
Proceedings of Machine Learning Research vol 283:1–35, 2025 7th Annual Conference on Learning for Dynamics and Control

The Complexity of Sequential Prediction in Dynamical Systems

Vinod Raman* VKRAMAN@UMICH.EDU
University of Michigan, Ann Arbor, 48104

Unique Subedi* SUBEDI@UMICH.EDU
University of Michigan, Ann Arbor, 48104

Ambuj Tewari TEWARIA@UMICH.EDU

University of Michigan, Ann Arbor, 48104

Editors: N. Ozay, L. Balzano, D. Panagou, A. Abate

Abstract
We study the problem of learning to predict the next state of a dynamical system when the under-
lying evolution function is unknown. Unlike previous work, we place no parametric assumptions
on the dynamical system, and study the problem from a learning theory perspective. We define
new combinatorial measures and dimensions and show that they quantify the optimal mistake and
regret bounds in the realizable and agnostic settings respectively. By doing so, we find that in the
realizable setting, the total number of mistakes can grow according to any increasing function of
the time horizon T . In contrast, we show that in the agnostic setting under the commonly studied
notion of Markovian regret, the only possible rates are Θ(T) and Θ̃(

√
T).1

Keywords: Discrete-time Dynamical Systems, Online Learnability

1. Introduction

A discrete-time dynamical system is a mathematical model that describes the evolution of a system
over discrete time steps. Formally, a discrete-time dynamical system is a tuple (N,X , f), where N
is the set of natural numbers that denote the timesteps, X is a non-empty set called the state space,
and f : X → X is a deterministic map that describes the evolution of the state. Dynamical systems
have been widely used in practice due to their ability to accurately model natural phenomena. For
instance, boolean networks are an important class of discrete-time, discrete-space dynamical sys-
tems with widespread applicability to genetic modeling (Kauffman, 1969; Shmulevich et al., 2002).
In a boolean network, the state space is X = {0, 1}n with |X ||X | = (2n)2

n
possible evolution

functions. For genetic modeling, n is taken to be the number of genes and x ∈ X indicates the
expression of all n genes under consideration. As an example, “1” could represent the gene with a
high concentration of a certain protein, and “0” could represent the gene with a low concentration.
With such formulation, one can study how the state of these genes evolves over time under certain
medical interventions. Beyond genetics, dynamical systems have been used in control (Li et al.,
2019), computer vision (Doretto et al., 2003), and natural language processing (Sutskever et al.,
2014; Belanger and Kakade, 2015).

In this work, we consider the problem of predicting the next state of a dynamical system when
the underlying evolution function is unknown (Ghai et al., 2020). To capture the sequential nature
of dynamical systems, we consider the model where the learner plays a sequential game with nature

* Equal Contribution
1. The full paper is available at: https://arxiv.org/abs/2402.06614.

© 2025 A. Tewari.

https://arxiv.org/abs/2402.06614

TEWARI

over T rounds. At the beginning of the game, nature reveals the initial state x0 ∈ X . In each round
t ∈ [T], the learner makes its prediction of the next state x̂t ∈ X , nature reveals the true next state
xt ∈ X , and the learner suffers loss 1{x̂t ̸= xt}. Given an evolution class F ⊆ XX , the goal of
the learner is to output predictions of the next state such that its regret, the difference between its
cumulative mistakes and the cumulative mistakes of the best-fixed evolution in hindsight (defined
formally in Section 2.2), is small. The class F is said to be learnable if there exists a learning
algorithm whose regret is a sublinear function of the time horizon T .

Although we allow the state spaceX to be arbitrary, we only consider the 0-1 loss, which may be
more appropriate for discrete-space dynamical systems. However, even discrete-space dynamical
systems can be very expressive, capturing complex processes like cellular automata (Hoekstra et al.,
2010; Wolfram, 1986) and language modeling (Elman, 1995). For example, let V be a countable
token space and X = V⋆ to be the state space containing all finite sequences of elements from V .
Consider a function class F ⊆ XX with the following property: for every f ∈ F and any input
x ∈ X , f(x) = x ◦ v, where we use ◦ to represent the concatenation operator. Then, F is a set of
auto-regressive models which given a sequence of tokens x ∈ X , predicts the next token v ∈ V in
the sequence. In particular, F could be a class of language models which use deterministic decoding
strategies (e.g. greedy decoding) to output the next token (Chorowski and Jaitly, 2016). For such
a function class F , one might be interested in understanding the optimal number of mistakes for
next-token prediction when the true sequence of tokens is generated by some unknown f ∈ F .

Given any learning problem (X ,F), we aim to find necessary and sufficient conditions for the
learnability of F while also quantifying the minimax rates under two notions of expected regret:
Markovian and Flow regret (Equations 1 and 2 respectively). To that end, our main contributions
are summarized below.

(i) We provide a quantitative characterization of learnability in the realizable setting, when there
exists an evolution function in the class F that generates the sequence of states. Our char-
acterization is in terms of a new combinatorial complexity measure we call the Evolution
complexity. Using this characterization, we show that all rates are possible for the mini-
max expected mistakes when learning dynamical systems in the realizable setting. This is
in contrast to online multiclass classification where only two rates are possible. Finally, we
compare realizable learnability of dynamical systems to realizable learnability in PAC and
online classification.

(ii) In the agnostic setting, we lower and upper bound the minimax Markovian regret in terms of
the Littlestone dimension. This result shows that the finiteness of the Littlestone dimension
characterizes learnability under Markovian regret. As a corollary, we establish a separation
between realizable and agnostic learnability under Markovian regret. We show this separation
between realizable and agnostic learnability continues to hold when considering Flow regret.
However, if the evolution class has uniformly bounded projections, we show that realizable
and agnostic learnability under Flow regret are equivalent.

Our characterization of realizable learnability in terms of the Evolution complexity follows
from standard techniques in online classification. However, our results showing all possible rates
requires a careful construction of a family of classes which have not been studied in learning theory.
Likewise, our comparisons of realizable learnability require a careful construction of non-trivial
classes, and computing their combinatorial dimensions.

2

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

In the agnostic setting, our upper bound on the minimax Markovian regret in terms of the Lit-
tlestone dimension results from reducing learning dynamical systems to online multiclass classifi-
cation. However, both of the lower bounds Ω(

√
T) and Ω(L(H)) in Theorem 15 are not standard.

The lower bound of Ω(L(H)) requires constructing a hard stream by traversing down a Littlestone
tree skipping certain levels. The lower bound of

√
T requires constructing a hard stream using two

different evolution functions f1, f2 by: (a) setting x0 to be a state they differ on (b) generating
their trajectories starting from x0 and finally (c) picking states from each trajectory in an alternating
fashion. These arguments are different from the typical lower bound construction for online classi-
fication. In addition, the construction in Theorem 18 showing the separation between realizable and
agnostic learnability under Flow regret is non-trivial. It involves constructing an F ⊆ XX so that
on a large subset of states in X , every function f ∈ F effectively reveals itself.

1.1. Related Works

There has been a long line of work studying prediction and regret minimization when learning
unknown dynamical systems (Hazan et al., 2017, 2018; Ghai et al., 2020; Lee, 2022; Rashidine-
jad et al., 2020; Kozdoba et al., 2019; Tsiamis and Pappas, 2022; Lale et al., 2020). However,
these works focus on prediction for fully/partially-observed linear dynamical systems under various
data-generating processes. Moreover, there is also a line of work on regret minimization for linear
dynamical systems for online control problems (Abbasi-Yadkori and Szepesvári, 2011; Cohen et al.,
2018; Agarwal et al., 2019). For non-linear dynamical systems, there has been some applied work
studying data-driven approaches to prediction (Wang et al., 2016; Korda and Mezić, 2018; Ghadami
and Epureanu, 2022). Regret minimization for non-linear dynamical systems has mainly been stud-
ied in the context of control (Kakade et al., 2020; Muthirayan and Khargonekar, 2021). Another
related line of work is online learning for time series forecasting, where autoregressive models are
used to predict the next state (Anava et al., 2013, 2015; Liu et al., 2016; Yang et al., 2018).

Another important line of work is that of system identification and parameter estimation (Åström
and Eykhoff, 1971; Ljung, 1999). Here, the goal is to recover and estimate the parameters of the
underlying evolution function from the observed sequence of states. There is a long history of
work studying system identification in both the batch (Campi and Weyer, 2002; Vidyasagar and
Karandikar, 2006; Foster et al., 2020; Sattar and Oymak, 2022; Bahmani and Romberg, 2020) and
streaming settings (Kowshik et al., 2021a,b; Giannakis et al., 2023; Jain et al., 2021). Several works
have also considered the problem of learning the unknown evolution rule of dynamical systems de-
fined over discrete state spaces. For example, Wulff and Hertz (1992) trains a neural network on
a sequence of observed states to approximate the unknown evolution rule of a cellular automaton.
Grattarola et al. (2021) extends this work to learning the unknown evolution rule of a graph cellu-
lar automaton, a generalization of a regular cellular automaton, using graph neural networks. (Qiu
et al.; Rosenkrantz et al., 2022) also consider the problem of PAC learning a discrete-time, finite-
space dynamical system defined over a (un)directed graph. We also note the related work of Berry
and Das (2023, 2025), who study the problem of learning dynamics observed through a continuous
embedding and derive learning guarantees based on various structural properties of the underlying
system. Finally, our work builds on a rich tradition in learning theory that characterizes learnabil-
ity through complexity measures and combinatorial dimensions (Vapnik and Chervonenkis, 1971;
Littlestone, 1987; Bartlett and Mendelson, 2002; Daniely et al., 2011).

3

TEWARI

2. Preliminaries

2.1. Discrete-time Dynamical Systems

A discrete-time dynamical system is a tuple (N,X , f), where N is the set of natural numbers de-
noting the time steps, X is a non-empty set called the state space. In this work, we make no
assumption on the cardinality of X , so it can be unbounded and perhaps even uncountable. The
function f : X → X is a deterministic map that defines the evolution of the dynamical system.
That is, the (t+1)-th iterate of the dynamics can be expressed in terms of t-th iterate using the rela-
tion xt+1 = f(xt). Define f t to be the t-fold composition of f . That is, f2 = f ◦ f , f3 = f ◦ f ◦ f ,
and so forth. Given an initial state x0 ∈ X , the sequence {f t(x0)}t∈N is called the flow of the
dynamical system through x0. Finally, let F ⊆ XX denote a class of evolution functions on the
state space X and F(x) = {f(x) | f ∈ F} ⊆ X to be the projection of F onto x ∈ X .

2.2. Learning-to-Predict in Dynamical Systems

When learning-to-predict in dynamical systems, nature plays a sequential game with the learner
over T rounds. At the beginning of the game, nature reveals the initial state x0 ∈ X . In each round
t ∈ [T], the learner A uses the observed sequence of states x<t := (x0, ..., xt−1) to predict the
next state A(x<t) ∈ X . Nature then reveals the true state xt ∈ X , and the learner suffers the loss
1{A(x<t) ̸= xt}. Given a class of evolution functions F ⊆ XX , the goal of the learner is to make
predictions such that its regret, defined as a difference between cumulative loss of the learner and
the best possible cumulative loss over evolution functions in F , is small.

Formally, given F ⊆ XX , the expected Markovian regret of an algorithm A is defined as

MRA(T,F) := sup
(x0,x1,...,xT)

E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
− inf

f∈F

T∑
t=1

1{f(xt−1) ̸= xt}, (1)

where the expectation is taken with respect to the randomness of the learnerA. Given this definition
of regret, we define agnostic learnability of an evolution class.

Definition 1 (Agnostic Learnability under Markovian Regret) An evolution class F ⊆ XX is
learnable in the agnostic setting if and only if infAMRA(T,F) = o(T)2.

Perhaps a more natural definition of expected regret in the agnostic setting is to compare the
prediction of the learner to the prediction of the best-fixed trajectory generated by functions in our
evolution class. To that end, define

FRA(T,F) := sup
(x0,x1,...,xT)

(
E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
− inf

f∈F

T∑
t=1

1{f t(x0) ̸= xt}
)
. (2)

as the expected Flow regret. An analogous definition of agnostic learnability follows.

Definition 2 (Agnostic Learnability under Flow Regret) An evolution class F ⊆ XX is learn-
able in the agnostic setting under Flow regret if and only if infA FRA(T,F) = o(T).

2. o(T) refers to any sublinear function of T .

4

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

A sequence of states x0, x1, . . . , xT is said to be realizable byF if there exists an evolution function
f ∈ F such that f(xt−1) = xt for all t ∈ [T]. In the realizable setting, the cumulative loss of the
best-fixed function is 0, and the goal of the learner is to minimize its expected cumulative mistakes

MA(T,F) := sup
x0

sup
f∈F

E

[
T∑
t=1

1{A(x<t) ̸= f(xt−1)}

]
.

Analogously, we define the realizable learnability of F .

Definition 3 (Realizable Learnability) An evolution class F ⊆ XX is learnable in the realizable
setting if and only if infAMA(T,F) = o(T).

2.3. Complexity Measures

In sequential learning tasks, complexity measures are often defined in terms of trees, a basic unit
that captures temporal dependence. In this paper, we use complete binary trees to define a new
combinatorial object called a trajectory tree. In the remainder of this section and Section 2.4, we use
trajectory trees to define complexity measures and combinatorial dimensions for evolution classes.

