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Abstract
Hierarchical classification problems are multi-
class supervised learning problems with a pre-
defined hierarchy over the set of class labels. In
this work, we study the consistency of hierar-
chical classification algorithms with respect to
a natural loss, namely the tree distance metric
on the hierarchy tree of class labels, via the us-
age of calibrated surrogates. We first show that
the Bayes optimal classifier for this loss classi-
fies an instance according to the deepest node
in the hierarchy such that the total conditional
probability of the subtree rooted at the node is
greater than 1

2 . We exploit this insight to develop
new consistent algorithm for hierarchical classi-
fication, that makes use of an algorithm known
to be consistent for the “multiclass classification
with reject option (MCRO)” problem as a sub-
routine. Our experiments on a number of bench-
mark datasets show that the resulting algorithm,
which we term OvA-Cascade, gives improved
performance over other state-of-the-art hierarchi-
cal classification algorithms.

1. Introduction
In many practical applications of the multiclass classifica-
tion problem the class labels live in a pre-defined hierarchy.
For example, in document classification the class labels are
topics and they form topic hierarchies; in computational bi-
ology the class labels are protein families and they are also
best organized in a hierarchy. See Figure 1 for an exam-
ple hierarchy used in mood classification of speech. Such
problems are commonly known in the machine learning lit-
erature as hierarchical classification.
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Figure 1. Speech based mood classification hierarchy in the
Berlin dataset (Burkhardt et al., 2005) used by Xiao et al. (2007)

Hierarchical classification has been the subject of many
studies (Wang et al., 1999; Sun & Lim, 2001; Cai & Hof-
mann, 2004; Dekel et al., 2004; Rousu et al., 2006; Cesa-
Bianchi et al., 2006a;b; Wang et al., 2011; Gopal et al.,
2012; Babbar et al., 2013; Gopal & Yang, 2013). For a
detailed review and more references we refer the reader to
a survey on hierarchical classification by Silla Jr. & Freitas
(2011).

The label hierarchy has been incorporated into the problem
in various ways in different approaches. The most preva-
lent and technically appealing approach is to involve the
hierarchy in the final evaluation metric and design an al-
gorithm that does well on this evaluation metric. We shall
work in the setting where class labels are single nodes in a
tree, and use the very natural evaluation metric that penal-
izes predictions according to the tree-distance between the
prediction and truth (Sun & Lim, 2001; Cai & Hofmann,
2004; Dekel et al., 2004).

While hierarchical classification problems are actively
studied, there is a gap between theory and practice – even
basic statistical properties of hierarchical classification al-
gorithms have not been examined in depth. This paper ad-
dresses this gap and its main contributions are summarized
below:
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• We show that the Bayes optimal classifier for the tree-
distance loss classifies an instance according to the
deepest node in the hierarchy such that the total con-
ditional probability of the subtree rooted at the node is
greater than 1

2 .

• We reduce the problem of finding the Bayes opti-
mal classifier for the tree-distance loss to the problem
of finding the Bayes optimal classifier for multiclass
classification with reject option (MCRO) problem.

• We construct a convex optimization based consistent
algorithm for the tree-distance loss based on the above
reduction and observe that in one particular instantia-
tion called the OvA-cascade, this optimization prob-
lem can be solved only using binary SVM solvers.

• We run the OvA-cascade algorithm on several bench-
mark datasets and demonstrate improved perfor-
mance.

2. Preliminaries
Let the instance space be X , and let Y = [n] = {1, . . . , n}
be a finite set of class labels. LetH = ([n], E,W ) be a tree
over the class labels, with edge set E, and positive, finite
edge lengths for the edges in E given by W . Let the root
node be r ∈ [n]. Let loss function `H : [n]× [n]→R+ be

`H(y, y′) = Shortest path length in H between y and y′ .

We call this the H-distance loss (or simply tree-distance
loss). Given training examples (X1, Y1), . . . , (Xm, Ym)
drawn i.i.d. from a distribution D on X × Y , the goal is
to learn a prediction model g : X→[n] with low expected
`H -regret defined as

R`H

D [g] = E[`H(Y, g(X))]− inf
g′:X→[n]

E[`H(Y, g′(X))] ,

where expectations are over (X,Y ) ∼ D. Ideally, one
wants the `H -regret of the learned model to be close to zero.
An algorithm which when given a random training sample
as above produces a (random) model hm : X→T is said to
be consistent w.r.t. `H if the `H -regret of the learned model
gm converges in probability to zero.

However, minimizing the discrete `H -regret directly is
computationally difficult; therefore one uses instead a sur-
rogate loss function ψ : [n] × Rd→R+ for some d ∈
Z+ and learns a model f : X→Rd by minimizing (ap-
proximately, based on the training sample) the ψ-error
E(X,Y )∼D[ψ(Y, f(X))]. Predictions on new instances x ∈
X are then made by applying the learned model f and map-
ping back to predictions in the target space [n] via some
mapping Υ : Rd→[n], giving g(x) = Υ(f(x)). Let the
ψ-regret of a function f : X→Rd be

Rψ
D[f ] = E[ψ(Y, f(X))]− inf

f ′:X→Rd
E[ψ(Y, f ′(X))] .

Under suitable conditions, algorithms that approximately
minimize the ψ-error based on a training sample are known
to be consistent with respect to ψ, i.e. the ψ-regret of
the learned model f approaches zero with larger training
data.1 Also, if ψ is convex in its second argument, the ψ-
error minimization problem becomes a convex optimiza-
tion problem and can be solved efficiently.

We seek a surrogate ψ : [n] × Rd→R+ for some d ∈ Z+

and a predictor Υ : Rd→[n] such that ψ is convex in its sec-
ond argument and satisfies a bound of the following form
holding for all f : X→Rd and distributions D

R`H

D [Υ ◦ f ] ≤ ξ ·Rψ
D[f ], (1)

where ξ > 0 is a constant. A surrogate and a pre-
dictor (ψ,Υ), satisfying such a bound, which we call a
(ψ, `H ,Υ)-excess risk transform,2 would immediately give
an algorithm consistent w.r.t. `H from an algorithm consis-
tent w.r.t. ψ. We also say that such a (ψ,Υ) is calibrated
(Zhang, 2004; Ramaswamy & Agarwal, 2012) w.r.t. `H .

