0,1). More details and proofs related to the examples can be found in Section C.4 of the
supplementary material.

Solving ℓ0-constrained problem: As discussed in Section 5.1, In this case, the optimization problem
(8) takes the form

minimize\ :‖\ ‖0≤B=
−1
1

. (1) − - (1)\2

2
. (13)

We consider the ETS-IHT in this case which uses IHT (Algorithm 2) to obtain an approximate solution
to the above optimization problem. In this case TA = {B̂, ℎ}, where B̂ is the sparsity level and ℎ is the
gradient step-size. Following the discussion of Section 4 in Jain, Tewari and Kar (2014), in particular,
using Theorem 3 of that paper we have that the final output V̂ of IHT satisfies

V̂ − V2
2 ≤ n with

probability converging to 1, when B̂ = 2592B, ℎ ≤ 8/27 and ) (n, ?, V) =$ (log ? + log((1 + ‖V‖∞)/n)).
Hence, the conditions in Assumption 5.1 hold. Moreover, Theorem 3 of Jain, Tewari and Kar (2014)
suggests that if 5=1 ( V̂;D1) − min\ :‖\ ‖0≤B 5=1 (\;D1) ≤ (n/16), then for large values of ?, we have
‖ V̂ − V‖22 ≤ n . Hence, it is enough to output an estimator V̂ which incurs a sub-optimality gap of the
order $ (n).

Solving ℓ1-regularized problem: In this case, the objective function is

5=1 (\;_,D1) = =−1
1

. (1) − - (1)\2

2
+ _ ‖\‖1 ,
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Algorithm 2: IHT
Input: Objective function 5 , sparsity level B̂, step size ℎ ;
V (0) = 0;
C = 0 ;
while not converged do

V (C+1) = %0
B̂
(V (C) − ℎ∇\ 5 (VC )), where %0

B̂
(E) = arg minI:‖I ‖0=B̂ ‖E − I‖2;

C← C + 1
end
Output: V̂ = V (C) .

and C = R? . For brevity of discussion, we only consider PICASSO and PGH as the candidate methods
for solving the above optimization problem. We omit the details of the tuning parameters for these
algorithms in this paper, but details of those can be found in Zhao, Liu and Zhang (2018) and Xiao and
Zhang (2013) respectively.

• (ETS-PICASSO): For ETS-PICASSO, Theorem 3.12 of Zhao, Liu and Zhang (2018) yields that
with ) (n, ?, V) . (log ?)3 (log ? + log ‖V‖∞) (log log ? + log(n−1 ∨ �1))2 and the regularization
parameter _ = �2{(log ?)/=1}1/2 for appropriate absolute constants �1,�2 > 0, the approximate
solution V̂ has the property 5=1 ( V̂;_,D1) − 5=1 ( V̂! ;_,D1) =$ (n) with probability converging to
1, where

V̂! := arg min\ 5=1 (\;_,D1).

Then, the strong convexity property of the Gram matrix - (1)>- (1)/=1, and the good estimation
property of V̂! yields that ‖ V̂ − V‖22 ≤ n .
• (ETS-PGH): For ETS-PGH, Theorem 3.2 of Xiao and Zhang (2013) yields that with ) (n, ?, V) =
$ ((log ? + log ‖V‖∞) log log ? + log(n−1 ∨ �̃1)) and _ = �̃2{(log ?)/=1}1/2 for appropriate abso-
lute constants �̃1, �̃2 > 0, the approximate solution V̂ satisfies 5=1 ( V̂;_,D1) − 5=1 ( V̂! ;_,D1) =
$ (n) with probability converging to 1. Then, again by the strong convexity property of the Gram
matrix - (1)>- (1)/=1, and the good estimation property of V̂! , it follows that ‖ V̂ − V‖22 ≤ n .

It is worth mentioning that the choice of PICASSO or PGH is not special for solving the ℓ1-regularized
problem. As long as the base algorithm A outputs V̂ which enjoys a sub-optimality gap of the order
$ (n) in the functional value, it follows that

V̂ − V2
2 ≤ n . We formalize this result in the next proposi-

tion.

Proposition 5.5. Consider the AURWM regime in (2) and let the sample size = =
⌊
?:

⌋
for some : ∈

(0,1). Then, there exists a positive universal constant �3 such that for all n ∈ (0,�3), the following
holds with probability at least 1 − 3?−0.5 for large enough ? and _ = 8{(log ?)/=1}1/2:

5=1 ( V̂;_,D1) − 5=1 ( V̂! ;_,D1) ≤ n/�3 implies
V̂ − V2

2 ≤ n .

The proof of the above result is deferred to Section C.4 of the supplementary material. The above
proposition basically shows that in the case of solving the LASSO problem, if V̂ can be produced
efficiently, then an optimality-gap of �−1

3 n in the functional value is enough to guarantee that V̂ falls
inside the n1/2 neighborhood of the true parameter V, i.e., the conditions in Assumption 5.1 hold with
probability at least 1 −$ (?−0.5). Hence, this provides us the flexibility to use any sensible algorithm
for the ℓ1-regularized problem such as the composite gradient method proposed in Agarwal, Negahban
and Wainwright (2012).
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5.2. Discussion on information-theoretic optimality, statistical accuracy and
computational efficiency

In the previous section, we have shown that ETS achieves the model consistency under the same
information-theoretic optimal requirement on A with computational expediency. However, the com-
putational efficiency of ETS heavily depends on the magnitude of A. Theorem 5.2 suggests that as A
approaches the information-theoretic boundary 1, the demand on the number of iterations in the estima-
tion step increases. It could be possible that the computational load of ETS surpasses the computational
load of BSS when A is extremely close to 1 for a fixed ambient dimension. Hence, even though ETS
is able to recover the weak signals asymptotically (as = approaches infinity) under the optimal require-
ment on A , it may suffer from high computational costs. Moreover, as A approaches 1, it turns out that
the decaying rate of the error probability worsens. This fact can be verified from the rates obtained
in the proof of Theorem 5.2 in the supplementary material and we do not include those in the main
theorem for conciseness. This suggests that weak signals also hurt the statistical power or accuracy of
the ETS methods. Hence, both statistical accuracy and computational efficiency suffer as the signals
get weaker.

6. Numerical experiments

In this section, we first numerically investigate1 the probability for MS to achieve exact recovery of
the true model with growing ambient dimension ? under both homogeneous and heterogeneous sig-
nal setups. Our results show that while MS exhibits model consistency under the homogeneous signal
regime, it completely fails to do so under the heterogeneous signal regime, which is consistent with
Theorem 3.1. We then conduct simulation experiments to demonstrate the superiority of ETS methods
over competing methods including LASSO and MS as signal strength grows or signal heterogeneity
grows. For ETS methods, we only include ETS-IHT and ETS-PICASSO methods. For ETS-PICASSO
we used picasso package in R which uses the PICASSO method for solving the LASSO problem.
To this end, we mention that we do not numerically compare exact BSS in this section mainly due to
computational issues. In most of our simulation setups, we consider ? in thousands and exact BSS suf-
fers from high computational costs in such regimes, which is also a limitation of the commercial solver
Gurobi (Hastie, Tibshirani and Tibshirani, 2020). Bertsimas and Parys (2020), Hazimeh, Mazumder
and Saab (2022), Xie and Deng (2020) have made efforts to overcome this computational bottleneck
by considering different methods for solving approximate versions of BSS. In particular, they all con-
sider different regularized versions of BSS which is beyond the scope of this paper, and hence we do
not include those in the numerical experiments. Instead, we focus on LASSO and ETS, both of which
are two different computational surrogates of the BSS problem.

6.1. Exact recovery performance of MS

In Figure 1, we demonstrate the asymptotics of MS under both homogeneous and heterogeneous sig-
nal patterns. We consider ? ∈ {1000,2000, . . . ,8000} and signal strength parameter A ∈ {2,3,4,5,6}.
We set B = b2 log ?c and = =

⌊
?0.9⌋ . We let g(-,. ) in (4) be equal to the Bth largest value of

{|`1 | , . . . ,
��`? ��}, so that MS always chooses a model of size B. For the homogeneous signal setup,

we consider V with ‖V‖0 = B and V 9 = 0 for all 9 ∈ S(V), where 0 is defined in (2). This implies that

1Codes are available online: Github link

https://github.com/roysaptaumich/Estimate-Then-Screen-


Variable selection with heterogeneous signals 17

the SNR varies between 0.19 and 2.15 across different choices of (A, ?). For the heterogeneous signal
setup, we consider V with (B − 1) active coordinates equal to 0 and one “spiky” coordinate equal to
{10 − (B − 1)02}1/2. This ensures that the SNR is fixed at 10 for all choices of A, ?.

Figure 1(a) shows that under homogeneous signal MS is able to recover the exact model with prob-
ability converging to 1 as ? grows. In contrast, Figure 1(b) shows that under heterogeneous signal MS
never achieves exact model recovery: plots for all values of A are at level 0. Such a contrast corroborates
Theorem 3.1: signal spikes can give rise to substantial spurious correlation and jeopardize the accuracy
of MS.
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(a) Proportion of exact recovery under weak homoge-
neous signal. (0.19 ≤ SNR ≤ 2.15)

1000 2000 3000 4000 5000 6000 7000 8000
p

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 e
xa

ct
 re

co
ve

ry

r = 6
r = 5
r = 4
r = 3
r = 2

(b) Proportion of exact recovery under heterogeneous
signal. (SNR = 10)

Figure 1: Asymptotics of MS with growing dimension ?.