Definition 4 (Trajectory tree) A trajectory tree of depth d is a complete binary tree of depth d
where internal nodes are labeled by states in X .

Given a trajectory tree T of depth d, a root-to-leaf path down T is defined by a string σ ∈ {−1, 1}d
indicating whether to go left (σt = −1) or to go right (σi = +1) at each depth t ∈ [d]. A path
σ ∈ {−1, 1}d down T gives a trajectory {xt}dt=0, where x0 denotes the instance labeling the root
node and xt is the instance labeling the edge following the prefix (σ1, ..., σt) down the tree. A path
σ ∈ {−1, 1}d down T is shattered by F if there exists a f ∈ F such that f(xt−1) = xt for all
t ∈ [d], where {xt}dt=0 is the corresponding trajectory obtained by traversing T according to σ. If
every path down T is shattered by F , we say that T is shattered by F .

To make this more rigorous, we define a trajectory tree T of depth d as a sequence (T0, T1, ..., Td)
of node-labeling functions Tt : {−1, 1}t → X , which provide the labels for each internal node.
Then, Tt(σ1, ..., σt) gives the label of the node by following the prefix (σ1, ..., σt) and T0 de-
notes the instance labeling the root node. For brevity, we define σ≤t = (σ1, ..., σt) and write
Tt(σ1, ..., σt) = Tt(σ≤t). Analogously, we let σ<t = (σ1, ..., σt−1). Using this notation, a trajec-
tory tree T of depth d is shattered by the evolution function class F if ∀σ ∈ {−1, 1}d, there exists a
fσ ∈ F such that fσ(Tt−1(σ<t)) = Tt(σ≤t) for all t ∈ [d]. Moreover, we use this notation to define
the Branching factor of a trajectory tree.

Definition 5 (Branching factor) The Branching factor of a trajectory tree T of depth d is

B(T) := min
σ∈{−1,1}d

d∑
t=1

1{Tt((σ<t,−1)) ̸= Tt
(
(σ<t,+1)

)
}.

The branching factor of a path σ ∈ {−1, 1}d captures the distinctness of states labeling the
two children of internal nodes in this path. In particular, it counts the number of nodes in the path
whose two children are labeled by distinct states. The branching factor of a trajectory tree is just
the smallest branching factor across all paths. Using the notion of shattering and Definition 5, we
define a new complexity measure, termed the Evolution complexity, of a function class F .

5

TEWARI

Definition 6 (Evolution complexity) Let S(F , d) be the set of all trajectory trees of depth d ∈
N shattered by F . Then, the Evolution complexity of F at depth d is defined as Cd(F) :=
supT ∈S(F ,d)B(T).

In Section 3, we show that the Evolution complexity exactly (up to a factor of 2) captures the
minimax expected mistakes in the realizable setting. We provide some examples of classes F and
their evolution complexities in Theorem 14. We note that there is an existing notion of complexity
for dynamical systems, termed topological entropy, that quantifies the complexity of a particular
evolution function f ∈ F (Adler et al., 1965). However, topological entropy does not characterize
learnability as F = {f} is trivially learnable when f has infinite topological entropy.

2.4. Combinatorial dimensions

In addition to complexity measures, combinatorial dimensions play an important role in providing
crisp quantitative characterizations of learnability. For example, the Daniely Shalev-Shwartz di-
mension (DSdim), originally proposed by Daniely and Shalev-Shwartz (2014) and formally defined
below, was recently shown by Brukhim et al. (2022) to provide a tight quantitative characterization
of multiclass PAC learnability. In Section 3.2, we use the DSdim to relate the realizable learnability
of dynamical systems to multiclass PAC learnability of F .

Definition 7 (DS dimension (Daniely and Shalev-Shwartz, 2014)) We say that A ⊆ X is DS-
shattered by F if there exists a finite H ⊂ F such that for every x ∈ A and h ∈ H, there exists
a g ∈ H such that g(x) ̸= h(x) and g(z) = h(z) for all z ∈ A \ {x}. The DS dimension of F ,
denoted DS(F), is the largest d ∈ N such that there exists a shattered set A ⊂ X with cardinality
d. If there are arbitrarily large sets A ⊆ X that are shattered by F , then we say that DS(F) =∞.

Analogously, for online multiclass classification, the Littlestone dimension (Ldim), originally
proposed by Littlestone (1987) for binary classification and later extended to multiclass classifica-
tion by Daniely et al. (2011), provides a tight quantitative characterization of learnability (Hanneke
et al., 2023).

Definition 8 (Littlestone dimension (Littlestone, 1987; Daniely et al., 2011)) Let T be a com-
plete binary tree of depth d whose internal nodes are labeled by a sequence (T0, . . . , Td−1) of
node-labeling functions Tt−1 : {−1, 1}t−1 → X . The tree T is shattered by F ⊆ XX if there
exists a sequence (Y1, ..., Yd) of edge-labeling functions Yt : {−1, 1}t → X such that for ev-
ery path σ = (σ1, ..., σd) ∈ {−1, 1}d, there exists a function fσ ∈ F such that for all t ∈ [d],
fσ(Tt−1(σ<t)) = Yt(σ≤t) and Yt((σ<t,−1)) ̸= Yt((σ<t,+1)). The Littlestone dimension of F ,
denoted L(F), is the maximal depth of a tree T that is shattered by F . If there exists shattered trees
of arbitrarily large depth, we say L(F) =∞.

3. Warmup: Realizable Learnability

In this section, we provide qualitative and quantitative characterizations of realizable learnability in
terms of the Evolution complexity. Our main result in this section is Theorem 9, which provides
bounds on the minimax expected number of mistakes.

6

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Theorem 9 (Minimax Expected Mistakes) For anyF ⊆ XX , we have 1
2 CT (F) ≤ infA MA(T,F) ≤

CT (F). Moreover, the upper bound is achieved constructively by a deterministic learner.

The factor of 1
2 in the lower bound is due to randomized learners, and the lower bound of CT (F)

can be obtained if the learner is restricted only to deterministic learning rules.
We now describe our high-level proof strategy and defer the full proof of Theorem 9 to Appendix

A. Our lower bound involves picking the worst-case shattered tree with the largest branching factor
and traversing down this tree uniformly at random to generate the sequence of states. For such a
sequence, the learner can do no better than random guessing at nodes where the branching occurred,
yielding the lower bound CT (F)/2. Next, for our upper bound, we first define a localized complex-
ity measure CT (F , x0), where we only consider shattered trees rooted at the revealed initial state
x0. Our minimax learner is then a version space algorithm that predicts the state that will result in
the largest reduction in the complexity measure if a mistake occurs. This learner is a generalization
of the celebrated Standard Optimal Algorithm due to Littlestone (1987).

3.1. Minimax Rates in the Realizable Setting

While Theorem 9 provides a quantitative and qualitative characterization of realizable learnability,
it does not shed light on how infAMA(F , T) may depend on the time horizon T . In online classifi-
cation with the 0-1 loss, the seminal work by Littlestone (1987) and Daniely et al. (2011) show that
only two rates are possible: Θ(T) and Θ(1). That is, if a hypothesis class is online learnable in the
realizable setting, then it is learnable with a constant mistake bound (i.e. the Littlestone dimension).
Perhaps surprisingly, this is not the case for learning dynamical systems in a strong sense: every
rate is possible.

Theorem 10 For every S ⊂ N∪{0}, there exists FS ⊆ ZZ such that CT (FS) = supn∈N∪{0} |S ∩
{n, n+ 1, ..., n+ T − 1}|.

Theorem 10, proved in Appendix B, along with Theorem 9 implies that any minimax rate in the
realizable setting is possible. As an example, suppose we would like to achieve the rate Θ(Tα) for
some α < 1. Then, picking S = {⌊t

1
α ⌋ : t ∈ N ∪ {0}} suffices since supx∈N∪{0} |S ∩ {n, n +

1, ..., n + T − 1}| = |{⌊t
1
α ⌋ : t ∈ N ∪ {0}} ∩ {0, 1, ..., T − 1}| = Θ(Tα). Likewise, one can get

logarithmic rates by picking S = {2t : t ∈ N∪{0}} and constant rates by picking S ⊂ N∪{0} such
that |S| <∞. In light of Theorem 10 and the fact that only constant mistake bounds are possible for
online multiclass classification, it is natural to ask when one can achieve constant mistake bounds for
learning dynamical systems. To answer this question, we introduce a new combinatorial dimension
termed the Branching dimension.

Definition 11 (Branching dimension) The Branching dimension, denoted Bd(F), is the smallest
natural number d ∈ N such that for every shattered trajectory tree T , we have B(T) ≤ d. If for
every d ∈ N, there exists a shattered trajectory tree T with B(T) > d, we say Bd(F) =∞.

Theorem 12, proved via non-constructive arguments in Appendix C, shows that infAMA(T,F) =
Θ(1) if and and only if Bd(F) <∞.

Theorem 12 (Constant Minimax Expected Mistakes) For anyF ⊆ XX , we have (i) infAMA(T,F) ≤
Bd(F) and (ii) if Bd(F) =∞, then infAMA(T,F) = ω(1)3.

3. Recall that f(n) = ω(1) if for all k > 0, there exists nk, such that for all n > nk we have f(n) > k.

7

TEWARI

3.2. Relations to PAC and Online Multiclass Classification

By studying abstract state spaces X and evolutions function classes F ⊆ XX , we can also compare
realizable learnability of dynamical systems to existing notions of realizable learnability in the well-
known PAC and online classification settings. Our main result relates the evolution complexity to
the DS and Littlestone dimensions, which characterize PAC and online classification respecitively.

Theorem 13 (Relations to the DS and Littlestone dimension) The following statements are true.

(i) There exists F ⊆ XX such that DS(F) =∞ but CT (F) = Θ(log(T)).

(ii) There exists F ⊆ XX such that DS(F) = 1 but CT (F) = T .

(iii) For any F ⊆ XX , we have that CT (F) ≤ L(F).

(iv) There exists F ⊆ XX such that L(F) =∞ but CT (F) = 1.

The proof of Theorem 13 is in Appendix D. Parts (i) and (ii) show that the finiteness of the
DSdim is neither necessary nor sufficient for learning dynamical systems in the realizable setting.
On the other hand, parts (iii) and (iv) show that finite Ldim is sufficient but not necessary for
learning dynamical systems in the realizable setting. Overall, learning dynamical systems is always
easier than online multiclass classification, but can be both easier and harder than multiclass PAC
classification. The proof of (i), (ii), and (iv) are combinatorial in nature, while the proof of (iii)
involves reducing learning-to-predict in dynamical systems to online multiclass classification.

3.3. Examples

In this section, we establish the minimax rates for discrete linear systems and linear Boolean net-
works. The proof of Theorem 14 is in Appendix E.

Theorem 14 (Linear Systems)

(i) Let X = Zn and r < n. For F = {x 7→ Wx : W ∈ Zn×n, rank(W) ≤ r} and T > r, we
have CT (F) = r + 1.

(ii) Let X = {0, 1}n and T ≥ n. For F = {x 7→ Wx (mod 2) : W ∈ Zn×n}, we have
CT (F) = n.

(iii) Let X = {0, 1}n and T ≥ n. For F = {x 7→ 1{Wx > 0} : W ∈ {0, 1}n×n}, we have
n ≤ CT (F) ≤ n2.

Thresholded Boolean networks have been used to model genetic regulatory dynamics (Mendoza
and Alvarez-Buylla, 1998) and social networks (Kempe et al., 2003). Modulo Boolean networks
have been studied by Chandrasekhar et al. (2023) in the context of stability.

8

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

4. Agnostic Learnability

4.1. Markovian Regret

In this section, we go beyond the realizable setting and consider the case where nature may reveal
a trajectory that is not consistent with any evolution function in the class. Our main result in this
section establishes bounds on the minimax expected Markovian regret.

Theorem 15 (Minimax Expected Markovian Regret) For any F ⊆ XX ,

max

{
L(F)
18

,

√
T

16
√
3

}
≤ inf

A
MRA(T,F) ≤ L(F) +

√
T L(F) log T .

Theorem 15 shows that the finiteness of the Littlestone dimension of F is both necessary and suf-
ficient for agnostic learnability. This is in contrast to Theorem 13, which shows that the finiteness
of the Littlestone dimension of F is sufficient but not necessary for realizable learnability. Thus,
Theorem 15 and 13 imply that realizable and agnostic learnability are not equivalent.

Corollary 16 (Realizable Learnability ̸≡ Agnostic Learnability under Markovian Regret) There
exists a class F ⊆ XX such that F is learnable in the realizable setting but not in the agnostic set-
ting under Markovian regret.

One such class exhibiting the separation is the thresholds F = {x 7→ 1{x ≥ a} : a ∈ (0, 1)} used
in the proof of part (iv) in Theorem 13. Beyond the qualitative separation of realizable and agnostic
learnability under Markovian regret, we also observe a quantitative separation in terms of possible
minimax rates. Recall that Theorem 10 shows that every rate is possible in the realizable setting.
However, Theorem 15 shows that only two types of rates are possible in the agnostic setting: Θ(T)
whenever L(F) = ∞ and Θ̃(

√
T) whenever L(F) < ∞. More precisely, when

√
T ≥ L(F), we

have a lower bound of Ω(
√
T) and an upper bound of O(

√
T L(F) log T). This raises the natural

question of what the right minimax rate is. In Appendix G, we provide an evolution class and
establish a lower bound of Ω(

√
T L(F)), showing that the upper bound is tight up to

√
log T .