2.1. Conventions and Notations

∆n denotes the probability simplex in Rn: ∆n = {p ∈
Rn+ :

∑
i pi = 1}.

For the tree H = ([n], E,W ) with root r we define the
following several objects. For every y ∈ [n] define the sets
D(y), C(y), U(y) as follows:

D(y) = Set of descendants of y including y
P (y) = Parent of y
C(y) = Set of children of y
U(y) = Set of ancestors of y, not including y.

For all y ∈ [n], define the level of y denoted by lev(y), and
the mapping Sy : ∆n→[0, 1] as follows:

lev(y) = |U(y)|
Sy(p) =

∑
i∈D(y)

pi .

Let the height of the tree be h = maxy∈[n] lev(y). Define

1For example, an algorithm consistent w.r.t. ψ can be obtained
by minimizing the regularized empirical ψ-risk over an RKHS
function class with Gaussian kernel and a regularization parame-
ter approaching 0 with increasing sample size.

2An inequality which upper bounds the `H -regret in terms of
a function ξ of the ψ-regret, with ξ(0) = 0 and ξ continuous at 0
would also qualify to be an excess risk transform.
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the sets N=j , N≤j and scalars αj , βj for 0 ≤ j ≤ h as:

N=j = {y ∈ [n] : lev(y) = j}
N≤j = {y ∈ [n] : lev(y) ≤ j}
αj = max

y,y′∈N=j

`H(y, y′)

βj = max
y∈N=j

`H(y, P (y)).

By reordering the classes we ensure that lev is a non-
decreasing function and hence we always have that N≤j =
[nj ] for some integers nj and r = 1.

For integers 0 ≤ j ≤ h define the function ancj :
[n]→N≤j and Aj : ∆n→∆nj such that for all y ∈
[n], y′ ∈ [nj ],

ancj(y) =

{
y if lev(y) ≤ j
ancestor of y at level j otherwise

Ajy′(p) =
∑

i∈[n]:ancj(i)=y′

pi

=

{
py if lev(y′) < j

Sy(p) if lev(y′) = j
.

Note that in all the above definitions the only terms that
depend on the edge lengths W are the scalars αj and βj .

3. Bayes Optimal Classifier for the
Tree-Distance Loss

In this section we characterize the Bayes optimal classi-
fier minimizing the expected tree-distance loss. We show
that such a predictor can be viewed as a ‘greater than 1

2
conditional probability subtree detector’. We then design a
scheme for computing this prediction based on this obser-
vation.

The following theorem is the key result of this section. Fig-
ure 2 gives an illustration for this theorem.

Theorem 1. Let H = ([n], E,W ) and let `H : [n] ×
[n]→R+ be the tree-distance loss for the tree H . For
x ∈ X , let p(x) ∈ ∆n be the conditional probability of the
label given the instance x. Then there exists a g∗ : X→[n]
such that for all x ∈ X the following holds:

(a) Sg∗(x)(p(x)) ≥ 1
2

(b) Sy(p(x)) ≤ 1
2 ,∀y ∈ C(g∗(x)) .

Also, g∗ is a Bayes optimal classifier for the tree distance
loss, i.e.

R`H

D [g∗] = 0 .
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Figure 2. An example tree and an associated conditional proba-
bility vector p(x) for some instance x, along with S(p(x)). The
Bayes optimal prediction is shaded here.

For any instance x, with conditional probability p ∈ ∆n,
Theorem 1 says that predicting y ∈ [n] that has the largest
level and has Sy(p) ≥ 1

2 is optimal. Surprisingly, this does
not depend on the edge lengths W .

Theorem 1 suggests the following scheme to find the opti-
mal prediction for a given instance, with conditional prob-
ability p:

1. For each j ∈ {1, 2, . . . , h} create a multiclass prob-
lem instance with the classes being elements of
N≤j = [nj ], and the probability associated with each
class in y ∈ N≤j is equal to Ajy(p), i.e. py if
lev(y) < j and equal to Sy(p) if lev(y) = j.

2. For each multiclass problem j ∈ {1, 2, . . . , h}, if
there exists a class with probability mass at least 1

2
assign it to v∗j , otherwise let v∗j = ⊥.

3. Find the largest j such that v∗j 6= ⊥ and return the
corresponding v∗j , or return the root 1 if v∗j = ⊥ for
all j ∈ [h].

We will illustrate the above procedure for the example in
Figure 2.
Example 1. From Figure 2 we have that h = 3. The three
induced multiclass problems are given below.

1. n1 = 3, and the class probabilities are given as
1
10 [0, 3, 7]. Clearly, v∗1 = 3.

2. n2 = 7, and the class probabilities are given as
1
10 [0, 2, 0, 1, 0, 1, 6]. Clearly v∗2 = 7.

3. n3 = 11, and the class probabilities are given as
1
10 [0, 2, 0, 1, 0, 0, 2, 1, 0, 2, 2]. Clearly, v∗3 = ⊥.

And hence the largest j such that v∗j 6= ⊥ is 2, and the
scheme returns v∗2 = 7.
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The reason such a scheme as the one above is of interest to
us is that the second step in the above scheme exactly corre-
sponds to the Bayes optimal classifier for the abstain loss,
the evaluation metric used in the MCRO problem, which
we briefly explain in the next section.

4. Multiclass Classification with Reject
Option

In some multiclass problems like medical diagnosis, it is
better to abstain from predicting on instances where the
learner is uncertain rather than predicting the wrong class.
This feature can be incorporated via an evaluation metric
called the abstain loss, and designing algorithms that per-
form well on this evaluation metric instead of the standard
zero-one loss. The n-class abstain loss `?,n : [n] × ([n] ∪
{⊥})→R+, (Ramaswamy et al., 2015) is defined as

`?,n(y, y′) =


1 if y′ 6= y and y′ 6= ⊥
1
2 if y′ = ⊥
0 if y′ = y

.

It can be seen that the Bayes optimal risk for the abstain
loss is attained by the function g∗ : X→([n] ∪ {⊥}) given
by

g∗(x) =

{
argmaxy∈[n]py(x) if maxy∈[n] py(x) ≥ 1

2

⊥ otherwise
,

where py(x) = P(Y = y|X = x).

The `?,n-regret of a function g : X→([n] ∪ {⊥}) is

R`?,n

D [g] = E[`?,n(Y, g(X))]− inf
g′

E[`?,n(Y, g′(X))] .