6.2. Effect of growing signal strength

Here we numerically compare the probability of exact support recovery of ETS with those of LASSO
and MS as signal strength parameter A grows. We investigate both homogeneous and heterogeneous
signal patterns. We set ? = 2000, B ∈ {13,52} and = =

⌊
?0.9⌋ = 935. We set signal strength parameter

A ∈ {1.5,2,2.5, . . . ,9} in (2). The support S is chosen uniformly over all the size-B subsets of [?], and
each support coordinate of V is chosen as follows:

V 9 = (1 − 1 9 ) (1 + /2
9 /=)1/20 + 1 9A1/2 ∀ 9 ∈ S,

where (/ 9 ) 9∈S
8.8.3.∼ N(0,1), and where (1 9 ) 9∈S

8.8.3.∼ Ber(c) with c ∈ {0,0.2}. c = 0 corresponds to
the homogeneous signal pattern, and c = 0.2 corresponds to the heterogeneous signal pattern, where
spiky signals are present with probability 0.2. Each entry G8 9 of the design matrix - is generated
independently from N(0,1).

In this experiment, we grant all the approaches with the knowledge of B, so that the comparison is
fair. Using this oracle knowledge, we only look at the solutions of the aforementioned three methods
with sparsity exactly equal to B. Specifically, for LASSO, we look at the solution path and select the
model of size exactly equal to B. For MS, we just select the top B variables corresponding to the largest
absolute values of `’s. For ETS, we do not split data for estimation and screening separately; instead
we use the full data in both steps. Specifically, we replace - (1) and . (1) with - and . respectively in
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(a) Homogeneous signal pattern (c = 0, B = 13)
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(b) Heterogeneous signal pattern (c = 0.2, B = 13)
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(c) Homogeneous signal pattern (c = 0, B = 52)
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(d) Heterogeneous signal pattern (c = 0.2, B = 52)

Figure 2: Plot of the proportion of exact recovery for varying A. (Gaussian case)

(13) and replace - (2) and . (2) with - and . respectively in (9). We set gradient step size ℎ = 0.5 in
IHT. We choose projection size B̂ by cross-validation in terms of mean squared prediction error. Lastly,
for selecting exactly B features we use (12) in the screening stage of ETS. It is worthwhile to mention
that from an application point of view, incorporating data splitting in ETS is not necessary as we are
only interested in identifying the active signals, which is akin to point estimation. Also, given the fact
that =� ? in a high dimensional regime, using the full sample in both the estimation and screening
step delivers greater sample efficiency and provides better inference.

Next, for each choice of A, we run LASSO, MS, and ETS over 200 independent Monte Carlo exper-
iments to compute the empirical probability of exact recovery. Figure 2 presents the results. We make
the following important observations:

1. All three methods enjoy a higher chance of exact support recovery as the signal strength grows.
2. MS completely fails to achieve exact support recovery when B becomes large (compare panels (a)

and (c)) or the signal becomes heterogeneous (compare panels (a) and (b)).
3. LASSO and ETS algorithms are insensitive to the heterogeneity of the signal. However, LASSO

suffers from larger sparsity, while ETS algorithms are much more robust against it.
4. Overall, ETS is the best among all the three methods in terms of exact support recovery. However,

ETS-IHT is somewhat better than ETS-PICASSO, and the difference between their performance
is more prominent when B is large.
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Remark 6.1. Genovese et al. (2012) established model consistency of LASSO under rare and weak
signal regime for i.i.d. Gaussian design under a different asymptotic setting and the scaling B =$ (log ?)
is a special case of their setting. However, they assume homogeneous signal, and our simulation results
in Figure 2(a) concur with their theoretical findings. However, the performance of LASSO degrades
significantly for larger sparsity, even under homogeneous signal (see Figure 2(b)), which perhaps shows
the limitations of the results in Genovese et al. (2012) for realistic values of ? and B. In contrast,
Wainwright (2009a) obtains the sharpest possible results for model consistency of LASSO under a
very general setting. To be precise, under i.i.d. Gaussian design and for general combination of (=, ?, B),
the paper shows that LASSO achieves model consistency for 0 = Ω(_), where _ is the regularization
parameter and _ & {(log ?)/=}1/2. Hence, it is also valid for rare and weak signal regimes and also
accommodates heterogeneity in the signal when _ � {(log ?)/=}1/2. However, those are tight only up
to multiplicative constants. Moreover, as pointed out in Section B of Wainwright (2009a), the model
consistency of LASSO depends on whether or not the following is achieved:

= > B log(? − B) + _−2 log(? − B).

The above condition is harder to satisfy if B becomes large keeping other parameters fixed, which could
be a possible explanation for the phenomenon observed in the third point of the prior observations.
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(a) Homogeneous signal pattern (c = 0, B = 13)
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(b) Heterogeneous signal pattern (c = 0.2, B = 13)
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(c) Homogeneous signal pattern (c = 0, B = 52)
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(d) Heterogeneous signal pattern (c = 0.2, B = 52)

Figure 3: Plot of the proportion of exact recovery for varying A . (non-Gaussian case)
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To demonstrate the effectiveness of the ETS framework beyond Gaussian design, we also evaluate the
performance of ETS-IHT and ETS-PICASSO under the case where the entries of - are generated from
Unif(−

√
3,
√

3) in an i.i.d. fashion with the same choices of (=, ?, B) as in the Gaussian example. Based
on Figure 3, in this case, ETS also enjoys superior performance than LASSO and MS. Moreover, we
observe a similar effect of signal heterogeneity and sparsity on the model recovery rate of the methods.
This provides empirical evidence in favor of the good model selection performance of ETS under sub-
Gaussian design.

6.3. Effect of growing heterogeneity

In this numerical experiment, we study the effect of growing heterogeneity on ETS-IHT, LASSO and
MS. We set ? = 2000, B = 13, = =

⌊
?0.9⌋ = 935 and A ∈ {2,6} in (2). Next, we introduce nspike, the

number of “spiky” signals in S. We vary nspike in {0} ∪ [6]. The case nspike = 0 corresponds to the
homogeneous signal setup where the true signals are set as 0 uniformly. For nspike > 0, we randomly
set (B − nspike) signals in S to be equal to 0 and the remaining signals to be equal to 0spike, which is
defined as

0spike :=
{
(2 − B02)

nspike
+ 02

}1/2
.

Such a choice of 0spike ensures that the SNR always equals 2 whenever nspike > 0. We perform ETS-
IHT, LASSO, and MS over 200 Monte Carlo simulations for each choice of A and nspike to obtain the
empirical probability of exact support recovery. Similarly to the previous sections, we assume that the
true sparsity B is known and we apply the three methods in the same fashion as before.

Figure 4 shows again the detrimental effect of heterogeneity on MS in terms of exact recovery. In
both panels, we see a significant drop in the proportion of exact recovery for MS when nspike changes
from 0 to 1. This is consistent with the theory in Section 3. However, in Figure 4(b) we see that the
proportion of exact recovery is slowly increasing as nspike grows from 1 to 6. This is because as nspike
increases, 0spike monotonically decreases, so that the signals become more homogeneous. MS is then
able to recover the exact model more frequently. We do not see a similar phenomenon in Figure 4(a)
because 0spike is too large. Another important observation is that while ETS-IHT and LASSO are both
performing nearly perfectly when A = 6, ETS-IHT significantly outperforms both LASSO and MS when
A = 2. Therefore, ETS-IHT is again the overall winner.

7. Conclusion

In this paper, we study exact support recovery in high-dimensional sparse linear regression with in-
dependent Gaussian design. We focus on the AURWM regime that not only accommodates rare and
weak signals as the ARW regime but also allows heterogeneity in the signal strength. Our first the-
oretical result (Theorem 3.1) shows that marginal screening fails to achieve exact support recovery
under the AURWM regime. The main reason is that the presence of “spiky” signals increases the
maximum spurious marginal correlation, thereby blinding the marginal screening procedure to weak
signals. Therefore, one needs to be cautious with usage of marginal screening for variable selection in
practice.

In contrast, we show that BSS is robust to signal spikes and is able to achieve model consistency
under the AURWM regime with the optimal requirement on signal strength (Theorem 4.1, 4.3). The
primary reason behind this is that, unlike MS, BSS takes into account multiple features simultaneously
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Figure 4: Plot of proportion of exact recovery with varying nspike.

and thus selects variables based on their capability of fitting the residualized responses given the other
variables rather than the responses themselves. Therefore, spiky signals do not affect BSS: They are
very likely to be in plausible candidate models in the first place and their effect on the response has been
removed in the residualization procedure. Given the recent computational advancements in solving
BSS, our positive result on BSS makes it more appealing from an application point of view.

However, it is worth mentioning that even with modern advances in optimization, BSS suffers from
high computational costs when the ambient dimension is extremely high. To address this issue, we
propose a computationally tractable two-stage method ETS that delivers essentially the same optimal
exact recovery performance as BSS (Theorem 5.2). Similar to BSS, ETS seeks for the features that
exhibit high explanation power for the residuals from the model that excludes these features themselves
(see (9)). Therefore, ETS is robust to spiky signals. This fact together with the slowly growing sparsity
condition in (2) yields the optimal exact recovery accuracy of ETS.

Our work naturally raises several important questions for future research. One question is whether
similar optimality results hold for BSS and ETS when the sparsity B grows faster than log ?. The same
question can also be asked for correlated random design. Another direction of our interest is studying
the problem of exact recovery in a distributed setting where data are stored at different places and
communication between them is restricted.
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discuss about Remark 5.4 and prove some important results related to the examples of ETS.