Our proof of the upper bound in Theorem 15 reduces learning dynamical systems to online
multiclass classification and uses a result due to Hanneke et al. (2023). To prove the lower bound
L(F)
18 , we construct a hard stream by carefully sampling a random path down a Littlestone tree of

depth L(F). To prove the lower bound of
√
T

16
√
3
, we construct a hard randomized stream using just

two different evolution functions in F . The full proof is in Appendix F.

4.2. Flow Regret

The necessity of the Littlestone dimension for agnostic learnability under Markovian regret is quite
restrictive. For example, a simple (but unnatural) class like one-dimensional thresholds F = {x 7→
1{x ≤ a} : a ∈ (0, 1)} has L(F) = ∞ but CT (F) = 1. The key idea in the lower bound
of Theorem 17 is that the adversary can simulate the online multiclass classification game, where
finiteness of the Littlestone dimension is necessary, by “giving up” every other round. This is
possible because of the definition of Markovian regret. In particular, the evaluation of the “best-fixed
evolution function in hindsight” under Markovian regret is only penalized on one-step prediction
error but not on long-term consistency of the generated dynamics starting from the initial state x0.

9

TEWARI

This motivates the following natural question. Which evolution classes F ⊆ XX are agnostic
learnable under Flow regret? Is the finiteness of Ldim still necessary? Theorem 17, whose proof
can be found in Appendix H, provides partial answers to these question by bounding the minimax
expected Flow regret for classes where supx∈X |F(x)| is uniformly bounded.

Theorem 17 (Minimax Expected Flow Regret) For any ordered set X and F ⊆ XX ,

CT (F)
2

≤ inf
A

FRA(T,F) ≤ CT (F) +

√
CT (F)T ln

(T KF
CT (F)

)
.

where KF = supx∈X |F(x)|. Moreover, both the lower- and upper bound can be tight.

Note that the upper bound becomes vacuous when supx∈X |F(x)| = ∞, and finding a general
characterization of Flow regret learnability remains an open question. Unlike agnostic learnability
under Markovian regret, the finiteness of the Ldim is not necessary for agnostic learnability under
Flow regret. Indeed, while the class of one-dimensional thresholds is not agnostic learnable under
Markovian regret, it is agnostic learnable under Flow regret. Although Markovian learnability is
not necessary for Flow regret learnability, when KF < ∞, learnability under Markovian regret is
sufficient learnability under flow regret. To see this, recall that Theorem 15 states that learnability
under Markovian regret implies L(F) < ∞. Then, since part (iii) of Theorem 13 states CT (F) ≤
L(F), we can use Theorem 17 to infer that F is also learnable under flow regret with regret ≤
L(F) +

√
L(F)T ln(TKF).

Theorem 17 shows that realizable and agnostic learnability under Flow regret are equivalent
as long as supx∈X |F(x)| < ∞. But this equivalence breaks down when the projection sizes are
unbounded, as shown by Theorem 18.

Theorem 18 (Realizable learnability ̸≡ Agnostic Learnability under Flow Regret) There exists
an ordered set X and F ⊆ XX such that (i) infAMA(T,F) ≤ 3 but (ii) infA FRA(T,F) ≥ T

6 .

To prove Theorem 18 (see Appendix I), we construct a class F ⊆ XX such that on large subset
of states in X ′ ⊂ X , every function f ∈ F effectively reveals its identity.

5. Discussion and Future directions

In this work, we studied the problem of learning-to-predict in discrete-time dynamical systems
under the 0-1 loss. A natural extension is to consider continuous state spaces with real-valued
losses. For example, one can take X to be a bounded subset of a Hilbert space and consider the
squared norm as the loss function. Another natural extension is to consider learnability under partial
observability, where the learner only observes some transformation ϕ(xt) instead of the true state xt.
Such feedback model is standard in prediction for linear dynamical systems (Hazan et al., 2018). It
is also natural to study the learnability of function classes where the output of the evolution rules f :
X p → X , depend on the previous p > 1 states (e.g. the p-th order VAR model). Lastly, the learning
algorithms in this work are improper: they use evolution functions that may not lie in F to make
predictions. This might be undesirable as improper learning algorithms may be incompatible with
downstream system identification and control tasks. To this end, characterizing proper learnability
of dynamical systems is an important future direction.

10

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Acknowledgments

AT and US acknowledge the support of NSF via grant DMS-2413089. US also acknowledges the
support of Rackham International Student Fellowship. VR acknowledges the support of the NSF
GRFP. We thank Chinmaya Kaushik for pointing out a technical result, which helped us to prove
part (i) Theorem 14.

References

Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear
quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages
1–26. JMLR Workshop and Conference Proceedings, 2011.

Roy L Adler, Alan G Konheim, and M Harry McAndrew. Topological entropy. Transactions of the
American Mathematical Society, 114(2):309–319, 1965.

Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control with
adversarial disturbances. In International Conference on Machine Learning, pages 111–119.
PMLR, 2019.

Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction.
In Conference on learning theory, pages 172–184. PMLR, 2013.

Oren Anava, Elad Hazan, and Assaf Zeevi. Online time series prediction with missing data. In
International conference on machine learning, pages 2191–2199. PMLR, 2015.

Karl Johan Åström and Peter Eykhoff. System identification—a survey. Automatica, 7(2):123–162,
1971.

Sohail Bahmani and Justin Romberg. Convex programming for estimation in nonlinear recurrent
models. The Journal of Machine Learning Research, 21(1):9563–9582, 2020.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

David Belanger and Sham Kakade. A linear dynamical system model for text. In International
Conference on Machine Learning, pages 833–842. PMLR, 2015.

Tyrus Berry and Suddhasattwa Das. Learning theory for dynamical systems. SIAM Journal on
Applied Dynamical Systems, 22(3):2082–2122, 2023.

Tyrus Berry and Suddhasattwa Das. Limits of learning dynamical systems. SIAM Review, 67(1):
107–137, 2025.

Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, and Amir Yehudayoff. A characterization
of multiclass learnability, 2022. URL https://arxiv.org/abs/2203.01550.

Marco C Campi and Erik Weyer. Finite sample properties of system identification methods. IEEE
Transactions on Automatic Control, 47(8):1329–1334, 2002.

11

https://arxiv.org/abs/2203.01550

TEWARI

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Karthik Chandrasekhar, Claus Kadelka, Reinhard Laubenbacher, and David Murrugarra. Stability
of linear boolean networks. Physica D: Nonlinear Phenomena, 451:133775, 2023.

Jan Chorowski and Navdeep Jaitly. Towards better decoding and language model integration in
sequence to sequence models. arXiv preprint arXiv:1612.02695, 2016.

Alon Cohen, Avinatan Hasidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal Talwar.
Online linear quadratic control. In International Conference on Machine Learning, pages 1029–
1038. PMLR, 2018.

Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In Conference
on Learning Theory, pages 287–316. PMLR, 2014.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability
and the erm principle. In Sham M. Kakade and Ulrike von Luxburg, editors, Proceedings of the
24th Annual Conference on Learning Theory, volume 19 of Proceedings of Machine Learning
Research, pages 207–232, Budapest, Hungary, 09–11 Jun 2011. PMLR.

Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto. Dynamic textures.
International journal of computer vision, 51:91–109, 2003.

Jeffrey L Elman. Language as a dynamical system. Mind as motion: Explorations in the dynamics
of cognition, pages 195–223, 1995.

Dylan Foster, Tuhin Sarkar, and Alexander Rakhlin. Learning nonlinear dynamical systems from a
single trajectory. In Learning for Dynamics and Control, pages 851–861. PMLR, 2020.

Amin Ghadami and Bogdan I Epureanu. Data-driven prediction in dynamical systems: recent de-
velopments. Philosophical Transactions of the Royal Society A, 380(2229):20210213, 2022.

Udaya Ghai, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. No-regret prediction in
marginally stable systems. In Conference on Learning Theory, pages 1714–1757. PMLR, 2020.

Dimitrios Giannakis, Amelia Henriksen, Joel A Tropp, and Rachel Ward. Learning to forecast
dynamical systems from streaming data. SIAM Journal on Applied Dynamical Systems, 22(2):
527–558, 2023.

Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Learning graph cellular automata. Advances
in Neural Information Processing Systems, 34:20983–20994, 2021.

Steve Hanneke, Shay Moran, Vinod Raman, Unique Subedi, and Ambuj Tewari. Multiclass online
learning and uniform convergence. Proceedings of the 36th Annual Conference on Learning
Theory (COLT), 2023.

Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral filtering.
Advances in Neural Information Processing Systems, 30, 2017.

12

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general
linear dynamical systems. Advances in Neural Information Processing Systems, 31, 2018.

Alfons G Hoekstra, Jiri Kroc, and Peter MA Sloot. Simulating complex systems by cellular au-
tomata. Springer, 2010.

Prateek Jain, Suhas S Kowshik, Dheeraj Nagaraj, and Praneeth Netrapalli. Streaming linear system
identification with reverse experience replay. arXiv preprint arXiv:2103.05896, 2021.

Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Infor-
mation theoretic regret bounds for online nonlinear control. Advances in Neural Information
Processing Systems, 33:15312–15325, 2020.

Stuart Kauffman. Homeostasis and differentiation in random genetic control networks. Nature, 224
(5215):177–178, 1969.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 137–146, 2003.

Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149–160, 2018.

Suhas Kowshik, Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. Near-optimal offline and
streaming algorithms for learning non-linear dynamical systems. Advances in Neural Information
Processing Systems, 34:8518–8531, 2021a.

Suhas Kowshik, Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. Streaming linear system
identification with reverse experience replay. Advances in Neural Information Processing Sys-
tems, 34:30140–30152, 2021b.

Mark Kozdoba, Jakub Marecek, Tigran Tchrakian, and Shie Mannor. On-line learning of linear
dynamical systems: Exponential forgetting in kalman filters. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 4098–4105, 2019.

Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Logarithmic re-
gret bound in partially observable linear dynamical systems. Advances in Neural Information
Processing Systems, 33:20876–20888, 2020.

Holden Lee. Improved rates for prediction and identification of partially observed linear dynamical
systems. In International Conference on Algorithmic Learning Theory, pages 668–698. PMLR,
2022.

Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and predictions:
Algorithms and regret analysis. Advances in Neural Information Processing Systems, 32, 2019.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1987.

13

TEWARI

Chenghao Liu, Steven CH Hoi, Peilin Zhao, and Jianling Sun. Online arima algorithms for time
series prediction. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Lennart Ljung. System identification: theory for the user. PTR Prentice Hall, Upper Saddle River,
NJ, 28:540, 1999.

Luis Mendoza and Elena R Alvarez-Buylla. Dynamics of the genetic regulatory network forara-
bidopsis thalianaflower morphogenesis. Journal of theoretical biology, 193(2):307–319, 1998.

Deepan Muthirayan and Pramod P Khargonekar. Online learning robust control of nonlinear dy-
namical systems. arXiv preprint arXiv:2106.04092, 2021.

Zirou Qiu, Abhijin Adiga, Madhav V Marathe, SS Ravi, Daniel J Rosenkrantz, Richard E Stearns,
and Anil Vullikanti. Learning the topology and behavior of discrete dynamical systems.

Paria Rashidinejad, Jiantao Jiao, and Stuart Russell. Slip: Learning to predict in unknown dynamical
systems with long-term memory. Advances in Neural Information Processing Systems, 33:5716–
5728, 2020.

Daniel J Rosenkrantz, Abhijin Adiga, Madhav Marathe, Zirou Qiu, SS Ravi, Richard Stearns, and
Anil Vullikanti. Efficiently learning the topology and behavior of a networked dynamical sys-
tem via active queries. In International Conference on Machine Learning, pages 18796–18808.
PMLR, 2022.

Yahya Sattar and Samet Oymak. Non-asymptotic and accurate learning of nonlinear dynamical
systems. The Journal of Machine Learning Research, 23(1):6248–6296, 2022.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014.

Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. From boolean to probabilistic boolean
networks as models of genetic regulatory networks. Proceedings of the IEEE, 90(11):1778–1792,
2002.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Anastasios Tsiamis and George J Pappas. Online learning of the kalman filter with logarithmic
regret. IEEE Transactions on Automatic Control, 68(5):2774–2789, 2022.

Vladimir Naumovich Vapnik and Aleksei Yakovlevich Chervonenkis. On uniform convergence of
the frequencies of events to their probabilities. Teoriya Veroyatnostei i ee Primeneniya, 16(2):
264–279, 1971.

Mathukumalli Vidyasagar and Rajeeva L Karandikar. A learning theory approach to system identi-
fication and stochastic adaptive control. Probabilistic and randomized methods for design under
uncertainty, pages 265–302, 2006.

Wen-Xu Wang, Ying-Cheng Lai, and Celso Grebogi. Data-based identification and prediction of
nonlinear and complex dynamical systems. Physics Reports, 644:1–76, 2016.

14

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Stephen Wolfram. Theory and applications of cellular automata. World Scientific, 1986.

N Wulff and J A Hertz. Learning cellular automaton dynamics with neural networks. Advances in
Neural Information Processing Systems, 5, 1992.

Haimin Yang, Zhisong Pan, Qing Tao, and Junyang Qiu. Online learning for vector autoregressive
moving-average time series prediction. Neurocomputing, 315:9–17, 2018.