Ramaswamy et al. (2015) give three different surrogates
and predictors with excess risk transforms relating the sur-
rogate regret to the `?,n-regret, one of which we give below.

Define the surrogate ψOvA,n : [n]×Rn→R+ and predictor
ΥOvA,n
τ : Rn→([n] ∪ ⊥) as

ψOvA,n(y,u) =

n∑
i=1

1(y = i)(1−ui)++1(y 6= i)(1+ui)+

ΥOvA,n
τ (u) =

{
argmaxi∈[n]ui if maxj uj > τ

⊥ otherwise
,

where (a)+ = max(a, 0) and τ ∈ (−1, 1) is a threshold
parameter, and ties are broken arbitrarily, say, in favor of
the label y with the smaller index.

The following theorem by Ramaswamy et al. (2015), gives
an (ψOvA,n, `?,n,ΥOvA,n

τ )-excess risk transform.

Theorem 2 ((Ramaswamy et al., 2015)). Let n ∈ N and
τ ∈ (−1, 1). Let D be any distribution over X × [n]. Then,
for all f : X→Rn

R`?,n

D [ΥOvA,n
τ ◦ f ] ≤ 1

2(1− |τ |)
RψOvA,n

D [f ] .

In the next section we use such surrogates calibrated with
the abstain loss as a black box to construct calibrated sur-
rogates for the tree-distance loss.

5. Cascade Surrogate for Hierarchical
Classification

In this section we construct a template surrogate ψcas and
template predictor Υcas based on the scheme in Section 3,
and is constituted of simpler surrogates ψj and predictors
Υ?
j . We then give a (ψcas, `H ,Υcas)-excess risk transform

assuming the existence of abstain loss excess risk trans-
forms for the component surrogates and predictors, i.e.
(ψj , `?,nj ,Υ?

j)-excess risk transforms.

For all j ∈ {1, 2, . . . , h}, let the surrogate ψj : [nj ] ×
Rdj→R+ and predictor Υ?

j : Rdj→([nj ] ∪ {⊥}) be such
that they are calibrated w.r.t. the abstain loss with nj
classes for some integers dj . Let d =

∑j
i=1 dj . Let any

u ∈ Rd be decomposed as u = [u>1 , . . . ,u
>
h ]>, with each

uj ∈ Rdj . The template surrogate, that we call the cascade
surrogate ψcas : [n] × Rd→R+, is defined in terms of its
constituent surrogates as follows:

ψcas(y,u) =

h∑
j=1

ψj(ancj(y),uj) . (2)

The template predictor, Υcas, is defined via the function
Υcas
j : Rd1 × . . .× Rdj→[nj ] which is defined recursively

as follows:

Υcas
j (u1, . . . ,uj)

=

{
Υ?
j(uj) if Υ?

j(uj) 6= ⊥
Υcas
j−1(u1, . . . ,uj−1) otherwise

. (3)

The function Υcas
0 takes no arguments and simply returns 1

(the root node). Occasionally we abuse notation by repre-
senting Υcas

j (u1, . . . ,uj) simply as Υcas
j (u).

The template predictor, Υcas : Rd→[n] is simply defined as
Υcas(u) = Υcas

h (u1, . . . ,uh) .

The lemma below, captures the essence of the reduction
from the hierarchical classification problem to the MCRO
problem. A proof outline is also provided.

Lemma 3. Let H = ([n], E,W ) be a tree with height h.
For all j ∈ [h], let αj = maxy,y′∈N=j `

H(y, y′). For any
distribution D over X × [n], let Aj(D) be the distribution
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overX×[nj ] given by the distribution of (X, ancj(Y )) with
(X,Y ) ∼ D. For all j ∈ [h], let fj : X→Rdj be such that
f(x) = [f1(x)>, . . . , fh(x)>]>. Then for all distributions
D over X × [n] and all functions f : X→Rd

R`H

D [Υcas ◦ f ] ≤
h∑
j=1

2αj ·R`?,nj

Aj(D)[Υ
?
j ◦ fj ] .

Proof. (Outline:)

Due to linearity of expectation, it is sufficient to fix a sin-
gleton X , and give proofs for all distributions p ∈ ∆n over
class labels, instead of all distributions D over X × Y .

For a given conditional probability vector p ∈ ∆n, and
vector u ∈ Rd, the analysis is based on whether the abstain
loss predictor at the deepest level (level farthest from root)
abstains or not.

1. If the abstain loss predictor at the deepest level does
not abstain (Case 1 in the proof), then the tree-distance
regret is bounded by the maximum distance between
any two nodes at the deepest level αh, with a discount
factor depending on the conditional probability of the
predicted class. This can be simply be bounded by
2αh times the abstain loss regret.

2. If the abstain loss predictor at the deepest level does
abstain and the optimal prediction is not in the deepest
level (Case 2a in the proof), then prediction for the
deepest level is ‘correct’ and hence one can show that
the tree-distance regret is simply bounded by the tree-
distance regret for the modified problem where all the
probability mass associated with the nodes in deepest
level are absorbed by their parents.

3. If the abstain loss predictor at the deepest level does
abstain and the optimal prediction is in the deepest
level (Case 2b in the proof), then one can bound the
tree-distance regret by the sum of two terms –

(a) The abstain loss regret, weighted by twice the
largest distance between any node at the deepest
level and its parent βh. This captures the error
made by choosing to predict at a shallower level
than the level of optimal prediction.

(b) The tree-distance regret on the modified problem
mentioned in case 2a. This captures the error
made on shallower levels.

In all cases, the tree-distance regret can be bounded by the
sum of the tree-distance regret on the modified problem and
2αh times the abstain loss regret. Applying this bound re-
cursively gets our desired bound.

Lemma 3 bounds the `H regret on distribution D, by a
weighted sum of abstain loss regrets, each over a modified
distribution derived fromD. Each of the components of the
surrogate ψcas is exactly designed to minimize the abstain
loss for the corresponding modified distribution. Assuming
a (ψj , `?,nj ,Υ?

j)-excess risk transform for all j ∈ [h], one
can easily derive (ψcas, `H ,Υcas)-excess risk transform as
in Equation 1. This is done in the theorem below.
Theorem 4. Let H = ([n], E,W ) be a tree with height h.
For all j ∈ [h], let ψj : [nj ]×Rdj→R+ and Υ?

j : Rdj→nj
be such that for all fj : X→Rdj , and all distributions D
over X × [nj ] we have

R`?,nj

D [Υ?
j ◦ fj ] ≤ C ·R

ψj

D [fj ],

for some constant C > 0. Then for all f : X→Rd and
distributions D over X × [n],

R`H

D [Υcas ◦ f ] ≤ 2C · max
y,y′∈[n]

`H(y, y′) ·Rψcas

D [f ] .