Appendix A: Proof of Theorem 3.1

Consider a MS procedure Ŝg ∈ T . Now, there are mainly two steps of the proof:

1. Upper bound the probability of recovery in terms of the probability of an event depending only
on max 9∈S2

��` 9 �� and min 9∈S
��` 9 ��.

2. Find the asymptotic limits of the above random variables and find the limiting probability of the
aforementioned event.

To start with note that

PV (Ŝg = S(V)) = PV
(
max
9∈S2

��` 9 �� < g(-,. ) ≤ min
9∈S

��` 9 ��) ≤ P (
max
9∈S2

��` 9 �� < min
9∈S

��` 9 ��) .
Recall that for for 9 ∈ [?] we have

` 9 =

{
V 9

- 92
2 /= +l 9

- 92 6 9/= if 9 ∈ S(V)
l 9

- 92 6 9/= if 9 ∉ S(V),

where l2
9
= 1 +∑

:≠ 9 V
2
:

and 6 9 = ->9 (
∑
:≠ 9 -: V: + �)/(l 9

- 92) ∼ N(0,1). Thus we have

PV (Ŝg = () ≤ PV
(
max
9∈(2

l 9
- 92

��6 9 ��/(2= log ?)1/2 < min
9∈(
|V 9

- 92
2 +l 9

- 92 6 9 |/(2= log ?)1/2
)
.

(1)
The right-hand side of Equation (1) does not depend on Ŝg hence the above inequality is valid uni-

formly over the class T . Now choose a sequence {2?}∞?=1 such that lim?→∞ 22
?/A ≥ 1 . Next construct

a sequence of V (?) in the following manner:

• Consider the set S0 = {1, . . . , B} ⊆ [?] with B =$ (log ?).
• Set V (?)1 = 2? . For all other 8 ∈ S0 \{1} set V (?)

8
= 0 = (2A (log ?)/=)1/2.

1
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• Set V (?)
8

= 0 if 8 ∉ S0.

In this setup we have l 9 ∼ (1 + 22
?)1/2 for all 9 ≠ 1. Now fix :0 ∈ S0 \{1} (say :0 = 2). From Equation

(1) it can be concluded that

sup
Ŝg ∈T

PV (?) (Ŝg = S0)

≤ PV (?)
(
max
9∈(2

l 9
- 92

��6 9 ��/(2= log ?)1/2 < |V:0

-:0

2
2 +l:0

-:0


2 6:0 |/(2= log ?)1/2

)
.

Also note that l 9 > (1 + 22
?)1/2 for all 9 ∈ S20 . Using these facts, we get

1
(1 + 22

?)1/2
max
9∈S20

l 9

- 92

��6 9 ��
(2= log ?)1/2

≥ min
9∈S20

- 92

=1/2 max
9∈S20

��6 9 ��
(2 log ?)1/2

.

Now, note that for 9 ∈ S20 , we have all l2
9
= 1 + ‖V‖22 and

6 9 =
->
9
I- 92

,

where I = (∑:∈S0
-: V: + �)/l 9 ∼ N= (0, I=) and it is independent of {- 9 } 9∈S20 . Thus, 62

9
=

% 9 I2
2,

where % 9 is the orthogonal projection operator onto the subspace span{- 9 }. This shows that the random
quantity max 9∈S20 6

2
9

is the scaled version of maximum spurious correlation (defined in Section 7.2 of
Fan, Shao and Zhou (2018)) between {- 9 } 9∈S20 and the noise I with sparsity level 1, i.e., max 9∈S20 6

2
9
=

='̂2
= (1, ? − B), where

'̂= (1, ? − B) := sup
U:‖U ‖2=1, ‖U ‖0=1

1
=

=∑
8=1

U> (I8G8,S20 )

(U>�̂=,S20 U)
1/2
,

with �̂=,S20 = =
−1 ∑=

8=1 G8,S20 G
>
8,S20

. Thus, following the arguments of Fan, Shao and Zhou (2018), in
particular, using Theorem 3.1 and Remark 3.3 of Fan, Shao and Zhou (2018) we have,

max
9∈S20

��6 9 ��
(2 log ?)1/2

?
→ 1.

Using the above fact and Lemma 3 from Fletcher, Rangan and Goyal (2009), we get

1
(1 + 22

?)1/2
max
9∈S20

l 9

- 92

��6 9 ��
(2= log ?)1/2

≥ min
9∈S20

- 92

=1/2 max
9∈S20

��6 9 ��
(2 log ?)1/2

?
→ 1.

Now, recall that V:0 = {2A (log ?)/=}1/2 and and define DA := 1
2 (1 +

A1/2
√

1+A
) < 1 .Thus we have the fol-

lowing:

P( |V:0

-:0

2
2 +l:0

-:0


2 6:0 |/{(1 + 2

2
?) (2= log ?)}1/2 < DA ) → 1.
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This tells that,

lim
?→∞

sup
Ŝg ∈T

inf
V∈M0

B

PV (Ŝg = S(V)) ≤ lim
?→∞

sup
Ŝg ∈T

PV (?) (Ŝg = S0) = 0.

This finishes the proof.

Appendix B: Best subset selection

In this section, we prove the main results related to BSS.

B.1. Proof of Theorem 4.1

In this proof, we reparametrize X by 8X0 for algebraic convenience. The main result can be salvaged
by back substituting 8X0 by X in all the main equations in this section. Also, for brevity of notation, in
this proof we use Ŝ and S to denote that oracle BSS estimator and S(V) respectively. We highlight the
three main steps of the proof:

1. Convert the BSS problem in the problem of selecting the model with maximum spurious corre-
lation.

2. Use results from Fan, Shao and Zhou (2018) to find the asymptotic distribution of the maximum
spurious correlation statistics.

3. Use the asymptotic distribution along with non-asymptotic concentration inequalities to upper
bound the error probability.

Recall that BSS is defined as

Ŝ = arg maxD, |D |=B ‖%D. ‖22 = arg minD: |D |=B ‖(I= − %D). ‖22 .

Thus from the above definition we have the following equality:

P(Ŝ ≠ S) = P
(
‖%S. ‖22 < max

D≠S
‖%D. ‖22

)
.

Now we will try to understand how the quantity ‖%S. ‖22 behaves asymptotically. First it is easy to see
that %S. =

∑
9∈S - 9 V 9 + %S� . Note that

∑
9∈S - 9 V 9 = ‖V‖2 Ỹ where Ỹ ∼ N= (0, I=) and independent of

the noise I. Hence we up with the following:

‖%S. ‖22 =
∑
9∈(

- 9 V 9

2

2
+ 2�>%S

©«
∑
9∈(

- 9 V 9
ª®¬ + �>%S�

=

∑
9∈(

- 9 V 9

2

2
+ 2�> ©«

∑
9∈(

- 9 V 9
ª®¬ + �>%S�

= ‖V‖22 ‖Ỹ‖
2
2 + 2 ‖V‖2 �>Ỹ + �>%S�.

Recall that
��V 9 �� ≥ {2A (log ?)/=}1/2 for all 9 ∈ S. This is presumably the hardest setup as increas-

ing signal strength can only decrease the error probability. Then ‖V‖22 ≥ (2AB log ?)/=. also note that
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�>%S� ∼ j2
B . Hence we have ,

‖%S. ‖22
B log ?

≥ 2A
‖Ỹ‖22
=
+ 2

(
2A

B log ?

)1/2
Ỹ>�

=1/2 +
�>%S�

B log ?
p
−→ 2A.

Thus lim?→∞ P(Ŝ ≠ S) ≤ P
(
2A ≤ lim sup?→∞maxD≠S ‖%D. ‖22 /(B log ?)

)
. The limiting behaviour

of the obtained maximal process turns out to be very challenging to analyze and hence we do not
directly study this maximal process. Instead we focus on a related maximal process (will be defined
shortly) derived from the earlier one and we use the results from Fan, Shao and Zhou (2018) to study its
asymptotic behaviour. Now let us denote the set S∩D by I0 andD \S by I1, i.e.,D = I0∪I1. Next
define the class J I0 = {I1 ⊆ [?] : I1∩( = ∅, |I1∪I0 | = B} for each I0 ⊂ (. Note that 0 ≤ |I0 | ≤
B − 1 from the construction (if |I0 | = B then D = S). The random variable of interest can be rewritten
as follows:

max
D≠S

‖%D. ‖22
B log ?

= max
I0:I0⊂S

max
I1:I1∈JI0

%I0 ∪ I1.
2

2
B log ?

.

Using union bound we get,

P(Ŝ ≠ S) ≤
∑
I0⊂S

P

(
max

I1:I1∈JI0

%I0 ∪ I1.
2

2
B log ?

>
‖%S. ‖22
B log ?

)
. (2)

Now fix a subset I0 of the true support S. Similar to previous section define .̃ =. − -I0 VI0 and this
independent of the features in I0∪I1. Also we have%I0 ∪ I1.

2
2 =

%I0 ∪ I1.̃
2

2 +
-I0 VI0

2
2 + 2V>I0

->I0
.̃ ,

‖%S. ‖22 =
%S.̃2

2 +
-I0 VI0

2
2 + 2V>I0

->I0
.̃ .