15

TEWARI

Appendix A. Proofs for Realizable learnability

Proof (of lower bound of Theorem 9). Let F ⊆ XX be any evolution class and T ∈ N be the
time horizon. Let A be any randomized learner. Our goal will be to construct a hard realizable
trajectory {xt}Tt=0 such that A’s expected number of mistakes is at least CT (F)

2 . Without loss of
generality, suppose d := CT (F) > 0 as otherwise the lower bound holds trivially. Then, by
definition of the Evolution complexity, there exists a trajectory tree T of depth T shattered by F
with branching factor at least d. This means that for every path σ ∈ {−1, 1}T down T , we have∑T

t=1 1{Tt((σ<t,−1)) ̸= Tt((σ<t,+1))} ≥ d.

Let σ ∼ {−1, 1}T denote a random path down T and consider the trajectory T0∪{Tt(σ≤t)}Tt=1.
Define T<t(σ<t) := (T0, T1(σ1), . . . , Tt−1(σ<t)). Then, observe that

E

[
T∑
t=1

1{A(T<t(σ<t)) ̸= Tt(σ≤t)}

]
=

T∑
t=1

E

[
E

[
1
{
A
(
T<t(σ<t)

)
̸= Tt

(
(σ<t, σt)

)} ∣∣∣σ<t

]]
≥ 1

2

T∑
t=1

E

[
E

[
1
{
Tt
(
(σ<t,−1)

)
̸= Tt

(
(σ<t,+1)

)} ∣∣∣σ<t

]]
=

1

2
E

[
T∑
t=1

1
{
Tt((σ<t,−1)) ̸= Tt

(
(σ<t,+1)

)}]
≥ d

2

where the first inequality follows from the fact that σt ∼ {−1, 1}.

Proof (of upper bound of Theorem 9). Let F ⊆ XX be any evolution function class and let
T ∈ N be the time horizon. Our goal will be to construct a deterministic learner A such that for
any realizable trajectory {xt}Tt=0, A makes at most CT (F) mistakes. To that end, it will be useful
to define an instance-dependent version of the evolution complexity.

Given a state x ∈ X , we say T is a trajectory tree rooted at x if the root node is labeled by x.
For an initial state x0 ∈ X and evolution class V ⊆ F , let

CT (V, x0) := sup{B(T) | T ∈ S(V, T) and T rooted at x0}

denote an instance-dependent Evolution complexity of V , where S(V, T) is set of all trajectory trees
of depth T shattered by V . Note that CT (V) = supx0∈X CT (V, x0). A is a version-space algorithm
that uses the instance-dependent Evolution complexity to make its prediction such that whenever
A errs, the instance-dependent Evolution complexity decreases. In this way, CT (V, x0) acts as a
potential function. Algorithm 1 formalizes this idea.

16

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Algorithm 1 Deterministic Realizable Algorithm
Input: Initial state x0 ∈ X
Let V1 = F
for t = 1, ..., T do

For x ∈ X , define V x
t = {f ∈ Vt : f(xt−1) = x}.

if {f(xt−1) : f ∈ Vt} = {x} then
Predict x̂t = x.

else
Predict x̂t ∈ argmaxx∈X CT−t(V

x
t , x).

Receive xt and update Vt+1 ← V xt
t .

end

We now show that Algorithm 1 makes at most CT (F) mistakes on any realizable trajectory. Let
{xt}Tt=0 denote the realizable trajectory to be observed. It suffices to show that

CT−t(Vt+1, xt) ≤ CT−t+1(Vt, xt−1)− 1{xt ̸= x̂t} (3)

for all t ∈ [T]. To see why this is true, note that (3) implies

T∑
t=1

CT−t(Vt+1, xt) ≤
T∑
t=1

CT−t+1(Vt, xt−1)−
T∑
t=1

1{xt ̸= x̂t}.

Rearranging, we get that

T∑
t=1

1{xt ̸= x̂t} ≤
T∑
t=1

CT−t+1(Vt, xt−1)−
T∑
t=1

CT−t(Vt+1, xt)

=
T∑
t=1

(
CT−t+1(Vt, xt−1)− CT−t(Vt+1, xt)

)
= CT (V1, x0)− C0(VT+1, xT) ≤ CT (F).

as needed. To prove (3), we need to consider three cases: (a) CT−t+1(Vt, xt−1) > 0 and
x̂t ̸= xt, (b) CT−t+1(Vt, xt−1) > 0 and x̂t = xt, and (c) CT−t+1(Vt, xt−1) = 0.

Starting with (a), let t ∈ [T] such that CT−t+1(Vt, xt−1) > 0 and x̂t ̸= xt. We need to show that
CT−t(Vt+1, xt) < CT−t+1(Vt, xt−1). Suppose for the sake of contradiction that CT−t(Vt+1, xt) ≥
CT−t+1(Vt, xt−1) := d. Then, by the prediction rule, we have that CT−t(V

x̂t
t , x̂t) ≥ CT−t(V

xt
t , xt) ≥

d. By definition of the instance-dependent Evolution complexity, we are guaranteed the existence of
a trajectory tree Txt of depth T−t, rooted at xt, shattered by V xt

t with branching factor at least d and
a tree Tx̂t of depth T − t, rooted at x̂t, shattered by V x̂t

t with branching factor at least d. Consider
a binary tree T whose root node v is labeled by xt−1 and left and right subtrees are Txt and Tx̂t

respectively. Then, observe that T is a trajectory tree of depth T − t + 1, rooted at xt−1, shattered
by Vt with branching factor at least d + 1 (because xt ̸= x̂t). This contradicts our assumption that
CT−t+1(Vt, xt−1) = d. Thus, we must have CT−t(Vt+1, xt) < CT−t+1(Vt, xt−1).

Moving to (b), let t ∈ [T] be such that x̂t = xt. Then, we need to show that d := CT−t(Vt+1, xt) ≤
CT−t+1(Vt, xt−1). If d = 0, the inequality holds trivially. Thus, assume d > 0. Then, by defini-
tion, there exists a trajectory tree T of depth T − t, rooted at xt, shattered by Vt+1 with branching

17

TEWARI

factor at least d. Consider a binary tree T̃ whose root node v is labeled by xt−1 and left and right
subtrees are both T . Then since Vt+1 = V xt

t ⊆ Vt, we have that T̃ is a trajectory tree of depth
T − t + 1, rooted at xt−1, shattered by Vt with branching factor at least d. Thus, we must have
CT−t+1(Vt, xt−1) ≥ d.

Finally for (c), let t ∈ [T] be such that CT−t+1(Vt, xt−1) = 0. Using the same logic as (b),
CT−t(Vt+1, xt) = 0. Thus, to prove that (3) holds, it suffices to show that xt = x̂t. To do so,
we will show that the projection size |{f(xt−1) : f ∈ Vt}| = 1. Thus, Algorithm 1 does not
make a mistake. Suppose for the sake of contradiction that |{f(xt−1) : f ∈ Vt}| ≥ 2. Then,
there exists two functions f1, f2 ∈ Vt such that f1(xt−1) ̸= f2(xt−1). Consider a binary tree T
of depth T − t + 1 where the root node is labeled by xt−1, and its left and right child by f1(xt−1)
and f2(xt−1) respectively. Label all remaining internal nodes in the left subtree of the root node
such that every path is shattered by f1. Likewise, for the right subtree of the root node, label every
internal node such that every path is shattered by f2. Following this procedure, T is a trajectory
tree of depth T − t + 1, rooted at xt−1, shattered by Vt with branching factor at least 1 (because
f1(xt−1) ̸= f2(xt−1)). Thus, CT−t+1(Vt, xt−1) ≥ 1, which is a contradiction.

Appendix B. Proof of Theorem 10

Let S ⊂ N∪{0} be an arbitrary subset of the extended natural numbers. For every σ ∈ {−1, 1}N∪{0},
define the evolution function

fσ(x) =
(
σ|x|1{|x| ∈ S}+ 1{|x| /∈ S}

)
(|x|+ 1)

and consider the class FS =
{
fσ : σ ∈ {−1, 1}N∪{0}

}
. By construction, functions in FS only

disagree on states in S and their negation. Moreover, given any initial state x0 ∈ Z and a time
horizon T ∈ N, the trajectory of any evolution in F is ε1(|x0| + 1), ..., εT (|x0| + T) for some
ε ∈ {−1, 1}T .

We now show that CT (F) ≤ supx0∈Z |S ∩ {|x0|, ..., |x0| + T − 1}|. Let T be any trajectory
tree of depth T shattered by F . It suffices to show that B(T) ≤ |S ∩ {|T0|, ..., |T0| + T − 1}|.
Fix any path ε ∈ {−1, 1}T down T and consider the sequence of states T0, ..., TT (ε≤T). Note that
Tt((ε<t,−1)) ̸= Tt((ε<t,+1)) only if |Tt−1(ε<t)| ∈ S. Thus,

T∑
t=1

1{Tt((ε<t,−1)) ̸= Tt
(
(ε<t,+1)

)
} ≤

T∑
t=1

1{|Tt−1(ε<t)| ∈ S}

=
T−1∑
t=0

1{|Tt(ε≤t)| ∈ S}

= 1{|T0| ∈ S}+
T−1∑
t=1

1{|Tt(ε≤t)| ∈ S}

Moreover, since the path ε is shattered by FS , it must be the case that for every t ∈ [T], we have
that |Tt(ε≤t)| = |T0|+ t. Thus,

18

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

T∑
t=1

1{Tt((ε<t,−1)) ̸= Tt
(
(ε<t,+1)

)
} ≤ 1{|T0| ∈ S}+

T−1∑
t=1

1{|Tt(ε≤t)| ∈ S}

=
T−1∑
t=0

1{|T0|+ t ∈ S}

= |S ∩ {|T0|, ..., |T0|+ T − 1}|,

Taking the supremum of both sides with respect to T0 completes the proof of the upper bound.
To prove the lower bound, fix x ∈ Z and consider the following trajectory tree T x of depth T .

Let T x
0 = x. For every path ε ∈ {−1, 1}T and t ∈ [T], let

T x
t (ε≤t) =

{
εt(|T x

0 |+ t), if|T x
0 |+ t− 1 ∈ S.

|T x
0 |+ t if |T x

0 |+ t− 1 /∈ S.

Note |T x
t (ε≤t)| = |T x

0 | + t for all t ∈ [T]. Moreover, for every path ε ∈ {−1, 1}T , there
exists a function σ ∈ {−1, 1}N∪{0} such that σ|T x

0 | = ε1 and σ|T x
t (ε≤t)| = εt+1 for all t ∈ [T − 1].

Thus, the function fσ ∈ FS shatters the path ε and the tree T x is shattered by FS . We claim that
B(T x) = |S ∩ {|T x

0 |, ..., |T x
0 |+ T − 1}. To see this, observe that for every path ε ∈ {−1, 1}T , we

have

T∑
t=1

1{T x
t ((ε<t,−1)) ̸= T x

t

(
(ε<t,+1)

)
} =

T∑
t=1

1{|T x
0 |+ t− 1 ∈ S}

= |S ∩ {|x0|, ..., |x0|+ T − 1}|.

Thus, B(T x) = |S ∩ {|x0|, ..., |x0| + T − 1}| and CT (F) ≥ supx∈ZB(T x) = supx∈Z |S ∩
{|x|, ..., |x|+ T − 1}|. This completes the proof.

Appendix C. Proof of Theorem 12

The proof of (i) follows from Theorem 9 and the fact that CT (F) ≤ Bd(F). To prove (ii), observe
that by Theorem 9, it suffices to show that when Bd(F) = ∞, we have that CT (F) = ω(1). If
Bd(F) = ∞, then for every d ∈ N, there exists a shattered trajectory tree T such that B(T) > d.
Thus, for every d ∈ N, there exists a depth d′ ∈ N, such that for every T ≥ d′, there exists a
shattered tree T of depth T with B(T) > d. In other words, for every d ∈ N, there exists a
d′ ∈ N such that for all T ≥ d′ we have that CT (F) > d. By definition of ω(·), this means that
CT (F) = ω(1) as needed.

Appendix D. Proof of Theorem 13

Proof (of (i) in Theorem 13) To prove (i), pick S = {2t : t ∈ N ∪ {0}} and consider the function
class FS from Theorem 10. It is not too hard to see that CT (F) = Θ(log(T)). In addition, one
can verify that every finite subset of S is a shattered set according to Definition 7. Indeed, consider
any finite subset A ⊂ S. For every i ∈ [|A|], let Ai denote the i’th element of A after sorting A in

19

TEWARI

increasing order. Then, observe that by the construction of FS , for every sequence ε ∈ {−1, 1}|A|,
there exists a function fε ∈ FS such that fε(Ai) = εi(Ai + 1) for every i ∈ [|A|]. By letting
H = {fε : ε ∈ {−1, 1}|A|} in Definition 7, one can verify that |H| = 2|A| < ∞, and for every
x ∈ A and h ∈ H, there exists a g ∈ H such that h(x) = −g(x) and h(z) = g(z) for all
z ∈ A \ {x}. Thus, FS shatters A ⊂ S. Since finite subsets of S can be arbitrary large, we have
that DS(F) =∞.