Hence one just needs to plug in an appropriate surrogate ψj

to get concrete consistent algorithms for hierarchical clas-
sification. The results of Ramaswamy et al. (2015) give
three such surrogates, but we will focus on the one vs all
hinge surrogate here, as the resulting algorithm can be eas-
ily parallelized and gives the best empirical results.

6. OvA-Cascade Algorithm

When ψj = ψOvA,nj and Υ?
j = Υ

OvA,nj
τj for some τj ∈

(−1, 1), we call the resulting cascade surrogate ψcas and
predictor Υcas together as OvA-Cascade. In this case we
have dj = nj . In the surrogate minimizing algorithm
for OvA-cascade, one solves h one-vs-all SVM problems.
Problem j has nj classes, with the classes corresponding
to the nj−1 nodes in the hierarchy at level less than j,
and nj − nj−1 ‘super-nodes’ in the hierarchy at level j
which also absorb the nodes of its descendants. The re-
sulting training and prediction algorithms can thus be sim-
plified and they are presented in Algorithms 1 and 2. The
training phase requires an SVM optimization sub-routine,
SVM-Train, which takes in a binary dataset and a regular-
ization parameter C and returns a real valued function over
the instance space minimizing the regularized hinge loss
over an appropriate function space.

Theorems 2 and 4 immediately give the following corol-
lary.
Corollary 5. Let H = ([n], E,W ) be a tree with height
h. Let the component surrogates and predictors of ψcas and
Υcas be ψj = ψOvA,nj and Υj = Υ

OvA,nj
τj . Then, for all

distributions D and functions f : X→Rd,

R`H

D [Υcas ◦ f ] ≤
maxy,y′∈[n] `

H(y, y′)

1−maxj |τj |
·Rψcas

D [f ] .
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Algorithm 1 OVA-Cascade Training
Input: S = ((x1, y1), . . . , (xm, ym)) ∈ (X × [n])m,
H = ([n], E).
Parameters: Regularization parameter C > 0

for i = 1 : n
Let tj = 2 · 1(yj ∈ D(i))− 1, ∀j ∈ [m]
Ti = ((x1, t1), . . . , (xm, tm)) ∈ (X × {+1,−1})m.
fi=SVM-Train(Ti, C)
Let t′j = 2 · 1(yj = i)− 1, ∀j ∈ [m]
T ′i = ((x1, t

′
1), . . . , (xm, t

′
m)) ∈ (X × {+1,−1})m.

f ′i=SVM-Train(T ′i , C)
end for

Algorithm 2 OVA-Cascade Prediction
Input: x ∈ X , H = ([n], E), trained models fi, f ′i for
all i ∈ [n]
Parameters: Scalars τ1, . . . , τh in (−1, 1)

for j = h down to 1
Construct u ∈ Rnj such that,

ui =

{
fi(x) if lev(i) = j

f ′i(x) if lev(i) < j

if maxi ui > τj
return argmaxiui

end if
end for
return 1

To get the best bound from Corollary 5, one must set τj = 0
for all j ∈ [h]. However, using a slightly more intricate
version of Theorem 2 and Lemma 3 one can give a better
upper bound for the `H -regret than in Theorem 4, and this
tighter upper bound is minimized for a different τj . This
observation is captured by the Theorem below.
Theorem 6. Let H = ([n], E,W ) be a tree with height
h. For all j ∈ [h], let αj = maxy,y′∈N=j

`H(y, y′)
and let βj = maxy∈N=j

`H(y, P (y)). For j ∈ [h], let
τj =

αj−βj

αj+βj
. Let the component surrogates and predictors

of ψcas and Υcas be ψj = ψOvA,nj and Υj = Υ
OvA,nj
τj .

Then, for all distributions D and functions f : X→Rd,

R`H

D [Υcas ◦ f ] ≤ 1

2
max
j∈[h]

(αj + βj) ·Rψcas

D [f ] .

One can clearly see the effect of improved bounds given by
setting τj as in Theorem 6 for the unweighted hierarchy, in
which case αj = 2j and βj = 1.
Corollary 7. Let the hierarchy H be an unweighted tree
with all edges having length 1. Let the component surro-
gates and predictors of ψcas and Υcas be ψj = ψOvA,nj and
Υj = Υ

OvA,nj
τj .

a. For all j ∈ [h] let τj = 0, then, for all distributions D

and functions f : X→Rd,

R`H

D [Υcas ◦ f ] ≤ 2h ·Rψcas

D [f ] .

b. For all j ∈ [h] let τj = 2j−1
2j+1 , then, for all distribu-

tions D and functions f : X→Rd,

R`H

D [Υcas ◦ f ] ≤
(
h+

1

2

)
·Rψcas

D [f ] .

Thus setting τj = 2j−1
2j+1 gives almost a factor 2 improve-

ment over setting τj = 0. This threshold setting is also
intuitively satisfying as it says to use a higher threshold
and predict conservatively (abstain more often) in deeper
levels and to use a lower threshold and predict aggressively
in levels nearer to the root. In practice, the optimal thresh-
olds are distribution dependent and are best obtained via
cross-validation.

7. Experiments
We run our cascade surrogate based algorithm for hierar-
chical classification on some standard document classifica-
tion tasks with a class hierarchy and compare the results
against other standard algorithms. We use the unweighted
tree-distance loss as the evaluation metric. The details of
the datasets and the algorithms are given below.

7.1. Datasets

We used several standard multiclass document classifica-
tion datasets, all of which have one class label per example.
The basic statistics of the datasets is given in Table 1.

• CLEF (Dimitrovski et al., 2011) Medical X-ray im-
ages organized according to a hierarchy.

• IPC 3 Patents organized according to the International
Patent Classification Hierarchy.

• LSHTC-small, DMOZ-2010 and DMOZ-2012 4

Web-pages, from the LSHTC (Large-Scale Hierarchi-
cal Text Classification) challenges 2010-12, organized
according to a hierarchy.