Thus the summands in the right hand side of (2) can be written as the probability of the event
{maxI1:I1∈JI0

%I0 ∪ I16
2

2 /(B log ?) > ‖%S6‖22 /(B log ?)}, where 6 := (1 +
VS \ I0

2
2)
−1/2.̃ . Note

that 6 ∼ N= (0, I=) and is independent of the features in D. Now fix a specific I0. In the analysis we
encounter the maximal process

max
I1:I1∈JI0

%I0 ∪ I16
2

2
B log ?

,

Now consider the set of indices �I0 = ({1, · · · , ?} \ S) ∪ I0. Hence it is easy to see that ?̃ :=
���I0

�� =
? − B + |I0 |. Without loss of generality, let �I0 = {1, . . . , ?̃}. Also define B̃ := B − |I0 |. Let the set
VI0 = {U ∈ R? : ‖U‖0 = B, ‖U‖2 = 1,I0 ⊆ S(U), U�2

I0
= 0}. Here U� denotes the sub-vector of U

corresponding to the indices in � ⊆ [?]. Next we will focus on the random variable,

!̂= := !̂= ( B̃, ?̃) = sup
U∈VI0

1
=1/2

=∑
8=1

U> (68G8)
(U>�̂=U)1/2

, (3)
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here �̂= = 1
=

∑=
8=1 G8G

>
8

. Now recall thatD = I0∪I1 for allD ≠ S with |D| = B. To see the connection,
first note that the above optimization problem can be viewed as the following:

!̂= = max
I1∈JI0

max
U∈VI0 ∪I1

U>D (
∑=
8=1 68G8,D/=1/2)

{U>D (�̂=,D D)UD}1/2

= max
I1∈JI0

{
(
=∑
8=1

68G8,D/=1/2)>�̂−1
=,D D (

=∑
8=1

68G8,D/=1/2)
}1/2

= max
I1∈JI0

{6>-D (->D-D)
−1->D6}

1/2

= max
I1∈JI0

%I0 ∪ I16


2 .

Thus it is essential to study the asymptotic property of !̂=. Now we define the standardized version of
!̂= as follows

!= := != ( B̃, ?̃) = sup
U∈VI0

1
=1/2

=∑
8=1

U> (68G8).

Let ` = (/1, · · · , / ?̃) be ?̃−variate Gaussian random variable with covariance matrix � ?̃× ?̃ and define
the random variable )∗ := )∗ ( B̃, ?̃) = supU∈VI0

U>
�I0

`.

Lemma B.1. There exists universal constants  0,  1 such that for any X1 ∈ (0,  0 1],

|!= −)∗ | . =−12
1/2
= ( B̃, ?̃) +  0 1=

−3/222
= ( B̃, ?̃) + X1 (4)

holds with probability at least 1 −�Δ= (B, ?̃; X1) where 2= (B, ?̃) = B log(4 ?̃/B) ∨ log= and

Δ= ( B̃, ?̃; X1) = ( 0 1)3
{B̃1= ( B̃, ?̃)}2

X3
1=

1/2 + ( 0 1)4
{B̃1= ( B̃, ?̃)}5

X4
1=

with 1= ( B̃, ?̃) = log( ?̃/B̃) ∨ log=.

Lemma B.2. Assume that the sample size satisfies = ≥ �1 ( 0 ∨  1)42= ( B̃, ?̃). then with probability at
least 1 −�2=

−1/221/2
= ( B̃, ?̃), ���!̂= − !=���. ( 0 ∨  1)2 0 1=

−1/22= ( B̃, ?̃), (5)

where 2= ( B̃, ?̃) = B̃ log(4 ?̃/B̃) ∨ log=.

Proof of the above two lemmas are omitted as it is in the same line of the proofs of Fan, Shao and
Zhou (2018). Now applying Lemma B.1 and B.2 with

X1 = X1 (B, ?̃) = ( 0 1)3/4 min[1, =−1/8{B̃1= ( B̃, ?̃)3/8}]

yields that with probability at least 1 −� ( 0 1)3/4=−1/8{B1= (B, ?̃)}7/8,���!̂= −)∗���. ( 0 1)3/4=−1/8{B̃1= ( B̃, ?̃)}3/8.
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Together with Lemma 2.3 from Chernozhukov, Chetverikov and Kato (2014) we can conclude that

sup
C ∈R

���P( !̂= ≤ C) − P()∗ ≤ C)���.� ( 0 1)3/4=−1/8{B̃1= ( B̃, ?̃)}7/8. (6)

Next by the definition of )∗ it follows that

)∗2 = max
I1∈JI0

`I0 ∪ I1

2
2 =

∑
9∈I0

/2
9 + max
I1∈JI0

∑
:∈I1

/2
: .

Let ] ∼ N(?−B) (0, I(?−B) ) be a Gaussian vector independent of `. Thus it follows that

)∗2
3
=

∑
9∈I0

/2
9 +

?−B∑
:=?−2B+|I0 |+1

,2
(::?−B) ≤

∑
9∈I0

/2
9 + (B − |I0 |),2

(?−B:?−B) .

From Equation (6) it also follows that

sup
C≥0

���P( !̂2
= ≤ C) − P()∗2 ≤ C)

���.� ( 0 1)3/4=−1/8{B̃1= ( B̃, ?̃)}7/8. (7)

Now from the assumption, we have A = 1 + 8X0. Assume that

B ≤ 0.5 min{X0,
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
} log ?. (8)

Hence |I0 | ≤ B − 1 ≤ 0.5X0 log ? < X0 log ?. Thus we have,

P()∗2 > 2(1 + 4X0) (B − |I0 |) log ?)

= P(
∑
9∈I0

/2
9 + (B − |I0 |),2

(?−B:?−B) > 2(1 + 4X0) (B − |I0 |) log ?)

≤ P ©«
∑
9∈I0

/2
9 > 4X0 (B − |I0 |) log ?ª®¬ + P

(
(B − |I0 |),2

(?−B:?−B) > 2(1 + 2X0) (B − |I0 |) log ?
)

(0)
≤ P

(∑
9∈I0

/2
9
− |I0 |

|I0 |
> (4X0 log ? − |I0 |)/|I0 |

)
+ P

(
,2
(?−B:?−B) > 2(1 + 2X0) log ?

)
(1)
≤ P

(∑
9∈I0

/2
9
− |I0 |

|I0 |
> (3X0 log ?)/|I0 |

)
+ P

(
,2
(?−B:?−B) > 2(1 + 2X0) log ?

)
. exp(−0.75X0 log ?) + (? − B)P

(
,2

1 > 2(1 + 2X0) log ?
)

. ?−0.75X0 +� ?−2X0√
log ?

.

Inequality (0) uses B − |I0 | ≥ 1 and inequality (1) uses |I0 | < B < X0 log ? (Condition (8)). Also,
the first probability bound in (b) follows from Equation (56) in Wainwright (2009) and the fact that
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(3X0 log ?)/|I0 | ≥ 6 > 4. The last inequality in (b) follows from tail bound of standard Gaussian distri-
bution. Now define the event EI0 := {‖%S6‖22 /(B log ?) > 2(1 + 4X0)'I0 } where 'I0 := (B − |I0 |)/B.
Recall that

‖%S6‖22
B log ?

≥

∑
9∈S \I0

- 9V 9+%S�
(1+‖VS \I0 ‖

2
2 )1/2

2

2
B log ?

≥

{ ∑ 9∈S \I0
- 9V 9


2

(1+‖VS \I0 ‖
2
2 )1/2
− ‖%S� ‖2
(1+‖VS \I0 ‖

2
2 )1/2

}2

B log ?
= ()1/2

1 −)1/2
2 )

2.

(9)

where

)1 :=

∑
9∈S \ I0

- 9 V 9
2

2

(1 +
VS \ I0

2
2)B log ?

≥
2A'I0

1 + 2A (B − |I0 |) (log ?)/=
+=

=
,

and += :=
‖∑ 9∈S \I0

- 9V 9 ‖22
‖VS \I0 ‖

2
2

is an j2
= random variable. Also we have

)2 :=
‖%S� ‖22

(1 +
VS \ I0

2
2)B log ?

≤ +B/(B log ?)

where +B := ‖%S� ‖22 is an j2
B random variable independent of -( . Next, we state the following simple

algebraic relationship:

(1 + 6X0)1/2 −
X0

(1 + 6X0)1/2 + (1 + 4X0)1/2
≥ (1 + 4X0)1/2.

In light of Equation (9) and using the above algebraic inequality we have the following:

E2I0
⊆ {)1 ≤ 2(1 + 6X0)'I0 }

⋃
{)2 ≥ 2X2

0{(1 + 6X0)1/2 + (1 + 4X0)1/2}−2'I0 }

Next, we have

P()1 ≤ 2(1 + 6X0)'I0 ) ≤ P
(
+=

=
≤ 1 + 6X0

1 + 8X0
(1 + 2AB log ?/=)

)
.

Now choose large = such that (1 + 6X0) (1 + 2AB log ?/=)) < (1 + 7X0). Then for large = we have,

P()1 ≤ 2(1 + 6X0)'I0 ) ≤ P
(
|+=/= − 1| ≥ X0

1 + 8X0

)
. exp

{
−�∗

X2
0

(1 + 8X0)2
=

}
,

where �∗ is a universal constant. Now we analyze the quantity )2. We have the following inequalities:

P()2 ≥
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
'I0 )

≤ P(+B/B ≥
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
'I0 log ?)
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≤ P(+B ≥
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
log ?)

≤ P( |+B/B − 1| ≥ 0.5
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
(log ?)/B)

≤ exp(−� ′
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
log ?) (Using Condition (8))

= ?
−�′

2X2
0

{(1+6X0 )1/2+(1+4X0 )1/2}2 (� ′ > 0 is universal constant).

Ultimately it shows that P(E2I0
) . exp

{
−�∗ X2

0
(1+8X0)2

=

}
+ ?
−�′

2X2
0

{(1+6X0 )1/2+(1+4X0 )1/2}2 . Now we are ready

to show that the error probability goes to 0.