Proof (of (ii) in in Theorem 13) To prove (ii), let X = N∪{⋆} and consider the following evolution
function class. For every σ ∈ {−1, 1}N, define a sequence aσ : N → N recursively such that
aσ(1) = 1 and aσ(n) = 2aσ(n − 1) + 1+σn−1

2 for n ≥ 2. Equivalently, we can define the

sequence aσ explicitly by aσ(1) = 1 and aσ(n) = 2n−1 +
∑n−1

i=1

(
1+σi
2

)
2n−(i+1) for n ≥ 2. Let

Sn :=
⋃

σ{aσ(n)} and note that Sn = {2n−1, ..., 2n − 1} for every n ≥ 1 and Sn ∩ Sr = ∅ for all
n ̸= r. We establish some important properties about these sequences.

(1) The sequence aσ is strictly monotonically increasing in its input, and hence invertible. Ac-
cordingly, given a sequence aσ and an element x ∈ im(aσ), let a−1

σ (x) denote the index
n ∈ N such that aσ(n) = x.

(2) For every σ1, σ2, if aσ1(n) = aσ2(r), then n = r since Sn ∩ Sr = ∅ for all n ̸= r.

(3) The value of aσ(n) depends only on the prefix (σ1, ..., σn−1). Hence, two strings σ1, σ2 that
share the same prefix up to and including index d will have the property that aσ1(n) = aσ2(n)
for all n ≤ d+ 1.

(4) If aσ1(d) = aσ2(d), then aσ1(i) = aσ2(i) for all i ≤ d. This follows by induction. For
the base case, consider i = d − 1. If aσ1(i) ̸= aσ2(i), then aσ1(d) = 2aσ1(i) +

1+σ1,i

2 ̸=
2aσ2(i) +

1+σ2,i

2 = aσ2(d) for any value of σ1,i and σ2,i. For the induction step, suppose
aσ1(i) = aσ2(i) for some 2 ≤ i < d. Then, if aσ1(i − 1) ̸= aσ2(i − 1), we have that
aσ1(i) = 2aσ1(i− 1) +

1+σ1,i−1

2 ̸= 2aσ2(i− 1) +
1+σ2,i−1

2 = aσ2(i) for any value of σ1,i−1

and σ2,i−1.

We now construct a function class. For every σ ∈ {−1, 1}N, define the evolution function

fσ(x) = ⋆1{x /∈ im(aσ)}+ aσ

(
a−1
σ (x) + 1

)
1{x ∈ im(aσ)}.

At a high-level, the evolution function fσ maps every state in X \ im(aσ) to ⋆ and every state in
im(aσ) to the next element in the sequence corresponding to aσ.

Consider the function class F = {fσ : σ ∈ {−1, 1}N}. We now claim that CT (F) = T . To see
this, fix a depth d ∈ N, and consider the following trajectory tree T of depth d. Let the root node be
labeled by 1, that is T0 = 1. For all t ∈ [d] and ε ∈ {−1, 1}t, let Tt(ε) = aε̃(t+1) where ε̃ denotes
an arbitrary extension of ε over N. Note that the completion can be arbitrary because the value of
aσ(t + 1) for any σ ∈ {−1, 1}N depends only on the prefix (σ1, ..., σt). One can verify that such
a tree T is a complete binary tree of depth d where the root node is labeled with 1 and the internal
nodes on depth i ≥ 1 are labeled from left to right by 2i, 2i + 1, ..., 2i+1 − 1. Thus, it is clear that
B(T) = d since for every internal node including the root, its two children are labeled by differing
states. In addition, observe that for every path ε ∈ {−1, 1}d down T , the function fε̃ ∈ F shatters
the associated sequence of states, where ε̃ again is an arbitrary completion of ε over N. Indeed,

20

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

fix a ε ∈ {−1, 1}d, a completion ε̃ ∈ {−1, 1}N, and consider any t ∈ [d]. Then, by definition of
T , we have that Tt−1(ε<t) = aε̃(t) and Tt(ε≤t) = aε̃(t + 1). Consider the function fε̃ ∈ F . By
definition of fε̃, we have that fε̃(aε̃(t)) = aε̃(t + 1), which implies that fε̃(Tt−1(ε<t)) = Tt(ε≤t).
Since t ∈ [d] was arbitrary, this is true for every t ∈ [d], and thus fε̃ shatters the path ε down T as
claimed. Since ε ∈ {−1, 1}d was also arbitrary, we have that the entire tree T is shattered by F .
Finally, since d ∈ N was arbitrary, this is true for arbitrarily large depths. Thus, CT (F) = T .

We now show that DS(F) = 1 by proving that F cannot DS-shatter any two instances x1, x2 ∈
X . Our proof will be in cases. First, observe that if either x1 = ⋆ or x2 = ⋆, then (x1, x2) cannot be
shattered since all functions in F will output ⋆ on either x1 or x2. Thus, without loss of generality,
suppose both x1, x2 ∈ N and x1 < x2. Consider any finite subset H ⊂ F and suppose there exists
a function h ∈ H such that h(x2) ̸= ⋆. Then, in order to shatter (x1, x2), there must exist a function
g ∈ H such that h(x1) ̸= g(x1) but h(x2) = g(x2). However, if h(x2) = g(x2) ̸= ⋆, then it
must be the case that h(x1) = g(x1). To see why, fix an instance x ∈ N, and suppose fσ1(x) =
fσ2(x) ̸= ⋆. Then, by properties (2) and (4) above, it must be the case that a−1

σ1
(x) = a−1

σ2
(x) = c

and aσ1(i) = aσ2(i) for all i ≤ c. Thus, if x1 < x2 and fσ1(x2) = fσ2(x2) ̸= ⋆, we must have
that fσ1(x1) = fσ2(x1) because either x1 /∈ im(aσ1) ∪ im(aσ2) or a−1

σ1
(x1) < a−1

σ1
(x2) = a−1

σ2
(x2).

Thus, if H were to satisfy the property in Definition 7, there cannot exist a hypothesis h ∈ H such
that h(x2) ̸= ⋆. However, if for every h ∈ H, we have that h(x2) = ⋆, then for every h ∈ H,
there cannot exist a g ∈ H such that h(x1) = g(x1) and h(x2) ̸= g(x2). Therefore, the two points
(x1, x2) cannot be shattered. Since (x1, x2) and H ⊂ F were arbitrary, this is true for all such
points, implying that DS(F) ≤ 1. Since |F| ≥ 2, we have also that DS(F) ≥ 1, completing the
proof that DS(F) = 1.

Proof (of (iii) in Theorem 13) To prove part (iii) of Theorem 13, we reduce learning dynamical
systems to online multiclass classification. Let F ⊆ XX and B be any (potentially randomized)
online learner for F for online multiclass classification with expected regret bound R. We will
construct a learner A that uses B as a subroutine such that MA(T,F) ≤ R.

To that end, let (x0, x1, ..., xT) be the realizable stream to be observed by the learner and con-
sider the following learning algorithm A which makes the same predictions as B while simulating
the stream of labeled instance (x0, x1), ..., (xT−1, xT) to B.

Algorithm 2 Learning algorithm A.
Input: Online multiclass learner B, initial state x0.
for t = 1, ..., T do

Pass xt−1 to B and receive prediction ẑt.
Predict x̂t = ẑt.
Receive next state xt and update B using labeled instance (xt−1, xt).

end

Then, observe that

E

[
T∑
t=1

1{x̂t ̸= xt}

]
= E

[
T∑
t=1

1{ẑt ̸= xt}

]
(i)
≤ inf

f∈F

T∑
t=1

1{f(xt−1) ̸= xt}+R
(ii)
= R (4)

21

TEWARI

where (i) follows from the expected regret guarantee of B and (ii) follows from the fact that
the stream of states is realizable. Thus, infAMA(T,F) ≤ R. Since B is always guaranteed to
observe a realizable sequence of labeled instances, picking the SOA (Littlestone, 1987; Daniely
et al., 2011) gives that R = L(F). Since the SOA is deterministic, this choice of B implies that A
is deterministic. Part (i) then follows from that the fact that for any deterministic learner A we have
MA(T,F) ≥ CT (F).

Proof (of (iv) in Theorem 13) To prove part (iv), let X = [0, 1] and consider the class of thresholds
F = {x 7→ 1{x ≥ a} : a ∈ (0, 1)}. It is well known that L(F) =∞. On the other hand, note that
dim(F) = 1 since F(1) = {1}, F(0) = {0}, and F(x) = {0, 1} for all x ∈ (0, 1).

Appendix E. Proofs for Linear Systems

Proof (of (i) in Theorem 14) We first prove the lower bound. It suffices to show that

inf
Deterministic A

MA(T,F) ≥ r + 1.

Let A be any deterministic algorithm and {e0, e1, . . . , er} be arbitrary r + 1 standard ba-
sis on Rn. This set exists because n ≥ r + 1. Consider a stream such that x0 = e0, xt =
{−et, et}\A(x<t) for all t ∈ [r], and xr+1 = {−e1, e1}\A(x<r+1). Here, ∀t ∈ [r], we choose
xt to be an element of the set {−et, et} other than A’s prediction on round t. Similarly, xr+1 is
chosen among {−e1, e1}. We can define a stream using A because such a stream can be simulated
before the game starts asA is deterministic. Let {σt}r+1

t=0 ∈ {−1, 1}r+2 such that (x0, . . . , xr+1) =
(σ0 e0, σ1e1, σ2e2, . . . , σrer, σr+1e1). Consider the integer-valued matrix W ⋆ =

∑r
t=1 σt−1σt et⊗

et−1 + σrσr+1 e1 ⊗ er. For r + 2 ≤ t ≤ T , one can define the stream to be xt = W ⋆xt−1.
Note that the image(W ⋆) ⊆ span({e1, . . . , er}). Thus, rank(W ⋆) ≤ r and W ⋆ ∈ F . Finally,
since W ⋆ satisfies W ⋆(σt−1et−1) = σt et for t ∈ [r], W ⋆(σrer) = σr+1e1, and W ⋆xt−1 = xt for
t ≥ r + 2, the stream is realizable. By the definition of the stream, A makes mistakes on all rounds
t ∈ {1, . . . , r + 1}. Thus, we have MA(T,F) ≥ r + 1.

To prove the upper bound, fix T ∈ N and suppose that T ≥ r + 1 (otherwise CT (F) ≤
T ≤ r + 1). Consider a trajectory tree T of depth T shattered by F . We first show that, for
any path σ ∈ {−1, 1}T down T and t ∈ [T − 1], if Tt+1((σ≤t,−1)) ̸= Tt+1((σ≤t,+1)), then
Tt(σ≤t) /∈ span({T0, T1(σ≤1), ..., Tt−1(σ≤t−1}). To prove the contraposition of this statement, sup-
pose Tt(σ≤t) ∈ span({T0, T1(σ≤1), ..., Tt−1(σ≤t−1}). Then, there exists constants a0, ..., at−1 ∈ Z
such that a0T0 + ...,+at−1Tt−1(σ≤t−1) = Tt(σ≤t). Thus, every matrix W consistent with the se-
quence T0, T1(σ≤1), ..., Tt−1(σ≤t−1) satisfies WTt(σ≤t) = W (a0T0 + ...,+at−1Tt−1(σ≤t−1)) =
a0T1(σ≤1)+...,+at−1Tt(σ≤t). This implies that the path σ≤t+1 is shattered only if Tt+1((σ≤t,−1)) =
Tt+1((σ≤t,+1)).

Next, we show that the branching factor of every path in T can be at most r + 1. Suppose, for
the sake of contradiction, there exists a path σ ∈ {−1, 1}T whose branching factor is k > r + 1.
We are guaranteed an increasing sequence of time points t1, t2, . . . , tk in {0, . . . , T − 1} such that
Tti+1((σ≤ti ,−1)) ̸= Tti+1((σ≤ti ,+1)) for all i ∈ [k]. Since t2 ≥ 1, by our argument above,
we are guaranteed that Tti(σ≤ti) /∈ span({T0, . . . , Tti−1(σ≤ti−1)}) for all i ∈ {2, . . . , k}. This
further implies that the set S := {Tt2(σ≤t2), . . . , Ttk(σ≤tk)} is a linearly independent set. Note that
|S| = k − 1 > r. Let Wσ be the matrix such that the associated function fσ ∈ F shatters this path

22

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

σ. By the definition of the tree, we must have that S ⊆ image(Wσ). Since rank(Wσ) ≤ r, the set
image(Wσ) must be a subset of a vectorspace of dimension ≤ r. However, this contradicts the fact
that S contains at least r+1 linearly independent vectors in Rn. Thus, the branching factor of every
path in T is at most r + 1 and B(T) ≤ r + 1. Since T is arbitrary, we have CT (F) ≤ r + 1.

Proof (of (ii) in Theorem 14) We claim that it is without loss of generality to consider the function
class G = {x 7→Mx (mod 2) : M ∈ {0, 1}n×n} ⊂ F . Indeed, for every f ∈ F , there exists a g ∈
G such that f(x) = g(x) for all x ∈ X . To see this, let W ∈ Zn×n be such that f(x) = Wx(mod 2)
and fix some x ∈ {0, 1}n. Then, observe that f(x) = Wx(mod 2) = (W (mod 2)x)(mod 2) =
Mx(mod 2) where M = W (mod 2) ∈ {0, 1}n×n. Thus the function g ∈ G parameterized by M
matches f everywhere on X . We now prove that CT (G) = n. In the lower bound, we will use
the fact that for a system of n linearly independent equations with n free variables defined over the
integers modulo 2, there exists a unique solution.