We used the standard train-test splits wherever available
and possible. For the DMOZ-2010 and 2012 datasets how-
ever we created our own train-test splits because the given
test sets do not contain class labels and the oracle for evalu-
ating submissions does not accept interior nodes as predic-
tions.

3http://www.wipo.int/classifications/ipc/en/support/
4http://lshtc.iit.demokritos.gr/node/3



Convex Calibrated Surrogates for Hierarchical Classification

Table 1. Dataset Statistics
Dataset #Train #Validation #Test #Labels #Leaf-Labels Depth #Features
CLEF 9,000 1,000 1,006 97 63 3 89

LSHTC-small 4,463 1,860 1,858 2,388 1,139 5 51,033
IPC 35,000 11,324 28,926 553 451 3 541,869

DMOZ-2010 80,000 13,805 34,905 17,222 12,294 5 381,580
DMOZ-2012 250,000 50,000 83,408 13,347 11,947 5 348,548

Table 2. Average tree-distance loss on the test set. Runs that failed due to memory issues are denoted by a ‘-’.
Root OVA HSVM-

margin
HSVM-
slack

CS-
Cascade

OVA-
Cascade

Plug-in

CLEF 3.00 1.10 0.98 1.00 0.91 0.95 0.97
LSHTC-small 4.77 4.12 3.47 3.54 3.20 3.19 3.26
IPC 2.97 2.29 - - - 2.06 2.05
DMOZ-2010 4.65 3.96 - - - 3.12 3.16
DMOZ-2012 4.75 2.83 - - - 2.46 2.48

Table 3. Training times (not including validation) in hours (h) or seconds (s). Runs that failed due to memory issues are denoted by a ‘-’.
Root OVA HSVM-

margin
HSVM-
slack

CS-
Cascade

OVA-
Cascade

Plug-in

CLEF 0 s 35s 50 s 45 s 20 s 50 s 66 s
LSHTC-small 0 h 0.24 h 2.1 h 1.8 h 1.7 h 0.3 h 0.5 h
IPC 0 h 2.6 h - - - 2.9 h 4.2 h
DMOZ-2010 0 h 36 h - - - 59 h 146 h
DMOZ-2012 0 h 201 h - - - 220 h 361 h

7.2. Algorithms

We run a variety of algorithms on the above datasets. The
details of the algorithms are given below.

Root: This is a simple baseline method where the returned
classifier always predicts the root of the hierarchy.

OVA: This is the standard One vs All algorithm which
completely ignores the hierarchy information and treats the
problem as one of standard multiclass classification.

HSVM-margin and HSVM-slack : These algorithms are
Struct-SVM like (Tsochantaridis et al., 2005) algorithms
for the tree-distance loss as proposed in Cai & Hofmann
(2004). HSVM-margin and HSVM-slack use margin and
slack rescaling respectively, and are considered among the
state-of-the-art algorithms for hierarchical classification.

OVA-Cascade: This is the algorithm in which we mini-
mize the surrogate ψcas with the component surrogates be-
ing ψj = ψOvA,nj and is detailed as Algorithms 1 and 2.
All the datasets in Table 1 have the property that all in-
stances are associated only with a leaf-label (note however
that we can still predict interior nodes), and hence the step
of computing f ′i in Algorithm 1 can be skipped, and f ′i
can be set to be identically equal to negative infinity for

all i ∈ [n]. Note that, in this case, the training phase is very
similar to the ‘less-inclusive policy’ using the ‘local node
approach’ (Silla Jr. & Freitas, 2011). We use LIBLIN-
EAR (Fan et al., 2008) for the SVM-train subroutine and
use the simple linear kernel. The regularization parameter
C is chosen via a separate validation set. The thresholds τj
for j ∈ [h] are also chosen via a coarse grid search using
the validation set.

Plug-in classifier: This algorithm is based on estimating
the conditional probabilities using a logistic loss. Specifi-
cally, it estimates Sy(p) for all non-root nodes y. This is
done by creating a binary dataset for each y, with instances
having labels which are the descendants of y being positive
and the rest being negative, and running a logistic regres-
sion algorithm on this dataset. The final predictor is simply
based on Theorem 1, it chooses the deepest node y such
that the estimated value of Sy(p) is greater than 1

2 .

CS-Cascade: This algorithm also minimizes the cascade
surrogate ψcas, but with the component surrogates ψj being
the Crammer-Singer surrogate (Crammer & Singer, 2001).
From the results of Ramaswamy et al. (2015), one can de-
rive excess risk transforms for the resulting cascade sur-
rogate as well. As all instances have labels which are leaf
nodes, the h subproblems all turn out to be multiclass learn-
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ing problems with nj classes for each of which we use the
Crammer-Singer algorithm. We optimize the Crammer-
Singer surrogate over the standard multiclass linear func-
tion class using the LIBLINEAR software. Once again we
use the same regularization parameter C for all the h prob-
lems which we choose using the validation set. We also use
a threshold vector tuned on the validation set over a coarse
grid.

The three algorithms OvA-Cascade, Probability estimation
and CS-cascade are all motivated by our analysis and would
form consistent algorithms for the tree-distance loss if used
with an appropriate function class.

7.3. Discussion of Results

Table 2 gives the average tree-distance loss incurred by
various algorithms on some standard datasets and Table
3 gives the times taken for running these algorithms on
a 4-core CPU.5 Some of the algorithms, like HSVM, and
CS-cascade could not be run on the larger datasets due
to memory issues. In the smaller datasets of CLEF and
LSHTC-small where all the algorithms could be run,
the algorithms motivated by our analysis – OvA-cascade,
Plug-in and CS-cascade – perform the best. In the bigger
datasets, only the OvA-cascade, plug-in and the flat OvA
algorithms could be run, and both OvA-cascade and Plug-
in perform significantly better than the flat OvA. While
both OvA-cascade and Plug-in give comparable error per-
formance, the OvA-cascade only takes about half as much
time as the Plug-in and hence is more preferable.

8. Conclusion
The reduction of the hierarchical classification problem to
the problem of multiclass classification with a reject option
gives an interesting and powerful family of algorithms. Ex-
tending such results to other related settings, such as the
case where there is a graph over the set of class labels, or
where a subset of the label set is allowed to be predicted
instead of a single label, are interesting future directions.
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Xiao, Z., Dellandréa, E., Dou, W., and Chen, L. Hierar-
chical classification of emotional speech. IEEE Trans-
actions on Multimedia, 2007.