PV (Ŝ ≠ S) ≤
∑
I0⊂(

PV

(
max

I1:I1∈JI0

%I0 ∪ I1.
2

2
B log ?

>
‖%S. ‖22
B log ?

)

≤
B−1∑
:=0

∑
I0: |I0 |=:

PV

(
max

I1:I1∈JI0

%I0 ∪ I1.
2

2
B log ?

>
‖%S. ‖22
B log ?

)

≤
B−1∑
:=0

∑
I0: |I0 |=:

PV

(
max

I1:I1∈JI0

%I0 ∪ I1.
2

2
B log ?

>
‖%S. ‖22
B log ?

,EI0

)
+ P(E2I0

)

≤
B−1∑
:=0

∑
I0: |I0 |=:

PV

(
max

I1:I1∈JI0

%I0 ∪ I16
2

2
B log ?

>
‖%S6‖22
B log ?

,EI0

)
+ P(E2I0

)

≤
B−1∑
:=0

∑
I0: |I0 |=:

PV

(
max

I1:I1∈JI0

%I0 ∪ I16
2

2
B log ?

> 2(1 + 4X0)'I0

)
+ P(E2I0

)

(0)
.

B−1∑
:=0

∑
I0: |I0 |=:

[
P

(
)∗2 > 2(1 + 4X0)B'I0 log ?

)
+ P(E2I0

) +� ( 0 1)3/4=−1/8{B1= (B, ?)}7/8
]

.
B−1∑
:=0

∑
I0: |I0 |=:

?−0.75X0 +� ?−2X0√
log ?

+ exp

{
−�∗

X2
0

(1 + 8X0)2
=

}
+ ?
−�′

2X2
0

{(1+6X0 )1/2+(1+4X0 )1/2}2

+ =−1/8{B1= (B, ?)}7/8

.
B−1∑
:=0

(
B

:

) ?−0.75X0 + exp

{
−�∗

X2
0

(1 + 8X0)2
=

}
+ ?
−�′

2X2
0

{(1+6X0 )1/2+(1+4X0 )1/2}2 + =−1/8{B1= (B, ?)}7/8


. 2B
?−0.75X0 + exp

{
−�∗

X2
0

(1 + 8X0)2
=

}
+ ?
−�′

2X2
0

{(1+6X0 )1/2+(1+4X0 )1/2}2 + =−1/8{B1= (B, ?)}7/8
 .
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Inequality (0) uses B̃1= ( B̃, ?̃) ≤ B1= (B, ?) for large ?. Thus if

B.

(
X0 ∧

2X2
0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
∧ :

16

)
log ?

=

(
2X2

0

{(1 + 6X0)1/2 + (1 + 4X0)1/2}2
∧ :

16

)
log ?,

then error probability goes to 0 uniformly over V ∈M0
B .

B.2. Model consistency of BSS for sub-Gaussian model

In this section, we will show that Theorem 4.1 also holds beyond the Gaussian model. We assume
that the entries of the design matrix - are i.i.d. mean-zero and sub-Gaussian with unit variance. We
also assume that the entries of � are also i.i.d. mean-zero and sub-Gaussian with unit variance and
independent of - .

In this setup, the results of Theorem 3.1 in Fan, Shao and Zhou (2018) are also valid and the proof
steps follow exactly the same steps as the proof of Theorem 4.1 until the introduction of the random
variables += and +B .

We note that Gaussianity was only used to characterize the distributions of += and +B . In particular,
due to Gaussianity, we have+= ∼ j2

= and+B ∼ j2
B . However, under the sub-Gaussian case,+= is the sum

of = independent sub-Exponential random variables with unit-mean. Hence, the probability bound for
)1 shown in the original proof is also valid.

Next, for +B , we can use Theorem 1.1 of Rudelson and Vershynin (2013). Note that, there exists
a constant  k2 > 1 such that ‖Y‖k2

≤  k2 , where ‖Y‖k2
:= infC>0{C : E exp(Y2/C2) ≤ 2}. By The-

orem 1.1 of Rudelson and Vershynin (2013), we can obtain the same probability bound for )2 if

B ≤ (0.5/ 2
k2
)min{X0,

2X2
0

{(1+6X0)1/2+(1+4X0)1/2 }2
} log ?. Hence, the rest of the proof is verbatim to the

proof in the Gaussian case.

B.3. Proof of Theorem 4.3

In this section, we will show that BSS fails to recover the exact support when A = 1. We highlight three
main steps of the proof:

1. Convert the BSS problem in the problem of selecting the model with maximum spurious corre-
lation.

2. Use results from Fan, Shao and Zhou (2018) to find the asymptotic distribution of the maximum
spurious correlation statistics.

3. Use the exact form of the asymptotic distribution along with scaling and centering parameters to
approximate the recovery probability.

Recall the linear model . = -V + � with S := S(V) as the set of active features and B = |S| =$ (log ?).
As A = 1, there exists 90 ∈ S such that V 90 = {(2 log ?)/=}1/2. WLOG , let us assume that 90 = 1 and
define I0 = S \ {1}. In order for BSS to recover the exact support S, it is necessary that

max
9∉S

%I0∪{ 9 }.2
2 < ‖%S. ‖

2
2
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⇔max
9∉S

%I0∪{ 9 }.̃2
2 <

%S.̃2
2

(
where .̃ = -1V1 + �

)
⇔max

9∉S

%†9.̃2

2
<

%†1.̃2

2
,

where %†
9

is the orthogonal projection operator onto the sub-space span{-̃ 9 } for all 9 ∈ S2 ∪{1}, where

-̃ 9 = (I= − %I0 )- 9 . Due to Gaussianity, it follows that
-̃ 92

2 ∼ j
2
=−B+1.

Now, note that %†1.̃2

2
= V2

1

-̃1
2

2 + 2V1 -̃
>
1 � +

%†1�2

2

= (2 log ?)
-̃1

2
2

=
+ 2(2 log ?)1/2

-̃>1 �√
=
+
%†1�2

2
.

Next, define the events

E1 :=

{�����
-̃1

2
2

= − B + 1
− 1

����� ≤ 1/
√

log ?

}
, E2 :=

{
-̃>1 �-̃1


2

≤ −1

}
, E3 :=

{%†1�2

2
≤ 16

}
.

When ? > 4, by Bernstein’s inequality, we have P(E21 ) ≤ 4
−21

=
log ? , where 21 > 0 is a universal constant.

Recall that = � ?: , which tells that lim?→∞ P(E21 ) = 0. Next, note that
-̃>1 �

‖-̃1‖2
∼ N(0,1). Next, we

introduce a useful lemma.

Lemma B.3 (Gordon (1941)). Let Φ(·) denote the cumulative distribution function of standard Gaus-
sian distribution. Then for all G ≥ 0, the following inequalities are true:(

G

1 + G2

)
4−G

2/2
√

2c
≤ 1 −Φ(G) ≤

(
1
G

)
4−G

2/2
√

2c
.

By the above lemma we can conclude P(E22 ) ≤ 1− 4−1/2

2
√

2c
. Finally, as

%†1�2

2
∼ j2

1 , we have P(E23 ) ≤
24−8. Since = + 4 > 4B for large p, we have the following under E1 ∩ E2:

-̃>1 �√
=
=
-̃>1 �-̃1


2

×
-̃1


2√

= − B + 1
×

√
= − B + 1

=
≤ −
√

3{1 − (log ?)−1/2}
2

.

Here we used the fact that
√

1 − (log ?)−1/2 > 1 − (log ?)−1/2. We define the event E := ∩3
8=1E8 . Then,

we have

P(Ŝbest = S) ≤ P
(
max
9∉S

%†9.̃2

2
<

%†1.̃2

2

)
≤ P

(
max
9∉S

%†9.̃2

2
<

%†1.̃2

2
,E

)
+ P(E2)

≤ P
{

max
9∉S

%†9.̃2

2
< 2 log ?

(
1 + 1√

log ?

)
− (6 log ?)1/2

(
1 − 1√

log ?

)
+ 16

}
+ P(E2).
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We further note that 6 := .̃/(1 + V2
1)

1/2 follows a standard isotropic Gaussian distribution. Using
Theorem 3.1 of Fan, Shao and Zhou (2018) and the fact that 1 + V2

1 > 1, we get

P(Ŝbest = S)

≤ P
{
/2
(?−B:?−B) ≤ 2 log ?

(
1 + 1√

log ?

)
− (6 log ?)1/2

(
1 − 1√

log ?

)
+ 16

}
+ P(E2) + >(1)

≤ P


/2
(?−B:?−B) − 2 log(? − B) + log log(? − B) ≤ −

(√
6 − 2

)
(log ?)1/2 + log log ? +$ (1)︸                                               ︷︷                                               ︸

:=C?


+ P(E2) + >(1).

where /2
(?−B:?−B) is the maximum order statistics of {/2

9
} 9∈[?−B] with {/ 9 } 9∈[?−B] being i.i.d. stan-

dard Gaussian. Finally from Remark 3.3 of Fan, Shao and Zhou (2018), we know

/2
(?−B:?−B) − 2 log(? − B) + log log(? − B) d→Λ,

where P(Λ ≤ C) = exp(−c−1/2 exp(−C/2)). As C?→−∞, we have

lim
?→∞

P(Ŝbest = S) ≤ 1 − 4
−1/2

2
√

2c
+ 24−8 + lim

?→∞
P(E21 ) < 0.9.