Starting with the upper bound, fix T ∈ N and suppose that T ≥ n (as otherwise CT (G) ≤
T ≤ n). Consider a trajectory tree T of depth T shattered by G. Let σ ∈ {−1, 1}T denote
an arbitrary path down T . We first claim that for t ≥ 1 if Tt(σ≤t) is linearly dependent mod-
ulo 2 on the preceding sequence of states T0, T1(σ≤1), ..., Tt−1(σ<t), then Tt+1((σ≤t,−1)) =
Tt+1((σ≤t,+1)). To see this, suppose that Tt(σ≤t) is linearly dependent modulo 2 on the preceding
sequence of states T0, T1(σ≤1), ..., Tt−1(σ<t). Then, there exists constants a0, ..., at−1 ∈ {0, 1}
such that a0T0 + ... + at−1Tt−1(σ<t)(mod 2) = Tt(σ≤t). Thus, every function g ∈ G consistent
with the sequence T0, T1(σ≤1), ..., Tt−1(σ<t) outputs a0T1(σ≤1) + ... + at−1Tt(σ≤t)(mod 2) on
Tt(σ≤t), implying that the paths (σ≤t,−1) and (σ≤t,+1) are shattered only if Tt+1((σ≤t,−1)) =
Tt+1((σ≤t,+1)) = a0T1(σ≤1) + ... + at−1Tt(σ≤t)(mod 2). As a consequence, for t ≥ 1, if
Tt+1((σ≤t,−1)) ̸= Tt+1((σ≤t,+1)), then Tt(σ≤t) is linearly independent modulo 2 of its preced-
ing states. Next, we claim that there can be at most n− 1 timepoints t1, ..., tn−1 ∈ [T − 1] such that
Tti(σ≤ti) is linearly independent of its preceeding sequence of states T0, T1(σ≤1), ..., Tti−1(σ<ti).
Indeed, suppose for sake of contradiction there exists n timepoints t1, ..., tn ∈ [T − 1] such that
Tti(σ≤ti) is linearly independent of its preceeding states. Then, note that the following set of n+ 1
states {T0, Tt1(σ≤t1), ..., Ttn(σ≤tn)} are linearly independent modulo 2. This is a contradiction
since X is n-dimensional. Combining the two claims, we get that

T∑
t=1

1{Tt((σ<t,−1)) ̸= Tt
(
(σ<t,+1)

)
} ≤ 1 +

T∑
t=2

1{Tt((σ<t,−1)) ̸= Tt
(
(σ<t,+1)

)
}

≤ 1 +

T−1∑
t=1

1{Tt(σ≤t) linearly indep. of preceeding states}

≤ 1 + n− 1 = n.

Since σ ∈ {−1, 1}T is arbitrary, we get that B(T) ≤ n. Finally, since T is arbitrary, we have
that CT (F) ≤ n which completes the proof of the upper bound.

To prove the lower bound, let A be any deterministic algorithm. Let E = {e0, ..., en−1} ⊂ X
be the standard basis over Rn. Consider the stream where we pick x0 = e0, for all t ∈ [n − 2],
we pick xt ∈ E \ {x0, ..., xt−1,A(x<t)}. Let e = E \ {x0, ..., xn−2} be the remaining basis. Pick
xn−1 ∈ {e, e + e0} \ {A(x<n−1)}. Finally, pick xn ̸= A(x<n). We can define a stream using A

23

TEWARI

because it is deterministic and thus can be simulated before the game begins. Next, we show that
x0, ..., xn is a realizable stream. This follows from the fact that x0, ..., xn−1 are linearly independent
by definition, and thus there exists a function g ∈ G such that g(xt−1) = xt for all t ∈ [n].
Moreover, by definition of the stream, A makes a mistake in every round. Thus, MA(T,F) ≥ n.
Using the fact that MA(T,F) ≤ CT (F) completes the proof.

Proof (of (iii) in Theorem 14) Starting with the lower bound, it suffices to show that

inf
Deterministic A

MA(T,F) ≥ n.

Let A be any deterministic algorithm and {e1, . . . , en} be the standard basis on Rn. Consider a
stream such that x0 = e1 + e2 + . . . + en, then x1 = x0 − ei1 for some i1 ∈ [n] such that
x1 ̸= A(x0), and for all t ∈ {2, . . . , n− 1},

xt = x0 − (ei1 + . . .+ eit) such that eit /∈ {ei1 , . . . , eit−1} and xt ̸= A(x<t).

Define ein = x0 − (ei1 + . . . + ein−1). Note that xn−1 = ein . Finally, we choose xn ∈ {ein ,0}
such that xn /∈ A(x<n−1). Here, ∀t ∈ [n − 2], we choose xt by subtracting a basis eit , which has
not been subtracted before, from xt−1 such that xt is other than what A would have predicted on
round t. Finally, for xn, we either choose it to be equal to xn−1 = ein again or 0 while ensuring that
xn ̸= A(x<n−1). We can define a stream using A because such a stream can be simulated before
the game starts as A is deterministic.

Next, we show that (x0, . . . , xn) is a realizable stream. Indeed, the boolean matrix

W ⋆ =
n∑

k=2

eik ⊗ (ei1 + . . .+ eik−1
) + xn ⊗ ein .

satisfies 1{W ⋆xt−1 > 0} = xt for all t ∈ [n]. For t = 1, we have

W ⋆x0 =

(
n∑

k=2

eik
〈
ei1 + . . .+ eik−1

, x0
〉)

+ xn

=
n∑

k=2

(k − 1)eik + xn

= (k − 1)(x0 − ei1) + xn

Thus, 1{W ⋆x0 > 0} = x0 − ei1 = x1. For t ∈ {2, . . . , n− 1}, we have

W ⋆xt−1 =

(
n∑

k=2

eik
〈
ei1 + . . .+ eik−1

, x0 −
(
ei1 + . . .+ eit−1

)〉)
+ xn

=

n∑
k=2

eik
〈
ei1 + . . .+ eik−1

, eit + . . .+ ein
〉
+ xn

=

n∑
k=t+1

(k − t) eik + xn.

24

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

So, we obtain 1{W ⋆xt−1 > 0} = x0 − (ei1 + . . .+ eit) > 0 = xt. Finally, since xn−1 = ein and
W ⋆ein = xn, we have 1{W ⋆xn−1 > 0} = xn. By the definition of the stream, A makes mistakes
in every round on this stream. Thus, MA(T,F) ≥ n.

As for the upper bound, since |{0, 1}n×n| = 2n
2
, we have L(F) ≤ log(2n

2
) = n2. Thus, by

Theorem 13 (iii), we must have CT (F) ≤ n2.

Appendix F. Proof of Theorem 15

Proof (of upper bound in Theorem 15) Let (x0, x1, ..., xT) be the stream to be observed by the
learner. Given a multiclass classification learner B for F , consider the algorithm A as defined in
Algorithm D. Here, A makes the same predictions as B while simulating the stream of labeled
instance (x0, x1), ..., (xT−1, xT) to B. Using the bound (i) in Equation (4), we obtain

E

[
T∑
t=1

1{x̂t ̸= xt}

]
≤ inf

f∈F

T∑
t=1

1{f(xt−1) ̸= xt}+R,

where expectation is taken with respect to the randomness of B and R is the expected regret of the
B. This shows that MRA(T,F) ≤ R. Taking B to be AAG defined in (Hanneke et al., 2023, Section
3), Theorem 4 in (Hanneke et al., 2023) implies that R ≤ L(F) +

√
T L(F) log T , matching the

claimed upper bound in Theorem 15.

Proof (of lower bound of L(F)
18 in Theorem 15) Define d := L(F) and let T be the Littlestone

tree of depth d shattered by F . Let (T0, . . . , Td−1) be the sequence of node-labeling functions and
(Y1, . . . , Yd) be the sequence of edge labeling functions of the shattered tree T . To construct a
stream, take r = ⌊d+2

3 ⌋ and define a random sequence {ni}ri=1 such that

n1 = 1, ni+1 ∼ Unif({3i− 1, 3i, 3i+ 1}) for all i ∈ [r − 1].

Note that nr ≤ 3(r − 1) + 1 = 3r − 2 ≤ d. Next, pick a random path (σ1, . . . , σd) down the tree
such that σi ∼ Unif{−1, 1}. Let x0 = T0 be the initial state and consider the stream

Yn1(σ≤n1), Tn2−1(σ<n2), Yn2(σ≤n2), . . . , Tnr−1(σ<nr), Ynr(σ≤nr).

For any randomized algorithm A, let At denote its prediction on round t. Then, its expected
cumulative loss on this stream is

E

[
r∑

t=1

1{At ̸= Ynt(σ≤nt)}+
r∑

t=2

1{At ̸= Tnt−1(σ<nt)}

]
,

where the expectation is taken with respect to A, σ, and nt’s. Note that

E[1{At ̸= Ynt(σ≤nt)}] ≥
1

2
.

where the inequality holds because conditioned on the history up to time point t − 1, the state
Ynt(σ≤nt) is chosen uniformly at random between Ynt((σ<nt ,−1)) and Ynt((σ<nt ,+1)). So, the

25

TEWARI

algorithm cannot do better than random guessing. Similarly, given a path σ, the state Tnt−1(σ<nt)
is selected uniformly from the set

{Tm−1(σ<m) : m = 3(t− 1)− 1, 3(t− 1), 3(t− 1) + 1} .

Since each node along a path must have distinct elements, the aforementioned set must contain 3
elements. Thus, we have

E[1{At ̸= Tnt−1(σ<nt)}] ≥
2

3
.

Overall, the total expected cumulative loss of A is

≥
r∑

t=1

1

2
+

r∑
t=2

2

3
≥ r

2
+

2(r − 1)

3
=

7r − 4

6
.

To upper bound the loss of the best-fixed competitor, let fσ ∈ F denote the function that shatters
the path σ in the tree T . Then, by definition of shattering, we have fσ(Tnt−1(σ<nt)) = Ynt(σ≤nt).
Thus, the cumulative loss of fσ is

E

[
r∑

t=1

1{fσ(Tnt−1(σ<nt)) ̸= Ynt(σ≤nt)}+
r∑

t=2

1{fσ(Ynt−1(σ≤nt−1)) ̸= Tnt−1(σ<nt)}

]

≤ 0 +
r∑

t=2

1 = r − 1.

Hence, combining everything and plugging the value of r, the regret of A is

MRA(T,F) ≥
7r − 4

6
− (r − 1) =

7r − 4− 6r + 6

6
=

r + 2

6
≥ (d+ 2)/3− 1 + 2

6
≥ d

18
.

This completes our proof.

Proof (of lower bound of
√
T

16
√
3

in Theorem 15) Let f−1 and f+1 be any two distinct functions in F
and x̄0 ∈ X be the point where they differ. That is, f−1(x̄0) ̸= f+1(x̄0). Define S ⊂ X such that
f−1(x) = f+1(x) for all x ∈ S. Moreover, define S0 = {x ∈ S | f−1(x) = f+1(x) = x̄0}. Let
(σ1, . . . , σT) be a sequence such that σt ∼ Uniform{−1, 1}. Consider a random stream with initial
state x0 = x̄0 and for all t ∈ [T],

xt = x̄01{xt−1 ∈ S0}+ Uniform({x̄0, fσt(xt−1)})1{xt−1 ∈ S\S0}+ fσt(xt−1)1{xt−1 /∈ S}.

For any algorithm A, its expected cumulative loss is

E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
= E

[
T∑
t=1

1{A(x<t) ̸= xt}1{xt−1 ∈ S0}

]
+ E

[
T∑
t=1

1{A(x<t) ̸= xt}1{xt−1 /∈ S0}

]

≥ 0 + E

[
T∑
t=1

E
[
1{A(x<t) ̸= xt} | x<t,A

]
1{xt−1 /∈ S0}

]

≥ 1

2
E

[
T∑
t=1

1{xt−1 /∈ S0}

]
,

26

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

where the final step follows because when xt−1 /∈ S0, the state xt is sampled uniformly at random
between two states. So, the expected loss of algorithm in this round is ≥ 1

2 .