Zhang, T. Statistical analysis of some multi-category
large margin classification methods. Journal of Machine
Learning Research, 5:1225–1251, 2004.



Convex Calibrated Surrogates for Hierarchical Classification

Convex Calibrated Surrogates for Hierarchical Classification

Supplementary Material

A. Additional Notation and Setup
Let µ be the marginal distribution induced byD overX , and let p(x) be the distribution over [n] conditioned onX = x. For
every function ` : [n]× [k]→R+ and t ∈ [k] let `t = [`(1, t), . . . , `(n, t)]> ∈ Rn+. For every surrogate ψ : [n]× Rd→R+

let ψ : Rd→Rn+ be a vector function such that ψy(u) = ψ(y,u) for y ∈ [n],u ∈ Rd. For any integer d′ ∈ Z+ and pair

of vectors u,v ∈ Rd′ , their inner product is denoted as 〈u,v〉 =
∑d′

i=1 uivi. For a vector u ∈ Rn and a positive integer
a ≤ n, the vector u

∣∣
1:a
∈ Ra gives the first a components of u.

Define the conditional regrets R`H

p , R`?,n

p and Rψ
p as the regrets incurred for a singleton instance space X , with conditional

probability p ∈ ∆n. In particular, we have that

R`H

p [ŷ] = 〈p, `Hŷ 〉 − inf
y′∈[n]

〈p, `Hy′〉, ∀ŷ ∈ [n]

R`?,n

p [ŷ] = 〈p, `?,n
ŷ 〉 − inf

y′∈[n]∪{⊥}
〈p, `?,n

y′ 〉, ∀ŷ ∈ [n] ∪ {⊥}

Rψ
p [u] = 〈p,ψ(u)〉 − inf

u′∈Rd
〈p,ψ(u′)〉, ∀u ∈ Rd .

Let µ be the marginal distribution induced by D over X , and let p(x) be the distribution over [n] conditioned on X = x.
Then we have by linearity of expectation that,

R`H

D [g] = EX∼µR
`H

p(X)[g(X)] (4)

R`?,n

D [g′] = EX∼µR
`?,n

p(X)[g
′(X)] (5)

Rψ
D[f ] = EX∼µR

ψ
p(X)[f(X)] . (6)

For all 0 ≤ j ≤ h, define `H,j : [nj ]× [nj ]→R+ as simply the restriction of `H to [nj ]× [nj ].

B. Proofs
B.1. Proof of Theorem 1

Theorem. Let H = ([n], E,W ) and let `H : [n] × [n]→R+ be the tree-distance loss for the tree H . Let p ∈ ∆n, and
y ∈ [n]. Then there exists a g∗ : X→[n] such that for all x ∈ X the following holds:

(a) Sg∗(x)(p(x)) ≥ 1
2

(b) Sy(p(x)) ≤ 1
2 ,∀y ∈ C(g∗(x)) .

Also, g∗ is a Bayes optimal classifier for the tree distance loss, i.e.

R`H

D [g∗] = 0 .

Proof. We shall simply show for all p ∈ ∆n, there exists a y∗ ∈ [n] such that

Sy∗(p) ≥ 1

2
(7)

Sy(p) ≤ 1

2
, ∀y ∈ C(y∗) , (8)



Convex Calibrated Surrogates for Hierarchical Classification

and is such that
〈p, `Hy∗〉 = min

y∈[n]
〈p, `Hy 〉 .

This would imply R`H

p [y∗] = 0. The theorem then simply follows from linearity of expectation using Equation 4.

Let p ∈ ∆n. We construct a y∗ ∈ [n] satisfying Equations 7 and 8 in the following way. We start at the root node, which
always satisfies Equation 7, and keep on moving to the child of the current node that satisfies Equation 7, and terminate
when we reach a leaf node, or a node where all of its children fail Equation 7. Clearly the resulting node, y∗, satisfies both
Equations 7 and 8.

Now we show that y∗ indeed minimizes 〈p, `Hy 〉 over y ∈ [n].

Let y′ ∈ argmint〈p, `
H
t 〉. If y′ = y∗ we are done, hence assume y′ 6= y∗.

Case 1: y′ /∈ D(y∗)

〈p, `Hy′〉 − 〈p, `
H
y∗〉 =

∑
y∈D(y∗)

py(`H(y, y′)− `H(y, y∗)) +
∑

y∈[n]\D(y∗)

py(`H(y, y′)− `H(y, y∗))

=
∑

y∈D(y∗)

py(`H(y∗, y′)) +
∑

y∈[n]\D(y∗)

py(`H(y, y′)− `H(y, y∗))

≥
∑

y∈D(y∗)

py(`H(y∗, y′)) +
∑

y∈[n]\D(y∗)

py(−`H(y′, y∗)))

= `H(y′, y∗)(2Sy∗(p)− 1)

≥ 0

Case 2: y′ ∈ D(y∗) \ C(y∗)

Let ŷ be the child of y∗ that is the ancestor of y′. Hence we have Sŷ(p) ≤ 1
2 .

〈p, `Hy′〉 − 〈p, `
H
y∗〉 =

∑
y∈D(ŷ)

py(`H(y, y′)− `H(y, y∗)) +
∑

y∈[n]\D(ŷ)

py(`H(y, y′)− `H(y, y∗))

=
∑

y∈D(ŷ)

py(`H(y, y′)− `H(y, y∗)) +
∑

y∈[n]\D(ŷ)

py(`H(y∗, y′))

≥
∑

y∈D(ŷ)

py(−`H(y∗, y′)) +
∑

y∈[n]\D(ŷ)

py(`H(y∗, y′))

= `H(y′, y∗)(1− 2Sŷ(p))

≥ 0

Case 3: y′ ∈ C(y∗)

〈p, `Hy′〉 − 〈p, `
H
y∗〉 =

∑
y∈D(y′)

py(`H(y, y′)− `H(y, y∗)) +
∑

y∈[n]\D(y′)

py(`H(y, y′)− `H(y, y∗))

=
∑

y∈D(y′)

py(−`H(y′, y∗)) +
∑

y∈[n]\D(y′)

py(`H(y′, y∗))

= `H(y′, y∗)(1− 2Sy′(p))

≥ 0

Putting all three cases together we have
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〈p, `Hy∗〉 ≤ 〈p, `
H
y′〉 = min

y∈[n]
〈p, `Hy 〉 .