In other words, when A = 1, i.e., 0 = {2 × 1 × (log ?)/=}1/2, we have

lim
?→∞

sup
V∈M0

B

P(Ŝbest ≠ S) >
1
10
.

B.4. Minimax 0-1 loss under AURWM regime

We first present a result form Wang, Wainwright and Ramchandran (2010) which gives us the necessary
condition for asymptotic exact recovery.

Theorem B.4 (Wang, Wainwright and Ramchandran (2010)). Consider the model (1) with the de-
sign matrix - ∈ R=×? be drawn with i.i.d elements from any distribution with zero mean and unit
variance. Let 0 :=min 9∈S(V)

��V 9 ��, i.e., it denote the minimum signal strength of V. Define the function

5< (?, B, 0) :=
log

(
? − B +<

<

)
− 1

1
2 log

(
1 +<02 (1 − <

?−B+< )
) , 1 ≤ < ≤ B.

Then = ≥ max{ 51 (?, B, 0), . . . , 5B (?, B, 0), B} is necessary for asymptotic exact recovery.

In the light of Theorem B.4 the proof of Proposition 4.4 follows immediately. To see this note that if
A < 1 then there exists U ∈ (0,1) such that A = 1−U. Also recall that 0 = {2A (log ?)/=}1/2, B =$ (log ?)
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and = =
⌊
?:

⌋
. Note that 51 (?, B, 0)/= ∼ 1

1−U . This shows that asymptotically the necessary condition in
above theorem is violated and hence A ≥ 1 is necessary.

Appendix C: Results related to ETS

C.1. Proof of Theorem 5.2

We first briefly describe the main steps of the proof:

1. We first establish the ℓ2-error bound of V̂, i.e., we show that
V̂ − V2 ≤ n

1/2.
2. Next, we upper bound the 0-1 loss PV ([̂ ≠ [) by decomposing it across the coordinates.
3. We analyze each of the terms separately and use ℓ2-error bound along with Gaussian tail inequal-

ities to establish model consistency.

Now we are ready for the main proof. Due to Assumption 5.1, there exists a sequence {U?}?≥1 ⊆ [0,∞)
converging to 0 such that with probability 1 − U? the following is true: A requires no more than
) (n, ?, V) iterations to output V̂ that satisfies

V̂ − V2 ≤ n
1/2.

For notational brevity, we write [ instead of [V . Define the event H =
{
‖ V̂ − V‖2 ≤ n1/2} and we

have P(H 2) ≤ U? . Note that V̂ is based on the subsample D1.
Next, for algebraic convenience we again reparametrize X as 8X0 and set n = 6X0, e = (1+ n)1/2. Now

note that for any V ∈MB
0, we have

PV ([̂ ≠ [ | D1) ≤
∑
9:V 9=0

P([̂ 9 = 1,H |D1) +
∑
9:V 9≠0

PV ([̂ 9 ≠ 1,H |D1) + P(H 2 | D1)

=
∑
9:V 9=0

PV (
��Δ 9 �� > ^e (- (2)9 ),H |D1) +

∑
9:V 9≠0

PV (
��Δ 9 �� ≤ ^e (- (2)9 ),H |D1) + P(H 2 | D1),

Using the fact that conditionally on V̂ and - 9 , the random variable Δ 9 has the same distribution as
the random variable in (11) in the main paper, we conclude that for all 9 ∉ S(V) ,

P([ 9 = 1,H |D1) ≤ P
©«(1 + n)1/2

��6 9 �� > 0
- (2)9 

2
2

+ (1 + n) log ?

0

- (2)9 
2

,H
��D1

ª®®¬
= 2E

Φ
©«
0

- (2)9 
2

2(1 + n)1/2
+ (1 + n)

1/2 log ?

0

- (2)9 
2

ª®®¬
 .

Here Φ(·) denotes the survival function of the standard Gaussian random variable. Now note that for

each 9 we have
- (2)9 2

2

d
=+=2 , where +=2 is a chi-squared random variable with =2 degrees of freedom.

Thus we have

P([ 9 = 1,H |D1) ≤ 2E

{
Φ

(
0+

1/2
=2

2(1 + n)1/2
+ (1 + n)

1/2 log ?

0+
1/2
=2

)}
.
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Analogous argument and the fact that
��V 9 �� ≥ 0 for all V 9 ≠ 0, leads to the fact that for all 9 ∈ S(V),

P([ 9 ≠ 1,H |D1) ≤ 2E

{
Φ

(
max

{
0+

1/2
=2

2(1 + n)1/2
− (1 + n)

1/2 log ?

0+
1/2
=2

,0

})}
.

Now recall that n = 6X0 and W ∈ (0, X0
1+8X0

). With this choice of tuning parameters it is easy to see

that A (1 − W)/(1 + n) ≥ 1+7X0
1+6X0

> 1 and hence as ?→∞ we have

,=2 :=
1

(log ?)1/2

(
0+

1/2
=2

2(1 + n)1/2
− (1 + n)

1/2 log ?

0+
1/2
=2

)
p
−→ 1
(2A)1/2

{
A

(
1 − W
1 + n

)1/2
−

(
1 + n
1 − W

)1/2}
> 0.

The above display uses the fact that =2/=→ 1 − W and +=2/=2
p
→ 1 as ?→∞. Next let is define the

following quantity @:

@ := @(n, X0, W) =
1

{2(1 + 8X0)}1/2

{
(1 + 8X0)

(
1 − W
1 + n

)1/2
−

(
1 + n
1 − W

)1/2}
.

Due to choice of n and W it is easy to show @ > 0. Now define the event �=2 := {,=2 > @/2}. Before
we proceed it is useful to note the following:

,=2 =
1

(2A)1/2

(
A{+=2/(=(1 − W))}1/2 (1 − W)1/2

(1 + n)1/2
− (1 + n)1/2

{+=2/(=(1 − W))}1/2 (1 − W)1/2

)
.

Next define the function

� (D) :=
1

(2 + 16X0)1/2

{
D(1 + 8X0)

(
1 − W
1 + n

)1/2
− 1
D

(
1 + n
1 − W

)1/2}
, D > 0.

As A = 1 + 8X0 we have ,=2 = � ({+=2/(=(1 − W))}1/2). It is also easy to see that � (·) is strictly
increasing function on (0,∞) and � (1) = @. Hence _X0 := �−1 (@/2) ∈ (0,1). Now �2=2

= {,=2 ≤
@/2} ⊆ {� ({+=2/(=(1 − W))}1/2) ≤ @/2}. Thus a straightforward calculation shows that

P(�2=2
) ≤ P

(
+=2

=2
≤ =(1 − W)

=2
_2
X0

)
.

Choose ? large enough such that =2/= > _X0 (1 − W) and hence we have,

P(�2=2
) ≤ P

(
+=2

=2
≤ _X0

)
. exp(− X0=2),

where  X0 = (1 − _X0 )2/8. Note that Φ(C) ≤ 4−C2/2 for all C > 0. Using this fact we have the following:

P([ 9 = 1,H |D1) ≤ E
[
exp

{
−

(
1 +

,2
=2

2

)
log ?

}
1�=2

]
+ P(�2=2

) . ?−(1+@
2/8) + exp(− X0=2),
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for all 9 ∉ S(V). Similarly,

P([ 9 ≠ 1,H |D1) . ?−@
2/8 + exp(− X0=2), ∀ 9 ∈ S(V).

Thus marginalizing out D1 and summing over all 9 we get,

sup
V∈MB

0

PV ([̂ ≠ [) . ?−@
2/8 log ? + ? exp(− X0=2) + U? .

The result follows by taking ?→∞.

Remark C.1. Note that @2 = Ω( X2
0

1+X2
0
) and it shows that the upper bound in the above display deteri-

orates as X0→ 0. Also, as X0 approaches 0, the term  X0 also approaches 0. Hence, the rate of decay
worsens as X0→ 0, and ETS continues to lose statistical power.

C.2. Proof of Corollary 5.3

Similar to previous proofs, we reparametrize X by 8X0 and set n = 6X0, e = (1 + n)1/2. Now note that it
is enough to prove the following:

lim
?→∞

inf
V∈M0

B

PV

(
max
9∉S(V)

��Δ 9 �� < min
9∈S(V)

��Δ 9 ��)→ 1

as ?→∞. To this end first define the following quantity:

C? :=

(
2A=2 log ?

=

)1/2

2
+ e2 log ?(

2A=2 log ?
=

)1/2 .

We will show that lim?→∞ infV∈M0
B
PV

(
min 9∈S(V)

��Δ 9 �� > C? ,max 9∉S(V)
��Δ 9 �� ≤ C? ) → 1 as ? → ∞.

For convenience let us define the events�min := {min 9∈S(V)
��Δ 9 �� > C?} and�max := {max 9∉S(V)

��Δ 9 �� ≤
C?}. LetH be the event as defined in Section C.1. First we will analyze PV (�2min). Note that PV (�2min) ≤
PV (�2min∩H) +PV (H

2). Now the second term goes to 0 uniformly over V ∈M0
B . Also using Equation

(11) under the eventH we get

sup
V∈M0

B

PV (�2min ∩H)

≤ sup
V∈M0

B

PV

(
min
9∈S(V)

���V 9 ‖- (2)9 ‖2 + (1 + n)1/26 9 ��� ≤ C?)
≤ sup
V∈M0

B

PV

(
max
9∈S(V)

��6 9 ��
(log ?)1/2

≥ 1
(1 + n)1/2 (log ?)1/2

{
0 min
9∈S(V)

‖- (2)
9
‖2 − C?