To upper bound the cumulative loss of the best-fixed function in hindsight, define σ = sign
(∑T

t=1 σt1{xt−1 /∈ S}
)

.
Note that

E

[
inf
f∈F

T∑
t=1

1{f(xt−1) ̸= xt}

]

≤ E

[
T∑
t=1

1{fσ(xt−1) ̸= xt}

]

= 0 + E

[
T∑
t=1

1{fσ(xt−1) ̸= xt}1{xt−1 ∈ S\S0}

]
+ E

[
T∑
t=1

1{fσ(xt−1) ̸= fσt(xt−1)}1{xt−1 /∈ S}

]

≤ 1

2
E

[
T∑
t=1

1{xt−1 ∈ S\S0}

]
+ E

[
T∑
t=1

1{fσ(xt−1) ̸= fσt(xt−1)}1{xt−1 /∈ S}

]
,

where the final step follows because conditioned on the event that xt−1 ∈ S\S0, the state xt is
∼ Uniform({x̄0, fσt(xt−1)}). Since fσ(xt−1) = fσt(xt−1) whenever xt−1 ∈ S, the expected loss
of fσ on round t is equal to the conditional probability that xt = x0, which is ≤ 1/2. Moreover,
using the fact that 1{fσ(xt−1) ̸= fσt(xt−1)} ≤ 1{σ ̸= σt}, we have

E

[
inf
f∈F

T∑
t=1

1{f(xt−1) ̸= xt}

]
≤ 1

2
E

[
T∑
t=1

1{xt−1 ∈ S\S0}

]
+ E

[
T∑
t=1

1{σ ̸= σt}1{xt−1 /∈ S}

]

=
1

2
E

[
T∑
t=1

1{xt−1 ∈ S\S0}

]
+ E

[
T∑
t=1

1− σσt
2

1{xt−1 /∈ S}

]

=
1

2
E

[
T∑
t=1

1{xt−1 /∈ S0}

]
− 1

2
E

[
σ

T∑
t=1

σt1{xt−1 /∈ S}

]

=
1

2
E

[
T∑
t=1

1{xt−1 /∈ S0}

]
− 1

2
E

[∣∣∣∣∣
T∑
t=1

σt1{xt−1 /∈ S}

∣∣∣∣∣
]
,

where the final equality follows from the definition of σ. Thus, the regret of A is

MRA(T,F) = E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
− E

[
inf
f∈F

T∑
t=1

1{f(xt−1) ̸= xt}

]
≥ 1

2
E

[∣∣∣∣∣
T∑
t=1

σt1{xt−1 /∈ S}

∣∣∣∣∣
]
.

We now lower bound the Rademacher sum above by closely following the proof of Khinchine’s
inequality (Cesa-Bianchi and Lugosi, 2006, Lemma 8.1).

For any random variable Y with the finite-fourth moment, a simple application of Holder’s
inequality implies that

E[|Y |] ≥ (E[Y 2])3/2

(E[Y 4])1/2
.

27

TEWARI

We apply this inequality to Y :=
∑T

t=1 σt1{xt−1 /∈ S}. Since Y 2 =
∑T

t=1 1{xt−1 /∈ S} +
2
∑

i<j σiσj1{xi−1, xj−1 /∈ S}, we have

E[Y 2] = E

[
T∑
t=1

1{xt−1 /∈ S}

]
+2E

∑
i<j

E[σj | σ<j , x<j] σi1{xi−1, xj−1 /∈ S}

 = E

[
T∑
t=1

1{xt−1 /∈ S}

]
,

where the final equality follows because σj is still a Rademacher random variable conditioned on
the past and E[σj | σ<j , x<j] = 0. Furthermore, note that

E

[
T∑
t=1

1{xt−1 /∈ S}

]
≥ E [1{x0 /∈ S}] +

⌊T
2
⌋−1∑

r=1

E [1{x2r−1 /∈ S}+ 1{x2r /∈ S}]

≥ 1 +

⌊T
2
⌋−1∑

r=1

1

2

=
1

2

(⌊
T

2

⌋
+ 1

)
≥ T

4
.

Here, the second inequality above uses (i) x0 = x̄0 /∈ S and (ii) E [1{x2r−1 /∈ S}+ 1{x2r /∈ S}] ≥
1
2 for all r ≥ 1. To see (ii), one can consider two cases. First, if x2r−1 /∈ S, then the inequality is
trivially true. On the other hand, x2r−1 ∈ S, then x2r = x̄0 /∈ S with probability 1/2. Thus, we
have E[Y 2] ≥ T

4 .
Similarly, for the fourth moment of Y , all the cross-term vanishes and we are left with the terms

with fourth power and symmetric second powers.

E[Y 4] = E

[
T∑
t=1

1{xt−1 /∈ S}

]
+

(
4

2

)
E

∑
i<j

1{xi−1 /∈ S}1{xj−1 /∈ S}

≤ T +

(
4

2

)
T (T − 1)

2

≤ T + 3T (T − 1)

≤ 3T 2.

The lower bound on the second moment of Y and the upper bound on the fourth moment of Y
collectively implies that

E[|Y |] ≥ (E[Y 2])3/2

(E[Y 4])1/2
≥ (T/4)3/2

(3T 2)1/2
=

√
T

8
√
3
.

Finally, combining everything, we obtain

MRA(T,F) ≥
1

2
E

[∣∣∣∣∣
T∑
t=1

σt1{xt−1 /∈ S}

∣∣∣∣∣
]
=

1

2
E[|Y |] =

√
T

16
√
3
.

This completes our proof.

28

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Appendix G. Tightness of upper bound in Theorem 15

Fix d ∈ N and let X = {1, 2, . . . , d} ∪ {±(d + 1),±(d + 2), . . . ,±2d}. For every σ ∈ {−1, 1}d,
define a function fσ : X → X such that

fσ(x) = σx(d+ x)1{x ∈ [d]}+ (|x| − d)1{x /∈ [d]}.

Consider F = {fσ : σ ∈ {−1, 1}d}. It is not too hard to see that L(F) = d. The fact that
L(F) ≤ d is trivial because any Littlesone tree can only have {1, 2, . . . , d} in the internal nodes.
This is because all functions output the same state in the domain X\[d]. Since the internal nodes in
any given path of the Littlestone tree need to be different, the depth of any shattered tree is ≤ d. To
see why L(F) ≥ d, consider a complete binary tree T of depth d with all the internal nodes in level
i ∈ [d] containing the element i. Let −(d + i) and (d + i) label the left and right outgoing edges
respectively of every node in level i. Note that T is shattered by F as for any path ε ∈ {−1, 1}d
down the tree T , there exists a fε ∈ F such that fε(i) = εi(d + i) for all i ∈ [d]. Thus, we have
shown that L(F) = d.

We now show that infAMRA(T,F) = Ω(
√
T L(F)), proving that the upper bound in Theorem

15 is tight up to
√
log T . For a k ∈ N, pick T = 2kd − 1. Draw ε ∈ {−1,+1}T where εi ∼

Uniform({−1, 1}) and consider a stream

x2k(i−1) = i, xt = εt(d+ i)1{xt−1 = i}+ i1{xt−1 ̸= i} ∀i ∈ [d] and t ∈ {2k(i− 1) + 1, . . . , 2ki− 1}.

Note that x0 = 1 is the initial state and there are T = 2kd − 1 more states in this stream. For any
algorithm A, its expected cumulative loss is

E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
≥ E

 d∑
i=1

2ki−1∑
t=2k(i−1)+1

1{A(x<t) ̸= xt}

 ≥ 1

2

d∑
i=1

2ki−1∑
t=2k(i−1)+1

1{xt−1 = i}.

Here, the first inequality is true because we just rewrite the sum without including the rounds t =
2k, 4k, 6k, . . . , 2(d− 1)k. The second inequality holds because xt is sampled uniformly at random
between −(d + i) and d + i whenever xt−1 = i, and the algorithm cannot do better than guessing
on these rounds. Note that there is no expectation following the second inequality because the event
xt−1 = i is deterministic.

To upper bound the loss of the best function in hindsight, define ε̄i = sign
(∑2ki−1

t=2k(i−1)+1 εt1{xt−1 =

i}
)

and consider fε̄ where ε̄ = (ε̄1, . . . , ε̄d). Then,

E

[
inf
f∈F

T∑
t=1

1{f(xt−1) ̸= xt}

]
≤ E

[
T∑
t=1

1{fε̄(xt−1) ̸= xt}

]

≤ (d− 1) + E

 d∑
i=1

2ki−1∑
t=2k(i−1)+1

1{fε̄(xt−1) ̸= xt}

= (d− 1) + E

 d∑
i=1

2ki−1∑
t=2k(i−1)+1

1{fε̄(xt−1) ̸= xt}1{xt−1 = i}

 .

Here, the second inequality holds because we trivially upper bound the losses on rounds t =
2k, 4k, . . . , 2(d−1)k by 1. And the final equality follows because fε̄(xt−1) = i = xt whenever xt−1 ̸=

29

TEWARI

i for 2k(i − 1) + 1 ≤ t ≤ 2ki − 1. Moreover, when xt−1 = i, we have fε̄(xt−1) = ε̄i(d + i) and
xt = εt(d+ i). This implies that 1{fε̄(xt−1) ̸= xt}1{xt−1 = i} = 1{ε̄i ̸= εt}1{xt−1 = i}. Thus,
we can write

E

[
inf
f∈F

T∑
t=1

1{f(xt−1) ̸= xt}

]

≤ (d− 1) + E

 d∑
i=1

2ki−1∑
t=2k(i−1)+1

1{ε̄i ̸= εt}1{xt−1 = i}

= (d− 1) + E

 d∑
i=1

2ki−1∑
t=2k(i−1)+1

1− ε̄iεt
2

1{xt−1 = i}

= (d− 1) +

d∑
i=1

2ki−1∑
t=2k(i−1)+1

1

2
1{xt−1 = i} − 1

2
E

 d∑
i=1

ε̄i

2ki−1∑
t=2k(i−1)+1

εt1{xt−1 = i}

= (d− 1) +

d∑
i=1

2ki−1∑
t=2k(i−1)+1

1

2
1{xt−1 = i} − 1

2
E

 d∑
i=1

∣∣∣∣∣∣
2ki−1∑

t=2k(i−1)+1

εt1{xt−1 = i}

∣∣∣∣∣∣

Thus, the expected regret of A is

MRA(T,F) = E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
− E

[
inf
f∈F

T∑
t=1

1{f(xt−1) ̸= xt}

]

≥ 1

2
E

 d∑
i=1

∣∣∣∣∣∣
2ki−1∑

t=2k(i−1)+1

εt1{xt−1 = i}

∣∣∣∣∣∣
− (d− 1)

≥ 1

2

d∑
i=1

√
|{2k(i− 1) + 1 ≤ t ≤ 2ki− 1 : xt−1 = i}|

2
− (d− 1)

=
1

2

d∑
i=1

√
k

2
− (d− 1).

where the second inequality follows due to Khinchine’s inequality (Cesa-Bianchi and Lugosi, 2006,
Lemma 8.2). The final equality holds because in each block of 2k rounds from t = 2k(i− 1)+1 to
t = 2ki− 1, we have xt−1 = i in exactly k of those rounds. Using T = 2kd− 1, we further obtain
MRA(T,F) ≥ 1

4

√
(T + 1)d− (d− 1) = Ω(

√
Td) for T ≫ d. This establishes our claim that the

upper bound in Theorem 15 is tight up to
√
log T .

Appendix H. Proof of Theorem 17

The lower bound in Theorem 17 follows directly from the lower bound in the realizable setting.
Accordingly, we only prove the upper bound. Let K := supx∈X |F(x)|.
Proof (of the upper bound in Theorem 17) Let {xt}Tt=0 be the trajectory to be observed by the
learner and f⋆ ∈ argminf∈F

∑T
t=1 1{xt ̸= f t(x0)} the optimal evolution function in hindsight.

30

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

Given the time horizon T , let LT = {L ⊂ [T] : |L| ≤ CT (F)} denote the set of all possible subsets
of [T] with size at most CT (F). For every L ∈ LT , let ϕ : L → [K] denote a function mapping
time points in L to an integer in [K]. On time point t ∈ L, we should think of ϕ(t) as an index into
the set F(xt−1). To that end, for an index i ∈ [|F(x)|], let Fi(x) denote the i-th element of the list
obtained after sorting F(x) in its natural order. Let ΦL = [K]L denote all such functions ϕ. For
each L ∈ LT and ϕ ∈ ΦL, define an expert EL,ϕ. On time point t ∈ [T], the prediction of expert
EL,ϕ is defined recursively by

EL,ϕ(x0, t) =

{
A
(
x0, t|{EL,ϕ(x0, i)}t−1

i=1

)
, if t /∈ L

Fϕ(t)(EL,ϕ(x0, t− 1)), otherwise

where EL,ϕ(x0, 0) = x0 and A
(
x0, t|{EL,ϕ(x0, i)}t−1

i=1

)
denotes the prediction of Algorithm 1

on timepoint t after running and updating on the trajectory {EL,ϕ(x0, i)}t−1
i=1. Let E =

⋃
L∈LT

⋃
ϕ∈ΦL

EL,ϕ
denote the set of all experts parameterized by L ∈ LT and ϕ ∈ ΦL.