B.2. Proof of Lemma 3

We first give the proof of a stronger version of Lemma 3.

Lemma 8. For all p ∈ ∆n,u ∈ Rd we have

R`H

p [Υcas(u)] ≤
h∑
j=1

γj(uj) ·R`?,nj

Aj(p)[Υ
?
j(uj)],

where γj(uj) =

{
2αj if Υ?

j(uj) 6= ⊥
2βj if Υ?

j(uj) = ⊥
.

Proof. For all j ∈ [h], we will first prove a bound relating the tree-distance regret at level j, with the tree-distance regret
at level j − 1 and abstain loss regret at level j as follows:

R`H,j

Aj(p)[Υ
cas
j (u)] ≤ R`H,j−1

Aj−1(p)[Υ
cas
j−1(u)] + γj(uj) ·R`?,nj

Aj(p)[Υ
?
j(uj)] .

The theorem would simply follow from applying such a bound recursively and observing that R`H,0

A0(p)[Υ
cas
0 (u)] = 0.

One observation of the tree-distance loss that will be often of use in the proof is the following:

`H(y, y′)− `H(P (y), y′) =

{
−`H(y, P (y)) if y′ ∈ D(y)

`H(y, P (y)) otherwise

The details of the proof follows: Fix j ∈ [h],u ∈ Rd,p ∈ ∆n.

Let y∗j = argminy∈[nj ]R
`H,j

Aj(p)[y].

Case 1: Υ?
j(uj) 6= ⊥

R`H,j

Aj(p)[Υ
cas
j (u)] =

nj∑
y=1

Ajy(p)(`H(y,Υcas
j (u))− `H(y, y∗j ))

≤ `H(y∗j ,Υ
cas
j (u))(1− 2AjΥcas

j (u)(p)) (9)

We also have,

R`?,nj

Aj(p)[Υ
?
j(uj)] = 1−Aj

Υ?
j(uj)

(p)− min
y∈[nj ]∪{⊥}

〈Aj(p), `?,nj
y 〉

≥ 1−Aj
Υ?

j(uj)
(p)− 〈Aj(p), `

?,nj

⊥ 〉

=
1

2
−Aj

Υ?
j(uj)

(p)

=
1

2
−AjΥcas

j (u)(p) . (10)

The last inequality above follows because if Υ?
j(uj) 6= ⊥, then Υcas

j (u) = Υ?
j(uj).
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Putting Equations 9 and 10 together, we get

R`H,j

Aj(p)[Υ
cas
j (u)] ≤ 2`H(y∗j ,Υ

cas
j (u)) ·R`?,nj

Aj(p)[Υ
?
j(uj)]

≤ 2αj ·R`?,nj

Aj(p)[Υ
?
j(uj)] (11)

Case 2: Υ?
j(uj) = ⊥

In this case Υcas
j (u) = Υcas

j−1(u), and hence lev(Υcas
j (u)) ≤ j − 1.

We now have,

〈Aj(p), `H,jΥcas
j (u)〉 − 〈A

j−1(p), `H,j−1
Υcas

j−1(u)〉 = 〈Aj(p), `H,jΥcas
j (u)〉 − 〈A

j−1(p), `H,j−1
Υcas

j (u)〉

=
∑
y∈N=j

Sy(p)
(
`H(y,Υcas

j (u))− `H(P (y),Υcas
j (u))

)
=

∑
y∈N=j

Sy(p)`H(y, P (y)) (12)

For ease of analysis, we divide case 2, further into two sub-cases.

Case 2a: lev(y∗j ) < j

〈Aj−1(p), `H,j−1
y∗j−1

〉 − 〈Aj(p), `H,jy∗j
〉 = 〈Aj−1(p), `H,j−1

y∗j−1
〉 − 〈Aj−1(p), `H,j−1

y∗j
〉

+〈Aj−1(p), `H,j−1
y∗j

〉 − 〈Aj(p), `H,jy∗j
〉

≤ 〈Aj−1(p), `H,j−1
y∗j

〉 − 〈Aj(p), `H,jy∗j
〉

=
∑
y∈N=j

Sy(p)(`H(P (y), y∗j )− `H(y, y∗j ))

=
∑
y∈N=j

Sy(p)(−`H(y, P (y))) (13)

Adding, Equation 12 and 13, we get

R`H,j

Aj(p)[Υ
cas
j (u)] ≤ R`H,j−1

Aj−1(p)[Υ
cas
j−1(u)] (14)

Case 2b: lev(y∗j ) = j

〈Aj−1(p), `H,j−1
y∗j−1

〉 − 〈Aj−1(p), `Hy∗j

∣∣
[1:nj−1]

〉 ≤ 〈Aj−1(p), `H,j−1
P (y∗j ) 〉 − 〈A

j−1(p), `Hy∗j

∣∣
[1:nj−1]

〉

=
∑

y∈N≤j−1

Aj−1
y (p)(`H(y, P (y∗j ))− `H(y, y∗j ))

=
∑

y∈N≤j−1

Aj−1
y (p)(−`H(y∗j , P (y∗j )))

= −`H(y∗j , P (y∗j )) (15)

Also,

〈Aj−1(p), `Hy∗j

∣∣
[1:nj−1]

〉 − 〈Aj(p), `H,jy∗j
〉 =

∑
y∈N=j

Sy(p)(`H(P (y), y∗j )− `H(y, y∗j ))

=
∑

y∈N=j\{y∗j }

Sy(p)(−`H(y, P (y))) + Sy∗j (p)(`H(y∗j , P (y∗j ))) . (16)
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Adding Equations 12, 15 and 16, we get

R`H,j

Aj(p)[Υ
cas
j (u)] ≤ R`H,j−1

Aj−1(p)[Υ
cas
j−1(u)] + (2Sy∗j (p)− 1) · `H(y∗j , P (y∗j ))

≤ R`H,j−1

Aj−1(p)[Υ
cas
j−1(u)] + (2Sy∗j (p)− 1) · βj . (17)

Inequality 17 follows because by the definitions of y∗j and Theorem 1 , we have Sy∗j (p) ≥ 1
2 .