})
≤ sup
V∈M0

B

PV

(
max
9∈S(V)

��6 9 ��
(log ?)1/2

≥ 1
(1 + n)1/2 (log ?)1/2

{
0 min
9∈[?]

‖- (2)
9
‖2 − C?

})
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where {6 9 } 9∈S(V) are non i.i.d. standard Gaussian. Note that |S(V) | =$ (log ?). Hence

max
9∈S(V)

��6 9 �� =$P (log log ?),

which tells that

max
9∈S(V)

��6 9 ��
(log ?)1/2

p
→ 0.

Also using lemma 3 from Fletcher, Rangan and Goyal (2009) we have

1
(1 + n)1/2 (log ?)1/2

(
0 min
9∈[?]

‖- (2)
9
‖2 − C?

)
p
→ 1
(2A)1/2

{
A

(
1 − W
1 + n

)1/2
−

(
1 + n
1 − W

)1/2}
.

The right-hand side of the above display is at least @(n, X0, W) (defined in Section C.1) which is strictly
positive. Again for compactness we use @ instead of @(n, X0, W). The above display motivates us to
define the following event:

E ? =
{

1
(1 + n)1/2 (log ?)1/2

(
0 min
9∈[?]

‖- (2)
9
‖2 − C?

)
≥ @/2

}
,

and it follows that P(E2?) → 0 as ?→∞. This leads to the following inequality:

sup
V∈M0

B

PV (�2min ∩H) ≤ sup
V∈M0

B

PV

(
max
9∈S(V)

��6 9 ��
(log ?)1/2

≥ @/2
)
+ P(E2?)

. ?−@
2/8 log ? + P(E2?) → 0.

Thus we have supV∈M0
B
PV (�2min) → 0. Similarly it can be shown that supV∈M0

B
PV (�2max) → 0 as

?→∞. These two claims together complete the proof.

C.3. Discussion on Remark 5.4

As A > 1+X∗, by reparameterizing X∗ by 8X̃, we have A > 1+8X̃. Now we are basically back to the setting
of the proof of Theorem 5.1 and all of the proof steps are exactly the same as that of Theorem 5.1 with
X̃ in place of X0. This allows us to choose the threshold using the knowledge of X∗, and we do not need
the knowledge of 0. In particular, one can construct the threshold ^e (- (2)8 ) with e = (1 + �2X∗)1/2,
where �2 is the same universal constant as described in Theorem 5.2

C.4. Discussion on examples of ETS

Solving ℓ0-regularized problem:

Proofs for ETS-IHT:

We first introduce some standard assumptions for analyzing ETS-IHT.
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Definition C.2 (RSC property). A differentiable function � : R? → R is said to satisfy restricted
strong convexity (RSC) at sparsity level B = B1 + B2 with strong convexity constraint ℓB if the following
holds for all \1, \2 s.t. ‖\1‖0 ≤ B1 and ‖\2‖0 ≤ B2:

� (\1) − � (\2) ≥ 〈\1 − \2,∇\� (\2)〉 +
ℓB

2
‖\1 − \2‖22 .

Definition C.3 (RSS property). A differentiable function � : R? → R is said to satisfy restricted
strong smoothness (RSS) at sparsity level B = B1 + B2 with strong smoothness constraint !B if the fol-
lowing holds for all \1, \2 s.t. ‖\1‖0 ≤ B1 and ‖\2‖0 ≤ B2:

� (\1) − � (\2) ≤ 〈\1 − \2,∇\� (\2)〉 +
!B

2
‖\1 − \2‖22 .

Now we quote an important theorem from Jain, Tewari and Kar (2014) which quantifies the sub-
optimality gap of Algorithm 2.

Theorem C.4 (Jain, Tewari and Kar (2014)). Let � has RSC and RSS parameters given by ℓ2B̂+B (�) =
U and !2B̂+ ĉ (�) = ! respectively. Call Algorithm 2 with B̂ ≥ 32!2ℓ−2B and ℎ = 2/(3!). Also let V̂ =
arg min\, ‖\ ‖0≤B� (\). Then Cth iterate of Algorithm 2 for C =$ (!ℓ−1 log(� (V (0) )/n)) satisfies:

� (V (C) ) − � ( V̂) ≤ n .

In our setup, the observations {G8}=8=1 are coming from i.i.d. mean zero isotropic Gaussian dis-
tribution. Thus, lemma 6 from Agarwal, Negahban and Wainwright (2012) immediately tells that
RSC and RSS at any sparsity level < hold for 5=1 (·) with probability at least 1 − exp(−20=1) with
ℓ< =

1
2 − 21 (< log ?)/=1 and !< = 2 + 21 (< log ?)/=1, where 20, 21 are universal constants. Now

set < = 2B̂ + B and recall that =1 ∼ W?: . If =1 > 421 (2B̂ + B) log ? then we have ℓ< ≥ 1/4 and
!< ≤ 9/4, which means that !</(9ℓ<) ≤ 1. Thus to apply Theorem C.4 it is enough to choose
B̂ = 2592B. Also by the assumption on = for large ? we have =1 > 421 (2B̂ + B) log ?. Let 5=1 (\) :=

=−1
1 ‖.

(1) − - (1)\‖22 for \ ∈ R? . Note that 5=1 (0) = =−1
1 ‖.

(1) ‖22
d
= (1 + ‖V‖22)+=1/=1, where +=1 is chi-

square random variable with =1 degrees of freedom. Also by Bernstein’s type inequality it follows
that

��(+=1/=1) − 1
�� ≤ 1/2 with probability at least 1 − exp(−24=1), where 24 is a universal positive

constant. Thus if C = $ (!<ℓ−1
< log((1 + ‖V‖22)/n0)) = $ (log ? + log((1 + ‖V‖∞)/n0)), then we have

5=1 (V (C) ) − 5=1 ( V̂) ≤ n0. Thus by Theorem 3 of Jain, Tewari and Kar (2014) it follows that with proba-
bility at lest 1 − exp(−20=1) − exp(−24=1) − 22?

−23 (22, 23 are universal constants) we have

‖V (C) − V‖2 ≤ �
(
B log ?
=1

)1/2
+ (8n0)1/2 ≤ (9n0)1/2, for large ?.

� is a positive universal constant in the above inequality. If we set n = 9n0, then Assumption 5.1 holds
with U? equal to exp(−20=1) + exp(−24=1) + 22?

−23 and ) (n, ?, V) =$ (log ? + log((1 + ‖V‖∞)/n))).



Variable selection with heterogeneous signals 17

Solving ℓ1-regularized problem:

We start by recalling the definition of the loss function 5=1 ,_ (\) = =−1
1 ‖.

(1) − - (1)\‖22 + _ ‖\‖1 , and
define the minimizer of the loss function V̂! := arg min\ 5=1 ,_ (\). First, we will prove Proposition 5.5.

Proof of Proposition 5.5:

Let us assume

5=1 ,_ ( V̂) − 5=1 ,_ ( V̂!) ≤ n0 < 1.

Now, we will establish the ℓ2-error rate between V̂ and V. We write 1̂ = V̂ − V. Since, V̂! is optimal,
we have

5=1 ,_ ( V̂) ≤ 5=1 ,_ ( V̂!) + n0 ≤ 5=1 ,_ (V) + n0.

Rearrangement of the above inequality yields

0 ≤ 1
=1

- (1) 1̂2

2
≤ 2�>- (1) 1̂

=1
+ _(‖V‖1 − ‖ V̂‖1) + n0. (10)

Since, ‖- (1)
9
‖22 ∼ j

2
=1

, we have

P

©«
max
9∈[?]

=
−1/2
1

- (1)9 
2
<

√
4/3︸                              ︷︷                              ︸

:=E

ª®®®®®¬
≥ 1 − 2?−2, for large ?.

Using Gaussianity of - (1)>
9

�/‖- (1)
9
‖2, we have

P

(
1
=1

- (1)>�
∞
> 2

√
log ?
=1

)
≤ P

©« max
9∈[?]

�������
-
(1)>
9

�- (1)9 
2

������� > √
3 log ?

ª®®¬ + P(E2)
≤ 2?−0.5 + 2?−2.

Setting _ = 8{(log ?)/=1}1/2, we have _ ≥ 2
- (1)>�

∞ /=1 with probability at least 1−2?−0.5−2?−2.
Now, since V is B-sparse with support on S, we have

‖V‖1 − ‖ V̂‖1 = ‖VS ‖1 −
VS + 1̂S1 −

1̂S2 ≤ 1̂S1 −
1̂S21 .

Substituting this in the basic inequality (10) and using _ ≥ 2
- (1)>�

∞ /=1, we get

0 ≤ 1
=1

- (1) 1̂2

2
≤ 2

�>- (1)=1


∞

1̂1 + _(
1̂S1 −

1̂S21) + n0

≤ (_/2)
1̂1 + _(

1̂S1 −
1̂S21) + n0

≤ (_/2){3
1̂S1 −

1̂S21} + n0.

(11)
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Hence, we have

1̂2
1 = (

1̂S1 +
1̂S21)

2 ≤ (4
1̂S1 + (2n0/_))2 ≤ 32

1̂S2
1 +

8n2
0

_2 .

Now by Theorem 7.16 of Wainwright (2019), we have the following with probability at least 1 −
2 exp(−=1/32): - (1)\2

2
=1

≥ 21 ‖\‖22 − 22
log ?
=1
‖\‖21 for every \ ∈ R? ,

where 21, 22 > 0 are universal constants. Using the above fact we have- (1) 1̂2
2

=1
≥ 21

1̂2
2 − 3222

B log ?
=1

1̂2
2 − 822

log ?
=1_2 n

2
0 ≥

21

2

1̂2
2 − n

2
0 ,

when 3222B log ?/(=1) < 21/2 and 822 log ?/(=1_
2) < 1. This is possible for large enough values of ?

and _.
Case 1: If (21/4)

1̂2
2 > n

2
0 , then using (11), we get

21

4

1̂2
2 ≤

3_
√
B

2

1̂2 + n0.