We claim that there exists an expert EL⋆,ϕ⋆ such that EL⋆,ϕ⋆(x0, t) = f⋆,t(x0) for all t ∈ [T].
To see this, consider the hypothetical trajectory S⋆ = {f⋆,t(x0)}Tt=1 generated by f⋆. Let L⋆ =
{t1, t2, ...} be the indices on which Algorithm 1 would have made a mistake had it run and updated
on S⋆. By the guarantee of Algorithm 1, we know that |L⋆| ≤ CT (F). Moreover, there exists a ϕ⋆ ∈
ΦL⋆ such thatFϕ⋆(i)(f

⋆,i−1(x0)) = f⋆,i(x0) for all i ∈ L⋆. By construction of E , there exists an ex-
pert EL⋆,ϕ⋆ parameterized by L⋆ and ϕ⋆. We claim that EL⋆,ϕ⋆(x0, t) = f⋆,t(x0) for all t ∈ [T]. This
follows by strong induction on t ∈ [T]. For the base case t = 1, there are two subcases to consider. If
1 ∈ L⋆, then we have that EL⋆,ϕ⋆(x0, 1) = Fϕ⋆(1)(EL⋆,ϕ⋆(x0, 0)) = Fϕ⋆(1)(x0) = f⋆,1(x0). If 1 /∈
L⋆, then EL⋆,ϕ⋆(x0, 1) = A (x0, 1|{}) = f⋆,1(x0), where the last equality follows by definition of
L⋆. Now for the induction step, suppose that EL⋆,ϕ⋆(x0, i) = f⋆,i(x0) for all i ≤ t. Then, if t+1 ∈
L⋆, we have that EL⋆,ϕ⋆(x0, t+1) = Fϕ⋆(t+1)(EL⋆,ϕ⋆(x0, t)) = Fϕ⋆(t+1)(f

⋆,t(x0)) = f⋆,t+1(x0). If
t+1 /∈ L⋆, then EL⋆,ϕ⋆(x0, t+1) = A

(
x0, t+ 1|{EL⋆,ϕ⋆(x0, i)}ti=1

)
= A

(
x0, t+ 1|{f⋆,i(x0)}ti=1

)
=

f⋆,t+1(x0), where the last equality again is due to the definition of L⋆.
Now, consider the learner that runs the celebrated Randomized Exponential Weights Algorithm,

denoted hereinafter by P , using the set of experts E with learning rate η =

√
2 ln(|E|)

T . By Theorem
21.11 of Shalev-Shwartz and Ben-David (2014), we have that

E

[
T∑
t=1

1{P(x0, t) ̸= xt}

]
≤ inf

E∈E

T∑
t=1

1{E(x0, t) ̸= xt}+
√

2T ln(|E|)

≤ inf
E∈E

T∑
t=1

1{E(x0, t) ̸= xt}+

√
2CT (F)T ln

(KT

CT (F)

)
≤

T∑
t=1

1{EL⋆,ϕ⋆(x0, t) ̸= xt}+

√
2CT (F)T ln

(KT

CT (F)

)
=

T∑
t=1

1{f⋆,t(x0) ̸= xt}+

√
2CT (F)T ln

(KT

CT (F)

)
where the second inequality follows because |E| =

∑CT (F)
i=0 Ki

(
T
i

)
≤
(

KT
CT (F)

)CT (F)
. This

completes the proof as P achieves the stated upper bound on expected regret.

31

TEWARI

The next two examples show that both the lower- and upper bounds in Theorem 17 can be tight.

H.1. Tightness of lower bound in Theorem 17

Let X = Z and fix p ∈ N. For every σ ∈ {−1, 1}N∪{0}, define the evolution function

fσ(x) = (σ|x|1{|x| ≤ p− 1}+ 1{|x| ≥ p})(|x|+ 1)

and consider the class F =
{
fσ : σ ∈ {−1, 1}N∪{0}

}
. By construction of F , branching only

occurs on states in {0, 1, ..., p− 1} and their negation. Moreover, given any initial state x0 ∈ X and
a time horizon T ∈ N, the trajectory of any evolution in F is some signed version of the sequence
|x0|+1, ..., |x0|+ T . From Theorem 10, its not too hard to see that CT (F) = min{p, T}. We now
show that infA FRA(T,F) ≤ CT (F)

2 . Consider the learner A which, given initial state x0, checks
whether |x0| ≤ p− 1. If |x0| ≤ p− 1, the learnerA samples a random sequence ε ∼ {−1, 1}p−|x0|

and plays εt(|x0|+ t) for t ≤ p−|x0| and |x0|+ t in all future rounds t > p−|x0|. If |x0| > p− 1,
the learner A plays |x0|+ t for all t ≥ 1.

Let {xt}Tt=0 be the trajectory to be observed by the learner. If |x0| > p− 1, then observe that

FRA(T,F) = E

[
T∑
t=1

1{A(x<t) ̸= xt} − inf
f∈F

T∑
t=1

1{f t(x0) ̸= xt}

]

= E

[
T∑
t=1

1{|x0|+ t ̸= xt} − inf
f∈F

T∑
t=1

1{|x0|+ t ̸= xt}

]
= 0

On the other hand, if |x0| ≤ p− 1, we can write the learner’s expected loss as

E

[
T∑
t=1

1{A(x<t) ̸= xt}

]
= E

p−|x0|∑
t=1

1{εt(|x0|+ t) ̸= xt}

+

T∑
t=p−|x0|+1

1{|x0|+ t ̸= xt}.

Similarly, we can write the cumulative loss of the competitor term as:

inf
f∈F

T∑
t=1

1{f t(x0) ̸= xt} = inf
f∈F

p−|x0|∑
t=1

1{f t(x0) ̸= xt}+
T∑

t=p−|x0|+1

1{|x0|+ t ̸= xt}.

Let fσ = argminf∈F
∑p−|x0|

t=1 1{f t(x0) ̸= xt}. Combining both bounds, we get that:

32

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

FRA(T,F) = E

[
T∑
t=1

1{A(x<t) ̸= xt} − inf
f∈F

T∑
t=1

1{f t(x0) ̸= xt}

]

≤ E

p−|x0|∑
t=1

1{εt(|x0|+ t) ̸= xt} − 1{f t
σ(x0) ̸= xt}

≤ E

p−|x0|∑
t=1

1{εt(|x0|+ t) ̸= f t
σ(x0)}

= E

p−|x0|∑
t=1

1{εt(|x0|+ t) ̸= σ|x0|+t−1(|x0|+ t)}

 =
p− |x0|

2
,

where in the last equality we used the fact that εt ∼ Unif(−1, 1). Thus, the expected regret of such
an learner A is at most min{max{p−|x0|,0},T}

2 . Taking x0 = 0, gives that infA FRA(T,F) ≤ CT (F)
2 .

H.2. Tightness of upper bound in Theorem 17

Let X = Z and fix p ∈ N. Let G = {(0, s1, ..., sp) : s1 < s2 < ... < sp ∈ N} be the set of all
ordered tuples of extended natural numbers with size p + 1. For any S ∈ G and x ∈ N ∪ {0}, let
Sx = max{s ∈ S : s ≤ x} be the largest element in S smaller than x. Note that S0 = 0 for all
S ∈ G. For every σ ∈ {−1, 1}N∪{0} and S ∈ G, consider the evolution function:

fσ,S(x) = σS|x|(|x|+ 1).

Given any initial state x0 ∈ X and time horizon T ∈ N, the trajectory {f t
σ,S(x0)}Tt=1 is some

signed version of the sequence (|x0| + 1, ..., |x0| + T), where the signs depend on S and σ. More
importantly, the trajectory {f t

σ,S(x0)}Tt=1 switches signs at most p + 1 times. Finally, consider the
evolution classF = {fσ,S : σ ∈ {−1, 1}N∪{0}, S ∈ G}. Since the trajectory of any evolution f ∈ F
can switch signs at most p + 1 times, it follows that CT (F) ≤ p + 1. Moreover, by considering a
trajectory tree with the root node labeled by 0 and the set of evolutions parameterized by the tuple
(0, 1, ..., p) ∈ G, its not hard to see that CT (F) ≥ p+ 1. Thus, CT (F) = p+ 1.

We now claim that infA FRA(T,F) ≥
√

CT (F)T
8 , which shows that the upper bound in Theo-

rem 17 is tight up to a logarithmic factor in T since supx∈X |F(x)| = 2. Consider T = k(p+1) for

some odd k ∈ N. For ε ∈ {−1, 1}T , define ε̃i = sign
(∑ik

t=(i−1)k+1 εt

)
for all i ∈ {1, 2, ..., p+1}.

The game proceeds as follows. The adversary samples a string ε ∈ {−1, 1}T uniformly at random
and constructs the random trajectory {xt}Tt=0 where x0 = 0 is the initial state and xt = εtt for all
t ≥ 1. The adversary then passes {xt}Tt=0 to the learner.

Let A be any randomized learner. Then, for each block i ∈ [p+ 1], we have that

E

 ik∑
t=(i−1)k+1

1{A(x<t) ̸= xt}

 ≥ ik∑
t=(i−1)k+1

1

2
=

k

2
,

33

TEWARI

where the inequality follows from the fact that xt is chosen uniformly at random between t and
−t. Let fσ,S ∈ F be the function in F such that S = (0, k, 2k, ..., (p + 1)k) and σS|x| = ε̃i for all
(i− 1)k ≤ |x| ≤ ik − 1 and i ∈ {1, ..., p+ 1}. For each block i ∈ [p+ 1], we have

E

 ik∑
t=(i−1)k+1

1{f t
σ,S(0) ̸= xt}

 = E

 ik∑
t=(i−1)k+1

1{σS|t−1|t ̸= εtt}

= E

 ik∑
t=(i−1)k+1

1{ε̃i ̸= εt}

=

k

2
− 1

2
E

 ik∑
t=(i−1)k+1

ε̃iεt

=

k

2
− 1

2
E

∣∣∣ ik∑
t=(i−1)k+1

εt

∣∣∣

≤ k

2
−
√

k

8
,

where the final step follows upon using Khinchine’s inequality (Cesa-Bianchi and Lugosi,
2006). Combining these two bounds above, we obtain,

E

 ik∑
t=(i−1)k+1

1{A(x<t) ̸= xt} −
ik∑

t=(i−1)k+1

1{f t
σ,S(0) ̸= xt}

 ≥√k

8
.

Summing this inequality over p+ 1 blocks, we obtain

E

[
T∑
t=1

1{A(x<t) ̸= xt} − inf
f∈F

T∑
t=1

1{f t(x0) ̸= xt}

]
≥ E

[
T∑
t=1

1{A(x<t) ̸= xt} −
T∑
t=1

1{f t
σ,S(x0) ̸= xt}

]

≥ (p+ 1)

√
k

8
=

√
CT (F)T

8
,

which completes our proof.

Appendix I. Proof of Theorem 18

Our proof of Theorem 18 is constructive. That is, we provide an evolution function class and show
that there exists a deterministic algorithm with a mistake bound of 3 in the realizable setting. As for
the agnostic setting, we use the probabilistic method to argue the existence of a hard stream such
that every algorithm incurs T/6 regret.

Let X = {−1, 1}N × Z. For every σ ∈ {−1, 1}N, define an evolution function

fσ((θ, z)) = (σ, σ|z|+1(|z|+1)) 1{|z|+1 = 0 (mod 3)}+(1, σ|z|+1(|z|+1)) 1{|z|+1 ̸= 0 (mod 3)},

34

THE COMPLEXITY OF SEQUENTIAL PREDICTION IN DYNAMICAL SYSTEMS

where θ ∈ {−1, 1}N, z ∈ Z, and 1 := (1, 1, . . . , 1, 1) is the string of all ones. Consider the
evolution function class F =

{
fσ : σ ∈ {−1, 1}N

}
.

To prove (i), it suffices to note that for any initial state (θ0, z0) and fσ ∈ F , the realizable
stream {f t

σ((θ0, z0))}Tt=1 must reveal σ within the first three rounds t ∈ {1, 2, 3}. A deterministic
algorithm A that plays arbitrarily in the beginning and f t

σ((θ0, z0)) for all t ≥ 4 makes no more
than 3 mistakes.

To prove (ii), consider a random trajectory such that x0 = (1, 0) is the initial state and {xt}Tt=1 =
{(1, εt t)}Tt=1, where εt ∼ Uniform({−1, 1}). Since the stream is generated uniformly at random,
for any algorithm A, we must have

E

[
T∑
t=1

1{A(x<t) ̸= (1, εtt)}

]
≥ T

2
.

Next, let ε ∈ {−1, 1}N be any completion of (ε1, . . . , εT) and consider the function fε ∈
F . Note that, for every t ∈ [T], we have fε(1, εt−1(t − 1)) = (1, εtt) if t ̸= 0 (mod 3) and
fε(1, εt−1(t− 1)) = (ε, εt t) ̸= (1, εtt) if t = 0 (mod) 3. Moreover, it is not too hard to see that

f t
ε((1, 0)) = (ε, εtt) 1{t = 0 (mod 3)}+ (1, εtt) 1{t ̸= 0 (mod 3)}.

Since the functions f ∈ F ignore the first argument of the tuple, we have f t
ε((1, 0)) = fε(f

t−1
ε (1, 0)) =

fε((1, εt−1(t− 1))). So, using the equality established above, we obtain

inf
f∈F

T∑
t=1

1{f t(x0) ̸= xt} ≤
T∑
t=1

1{f t
ε(x0) ̸= xt}

≤
T∑
t=1

1{f t
ε((1, 0)) ̸= (1, εtt)}

=
T∑
t=1

1{fε((1, εt−1(t− 1))) ̸= (1, εtt)}

=
T∑
t=1

1{t = 0 (mod 3)} ≤ T

3
.

Therefore, we have FRA(T,F) ≥ T
2 −

T
3 ≥

T
6 .

35

	Introduction
	Related Works

	Preliminaries
	Discrete-time Dynamical Systems
	Learning-to-Predict in Dynamical Systems
	Complexity Measures
	Combinatorial dimensions

	Warmup: Realizable Learnability
	Minimax Rates in the Realizable Setting
	Relations to PAC and Online Multiclass Classification
	Examples

	Agnostic Learnability
	Markovian Regret
	Flow Regret

	Discussion and Future directions
	Proofs for Realizable learnability
	Proof of Theorem 10
	Proof of Theorem 12
	Proof of Theorem 13
	Proofs for Linear Systems
	Proof of Theorem 15
	Tightness of upper bound in Theorem 15
	Proof of Theorem 17
	Tightness of lower bound in Theorem 17
	Tightness of upper bound in Theorem 17

	Proof of Theorem 18