Also, we have that

R`?,nj

Aj(p)[Υ
?
j(uj)] = R`?,nj

Aj(p)[⊥]

=
1

2
− min
y∈[n]∪{⊥}

〈Aj(p), `?,nj
y 〉

≥ 1

2
− 〈Aj(p), `

?,nj

y∗j
〉

=
1

2
− (1− Sy∗j (p))

= Sy∗j (p)− 1

2
. (18)

Putting Equations 17 and 18 together, we have that

R`H,j

Aj(p)[Υ
cas
j (u)] ≤ R`H,j−1

Aj−1(p)[Υ
cas
j−1(u)] + 2βj ·R`?,nj

Aj(p)[Υ
?
j(uj)]. (19)

Putting the results for case 1, case 2a and case 2b, from Equations 11, 14 and 19 respectively, we have

R`H,j

Aj(p)[Υ
cas
j (u)] ≤ R`H,j−1

Aj−1(p)[Υ
cas
j−1(u)] + γj(uj) ·R`?,nj

Aj(p)[Υ
?
j(uj)] .

Now the proof of Lemma 3 follows from certain simple considerations.

Lemma. For any distribution D over X × [n], let Aj(D) be the distribution over X × [nj ] given by the distribution of
(X, ancj(Y )) with (X,Y ) ∼ D. For all j ∈ [h], let fj : X→Rdj be such that f(x) = [f1(x)>, . . . , fh(x)>]>. Then for all
distributions D over X × [n] and all functions f : X→Rd

R`H

D [Υcas ◦ f ] ≤
h∑
j=1

2αj ·R`?,nj

Aj(D)[Υ
?
j ◦ fj ] .

Proof. Using Lemma 8 and by the observation that βj ≤ αj , we have for all p ∈ ∆n,u ∈ Rd that

R`H

p [Υcas(u)] ≤
h∑
j=1

2αj ·R`?,nj

Aj(p)[Υ
?
j(uj)] .

Let f : X→Rd be a function. Then for all x ∈ X ,

R`H

p(x)[Υ
cas(f(x))] ≤

h∑
j=1

2αj ·R`?,nj

Aj(p(x))[Υ
?
j(uj)] .

Observe that the the marginal distribution over X for Aj(D) is exactly the same as for D, while the conditional probability
distribution for the distribution Aj(D) at x is exactly equal to Aj(p(x)). The Lemma now immediately follows from
linearity of expectation.
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B.3. Proof of Theorem 4

Theorem. For all j ∈ [h], let ψj : [nj ]×Rdj and Υ?
j : Rdj→nj be such that for all fj : X→Rdj , and all distributions D

over X × [nj ] we have

R`?,nj

D [Υ?
j ◦ fj ] ≤ C ·R

ψj

D [fj ],

for some constant C > 0. Then for all f : X→Rd and distributions D over X × [n],

R`H

D [Υcas ◦ f ] ≤ 2αhC ·Rψcas

D [f ] .

Proof. Fix u ∈ Rd,p ∈ ∆n. From Lemma 3, we have that

R`H

p [Υcas(u)] ≤
h∑
j=1

2αj ·R`?,nj

Aj(p)[Υ
?
j(uj)]

≤ 2αh ·
h∑
j=1

·R`?,nj

Aj(p)[Υ
?
j(uj)]

≤ 2αhC ·
h∑
j=1

Rψj

Aj(p)[uj ]

= 2αhC ·Rψcas

p [u] .

The proof now simply follows from linearity of expectation.

B.4. Proof of Theorem 6

While Theorem 2 from Ramaswamy et al. (2015) , gives an excess risk bound for the abstain loss excess risk in terms of
the OvA-surrogate risk, one can easily get a more refined bound as well from the results of Ramaswamy et al. (2015).

Lemma 9 ((Ramaswamy et al., 2015)). Let τ ∈ (−1, 1). For all u ∈ Rn,p ∈ ∆n, and A = 1(ΥOvA,n
τ (u) = n+ 1). Then

for all p ∈ ∆n

R`?,n

p [ΥOvA,n
τ (u)] ≤

(
1(ΥOvA,n(u) = ⊥)

2(1− τ)
+

1(ΥOvA,n(u) 6= ⊥)

2(1 + τ)

)
RψOvA,n

p [u] .

We are now ready to prove Theorem 6.

Theorem. For 1 ≤ j ≤ h, let τj =
αj−βj

αj+βj
. Let the component surrogates and predictors of ψcas and Υcas be ψj = ψOvA,nj

and Υj = Υ
OvA,nj
τj . Then, for all distributions D and functions f : X→Rd,

R`H

D [Υcas ◦ f ] ≤ 1

2
max
j∈[h]

(αj + βj) ·Rψcas

D [f ]

Proof. Let u ∈ Rd,p ∈ ∆n, From Lemmas 8 and 9, we have that

R`H

p [Υcas(u)] ≤
h∑
j=1

γj(uj) ·R`?,nj

Aj(p)[Υ
?
j(uj)]

≤
h∑
j=1

γj(uj)

(
1(ΥOvA,nj (uj) = ⊥)

2(1− τj)
+

1(ΥOvA,nj (uj) 6= ⊥)

2(1 + τj)

)
·RψOvA,nj

Aj(p) [uj ]

=

h∑
j=1

(
βj · 1(ΥOvA,nj (uj) = ⊥)

(1− τj)
+
αj · 1(ΥOvA,nj (uj) 6= ⊥)

(1 + τj)

)
·RψOvA,nj

Aj(p) [uj ]
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For each j ∈ [h], the coefficients of both the terms within parantheses (i.e. αj

1+τj
and βj

1−τj ) both evaluate to αj+βj

2 when the

thresholds τj are set as τj =
αj−βj

αj+βj
. In fact it can easily be seen that this value of τj minimizes the worst-case coefficient

of RψOvA,nj

Aj(p) [uj ] in the bound. Thus, we have

R`H

p [Υcas(u)] ≤
h∑
j=1

1

2
(αj + βj) ·RψOvA,nj

Aj(p) [uj ]

≤ 1

2
max
j∈[h]

(αj + βj) ·
h∑
j=1

RψOvA,nj

Aj(p) [uj ]

=
1

2
max
j∈[h]

(αj + βj) ·Rψcas

p [u] .

The Theorem now follows from linearity of expectation.
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