This bound involves a quadratic form of
1̂2; computing the roots of the quadratic form we get the

following bound:

‖1‖2 ≤
6_
√
B

21︸︷︷︸
=$ (
√
(B log ?)/=1)

+
2
√
n0√
21
.

Case 2: If (21/4)
1̂2

2 ≤ n
2
0 , then

1̂2 ≤ 2n0/
√
21 < 2

√
n0/21. The last inequality uses the fact that

n0 < 1.
Combining the bounds obtained in Case 1 and Case 2 and with probability at least 1−2?−0.5−2?−2−

4−=1/32 (which is ≥ 1 − 3?−0.5 for large ?), we finally have ‖ V̂−V‖2 ≤ (�3n0)1/2 for large enough ? and
�3 being an absolute constant. Now, using the reparameterization n = �3n0, we have n < �3, and the
initial sub-optimality gap turns out to be n/�3. This finishes the proof.

Proof for ETS-PICASSO:

First, we will show that the estimator generated by the PICASSO algorithm is a good estimate of V. Let
V̂picasso be the estimator obtained by applying PICASSO for minimizing 5=1 (\;_,D1). Now define the
largest and smallest B0-sparse eigenvalues of � := - (1)>- (1)/=1 as:

d+ (B0) := max
E:‖E ‖0≤B

E>�E

‖E‖22
; and d− (B0) := min

E:‖E ‖0≤B

E>�E

‖E‖22
.



Variable selection with heterogeneous signals 19

Let B̃k = (484k2 + 100k)B, where k > 0 is constant. An application of union bound and Equation
4.22 in Vershynin (2018) yields that

P

 max
D: |D |≤B+2B̃2

- (1)>D -
(1)
D

=1
− I?


op

.
log ?
?:/2

 ≥ 1 − 2?−2, (12)

for large values of ?. This ensures that for large values of ?, we have

0.99 ≤ d− (B + 2B̃2) ≤ d+ (B + 2B̃2) ≤ 1.1. (13)

Defining ^ := d+ (B + 2B̃2)/d− (B + 2B̃2), we have ^ < 2. Thus, Assumption 3.5 of Zhao, Liu and Zhang
(2018) holds with B̃ = B̃2 > B̃^ . Also, (12) shows that for large ?

P

©«
max
9∈[?]

=
−1/2
1

- (1)9 
2
<

√
4/3︸                              ︷︷                              ︸

:=E

ª®®®®®¬
≥ 1 − 2?−2.

Hence, we have

P

(
1
=1

- (1)>�
∞
> 2

√
log ?
=1

)
≤ P

©« max
9∈[?]

�������
-
(1)>
9

�- (1)9 
2

������� > √
3 log ?

ª®®¬ + P(E2)
≤ 2?−0.5 + 2?−2.

Hence, Assumption 3.1 of Zhao, Liu and Zhang (2018) holds with high probability when _# = _ ≥
8{log ?/=1}1/2, where # denotes the final iteration count of the outermost loop of PICASSO and _ 
denotes the regularization parameter at the  th iteration of the outer loop. Also, in this case, # =
$ (log(‖- (1)>. (1)/=1‖∞

√
=1/log ?)) which follows from the description of PICASSO (see Algorithm

3 in Zhao, Liu and Zhang (2018)). From triangle inequality, it follows that- (1)>. (1)=1


∞
≤ ‖�V‖∞ +

- (1)>�/=1


∞
,

and ‖�V‖∞ ≤ ‖�‖∞,∞ ‖V‖∞ ≤
√
? ‖�‖op ‖V‖∞. Note that

‖�‖op =
?

=1

- (1)- (1)>?


op
.

Thus, applying Equation (4.22) in Vershynin (2018), we get ‖�V‖∞ . (?1.5/=) ‖V‖∞ with probability
at least 2 exp(−=1). Hence, we have # =$ (log ?) with probability at least 1−2?−0.5−2?−2− exp(=1).

Now will make sure that Assumption 3.7 of Zhao, Liu and Zhang (2018) also holds. Before, going any
further let us clarify some notations. At  th outer iteration of PICASSO, Zhao, Liu and Zhang (2018)
denotes the inner and middle loop precision parameters as g and X , and the active set initialization
parameter is i. To be consistent with our notation we set n0 = X for every  . Also, we choose the
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parameters in such a way so that

n0 ≤ min{1/8,�3}, g ≤
n0

d+ (B + 2B̃)

√
d− (1)

d+ (1) (B + 2B̃) , i ≤ 1/8, (14)

�3 is the same constant ad in Proposition 5.5. Using (13), one can set g =$ (n0/
√

log ?) which will be
less than 1 for large ?. So, under the above conditions, Assumption 3.7 in Zhao, Liu and Zhang (2018)
holds. Hence, part (iii) of Theorem 3.12 in Zhao, Liu and Zhang (2018) tells that

5=1 ( V̂picasso;_,D1) − 5=1 ( V̂! ;_,D1) ≤ n0
500_2B

11
.

If _ = 8
√
(log ?)/=1, then for large ?

5=1 ( V̂picasso;_,D1) − 5=1 ( V̂! ;_,D1) ≤ n0/�3,

Hence, due to Proposition 5.5, we have ‖ V̂picasso − V‖22 ≤ n0. Also, using Theorem 3.12 and Lemma
3.13 of Zhao, Liu and Zhang (2018), we get that PICASSO needs no more than

) (n0, V, ?) =$
(
(log ? + log ‖V‖∞) (log ?)3{log log ? + log(n−1

0 )}
)
.

But the above facts are true when n0 ≤ min{1/8,�3}. In order to extend the above results to a bigger
range of n0 we first define �n :=min{1/8,�3}/2. If n ≤ �n , then one can get the same result by setting
X and g appropriately as prescribed in (14). If n > �n , then setting n0 =�n and using (14), we again
get ‖ V̂picasso−V‖22 ≤ n0 < n within$ ((log ?+ log ‖V‖∞) (log ?)3{log log ?+ log(�−1

n )) iterations. Thus,
conditions in Assumption 5.1 is met with

) (n, ?, V) =$
(
(log ? + log ‖V‖∞) (log ?)3{log log ? + log(n−1 ∨�−1

n )
)
,

and with probability at least 1 −$ (?−0.5).

Proof for ETS-PGH:

Let V̂pgh be the solution obtained by minimizing 5=1 (\;_,D1) via PGH method. For the proof of this
part we will use Theorem 3.2 of Xiao and Zhang (2013). To apply that theorem we need to make sure
that Assumption 3.2 of Xiao and Zhang (2013) is satisfied. To avoid notational confusion, we use W̃
and X̃ to denote the parameters W, X′ considered in Xiao and Zhang (2013) respectively. Let X̃ = 0.1 and
W̃ = 2. By a similar argument as before, it can be shown that with probability at least 1 − 2?2

^(�, B0) :=
d+ (B0)
d− (B0)

≤ 1 + a
1 − a ,

where B0 = b46(1 + W̃)Bc , a = 0.1 and ? is sufficiently large. Also, we choose

_ = 8 max{2, W̃ + 1
W̃(1 − X̃) − (1 + X̃)

}{log ?/=1}1/2 ≥ 4 max{2, W̃ + 1
W̃(1 − X̃ − (1 + X̃))

}
- (1)>�/=1


∞
. (15)

The last inequality of the above display shows that _ ≥ 8‖�>- (1)/=1‖∞ and it happens with the prob-
ability at least 1 −$ (?−0.5). Hence, following the arguments of the second bullet point on page 10 of
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Xiao and Zhang (2013), we can conclude that the Assumption 3.2 of Xiao and Zhang (2013) holds with
B̃ = b22(1 + W̃)Bc, Winc = 1.2 (see Xiao and Zhang (2013)), !min = 1.32 and _. Using part 3 of Theorem
3.2 in Xiao and Zhang (2013), for a given precision level n0, we have

5=1 ( V̂pgh;_,D1) − 5=1 ( V̂! ;_,D1) ≤ $ (n0B
√
(log ?)/=1) < n0/�3, for large ?.

�3 is the same universal constant as in Proposition 5.5. If n0 =min{1,�3}/2 =:�4, then ‖ V̂pgh − V‖22 ≤
n0, and the total iteration complexity is

$

(
log ? log log ? + log max{1, (_2/n2

0 ) log ?}
)
,

which for large value of of ?, the the form $ ((log ? + log ‖V‖∞) log log ? + log max{1, (1/n2
0 ) log ?})

(as _ < 1). If n0 ≤ �4, then the order becomes

$ ((log ? + log ‖V‖∞) log log ? + log(1/n0)).

Otherwise, i.e., if n0 > �4 one can set the tolerance level at n = �4 and the overall order in that case
is $ ((log ? + log ‖V‖∞) log log ? + log(1/�4)). Thus, for a given tolerance level n , the total iteration
complexity is$ ((log ?+ log ‖V‖∞) log log ?+ log(n−1∨�−1

4 )). Thus, Assumption 5.1 holds with prob-
ability at least 1 −$ (?−0.5) and ) (n, ?, V) =$ ((log ? + log ‖V‖∞) log log ? + log(n−1 ∨�−1

4 )).
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